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Abstract. Let c be an element of the Weyl algebra W(d) which is given by a strictly positive
operator in the Schrödinger representation. It is shown that, under some conditions, there exist
certain elements b1, . . ., bd from W(d) such that

∑d
j=1 bj cb

∗
j is a finite sum of squares.
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1. Introduction

In the last decade various versions and generalizations of the Archimedian
Positivstellensatz and of uniform denominator results have been obtained in semi-
algebraic geometry (see the recent books [PD],[M1]). The proofs of these results
are either purely algebraic [R], [M2], [JP] or functional analytic [S1], [PV].
The first proof of the Archimedean Positivstellensatz for compact semi-algebraic
sets given in [S1] was essentially based on methods from functional analysis.
Orderings and sums of squares of noncommutative rings and ∗-algebras have been
studied e.g. in [S2], [Cr], [M3], [He], and [Ci], see also the references therein.

The purpose of this paper is to prove a strict Positivstellensatz for the Weyl
algebra. Our approach uses again methods from operator theory and functional
analysis.

Let d ∈ N. The Weyl algebra W(d) (see e.g. [D]) is the unital complex
∗-algebra with 2d hermitean generators p1, . . ., pd, q1, . . ., qd and defining rela-
tions

pkqk − qkpk = −i · 1 for k = 1, . . ., d,

pkpl = plpk, qkql = qlqk, pkql = qlpk for k, l = 1, . . ., d, k �= l,

where i denotes the complex unit and 1 is the unit element of W(d). The Weyl
algebra W(d) has a distinguished faithful irreducible ∗-representation, the Schrö-
dinger representation π0. The Stone–von Neumann theorem and other uniqueness
results for this representation can be found in [Pu]. The representation π0 acts
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on the Schwartz space S(Rd), considered as dense domain of the Hilbert space
L2(Rd), by

(π0(pk)ϕ)(t) = −i
∂ϕ

∂tk
(t), (π0(qk))ϕ)(t) = tkϕ(t), ϕ ∈ S(Rd), k = 1, . . ., d.

Setting ak := 2−1/2(qk + ipk), a−k := 2−1/2(qk − ipk), the Weyl algebra W(d) is
the unital ∗-algebra with generators a1, . . ., ak, a−1, . . ., a−k, defining relations

aka−k − a−kak = 1 for k = 1, . . ., d

akal = alak for k, l = −d, . . .,−1, 1, . . ., d, k �= −l,
and involution given by a∗

k = a−k, k = 1, . . ., d. We abbreviate

Nk := a∗
k ak and N := N1 + · · · +Nd = a∗

1a1 + · · · + a∗
dad.

The Weyl algebra W(d) has a natural filtration (B0, B1, . . .), where Bn is the
linear span of ak1

1 · · ·akdd al1−1· · ·ald−d such that k1 + · · · + kd + l1 + · · · + ld ≤ n and
kj , lj ∈ N0. Here, as usual, a0

j := 1. The corresponding graded algebra associated
with this filtration is the polynomial algebra C[z, z] ≡ C[z1, . . ., zd, z1, . . ., zd]
in 2n complex variables z1, . . ., zd, z1, . . ., zd , where zj and zj correspond to aj
and a∗

j , respectively. If c ∈ W(d) is an element of degree n, we write cn(z, z̄) for
the polynomial in C[z, z̄] corresponding to the component of c with degree n.

Throughout this paper, α is a fixed positive number which is not an integer.
Let N denote the set of all finite products of elementsN+(α+n)1, where n ∈ Z.
Further, we shall use the set

∑W(d)2 of all finite sums of elements x∗x, where
x ∈ W(d), and the positive cone

W(d)+ = {x ∈ W(d) : 〈π0(x)ϕ, ϕ〉 ≥ 0 for all ϕ ∈ S(Rd)}.
The main result of this paper is the following

Theorem 1.1. Let c be a hermitean element of the Weyl algebra W(d) of even
degree 2m and let c2m(z, z̄) be the polynomial of C[z1, . . ., zd, z1, . . ., zd] associ-
ated with the 2m-th component of c. Assume that

(i) There exists ε > 0 such that c − ε · 1 ∈ W(d)+.
(ii) c2m(z, z̄) > 0 for all z ∈ C

d, z �= 0.

If m is even, then there exists an element b ∈ N such that bcb ∈ ∑W(d)2. If
m is odd, then there exists b ∈ N such that

∑d
j=1 bajca

∗
j b ∈ ∑W(d)2.

Theorem 1.1 can be considered as a strict Positivstellensatz in “noncommu-
tative semi-algebraic geometry”. In “ordinary” semi-algebraic geometry positive
polynomials on semi-algebraic subsets of R

d are studied. Since points of R
d cor-

respond to irreducible ∗-representations of the polynom algebra, the Schrödinger
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representation of the Weyl algebra can be viewed as a “noncommutative one point
space”. We will discuss this matter elsewhere in detail. Assumption (i) means that
c is strictly positive on this space. Comparing assumption (ii) with the correspond-
ing assumption in the commutative case (see e.g. [PV]) it is natural to interpret
(ii) as the positivity of c at infinity.

This paper is organized as follows. The proof of Theorem 1.1 will be com-
pleted in Section 5. In Sections 2 – 4 we develop some technical tools. They are
needed in the proof of Theorem 1, but they are also of interest by themselves. In
Section 2 we introduce and study algebraically bounded ∗-algebras. In Section
3 we define an auxiliary algebraically bounded ∗-algebra X associated with the
representation π0 of the Weyl algebra. In Section 4 we classify the representations
of this auxiliary ∗-algebra. The form of these representations is used in an essen-
tail way in the proof of Theorem 1.1 in Section 5. A simple example illustrating
Theorem 1.1 is presented in Section 6.

