DOI: 10.1007/s00208-004-0604-4

A strict Positivstellensatz for the Weyl algebra

Konrad Schmüdgen

Received: 1 July 2004 / Revised version: 15 September 2004 / Published online: 12 January 2005 – © Springer-Verlag 2005

Abstract. Let *c* be an element of the Weyl algebra $\mathcal{W}(d)$ which is given by a strictly positive operator in the Schrödinger representation. It is shown that, under some conditions, there exist certain elements b_1, \ldots, b_d from $\mathcal{W}(d)$ such that $\sum_{j=1}^d b_j c b_j^*$ is a finite sum of squares.

Mathematics Subject Classification (2000): 11 E25, 14 P10, 47 L60, 16 W10

1. Introduction

In the last decade various versions and generalizations of the Archimedian Positivstellensatz and of uniform denominator results have been obtained in semialgebraic geometry (see the recent books [PD],[M1]). The proofs of these results are either purely algebraic [R], [M2], [JP] or functional analytic [S1], [PV]. The first proof of the Archimedean Positivstellensatz for compact semi-algebraic sets given in [S1] was essentially based on methods from functional analysis. Orderings and sums of squares of noncommutative rings and *-algebras have been studied e.g. in [S2], [Cr], [M3], [He], and [Ci], see also the references therein.

The purpose of this paper is to prove a strict Positivstellensatz for the Weyl algebra. Our approach uses again methods from operator theory and functional analysis.

Let $d \in \mathbb{N}$. The Weyl algebra $\mathcal{W}(d)$ (see e.g. [D]) is the unital complex *-algebra with 2*d* hermitean generators $p_1, \ldots, p_d, q_1, \ldots, q_d$ and defining relations

$$p_k q_k - q_k p_k = -\mathbf{i} \cdot \mathbf{1}$$
 for $k = 1, ..., d$,
 $p_k p_l = p_l p_k, q_k q_l = q_l q_k, p_k q_l = q_l p_k$ for $k, l = 1, ..., d, k \neq l$,

where i denotes the complex unit and 1 is the unit element of W(d). The Weyl algebra W(d) has a distinguished faithful irreducible *-representation, the Schrödinger representation π_0 . The Stone–von Neumann theorem and other uniqueness results for this representation can be found in [Pu]. The representation π_0 acts

K. SCHMÜDGEN

Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany (e-mail: schmuedgen@math.uni-leipzig.de)

on the Schwartz space $S(\mathbb{R}^d)$, considered as dense domain of the Hilbert space $L^2(\mathbb{R}^d)$, by

$$(\pi_0(p_k)\varphi)(t) = -i\frac{\partial\varphi}{\partial t_k}(t), (\pi_0(q_k))\varphi(t) = t_k\varphi(t), \varphi \in \mathcal{S}(\mathbb{R}^d), k = 1, \dots, d.$$

Setting $a_k := 2^{-1/2}(q_k + ip_k)$, $a_{-k} := 2^{-1/2}(q_k - ip_k)$, the Weyl algebra $\mathcal{W}(d)$ is the unital *-algebra with generators $a_1, \ldots, a_k, a_{-1}, \ldots, a_{-k}$, defining relations

$$a_k a_{-k} - a_{-k} a_k = 1$$
 for $k = 1, ..., d$
 $a_k a_l = a_l a_k$ for $k, l = -d, ..., -1, 1, ..., d, k \neq -l$,

and involution given by $a_k^* = a_{-k}, k = 1, ..., d$. We abbreviate

$$N_k := a_k^* a_k$$
 and $N := N_1 + \dots + N_d = a_1^* a_1 + \dots + a_d^* a_d$.

The Weyl algebra $\mathcal{W}(d)$ has a natural filtration (B_0, B_1, \ldots) , where B_n is the linear span of $a_1^{k_1} \cdots a_d^{k_d} a_{-1}^{l_1} \cdots a_{-d}^{l_d}$ such that $k_1 + \cdots + k_d + l_1 + \cdots + l_d \leq n$ and $k_j, l_j \in \mathbb{N}_0$. Here, as usual, $a_j^0 := 1$. The corresponding graded algebra associated with this filtration is the polynomial algebra $\mathbb{C}[z, \overline{z}] \equiv \mathbb{C}[z_1, \ldots, z_d, \overline{z_1}, \ldots, \overline{z_d}]$ in 2n complex variables $z_1, \ldots, z_d, \overline{z_1}, \ldots, \overline{z_d}$, where z_j and $\overline{z_j}$ correspond to a_j and a_j^* , respectively. If $c \in \mathcal{W}(d)$ is an element of degree n, we write $c_n(z, \overline{z})$ for the polynomial in $\mathbb{C}[z, \overline{z}]$ corresponding to the component of c with degree n.

Throughout this paper, α is a fixed positive number which is not an integer. Let \mathcal{N} denote the set of all finite products of elements $N + (\alpha + n)\mathbf{1}$, where $n \in \mathbb{Z}$. Further, we shall use the set $\sum \mathcal{W}(d)^2$ of all finite sums of elements x^*x , where $x \in \mathcal{W}(d)$, and the positive cone

 $\mathcal{W}(d)_{+} = \{ x \in \mathcal{W}(d) : \langle \pi_0(x)\varphi, \varphi \rangle \ge 0 \text{ for all } \varphi \in \mathcal{S}(\mathbb{R}^d) \}.$

The main result of this paper is the following

Theorem 1.1. Let *c* be a hermitean element of the Weyl algebra $\mathcal{W}(d)$ of even degree 2*m* and let $c_{2m}(z, \overline{z})$ be the polynomial of $\mathbb{C}[z_1, \ldots, z_d, \overline{z_1}, \ldots, \overline{z_d}]$ associated with the 2*m*-th component of *c*. Assume that

(i) There exists $\varepsilon > 0$ such that $c - \varepsilon \cdot \mathbf{1} \in \mathcal{W}(d)_+$. (ii) $c_{2m}(z, \overline{z}) > 0$ for all $z \in \mathbb{C}^d, z \neq 0$.

If m is even, then there exists an element $b \in \mathcal{N}$ such that $bcb \in \sum \mathcal{W}(d)^2$. If m is odd, then there exists $b \in \mathcal{N}$ such that $\sum_{j=1}^d ba_j ca_j^* b \in \sum \mathcal{W}(d)^2$.

Theorem 1.1 can be considered as a strict Positivstellensatz in "noncommutative semi-algebraic geometry". In "ordinary" semi-algebraic geometry positive polynomials on semi-algebraic subsets of \mathbb{R}^d are studied. Since points of \mathbb{R}^d correspond to irreducible *-representations of the polynom algebra, the Schrödinger representation of the Weyl algebra can be viewed as a "noncommutative one point space". We will discuss this matter elsewhere in detail. Assumption (i) means that c is strictly positive on this space. Comparing assumption (ii) with the corresponding assumption in the commutative case (see e.g. [PV]) it is natural to interpret (ii) as the positivity of c at infinity.

This paper is organized as follows. The proof of Theorem 1.1 will be completed in Section 5. In Sections 2 – 4 we develop some technical tools. They are needed in the proof of Theorem 1, but they are also of interest by themselves. In Section 2 we introduce and study algebraically bounded *-algebras. In Section 3 we define an auxiliary algebraically bounded *-algebra \mathcal{X} associated with the representation π_0 of the Weyl algebra. In Section 4 we classify the representations of this auxiliary *-algebra. The form of these representations is used in an essentail way in the proof of Theorem 1.1 in Section 5. A simple example illustrating Theorem 1.1 is presented in Section 6.

Let us fix a few definitions and notations. By a *-representation [S2] of a unital *-algebra \mathcal{X} on a pre-Hilbert space \mathcal{D} with scalar product $\langle \cdot, \cdot \rangle$ we mean an algebra homomorphism π of \mathcal{X} into the algebra $L(\mathcal{D})$ of linear operators mapping \mathcal{D} into \mathcal{D} such that $\pi(1) = I$ and $\langle \pi(x)\varphi, \psi \rangle = \langle \varphi, \pi(x^*)\psi \rangle$ for $x \in \mathcal{X}$ and $\varphi, \psi \in \mathcal{D}$. Here 1 is the unit element of \mathcal{X} and I is the identity map of \mathcal{D} . The closure of an operator y is denoted by \bar{y} . For a self-adjoint operator y, we denote by $\sigma(y)$ the spectrum of y and by $E_y(\mathcal{J})$ the spectral projection of y associated with a Borel set \mathcal{J} .

