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Abstract. We present two constructions of infinite, separable, compact Hausdorff spaces K
for which the Banach space C(K) of all continuous real-valued functions with the supremum
norm has remarkable properties. In the first construction K is zero-dimensional and C(K) is
non-isomorphic to any of its proper subspaces nor any of its proper quotients. In particular, it is
an example of a C(K) space where the hyperplanes, one co-dimensional subspaces of C(K),
are not isomorphic to C(K). In the second construction K is connected and C(K) is inde-
composable which implies that it is not isomorphic to any C(K ′) for K ′ zero-dimensional. All
these properties follow from the fact that there are few operators on our C(K)’s. If we assume
the continuum hypothesis the spaces have few operators in the sense that every linear bounded
operator T : C(K) → C(K) is of the form gI + S where g ∈ C(K) and S is weakly compact
or equivalently (in C(K) spaces) strictly singular.

1. Introduction

Several fundamental questions concerning the structure of infinite dimensional
Banach spaces (unless stated otherwise, all Banach spaces considered in this
paper are meant to be infinite dimensional and over the field of the reals) remained
unsolved for many decades. For example, whether every Banach space is decom-
posable ([Li]), i.e., whether it can be decomposed asA⊕B into two closed infinite
dimensional subspaces,A andB; whether on every Banach space there is an oper-
ator other than those of the form cI + C where c is a scalar and C is a compact
operator; whether every Banach space has a proper closed subspace which is iso-
morphic to the entire space ([Ba]), or in particular whether the hyperplanes of a
Banach space are isomorphic to the entire space. The first and the third question
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research was realized at the Fields Institute in Toronto where the author was supported by the
State of São Paulo Research Assistance Foundation (Fundação de Amparoá Pesquisa do Estado
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were answered in the negative only recently (see [G] and [GM]) and the second
remains open. In this paper, we address similar questions in the context of the
classical Banach space C(K) of all continuous functions on a compact Hausdorff
space K with the supremum norm. Our results are also negative.

The first construction concerns the question whether there is a Banach space
X non-isomorphic to any of its proper subspaces whose particular case for one co-
dimensional subspaces, became to be known as the hyperplane problem ([Ma]).
For general Banach spaces the problem has been solved only recently by T. Gowers
in [G] and W. Marciszewski constructed in [Mar] a compact K such that C(K)
with the topology of pointwise convergence is not linearly homeomorphic to
C(K)×R. Various authors (e.g., Semadeni [Se], Lacey [La], Arhangel’skii [Ar])
have posed the hyperplane problem for the particular case of classical Banach
spaces of continuous functions on a compact Hausdorff space with the supremum
norm. In this paper we solve this problem. Actually, our example addresses the
original version of the hyperplane problem that is our C(K) is non-isomorphic to
any of its proper subspaces nor to any of its proper quotients. The main ingredient
of the proof is showing that for any (linear, bounded) operator T : C(K) → C(K)

its conjugate operator T ∗ has a decomposition gI +S where g is a bounded Borel
function on K and S is a weakly compact operator on the space of Radon mea-
sures on K . The space K is the Stone space of a Boolean algebra constructed by
transfinite induction as a subalgebra of ℘(N), thus the method is quite different
than that of [G].

The second construction is motivated by the first, howeverK is connected and
moreoverK−F is connected for any finiteF ⊆ K .K is a subspace of the product
[0, 1]2ω of the unit intervals. The key result again concerns the space of bounded
linear operators on our C(K), and shows that for any (linear, bounded) opera-
tor T : C(K) → C(K) its conjugate operator T ∗ has a decomposition gI + S

where g is a bounded Borel function on K and S is a weakly compact operator
on the space of Radon measures on K . This result implies the indecomposability
of C(K) (see 2.5). However one cannot go as far as [GM]. Since every infinite-
dimensionalC(K) contains a copy of c0, there are no hereditarily indecomposable
C(K)’s. Thus we obtain a natural example of an indecomposable space which is
not hereditarily indecomposable.

