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finitely generated representations of symplectic reflection algebras associated with wreath prod-
ucts (with parameter t = 0) and the derived category of coherent sheaves on a crepant resolution
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1. Introduction

1.1. In this paper we take a step towards a geometric understanding of the repre-
sentation theory of certain symplectic reflection algebras (with parameter t = 0).
A number of papers have shown that this representation theory is closely related
to the singularities of the centre of these algebras and to resolutions of these sin-
gularities, [9], [4], [12]. Here we make such a relationship precise by proving that
the category of finitely generated modules is derived equivalent to the category
of coherent sheaves on an appropriate desingularisation.

A long term goal in this project is to find character formulae for simple mod-
ules, generalising the work [10] and [13] in which Kostka polynomials appear.
A simple consequence of the derived equivalence is a geometric interpretation
for the number of simple modules of a symplectic reflection algebra with given
central character. A closer analysis will undoubtedly reveal more.
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1.2. Let us summarise our results. Let � be a non-trivial finite subgroup of
SL(2,C) and n a positive integer. Let Hc be the symplectic reflection algebra
(with parameter t = 0) for the wreath product �n = Sn � �n. (All undefined
notation and definitions can be found later in the paper.) The spectrum of the
centre of this algebra, Xc = SpecZc, is a deformation of the symplectic quotient
singularity C2n/�n. Our principal result is the following.

Theorem. There is a crepant resolution πc : Yc −→ Xc such that there is an
equivalence of triangulated categories

Db(modHc) −→ Db(coh Yc)

between the bounded derived category of finitely generated Hc–modules and the
bounded derived category of coherent sheaves on Yc.

1.3. In the special case c = 0 the variety Xc is the orbit space C2n/�n, so the
above theorem includes the results of [21] on Kleinian singularities (n = 1) and
the observation of [32, Section 4.4] (for general n). The proof we give here, how-
ever, is by deformation from the c = 0 case and so depends on these results. To
prove the equivalence, we use the methods of [2], which were adapted to a mildly
non–commutative situation in [28], together with results from [14] and [15].

1.4. For x ∈ Xc, let mx be the corresponding maximal ideal of Zc. The simple
modules of the finite dimensional algebra Hc/mxHc are the simple Hc–modules
with central character x. The following corollary is a straightforward consequence
of the above theorem.

Corollary. Let πc : Yc −→ Xc be the crepant resolution in Theorem 1.2. For
all x ∈ Xc, there is an isomorphism of Grothendieck groups K(Hc/mxHc) ∼=
K(π−1

c (x)).

1.5. In the case n = 1 this recovers known results on the simple modules of
deformed preprojective algebras, whilst for c = 0 the content is essentially the
(generalised) McKay correspondence, [20].

1.6. Symplectic reflection algebras also exist for finite Coxeter groups,W . How-
ever, [12, Theorem 1.1] shows that the only orbits spaces C2n/W admitting crepant
resolutions are for W of type A and B, that is W = Sn or W = Sn � (Z/2Z)n.
Thus there is no analogue of Theorem 1.2 valid for all finite Coxeter groups; our
result is as general as we can expect.

1.7. The paper is organised as follows. In Section 2 we recall the definition and
basic properties of symplectic reflection algebras. A discussion of non–commuta-
tive crepant resolutions and derived equivalences is given in Section 3. Section 4
presents some results on deformations of semi–small morphisms and their relation
to crepant resolutions and derived equivalences. Finally, in Section 5, we prove
our main result and discuss the application to counting simple modules.
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2. Symplectic reflection algebras

2.1. Let ω̃ be the standard symplectic form on C2,� a finite subgroup of SL(2,C)
and n a positive integer. The wreath product �n ≡ Sn � �n acts on V ≡ (C2)n,
preserving the symplectic form ω ≡ ω̃n.

2.2. Recall that γ ∈ �n acting on V is called a symplectic reflection if dim(1 −
γ )(V ) = 2. The set of all symplectic reflections is denoted by S . Let c be a
C–valued function on S , constant on conjugacy classes (γ �→ cγ ). Given γ ∈ S
define the form ωγ on V to have radical ker(1 − γ ) and to be the restriction of ω
on (1 − γ )(V ).

2.3. The symplectic reflection algebraHc is the C–algebra, defined as the quotient
of the skew group ring T V ∗ �n by the relations

x ⊗ y − y ⊗ x =
∑

γ∈S
cγ ωγ (x, y)γ,

for all x, y ∈ V .

Remark. Usually, symplectic reflection algebras depend on a further parameter
t ∈ C, [9, Section 1]. The definition above is the case t = 0.

