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Abstract. We present two constructions of infinite, separable, compact Hausdorff spaces K
for which the Banach space C(K) of all continuous real-valued functions with the supremum
norm has remarkable properties. In the first construction K is zero-dimensional and C(K) is
non-isomorphic to any of its proper subspaces nor any of its proper quotients. In particular, it is
an example of a C(K) space where the hyperplanes, one co-dimensional subspaces of C(K),
are not isomorphic to C(K). In the second construction K is connected and C(K) is inde-
composable which implies that it is not isomorphic to any C(K’) for K’ zero-dimensional. All
these properties follow from the fact that there are few operators on our C(K)’s. If we assume
the continuum hypothesis the spaces have few operators in the sense that every linear bounded
operator 7 : C(K) — C(K) is of the form g/ + S where g € C(K) and S is weakly compact
or equivalently (in C(K) spaces) strictly singular.

1. Introduction

Several fundamental questions concerning the structure of infinite dimensional
Banach spaces (unless stated otherwise, all Banach spaces considered in this
paper are meant to be infinite dimensional and over the field of the reals) remained
unsolved for many decades. For example, whether every Banach space is decom-
posable ([Li]), i.e., whether it can be decomposed as A @ B into two closed infinite
dimensional subspaces, A and B; whether on every Banach space there is an oper-
ator other than those of the form ¢/ + C where c is a scalar and C is a compact
operator; whether every Banach space has a proper closed subspace which is iso-
morphic to the entire space ([Ba]), or in particular whether the hyperplanes of a
Banach space are isomorphic to the entire space. The first and the third question
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were answered in the negative only recently (see [G] and [GM]) and the second
remains open. In this paper, we address similar questions in the context of the
classical Banach space C(K) of all continuous functions on a compact Hausdorff
space K with the supremum norm. Our results are also negative.

The first construction concerns the question whether there is a Banach space
X non-isomorphic to any of its proper subspaces whose particular case for one co-
dimensional subspaces, became to be known as the hyperplane problem ([Ma]).
For general Banach spaces the problem has been solved only recently by T. Gowers
in [G] and W. Marciszewski constructed in [Mar] a compact K such that C(K)
with the topology of pointwise convergence is not linearly homeomorphic to
C(K) x R. Various authors (e.g., Semadeni [Se], Lacey [La], Arhangel’skii [Ar])
have posed the hyperplane problem for the particular case of classical Banach
spaces of continuous functions on a compact Hausdorff space with the supremum
norm. In this paper we solve this problem. Actually, our example addresses the
original version of the hyperplane problem that is our C (K) is non-isomorphic to
any of its proper subspaces nor to any of its proper quotients. The main ingredient
of the proof is showing that for any (linear, bounded) operator T : C(K) — C(K)
its conjugate operator 7* has a decomposition g/ 4+ S where g is a bounded Borel
function on K and S is a weakly compact operator on the space of Radon mea-
sures on K. The space K is the Stone space of a Boolean algebra constructed by
transfinite induction as a subalgebra of g (), thus the method is quite different
than that of [G].

The second construction is motivated by the first, however K is connected and
moreover K — F is connected for any finite F C K. K is a subspace of the product
[0, 171** of the unit intervals. The key result again concerns the space of bounded
linear operators on our C(K), and shows that for any (linear, bounded) opera-
tor T : C(K) — C(K) its conjugate operator 7* has a decomposition g/ + S
where g is a bounded Borel function on K and § is a weakly compact operator
on the space of Radon measures on K. This result implies the indecomposability
of C(K) (see 2.5). However one cannot go as far as [GM]. Since every infinite-
dimensional C (K) contains a copy of ¢y, there are no hereditarily indecomposable
C(K)’s. Thus we obtain a natural example of an indecomposable space which is
not hereditarily indecomposable.

The indecomposability of C(K) implies (see 2.6) that it is non-isomorphic to
any C(K’) for K’ zero-dimensional, which solves, for example, a problem from
[Se] (third problem on page 381). This question should be considered in the con-
text of the classification of separable C (K)’s1i.e., when K is metric, accomplished
in the fifties by Miljutin [Mi], Bessaga and Pelczyriski [BP]. According to this
classification, all separable Banach spaces C(K) are isomorphic to C(K’) zero-
dimensional (see for example [Se], [Ro2], [Go]). The second C(K) also has the
property that it is non-isomorphic to any of its proper subspaces nor to any of its
proper quotients. We present the first example since it is much simpler than the
second and it is a motivation for the second.
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If we assume the continuum hypothesis (abbreviated later CH) the results on
the space of operators on C(K) can be strengthened. We prove that any such
operator is of the form g/ + § where g € C(K) and § is weakly compact or
equivalently (in the context of C(K) spaces) strictly singular. Let us see that this
is the minimal possible space of operators in the context of C(K)’s: clearly mul-
tiplying by a continuous g is a legitimate operator, so let us see that for any C(K)
there is an operator 7 : C(K) — C(K) which is not of the form g/ + C where
C is compact. If K is dispersed, then K has a convergent sequence and so, C(K)
has ¢y as a complemented subspace which leads to many non-compact operators.
Otherwise, Lacey and Morris proved ([LM]) that any C (K )’s for K non-dispersed
have [, as its quotient. In this case there is a continuous function from K into an
uncountable set of reals which gives rise to an embedding of C ([0, 1]) into C(K),
thus by Banach-Mazur theorem /, is also a subspace of the C (K. Now, the com-
position of the quotient map onto /, with the isomorphic embedding with the shift
on the copy of /; is an example of an operator of the desired form.

Using some ideas of this paper, it is possible (at least at the price of an addi-
tional set-theoretic assumption) to obtain a dispersed compact K such that all
operators on C(K) are of the form ¢/ + S where c is a real and S has the range
included in ¢y (see [Ko2]).

However, there is no C(K) space where all operators are of the form ¢/ + S
where c is a real and S is weakly compact or in this context strictly singular
(besides the original spaces of [GM], nonseparable Banach space with this prop-
erty were constructed in [ALT]). This is because, if K has a convergent sequence,
then there is a projection on an isomorphic copy of ¢y which can be composed with
shifts which are not weakly compact; otherwise there are two non-first countable
points in K, i.e., there are also two disjoint separable non-metrizable closed sub-
sets Ko, K1 C K. If f: K — Risin C(K) suchthat f|K; = i, then multiplying
by f is not of the required form.

Recently, based on earlier versions of this paper, where CH was used in the
connected construction, Plebanek showed (see [P1]) that if analogous construc-
tions are done in some nonseparable K’s instead of the Stone space of g (N)
or the products of intervals, then one can guarantee, without assuming CH, that
every operator on C(K) is a multiplication by an element of C (K) plus a weakly
compact operator. However, this version is not the subspace of /.

The origin of the method of the construction of K should be traced to [Fe].
This method is very flexible and leaves lots of room for custom-made variants
(see [Ko1]). Fedorchuk’s space besides Ostaszewski’s space are two paradigmatic
inverse limit constructions of compact spaces obtained under special set-theoretic
assumptions, the latter already found many applications in the theory of C(K)’s
(see [N] or [JM] where its version, the Kunen line, is used instead). However,
the final version of our constructions has more similarities with [Ha] and [Ta]. The
new crucial ingredient is the notion of a weak multiplier operator which links the
topological properties of K with the geometric structure of C(K).
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The notation is intended to be standard, some doubtful points are f|A for the
restriction of f to A and f[A] for the image of A under f, N for the set of nat-
ural numbers. The terminology follows [Se], [E], [DS] and [Di]. All topological
spaces are Hausdorff, measures are signed bounded measures, all linear operators
or functionals are meant to be continuous, neighbourhood means an open neigh-
bourhood, all norms on function spaces are supremum norms. By a convergent
sequence we mean a nontrivial one, i.e., with all distinct terms.

We will consider a classical chain of inter-related structures: a Boolean algebra
A, its Stone space K, the Banach space C(K) of continuous functions on K with
the supremum norm, its dual, the Banach space M (K') of Radon measures on K
with the variation norm, even the dual to M (K) does appear when we consider
weakly compact operators on M (K). Let us fix notation and terminology related
to these structures.

Boolean algebras will be denoted by A and .A,, they will be identified with
subalgebras of the algebra g (N) of all subsets of the natural numbers with the
usual set-theoretic operations. To avoid confusion, the supremum of an infinite
family {A, : n € N} of A will be denoted by \/{A, : n € N}. The Stone
space K of A consists of all ultrafilters of A where the basic sets are defined as
[Al={u € K : A € u}forany A € A.If aBoolean algebra A C g (N) contains
a singleton of n, then n* denotes the principal ultrafilter (and, so an isolated point
of the Stone space of A) generated by {n}. K will denote a compact Hausdorff
space. Recall that a Radon measure on K is a signed, Borel, scalar-valued, count-
ably additive and regular measure. If K is the Stone space of a Boolean algebra A,
then there is a unique Radon measure which extends a finitely additive bounded
measure on the algebra A. The variation of a Radon measure p will be denoted
by |x|. The Banach space of Radon measures with the variation norm will be
denoted by M (K).

The structure of the paper is a follows. In the second section we introduce
the concept of an operator which is a weak multiplier. A characterization of these
operators will be essential in linking the topological properties of K with the prop-
erties of C(K). The third section contains a construction of the zero-dimensional
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example K such that all operators on C(K) are weak multipliers. The fourth sec-
tion includes preparatory work for the fifth section where we present the connected
example of a space C(K) where all operators are weak multipliers. This prepa-
ratory work is mainly concerned with adding the suprema of infinite bounded
pairwise disjoint sequences of functions in C(K') where K is connected. We say
that two real functions e, f on K are pairwise disjoint if and only if e(x) f(x) = 0
for any x € K. Adding \/,.y A, to a Boolean algebra which contains a pairwise
disjoint sequence (A, ),cny is the main point of reference. The last sixth section is
concerned with getting every operator of the form g/ + S where g € C(K) and
S weakly compact under the continuum hypothesis.