Let us fix a few definitions and notations. By a ∗-representation [S2] of a
unital ∗-algebra X on a pre-Hilbert space D with scalar product 〈·, ·〉 we mean an
algebra homomorphismπ of X into the algebraL(D) of linear operators mapping
D into D such that π(1) = I and 〈π(x)ϕ,ψ〉 = 〈ϕ, π(x∗)ψ〉 for x ∈ X and
ϕ,ψ ∈ D. Here 1 is the unit element of X and I is the identity map of D. The
closure of an operator y is denoted by ȳ. For a self-adjoint operator y, we denote
by σ(y) the spectrum of y and by Ey(J ) the spectral projection of y associated
with a Borel set J .

2. The algebraically bounded part of a ∗-algebra

In this Section X is an arbitrary complex ∗-algebra with unit element 1. Let
Xh = {x ∈ X : x∗ = x} be the hermitean part of X . Each element x ∈ X
can be written as x = x1 + ix2, where x1 ≡ Re x := 1

2 (x + x∗) ∈ Xh and
x2 ≡ Im x := 1

2 i(x∗ − x) ∈ Xh. Suppose that X is an m-admissible wedge
of X in the sense of [S2], p.22, that is, C is a subset of Xh such that 1 ∈ C,
x+y ∈ C, λx ∈ C and z∗xz ∈ C for all x, y ∈ C, λ ≥ 0, and z ∈ X . Let 	 denote
the ordering of the real vector space Xh defined by x 	 y if only if x − y ∈ C.

Let Xb(C) be the set of all elements x ∈ X for which there exists a positive
number λ such that

λ · 1 	 ±Re x and λ · 1 	 ± Im x.

Note that Xb(C) is the counter-part of the ring of bounded elements with respect
to C used in semi-algebraic geometry (see e.g. [M2], p. 23).

Lemma 2.1. (i) If x, y ∈ Xb(C), then xy ∈ Xb(C).
(ii) For x ∈ X , we have x ∈ Xb(C) if and only if xx∗ ∈ Xb(C).

(iii) Let x, y ∈ Xh. If x 	 0 and x − y = xy, then x 	 y 	 0.
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Proof. (i): We write x = x1 + ix2 and y = y1 + iy2, where x1, x2, y1, y2 ∈ Xh.
Since x ∈ Xb(C) and y ∈ Xb(C), there are positive number λ andµ such that
λ · 1 	 ±xj and µ · 1 	 ±yj for j = 1, 2. Then, λ · 1 ∓ xj ∈ C. Therefore,
by the definition of an m-admissible wedge, for z ∈ X and α ∈ C we have

(α · 1 + z)∗(λ · 1 − x1)(α · 1 + z)+ (α · 1 − z)∗(λ · 1 + x1)(α · 1 − z)

+(αi · 1 + z)∗(λ · 1 − x2)(αi · 1 + z)

+(αi · 1 − z)∗(λ · 1 + x2)(αi · 1 − z)

= 4λ(z∗z+ |α|2 · 1)− 2αz∗x∗ − 2ᾱxz ∈ C.
and hence

2λ(z∗z+ |α|2 · 1) 	 αz∗x∗ + ᾱxz. (1)

Setting z∗ = x and α = 2λ in (1) we get 4λ2 · 1 	 xx∗. Likewise, replacing
x by y∗ and λ by µ we obtain 4µ2 · 1 	 y∗y. In particular, the preceding
proves the only if part of assertion (ii). Setting now z = y and inserting the
relation y∗y � 4µ2 · 1 just proved into (1), it follows that

2λ(4µ2 + |α|2) · 1 	 αy∗x∗ + ᾱxy. (2)

Letting α = ±1 and α = ∓i in (2), we conclude that

λ(4µ2 + 1) · 1 	 ±1

2
(y∗x∗ + xy) = ±Re xy

λ(4µ2 + 1) · 1 	 ±1

2
i(y∗x∗ − xy) = ±Im xy.

By definition the latter means that xy ∈ Xb(C).
(ii): The only if part is already proven. It remains to show that xx∗ ∈ Xb(C)

implies that x ∈ Xb(C). Since xx∗ ∈ Xb(C), there is a λ > 0 such that
λ · 1 	 xx∗. From the fact that

(x − α · 1)(x − α · 1)∗ = xx∗ − αx∗ − ᾱx + |α|2 · 1 ∈ C
it follows that

(λ+ |α|2) · 1 	 xx∗ + |α|2 · 1 	 αx∗ + ᾱx. (3)

Setting α = ±1 and α = ±i in (3), we conclude that Re x and Im x are in
Xb(C) and so x ∈ Xb(C).

(iii): From the relations x = y + xy and x 	 0 we obtain xy = y2 + yxy 	 0
and hence x = y + xy 	 y. Using once more the assumptions x 	 0 and
y = x(1 − y) we get y − y2 = (1 − y)x(1 − y) 	 0. Thus, y 	 y2 	 0.

�
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Corollary 2.2. Xb(C) is a unital ∗-subalgebra of X .