The indecomposability of C(K) implies (see 2.6) that it is non-isomorphic to
any C(K ′) for K ′ zero-dimensional, which solves, for example, a problem from
[Se] (third problem on page 381). This question should be considered in the con-
text of the classification of separableC(K)’s i.e., whenK is metric, accomplished
in the fifties by Miljutin [Mi], Bessaga and Pełczyński [BP]. According to this
classification, all separable Banach spaces C(K) are isomorphic to C(K ′) zero-
dimensional (see for example [Se], [Ro2], [Go]). The second C(K) also has the
property that it is non-isomorphic to any of its proper subspaces nor to any of its
proper quotients. We present the first example since it is much simpler than the
second and it is a motivation for the second.
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If we assume the continuum hypothesis (abbreviated later CH) the results on
the space of operators on C(K) can be strengthened. We prove that any such
operator is of the form gI + S where g ∈ C(K) and S is weakly compact or
equivalently (in the context of C(K) spaces) strictly singular. Let us see that this
is the minimal possible space of operators in the context of C(K)’s: clearly mul-
tiplying by a continuous g is a legitimate operator, so let us see that for any C(K)
there is an operator T : C(K) → C(K) which is not of the form gI + C where
C is compact. IfK is dispersed, thenK has a convergent sequence and so, C(K)
has c0 as a complemented subspace which leads to many non-compact operators.
Otherwise, Lacey and Morris proved ([LM]) that anyC(K)’s forK non-dispersed
have l2 as its quotient. In this case there is a continuous function from K into an
uncountable set of reals which gives rise to an embedding ofC([0, 1]) intoC(K),
thus by Banach-Mazur theorem l2 is also a subspace of the C(K). Now, the com-
position of the quotient map onto l2 with the isomorphic embedding with the shift
on the copy of l2 is an example of an operator of the desired form.

Using some ideas of this paper, it is possible (at least at the price of an addi-
tional set-theoretic assumption) to obtain a dispersed compact K such that all
operators on C(K) are of the form cI + S where c is a real and S has the range
included in c0 (see [Ko2]).

However, there is no C(K) space where all operators are of the form cI + S

where c is a real and S is weakly compact or in this context strictly singular
(besides the original spaces of [GM], nonseparable Banach space with this prop-
erty were constructed in [ALT]). This is because, ifK has a convergent sequence,
then there is a projection on an isomorphic copy of c0 which can be composed with
shifts which are not weakly compact; otherwise there are two non-first countable
points in K , i.e., there are also two disjoint separable non-metrizable closed sub-
setsK0,K1 ⊆ K . If f : K → R is in C(K) such that f |Ki = i, then multiplying
by f is not of the required form.

Recently, based on earlier versions of this paper, where CH was used in the
connected construction, Plebanek showed (see [Pl]) that if analogous construc-
tions are done in some nonseparable K’s instead of the Stone space of ℘(N)
or the products of intervals, then one can guarantee, without assuming CH, that
every operator on C(K) is a multiplication by an element of C(K) plus a weakly
compact operator. However, this version is not the subspace of l∞.

The origin of the method of the construction of K should be traced to [Fe].
This method is very flexible and leaves lots of room for custom-made variants
(see [Ko1]). Fedorchuk’s space besides Ostaszewski’s space are two paradigmatic
inverse limit constructions of compact spaces obtained under special set-theoretic
assumptions, the latter already found many applications in the theory of C(K)’s
(see [N] or [JM] where its version, the Kunen line, is used instead). However,
the final version of our constructions has more similarities with [Ha] and [Ta]. The
new crucial ingredient is the notion of a weak multiplier operator which links the
topological properties of K with the geometric structure of C(K).
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The notation is intended to be standard, some doubtful points are f |A for the
restriction of f to A and f [A] for the image of A under f , N for the set of nat-
ural numbers. The terminology follows [Se], [E], [DS] and [Di]. All topological
spaces are Hausdorff, measures are signed bounded measures, all linear operators
or functionals are meant to be continuous, neighbourhood means an open neigh-
bourhood, all norms on function spaces are supremum norms. By a convergent
sequence we mean a nontrivial one, i.e., with all distinct terms.