2. The algebraically bounded part of a *-algebra

In this Section \mathcal{X} is an arbitrary complex *-algebra with unit element 1. Let $\mathcal{X}_h = \{x \in \mathcal{X} : x^* = x\}$ be the hermitean part of \mathcal{X} . Each element $x \in \mathcal{X}$ can be written as $x = x_1 + ix_2$, where $x_1 \equiv Re \ x := \frac{1}{2}(x + x^*) \in \mathcal{X}_h$ and $x_2 \equiv Im \ x := \frac{1}{2}i(x^* - x) \in \mathcal{X}_h$. Suppose that \mathcal{X} is an *m*-admissible wedge of \mathcal{X} in the sense of [S2], p.22, that is, \mathcal{C} is a subset of \mathcal{X}_h such that $\mathbf{1} \in \mathcal{C}$, $x + y \in \mathcal{C}, \lambda x \in \mathcal{C}$ and $z^*xz \in \mathcal{C}$ for all $x, y \in \mathcal{C}, \lambda \ge 0$, and $z \in \mathcal{X}$. Let \succeq denote the ordering of the real vector space \mathcal{X}_h defined by $x \succeq y$ if only if $x - y \in \mathcal{C}$.

Let $\mathcal{X}_b(\mathcal{C})$ be the set of all elements $x \in \mathcal{X}$ for which there exists a positive number λ such that

$$\lambda \cdot 1 \succeq \pm \operatorname{Re} x$$
 and $\lambda \cdot 1 \succeq \pm \operatorname{Im} x$.

Note that $\mathcal{X}_b(\mathcal{C})$ is the counter-part of the ring of bounded elements with respect to \mathcal{C} used in semi-algebraic geometry (see e.g. [M2], p. 23).

Lemma 2.1. (i) If $x, y \in \mathcal{X}_b(\mathcal{C})$, then $xy \in \mathcal{X}_b(\mathcal{C})$. (ii) For $x \in \mathcal{X}$, we have $x \in \mathcal{X}_b(\mathcal{C})$ if and only if $xx^* \in \mathcal{X}_b(\mathcal{C})$. (iii) Let $x, y \in \mathcal{X}_h$. If $x \succeq 0$ and x - y = xy, then $x \succeq y \succeq 0$. *Proof.* (i): We write $x = x_1 + ix_2$ and $y = y_1 + iy_2$, where $x_1, x_2, y_1, y_2 \in \mathcal{X}_h$. Since $x \in \mathcal{X}_b(\mathcal{C})$ and $y \in \mathcal{X}_b(\mathcal{C})$, there are positive number λ and μ such that $\lambda \cdot 1 \succeq \pm x_j$ and $\mu \cdot 1 \succeq \pm y_j$ for j = 1, 2. Then, $\lambda \cdot 1 \mp x_j \in \mathcal{C}$. Therefore, by the definition of an *m*-admissible wedge, for $z \in \mathcal{X}$ and $\alpha \in \mathbb{C}$ we have

$$\begin{aligned} (\alpha \cdot 1 + z)^* (\lambda \cdot 1 - x_1) (\alpha \cdot 1 + z) + (\alpha \cdot 1 - z)^* (\lambda \cdot 1 + x_1) (\alpha \cdot 1 - z) \\ + (\alpha i \cdot 1 + z)^* (\lambda \cdot 1 - x_2) (\alpha i \cdot 1 + z) \\ + (\alpha i \cdot 1 - z)^* (\lambda \cdot 1 + x_2) (\alpha i \cdot 1 - z) \\ = 4\lambda (z^* z + |\alpha|^2 \cdot 1) - 2\alpha z^* x^* - 2\bar{\alpha} xz \in \mathcal{C}. \end{aligned}$$

and hence

$$2\lambda(z^*z + |\alpha|^2 \cdot \mathbf{1}) \succeq \alpha z^* x^* + \bar{\alpha} x z.$$
(1)

Setting $z^* = x$ and $\alpha = 2\lambda$ in (1) we get $4\lambda^2 \cdot \mathbf{1} \succeq xx^*$. Likewise, replacing x by y^* and λ by μ we obtain $4\mu^2 \cdot \mathbf{1} \succeq y^*y$. In particular, the preceding proves the only if part of assertion (ii). Setting now z = y and inserting the relation $y^*y \preceq 4\mu^2 \cdot \mathbf{1}$ just proved into (1), it follows that

$$2\lambda(4\mu^2 + |\alpha|^2) \cdot \mathbf{1} \succeq \alpha y^* x^* + \bar{\alpha} x y.$$
⁽²⁾

Letting $\alpha = \pm 1$ and $\alpha = \mp i$ in (2), we conclude that

$$\lambda(4\mu^2 + 1) \cdot \mathbf{1} \succeq \pm \frac{1}{2}(y^*x^* + xy) = \pm Re \ xy$$

$$\lambda(4\mu^2 + 1) \cdot \mathbf{1} \succeq \pm \frac{1}{2}i(y^*x^* - xy) = \pm Im \ xy.$$

By definition the latter means that $xy \in \mathcal{X}_b(\mathcal{C})$.

(ii): The only if part is already proven. It remains to show that $xx^* \in \mathcal{X}_b(\mathcal{C})$ implies that $x \in \mathcal{X}_b(\mathcal{C})$. Since $xx^* \in \mathcal{X}_b(\mathcal{C})$, there is a $\lambda > 0$ such that $\lambda \cdot \mathbf{1} \succeq xx^*$. From the fact that

$$(x - \alpha \cdot \mathbf{1})(x - \alpha \cdot \mathbf{1})^* = xx^* - \alpha x^* - \bar{\alpha}x + |\alpha|^2 \cdot \mathbf{1} \in \mathcal{C}$$

it follows that

$$(\lambda + |\alpha|^2) \cdot \mathbf{1} \succeq xx^* + |\alpha|^2 \cdot \mathbf{1} \succeq \alpha x^* + \bar{\alpha} x.$$
(3)

Setting $\alpha = \pm 1$ and $\alpha = \pm i$ in (3), we conclude that Re x and Im x are in $\mathcal{X}_b(\mathcal{C})$ and so $x \in \mathcal{X}_b(\mathcal{C})$.

(iii): From the relations x = y + xy and $x \ge 0$ we obtain $xy = y^2 + yxy \ge 0$ and hence $x = y + xy \ge y$. Using once more the assumptions $x \ge 0$ and y = x(1 - y) we get $y - y^2 = (1 - y)x(1 - y) \ge 0$. Thus, $y \ge y^2 \ge 0$.

Corollary 2.2. $\mathcal{X}_b(\mathcal{C})$ is a unital *-subalgebra of \mathcal{X} .

Proof. From its definition it is obvious that $\mathcal{X}_b(\mathcal{C})$ is a *-invariant linear subspace of \mathcal{X} . By Lemma 2.1(i), $\mathcal{X}_b(\mathcal{C})$ is a subalgebra of \mathcal{X} .

By the definition of $\mathcal{X}_b(\mathcal{C})$ the unit element **1** is an order unit of the real ordered vector space $(\mathcal{X}_b(\mathcal{C})_h, \geq)$. The corresponding order unit seminorm $\|\cdot\|_1$ is defined by

$$||x||_1 = \inf \{\lambda > 0 : \lambda \cdot \mathbf{1} \succeq x \succeq -\lambda \cdot \mathbf{1}\}, x \in \mathcal{X}_b(\mathcal{C})_h.$$

Recall that a point *x* is called an *internal point* of a subset *M* of a real vector space *E* if for any $y \in E$ there exists $\varepsilon > 0$ such that $x + \delta y \in M$ when ever $|\delta| < \varepsilon, \delta \in \mathbb{R}$. Let C_b^0 denote the set of internal points of the wedge $C_b := C \cap \mathcal{X}(C)_h$ in the real vector space $\mathcal{X}_b(C)_h$. Clearly, C_b^0 coincides with the set of order units of C_b in the order vector space $(\mathcal{X}_b(C)_h, \succeq)$. In particular, $\mathbf{1} \in C_b^0$.