2. Weak multipliers

Definition 2.1. An operator T : C(K) — C(K) is called a weak multiplier if
and only if for every bounded sequence (e, : n € N) of pairwise disjoint elements
of C(K) (ie., e, e, =0 for n # m) and any sequence (x, : n € N) C K such
that e, (x,) = 0 we have

nlinc}o T (en)(xy) = 0.

Let us fix more terminology. For an operator 7 : C(K) — C(K) consider a
function g7 : K — R defined by

g(x) =T"@)({x}),

where §, is the Dirac measure concentrated at x and the functional 7*(8,) is con-
sidered as a Radon measure on K, i.e., we consider the measure of the singleton
{x}. Itis clear that |g(x)| < ||T]|.

For a bounded function f : K — RandanopenU C K andx € K we define
osc(f,U) = sup{|f(x) — f(¥)] : x,y € U} and osc(f, x) = inf{osc(f, U) :
x € U}. Itis clear that f is continuous at x if and only if osc(f, x) = 0.

If g : K — R is a bounded function integrable with respect to all Radon
measures on K, we will consider an operator g/ : M(K) — M (K) which sends
the functional which is the integration of a function f € C(K) with respect to
measure u to the functional which is the integration of the product fg with respect
to the measure .

Theorem 2.2. Suppose that T : C(K) — C(K) is a bounded linear operator.
Then the following are equivalent:

a) T is a weak multiplier;
a’) If K is zero-dimensional, for every sequence (A, : n € N) of pairwise disjoint
clopen sets of K we have

Im [T (xa)I(K = Al = 0;
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b) For every ¢ > 0O the set {x € K : osc(gr,x) > &} is finite and T* — gr1 :
M(K) — M(K) is well defined and weakly compact;

c) There is a bounded function g : K — R which is integrable with respect to
all Radon measures such that T* — gl : M(K) — M(K) is weakly compact;

Proof. First we prove that a) or a’) in the zero-dimensional case imply b).

Claim 1: Suppose that x € K and ¢ > 0. Then for every neighbourhood U of
x there is an f € C(K) such that 0 < f < 1, f(x') = 1 for all x" in some
neighbourhood of x, supp(f) € U and |T(f)(x) — gr(x)| < ¢e. If K is ze-
rodimensional f could be assumed to be a characteristic function of a clopen
set.

Proof of Claim 1. The value of the Radon measure 7*(§,) at {x} can be approx-
imated (by the regularity) by 7*(8,)(x4) for clopen A containing x in the zero-
dimensional case or by [ fdT*(8,) for f’s as in the claim in the general case.
But this integral is 7*(8,)(f) when T*(8,) is interpreted as a functional, i.e., it is
equal to T(f)(x) as required.

Claim 2: {x € K : osc(gr, x) > &} is finite for every ¢ > Q.

Proof of Claim 2. Suppose the claim is false, then there are infinitely many points
(x, : n € N)andafixed ¢ > 0 such that for every neighbourhood U, of x,, there is
v, € U, suchthat|gr(x,) —gr(y,)| > €.As K is Hausdorff, we can assume with-
out loss of generality that (x,, : n € N) is relatively discrete and so we can choose
pairwise disjoint open neighbourhoods U, of x, and some ¢,,’s with 0 < e, <1,
supp(e,) € U, and e,|V,, = 1 for some open neighbourhood V,, € U, of x,, such
that

1) [gr (xn) — T (en) (xn)| < €/4.

This can be done by the discreteness of x,,’s and claim 1. Now we choose certain
v,’s as above i.e.,

2) [gr(xn) — 8T (Yu)| > &,

By the continuity of the functions T (e,), the points y, can be chosen to satisfy
3) T (e,)(x,) — T(en)(yu)| < €/4. Of course we can also make sure that

4) yu € V.

Now apply claim 1 for gr at y,’s i.e., find an open W, € U, and h, € C(K)
with ||h,]| < 1 such that supp(h,) € W, for which there is a neighbourhood
Z, € W, of y, such that 4, |Z, = 1 and

5) 1g1(yvn) = T (hn) ()| < /4.
Thus by 1) - 3), 5) we have

1T (en) (Yn) — T (hn) Yu)| = |T (en — h) (V)| = /4.
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To obtain a contradiction with the fact that 7" is a weak multiplier and complete
the proof of claim 2, note that and ||e,, — h,|| < 2, supp(e, —h,) € U, (U,’s are
pairwise disjoint) and y, & supp(e, — hy), since both of e, and A, are equal 1
on some neighbourhood of y, by 4). To obtain a contradiction with a’) note that,
by claim 1, e,’s can be chosen to be of the form x4, for some clopen A, € K
and h, can be chosen to be of the form xp, for some clopen B, C A,. lLe,
en —hy, = xa,—p, and y, ¢ A, — B, asrequired in a’).

Hence, we obtained the first part of b). It follows that the multiplication of a
Radon measure by g7 is a well defined operator on M (K) since gr has a most
countable set of discontinuities, i.e., is a Borel function and so, integrable with
respect to any Radon measure. Now let us see that T* — g/ : M(K) - M(K)
is weakly compact. Let (4, : n € N) be a bounded sequence in M(K), we
need to show that (T* — gl)(u,)’s form a relatively weakly compact set. We
will use the following version of the Dieudonné-Grothendieck theorem ([Di] VII.
14): If a bounded sequence (i4,,),en 1S not relatively weakly compact, then there
are pairwise disjoint open V, € U, C K and e,’s from C(K) such that 0 <
en <1l,e,|V, =1ande,|(K — U,) =0, |u,|(U, — V,,) — 0 and the sequence
( f end k) ren does not converges to zero uniformly for k € N. This version can
be easily obtained from the standard version using the Urysohn lemma and the
regularity of Radon measures. So suppose that (T* — gI)(i,)’s do not form a
relatively weakly compact set. Possibly renumerating the measures and going to
a subsequence we can find an ¢ > 0 and sequences of pairwise disjoint open
sets (Up)nen> (Vu)nen such that V,, € U, and a sequence of continuous functions
(ex)nen as above such that

Ifend(T* —grD ()| = I/(T(en) —gren) du,| > e.
for all » € N. Note that

| (T (en) — gren) dun| — 0
U,—V,

because |, | (U, — V,) — 0. Also

| (T (en) — gren) ditn| — 0
K-U,

because the support of e,’s are included in U,’s and Borel functions 7 (e,)|
(K — U,) converge uniformly to O since T is a weak multiplier. Hence

|/ (T (en) — gren) duy| = |/ (T (en) — gr)dtn] > €,
Vi Va

for sufficiently large n € N, since ¢,,(x) = 1 forx € V,,.
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Let M be such a positive real that ||u, || < M for alln € N. We conclude that
there are x, € V,, such that |T (e,)(x,) — gr(x,)| > ¢/M for all n € N. Thus,
by claim 1, we can find continuous 4,,’s such that 0 < h, < 1, supp(h,) C V,,
h,(x) = 1if x € W,, where W, is some neighbourhood of x,, and

1T (hy)(xn) — 81 (Xa)| < €/2M,

but we have
\T (en)(xn) — g7 (x0)| > /M

for sufficiently large n € N. This implies that the sequence of T (e, — h,)(x,;) =
T (e,)(x,) — T (h,)(x,) does not tend to zero, but (¢, — h,)(x,) =1 —1=0
contradicting the fact that T is a weak multiplier. In the zero-dimensional case,
as before, we can choose, by claim 1, e,’s and #,,’s to be characteristic functions
of clopen sets A, and B,, respectively, where B, C A,. In this case x4, — x5, =
Xa,—B, and x, &€ A, — B, contradicting a’).

So we are left with showing that c) implies a), since a’) trivially follows
from a) and c) trivially follows from b). So, let g be as in c), let (e,) ey be
a bounded sequence of pairwise disjoint elements of C(K) and let (x,),cny be
a sequence of points of K such that ¢, (x,) = 0. Consider the Radon measures
Uy = T*(8x,) —g(x,)dy, forn € N.Clearly itis abounded sequence of measures,
since T and g are bounded. Suppose that

T(en)(xn) = /endT*(Bx,,) -0= fendﬂn

do not converge to zero. It means that there are some open sets U, included in
the supports of e,,’s, i.e., pairwise disjoint, such that (|, (U,)|)»en does not con-
verge to 0. This, by the Dieudonné-Grothendieck theorem, contradicts the fact that
T* — gl, as a weakly compact operator, sends bounded sequences to relatively
weakly compact sequences, hence (T (e,,)(x,;))nen converges to 0 as required in
a) which completes the proof of the theorem. O

Theorem 2.3. Suppose that K is a compact space with no convergent sequences
and that T : C(K) — C(K) is a weak multiplier. Then T is onto C(K) if and
only if it is an isomorphism onto its range.

Proof. By theorem 2.2. T* = grI + S where S is weakly compact and {x € K :
osc(gr, x) > &} is finite for any ¢ > 0, in particular the set of points where g7 is
discontinuous is at most countable.

Claim 1: If gr(x) = O for infinitely many x, then there is a nonmetrizable, sep-
arable K| € K such that g7 is continuous and equal to zero at each point of K.

Proof of the Claim. Suppose that g7 (x,) = 0 for infinitely many distinct x,, € K.
As K has no convergent sequences, the set of all limit points of {x, : n € N}isa
closed subset K’ of K which has no isolated points. As g has at most countably
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many points of discontinuity, one can find an infinite closed, K; € K’ avoiding
all these points, i.e., where g assumes only value 0. By taking the closure of a
countable subset, one can assume that K is separable, and using the fact that
there are no convergent sequences in K, one concludes that K is nonmetrizable
as an infinite closed subset of K.

Claim2: If T : C(K) — C(K) is an isomorphism onto its range, then 7 is onto
C(K).