2.4. There is an increasing N–filtration on Hc, obtained by setting F 0Hc = C�n,
F 1 = V ⊗C�n+C�n, and F i = (F 1)i . By the PBW theorem, [9, Theorem 1.3],
grHc

∼= C[V ] ∗ �n (where we have used ω to identify the �n–spaces V and V ∗).
In particular, a non–zero c yields a flat family of symplectic reflection algebras
Huc over C[u].

EachHc is a prime noetherian ring because its associated graded ring has these
properties [9, Theorem 1.3], [25, Theorem 3.17], and [24, Prop. 1.6.6, Theorem
1.6.9].

2.5. Let Zc denote the centre of Hc, and set Xc = SpecZc. It is known that Zc is
a finitely generated C-algebra, and thatHc is a finite Zc–module, [9, Theorem 1.5
and Theorem 3.1]. By a lemma of Dixmier, it follows that all simpleHc–modules
are finite dimensional. In fact |�n| is the strict upper bound for the dimension of
simple Hc–modules, [9, Proposition 3.8]. We therefore have a map

χ : Simp(Hc) −→ Xc

which sends a simple module S to its central character χ(S) ∈ Xc.

2.6. The algebra Zc has a Poisson bracket, making Xc a Poisson variety. The
following subsets of Xc are the same:

(1) the locus where the form is non-degenerate;
(2) its non-singular locus, Sm(Xc) [4, Theorem 7.8];
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(3) the Azumaya locus of Hc, that is {χ(S) : S is a simple module of maximal
dimension} [9, Theorem 1.7];

(4) {x ∈ Xc : χ−1(x) is a singleton} [9, Theorem 3.7].

Moreover, by [9, Theorem 3.7], if x ∈ Sm(Xc), then the unique simpleHc-module
having central character x is isomorphic to C�n as a C�n-module.

2.7. Let e ∈ C�n be the symmetrising idempotent |�n|−1 ∑
γ∈�n γ . The map

Zc −→ eHce, z �→ ze, is an isomorphism, [9, Theorem 3.1]. Thus, follow-
ing 2.4, there is a flat family of commutative algebras Zuc over C[u]. We set
Xuc = SpecZuc.

2.8. For later use we need the following lemma.

Lemma. For non–zero c, the following sets are the same

(1) the smooth locus, Sm(Xuc);
(2) the Azumaya locus of Huc;
(3) the central characters of simpleHc-modules that are isomorphic to the regular

representation of �n as �n-modules.

Proof. As the generic simple module for Huc has dimension |�n| it follows that
the Azumaya locus of Huc is the union of the Azumaya loci for Hλc for λ ∈ C.
This proves the equivalence of (1) and (3).

Since the associated graded ring ofHuc is C[V ⊕C] ∗�n, it follows from [24,
Proposition 1.6.6, Theorem 1.6.9 and Corollary 7.6.18] and [3, Theorem 3.8] that
the equivalence of (1) and (2) follows if the non–Azumaya locus has codimension
at least 2. This, however, is clear as for each λ ∈ C the Azumaya locus ofHλc has
codimension at least 2 in Xλc.

2.9. Observe as a consequence of the above proof that Zuc is normal. Indeed, Zuc

is Cohen–Macaulay (in fact Gorenstein) since eHuce has an associated graded ring
isomorphic to C[V ⊕C]�n , [9, Theorem 3.3]. Combining this with the smoothness
of Xuc in codimension one, which is proved above, shows that Zuc is normal, [5,
Theorem 2.2.11].

3. Non–commutative crepant resolutions

3.1. Let X be a Gorenstein C–variety. A resolution of singularities f : Y −→ X

is said to be crepant if f ∗ωX = ωY . Crepant resolutions are a generalisation of the
notion of a minimal resolution in two dimensions. However, crepant resolutions
need not exist, and need not be unique when they do exist.

3.2. In the setup of Section 2 we could takeX = Xc. This is a Gorenstein variety,
[9, Theorem 1.5(i)]. Moreover, since the Poisson form on Xc is symplectic on
Sm(Xc), the canonical bundle ωXc is trivial. Thus any crepant resolution of Xc

has trivial canonical class.
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Remark. In passing we remark that Yc is a crepant resolution of Xc if and only
if Yc is a symplectic variety whose form agrees with that of Xc on Sm(Xc) (the
case c = 0 is [19, Proposition 3.2]). This follows from [11, Proposition 1.1] once
we know that Xc has symplectic singularities, meaning that on some (and hence
every) resolution of Xc the form on Sm(Xc) extends to a regular, but not neces-
sarily non–degenerate, 2–form. In this situation, such a resolution of Xc is given
by a quiver variety, [26], generalising the c = 0 case in [31, Sections 1.3 and 1.4]
and the generic c case in [9, Section 11].