Lemma 2.3. Let z be an element of $\mathcal{X}_b(\mathcal{C})_h$ which is not in \mathcal{C}_b^0 . Then there exists a state F on the *-algebra $\mathcal{X}_b(\mathcal{C})$ such that $F(z) \leq 0$ and $F(x) \geq 0$ for $x \in \mathcal{C}_b$.

Proof. Since C_b^0 is not empty, by Eidelheit's separation theorem for convex sets (see [K], §17, (3) or [J], 0.2.4) there exists a \mathbb{R} -linear functional f on $\mathcal{X}_b(\mathcal{C})_h$ such that $f \neq 0$ and $f(z) \leq 0 \leq f(x)$ for $x \in C_b$. Since $1 \in C_b^0$ and $f \neq 0$, we have f(1) > 0. We extend $f(1)^{-1}f$ on $\mathcal{X}_b(\mathcal{C})_h$ to a \mathbb{C} -linear functional F on $\mathcal{X}_b(\mathcal{C})$.

Remark 1. From [J], 3.7.3 resp. 1.8.3, it follows that the C_b -positive state F on $\mathcal{X}_b(\mathcal{C})$ can be chosen to be extremal (that is, if G is another state on $\mathcal{X}_b(\mathcal{C})$ such that $0 \le G(x) \le F(x)$ for all $x \in C_b$, then G = F).

We now specialize to the case when C is the *m*-admissible wedge $\sum \mathcal{X}^2$ of all finite sums of squares x^*x , where $x \in \mathcal{X}$. In this case the *-algebra $\mathcal{X}_b(C)$ is denoted by \mathcal{X}_b and called the *algebraically bounded part* of the *-algebra \mathcal{X} . We say the *-algebra \mathcal{X} is *algebraically bounded* if $\mathcal{X} = \mathcal{X}_b$. The usefulness of these notions stems from the following obvious fact: For any *-representation π *-algebra \mathcal{X}_b on a pre-Hilbert space \mathcal{D} , each element $x \in \mathcal{X}_b$ is mapped into a bounded operator $\pi(x)$ on \mathcal{D} and $\|\pi(x)\| \leq \|x\|_1$ for $x \in (\mathcal{X}_b)_h$. Moreover, if the *-algebra \mathcal{X} has a faithful Hilbert space *-representation, then $\|\cdot\|_1$ is a norm and the unit 1 is a inner point of the cone $\sum (\mathcal{X}_b)^2$ in the normed space $((\mathcal{X}_b)_h, \|\cdot\|_1)$.

We illustrate the preceding by a simple example which has been used in [PV]. Combining this example with Lemmas 2.1 and 2.3 above the proofs of the results in Section 4 in [PV] can be simplified.

Example. Let \mathcal{X} be the unital *-algebra generated by the rational functions $x_{kl} := x_k x_l (\mathbf{1} + x_1^2 + \ldots + x_d^2)^{-1}$, $k, l = 0, \ldots, d$, on \mathbb{R}^d , where $x_0 := \mathbf{1}$. Since all generators x_{kl} are hermitean and $\mathbf{1} = \sum_{i,j=0}^d x_{ij}^2 \succeq x_{kl}^2 \succeq 0$, it follows that $x_{kl}^2 \in \mathcal{X}_b$ and so $x_{kl} \in \mathcal{X}_b$ by Lemma 2.1(ii). Hence the *-algebra \mathcal{X} is algebraically bounded.

3. An auxiliary algebraically bounded *-algebra

In what follows we use another unitarily equivalent form of the representation π_0 , the so-called Fock-Bargmann representation (see e.g. [F, 1.6]). For notational simplicity we shall write *x* instead of $\pi_0(x)$ for $x \in W(d)$ and α instead $\alpha \cdot 1$ for $\alpha \in \mathbb{C}$ when no confusion occurs. The Fock-Bargmann realization of the representation π_0 acts on the orthonormal basis $\{e_n; n \in \mathbb{N}_0^d\}$ of the representation Hilbert space by

$$a_k e_{\mathfrak{n}} = n_k^{1/2} e_{\mathfrak{n}-1_k}, a_{-k} e_{\mathfrak{n}} = (n_k + 1)^{1/2} e_{\mathfrak{n}+1_k}$$
(4)

for k = 1, ..., d and $n = (n_1, ..., n_d) \in \mathbb{N}_0^d$. Here $1_k \in \mathbb{N}_0^d$ denotes the multi-index with 1 at the *k*-th place and zero otherwise and we set $e_{n-1_k} = 0$ if $n_k = 0$. The corresponding domain \mathcal{D}_0 of the representation consists of vectors $\varphi = \sum_{n \in \mathbb{N}_0^d} \varphi_n e_n$ such that $\sum_n n_1^r ... n_d^r |\varphi_n|^2 < \infty$ for all $r \in \mathbb{N}$. Put $|n| := n_1 + \cdots + n_d$ for $n = (n_1, ..., n_d) \in \mathbb{N}_0^d$. Then the actions of the elements N_k and N of the Weyl algebra are given by

$$N_k e_{\mathfrak{n}} = n_k e_{\mathfrak{n}} \text{ and } N e_{\mathfrak{n}} = |\mathfrak{n}| e_{\mathfrak{n}}, \mathfrak{n} \in \mathbb{N}_0^d.$$
 (5)

Set $a_0 := 1$. We define the following operators on the domain \mathcal{D}_0 :

$$\begin{aligned} x_{kl} &= a_k a_l (N + \alpha)^{-1} \text{ for } k = 0, \dots, d, l = -d, \dots, d; \\ k &= -d, \dots, d, l = 0, \dots, d, \\ x_{-l,-k} &= (N + \alpha)^{-1} a_{-l} a_{-k} \text{ for } k, l = 0, \dots, d, \\ x_k &= x_{k0} = a_k (N + \alpha)^{-1} \text{ and } y_{k0} = x_{-k,k} = N_k (N + \alpha)^{-1} \text{ for } k = 1, \dots, d, \\ y_n &= (N + \alpha + n)^{-1} \text{ for } n \in \mathbb{Z}. \end{aligned}$$

Let \mathcal{X} be the unital *-algebra generated by the operators x_{kl} , k, l = -d, ..., d, and $y_n, n \in \mathbb{N}_0$. The operator x_{kl} , y_n resp. the *-algebra \mathcal{X} can be considered as non-commutative analogs of the Veronese map used in [PV]. For k, l = -d, ..., dand j = 1, ..., d, we have

$$x_{kl}^* = x_{-l,-k}, \ x_{kl} = x_{lk} \text{ if } k + l \neq 0, \ x_{j,-j} - x_{-j,j} = y_0.$$
 (6)

Note that the operators y_n , $n \in \mathbb{Z}$, and y_{k0} , k = 1, ..., d, pairwise commute. Moreover, $x_{ij}x_{kl} = x_{kl}x_{ij}$ for i, j, k, l = 1, ..., d. From (4) and (5) it is clear that all operators x_{kl} , y_n and so all elements of \mathcal{X} are bounded on \mathcal{D}_0 and leave \mathcal{D}_0 invariant.