Proof. From its definition it is obvious that Xb(C) is a ∗-invariant linear subspace
of X . By Lemma 2.1(i), Xb(C) is a subalgebra of X . �

By the definition of Xb(C) the unit element 1 is an order unit of the real ordered
vector space (Xb(C)h,	).The corresponding order unit seminorm ‖·‖1 is defined
by

‖x‖1 = inf {λ > 0 : λ · 1 	 x 	 −λ · 1}, x ∈ Xb(C)h.
Recall that a pointx is called an internal point of a subsetM of a real vector spaceE
if for any y ∈ E there exists ε > 0 such that x+δy ∈ M when ever |δ| < ε, δ ∈ R.
Let C0

b denote the set of internal points of the wedge Cb := C ∩ X (C)h in the real
vector space Xb(C)h. Clearly, C0

b coincides with the set of order units of Cb in the
order vector space (Xb(C)h,	). In particular, 1 ∈ C0

b .

Lemma 2.3. Let z be an element of Xb(C)h which is not in C0
b . Then there exists

a state F on the ∗-algebra Xb(C) such that F(z) ≤ 0 and F(x) ≥ 0 for x ∈ Cb.
Proof. Since C0

b is not empty, by Eidelheit’s separation theorem for convex sets
(see [K], §17, (3) or [J], 0.2.4) there exists a R-linear functional f on Xb(C)h such
that f �≡ 0 and f (z) ≤ 0 ≤ f (x) for x ∈ Cb. Since 1 ∈ C0

b and f �≡ 0, we have
f (1) > 0. We extend f (1)−1f on Xb(C)h to a C-linear functional F on Xb(C).

�
Remark 1. From [J], 3.7.3 resp. 1.8.3, it follows that the Cb-positive state F on
Xb(C) can be chosen to be extremal (that is, if G is another state on Xb(C) such
that 0 ≤ G(x) ≤ F(x) for all x ∈ Cb, then G = F ).

We now specialize to the case when C is the m-admissible wedge
∑X 2 of

all finite sums of squares x∗x, where x ∈ X . In this case the ∗-algebra Xb(C)
is denoted by Xb and called the algebraically bounded part of the ∗-algebra X .
We say the ∗-algebra X is algebraically bounded if X = Xb. The usefulness of
these notions stems from the following obvious fact: For any ∗-representation π
∗-algebra Xb on a pre-Hilbert space D, each element x ∈ Xb is mapped into a
bounded operator π(x) on D and ‖π(x)‖ ≤ ‖x‖1 for x ∈ (Xb)h. Moreover, if the
∗-algebra X has a faithful Hilbert space ∗-representation, then ‖ ·‖1 is a norm and
the unit 1 is a inner point of the cone

∑
(Xb)

2 in the normed space ((Xb)h, ‖ · ‖1).
We illustrate the preceding by a simple example which has been used in [PV].

Combining this example with Lemmas 2.1 and 2.3 above the proofs of the results
in Section 4 in [PV] can be simplified.

Example. Let X be the unital ∗-algebra generated by the rational functions xkl :=
xkxl(1+x2

1 + . . .+x2
d )

−1, k, l = 0, . . ., d, on R
d , where x0 := 1. Since all gener-

ators xkl are hermitean and 1 = ∑d
i,j=0 x

2
ij 	 x2

kl 	 0, it follows that x2
kl ∈ Xb and

so xkl ∈ Xb by Lemma 2.1(ii). Hence the ∗-algebra X is algebraically bounded.
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3. An auxiliary algebraically bounded ∗-algebra

In what follows we use another unitarily equivalent form of the representation
π0, the so-called Fock-Bargmann representation (see e.g. [F, 1.6]). For notational
simplicity we shall write x instead of π0(x) for x ∈ W(d) and α instead α·1 for
α ∈ C when no confusion occurs. The Fock-Bargmann realization of the rep-
resentation π0 acts on the orthonormal basis {e�; � ∈ N

d
0} of the representation

Hilbert space by

ake� = n
1/2
k e�−1k , a−ke� = (nk + 1)1/2e�+1k (4)

for k=1, . . ., d and �=(n1, . . ., nd) ∈ N
d
0 . Here 1k ∈ N

d
0 denotes the multi-index

with 1 at the k-th place and zero otherwise and we set e�−1k =0 if nk = 0. The cor-
responding domain D0 of the representation consists of vectors ϕ = ∑

�∈N
d
0
ϕ�e�

such that
∑

� n
r
1. . .n

r
d |ϕ�|2 < ∞ for all r ∈ N. Put |�| := n1 + · · · + nd for

� = (n1, . . ., nd) ∈ N
d
0 . Then the actions of the elements Nk and N of the Weyl

algebra are given by

Nke� = nke� and Ne� = |�|e�,� ∈ N
d
0 . (5)

Set a0 := 1. We define the following operators on the domain D0 :

xkl = akal(N + α)−1 for k=0, . . ., d, l= − d, . . ., d;
k = −d, . . ., d, l=0, . . ., d,

x−l,−k = (N + α)−1a−la−k for k, l = 0, . . ., d,

xk = xk0 = ak(N + α)−1 and yk0 = x−k,k = Nk(N + α)−1 for k = 1, . . ., d,

yn = (N + α + n)−1 for n ∈ Z.