3.3. For the following definitions see [28, Sections 3 and 4]. ThroughoutR denotes
a commutative noetherian domain over C. A module–finiteR–algebraA is homo-
logically homogeneous if, for all p ∈ SpecR, gldimAp = KdimRp and Ap

is maximal Cohen–Macaulay. A non–commutative crepant resolution of R is a
homologically homogeneous R–algebra of the form A = EndR(M), where M is
a reflexive R–module.

A justification for this definition of non–commutative crepant resolution is
given in [28, Section 4].

3.4. We recall some material from [22, Sections 3 and 4] and [28, Section 6]. Set
X = SpecR. Let A be an R–algebra that is finitely generated as an R–module,
and let (ei)i=1,... ,p be pairwise orthogonal idempotents in A such that 1 = ∑

i ei .
For a mapR −→ K withK a field andV a finite dimensionalA⊗RK–module,

we write dimV = (dimK eiV )i ∈ Zp.
Pick λ ∈ HomZ(Z

p,R) and let α = dimV . We say that a finite dimen-
sional A⊗R K-module V is stable (respectively, semi-stable) with respect to λ if
λ(α) = 0 and for every properA⊗RK-submoduleW ofV we have λ(dimW) < 0
(resp., λ(dimW) ≤ 0).

Our definition of stability is different from that in [28]: where we haveλ(dimW)
< 0 Van den Bergh has λ(dimW) > 0. Of course, the difference is only cosmetic
because we can pass back and forth between the two notions by replacing λ by
−λ. The reason for this difference is that later on in Section 5.1 we want our
notion of stability to coincide with the notion that Haiman uses in [14].

We say that λ is generic (for α) if all semi-stable representations of dimension
vector α are stable. There is a generic λ if and only if α is indivisible, meaning
that the greatest common divisor of the αis is 1. The condition λ(β) 
= 0 for all
0 < β < α ensures λ is generic.

3.5. Let T be an R-scheme. A family of A-modules of dimension α parametrised
by T is a locally free sheaf F of OT -modules together with an R-algebra homo-
morphism φ : A → EndT F such that eiF has constant rank αi for all i. We say
that F is semi-stable (resp., stable) if for every every fieldK and every morphism
ξ : SpecK → T , ξ∗F is a semi-stable (resp., stable) A ⊗R K-module. Two
families (F , φ) and (F ′, φ′) are equivalent if there is an invertible OT -module L
and an isomorphism ψ : F → F ′ ⊗ L such that the diagram
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A
φ−−−→ End F

φ′
�

�ψ

End F ′ ∼−−−→
Id ⊗L

End F ′ ⊗ L

commutes; in this diagram ψ(ν) = ψνψ−1.
A family (U , ρ) parametrised by W is universal if for every R-scheme T

and every family (F , φ) over T there is a unique morphism ξ : T → W such
that (ξ ∗U , ξ∗ρ) is equivalent to (F , φ); here ξ∗ρ denotes the composition A →
End U → End ξ∗U .

Proposition 3.6 below says that in suitable situations there is a universal fam-
ily. We also express this by saying that W is a fine moduli space for families of
A-modules of dimension α and call U the universal family.

3.6. Define a functor Rs : R-schemes −→ Sets by

T �→ {equiv. classes of families of λ–stable A–modules over

T with dimension α}.
Proposition ([28, Proposition 6.2.1]). Suppose that λ is generic for α. Then Rs

is represented by a closed subscheme Ws ⊂ P
N
X .

We write f : Ws → X for the structure morphism, and B for the universal
family of λ-stable A-modules of dimension α.

If U is either an open or closed subscheme ofX then the representing scheme
forU is f −1(U) and its universal family is B∣∣

U (cf. the sentence after [28, Lemma
6.2.2]).

3.7. It is shown in [28, Lemma 6.2.3] that in the case A = Mat∑αi (R) the map
Ws −→ X is an isomorphism.

3.8. AssumeA = EndR M is non–commutative crepant resolution of R. Suppose
we have an R-module decomposition M = ⊕p

i=1Mi and let e1, . . . , ep be the
projections onto the Mis viewed as idempotents in A. Define

αi := rankMi = rank eiM.