In order to formulate some relations we introduce the abbreviations t(i, j) = 2if i > 0, j > 0, t(i, j) = 1 if i = 0, j > 0 or i > 0, j = 0, and t(i, j) = 0 otherwise. For the rest of the paper we need a number of commutation relations of the operators defined above. They are easily verified by using formulas (4) and (5). We shall list these relations in a convenient form for the applications given below. Not all relations are used in full strength.

$$y_k - y_n = (n-k)y_k y_n = (n-k)y_n y_k$$
 for $k, n \in \mathbb{Z}$. (7)

$$y_{10} + \dots + y_{d0} = 1 - \alpha y_0.$$
 (8)

$$x_{kj}^* x_{kj} = y_{k0}(y_{j0} - \delta_{kj} y_0), x_{k,-l}^* x_{k,-l} = (y_{k0} + \delta_{kl} y_0)(y_{l0} + y_0)$$

for $j = 0, \dots, d, k, l = 1, \dots, d.$ (9)

$$y_0 x_{kl} = (1 + (\operatorname{sign}(k) + \operatorname{sign}(l))y_0) x_{kl} y_0 \text{ for } k, l = -d, \dots, d.$$
 (10)

$$y_n x_k^* = x_k^* y_{n+1}, x_k y_n = y_{n+1} x_k,$$
(11)

$$x_l x_k^* = x_k^* (1 - y_2) x_l + \delta_{kl} y_1^2,$$
(12)

$$x_k x_k^* = y_{k0} y_1 (1 - y_1) + y_1^2, y_{k0} x_k^* = x_k^* (y_{k0} (1 - y_1) + y_1),$$
(13)
$$x_k y_0 = x_k x_k (1 - y_0) x_{k-1} y_0 = x_k^* x_k^* (1 + y_0)$$
(14)

$$\begin{aligned} x_{kl}y_0 &= x_k x_l (1 - y_0), \ x_{-k,-l}y_0 &= x_k x_l (1 + y_0), \\ x_{k,-l}y_0 &= x_{-l,k} y_0 + \delta_{kl} y_0^2 &= x_l^* x_k + \delta_{kl} y_0^2, \end{aligned}$$
(14)

for
$$k, l = 1, \dots, d$$
 and $n \in \mathbb{Z}$. (15)

$$x_{ij}x_{kl} - x_{kl}x_{ij} \in y_0\mathcal{X}, x_{ij}x_{kl} - x_{il}x_{kj} \in y_0\mathcal{X},$$
(16)

$$y_0 a_k a_l = (1 + t(k, l) y_0) x_{kl},$$
(17)

for
$$i, j, k, l = -d, ..., d$$
. (17)

Moreover, we have $y_0 \mathcal{X} = \mathcal{X} y_0$.

Lemma 3.1. The *-algebra \mathcal{X} is algebraically bounded, that is, $\mathcal{X} = \mathcal{X}_b$.

Proof. From (8) and (9) we obtain

$$(1 - \alpha y_0)y_0 = \sum_{k=1}^d y_{k0}y_0 = \sum_{k=1}^d x_{k0}^* x_{k0} \ge 0$$

and

$$y_0 = \alpha y_0^2 + \sum_{k=1}^d x_{k0}^* x_{k0} \ge 0 \text{ and } \alpha^{-1} - y_0 = \alpha (y_0 - \alpha^{-1})^2 + \sum_{k=1}^d x_{k0}^* x_{k0} \ge 0.$$

Therefore, we have

$$\alpha^{-1} \succeq y_0 \succeq 0. \tag{18}$$

Since $y_n - y_{n+1} = y_n y_{n+1}$ by (7), it follows from Lemma 2.1(iii) by induction on n that $\alpha^{-1} \succeq y_n \succeq 0$ and so $y_n \in \mathcal{X}_b$ for all $n \in \mathbb{N}_0$. Using (8) and (9) we get

$$(1 - \alpha y_0)^2 = \left(\sum_{k=1}^d y_{k_0}\right)^2 = \sum_{k \neq l} x_{kl}^* x_{kl} + \sum_{k=1}^d y_{k_0}^2 \succeq y_{j_0}^2$$
(19)

for j = 1, ..., d. Since $y_0 \in \mathcal{X}_b$, from (19) and Lemma 2.1(ii) we derive that $y_{j0} \in \mathcal{X}_b$ for j = 1, ..., d. Using (9) and Lemma 2.1, (i) and (ii), it follows from the latter that $x_{kj} \in \mathcal{X}_b$ for k = 1, ..., d and j = -d, ..., d. Since $x_{-k,-j} = x_{jk}^*$, all generators of the *-algebra \mathcal{X} are in \mathcal{X}_b . By Corollary 2.2 (i), $\mathcal{X} = \mathcal{X}_b$.

For the proof of Theorem 1.1 below we need the following Lemma.

Lemma 3.2. For $n \in \mathbb{N}$ and $i_1, \ldots, i_{4n} \in \{-d, \ldots, d\}$ there exist polynomials $f_j(y_0) \in \mathbb{R}[y_0], j = 1, \ldots, 2n$, such that $f_j(0) = 1$ and

$$y_0^n a_{i_1} \dots a_{i_{2n}} = f_1(y_0) x_{i_1 i_2} f_2(y_0) \dots f_n(y_0) x_{i_{2n-1} i_{2n}},$$
(20)

$$a_{i_{2n+1}} \cdots a_{i_{4n}} y_0^n = x_{i_{2n+1}i_{2n+2}} f_{n+1}(y_0) \cdots f_{2n}(y_0) x_{i_{4n-1}i_{4n}},$$
(21)

$$y_0^n a_{i_1} \cdots a_{i_{4n}} y_0^n = f_1(y_0) x_{i_1 i_2} f_2(y_0) \cdots f_{2n}(y_0) x_{i_{4n-1} i_{4n}}.$$
 (22)

Proof. It suffices to prove (20). Equation (21) follows from (20) by applying the adjoint operation and (22) is obtained by multiplying (20) and (21).

We prove (20) by induction on *n*. For n = 1, formula (17) gives (20). We assume that (20) is true for *n* and compute

$$y_0^{n+1}a_{i_1}\dots a_{i_{2n}}a_{i_{2n+1}}a_{i_{2n+2}} = y_0f_1(y_0)x_{i_1i_2}\cdots f_n(y_0)x_{i_{2n-1},i_{2n}}a_{i_{2n+1}}a_{i_{2n+2}}$$

= $\tilde{f}_1(y_0)x_{i_1i_2}\cdots \tilde{f}_n(y_0)x_{i_{2n-1},i_{2n}}y_0a_{i_{2n+1}}a_{i_{2n+2}}$
= $\tilde{f}_1(y_0)x_{i_1i_2}\cdots \tilde{f}_n(y_0)x_{i_{2n-1},i_{2n}}(1+t(i_{2n+1},i_{2n+2})y_0)x_{i_{2n+1},i_{2n+2}},$

where $\tilde{f}_j(y_0) \in \mathbb{R}[y_0]$ and $\tilde{f}_j(0) = 1$. Here the first equality holds by the induction hypothesis. The second equality follows from (10), while the third one is obtained by inserting (17).

4. Representations of the auxiliary *-algebra

Suppose π is an arbitrary *-representation of the *-algebra \mathcal{X} on a dense domain of a Hilbert space \mathcal{H} . Since $\mathcal{X} = \mathcal{X}_b$ by Lemma 3.1, all operators $\pi(x), x \in \mathcal{X}$, are bounded, so π extends by continuity to a *-representation, denoted again by π , on the Hilbert space \mathcal{H} . The aim of this section is to describe the structure of this representation π . To shorten the notation, we write simply x instead of $\pi(x)$ for $x \in \mathcal{X}$ if no confusion is possible. Moreover, we use the multi-index notation

$$x^{\mathfrak{n}} := x_1^{n_1} \cdots x_d^{n_d}$$
 for $\mathfrak{n} = (n_1, \dots, n_d) \in \mathbb{N}_0^d$.

4.1. Let $\mathcal{H}_{\infty} := \ker y_0$ and let \mathcal{H}_1 be the closed linear span of subspaces $\mathcal{K}_0 := \ker(y_0 - \alpha^{-1})$ and $\mathcal{K}_n := (x^n)^* \mathcal{K}_0$ for $n \in \mathbb{N}_0^d$. In this subsection we show that \mathcal{H}_{∞} and \mathcal{H}_1 are invariant subspaces for the representation π such that $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{\infty}$.