Proof of the Claim. If T is an isomorphism onto its range, it means that 7* is
onto M(K). If g is zero on an infinite set, use claim 1 to choose w, = é,,, where
g(x,) = 0, and g is continuous at all points of relatively discrete (x,),cn. There
are some Radon measures v, on K such that 7*(v,) = gv, + S(v,) = u, and
[lva]l < M for all n € N. By the continuity of g at the points x,, one can find
pairwise disjoint and open U,’s such that [g(x)| < 1/n for x € U,. By the
Dieudonné-Grothendieck theorem ([Di] VII. 14.) the fact that S(v,,)’s form a rela-
tively weakly compact set means that the sequence S(v,)(U,) converge to 0, also
| f U, gdv,| < M /n which contradicts the choice of w,,’s.

Claim 3: Suppose K; C K is closed and separable and that gr(x) = 0 for all
x € K. Then the composition Tk, : C(K) — C(K;) of T with the restriction
on K has separable range.

Proof of the Claim. First we will note that Tk, is weakly compact. Note that a
Radon measure  on K defines naturally a Radon measure on K concentrated
on K, which we will denote by p as well. Since g7/ + § is the conjugate of
T, we have that [ T(f)du = [ grfdu + [ fdS(n) for each f € C(K), so
for u concentrated on K; we get u(Tx,(f)) = S(u)(f) for each f € C(K),
ie., (Tk,)" = S and so (Tk,)* is weakly compact and we can use a Gantmacher’s
theorem which says that an operator is weakly compact if and only if its conjugate
is ([DS] VI 4.8.).

Now we will note that weakly compact operators with ranges in C(K) for K;
separable have norm-separable ranges. As the range of an operator is a countable
union of images of the balls, it is enough to note that convex weakly compact sub-
sets of C(K) are norm-separable. Let D = {x, : n € N} C K be a countable
dense set. Let ¢ : C(K;) — R“ be given by ¢ (f) = (f (x4))nen- Note that ¢ is
one-to-one and continuous with respect to the weak topology in C(K) and the
product topology in R®, thus it is a homeomorphism while restricted to compact
setsof C(Kp).Let X € C(K)) be convex and compact in the weak topology, R? is
metrizable, so ¢[X] is separable and so, its homeomorphic copy X is separable in
the weak topology as well. Consider the set Y C X of all convex combinations of
elements of the countable weak-dense set E C X. Y is convex and separable in the
norm topology (consider the convex combinations with rational coefficients). The
weak closure of Y is X, but weak closures of convex sets coincide with closures
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in the norm topology ([Di] Theorem II.1.). So, the rational convex combinations
of elements of E are norm dense in X.

Claim 4: If T is onto C(K), then T is an isomorphism.

Proof of the Claim. Suppose that T is onto C(K) and g is zero on an infinite set.
Let K; € K be as in claim 1. The space C(K) is non-separable and its every
member is in the range of the composition of 7" with the restriction on K;. But
the range of this composition is separable in C(K) by claim 3. This contradicts
the fact that 7" is onto C(K). So we may assume that g can be 0 only at a finite
subset of K.

Now, we will make use of Fredholm theory. An operator R on a Banach space
is said to be Fredholm if and only if dim (ker R) and codim (Im(R)) are finite. The
index of such an operator is the number i (R) = dim(ker R) — codim(Im(R)).
Proposition 2. c. 10. of [LT] implies that if R : X — Y is Fredholm (then its
range is closed) and S : X — Y is strictly singular (i.e., not an isomorphism
while restricted to any infinite dimensional subspace), then R + S is Fredholm
and (T + S) =i(T).

We will first observe that weakly compact operators from M (K) into itself are
strictly singular. It follows from the fact that such weakly compact operators send
weakly Cauchy sequences to norm convergent sequences (i.e., M (K) has the Dun-
ford-Pettis property, see [DS], VI.8.10 for this property for L (S, X, u) spaces and
[DS] p. 394, Notes and Remarks for Kakutani’s theorem which says that M (K)
is such a Banach space). Thus if a weakly compact operator on M (K) were an
isomorphism on an infinite dimensional subspace, any norm bounded sequence
from such a subspace would have a weakly convergent subsequence (isomorphism
preserve the fact that a sequence is weakly convergent, and restrictions of weakly
compact operators are weakly compact by the Hahn-Banach theorem), which by
the above property, would, in fact be a norm convergent sequence, hence the ball
of our subspace would be compact.

Note that we may assume without loss of generality that m < |g(x)| < M
for some m, M > 0 and all x € K. This is because a sequence of x,’s such that
|g(x,)] < 1/n would give an uncountable set where g would be zero (the set of
its accumulation points where g is continuous) and if a g’ is a finite modification
of g, then (g — g’)I is of finite rank, and so weakly compact, consequently it can
replace g.

Multiplication by such a g is an isomorphism from the dual of C(K) onto itself,
i.e., a Fredholm operator of index 0, hence g/ + S has the same index 0. If T is
onto, T* is an isomorphism onto its image then, dim(Ker(T*)) = 0, so since
i(T*) =0, codim(Im(T*)) = 0, i.e., we conclude that 7* is onto M (K') or that
T is an isomorphism. O

Theorem 2.4. Suppose that C (K) is such that all operators on it are weak multi-
pliers. Then, finite co-dimensional subspaces of C(K) are isomorphic if and only
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if they have the same co-dimension. In particular the hyperplanes of C(K) are
not isomorphic to the entire C(K) and C(K) is a Grothendieck space.

Proof. It is well-known that all subspaces of the same finite co-dimension are
isomorphic to each other (like in 21.5.7-8 of [Se]).

By the previous theorem none of the subspaces of a finite co-dimension is
isomorphic to the entire C(K). The remaining parts follow from the fact that
X @& R" ~ C(K) if X is of co-dimension n € N. It follows that ¢y cannot be a
complemented subspace of C(K), but this is sufficient for a C(K) space to have
the Grothendieck property (see [Sch]). O

Theorem 2.5. Suppose that K is such that all operators on C(K) are weak multi-
pliers and that K — F is connected for any finite F C K. Then, all projections in
C(K) are of the form I + S or S where S is finite-dimensional. In other words, all
complemented subspaces of C(K) have finite dimension or finite co-dimension
and C(K) is an indecomposable Banach space.

Proof. Let P : C(K) — C(K) be a projection (see [Se]). Let gr and S, a
weakly compact operator, be such that P* = g7 I + S. We have P?> = P, and so
(P*)* = P*ie., g2l +S*+grS+ Sgr = grl + S and so (g7 — gr)I is weakly
compact. Suppose that x is a point where g7 is continuous. If (g7 — g7)(x) # 0,
it would be separated from O over some open set, and so would not be a weakly
compact operator. Thus g7 (x) may assume value O or 1 if g7 is continuous at x.
Let F C K be the set of all points x of K where osc(gr, x) > 1/2. By 2.2b) F is
finite. One easily notes that K has no non-trivial convergent sequences, because, it
would produce a complemented copy of ¢y which would give many operators con-
tradicting the assumption on K. Consequently as K is connected, all non-empty
open sets must be uncountable, and so the points where g7 is continuous form a
dense setin K. For any x € K such that osc(gr, x) < 1/2, there must be an open
neighbourhood U, of x where g7 (y) = 0 or gr(y) = 1 for all y € U, such that
gr 1s continuous at y. This defines a continuous function g : K — F — {0, 1}
such that |g(x) — gr(x)| < osc(gr, x), in particular g(x) = gr(x) if gr(x) is
continuous at x. By the assumption that K — F is connected, we conclude that
g is constantly O or 1. Denote by g the corresponding constant function defined
on the entire K. Note that 2.2 b) implies that {x € K : |g(x) — gr(x)| > &} is
finite for every ¢ > 0. To prove that (g — gr)I is weakly compact we will need
the following:

Claim: Suppose h : K — R. hl : M(K) — M(K) is weakly compact if and
only if {x € K : |h(x)| > &} is finite for every ¢ > 0.

Proof of the Claim. If there are x,, € K with |h(x,)| > ¢ for all n, we may
assume that they form a discrete set and then the bounded sequence of measures
(6x, : n € N)issendto (h(x,)d,, : n € N) which is not relatively weakly com-
pact by the Dieudonné-Grothendieck theorem. Conversely, if one wants to check
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that A, ’s form a relatively weakly compact set in M (K) for a bounded sequence
in M (K), again by the Dieudonné-Grothendieck theorem. it is enough to consider
a family of pairwise disjoint open sets (U, : n € N) and their hu;(U,). They
obviously tend to O uniformly in k, hence (hu,),cn 18 weakly relatively compact
which completes the proof of the claim.

Let 8" = (gr — g)I + S. The claim implies that S’ is weakly compact. We
also have that P* = I + §" or P* = §'. Since I — P* = (I — P)*, by Gantmach-
er’s theorem / — P or P is a weakly compact projection. But using the fact that
weakly compact operators on C(K) are strictly singular ([Pe]) we conclude that
P or I — P has finite-dimensional range, as required. O

Theorem 2.6. Suppose that a space C(K) for some compact K is indecompos-
able, then C(K) is non-isomorphic to any space C(K') for any zero-dimensional
compact K'.

Proof. The space of continuous functions on one-point compactification of a
discrete infinite set has, for example, many non-trivial projections, hence C(K)
cannot be isomorphic to such a space. Thus, if C(K’) is isomorphic to C(K),
then K’ has at least two distinct non-isolated points, consequently, if K’ is zero-
dimensional, it has a clopen A € K’ such that both A and K — A are infinite. The
restriction of functions to A is an example of nontrivial projections. O

Recall that Y € X is C*-embedded in X if and only if every bounded contin-
uous function on Y extends to a bounded continuous function on X.

Theorem 2.7. The following are equivalent for a compact space K :

a) All operators T : C(K) — C(K) are of the form gl + S where g € C(K)
and S is weakly compact.

b) All operators on C(K) are weak multipliers and for every x € K the space
K — {x} is C*-embedded in K.