Suppose that λ is generic for α. Let f : Ws −→ X and B be as in 3.6.
Let U ⊂ X be the locus where M is locally free. It follows from 3.7 that

f −1(U) −→ U is an isomorphism. Let Y be the closure of f −1(U); this is the
unique irreducible component of Ws mapping birationally onto X. We continue
to denote the restriction of f to Y by f . Let G be the restriction of B to Y .

There is a pair of adjoint functors between Db(coh Y ) and Db(modA):

� : Db(coh Y ) −→ Db(modA) : C �→ R�(C ⊗L
OY

G)
� : Db(modA) −→ Db(coh Y ) : D �→ D ⊗L

A G∗.

The following theorem follows [2] closely.
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Theorem ([28, 6.3.1]). Assume that for every point x ∈ X,

dim(Y ×X Y )×X Spec OX,x ≤ codim x + 1.

Then f : Y −→ X is a crepant resolution of X and� and � are inverse equiva-
lences.

3.9. Let x ∈ X. We writeDb
x(coh Y ) andDb

x(modA) for the full subcategories of
Db(coh Y ) andDb(modA) consisting of complexes supported on f −1(x) and on
x respectively. Since � and � are functors over X they restrict to equivalences
between Db

x(coh Y ) and Db
x(modA), [2, 9.1] and [28, 6.6].

3.10. Fix a non–zero c. The following lemma allows us to apply the machinery
in this section.

Lemma. The algebra Hc is a non–commutative crepant resolution of Xc.

Proof. By [9, Theorem 15.(ii), (iii)] Hce is a finitely generated, reflexive, Co-
hen–MacaulayHc–module. Furthermore, by [9, Theorem 1.5(iv )] we haveHc

∼=
EndeHce(Hce). By [24, Corollary 6.18], gldimHc < ∞. Thus Hc is a non–com-
mutative crepant resolution of eHce ∼= Zc by [28, Lemma 4.2].

LetHuc be the flat family of symplectic reflection algebras defined in 2.4. The
arguments used to prove Lemma 3.10 all extend to Huc, showing that Huc is a
non-commutative crepant resolution of Xuc.

3.11. If we set R = eHuce, M = Huce, and A = Huc, we are in the situation
of section 3.8. Let (ei)i=1,... ,p ∈ C�n be the central orthogonal idempotents cor-
responding to the irreducible representations, labelled so that e1 corresponds to
the trivial representation. Thus e1 = e. By the PBW theorem for Hc and Huc we
can consider the eis as elements of Hc and Huc. If we set Mi = eiM there is a
decomposition Huce = M = ⊕p

i=1Mi as in Section 3.8. Let αi = rank eiHuce
and write α = (αi)1≤i≤p ∈ Zp.

Let Ei be the simple C�n-module corresponding to ei . As remarked in the
proof of [9, Lemma 2.24], eiHuce ∼= Hom�n(Ei,Huce) so

αi = rankZuc eiHuce = dimEi.

In particular, α1 = 1 so α is indivisible, and there are many maps λ : Zp → R

such that λ(α) = 0 and λ(β) > 0 for all 0 < β < α. For each such λ there
is a moduli space for λ–stable Huc–modules having dimension α (equivalently,
that are isomorphic to C�n as C�n-modules), and each such moduli space has a
unique irreducible component that maps birationally to Xuc.
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4. Semi–small maps

4.1. A proper birational map f : Y −→ X between irreducible varieties is semi-
small if

2 codimY Z ≥ codimX f (Z)

for all irreducible subvarieties Z ⊂ Y . Note that if f is semi–small the above
inequality holds for all (not necessarily irreducible) subvarieties of Y . It is a theo-
rem of Verbitsky, [29, Theorem 2.8], and Kaledin, [19, Proposition 4.4], that any
crepant resolution of V/�n is semi–small.

4.2. The following result relates semi–small maps to the hypothesis of Theorem
3.8.

Lemma. Suppose that f : Y −→ X is a semi–small morphism between irreduc-
ible varieties of finite type over a field k. Then

dim(Y ×X Y )×X Spec OX,x ≤ codim x + 1

for every point x ∈ X.

Proof. It is well-known (see, e.g., [7, Proposition 2.1.1 and Remark 2.1.2]) that
semi-smallness of f is equivalent to the condition that every irreducible compo-
nent of Y ×X Y has dimension at most dimX, so it suffices to prove that if Z is
an irreducible variety of dimension ≤ dimX and g : Z → X a morphism, then
dimZ ×X Spec OX,x ≤ codim x for every point x ∈ X.

This reduces to the affine case. We need to prove the following: if R → S is a
homomorphism between two domains that are finitely generated k-algebras such
that Kdim S ≤ KdimR, then Kdim S ⊗R Rp ≤ KdimRp for all p ∈ SpecR.