Let X be the unital ∗-algebra generated by the operators xkl, k, l = −d, . . ., d,
and yn, n ∈ N0. The operator xkl, yn resp. the ∗-algebra X can be considered as
non-commutative analogs of theVeronese map used in [PV]. For k, l = −d, . . ., d
and j = 1, . . ., d, we have

x∗
kl = x−l,−k, xkl = xlk if k + l �= 0, xj,−j − x−j,j = y0. (6)

Note that the operators yn, n ∈ Z, and yk0, k = 1, . . ., d, pairwise commute.
Moreover, xijxkl = xklxij for i, j, k, l = 1, . . ., d. From (4) and (5) it is clear that
all operators xkl, yn and so all elements of X are bounded on D0 and leave D0

invariant.
In order to formulate some relations we introduce the abbreviations �(i, j)=2

if i > 0, j > 0, �(i, j)=1 if i=0, j >0 or i >0, j=0, and �(i, j)=0 otherwise.
For the rest of the paper we need a number of commutation relations of the oper-
ators defined above. They are easily verified by using formulas (4) and (5). We
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shall list these relations in a convenient form for the applications given below.
Not all relations are used in full strength.

yk − yn = (n−k)ykyn = (n−k)ynyk for k, n ∈ Z. (7)

y10 + · · · + yd0 = 1 − αy0. (8)

x∗
kj xkj = yk0(yj0 − δkjy0), x

∗
k,−lxk,−l = (yk0 + δkly0)(yl0 + y0)

for j = 0, . . ., d, k, l = 1, . . ., d. (9)

y0xkl = (1 + (sign(k)+ sign(l))y0)xkly0 for k, l = −d, . . ., d. (10)

ynx
∗
k = x∗

k yn+1, xkyn = yn+1xk, (11)

xlx
∗
k = x∗

k (1 − y2)xl + δkly
2
1 , (12)

xkx
∗
k = yk0y1(1 − y1)+ y2

1 , yk0x
∗
k = x∗

k (yk0(1 − y1)+ y1), (13)

xkly0 = xkxl(1 − y0), x−k,−ly0 = x∗
k x

∗
l (1 + y0), (14)

xk,−ly0 = x−l,ky0 + δkly
2
0 = x∗

l xk + δkly
2
0 ,

for k, l = 1, . . ., d and n ∈ Z. (15)

xijxkl − xklxij ∈ y0X , xij xkl − xilxkj ∈ y0X , (16)

y0akal = (1 + �(k, l)y0)xkl,

for i, j, k, l = −d, . . ., d. (17)

Moreover, we have y0X = Xy0.

Lemma 3.1. The ∗-algebra X is algebraically bounded, that is, X = Xb.

Proof. From (8) and (9) we obtain

(1 − αy0)y0 =
d∑

k=1

yk0y0 =
d∑

k=1

x∗
k0xk0 	 0

and

y0 = αy2
0 +

d∑

k=1

x∗
k0xk0 	 0 and α−1 − y0 = α(y0 − α−1)2 +

d∑

k=1

x∗
k0xk0 	 0.

Therefore, we have

α−1 	 y0 	 0. (18)

Since yn − yn+1 = ynyn+1 by (7), it follows from Lemma 2.1(iii) by induction on
n that α−1 	 yn 	 0 and so yn ∈ Xb for all n ∈ N0. Using (8) and (9) we get

(1 − αy0)
2 =

(
d∑

k=1

yk0

)2

=
∑

k �=l
x∗
klxkl +

d∑

k=1

y2
k0 	 y2

j0 (19)
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for j = 1, . . ., d. Since y0 ∈ Xb, from (19) and Lemma 2.1(ii) we derive that
yj0 ∈ Xb for j = 1, . . ., d. Using (9) and Lemma 2.1, (i) and (ii), it follows from
the latter that xkj ∈ Xb for k = 1, . . ., d and j = −d, . . ., d. Since x−k,−j = x∗

jk,
all generators of the ∗-algebra X are in Xb. By Corollary 2.2 (i), X = Xb. �

For the proof of Theorem 1.1 below we need the following Lemma.

Lemma 3.2. For n ∈ N and i1, . . ., i4n ∈ {−d, . . ., d} there exist polynomials
fj (y0) ∈ R[y0], j = 1, . . ., 2n, such that fj (0) = 1 and

yn0ai1 . . ., ai2n = f1(y0)xi1i2f2(y0)· · ·fn(y0)xi2n−1i2n, (20)

ai2n+1 · · ·ai4nyn0 = xi2n+1i2n+2fn+1(y0)· · ·f2n(y0)xi4n−1i4n, (21)

yn0ai1 · · ·ai4nyn0 = f1(y0)xi1i2f2(y0)· · ·f2n(y0)xi4n−1i4n . (22)

Proof. It suffices to prove (20). Equation (21) follows from (20) by applying the
adjoint operation and (22) is obtained by multiplying (20) and (21).

We prove (20) by induction on n. For n = 1, formula (17) gives (20). We
assume that (20) is true for n and compute

yn+1
0 ai1 . . .ai2nai2n+1ai2n+2 = y0f1(y0)xi1i2 · · ·fn(y0)xi2n−1,i2nai2n+1ai2n+2

= f̃1(y0)xi1i2 · · ·f̃n(y0)xi2n−1,i2ny0ai2n+1ai2n+2

= f̃1(y0)xi1i2 · · ·f̃n(y0)xi2n−1,i2n(1 + �(i2n+1, i2n+2)y0)xi2n+1,i2n+2,

where f̃j (y0) ∈ R[y0] and f̃j (0) = 1. Here the first equality holds by the induc-
tion hypothesis. The second equality follows from (10), while the third one is
obtained by inserting (17). �

4. Representations of the auxiliary ∗-algebra

Suppose π is an arbitrary ∗-representation of the ∗-algebra X on a dense domain
of a Hilbert space H. Since X = Xb by Lemma 3.1, all operators π(x), x ∈ X ,
are bounded, so π extends by continuity to a ∗-representation, denoted again by
π , on the Hilbert space H. The aim of this section is to describe the structure of
this representation π . To shorten the notation, we write simply x instead of π(x)
for x ∈ X if no confusion is possible. Moreover, we use the multi-index notation

x� := x
n1
1 · · ·xndd for � = (n1, . . ., nd) ∈ N

d
0 .