We will consider a classical chain of inter-related structures: a Boolean algebra
A, its Stone spaceK , the Banach space C(K) of continuous functions onK with
the supremum norm, its dual, the Banach space M(K) of Radon measures on K
with the variation norm, even the dual to M(K) does appear when we consider
weakly compact operators on M(K). Let us fix notation and terminology related
to these structures.

Boolean algebras will be denoted by A and Aα, they will be identified with
subalgebras of the algebra ℘(N) of all subsets of the natural numbers with the
usual set-theoretic operations. To avoid confusion, the supremum of an infinite
family {An : n ∈ N} of A will be denoted by

∨{An : n ∈ N}. The Stone
space K of A consists of all ultrafilters of A where the basic sets are defined as
[A] = {u ∈ K : A ∈ u} for anyA ∈ A. If a Boolean algebra A ⊆ ℘(N) contains
a singleton of n, then n∗ denotes the principal ultrafilter (and, so an isolated point
of the Stone space of A) generated by {n}. K will denote a compact Hausdorff
space. Recall that a Radon measure onK is a signed, Borel, scalar-valued, count-
ably additive and regular measure. IfK is the Stone space of a Boolean algebra A,
then there is a unique Radon measure which extends a finitely additive bounded
measure on the algebra A. The variation of a Radon measure µ will be denoted
by |µ|. The Banach space of Radon measures with the variation norm will be
denoted by M(K).

The structure of the paper is a follows. In the second section we introduce
the concept of an operator which is a weak multiplier. A characterization of these
operators will be essential in linking the topological properties ofK with the prop-
erties of C(K). The third section contains a construction of the zero-dimensional
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exampleK such that all operators on C(K) are weak multipliers. The fourth sec-
tion includes preparatory work for the fifth section where we present the connected
example of a space C(K) where all operators are weak multipliers. This prepa-
ratory work is mainly concerned with adding the suprema of infinite bounded
pairwise disjoint sequences of functions in C(K) where K is connected. We say
that two real functions e, f onK are pairwise disjoint if and only if e(x)f (x) = 0
for any x ∈ K . Adding

∨
n∈N An to a Boolean algebra which contains a pairwise

disjoint sequence (An)n∈N is the main point of reference. The last sixth section is
concerned with getting every operator of the form gI + S where g ∈ C(K) and
S weakly compact under the continuum hypothesis.

2. Weak multipliers

Definition 2.1. An operator T : C(K) → C(K) is called a weak multiplier if
and only if for every bounded sequence (en : n ∈ N) of pairwise disjoint elements
of C(K) (i.e., en .em = 0 for n 	= m) and any sequence (xn : n ∈ N) ⊆ K such
that en(xn) = 0 we have

lim
n→∞ T (en)(xn) = 0.

Let us fix more terminology. For an operator T : C(K) → C(K) consider a
function gT : K → R defined by

g(x) = T ∗(δx)({x}),
where δx is the Dirac measure concentrated at x and the functional T ∗(δx) is con-
sidered as a Radon measure on K , i.e., we consider the measure of the singleton
{x}. It is clear that |g(x)| ≤ ||T ||.

For a bounded function f : K → R and an openU ⊆ K and x ∈ K we define
osc(f,U) = sup{|f (x) − f (y)| : x, y ∈ U} and osc(f, x) = inf{osc(f,U) :
x ∈ U}. It is clear that f is continuous at x if and only if osc(f, x) = 0.

If g : K → R is a bounded function integrable with respect to all Radon
measures on K , we will consider an operator gI : M(K) → M(K) which sends
the functional which is the integration of a function f ∈ C(K) with respect to
measureµ to the functional which is the integration of the product fg with respect
to the measure µ.

Theorem 2.2. Suppose that T : C(K) → C(K) is a bounded linear operator.
Then the following are equivalent:

a) T is a weak multiplier;
a’) IfK is zero-dimensional, for every sequence (An : n ∈ N) of pairwise disjoint

clopen sets of K we have

lim
n→∞ ||T (χAn)|(K − An)|| = 0;
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b) For every ε > 0 the set {x ∈ K : osc(gT , x) > ε} is finite and T ∗ − gT I :
M(K) → M(K) is well defined and weakly compact;

c) There is a bounded function g : K → R which is integrable with respect to
all Radon measures such that T ∗ −gI : M(K) → M(K) is weakly compact;

Proof. First we prove that a) or a’) in the zero-dimensional case imply b).