Let R denote the image of R in S, and let q ∈ SpecR denote the kernel of
R → S. The hypotheses on R and S are such that they, their localizations, and
the homomorphic images of these are catenary.

Write d for Kdim S − KdimR. Since the Krull dimensions of R and S are
equal to the transcendence degrees over k of their fraction fields, we can write
S = R[x1, . . . , xd, . . . , xn] where {x1, . . . , xd} is algebraically independent over
R, and xd+1, . . . , xn are algebraic over R[x1, . . . , xd].

Write Rp for R ⊗R Rp. Then S ⊗R Rp = Rp[x1, . . . , xn]. The Krull dimen-
sion of an extension C[x] is equal to either KdimC or KdimC + 1 depending
on whether x is algebraic over C or not, so an induction argument shows that
Kdim S ⊗R Rp ≤ KdimRp + d. Thus

Kdim S ⊗R Rp ≤ KdimRp + Kdim S − KdimR

≤ KdimRp + Kdim S − KdimR + ht q,

where ht q denotes the height of q. But ht q ≤ ht qRp so
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Kdim S ⊗R Rp ≤ KdimRp + Kdim S − KdimR + ht qRp

= KdimRp + Kdim S − KdimR,

and the result follows because Kdim S ≤ KdimR.

4.3. For the rest of the section we will be interested in schemes of finite type over
C with a C∗-action. All morphisms will be C∗-equivariant. We always consider C

to have the multiplicative action of C∗. In case f : X −→ C is a C∗–equivariant
morphism, we will denote the fibres f −1(s) by Xs . Note that Xs ∼= X1 for all
non–zero s ∈ C.

We say that an affine varietyX has an expanding C∗–action if the correspond-
ing Z–grading C[X] = ⊕i∈ZC[X]i is concentrated in non–negative degrees.

4.4. The following lemma can be compared with [23, II.4.2, Satz 2].

Lemma. Let X be an irreducible variety and f : X −→ C be a C∗-equivariant
morphism. Let Z ⊂ Xs be an irreducible subvariety. Then either C∗Z ∩ X0 is
empty or

dim(C∗Z ∩X0) = dimZ.

Furthermore, ifX is an affine variety with expanding C∗–action, then C∗Z∩X0

is non–empty.

Proof. Suppose C∗Z∩X0 is non–empty. Since C∗Z is irreducible and dim(C∗Z)
= dimZ+1, we have dim(C∗Z∩X0) ≤ dimZ. On the other hand, the dimension
of the fibers of the restriction f |

C∗Z : C∗Z → C is minimal on a dense open set
of C. Since the C∗–action identifies the fibres of this map over non–zero elements
of C, we see that the minimal fibre dimension is bounded below by dimZ, as
required.

Now assume that X is an affine variety with expanding C∗–action. Let I be
the ideal of C[X] annihilating Z. Then the ideal corresponding to C∗Z ∩ X0 is
gr I , the ideal consisting of leading terms of elements of I , [23, II.4.2, Satz 3]. In
particular, as I is proper, so too is gr I . Thus C∗Z ∩X0 is non–empty.

4.5. We need a simple lemma.

Lemma. Suppose there is a commutative diagram of C∗-equivariant morphisms

Y
�
X

π

�
��

�
��

C

where π is proper. If Z ⊂ Ys is an irreducible subvariety, then

π(C∗Z ∩ Y0) = C∗π(Z) ∩X0. (1)

In particular, if C∗Z ∩ Y0 is non–empty, then dim(C∗Z ∩ Y0) = dimZ and
dim π(C∗Z ∩ Y0) = dim π(Z).
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Proof. First we show that the right-hand side of (1) is contained in the left-hand
side. Let x ∈ C∗π(Z) ∩ X0. Certainly, C∗π(Z) = π(C∗Z) ⊂ π(C∗Z); but the
last term is closed because π is proper, so π(C∗Z) ⊂ π(C∗Z). Hence x = π(y)

for some y ∈ C∗Z; but x ∈ X0, so y ∈ Y0, whence x ∈ π(C∗Z ∩ Y0).
The proof that the left-hand side of (1) is contained in the right-hand side

does not depend on the hypothesis that π is proper: For any subsets W and W ′

of Y , π(W ∩W ′) ⊂ π(W) ∩ π(W ′), and π(W) ⊂ π(W). Thus π(W ∩W ′) ⊂
π(W)∩ π(W ′) ⊂ π(W)∩ π(W ′). Now apply this withW = C∗Z andW ′ = Y0.