4.1. Let H∞ := ker y0 and let H1 be the closed linear span of subspaces K0 :=
ker(y0−α−1) and K� := (x�)∗K0 for � ∈ N

d
0 . In this subsection we show that H∞

and H1 are invariant subspaces for the representation π such that H = H1 ⊕H∞.
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From the relations y0yn = yny0, n ∈ N0, and (10) it is clear that H∞ = ker y0

is an invariant subspace for the representations π . Since yny0 = y0yn and ynx∗
k =

x∗
k yn+1 by (11), K0 and K� and hence H1 are invariant under yn, n ∈ N0. The

invariance of H1 under x∗
k is trivial.

Since α−1 	 y0 	 0 by (18), the self-adjoint operator y0 satisfies the rela-
tion α−1I ≥ y0 ≥ 0 in the Hilbert space ordering. Hence its spectrum σ(y0) is
contained in the interval [0, α−1].

Let ϕ ∈ K0. Using the relations (1 + y0)y1 = y0 by (7) and xky0 = y1xk by
(11), we have

(1 + y0)xkϕ = (1 + y0)xk(αy0ϕ) = α(1 + y0)y1xkϕ = αy0xkϕ

and so y0xkϕ = (α − 1)−1xkϕ. Since σ(y0) ⊆ [0, α−1], the latter implies that

xkϕ = 0 for ϕ ∈ K0 = ker(y0 − α−1), k = 1, . . ., d. (23)

The invariance of K� and so of H1 under xk, k = 1, . . ., d, follows easily by
induction on |�| using relations (23) and (12) and the fact that K� is invariant
under y2.

We prove the invariance of H1 under xkl . Let ϕ ∈ K0. Using (7) and (11) we
compute

xkl(x
�)∗ϕ = αxkl(x

�)∗y0ϕ = αxkl(x
�)∗y|�|(1 + |�|y0)ϕ

= αxkly0(x
�)∗(1 + |�|α−1)ϕ (24)

for k, l = −d, . . ., d. Expressing xkly0 by means of relations (14) and (15) and
using the invariance of H1 under xj , x∗

j and y0, the right hand side of (24) is in
H1. Thus, the subspace H1 is invariant under the generators of X and so under
all representation operators.

We show that H∞⊥H1. Indeed, if η ∈ H∞ = ker y0, ϕ ∈ K0 = ker(y0 −α−1)

and n ∈ N
d
0 , then by (7) and (11) we have

〈η, (x�)∗ϕ〉 = 〈η, α(x�)∗y|�|(1 + |�|y0)ϕ〉
= 〈η, (α + |�|)y0(x

�)∗ϕ〉 = 〈y0η, (α + |�|))x�)∗ϕ〉 = 0.

Finally, we prove that H = H1 ⊕ H∞. Clearly G := H � (H1 ⊕ H∞)
is an invariant closed subspace for the representation π . We have to prove that
G = {0}. Assume to the contrary that G �= {0}. Let Y0, Y1 and Xk denote the
restriction to G of the operators y0, y1 and xk on H, respectively. Since G⊥ ker y0

and G⊥ ker(y0 − α−1), we have ker Y0 = {0} and ker(Y0 − α−1) = {0}. Because
σ(Y0) ⊆ σ(y0) ⊆ [0, α−1], we therefore have λ0 := sup σ(Y0) > 0. Fix k ∈
{1, . . ., d}. By (10),XkY0 = Y1Xk. This in turn implies thatXkf (Y0) = f (Y0)Xk
for all f ∈ L∞(R) and so

XkEY0(J ) = EY1(J )Xk (25)
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for any Borel subset J of R. Since Y1 = Y0(I + Y0)
−1 by (7), it follows from the

spectral mapping theorem that λ0(1 + λ0)
−1 = σ(Y1). Because ker(Y0 − α−1) =

{0}, for any ε > 0 there exists λ ∈ σ(Y0) such that |λ − λ0| < ε and λ < α−1.
Hence we can choose numbers λ1 ∈ σ(Y0) and δ > 0 such that

λ0(1 + λ0)
−1 < λ1 − δ < λ1 + δ ≤ λ0, λ1 + δ < α−1. (26)

Let J := (λ1 − δ, λ1 + δ). Since λ1 ∈ σ(Y0) and λ1 − δ > sup σ(Y1), we have
EY0(J ) �= 0 and EY1(J ) = 0, so that XkEY0(J ) = 0 by (25). Therefore, by (9)
and (8),

0 =
d∑

k=1

X∗
kXkEY0(J ) = (1 − αY0)Y0EY0(J ).

Because inf{|(1 −αλ)λ|; λ ∈ J } > 0 by (26) and EY0(J ) �= 0 we have obtained
a contradiction. Thus, G = {0} and H = H1 ⊕ H∞.

4.2. In this subsection we show that the restriction π1 of the representation π to
H1 is a direct sum of representations which are unitarily equivalent to the identity
representation of X . By the identity representation we mean the representation ρ
of X on the Hilbert space H0 given by ρ(x) = x̄, x ∈ X , where x̄ is the continu-
ous extension of the operator x on the dense domain D0 to H0.
We begin with two preliminary lemmas.