Claim 1: Suppose that x ∈ K and ε > 0. Then for every neighbourhood U of
x there is an f ∈ C(K) such that 0 ≤ f ≤ 1, f (x ′) = 1 for all x ′ in some
neighbourhood of x, supp(f ) ⊆ U and |T (f )(x) − gT (x)| < ε. If K is ze-
rodimensional f could be assumed to be a characteristic function of a clopen
set.

Proof of Claim 1. The value of the Radon measure T ∗(δx) at {x} can be approx-
imated (by the regularity) by T ∗(δx)(χA) for clopen A containing x in the zero-
dimensional case or by

∫
f dT ∗(δx) for f ’s as in the claim in the general case.

But this integral is T ∗(δx)(f ) when T ∗(δx) is interpreted as a functional, i.e., it is
equal to T (f )(x) as required.

Claim 2: {x ∈ K : osc(gT , x) > ε} is finite for every ε > 0.

Proof of Claim 2. Suppose the claim is false, then there are infinitely many points
(xn : n ∈ N) and a fixed ε > 0 such that for every neighbourhoodUn of xn there is
yn ∈ Un such that |gT (xn)−gT (yn)| > ε.AsK is Hausdorff, we can assume with-
out loss of generality that (xn : n ∈ N) is relatively discrete and so we can choose
pairwise disjoint open neighbourhoods Un of xn and some en’s with 0 ≤ en ≤ 1,
supp(en) ⊆ Un and en|Vn = 1 for some open neighbourhood Vn ⊆ Un of xn such
that
1) |gT (xn)− T (en)(xn)| < ε/4.
This can be done by the discreteness of xn’s and claim 1. Now we choose certain
yn’s as above i.e.,
2) |gT (xn)− gT (yn)| > ε,
By the continuity of the functions T (en), the points yn can be chosen to satisfy
3) |T (en)(xn)− T (en)(yn)| < ε/4. Of course we can also make sure that
4) yn ∈ Vn.
Now apply claim 1 for gT at yn’s i.e., find an open Wn ⊆ Un and hn ∈ C(K)

with ||hn|| ≤ 1 such that supp(hn) ⊆ Wn for which there is a neighbourhood
Zn ⊆ Wn of yn such that hn|Zn = 1 and
5) |g1(yn)− T (hn)(yn)| < ε/4.
Thus by 1) - 3), 5) we have

|T (en)(yn)− T (hn)(yn)| = |T (en − hn)(yn)| ≥ ε/4.
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To obtain a contradiction with the fact that T is a weak multiplier and complete
the proof of claim 2, note that and ||en −hn|| ≤ 2, supp(en −hn) ⊆ Un (Un’s are
pairwise disjoint) and yn 	∈ supp(en − hn), since both of en and hn are equal 1
on some neighbourhood of yn by 4). To obtain a contradiction with a’) note that,
by claim 1, en’s can be chosen to be of the form χAn for some clopen An ⊆ K

and hn can be chosen to be of the form χBn for some clopen Bn ⊆ An. I.e.,
en − hn = χAn−Bn and yn 	∈ An − Bn as required in a’).

Hence, we obtained the first part of b). It follows that the multiplication of a
Radon measure by gT is a well defined operator on M(K) since gT has a most
countable set of discontinuities, i.e., is a Borel function and so, integrable with
respect to any Radon measure. Now let us see that T ∗ − gI : M(K) → M(K)

is weakly compact. Let (µn : n ∈ N) be a bounded sequence in M(K), we
need to show that (T ∗ − gI)(µn)’s form a relatively weakly compact set. We
will use the following version of the Dieudonné-Grothendieck theorem ([Di] VII.
14): If a bounded sequence (µn)n∈N is not relatively weakly compact, then there
are pairwise disjoint open Vn ⊆ Un ⊆ K and en’s from C(K) such that 0 ≤
en ≤ 1, en|Vn = 1 and en|(K − Un) = 0, |µn|(Un − Vn) → 0 and the sequence
(
∫
endµk)k∈N does not converges to zero uniformly for k ∈ N . This version can

be easily obtained from the standard version using the Urysohn lemma and the
regularity of Radon measures. So suppose that (T ∗ − gI)(µn)’s do not form a
relatively weakly compact set. Possibly renumerating the measures and going to
a subsequence we can find an ε > 0 and sequences of pairwise disjoint open
sets (Un)n∈N , (Vn)n∈N such that Vn ⊆ Un and a sequence of continuous functions
(en)n∈N as above such that

|
∫

end(T
∗ − gT I)(µn)| = |

∫

(T (en)− gT en) dµn| > ε.