Under the non–emptiness hypothesis, the equality of dimensions follows from
Lemma 4.3.

4.6. The following result allows us to deform semi–small morphisms.

Lemma. Let X be an affine variety with expanding C∗–action and suppose that
we have a commutative diagram of C∗-equivariant morphisms

Y
�
X

π

�
��

�
��

C

where π is proper. Assume that dim Y0 = dim Ys and dimX0 = dimXs for all
s ∈ C. If π0 : Y0 −→ X0 is semismall, so too is πs : Ys −→ Xs for all s.

Proof. Let Z ⊂ Ys be an irreducible subvariety. Set Z0 := C∗Z ∩ Y0. As X has
an expanding action, π(Z0) = C∗π(Z) ∩ X0 is non–empty by Lemmas 4.3 and
4.5. Thus the semi–small hypothesis shows

2 dim Y0 − 2 dimZ0 ≥ dimX0 − dim π(Z0). (2)

By Lemma 4.5, we may replace dimZ0 and dim π(Z0) in this inequality by dimZ

and dim π(Z). Now the lemma follows by replacing dim Y0 and dimX0 in this
inequality by dim Ys and dimXs .

5. Application

5.1. A representation ofH0 = C[V ]∗�n is called a �n–constellation if its restric-
tion to C�n is isomorphic to the regular representation. A constellation M is a
cluster if it is generated as a C[V ] module by M�n , the copy of the trivial repre-
sentation it contains.

We writeK(�n) for the Grothendieck group of C�n and α for the class of reg-
ular representation. Let λ : K(�n) −→ R be a linear function such that λ(α) = 0.
Following 3.4, a constellation M is λ (semi–)stable if for every proper H0–sub-
module N ⊂ M we have λ(N)(≤) < 0. For generic λ there is a moduli space of
λ–stable �n–constellations, a projective scheme over SpecZ0 = V/�n.
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If λ is chosen so that λ(α) = 0 and, for each simple �n-module S,

λ(S) =
{

1 if S is trivial

< 0 if S is not trivial

then a constellation is λ-stable if and only if it is a cluster.

5.2. The following construction was given in [30, Corollaries 3 and 4]. LetX� be
the minimal resolution of the Kleinian singularity C2/�. We have maps

Hilbn(X�) −→ Symn(X�) −→ Symn(C2/�) ∼= V/�n,

where the first map is the Hilbert–Chow map, [27, Chapter 1], and the second
arises from functoriality. Since X� is symplectic, so too is Hilbn(X�) and thus
the composition is a crepant resolution of V/�n, see 3.2.

5.3. Let HilbSn(Xn�) denote the Sn–Hilbert scheme of Ito and Nakamura, [18,
Introduction and Sect. 8.2]. The following result is due to Haiman: we include
our own outline of the proof for the reader’s benefit.

Theorem ([15, Section 7.2.3], [16]). There is an isomorphism between Hilbn(X�)
and HilbSn(Xn�). In particular, there exists λ such that Hilbn(X�) is a moduli space
of λ–stable �n constellations.

Proof. The isomorphism follows from the n!–conjecture applied to the smooth
surface X�, [14, Sect. 5.2] and [15]. There is a commutative diagram of Sn-equi-
variant morphisms

�
p−−−→ Xn�

q

�
�

HilbSn(Xn�) −−−→ V/�n

in which � is the reduced fibre product and q is finite and flat.

It is well-known that X� is a fine moduli space for �-clusters on C2. We
write B for the locally free sheaf on X� that is the universal family of �-clusters.
The obvious permutation action makes B�n an Sn-equivariant sheaf on Xn�. Let
P denote q∗p∗B�n. Because q and p are Sn-equivariant P is an Sn-equivariant
sheaf on HilbSn(Xn�). Since the Sn-action on HilbSn(Xn�) is trivial this means that
Sn acts as automorphisms of P .

The ring homomorphism C[x, y] ∗ � → End B induces homomorphisms
C[x, y]⊗n ∗ �n → End p∗B�n and C[V ] ∗ �n → End q∗p∗B�n = End P .
Combining the last of these with the Sn-action produces a ring homomorphism
C[V ] ∗ �n → End P .
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Consider λ : K(�n) → R of the form

λ(M) = Cρ(M|�n)+ σ(M|Sn)

where ρ : K(�n) → R and σ : K(Sn) → R are such that stable constellations
are clusters. It can be shown that for a suitable choice of C � 1, the geometric
fibers P(x) := P/mxP of P are λ-stable �n–constellations, and hence that P is
a family of λ–stable �n–constellations.