Lemma 4.1. (i) xk(x�)∗ = (x�)∗((1−y2)· · ·(1−y|�|+1))
2xk for all k = 1, . . ., d

and � ∈ N
d
0,� �= 0, such that nk = 0.

(ii) xkx∗
k x

∗r
k = x∗r

k (yk0(1 − (r + 1)yr+1) + (r + 1)yr+1)yr+1 for k = 1, . . ., d
and r ∈ N0.

Proof. (i) is proved by induction on |�|. If |�| = 1, then the assertion holds by
(12). Suppose that the assertion is valid for �. Let j ∈ {1, . . ., d}, j �= k and
�′ := � + 1j . Using the induction hypothesis and relations (12) and (11) we
obtain

xk(x
�′
)∗ = xk(x

�)∗x∗
j = (x�)∗((1 − y2)· · ·(1 − y|�|+1))

2xkx
∗
j

= (x�)∗((1 − y2). . .(1 − y|�|+1))
2x∗
j (1 − y2)xk

= (x�′
)∗((1 − y2)· · ·(1 − y|�′|+1))

2xk.

(ii) is proved by induction on r . For r = 0 the assertion is just the first formula of
(13). Suppose that the assertion holds for r . Using the induction hypothesis and
relations (11) and (13) we compute
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xkx
∗
k x

∗(r+1)
k = x∗r

k (yk0(1 − (r + 1)yr+1)+ (r + 1)yr+1)yr+1x
∗
k

= x∗r
k (yk0x

∗
k (1 − (r + 1)yr+2)+ (r + 1)x∗

k yr+2)yr+2

= x
∗(r+1)
k ((yk0(1 − y1)+ y1)(1 − (r + 1)yr+2)

+(r + 1)yr+2)yr+2

= x
∗(r+1)
k (yk0(1 − (r + 2)yr+2)+ (r + 2)yr+2)yr+2,

where the last equality is derived from relation (7). �

Lemma 4.2. If η, ϕ ∈ K0 and �,� ∈ N
d
0, |�| + |�| > 0, then

〈(x�)∗η, (x�)∗ϕ〉 = n1!· · ·nd!

((1 + α)· · ·(|n| + α))2
δ�,�〈η, ϕ〉 (27)

Proof. First we prove that (x�)∗η⊥(x�)∗ϕ if � �= �. Assume without loss of
generality that kj > nj . Set k′

l = kl, n
′
l = nl for l �= j , k′

j = n′
j = 0, and

�′ = (k′
1, . . ., k

′
d),�′ = (n′

1, . . ., n
′
d). From Lemma 4.1(i) is follows by induction

on s that there exists a polynomial f (depending on s and �′) such that

xsj (x
�′
)∗ = (x�′

)∗f (y2, . . ., y|�′|+s)xsj for s ∈ N. (28)

Further, using the formulas (13) it is easily shown by induction on r that there
exists a polynomial g (depending on r) such that

xrj x
∗r
j = g(yj0, y1, . . ., yr) for r ∈ N. (29)

Since xjyj0 = (yj0(1 − y1) + y1)xj by (13) and xjyn = yn+1xj by (11) we
conclude from (28) and (29) that there is a polynomial h such that

xsjx
r
j x

∗r
j (x

�′
)∗ = (x�′

)∗h(yj0, y1, . . ., yr+s)xsj . (30)

Setting s = kj − nj , r = nj and using the fact that xjϕ = 0 by (23), (30) implies
that x�(x�)∗ϕ = x�′xsjx

r
j x

∗r
j (x

�)′ϕ = 0 and so 〈(x�)∗η, (x�)∗ϕ〉 = 0.
Next we prove (27) in the case � = �. It clearly suffices to show that

x�(x�)∗ϕ = n1!· · ·nd!

((1 + α)· · ·(|�| + α))2
ϕ for � ∈ N

d
0, n �= 0. (31)

We prove (31) by induction on |�|. First we note that yr+1ϕ = (r + 1 + α)−1ϕ

by (7) and 0 = x∗
k xkϕ = x∗

k0xk0ϕ = yk0y0ϕ = α−1yk0ϕ by (23) and (9), so that
yk0ϕ = 0. Inserting these facts into Lemma 4.1(ii) we get

xjx
∗
j x

∗nj
j ϕ = x∗nj (nj + 1)(nj + 1 + α)−2ϕ for nj ∈ N0. (32)
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Setting nj = 0, (32) gives (31) for |�| = 1. Suppose that (31) holds for �.
Let j ∈ {1, . . ., d}. We prove that (31) is true for �′ = � + 1j . Set �̃ =
(n1, . . ., nj−1, 0, nj+1, . . ., nd). Then we compute

x�′
(x�′

)∗ϕ = x�xjx
∗
j x

∗nj
j (x

�̃
)∗ϕ = x�xj (x

�̃
)∗x∗

j x
∗nj
j ϕ

= x�(x
�̃
)∗((1 − y2)· · ·(1 − y|�̃|+1))

2xjx
∗
j x

∗nj
j ϕ

= x�(x�̃)∗((1 − y2)· · ·(1 − y|�̃|+1))
2x

∗nj
j (nj + 1)(nj + 1 + α)−2ϕ

= x�(x
�̃
)∗((1 − y2+nj )· · ·(1 − y|�̃|+1+nj ))

2(nj + 1)(nj + 1 + α)−2ϕ

= x�(x�)∗(nj + 1)(|�| + 1 + α)−2ϕ,

where we used Lemma 4.1(i), formula (32) and the fact that (1−yk)ϕ = (k−1+α)
(k + α)−1ϕ. Inserting the induction hypothesis we obtain (31) for �′. �
Put c� := (n1!· · ·nd!)−1/2(1 + α)· · ·(|�| + α) for n ∈ N

d
0 , � �= 0, and c0 := 1.