From the relations $y_0y_n = y_ny_0$, $n \in \mathbb{N}_0$, and (10) it is clear that $\mathcal{H}_{\infty} = \ker y_0$ is an invariant subspace for the representations π . Since $y_ny_0 = y_0y_n$ and $y_nx_k^* = x_k^*y_{n+1}$ by (11), \mathcal{K}_0 and \mathcal{K}_n and hence \mathcal{H}_1 are invariant under y_n , $n \in \mathbb{N}_0$. The invariance of \mathcal{H}_1 under x_k^* is trivial.

Since $\alpha^{-1} \succeq y_0 \succeq 0$ by (18), the self-adjoint operator y_0 satisfies the relation $\alpha^{-1}I \ge y_0 \ge 0$ in the Hilbert space ordering. Hence its spectrum $\sigma(y_0)$ is contained in the interval $[0, \alpha^{-1}]$.

Let $\varphi \in \mathcal{K}_0$. Using the relations $(1 + y_0)y_1 = y_0$ by (7) and $x_k y_0 = y_1 x_k$ by (11), we have

$$(1+y_0)x_k\varphi = (1+y_0)x_k(\alpha y_0\varphi) = \alpha(1+y_0)y_1x_k\varphi = \alpha y_0x_k\varphi$$

and so $y_0 x_k \varphi = (\alpha - 1)^{-1} x_k \varphi$. Since $\sigma(y_0) \subseteq [0, \alpha^{-1}]$, the latter implies that

$$x_k \varphi = 0 \text{ for } \varphi \in \mathcal{K}_0 = \ker(y_0 - \alpha^{-1}), k = 1, \dots, d.$$
(23)

The invariance of \mathcal{K}_n and so of \mathcal{H}_1 under x_k , k = 1, ..., d, follows easily by induction on $|\mathfrak{n}|$ using relations (23) and (12) and the fact that \mathcal{K}_n is invariant under y_2 .

We prove the invariance of \mathcal{H}_1 under x_{kl} . Let $\varphi \in \mathcal{K}_0$. Using (7) and (11) we compute

$$x_{kl}(x^{n})^{*}\varphi = \alpha x_{kl}(x^{n})^{*} y_{0}\varphi = \alpha x_{kl}(x^{n})^{*} y_{|n|}(1+|n|y_{0})\varphi$$

= $\alpha x_{kl}y_{0}(x^{n})^{*}(1+|n|\alpha^{-1})\varphi$ (24)

for k, l = -d, ..., d. Expressing $x_{kl}y_0$ by means of relations (14) and (15) and using the invariance of \mathcal{H}_1 under x_j, x_j^* and y_0 , the right hand side of (24) is in \mathcal{H}_1 . Thus, the subspace \mathcal{H}_1 is invariant under the generators of \mathcal{X} and so under all representation operators.

We show that $\mathcal{H}_{\infty} \perp \mathcal{H}_1$. Indeed, if $\eta \in \mathcal{H}_{\infty} = \ker y_0, \varphi \in \mathcal{K}_0 = \ker(y_0 - \alpha^{-1})$ and $n \in \mathbb{N}_0^d$, then by (7) and (11) we have

$$\begin{aligned} \langle \eta, (x^{n})^{*}\varphi \rangle &= \langle \eta, \alpha(x^{n})^{*}y_{|\mathfrak{n}|}(1+|\mathfrak{n}|y_{0})\varphi \rangle \\ &= \langle \eta, (\alpha+|\mathfrak{n}|)y_{0}(x^{n})^{*}\varphi \rangle = \langle y_{0}\eta, (\alpha+|\mathfrak{n}|))x^{n}\rangle^{*}\varphi \rangle = 0. \end{aligned}$$

Finally, we prove that $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_\infty$. Clearly $\mathcal{G} := \mathcal{H} \ominus (\mathcal{H}_1 \oplus \mathcal{H}_\infty)$ is an invariant closed subspace for the representation π . We have to prove that $\mathcal{G} = \{0\}$. Assume to the contrary that $\mathcal{G} \neq \{0\}$. Let Y_0, Y_1 and X_k denote the restriction to \mathcal{G} of the operators y_0, y_1 and x_k on \mathcal{H} , respectively. Since $\mathcal{G} \perp \ker y_0$ and $\mathcal{G} \perp \ker(y_0 - \alpha^{-1})$, we have $\ker Y_0 = \{0\}$ and $\ker(Y_0 - \alpha^{-1}) = \{0\}$. Because $\sigma(Y_0) \subseteq \sigma(y_0) \subseteq [0, \alpha^{-1}]$, we therefore have $\lambda_0 := \sup \sigma(Y_0) > 0$. Fix $k \in \{1, \ldots, d\}$. By (10), $X_k Y_0 = Y_1 X_k$. This in turn implies that $X_k f(Y_0) = f(Y_0) X_k$ for all $f \in L^\infty(\mathbb{R})$ and so

$$X_k E_{Y_0}(\mathcal{J}) = E_{Y_1}(\mathcal{J}) X_k \tag{25}$$

for any Borel subset \mathcal{J} of \mathbb{R} . Since $Y_1 = Y_0(I + Y_0)^{-1}$ by (7), it follows from the spectral mapping theorem that $\lambda_0(1 + \lambda_0)^{-1} = \sigma(Y_1)$. Because ker $(Y_0 - \alpha^{-1}) = \{0\}$, for any $\varepsilon > 0$ there exists $\lambda \in \sigma(Y_0)$ such that $|\lambda - \lambda_0| < \varepsilon$ and $\lambda < \alpha^{-1}$. Hence we can choose numbers $\lambda_1 \in \sigma(Y_0)$ and $\delta > 0$ such that

$$\lambda_0(1+\lambda_0)^{-1} < \lambda_1 - \delta < \lambda_1 + \delta \le \lambda_0, \ \lambda_1 + \delta < \alpha^{-1}.$$
 (26)

Let $\mathcal{J} := (\lambda_1 - \delta, \lambda_1 + \delta)$. Since $\lambda_1 \in \sigma(Y_0)$ and $\lambda_1 - \delta > \sup \sigma(Y_1)$, we have $E_{Y_0}(\mathcal{J}) \neq 0$ and $E_{Y_1}(\mathcal{J}) = 0$, so that $X_k E_{Y_0}(\mathcal{J}) = 0$ by (25). Therefore, by (9) and (8),

$$0 = \sum_{k=1}^{d} X_{k}^{*} X_{k} E_{Y_{0}}(\mathcal{J}) = (1 - \alpha Y_{0}) Y_{0} E_{Y_{0}}(\mathcal{J})$$

Because $\inf\{|(1 - \alpha\lambda)\lambda|; \lambda \in \mathcal{J}\} > 0$ by (26) and $E_{Y_0}(\mathcal{J}) \neq 0$ we have obtained a contradiction. Thus, $\mathcal{G} = \{0\}$ and $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_\infty$.

4.2. In this subsection we show that the restriction π_1 of the representation π to \mathcal{H}_1 is a direct sum of representations which are unitarily equivalent to the identity representation of \mathcal{X} . By the identity representation we mean the representation ρ of \mathcal{X} on the Hilbert space \mathcal{H}_0 given by $\rho(x) = \bar{x}, x \in \mathcal{X}$, where \bar{x} is the continuous extension of the operator x on the dense domain \mathcal{D}_0 to \mathcal{H}_0 . We begin with two preliminary lemmas.

Lemma 4.1. (i) $x_k(x^n)^* = (x^n)^* ((1-y_2)\cdots(1-y_{|n|+1}))^2 x_k$ for all k = 1, ..., dand $n \in \mathbb{N}_0^d$, $n \neq 0$, such that $n_k = 0$. (ii) $x_k x_k^* x_k^{*r} = x_k^{*r} (y_{k_0}(1-(r+1)y_{r+1}) + (r+1)y_{r+1})y_{r+1}$ for k = 1, ..., dand $r \in \mathbb{N}_0$.