The fixed points subsheaf P�n−1 is the universal family of C[x, y]∗�-modules
whose fibres have n copies of the regular representation of � [15, Prop. 7.2.12].

LetMλ be the moduli space of λ–stable �n–constellations and S the universal
family on it of λ-stable C[V ] ∗ �n-constellations.

The homomorphisms φ : C[V ] ∗ �n → End P and ψ : C[V ] ∗ �n → End S
restrict to homomorphisms φ′ : C[x, y]∗� → End P�n−1 andψ ′ : C[x, y]∗� →
End S�n−1 .

Since P is a family of λ–stable �n–constellations, there is a morphism f :
Hilbn(X�) −→ Mλ such that f ∗S ∼= P and φ = f ∗ψ . Thus φ′ = f ∗ψ ′. Simi-
larly, by the universal property of P�n−1 , there exists g : Mλ −→ Hilbn(X�) such
that g∗P�n−1 ∼= S�n−1 and φ′ = g∗ψ ′.

Both Mλ and Hilbn(X�) have trivial �n-action so f and g are automatically
�n–equivariant. Therefore

(gf )∗P�n−1 ∼= f ∗(S�n−1) ∼= P�n−1 .

Notice too that f ∗g∗ψ ′ = ψ ′. Since Hilbn(X�) is a fine moduli space with
universal family P�n−1 , it follows that gf = Id.

There is a non-empty open subset U of V/�n such that the natural maps α :
Hilbn X� → V/�n and β : Mλ → V/�n restrict to isomorphisms α−1(U) → U

and β−1(U) → U . The closure Yλ of β−1(U) is the unique irreducible com-
ponent of Mλ that maps birationally to V/�n. Since f and g are morphisms
of V/�n-schemes and fg = Id they restrict to mutually inverse isomorphisms
between α−1(U) and β−1(U) and hence between their closures. But Hilbn X� is
irreducible, so f and g yield an isomorphism Hilbn X� ∼= Yλ.

5.4. As noted in [32, Section 4.4] and [15] the previous theorem, together with
the main result in [2], has the following important consequence.

Corollary. The derived categories Db(coh Hilbn(X�)) and Db(modH0) are
equivalent.

Proof. This follows from Theorem 5.2 since the resolution Hilbn(X�) −→ V/�n
is crepant, hence semismall by 4.1, and so, using Lemma 4.2, satisfies the hypoth-
esis of Theorem 3.8.
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5.5. Set� = {µ : K(�n) −→ R : µ(α) = 0}. Let λ be the element in� given by
Theorem 5.2. Define �+

λ = {0 
= M ⊂ C�n : λ(M) > 0} and �−
λ = {0 
= M ⊂

C�n : λ(M) < 0}. If M is a proper �n–submodule of the regular representation
such that λ(M) = 0 we can perturb λ toµ so that�+

λ ∪{M} ⊆ �+
µ and�−

λ ⊆ �−
µ .

The λ–stable constellations are the same as the µ–stable constellations since λ is
generic. Notice that every µ-semistable constellation is stable. Thus, without loss
of generality, we may replace λ by µ and assume that λ(M) 
= 0 for all proper
subrepresentations of a λ-stable constellation M .

5.6. Let Huc be the flat family of symplectic reflection algebras defined in 2.4.
We will now use Van den Bergh’s result in Theorem 3.8 to extend Corollary 5.4

to the deformations Yc → Xc where Yc is a suitable moduli space ofHc-modules.
In Section 3.11 α denoted the element of Zp defined by

αi = rankZuc eiHuce = dimEi

where Ei is the irreducible representation of �n corresponding to the central
idempotent ei ∈ C�n ⊂ Hc. Therefore under the isomorphism K(�n) → Zp,
[Ei] �→ (δ1i , . . . , δni), we have [C�n] �→ α. In particular, the use of α in the last
few subsections is compatible with the use of α in Section 3.11.

Let λ : K(�n) → R be generic for α. Let W be the moduli space, as con-
structed in Section 3, of λ–stableHuc–modules isomorphic to C�n (equivalently,
of dimension α), and let Y be the irreducible component ofW that maps biration-
ally to Sm(Xuc).

There is a natural C∗-equivariant mapW → C and its restriction to Y fits into
the following commutative diagram in the C∗–equivariant category

Y
�
X

π

�
��f �

��g

C

The horizontal arrow is obtained by taking the central character.

Theorem. Keep the above notation.

1. The fibre Yc := f −1(1) is a crepant resolution of Xc = SpecZc.
2. There is an equivalence of categories between Db(coh Yc) and Db(modHc).