Let {ϕi; i ∈ I } be an orthonormal basis of K0. Then, by formula (27) the set
{e�,i :=c�(x

�)∗ϕi; � ∈ N
d
0, i ∈ I } is an orthonormal basis of H1. From

‖x∗
k (x

�)∗ϕ‖ = (nk + 1)1/2(|�| + 1 + α)−1‖(x�)∗ϕ‖, ϕ ∈ K0,

by (27) we derive

x∗
k e�,i = (nk + 1)1/2(|�| + 1 + α)−1e�+1k,i .

Therefore, by (4) and (5), the operator x∗
k acts on the orthonormal set {e�,i; � ∈ N

d
0}

as on the orthonormal basis {e�; � ∈ N
d
0} for the identity representation of X . The

same is true for the adjoint operator xk of x∗
k and hence for all operators yn and xkl

by (14) and (15). That is, for each i ∈ I the restriction of π1 to the closed linear
span of vectors {e�,i; � ∈ N

d
0} is unitarily equivalent to the identity representa-

tion of X . Consequently, π1 is the direct sum of representations of X which are
unitarily equivalent to the identity representation.

4.3. In this subsection we study the restriction π∞ of π to the invariant subspace
H∞ = ker y0. Since π∞(y0) = 0 and x∗

k0 = x∗
0k = x−k,0 = x0,−k, we have

π∞(yn) = 0, n ∈ N0, and π∞(xk0) = π∞(x0k) = 0, k = −d, . . ., d. (33)

by (7) and (9). From (16), (9) and (6) we conclude that Xkl := π∞(xkl), k, l =
−d, . . ., d, are pairwise commuting bounded normal operators on H∞ satisfying
Xkl = Xlk, X∗

kl = X−l,−k and

XijXkl = XkjXil for i, j, k, l = −d, . . ., d. (34)
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Recall that yj0 = xj,−j . Therefore, by (8),

X1,−1 + · · · +Xd,−d = I. (35)

For j = 1, . . ., d, we obtain from (34) and (35)

d∑

k=1

X∗
k,−jXk,−j =

d∑

k=1

Xk,−kXj,−j = Xj,−j . (36)

We now describe the Gelfand spectrum of the operator family {Xk,l; k, l =
−d, . . ., d} or equivalently the character space of the abelian C∗-algebra gen-
erated by these operators. Let χ be such a character. From (35), there is j ∈
{1, . . ., d} such that χ(Xj,−j ) �= 0. Take zj ∈ C such that z2

j = χ(Xjj ). Since

χ(Xj,−j ) ≥ 0 by (36) and z2
j zj

2 = χ(XjjX−j,−j ) = χ(Xj,−j )2 by (34), we have
zj zj = χ(Xj,−j ). We define zk := χ(Xk,−j )χ(Xj,−j )−1zj for k �= j . Note that
the latter relation is trivially true for k = j , so it holds for all k = 1, . . ., d. Using
the preceding facts and (34) we compute

zkzl = χ(Xk,−jXl,−j )χ(Xj,−j )−2χ(Xj,j )

= χ(Xkl)χ(X−j,−jXj,j )χ(Xj,−j )−2 = χ(Xkl),

zkzl = χ(Xk,−j )(χ(Xl,−j )χ(Xj,−j )−2χ(Xj,−j )
= χ(Xk,−jX−l,j )χ(Xj,−j ) = χ(Xk,−l)

for k, l = 1, . . ., d. From the latter and (35) we get

d∑

k=1

zkzk = χ

(
d∑

k=1

Xk,−k

)

= χ(I) = 1.

Thus we have shown that for each character χ there is a point z = (z1, . . ., zd)

of the unit sphere Sd of the Euclidean space C
d such that

χ(Xkl) = zkzl and χ(Xk,−l) = zkzl for k, l = 1, . . ., d.

From the Gelfand theory it follows that there exists a spectral measure E(·)
on the unit sphere Sd of C

d such that

π∞(xkl) =
∫

Sd
zkzldE(z, z̄), π∞(xk,−l) = π(x−l,k) =

∫

Sd
zkzl dE(z, z̄) (37)

for k, l = 1, . . ., d. Combined with (33), these formulas describe the representa-
tion π∞ on the generators of X completely.
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5. Proof of Theorem 1.1

We first prove the assertion of Theorem 1.1 in the case whenm is even, saym=2n.
Then c ∈ W(d) has degree 4n. From formula (22) in Lemma 3.2 it follows that
yn0 cy

n
0 belongs to the ∗-algebra X .