Proof. (i) is proved by induction on $|\mathfrak{n}|$. If $|\mathfrak{n}| = 1$, then the assertion holds by (12). Suppose that the assertion is valid for \mathfrak{n} . Let $j \in \{1, ..., d\}$, $j \neq k$ and $\mathfrak{n}' := \mathfrak{n} + \mathbf{1}_j$. Using the induction hypothesis and relations (12) and (11) we obtain

$$\begin{aligned} x_k(x^{n'})^* &= x_k(x^n)^* x_j^* = (x^n)^* ((1 - y_2) \cdots (1 - y_{|n|+1}))^2 x_k x_j^* \\ &= (x^n)^* ((1 - y_2) \dots (1 - y_{|n|+1}))^2 x_j^* (1 - y_2) x_k \\ &= (x^{n'})^* ((1 - y_2) \cdots (1 - y_{|n'|+1}))^2 x_k. \end{aligned}$$

(ii) is proved by induction on r. For r = 0 the assertion is just the first formula of (13). Suppose that the assertion holds for r. Using the induction hypothesis and relations (11) and (13) we compute

$$\begin{aligned} x_k x_k^* x_k^{*(r+1)} &= x_k^{*r} (y_{k0}(1 - (r+1)y_{r+1}) + (r+1)y_{r+1})y_{r+1} x_k^* \\ &= x_k^{*r} (y_{k0} x_k^*(1 - (r+1)y_{r+2}) + (r+1)x_k^* y_{r+2})y_{r+2} \\ &= x_k^{*(r+1)} ((y_{k0}(1 - y_1) + y_1)(1 - (r+1)y_{r+2}) \\ &+ (r+1)y_{r+2})y_{r+2} \\ &= x_k^{*(r+1)} (y_{k0}(1 - (r+2)y_{r+2}) + (r+2)y_{r+2})y_{r+2}, \end{aligned}$$

where the last equality is derived from relation (7).

Lemma 4.2. If $\eta, \varphi \in \mathcal{K}_0$ and $\mathfrak{k}, \mathfrak{n} \in \mathbb{N}_0^d$, $|\mathfrak{k}| + |\mathfrak{n}| > 0$, then

$$\langle (x^{\mathrm{f}})^*\eta, (x^{\mathrm{n}})^*\varphi \rangle = \frac{n_1! \cdots n_d!}{((1+\alpha) \cdots (|n|+\alpha))^2} \delta_{\mathrm{f},\mathrm{n}} \langle \eta, \varphi \rangle \tag{27}$$

Proof. First we prove that $(x^{\mathfrak{l}})^* \eta \perp (x^{\mathfrak{n}})^* \varphi$ if $\mathfrak{k} \neq \mathfrak{n}$. Assume without loss of generality that $k_j > n_j$. Set $k'_l = k_l, n'_l = n_l$ for $l \neq j, k'_j = n'_j = 0$, and $\mathfrak{k}' = (k'_1, \ldots, k'_d), \mathfrak{n}' = (n'_1, \ldots, n'_d)$. From Lemma 4.1(i) is follows by induction on *s* that there exists a polynomial *f* (depending on *s* and \mathfrak{n}') such that

$$x_{j}^{s}(x^{n'})^{*} = (x^{n'})^{*} f(y_{2}, \dots, y_{|n'|+s}) x_{j}^{s} \text{ for } s \in \mathbb{N}.$$
 (28)

Further, using the formulas (13) it is easily shown by induction on r that there exists a polynomial g (depending on r) such that

$$x_j^r x_j^{*r} = g(y_{j_0}, y_1, \dots, y_r) \text{ for } r \in \mathbb{N}.$$
 (29)

Since $x_j y_{j_0} = (y_{j_0}(1 - y_1) + y_1)x_j$ by (13) and $x_j y_n = y_{n+1}x_j$ by (11) we conclude from (28) and (29) that there is a polynomial *h* such that

$$x_j^s x_j^r x_j^{*r} (x^{\mathfrak{n}'})^* = (x^{\mathfrak{n}'})^* h(y_{j_0}, y_1, \dots, y_{r+s}) x_j^s.$$
(30)

Setting $s = k_j - n_j$, $r = n_j$ and using the fact that $x_j \varphi = 0$ by (23), (30) implies that $x^{\dagger}(x^{\mathfrak{n}})^* \varphi = x^{\dagger'} x_j^s x_j^r (x^{\mathfrak{n}})' \varphi = 0$ and so $\langle (x^{\dagger})^* \eta, (x^{\mathfrak{n}})^* \varphi \rangle = 0$.

Next we prove (27) in the case f = n. It clearly suffices to show that

$$x^{\mathfrak{n}}(x^{\mathfrak{n}})^{*}\varphi = \frac{n_{1}!\cdots n_{d}!}{((1+\alpha)\cdots(|\mathfrak{n}|+\alpha))^{2}}\varphi \text{ for } \mathfrak{n}\in\mathbb{N}_{0}^{d}, n\neq0.$$
(31)

We prove (31) by induction on $|\mathfrak{n}|$. First we note that $y_{r+1}\varphi = (r+1+\alpha)^{-1}\varphi$ by (7) and $0 = x_k^* x_k \varphi = x_{k0}^* x_{k0} \varphi = y_{k0} y_0 \varphi = \alpha^{-1} y_{k0} \varphi$ by (23) and (9), so that $y_{k0}\varphi = 0$. Inserting these facts into Lemma 4.1(ii) we get

$$x_j x_j^* x_j^{*n_j} \varphi = x^{*n_j} (n_j + 1) (n_j + 1 + \alpha)^{-2} \varphi \text{ for } n_j \in \mathbb{N}_0.$$
(32)

Setting $n_j = 0$, (32) gives (31) for $|\mathfrak{n}| = 1$. Suppose that (31) holds for \mathfrak{n} . Let $j \in \{1, \ldots, d\}$. We prove that (31) is true for $\mathfrak{n}' = \mathfrak{n} + 1_j$. Set $\tilde{\mathfrak{n}} = (n_1, \ldots, n_{j-1}, 0, n_{j+1}, \ldots, n_d)$. Then we compute

$$\begin{aligned} x^{\mathbf{n}'}(x^{\mathbf{n}'})^*\varphi &= x^{\mathbf{n}}x_j x_j^{*n_j}(x^{\tilde{\mathbf{n}}})^*\varphi = x^{\mathbf{n}}x_j(x^{\tilde{\mathbf{n}}})^* x_j^* x_j^{*n_j}\varphi \\ &= x^{\mathbf{n}}(x^{\tilde{\mathbf{n}}})^*((1-y_2)\cdots(1-y_{|\tilde{\mathbf{n}}|+1}))^2 x_j x_j^* x_j^{*n_j}\varphi \\ &= x^{\mathbf{n}}(x^{\tilde{\mathbf{n}}})^*((1-y_2)\cdots(1-y_{|\tilde{\mathbf{n}}|+1}))^2 x_j^{*n_j}(n_j+1)(n_j+1+\alpha)^{-2}\varphi \\ &= x^{\mathbf{n}}(x^{\tilde{\mathbf{n}}})^*((1-y_{2+n_j})\cdots(1-y_{|\tilde{\mathbf{n}}|+1+n_j}))^2(n_j+1)(n_j+1+\alpha)^{-2}\varphi \\ &= x^{\mathbf{n}}(x^{\mathbf{n}})^*(n_j+1)(|\mathbf{n}|+1+\alpha)^{-2}\varphi, \end{aligned}$$

where we used Lemma 4.1(i), formula (32) and the fact that $(1-y_k)\varphi = (k-1+\alpha)$ $(k+\alpha)^{-1}\varphi$. Inserting the induction hypothesis we obtain (31) for \mathfrak{n}' .