Proof. To see that a) implies b) we may assume that K has no convergent se-
quences (otherwise a complemented copy of ¢y would give rise to many operators
not as in a)). One only needs to prove that if there is a y € K and a continuous
bounded function 4 : (K — {y}) — R which has no continuous extension to
K, then T(f) = h(f — f(y)) is an operator which is not of the form as in a).
Otherwise, suppose that T = gl + S where g € C(K) and § is weakly compact.
As h has no continuous extension to K, y must be non-isolated and so, there are
distinct points x, # y and an € > 0 such that |h(x,) — g(x,)| > e foralln € N.
As K has no convergent sequences, one of the accumulation points of the x,,’s,
say z, is distinct from y, it is also non-isolated and |2 (z) — g(z)| > ¢. This implies
that there is an infinite open set U with the closure not containing y such that
|h(x) — g(x)| > e/2 for all x € U. Note that T — g/ is an isomorphism on the
subspace of all functions with supports in U, but on the other hand it is a weakly
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compact operator S which is impossible as weakly compact operators on C(K)’s
are strictly singular ([Pe]) which completes the proof of b) assuming a).

Now let us see that b) implies a). Note that it would be enough to show that
for every function f : K — [0, 1] such that {x : osc(f, x) > ¢} is finite for
each e > 0, f|(K — X) can be extended to a continuous function f’ on K where
X is the set of all points of discontinuity of f. Indeed, theorem 2.2., b) implies
that 7* — grI : M(K) — M(K) is weakly compact, and we would have that
(gr — f)HI : M(K) - M(K) is weakly compact (see the claim of 2.5), and so
T* — f'I is weakly compact. But f” is continuous so 7' — f’'I would be a well
defined operator on C(K) whose conjugate is T* — f'I. By Gantmacher theo-
rem, which says that an operator is weakly compact if and only if its conjugate is
weakly compact, we would get that 7 — f’1 is weakly compact obtaining a).

Suppose that an f and X are as above and f|(K — X) cannot be extended
to a continuous function on K. This means that there is a point y of K and an
¢ > 0 such that every neighbourhood of y contains points y’, y” € K — X such
that | f(y") — f(y”)| > e. Making this assumption we will construct a g which
is bounded and discontinuous only at y and cannot be extended to a continuous
function on entire K which will contradict the second part of b). For this we need
the following:

Claim: Suppose L is a compact space and F, G C L are disjoint and closed and
¢ : L — [0, 1] is a function such that osc(f, x) < € for all x € G. Then there
exists a function ¥ : L — [0, 1] such that ¥|F = ¢|F, ¥|G is continuous,
osc(Y,x) < osc(¢,x) forevery x € L and |¢p(x) — Y (x)| <eforallx € L.

Proof of the Claim. Let U be an open set such that F C U and U N G = @ and
let (f; : i € I) be alocally finite partition of unity subordinated to an open cover
{U}UY where osc(V,¢) <eand VNF =@ forall V € V. Foreachi € I pick
an r; € [0, 1] such that ¢ (x) = r; for some x € X such that f;(x) # 0. Define
Ul =1sothati € I) ifthereis V € Vsuchthat{x € X : fi(x) #0} C V
and otherwise i € I». Define

Yx) =D {rifitx) i€ Y+ Y ($(x) fi(x) i € L),

It is clear that ¢ |F = ¢|F because fi(x) =0ifx € F andi € I}, that ¥ |G
is continuous because f;(x) = 0if x € G and i € [, and that the oscillation does
not grow. Also note thatif i € I; and f;(x) # 0, then¢p(x) —e¢ <r; < ¢p(x) + ¢,
ie., [Y(x) — ), ¢(x)fi(x)| < e, as required in the claim.

Now using the claim we can construct a sequence of functions f,, : K — [0, 1]
such that:

1) fo= f,osc(fn, K —{y}) <1/2", 0sc(f,, x) < osc(f,x) forall x € X,

2) 1fu(x) = fapn ()] = 1/27,
3) for each n € N there is an open neighbourhood U, of y such that f,|U, =

flU.
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Indeed, given f,, find an open neighbourhood U,, of y such that F = U, is disjoint
from the finite set G of points x # y where osc(f,, x) > 1/2"+!, we may apply
the lemma obtaining the f,,4.

Itis easy to see that since f,’s form a uniformly Cauchy sequence of functions
on X — {y} of decreasing oscillations, they converge to a continuous function on
K — {y}. By 3) the function cannot be extended to a continuous function g on K,
since in any neighbourhood of y there are y’, y” satisfying |g(y") — g(y")| > ¢
because f had this property. This contradicts the fact that K —{y} is C*-embedded
in K. O

Lemma 2.8. Suppose that K is a compact space such that whenever Uy, U, are
open subsets of K satisfying Uy NU, # @, then U N U, contains more than one
point, then for every x € K the space K — {x} is C*-embedded in K.

Proof. Suppose that f : (K — {x}) — R is bounded and continuous. Without
loss of generality we may assume that it is into [0, 1] and that x is non-isolated.
The family

{flU —{x}]:x e U, Uisopenin K}

is a centered family of closed sets in a compact space, hence its intersection con-
tains a point ¢ € [0, 1]. If it is the unique point of the intersection, one can easily
show that putting f(x) = ¢ defines a continuous extension of f.

But otherwise, if the intersection contains two points #; < f,, the closures in K
ofopensets Uy = f~'[[0, t;4+&)]and U; = f~'[(t; —e, 1]] wheree = (t—11)/3
contain x. By the hypothesis on K, they must contain some other point x’ € K as
well, which would contradict the continuity of f at x’. O

3. Construction of the zero-dimensional compact space

Theorem 3.1. There is a Boolean algebra A C g (N) containing all finite sets
such that given

a) a sequence (A, : n € N) of pairwise disjoint elements of A,

b) a sequence (I, : n € N) of distinct natural numbers such that l, ¢ A,, for
n,m € N, there is an infinite b < N such that

c) {A,, : m € b} has its supremum A in A and

d) the intersection of the sets {I,* : n € b} and {l,* : n & b} in the Stone space K
of A is nonempty.

The rest of this section is devoted to the proof of the above theorem. We con-
struct by transfinite induction Boolean algebras A, for & < 2% which can be
considered as subalgebras of the algebra g (), taking unions at limit ordinals,
ie, Ay = U,_; Aq for A < 2% limit. Along this construction we consider the
Stone spaces K, of A, and the dense discrete subset of isolated points N, =
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{n*la : n € N} C K,, where n*|« is the principal ultrafilter of 4, generated
by {n}. We require that .4, is the algebra of finite and cofinite subsets of N, i.e.,
K is a convergent sequence with its limit. The construction is very similar to a
construction of R. Haydon ([Ha]).

At a successor stage, A, is obtained from A, so that a case of ¢) of theorem
2.1. is taken care of. This extension is obtained by adding one element A, to A,
which works as the A of 2.1. c). At each stage we will have to preserve some cases
of d).

At the beginning of the construction we fix an enumeration:

(An (O[), ln (a))ot<2”’,n€N

such that for every o < 2% and for every pair ((A,)nen, (ln)nen) consisting of a
countable pairwise disjoint sequence of sets of integers (remember we work in
g (N)) and of an increasing sequences of integers satisfying

*) l, & A, forn,me N,

there is @ < o’ < 2® such that A, («') = A, and [, = [,,(¢) for all n € N. This
enumeration exists since, (2°)* = 2“ implies that there are 2¢ such pairs and
29 x 2% = 2 implies that 2“ can be divided into 2 pairwise disjoint sets, each
cofinal in 2%.

At stage o < 2“ we are given A, and its Stone space K, and families (bg)ga,
(ag)p<a Of subsets of N such that for every B < o we have bg C ag and

%) {(n*la:n ebgyN{n*la:n capg — bg} # U,

where the closures are taken in K.

At successor stages o + 1 consider the Stone space K, of the algebra 4,. We
will choose a € N so that for any choice of an infinite » C a after adding
A =\/,cp An to A, the conditions **) are preserved in Ko forall < o .
There is no doubt that some choices of b € a C N destroy **), for example, if
one of the sets in **) is included in such an A and the other is disjoint from it.
The point here is that since we have 2“ choices and less than 2 commitments in
*%), there is one choice which works for all the commitments. This idea is based
on lemma 1D of [Ha].

Let (@’ : & < 2%) denote an almost disjoint family of subsets of N, i.e., a’’s
are infinite while a® N a” is finite for 6 < 6’ < 2. We claim that there is a
0 < 2¢ such that **) is satisfied in any extension .4, of 4, obtained by adding
A=\/{A,:neb}forbZa’ CN.

Assume, to the contrary, that for each choice of § < 2¢ thereis ab? C a’ such
thatthereis 8 < « sothatthe closuresofthesets R = {n*|a+1 : n € bg} € Kot
and 8" = {n*la +1 : n € ag — bg} € Ky41 get separated in K, obtained
using b?. Using general form of an element of a Boolean algebra generated by
one element A over a subalgebra, we conclude that there are pairwise disjoint
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elements B, C, D € A, such that R C ([B] N [A]) U ([C] — [A]) U [D] and
S'N{([BIN[ADU(C]1—[ADU[D]} = @ (Recall that [ X] stands for the clopen set
of the Stone space of an algebra corresponding to the element X of the algebra).
Since the ultrafilters n*|o + 1 are generated from A4,, we conclude in g (N) that

RC (BNAHU(C -A%YUD

SN{BNAYHU(C - A% U D} =9,

where R = {n :n* e bg}and S = {n : n* € ag — bg} }and A? = A, :ne bY).
As we have 2% choices for 6 and less than 2% sets B’s, C’s and D’s in A, there
are distinct 6 and 6’ for which we have the same R, S and the same B’s, C’s and
D’s work. Taking intersections with B or C and intersections or unions, we get

RNBC (BNA’NAY

SN(BNA’NAYY) =0,
RNCccCcn(=A"U-A"y=cC— (A NnA”)
sncNECnNEA"U—A))=sncnc—@A’nAa") =g

As A% N A? is a finite union of A,’s (since b’ N b is finite), it corresponds
to a clopen set in K, and this implies that R" and S’ can be separated in K, a
contradiction with the inductive assumption **). Thus one of a?’s works for all
choices of b € a?, call it a.