for all n ∈ N . Note that

|
∫

Un−Vn
(T (en)− gT en) dµn| → 0

because |µn|(Un − Vn) → 0. Also

|
∫

K−Un
(T (en)− gT en) dµn| → 0

because the support of en’s are included in Un’s and Borel functions T (en)|
(K − Un) converge uniformly to 0 since T is a weak multiplier. Hence

|
∫

Vn

(T (en)− gT en) dµn| = |
∫

Vn

(T (en)− gT )dµn| > ε,

for sufficiently large n ∈ N , since en(x) = 1 for x ∈ Vn.
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LetM be such a positive real that ||µn|| ≤ M for all n ∈ N . We conclude that
there are xn ∈ Vn such that |T (en)(xn) − gT (xn)| > ε/M for all n ∈ N . Thus,
by claim 1, we can find continuous hn’s such that 0 ≤ hn ≤ 1, supp(hn) ⊆ Vn,
hn(x) = 1 if x ∈ Wn where Wn is some neighbourhood of xn and

|T (hn)(xn)− gT (xn)| < ε/2M,

but we have
|T (en)(xn)− gT (xn)| > ε/M

for sufficiently large n ∈ N . This implies that the sequence of T (en − hn)(xn) =
T (en)(xn) − T (hn)(xn) does not tend to zero, but (en − hn)(xn) = 1 − 1 = 0
contradicting the fact that T is a weak multiplier. In the zero-dimensional case,
as before, we can choose, by claim 1, en’s and hn’s to be characteristic functions
of clopen sets An and Bn, respectively, where Bn ⊆ An. In this case χAn − χBn =
χAn−Bn and xn 	∈ An − Bn contradicting a’).

So we are left with showing that c) implies a), since a’) trivially follows
from a) and c) trivially follows from b). So, let g be as in c), let (en)n∈N be
a bounded sequence of pairwise disjoint elements of C(K) and let (xn)n∈N be
a sequence of points of K such that en(xn) = 0. Consider the Radon measures
µn = T ∗(δxn)−g(xn)δxn for n ∈ N . Clearly it is a bounded sequence of measures,
since T and g are bounded. Suppose that

T (en)(xn) =
∫

endT
∗(δxn)− 0 =

∫

endµn

do not converge to zero. It means that there are some open sets Un included in
the supports of en’s, i.e., pairwise disjoint, such that (|µn(Un)|)n∈N does not con-
verge to 0. This, by the Dieudonné-Grothendieck theorem, contradicts the fact that
T ∗ − gI , as a weakly compact operator, sends bounded sequences to relatively
weakly compact sequences, hence (T (en)(xn))n∈N converges to 0 as required in
a) which completes the proof of the theorem. �

Theorem 2.3. Suppose that K is a compact space with no convergent sequences
and that T : C(K) → C(K) is a weak multiplier. Then T is onto C(K) if and
only if it is an isomorphism onto its range.

Proof. By theorem 2.2. T ∗ = gT I + S where S is weakly compact and {x ∈ K :
osc(gT , x) > ε} is finite for any ε > 0, in particular the set of points where gT is
discontinuous is at most countable.

Claim 1: If gT (x) = 0 for infinitely many x, then there is a nonmetrizable, sep-
arable K1 ⊆ K such that gT is continuous and equal to zero at each point of K1.