Put $c_{\mathfrak{n}} := (n_1! \cdots n_d!)^{-1/2} (1 + \alpha) \cdots (|\mathfrak{n}| + \alpha)$ for $n \in \mathbb{N}_0^d$, $\mathfrak{n} \neq 0$, and $c_0 := 1$. Let $\{\varphi_i; i \in I\}$ be an orthonormal basis of \mathcal{K}_0 . Then, by formula (27) the set $\{e_{\mathfrak{n},i}:=c_{\mathfrak{n}}(x^{\mathfrak{n}})^*\varphi_i; \mathfrak{n} \in \mathbb{N}_0^d, i \in I\}$ is an orthonormal basis of \mathcal{H}_1 . From

$$\|x_k^*(x^{\mathfrak{n}})^*\varphi\| = (n_k+1)^{1/2}(|\mathfrak{n}|+1+\alpha)^{-1}\|(x^{\mathfrak{n}})^*\varphi\|, \varphi \in \mathcal{K}_0,$$

by (27) we derive

$$x_k^* e_{n,i} = (n_k + 1)^{1/2} (|\mathfrak{n}| + 1 + \alpha)^{-1} e_{\mathfrak{n} + \mathbf{1}_{k,i}}.$$

Therefore, by (4) and (5), the operator x_k^* acts on the orthonormal set $\{e_{n,i}; n \in \mathbb{N}_0^d\}$ as on the orthonormal basis $\{e_n; n \in \mathbb{N}_0^d\}$ for the identity representation of \mathcal{X} . The same is true for the adjoint operator x_k of x_k^* and hence for all operators y_n and x_{kl} by (14) and (15). That is, for each $i \in I$ the restriction of π_1 to the closed linear span of vectors $\{e_{n,i}; n \in \mathbb{N}_0^d\}$ is unitarily equivalent to the identity representation of \mathcal{X} which are unitarily equivalent to the identity representation.

4.3. In this subsection we study the restriction π_{∞} of π to the invariant subspace $\mathcal{H}_{\infty} = \ker y_0$. Since $\pi_{\infty}(y_0) = 0$ and $x_{k0}^* = x_{0k}^* = x_{-k,0} = x_{0,-k}$, we have

$$\pi_{\infty}(y_n) = 0, n \in \mathbb{N}_0, \text{ and } \pi_{\infty}(x_{k0}) = \pi_{\infty}(x_{0k}) = 0, k = -d, \dots, d.$$
 (33)

by (7) and (9). From (16), (9) and (6) we conclude that $X_{kl} := \pi_{\infty}(x_{kl}), k, l = -d, \ldots, d$, are pairwise commuting bounded normal operators on \mathcal{H}_{∞} satisfying $X_{kl} = X_{lk}, X_{kl}^* = X_{-l,-k}$ and

$$X_{ij}X_{kl} = X_{kj}X_{il}$$
 for $i, j, k, l = -d, \dots, d.$ (34)

Recall that $y_{i0} = x_{i,-i}$. Therefore, by (8),

$$X_{1,-1} + \dots + X_{d,-d} = I.$$
(35)

For $j = 1, \ldots, d$, we obtain from (34) and (35)

$$\sum_{k=1}^{d} X_{k,-j}^* X_{k,-j} = \sum_{k=1}^{d} X_{k,-k} X_{j,-j} = X_{j,-j}.$$
(36)

We now describe the Gelfand spectrum of the operator family $\{X_{k,l}; k, l = -d, ..., d\}$ or equivalently the character space of the abelian C^* -algebra generated by these operators. Let χ be such a character. From (35), there is $j \in \{1, ..., d\}$ such that $\chi(X_{j,-j}) \neq 0$. Take $z_j \in \mathbb{C}$ such that $z_j^2 = \chi(X_{jj})$. Since $\chi(X_{j,-j}) \geq 0$ by (36) and $z_j^2 \overline{z_j}^2 = \chi(X_{jj} X_{-j,-j}) = \chi(X_{j,-j})^2$ by (34), we have $z_j \overline{z_j} = \chi(X_{j,-j})$. We define $z_k := \chi(X_{k,-j})\chi(X_{j,-j})^{-1}z_j$ for $k \neq j$. Note that the latter relation is trivially true for k = j, so it holds for all k = 1, ..., d. Using the preceding facts and (34) we compute

$$z_{k}z_{l} = \chi(X_{k,-j}X_{l,-j})\chi(X_{j,-j})^{-2}\chi(X_{j,j})$$

= $\chi(X_{kl})\chi(X_{-j,-j}X_{j,j})\chi(X_{j,-j})^{-2} = \chi(X_{kl}),$
 $z_{k}\overline{z_{l}} = \chi(X_{k,-j})(\overline{\chi(X_{l,-j})}\chi(X_{j,-j})^{-2}\chi(X_{j,-j}))$
= $\chi(X_{k,-j}X_{-l,j})\chi(X_{j,-j}) = \chi(X_{k,-l})$

for k, l = 1, ..., d. From the latter and (35) we get

$$\sum_{k=1}^{d} z_k \overline{z_k} = \chi\left(\sum_{k=1}^{d} X_{k,-k}\right) = \chi(I) = 1.$$

Thus we have shown that for each character χ there is a point $z = (z_1, ..., z_d)$ of the unit sphere S^d of the Euclidean space \mathbb{C}^d such that

$$\chi(X_{kl}) = z_k z_l$$
 and $\chi(X_{k,-l}) = z_k \overline{z_l}$ for $k, l = 1, ..., d$.

From the Gelfand theory it follows that there exists a spectral measure $E(\cdot)$ on the unit sphere S^d of \mathbb{C}^d such that

$$\pi_{\infty}(x_{kl}) = \int_{S^d} z_k z_l dE(z, \bar{z}), \ \pi_{\infty}(x_{k, -l}) = \pi(x_{-l, k}) = \int_{S^d} z_k \overline{z_l} \ dE(z, \bar{z})$$
(37)

for k, l = 1, ..., d. Combined with (33), these formulas describe the representation π_{∞} on the generators of \mathcal{X} completely.

5. Proof of Theorem 1.1

We first prove the assertion of Theorem 1.1 in the case when *m* is even, say m=2n. Then $c \in W(d)$ has degree 4n. From formula (22) in Lemma 3.2 it follows that $y_0^n c y_0^n$ belongs to the *-algebra \mathcal{X} .

The crucial step of the proof is to show that $y_0^n cy_0^n \in \sum \mathcal{X}^2$. Assume the contrary. We apply Lemma 2.3 to the wedge $\mathcal{C} = \sum \mathcal{X}^2$. Since $\mathcal{X} = \mathcal{X}_b$ by Lemma 3.1, there exists a state F on the *-algebra \mathcal{X} such that $F(y_0^n cy_0^n) \leq 0$. Let π_F denote the representation of \mathcal{X} with cyclic vector φ_F associated with F by the GNS construction such that $F(x) = \langle \pi_F(x)\varphi_F, \varphi_F \rangle$ for $x \in \mathcal{X}$. As shown in Section 4, π_F decomposes into a direct sum of representations which are unitarily equivalent to the identity representation of \mathcal{X} on $L^2(\mathbb{R}^d)$ and the representation π_∞ on \mathcal{H}_∞ . Let $\varphi_i \in L^2(\mathbb{R}^d), i \in I$, and $\varphi_\infty \in \mathcal{H}_\infty$ be the components of the vector φ_F in this decomposition. Then, we have

$$F(x) = \sum_{i \in I} \langle \bar{x}\varphi_i, \varphi_i \rangle + \langle \pi_{\infty}(x)\varphi_{\infty}, \varphi_{\infty} \rangle, \ x \in \mathcal{X}.$$
(38)

By assumption (i), $\langle y_0^n c y_0^n \varphi, \varphi \rangle = \langle c y_0^n \varphi, y_0^n \varphi \rangle \ge \varepsilon \langle y_0^n \varphi, y_0^n \varphi \rangle$ for $\varphi \in \mathcal{D}_0 = \mathcal{S}(\mathbb{R}^d)$ and hence

$$\langle \overline{y_0^n c y_0^n} \varphi, \varphi \rangle \ge \varepsilon \| \overline{y_0^n} \varphi \|^2 > 0 \text{ for } \varphi \in L^2(\mathbb{R}^d), \varphi \neq 0.$$
(39)

From Lemma 3.2 and the fact that $\pi_{\infty}(f_j(y_0)) = \pi_{\infty}(f_j(0))$ we obtain

$$\pi_{\infty}(y_0^n a_{i_1} \dots a_{i_{4n}} y_0^n) = \pi_{\infty}(x_{i_1 i_2}) \cdots \pi_{\infty}(x_{i_{4n-1}, i_{4n}})$$

for $i_1, \ldots, i_{4n} = -d, \ldots, d$. If the degree of a monomial $a_{i_1} \cdots a_{i_{4n}}$ is less than 4n, then at least one index i_j is zero and so $\pi_{\infty}(y_0^n a_{i_1} \cdots a_{i_{4n}} y_0^n) = 0$ by (33). Hence we have $\pi_{\infty}(y_0^n cy_0^n) = \pi_{\infty}(y_0^n c_{4n} y_0^n)$. Using (37) we derive

$$\langle \pi_{\infty}(y_0^n c y_0^n) \varphi_{\infty}, \varphi_{\infty} \rangle = \int_{S^d} c_{4n}(z, \bar{z}) d \langle E(z, \bar{z}) \varphi_{\infty}, \varphi_{\infty} \rangle.$$
(40)

By assumption (ii), $c_{4n}(z, \bar{z}) > 0$ for $z \in S^d$. Since $F(y_0^n c y_n^n) \le 0$, it follows from (38), (39) and (40) that all vectors φ_i , $i \in I$, and φ_∞ are zero. But then F(1) = 0 by (38), in contradiction to the fact that F is a state. Thus, $y_0^n c y_0^n \in \sum \mathcal{X}^2$.