The crucial step of the proof is to show that yn0 cy
n
0 ∈ ∑X 2. Assume the con-

trary. We apply Lemma 2.3 to the wedge C = ∑X 2. Since X = Xb by Lemma
3.1, there exists a state F on the ∗-algebra X such that F(yn0 cy

n
0 ) ≤ 0. Let πF

denote the representation of X with cyclic vector ϕF associated with F by the
GNS construction such that F(x) = 〈πF (x)ϕF , ϕF 〉 for x ∈ X . As shown in
Section 4, πF decomposes into a direct sum of representations which are unitarily
equivalent to the identity representation of X on L2(Rd) and the representation
π∞ on H∞. Let ϕi ∈ L2(Rd), i ∈ I , and ϕ∞ ∈ H∞ be the components of the
vector ϕF in this decomposition. Then, we have

F(x) =
∑

i∈I
〈x̄ϕi, ϕi〉 + 〈π∞(x)ϕ∞, ϕ∞〉, x ∈ X . (38)

By assumption (i), 〈yn0 cyn0ϕ, ϕ〉 = 〈cyn0ϕ, yn0ϕ〉 ≥ ε〈yn0ϕ, yn0ϕ〉 for ϕ ∈ D0 =
S(Rd) and hence

〈yn0 cyn0ϕ, ϕ〉 ≥ ε‖yn0ϕ‖2 > 0 for ϕ ∈ L2(Rd), ϕ �= 0. (39)

From Lemma 3.2 and the fact that π∞(fj (y0)) = π∞(fj (0)) we obtain

π∞(yn0ai1 . . .ai4ny
n
0 ) = π∞(xi1i2)· · ·π∞(xi4n−1,i4n)

for i1, . . ., i4n = −d, . . ., d. If the degree of a monomial ai1 · · ·ai4n is less than 4n,
then at least one index ij is zero and so π∞(yn0ai1 · · ·ai4nyn0 ) = 0 by (33). Hence
we have π∞(yn0 cy

n
0 ) = π∞(yn0 c4ny

n
0 ). Using (37) we derive

〈π∞(yn0 cy
n
0 )ϕ∞, ϕ∞〉 =

∫

Sd
c4n(z, z̄)d〈E(z, z̄)ϕ∞, ϕ∞〉. (40)

By assumption (ii), c4n(z, z̄) > 0 for z ∈ Sd . Since F(yn0 cy
n
n) ≤ 0, it follows from

(38), (39) and (40) that all vectors ϕi, i ∈ I , and ϕ∞ are zero. But then F(1) = 0
by (38), in contradiction to the fact that F is a state. Thus, yn0 cy

n
0 ∈ ∑X 2.

That yn0 cy
n
0 ∈ ∑X 2 means that there exist elements g1, · · ·, gs ∈ X such that

yn0 cy
n
0 = ∑s

l=1 g
∗
l gl . Let b ∈ N . Multiplying the latter equation by b(N + α)n

from the left and from the right we obtain

bcb =
s∑

l=1

(gl(N + α)nb)∗(gl(N + α)nb). (41)

Each element of X is a linear combination of finite products of operators aj and
a∗
j , j = 1, . . ., d, and yk = (N+α+k)−1, k ∈ N0. Therefore, it follows from the
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relations ajyk = yk+1aj and a∗
j yk = yk−1a

∗
j that we can choose b ∈ N such that

all denumerators (N+α+k)−1 of elementsgl cancel, so thatgl(N+α)nb ∈ W(d).
Then we have bcb ∈ ∑W(d)2 by (41), as required.

Next we treat the case whenm is odd, saym = 2n−1. Then c̃ := ∑d
j=1 ajca

∗
j

has degree 4n. By assumption (i) on c, we have

〈c̃ϕ, ϕ〉 =
d∑

j=1

〈ca∗
j ϕ, a

∗
j ϕ〉 ≥

d∑

j=1

ε〈a∗
j ϕ, a

∗
j ϕ〉 = ε〈(N + d)ϕ, ϕ〉 ≥ ε〈ϕ, ϕ〉

for ϕ ∈ S(Rd). Since c̃4n(z, z̄) = c2m(z, z̄) on Sd , c̃ satisfies assumptions (i) and
(ii) too, so the preceding applies to c̃. This completes the proof of Theorem 1.1.

Remark 2. The above proof shows that for evenm = 2n the assertion of Theorem
1.1 remains valid if assumption (i) is replaced by the weaker requirement that the
continuous extension of the bounded operator (N + α)−nc(N + α)−n on S(Rd)

to L2(Rd) is positive and has trivial kernel. The latter is satisfied if there exists a
bounded positive self-adjoint operator x on L2(Rd) with trivial kernel such that
〈cϕ, ϕ) ≥ 〈xϕ, ϕ〉 for ϕ ∈ S(Rd). The special case x = ε · I is assumption (i).

6. An example

Suppose that d = 1. Since the spectrum of the closure of the operators π0(N) is
N0 by (5), a polynomial p(N) of N is in W(1)+ if and only if p(n) ≥ 0 for all
n ∈ N0. As shown in [FS], the element p(N) belongs to

∑W(1)2 if and only if
there are polynomials q0, . . ., qk ∈ C[N ], k ∈ N0, such that

p(N) = q0(N)
∗q0(N)+Nq1(N)

∗q1(N)+ · · ·
+N(N − 1)· · ·(N − k + 1)qk(N)

∗qk(N). (42)

For ε ≥ 0, we set cε := (N−1)(N−2)+ε (see [FS] and [W]) . From the preceding
facts it follows that cε is in W(d)+ for all ε ≥ 0 and that cε is not in

∑W(1)2

if 0 ≤ ε < 1
4 . Clearly, cε satisfies the assumptions of Theorem 1.1 for all ε > 0.

For arbitrary real α we have

(N + α)cε(N + α) = 1
2α

2(N−1)2(N−2)2 + (1 − 1
2α

2)N(N−1)(N−2)(N−3)

+(2α + 3)N(N−1)(N−2)+ ε(N + α)2.

The latter expression has been found by A. Schüler. If α2 ≤ 2, then the right hand
side of the preceding equation is of the form (42) and so (N + α)cε(N + α) ∈∑W(1)2 as asserted by Theorem 1.1.
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