Proof of the Claim. Suppose that gT (xn) = 0 for infinitely many distinct xn ∈ K .
As K has no convergent sequences, the set of all limit points of {xn : n ∈ N} is a
closed subset K ′ of K which has no isolated points. As g has at most countably
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many points of discontinuity, one can find an infinite closed, K1 ⊆ K ′ avoiding
all these points, i.e., where g assumes only value 0. By taking the closure of a
countable subset, one can assume that K1 is separable, and using the fact that
there are no convergent sequences in K , one concludes that K1 is nonmetrizable
as an infinite closed subset of K .

Claim 2: If T : C(K) → C(K) is an isomorphism onto its range, then T is onto
C(K).

Proof of the Claim. If T is an isomorphism onto its range, it means that T ∗ is
onto M(K). If g is zero on an infinite set, use claim 1 to choose µn = δxn , where
g(xn) = 0, and g is continuous at all points of relatively discrete (xn)n∈N . There
are some Radon measures νn on K such that T ∗(νn) = gνn + S(νn) = µn and
||νn|| ≤ M for all n ∈ N . By the continuity of g at the points xn one can find
pairwise disjoint and open Un’s such that |g(x)| ≤ 1/n for x ∈ Un. By the
Dieudonné-Grothendieck theorem ([Di] VII. 14.) the fact that S(νn)’s form a rela-
tively weakly compact set means that the sequence S(νn)(Un) converge to 0, also
| ∫
Un
gdνn| ≤ M/n which contradicts the choice of µn’s.

Claim 3: Suppose K1 ⊆ K is closed and separable and that gT (x) = 0 for all
x ∈ K1. Then the composition TK1 : C(K) → C(K1) of T with the restriction
on K1 has separable range.

Proof of the Claim. First we will note that TK1 is weakly compact. Note that a
Radon measure µ on K1 defines naturally a Radon measure on K concentrated
on K1, which we will denote by µ as well. Since gT I + S is the conjugate of
T , we have that

∫
T (f )dµ = ∫

gT f dµ + ∫
f dS(µ) for each f ∈ C(K), so

for µ concentrated on K1 we get µ(TK1(f )) = S(µ)(f ) for each f ∈ C(K),
i.e., (TK1)

∗ = S and so (TK1)
∗ is weakly compact and we can use a Gantmacher’s

theorem which says that an operator is weakly compact if and only if its conjugate
is ([DS] VI 4.8.).

Now we will note that weakly compact operators with ranges in C(K1) for K1

separable have norm-separable ranges. As the range of an operator is a countable
union of images of the balls, it is enough to note that convex weakly compact sub-
sets of C(K1) are norm-separable. Let D = {xn : n ∈ N} ⊆ K1 be a countable
dense set. Let φ : C(K1) → Rω be given by φ(f ) = (f (xn))n∈N . Note that φ is
one-to-one and continuous with respect to the weak topology in C(K1) and the
product topology in Rω, thus it is a homeomorphism while restricted to compact
sets ofC(K1). LetX ⊆ C(K1) be convex and compact in the weak topology,Rω is
metrizable, so φ[X] is separable and so, its homeomorphic copyX is separable in
the weak topology as well. Consider the set Y ⊆ X of all convex combinations of
elements of the countable weak-dense setE ⊆ X. Y is convex and separable in the
norm topology (consider the convex combinations with rational coefficients). The
weak closure of Y is X, but weak closures of convex sets coincide with closures
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in the norm topology ([Di] Theorem II.1.). So, the rational convex combinations
of elements of E are norm dense in X.

Claim 4: If T is onto C(K), then T is an isomorphism.

Proof of the Claim. Suppose that T is onto C(K) and g is zero on an infinite set.
Let K1 ⊆ K be as in claim 1. The space C(K1) is non-separable and its every
member is in the range of the composition of T with the restriction on K1. But
the range of this composition is separable in C(K1) by claim 3. This contradicts
the fact that T is onto C(K). So we may assume that g can be 0 only at a finite
subset of K .

Now, we will make use of Fredholm theory. An operator R on a Banach space
is said to be Fredholm if and only if dim(kerR) and codim(Im(R)) are finite. The
index of such an operator is the number i(R) = dim(kerR) − codim(Im(R)).
Proposition 2. c. 10. of [LT] implies that if R : X → Y is Fredholm (then its
range is closed) and S : X → Y is strictly singular (i.e., not an isomorphism
while restricted to any infinite dimensional subspace), then R + S is Fredholm
and i(T + S) = i(T ).