Proof. For τ ∈ C, we write Wτ for the fiber of W → C over τ ; we also define
Yτ = f −1(τ ) and Xτ = g−1(τ ). By Theorem 3.8 and Lemma 4.2, it is enough
to show that Y1 is the irreducible component of W1 that is birational to Sm(X1),
and that the restriction of π to a morphism Y1 −→ X1 is semi–small.

The variety Yτ is a moduli space of λ–stable Hτc–modules of dimension α =
dim(C�n). By Lemma 2.8, Yτ contains the irreducible component of Wτ that
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maps birationally to SmXτ . In particular, dim Yτ ≥ dimXτ ; in fact, these dimen-
sions are equal because Y is irreducible of dimension dimX = dimXτ + 1. If
τ is non–zero, then Yτ is irreducible since C∗Yτ is a closed subset of Y of the
same dimension as Y . On the other hand, if τ = 0 then [2, Section 8] combined
with Corollary 5.4 shows that this particular irreducible component is a connected
component of the moduli space W0. By 2.9, X is normal, so Zariski’s main the-
orem implies that Y0 is connected [17, Corollary III.11.4], and we see that Y0 is
also irreducible. We deduce that for any τ , Yτ is the irreducible component ofWτ

that is birational to Sm(Xτ ).
The semi–smallness follows from Lemma 4.6 since the restriction of π to

Y0 −→ X0 is semi–small, being the crepant resolution of Theorem 5.2.

5.7. Let mx be the maximal ideal of Zc corresponding to x ∈ Xc. The simpleHc-
modules with central character x are precisely the simple modules of the finite
dimensional algebra Hc/mxHc.

Corollary. Let πc : Yc −→ Xc be the crepant resolution above. There is an
equivalence of triangulated categories between Db

x(coh Yc) and Db
x(modHc). In

particular there is an isomorphism between the Grothendieck groupsK(π−1
c (x))

and K(Hc/mxHc).

Proof. The first sentence has already been noted in 3.9. By devissage, the Grot-
hendieck groups of Db

x(coh Yc) and Db
x(modHc) are isomorphic to K(π−1

c (x))

and K(Hc/mxHc) respectively, thus confirming the second sentence.

5.8. When n = 1 the varietiesXc are deformations of Kleinian singularities C2/�

and any crepant resolution coincides with the minimal resolution. Hence, by the
McKay correspondence, the K–theory of the fibre f −1(x) is completely deter-
mined by the type of orbifold singularity at x ∈ Xc. Indeed, suppose the singularity
at x ∈ Xc is locally of the form C2/G for some finite subgroup G of SL2(C).
Then the rank of K(f −1(x)) equals the number of irreducible representations of
G. On the other hand, the algebrasHc are deformed preprojective algebras. These
algebras also depend only on the type of orbifold singularity at x ∈ Xc, since
there is a “slice” theorem which reduces the representation theory to the case of
the point 0 ∈ C2/G, [6, Corollary 4.10]. Thus the rank of K(Hc/mxHc) also
equals the number of irreducible representations of G, as expected.

Of course, in the case of arbitrary n but c = 0, the corollary (which is an
immediate consequence of Haiman’s work) recovers the generalised McKay cor-
respondence proved by Kaledin, [20], for the orbifold singularities appearing
locally in V/�n.

5.9. Corollary 5.7 gives us a geometric description for the number of simple mod-
ules in Hc/mxHc. In practice this is not immediately applicable as we have no
geometric understanding of Yc. There is, however, evidence to suggest that the
following question has a positive answer:
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Question. Let V have Gorenstein singularities and let v ∈ V . Is rankK(f −1(v))

independent of the choice of crepant resolution f : Ṽ −→ V ?

Indeed, [8, Proposition 6.3.2] shows that the mixed Hodge polynomial (of
Borel–Moore homology) of f −1(x) is independent of the choice of resolution.
Thus if the homology groups of the fibres are spanned by algebraic cycles (as
seems reasonable given the results of [20] and the comments below), the answer
is “yes”. Furthermore, [1, Section 5] conjectures that all crepant resolutions of X
have equivalent bounded derived categories of coherent sheaves. Confirmation of
this conjecture would also give a positive answer.

As mentioned in Remark 3.2 in the particular case ofXc, it is possible to show
that there is a crepant resolution which can be described as a quiver variety, [26].
Here the K–theory of the fibres has been studied, and is related to weight spaces
of integrable representations of Kac–Moody Lie algebras. Hence it is reason-
able to expect the number of simple Hc/mxHc–modules also has this interesting
description. We will return to this in future work.
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