Now we can choose b C a. For every infinite a € N there is b C a such that
{l* : n € b} intersects {I¥ : n € a — b} where the closures are taken in K. This
follows from the fact that the topological weight of K, is less than 2“ and in a
compact space the separations of closed sets can be done by finitely many basic
open sets. As [|a + 1 are generated from A, and by *), [,*|o’s do not belong
to A,,’s for n,m € N, one can conclude that all [,*|a + 1’s do not belong to
[U{A, : n € b}] that s the above sets are not separated in K,11. So we can define
by ={l, :n € b} and a, = {l, : n € a} and add these sets to our list from **) of
pairs of sets whose closures will never be disjoint.

We define A, = (J{A, : n € b} = \/{A, : n € b} which exists in the com-
plete Boolean algebra g (V). This completes the description of the construction

Now to prove that A satisfies conditions c¢) and d) of theorem 2.1, let (A,
N) C Aand (I, : n € N) satisfy conditions a), b) of 2.1. There are «,, € 2® such
that A, € A,,. Since the cofinality of 2% is uncountable (see [Ku] or [Je]), there
is an o < 2% such that o, < « for each n € N. Applying the properties of our
enumeration from *), we conclude that the pair ((A,)nen, (Ln)nen) is considered
at some o < 2% such that {A, : n € N} C A,. The construction guarantees €)
and that the corresponding case of d) holds in A, . But this case of d) enters our
list **), which is preserved, by the construction at successor stages.
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The requirements **) cannot be destroyed first time at limit stages, in par-
ticular at 2, by the fact that separated closed sets in compact zero-dimensional
spaces are separated by clopen sets i.e., belonging to the clopen algebra which at
the limit stage is the union of the previous algebras. This completes the proof of
theorem 3.1. O

Lemma 3.2. Every operator T : C(K) — C(K) is a weak multiplier.

Proof. Suppose that a bounded, linear operator 7 : C(K) — C(K) is not a weak
multiplier, i.e., by 2.2 that there exist a sequence of pairwise disjoint clopen sets
(A, : n € N) such that there is ¢ > 0 and points x,, € K such that x,, ¢ A, and
|T (xa,)(x,)| > ¢ for infinitely many »’s. Since finite sums of the characteristic
functions of A,,’s are of norm one, if x,, were constant for infinitely many n’s, we
would get a contradiction with the fact that 7' is bounded. Thus, we may assume
without loss of generality that |7 (x4,)(x,)| > ¢ holds for all n € N and that
x, = I,* for some increasing sequence (I, : n € N) of positive integers, since
{n* :n e N}isdensein K.

We may also assume without loss of generality that the points ,* are not in
the sets A, for n, m € N: if there is one ng such that [,* € A,, for n’s from an
infinite set M C N, we may consider M — {no} and use the disjointedness of A,,’s.
Otherwise, one can construct by induction an infinite set of indices as required.
Thus (A, : n € N) and ([, : n € N) satisfy a) and b) of theorem 3.1.

Let w, be the Radon measures on K which correspond (see [Se], §18.), by the
Riesz representation theorem, to the linear bounded functionals ¢,, on C(K) given
by the relation

() = TN = /K Fdin

which holds for all f € C(K), ie., u, = T*(8,+). In particular, we have
|, (A,)] > e. Now we may find an infinite N’ € N such that for n € N’
we have

* % %) D Hnl(An) : n#Em, me N}y <e/3.

This is a lemma of Rosenthal (see [Ro] lemma 1.1. also in the stronger version
that we are using see [Di] page 82.) applied to the measures 1, as above.

For M € N’ define
= A - A
neM neM

Note that 9, is exactly the set of all points of K whose all neighbourhoods inter-
sect infinitely many sets A, for n € M. It follows that 9y, C 9y, if M’ € M and
moreover that 9y C 9y, if M’ — M is finite.

Let {N; : £ < w} be a family of infinite subsets of N’ such that Nz N N is finite
whenever & # &' for all £ € w;. We may apply theorem 2.1. to {4, : n € N¢}
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and ([, : n € N¢) for each § < wy, obtaining b C N, and a supremum A like
in theorem 3.1. Note that, as a clopen set, A includes 95, and is disjoint from
b, —b for any n # &, hence the family (95, )z <, 1s pairwise disjoint, and so, one
of its sets, for instance 8;750 must be null with respect to all the measures p,,. Since
Ag, = U{Ay 1 € bgy} U 9y, we have

* % ok) tn(Agy) = pn( U Am)

mebg,

Ag, = A is clopen and so x4 is continuous, let us analyze T'(x4). By ***) and
%) we conclude that if n € b = bg, we have

1T (xA) L") = [a(A)| = |pa(An) + Z{Mn(Am) tm #n, m € b}
>e—¢/3=2¢/3.

Butif n € Ng, — b, where a = ag,, we have

IT ()G = (A = 1D {pa(An) : m € b} < /3.

Since T (x4) is continuous we have that the closures of the sets {I,* : n € b} and
{I,* : n € N¢ — b} are disjoint. This contradicts d) of theorem 2.1. and completes
the proof of lemma 3.2. O

Theorem 3.3. There is a separable compact zero-dimensional space K such that
no proper subspace and no proper quotient of C(K) is isomorphic to C(K), in
particular the hyperplanes of C (K) are not isomorphic to the entire C(K).

Proof. Apply theorems 2.4 and lemma 3.2. O

4. Adding suprema of pairwise disjoint families of functions on connected
spaces

First, let us make elementary observations and introduce some notation about
bounded pairwise disjoint sequences of continuous functions. Infinite sums of
functions are always considered pointwise. We consider the lattice C (K) with the
usual pointwise order.

Lemma 4.1. Let K be a compact, Hausdor{f space and let ( f,,))nen be a bounded
pairwise disjoint sequence of continuous functions from K into [0, 1].

a) f € C(K) issup{f, : n € N}in the lattice C(K) if and only if
AL (fnew) = {x € K2 )~ fulx) # f(0))
neN

is nowhere dense in K.
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b) Y ,cn [n is well-defined and continuous in the dense open set

D((fi)nen) = U{U :Uisopenand {n : supp(f,) N U # ¥} is finite}.

Proof. For a), first suppose that f = sup{ f, : n € N}, in particular f > f, >0
foralln € N.Itis clear that there cannot be any x € K where 0 < f,(x) < f(x)
for some n, i.e., A(f, (fi)nen) € {x € K : Vn € N f,(x) = 0}. Now, note
that if A(f, (fu)nen) were not nowhere dense, then, there would be an open set
U such that f,(x) = Oforalln € U and f(x) > O for some x € U. A slight
modification of f would contradict the fact that f is the supremum. Conversely
ifg > f,foralln € N but f £ g, then there is an ¢ > 0 and an open U such that
g(x) < f(x) —eforx € U,then U C A(f, (fu)nen) -

In b) the density of D((f,),en) follows from the fact that if an open U inter-
sects some supp( f,), then there is x € U such that f,(x) # 0 and consequently
there is an open V. C U N D((fu)nen), since (f,)nen 1s pairwise disjoint.

The continuity follows from the fact that ), _, f; is locally a finite sum of
continuous functions in D (( f;)nen)- O

In this section we discuss an operation on connected compact spaces that
is analogous to adding \/,.y A, for a pairwise disjoint sequence (A,),en to
Boolean algebras. The latter played an important role in the construction leading
to theorem 3.1. and will be used here as the motivation. To understand topolog-
ically the process of adding \/, ., A, to a Boolean algebra, we need to use the
Stone duality to translate the natural notion like \/, <y An into, at the first sight,
less natural topological concepts.

Recall that if X is an element of a Boolean algebra, then [ X ] denotes the clopen
basic set of the Stone space of the algebra consisting of all ultrafilters which con-
tain X. We may use [X]g if the Boolean algebra and its Stone space K is to be
specified. If K is the Stone space of a Boolean algebra A then the Stone space
L of the algebra B generated by a new element A over A can be interpreted as a
subset of K x {0, 1} defined by

L ={(x,0):x € K :xU{—A} extends to an ultrafilter of B}U

U{(x, 1) : x € K : x U {A} extends to an ultrafilter of }.

That is, if v stands for the projection on the first coordinate, i.e., from L onto K,
and if x € K, then w ! ({x}) is sometimes only the singleton {(x, 1)}, sometimes
only the singleton {(x, 0)} and sometimes {(x, 0), (x, 1)}, depending on the rela-
tion between x and A. In fact, we are in the first case if and only if there is A" € x
such that A’ < A in the Boolean order in 13, we are in the second case if and only
if there is A” € x such that A’ < —A and we are in the third case if none of the
above holds.

Suppose that (A,),cy is a pairwise disjoint sequence of elements of .4 and
V ey An does not exist in A, however \/,_y A, = A appears in B as above.
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Simple applications of the Stone duality can be summarized in the following list
which uses the notation K, L and 7 as above:

1) (X1a,1x)nen has no supremum in C(K).
2) XIVyen AnlL is the supremum of (x{a,], Jnen in C(L),

3) XiAuk © T = XiA,lLo
4)

JttAulk :n € N} = UMk 1 n € N)

is the set of all points in K whose preimages under & have two elements, it is
closed and nowhere dense in K and its preimage under 7 is nowhere dense in
L.

5) L is the closure in K x {0, 1} of the graph of a continuous function f :
dom(f) — {0, 1} which is given by f(x) = 1 for x € |J{[A,]x : n € N}
and f(x) = 0forx & (J{[A,]k : n € N}; the domain of f is the complement
of the setin 4).

This motivates the following definition which should be traced back to [Fe].

Definition 4.2. Suppose that K is a compact space, L € K x [0, 1] and (f,)nen
is a pairwise disjoint sequence of continuous functions from K into [0, 1]. We say
that L is an extension of K by (f,)nen if and only if L is the closure of the graph
of the restriction (Y_, .y fa)|D((fu)nen). Moreover we say that L as above is a
strong extension of K by (fu)nen if and only if the graph of ),y fn is a subset
of L.

Lemma 4.3. Suppose that K is a compact space, that (f,)nen is a pairwise dis-
Jjoint sequence of continuous functions from K into [0, 1], that L is an extension
of K by (fu)nen and 1 is the projection from L onto K, then the following hold:

a) If M C K is nowhere dense in K, then w~'[M] is nowhere dense in L.
b) There is sup{f,om :n € N}in C(L).