That $y_0^n c y_0^n \in \sum \mathcal{X}^2$ means that there exist elements $g_1, \dots, g_s \in \mathcal{X}$ such that $y_0^n c y_0^n = \sum_{l=1}^s g_l^* g_l$. Let $b \in \mathcal{N}$. Multiplying the latter equation by $b(N + \alpha)^n$ from the left and from the right we obtain

$$bcb = \sum_{l=1}^{s} (g_l (N+\alpha)^n b)^* (g_l (N+\alpha)^n b).$$
(41)

Each element of \mathcal{X} is a linear combination of finite products of operators a_j and a_j^* , j = 1, ..., d, and $y_k = (N + \alpha + k)^{-1}$, $k \in \mathbb{N}_0$. Therefore, it follows from the

relations $a_j y_k = y_{k+1} a_j$ and $a_j^* y_k = y_{k-1} a_j^*$ that we can choose $b \in \mathcal{N}$ such that all denumerators $(N+\alpha+k)^{-1}$ of elements g_l cancel, so that $g_l(N+\alpha)^n b \in \mathcal{W}(d)$. Then we have $bcb \in \sum \mathcal{W}(d)^2$ by (41), as required.

Next we treat the case when *m* is odd, say m = 2n - 1. Then $\tilde{c} := \sum_{j=1}^{d} a_j c a_j^*$ has degree 4*n*. By assumption (i) on *c*, we have

$$\langle \tilde{c}\varphi,\varphi\rangle = \sum_{j=1}^d \langle ca_j^*\varphi,a_j^*\varphi\rangle \geq \sum_{j=1}^d \varepsilon \langle a_j^*\varphi,a_j^*\varphi\rangle = \varepsilon \langle (N+d)\varphi,\varphi\rangle \geq \varepsilon \langle \varphi,\varphi\rangle$$

for $\varphi \in S(\mathbb{R}^d)$. Since $\tilde{c}_{4n}(z, \bar{z}) = c_{2m}(z, \bar{z})$ on S^d , \tilde{c} satisfies assumptions (i) and (ii) too, so the preceding applies to \tilde{c} . This completes the proof of Theorem 1.1.

Remark 2. The above proof shows that for even m = 2n the assertion of Theorem 1.1 remains valid if assumption (i) is replaced by the weaker requirement that the continuous extension of the bounded operator $(N + \alpha)^{-n}c(N + \alpha)^{-n}$ on $\mathcal{S}(\mathbb{R}^d)$ to $L^2(\mathbb{R}^d)$ is positive and has trivial kernel. The latter is satisfied if there exists a bounded positive self-adjoint operator x on $L^2(\mathbb{R}^d)$ with trivial kernel such that $\langle c\varphi, \varphi \rangle \geq \langle x\varphi, \varphi \rangle$ for $\varphi \in \mathcal{S}(\mathbb{R}^d)$. The special case $x = \varepsilon \cdot I$ is assumption (i).

6. An example

Suppose that d = 1. Since the spectrum of the closure of the operators $\pi_0(N)$ is \mathbb{N}_0 by (5), a polynomial p(N) of N is in $\mathcal{W}(1)_+$ if and only if $p(n) \ge 0$ for all $n \in \mathbb{N}_0$. As shown in [FS], the element p(N) belongs to $\sum \mathcal{W}(1)^2$ if and only if there are polynomials $q_0, \ldots, q_k \in \mathbb{C}[N], k \in \mathbb{N}_0$, such that

$$p(N) = q_0(N)^* q_0(N) + Nq_1(N)^* q_1(N) + \cdots + N(N-1) \cdots (N-k+1)q_k(N)^* q_k(N).$$
(42)

For $\varepsilon \ge 0$, we set $c_{\varepsilon} := (N-1)(N-2) + \varepsilon$ (see [FS] and [W]). From the preceding facts it follows that c_{ε} is in $\mathcal{W}(d)_+$ for all $\varepsilon \ge 0$ and that c_{ε} is not in $\sum \mathcal{W}(1)^2$ if $0 \le \varepsilon < \frac{1}{4}$. Clearly, c_{ε} satisfies the assumptions of Theorem 1.1 for all $\varepsilon > 0$. For arbitrary real α we have

$$(N+\alpha)c_{\varepsilon}(N+\alpha) = \frac{1}{2}\alpha^{2}(N-1)^{2}(N-2)^{2} + (1-\frac{1}{2}\alpha^{2})N(N-1)(N-2)(N-3) + (2\alpha+3)N(N-1)(N-2) + \varepsilon(N+\alpha)^{2}.$$

The latter expression has been found by A. Schüler. If $\alpha^2 \leq 2$, then the right hand side of the preceding equation is of the form (42) and so $(N + \alpha)c_{\varepsilon}(N + \alpha) \in \sum W(1)^2$ as asserted by Theorem 1.1.

References

- [Ci] Cimprič, J.: A representation theorem for archimedean quadratic modules on *-rings. Preprint
- [Cr] Craven, T.: Orderings, valuations, and Hermitian forms over *-fields. Proc. Symposia Pure Math. 58.2, 149–159 (1995)
- [D] Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. France 96, 209–242 (1968)
- [F] Folland, G.B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, Princeton, 1989
- [FS] Friedrich, J., Schmüdgen, K.: n-Positivity of unbounded *-representations. Math. Nachr. 141, 233–250 (1989)
- [He] Helton, J.W.: Positive noncommutative polynomials are sums of squares. Ann. of Math.(2) 156, 675–694 (2002)
- [J] Jameson, G.: Ordered Linear Spaces. Lecture Notes in Math. No.141, Springer-Verlag, Berlin, 1970
- [JP] Jacobi, T., Prestel, A.: Distinguished representations of strictly positive polynomials. J. reine angew. Math. 532, 223–235 (2001)
- [K] Köthe, G.: Topological Vector Spaces II. Springer-Verlag, Berlin, 1979
- [M1] Marshall, M.: Positive Polynomials and Sums of Squares. Univ. Pisa, Dipart. Mat. Istituti Editoriali e Poligrafici Internaz., 2000
- [M2] Marshall, M.: Extending the Archimedean Positivstellensatz to the non-compact case. Can. Math. Bull. 14, 223–230 (2001)
- [M3] Marshall, M.: *-orderings on a ring with involution. Comm. Algebra 28, 1157–1173 (2000)
- [PD] Prestel, A., Delzell, C.N.: Positive Polynomials. Springer-Verlag, Berlin, 2001
- [Pu] Putnam, C. R.: Commutation properties of Hilbert space operators. Springer-Verlag, Berlin, 1967
- [PV] Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. Math. 149, 1087–1107 (1999)
- [R] Reznick, B.: Uniform denominators in Hilbert's Seventeenth problem. Math. Z. 220, 75–97 (1995)
- [S1] Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991)
- [S2] Schmüdgen, K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser-Verlag, Basel, 1990
- [W] Woronowicz, S.L.: The quantum problem of moments I. Reports Math. Phys. 1, 135–145 (1970)