Proof. a) Let (x,t) € L and let U x V be an open neighbourhood of (x, ¢) in
K x [0, 1]. Let (x", ¢') be in the graph of Y, _ fu| D((fi)nen) andin U x V.
Since D((fu)nen) is open dense where ), f, is continuous by 4.1.b), there
is a non-empty open U’ € U N D((fu)nen) such that 3,y /U1 €V
and MNU’ = @.So (U' x V)N L is nonempty open subset of U x V disjoint
from 7 ~![M] as required.

b) Let f(x,t) =t for (x,t) € L. As the restriction of a continuous function, f
is continuous. It is clear, by the definition of L, that

Fo =) fa) =) falr(x. 1)

neN neN
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if x € D((fy)nen) and (x,t) € L. By 4.3 a) and 4.1. b) the remaining points
of L,i.e., m7'[K — D((f))nen)] form a nowhere dense set. Hence f is the
supremum of (f,, om : n € N)in C(L) by 4.1. a). O

In higher dimensions there appear extensions as above which are not strong.
The reason we consider strong extensions is the following:

Lemma 4.4. Suppose that K is compact and connected and (f, : n € N) is a
sequence of pairwise disjoint continuous functions from K into [0, 1]. Then the
closure of the graph of ), . fn is connected subspace of K x [0, 11. In particular,
if L is a strong extension of a connected K by (f,)nen, then L is connected.

Proof. Let M be the closure of the graph of ) _. fu. Suppose that it is not
connected. By the compactness, there are two disjoint open subsets U, U, of
K x [0,1]suchthat M C U UUyand M NU; # @ # M N U,. Let M,, be the
graphof ) . f;. Itis clear that M, intersect both U, and U, for n large enough,
so we may assume without loosing generality that it happens for all n € N.
Note that M,,’s are compact and connected, as graphs of continuous functions on
K, since the projection from the graph is a homeomorphism ([E], 2.3). Hence
F, = M, — (U U U,;) # . Note that F,’s are compact and decreasing and
included in {x : ) ,_, f(x) = 0} x {0}, since if fi(x) > O, then (x, f;(x)) € M.
Hence the F,’s have nonempty intersection which is included in M which con-
tradicts the fact that M C U; U U,.

The second part of the lemma is a consequence of the fact that if the graph of
Y nen Jfnisincluded in L, then it its closure is L. i

Note that we consider extensions like in definition 4.2. and not the closures
of the graph of ), _\ f,, because the latter in general may not satisfy 4.3. a) The
following lemma is a tool for obtaining strong extensions.

Lemma 4.5. Suppose that K is compact, and of topological weight k < 2% and
X1, X» C K be two disjoint relatively discrete subsets of K such that X, X, # 0.
Suppose that ( f,)nen is pairwise disjoint sequence of continuous functions from
K into [0, 1] and (Ng : & < 2°) is a family of infinite subsets of N such that
Ne N Ng is finite for any & # &'. For an infinite b C N let K (b) be the extension
of K by (fu)nep and let w(b) denote the projection from K (b) onto K. Let

Xi={(x,0):x € Xi, x & D((fu)ner)}U
Uf(x, 1) 1 x € Xi, x € D((fulnen), (Z f)(x) =1t}

neb
There is A C 2% of cardinality not bigger than k such that the following hold
forall & € 2 — A and all infinite b C Ng:

a) K (b) is a strong extension of K by ( fu)nep-
b) X1 N X}, # 0, where the closures are taken in K (b).
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Proof. (a) suppose that a) does not hold, i.e., there is a subset A; € 2 of cardi-
nality bigger than « such that a) fails for some by C N¢ forall £ € Ay. Itis clear
that if (x¢, ) witnesses the fact that the difference between the graph of ) _, _ be Jo
and the closure of the graph of (D, ebe fIDQ,. be fn) = K (bg) is non-empty,
then r = 0. Note also that x¢ is not in the closure of | J{supp(f,) : n & b}
since (({supp(f,) : n & be}) x {0} is included in the closure of the graph of
(Znebs f,,)lD(Znebs fa). Let Us € X be an open neighbourhood of x; disjoint
from (J{supp(f,) : n & bg}. But x; cannot be in D(Znebs fn), hence x; is in
the closure of | J{supp(f,) : n € b — F} for every finite F C N. Thus we can
conclude that x; € U, if and only if £ = 5, and so {x¢ : £ € A} is a discrete
subspace of X of cardinality bigger than ¥ which is impossible since the weight
of X is k. This completes the proof of a).

(b) Itis clear thatif x € D(}_,, fu) NX;NX,then (x,1) € X, NX, where
Cpop ) =1.

So consider x € X; N X3 such f,(x) =0 foralln € N. In this case by a), if
& ¢ A then (x, 0) € K (bg), soitis enough to prove that (x, 0) € X| N X} where
the closures are taken in K (bg) for & € 2 — A for some A O A, of cardinality «.

If there is a finite ¥ C N such that x is in the closure of {x € X; :
Y ner Ja(xi) > 0}, then (x, 0) is in the closure of X| relative to any K (b¢).
So we may assume that for any open neighbourhood U of x, for every finite set
F C N thereare points x; € X;NU suchthat)_, cr Ju(x;) = 0. Thus for any open
neighbourhood U of x for any two &1, & € A there are points y € U N X such that
Znebﬁn% fa(y) = 0.8So forall butone § € k — Ay wehave 3., fu(y) =0
for some y € U N X;. Applying the same argument to X, and all « basic neigh-
bourhoods of x we conclude that for all but ¥ many &’s in k — A; and each
neighbourhood of x there are points y of X; and X, such that ), cbe fa(y) =0.

But this means that (x, 0) is in X_/1 N X_/2 which completes the proof of b). O

This completes the description of the techniques used at successor stages of
the transfinite inductive construction. At limit stages, we again use the analogy
from the zero-dimensional construction. Taking unions of subalgebras at limit
ordinals corresponds to taking topological inverse limits (see [E]), i.e.,

K, ={xe[0,11": Ya < A x|a € K},

if A is a limit ordinal. As the goal of the successor step was to add the supremum of
a pairwise disjoint bounded sequence of positive functions, it would be desirable
not too loose this supremum in the following stages. In general it is possible when
passing from ( f;,),en to (fy 0 ),y however it cannot happen in our case. It also
turns out that the property of [0, 1] x [0, 1] that it is connected after removing
any finite subset is preserved by strong extensions. This is useful in 2.5. 7, g will
denote the projection from Kz onto K, where K, Kz are as below. We will omit
B if it is clear from the context.
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Lemma 4.6. Suppose that B is an ordinal and (K)o <p is such that K = [0, 113,
Ky C [0, 11* is compact, n,[Ky] = Ky for o' < a < B, the extensions at limits
are inverse limits and the extensions from K, to K, are strong extensions by
pairwise disjoint sequences of continuous functions into [0, 1]. Then

a)If f, f, € C(Ky) forn € N and o < B are such that

f =sup{f,:n € N},

then
fomgpg=sup{fnomep:ne N}
b) Kg — F is connected whenever I' C Kg is finite.

Proof. (a) The proof is by induction in 8. If g is a limit ordinal, we note that if
A(f, {fn : n € N}) of4.1. a) were dense in some basic open set, the lemma would
fail at some ordinal less than 8. Now suppose that 8 = 8’ + 1 and the lemma
holds for 8, i.e., we may assume that « = 8'. It is enough to apply lemma 4.3 a)
to A(f, {fn : n € N}) which is nowhere dense in K, by lemma 4.1. b). Applying
4.1. b) again in K, implies the desired conclusion.

(b) Itis enough to prove that any finite subset F' C K is included in a nowhere
dense subset of K whose complement includes a dense connected space. Indeed
then the closure of this setis dense in Kg — F', and hence Kg — F is connected. We
will work with nowhere dense subset of K, ’s of the form N, = 7‘[1_01[ [Ki—m [ F1].
One proves that they are nowhere dense by induction on «. For successor « it fol-
lows from lemma 4.3. a) and for a limit & one proves it using the fact that basic
open sets are determined by finitely many coordinates. So, we are left with proving
for 1 <o < B that K, — N,’s have dense connected subset.

By induction on o we prove that there are M}, C K, such that:

1) o oMy =M, fora’ <a < B,
2) M}’s are compact and connected,
3) M! NNy =0, M2 € M2,

4) U,y M is dense in Ko — N

We start by choosing M7 to satisfy 2) - 4) and such that [0, 1]*> — [ J,,.y M" is the
finite set 71 [ F] = N; € [0, 1]°.

Suppose we are given M}’s as above. The extension from K, to K, is
a strong extension by some pairwise disjoint bounded sequence of continuous
functions (f;)iey from K, into [0, 1]. Define M, to be the closure of the
graph of ), fi|M],. Since the extensions are strong, we have that M}, ,
Kyy1. By lemma 4.4., we conclude that M, , is compact and connected, and
Tat1,a[M!, 1 = M". It is also clear that M N N, = ¢ and M",, € M"*]. To
prove that |,y M}, isdensein Ky — Ny, note that D((fi)ien) N, ey My
is adense subset of D(( f;);cn) by 4) of the inductive assumption, hence the graph
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of ),y fi restricted to it is dense in K1, but the graph of this restriction is
included in | J, .y M-

To preserve 1) - 4) at a limit o, just consider M, to be the inverse limit of M]),’s
for o’ < a.Now, 1) and 3) follow from the definitions of the sets. 2) follows from
the fact that inverse limits of compact connected spaces are compact and con-
nected (see [E]). 4) follows from the inductive assumption and from the fact that
the failure of the density is witnessed by some basic open set., i.e., determined by

finitely many coordinates. O

5. Construction of a connected compact space

In this section we construct a connected compact space which has some analogous
properties to the zero-dimensional construction of section 3, the latter can serve
as a motivating example for the present construction. Theorem 3.1. corresponds
to the following:

Theorem 5.1. There is an infinite, compact, connected separable space K with a
countable dense set Q = {q, : n € N} having the following properties:

i) Given:
a) a bounded sequence ( f, : n € N) of pairwise disjoint continuous functions
from K into [0, 1],
b) a relatively discrete (i.e., no point is in the closure of the remaining points)
sequence (q;, : n € N) of distinct points of Q such that f,(q;,) = 0 for
n,m € N, there is an infinite b < N such that
c) {fn : n € b} has its supremum f in the lattice C(K),
d) the intersection of the sets {q;, : n € N — b} and {q;, : n € b} is nonempty.
ii) For every finite F C K the subspace K — F is connected.

Proof. We construct by transfinite induction compact connected spaces K,
[0, 1Tx [0, 1]*for1 < «a < 2“takinginverse limits (see section 4) at limit ordinals.
Along this construction we will also construct dense sets Q, = {g,|e : n € N}
of K,. We require that K; = [0, 1] x [0, 1] and Q; are the points of the square
[0, 1] x [0, 1] with both rational coordinates.

At a successor stage, K, is obtained from K, using a strong extension by an
appropriate pairwise disjoint sequence (g,),eny Of positive continuous functions
(see section 4) so that c¢) of theorem 5.1. is taken care of. At each stage we will
have to preserve some cases of d).

At the beginning of the construction we fix an enumeration:

(fn (Ol), ln (a))a<2‘“,nEN

such that for every o' < 2% and for every pair ((f)nen, (Ln)nen) consisting of
a countable bounded sequence of positive continuous functions f, : [0, 1% -



Banach spaces of continuous functions with few operators 175

[0, 1] and of an increasing sequence of integers (/,,),cn thereis o’ < o < 2% such
that f, (o) = f, and [,,(e) = [, for all n € N. This enumeration exists since, the
separability of [0, 1]*” implies that there are 2 x 2% such pairs and 2 x 2¢ = 2¢
implies that 2“ can be divided into 2¢ pairwise disjoint sets, each cofinal in 2%.

At stage o < 2“ we are given K, and sequences (bg)g<a, (dp)g<« Of subsets
of N such that for every B < « we have bg C ag, {gs|o : n € ag} is relatively
discrete in K, and

*) {gnla :n € bg} N {qnla : n € ag — bg} # U,

where the closures are taken in K.

The successor stage from « to « + 1 is non-trivial, if ( f, (@) : n € N) well-defines
functions on K, which satisfy a) and b) of 3.1. together with {g;, ) : » € N). That
is, we require that {g,, |« : n € N} isrelatively discrete and that there is a pairwise
disjoint sequence (g, : n € N) of continuous functions from K, into [0, 1] such
that g, (g, |o) = O forevery n,m € N and f,(«)(y) = g,(x), whenever x € K,
and yla = x. Otherwise we call the case trivial and define K, = K, x {0}
which is homeomorphic to K, and g,|e + 1 = ¢, |a™0.

So assume that we are in a non-trivial successor stage from « to o 4 1. We will
choose a, € N so that for any choice of an infinite b C a, after extending K, by
(gx : n € b) the conditions *) are preserved in K, (b) for all B < « and the exten-
sion is strong (see section 4). Let (N¢ : § < 2) be a family of infinite subsets of
N such that Ng N Ny is finite for & # &'. Consider X1(8) = {gnlo 1 n € ag — bg}
and X,(B) = {gula : n € bg}. By lemma 4.5 there are sets A(8) € 2% of car-
dinality not bigger than || which satisfies the lemma 4.5. for X, = X,(8) and
X, = Xp(B) for all B < «. Since || X |¢| = |a| < 2”, we may conclude that
there is £ € 2 such that§ ¢ A(B) for all 8 < «.

First, it means that the extension from K, to K, (b) for any infinite b C N is
a strong extension. Secondly, it means that if we define

grla + 1 = gila”x where x = Z Jn(giler)

neb

if x € D((fu)nep) and x = 0 otherwise, then *) is satisfied for every 8 < «
in the extension K, (b) (it also serves as the definition of O, 1). So we are left
with defining b, € ay, € N so that *) is satisfied for § = « in K, (by). Choose
aq = {l, : n € N¢}, since our case is nontrivial, we know that {g,|o : n € a,} is
discrete in K,. Now using the fact that K, has weight less than 2¢ and the fact
that in a compact space, disjoint closed sets can be separated by finite unions of
basic open sets, one can find b, such that

{gnla :n € by} N {gnla :n € ay — by} #0

Since g,(q;,) = 0 for all n, m € N, we conclude that if x € K, is in the above
intersection, then ), eb, 8n(x) = 0 and hence
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(x,0) € {(gnla)™0:n € bo} N {(gnla)™0:n € ay — b}

that is *) is satisfied for 8 = « as well in K, = K, (b).
As we mentioned before, at limit stages we take inverse limits. This completes
the description of the construction.

Now, let us verify that the theorem 5.1. holds for K = K. Suppose (f; :
n € N)and (I, : n € N) are as in the theorem. By the Tietze extension theorem,
there is a bounded sequence of continuous (f, : n € N) such that f,|K = f,
for each n € N. By a theorem of Mibu (see [Mi] or [CN]), there are countable
X, C 2¢ such that if x|X, = y|X,, then f,(x) = f,(y). Using the fact that
there is no countable set cofinal in 2¢ (see Konig’s lemma in [Ku] or [Je]), let
o' = sup(|J,cy X»n). We have that ' < 2% an that f,(x) = g, o m,(x) for any
n € N and any o' < o < 2% and any x € [0, 11?* such that 7, (x) € K, and
some pairwise disjoint continuous g, : K, — [0, 1]. This means that there is
an o as above such that f, = f,(«) and [, = [,(«). By the construction the
extension from K, to K, is strong and (g, o 4)nep, has the supremum in K
by lemma 4.5. Lemma 4.6 implies that (g, o 7y)sep, has the supremum in Kjo.
On the other hand the «-case of *) which is preserved at each successor stage
of the construction, and hence at all stages (again, separations of closed disjoint
sets can be done by finitely many basic open sets, i.e., which use finitely many
coordinates) implies d) of theorem 5.1.

The fact that ii) is satisfied follows from lemma 4.6 b) and the construction.
One easily proves by induction on o < 2¢ that Q,, is dense in Kj,. O

Note that K as in 5.1 is topologically quite rigid, i.e., if F : K — K is
continuous, then F is constant or the identity. To see this, if F' is not constant,
nor the identity, by the connectedness, there must be a relatively discrete infinite
sequence of distinct points y, € K and x, # y, such that F(x,) = y,. Take
fn : K — [0, 1] such that f(x,) =0, f(y,) = 1 and f,’s are pairwise disjoint
and continuous. Following the argument as at the begining of the lemma below,
one can assume that f,,(x,) = Oforalln, m € N and thatx, = g, ’s are relatively
discrete. Now an application of 5.1. gives that the closures of {y, : n € b} and
{y, :n € N — b} (by taking f~'[[2/3, 1]] and f~'[[0, 1/3]]) are disjoint which
contradicts the fact that the closures of {g;, : n € b} and {¢q;, : n € N — b} are not
disjoint. However, in the following lemma, using the notion of a weak multiplier
we can transfer this rigidity to the space C(K).

Lemma 5.2. Every operator T : C(K) — C(K) is a weak multipliplier.

Proof. Suppose that a bounded, linear operator 7 : C(K) — C(K) is not a
weak multiplier, i.e., that there exist a sequence of pairwise disjoint elements
fn € C(K) with ranges in [—1, 1] and there is ¢ > 0 and points x,, € K such
that f,(x,) = Oforalln € N and |T(f,)(x,)| > ¢ for infinitely many n’s. We
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may assume without loss of generality that it happens for all n € N and, by the
density of Q, that x,, = ¢, for some [, € N.

Since finite sums of f,;’s are uniformly bounded, if ¢;, were constant for infi-
nitely many n’s, we would get a contradiction with the fact that 7' is bounded.
Thus, we may assume without loss of generality that ([, : n € N) is a strictly
increasing sequence of positive integers. As K is compact, any sequence of distinct
points contains a relatively discrete subsequence, hence we may assume without
loss of generality that {g;, : n € N} is relatively discrete.

We may assume without loss of generality that f,,(g;,) = O forn, m € N:if
there is one ko such that fi,(g;,) # O for n’s from an infinite set N’ C N, thin-out
N to N’ — {ko} and use the disjointness of f,,’s. Otherwise, one can construct an
infinite subsequence as required by induction. Finally, by considering multiples
of —min(f,, 0) and max( f,, 0) one may assume without loss of generality that
all functions f, have ranges included in [0, 1].

Let u, be the Radon measures on K which correspond (see [Se], §18.), by
the Riesz representation theorem, to the linear bounded functionals ¢,, on C(K)
given by the relation

& (f) =T (f)a,) = /K fdpn

which holds for all f € C(K), i.e., u, = T*(8, ) and s0, (in)nen is a bounded
sequence in M (K). Hence, we have | f fndit,| > €. Now we may find an infinite
N’ C N such that for n € N’ we have

%) Z{|/fmdun|: n#m, meN'}<e/3.

This is a lemma of Rosenthal (see [Ro] lemma 1.1. also in the stronger version
that we are using see [Di] page 82.) applied to countably additive atomic mea-
sures v, on subsets of N determined by v, ({m}) = [ f,d,. They are uniformly
bounded since both (u,),en and (f;,)nen are bounded.

We need to do one more thinning-out to obtain an infinite subset N € N’ such
that for any infinite » € N” the following holds:

o5 5) [ supttm e bl = [ Y i

meb

whenever sup{ f,, : m € b} exists in C(K). For this it will be enough to prove
that there is an infinite N” € N’ such that for every infinite » € N” such that
sup{f : m € b} exists, we have

[tsuptfm € b= 3 fu0ldn, =0

meb
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for alln € N. Define f, = sup{f,, : m € b} — >, ., fm(x), if the supremum
exists. Suppose that there is noinfinite N € N’ satisfying ***). Let{N; : £ < w}
be a family of infinite subsets of N’ such that Ny N\ N is finite whenever & # &' for
all £, &' € w;. By the assumption, there are infinite b € N; with [ Joedpn #0
for some n € N (the supremum exists for some b¢ by the properties of K). One
n € N works for uncountably many &’s. Since uncountably many disjoint Borel
sets cannot be non-null with respect to a Radon measure, to get a contradiction,
it is enough to prove the following:

Claim. The family {f, : § € w;} is pairwise disjoint family of Borel functions
on K.

Proof of the Claim. Note that since (f, : n € bg) is a bounded sequence of
pairwise disjoint positive continuous functions which possess its supremum,

SUp(fo :m € be) =sup(fo :m €bg —F)+ Y fu

meFNbg

for any finite ' C D¢. This implies that fj,, = f.r for any finite F € N. On the
other hand f;,é,bg, < sup(fum : m € bg — by), fbs,,bg < sup(fim : m € bgr — be)
and the functions sup(f,, : m € bg — bg/) and sup(f,, : m € bgr — be) are disjoint
for distinct £, £’ < wy. This completes the proof of the claim.

Now we may apply theorem 5.1.to {f, : n € N"}, (I, : n € N"), {i, : n € N}
and ¢ where N” is as in ***), obtaining b and f as in theorem 5.1. Let us analyze
the function 7'(f). By **) and ***) we conclude that if n € b we have

7@ =1 [ faal =1 [ fdu+ [ Fhim# 0, m e bl =

>e—¢/3=2¢/3.

Butifn € N — b, we have

T @) =1 [ X fudiunl < /3,

neb

Since T (f) is continuous we have that the closures of the sets {g;, : n € b} and
{qi, : n € N — b} are disjoint. This contradicts d) of theorem 5.1. and completes
the proof of lemma 5.2. O

Lemma 5.3. There is a compact, connected separable space K, such that C(K)
is an indecomposable Banach space, whose hyperplanes are non-isomorphic to
the entire space and which is non-isomorphic with any C (K') for K’ zero-dimen-
sional.

Proof. Apply 5.2. and 2.5, 2.6 and 2.7. O
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6. C(K)’s where all operators are of the form g/ + S

In this section we assume the continuum hypothesis and describe how to construct
K zero-dimensional or connected where besides all the properties obtained in sec-
tion 3 or 5 all operators on C(K) are of the form g/ + S, where g € C(K) and S is
weakly compact or equivalently strictly singular. As explained in the introduction,
thisis in a sense the minimal possible space of operators for a Banach spaces C (K).
Also this property implies that the hyperplanes of the C(K') are non-isomorphic
to the entire C(K), and in the connected case that C (K) is indecomposable and
non-isomorphic to C(K') for K’ zero-dimensional. The hyperplane problem form
C(K) spaces and the problem whether all spaces C(K) are isomorphic toa C(L)
for an L zero-dimensional can be solved using the constructions presented in the
previous sections, however assuming CH, the proofs of these results are simpler.
CH can be removed from these simpler arguments by working, unlike we below,
with certain nonseparable K’s as shown in [P1]. We do not know if obtaining a
subspace of [, of the form C(K') with few operators in the sense as above can be
done without any special set-theoretic assumption.

Theorem 6.1. Assume the continuum hypothesis. There is a compact connected
(resp. zero-dimensional) K such C(K) can be isometrically embedded into |
and every bounded operator T : C(K) — C(K) is of the form gl + S where
g € C(K) and S is weakly compact or equivalently strictly singular.

The rest of this section is devoted to the sketch of the proof of this theorem. In the
light of theorem 2.7 and lemma 2.8 the crucial observation is the following:

Lemma 6.2. Suppose that K is metric and compact, and has a dense countable
subset Q = {q, : n € N}. Suppose that Uy, U, are open subsets of K with U NU,
nonempty. Then there exist a sequence ( fy)nen Of pairwise disjoint continuous
functions f, : K — [0, 1] and strictly increasing sequences (I,(i) : n € N) and
infinite, co-infinite sets b(0), b(1) € N fori = 0, 1 such that (q;,;y : n € N)
is relatively discrete for each i = 1,2 such that for every infinite b C N in the
extension K (b) of K by (f,)nep the following holds: there are distinct x(0), x(1)
in K (b) and disjoint closed sets F; € K (b) such that

x(i) e 7 U N{q] o 1 n € bOINT U N1g] 4 1 n € N — b))},

{%/,,(i) tn €b(i)} C F,
where q;' = (qj,t) and ), , fu(q;) =t ifq; € D((fu)nen) or otherwise t = 0.

Proof. Let x € U N U,. Using the fact that K is metrizable we can find two
sequences of non-empty open sets (W,)) ey and (V,,),cn and a two strictly increas-
ing sequences of integers (k, (i)),cy for i = 0, 1 such that:

1) every neighbourhood of x includes all but finitely many W,,’s and all but finitely
many V,,’s.
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2) W, CU;and V, C U, foralln € N.
Let f, : K — [0, 1] be such a continuous function that there are x,, y,
satisfying:

3) 9k, € Was G, 1) € Vi,

D fu( Gz ©0) = Jo(Gropy) = 1.

5) supp(fn) g WZn ) V2n-

Let » € N be infinite, and let us verify that (f;),ep satisfies the lemma for
I, (1) = k2, (0) and Iy, 41 (1) = ky, (1) where b(1) is the set of even integers; and
for 15, (0) = k2, 11(0) 12, 11(0) = kp,41 (1) where b(0) is the set of even integers.
Note that (gx,, ), 1) € x~ U], (Grr (1), 1) € 7w~ '[U,] are on the graph on f,’s
for n € b, hence x(1) = (x, 1) satisfies the lemma. On the other hand the sets
Wons1 x {0} and V5,41 x {0} are included in 7 MU INK (b) and 7~ [U, 1N K (b)
respectivly as well. So x(0) = (x, 0) works as well. To complete the lemma note
that Fp = K x [0,1/3]and F; = K x [2/3, 1] work. O

Now we will describe how to modify the constructions from section 3 or 5

to obtain K’s of 6.1. As we noted, by theorem 2.7 and lemma 2.8 it is enough
to get K’s as in theorems 3.1 or 5.1 such that additionally whenever U, NU,
is non-empty for two open sets U; and U,, then it has at least two points. Let
us concentrate on the connected case K which is more complicated. We assume
that the reader is familiar with the details of sections 4 and 5 which will not be
repeated.
The construction is as in section 5, by induction on & < 2 = w; we construct an
inverse system of K,’s using strong extensions of pairwise disjoint sequences of
continuous functions from K, into [0, 1] where K,’s have countable dense sets
Q.. This time the enumeration

(fn (), 1, (a))nEN,aeEven

has the domain Even, which is the set of even countable ordinals. At even count-
able ordinals we proceed as in section 5. We are also given an enumeration

(Ui (), Ur(@))wecodd

where Odd is the set of odd countable ordinals and such that for every pair U;, U,
of open subsets of [0, 1]*' which are countable unions of basic open sets, there
are cofinaly many o’s such that U; (o) = U; and U, () = U,. Itis clear that there
is such an enumeration.

For B € Even we are also given conditions like in *) of section 5, which have
to be preserved at all stages « < wj, even or odd. For 8 < w; and odd, we have
a couple of conditions like in *), namely we have infinite bg(i) C ag(i) € N for
i = 1, 2 such that

+) {gn :n €bg(D)}N{gn:n €ag(i) —bg(i)} #V
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for each i = 0, 1, where the closures are taken in K, and these conditions must
be valid at each o > S.

At odd stages ¢ < wy, if the closures in K, of 7, [U;(«)] and 7, [U> ()] have
nonempty intersection, we use lemma 6.2 to find appropriate ( f,)nen, (1 (@))nen
and b(i) fori = 0, 1. Then, as in the even case of section 5, we follow lemma
4.5 to find an appropriate infinite » € N which implies that K (b) is a strong
extension and all the conditions from *) and +) can be preserved. Fori = 0, 1 we
define

ay (i) ={l,(0) :n € N}, b, (i) ={l,(i) : n € b(i)}.

Thus we have +) at o + 1-th stage. This completes the description of the suc-
cessor stage of the modification of the construction. Again we take inverse limits
at limit ordinals.

The proof of the fact that K = K|, satisfies 5.1. is the same as in section 5.
To finish the proof of 6.1., we only need to prove that in K if the closures of two
open set have nonempty intersection, then the intersection has at least two points.
Note that, as K is separable, for every open set U there exist a countable family
(Vi)nen of basic open sets included in V' such that the closure of V is the same
as the closure of the union of (V,),cn. So we may focus only on closures of such
unions of sequences (V,),cn. For any such two sets Uj, U, there are cofinally
in w; countable «’s such that U; = U, («) fori = 1, 2. So, if « is above all the
coordinates which determine the basic open sets whose unions are the U;’s we
also have

++) ;[ (U] = U

If the closures of U; and U, have non-empty intersection, it also holds for
the projections onto K,. By the construction at such «’s we applied lemma 6.2.
obtaining two distinct x(i) fori = 0, 1 in K,4; which are in the intersections
of the closures of the sets {g, : n € by+1(()} and {g, : n € ag+1(i) — bys1(i)}
respectively for i = 0, 1. But these are conditions +) which hold in all K,’s and
consequently in K. As the sets {g,|la+1 : n € ag+1(0)}, {gnla+1:n € agy1(1)}
have disjoint closures in K,; by 6.2., they must have disjoint closures in K,
hence ++) guarantees that the intersections of the closures of U; and U, in K has
at least two distinct points as required.

The modification of the zero-dimensional construction is similar, since one
can assume that f;,’s of lemma 6.2. are characteristic functions of clopen sets. The
spaces C(K) can be isometrically embedded into [/, since K is separable. O

One can also consider other versions of the space constructed in this paper. One
can strengthen the properties of the space, following the method of [Ta], making
some of them hereditary with respect to a large class of quotients. This way one
can obtain a separable K as in this paper such that for every infinite closed K’ € K
the space C(K"') has few operators. These results will be published elsewhere.
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