We will first observe that weakly compact operators from M(K) into itself are
strictly singular. It follows from the fact that such weakly compact operators send
weakly Cauchy sequences to norm convergent sequences (i.e.,M(K) has the Dun-
ford-Pettis property, see [DS],VI.8.10 for this property forL1(S,
,µ) spaces and
[DS] p. 394, Notes and Remarks for Kakutani’s theorem which says that M(K)
is such a Banach space). Thus if a weakly compact operator on M(K) were an
isomorphism on an infinite dimensional subspace, any norm bounded sequence
from such a subspace would have a weakly convergent subsequence (isomorphism
preserve the fact that a sequence is weakly convergent, and restrictions of weakly
compact operators are weakly compact by the Hahn-Banach theorem), which by
the above property, would, in fact be a norm convergent sequence, hence the ball
of our subspace would be compact.

Note that we may assume without loss of generality that m < |g(x)| < M

for some m,M > 0 and all x ∈ K . This is because a sequence of xn’s such that
|g(xn)| < 1/n would give an uncountable set where g would be zero (the set of
its accumulation points where g is continuous) and if a g′ is a finite modification
of g, then (g− g′)I is of finite rank, and so weakly compact, consequently it can
replace g.
Multiplication by such a g is an isomorphism from the dual of C(K) onto itself,
i.e., a Fredholm operator of index 0, hence gI + S has the same index 0. If T is
onto, T ∗ is an isomorphism onto its image then, dim(Ker(T ∗)) = 0, so since
i(T ∗) = 0, codim(Im(T ∗)) = 0, i.e., we conclude that T ∗ is onto M(K) or that
T is an isomorphism. �

Theorem 2.4. Suppose that C(K) is such that all operators on it are weak multi-
pliers. Then, finite co-dimensional subspaces of C(K) are isomorphic if and only
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if they have the same co-dimension. In particular the hyperplanes of C(K) are
not isomorphic to the entire C(K) and C(K) is a Grothendieck space.

Proof. It is well-known that all subspaces of the same finite co-dimension are
isomorphic to each other (like in 21.5.7-8 of [Se]).

By the previous theorem none of the subspaces of a finite co-dimension is
isomorphic to the entire C(K). The remaining parts follow from the fact that
X ⊕ Rn ∼ C(K) if X is of co-dimension n ∈ N . It follows that c0 cannot be a
complemented subspace of C(K), but this is sufficient for a C(K) space to have
the Grothendieck property (see [Sch]). �

Theorem 2.5. Suppose thatK is such that all operators onC(K) are weak multi-
pliers and thatK −F is connected for any finite F ⊆ K . Then, all projections in
C(K) are of the form I +S or S where S is finite-dimensional. In other words, all
complemented subspaces of C(K) have finite dimension or finite co-dimension
and C(K) is an indecomposable Banach space.

Proof. Let P : C(K) → C(K) be a projection (see [Se]). Let gT and S, a
weakly compact operator, be such that P ∗ = gT I + S. We have P 2 = P , and so
(P ∗)2 = P ∗ i.e., g2

T I +S2 +gT S+SgT = gT I +S and so (g2
T −gT )I is weakly

compact. Suppose that x is a point where gT is continuous. If (g2
T − gT )(x) 	= 0,

it would be separated from 0 over some open set, and so would not be a weakly
compact operator. Thus gT (x) may assume value 0 or 1 if gT is continuous at x.
Let F ⊆ K be the set of all points x ofK where osc(gT , x) ≥ 1/2. By 2.2 b) F is
finite. One easily notes thatK has no non-trivial convergent sequences, because, it
would produce a complemented copy of c0 which would give many operators con-
tradicting the assumption on K . Consequently as K is connected, all non-empty
open sets must be uncountable, and so the points where gT is continuous form a
dense set inK . For any x ∈ K such that osc(gT , x) < 1/2, there must be an open
neighbourhood Ux of x where gT (y) = 0 or gT (y) = 1 for all y ∈ Ux such that
gT is continuous at y. This defines a continuous function g : K − F → {0, 1}
such that |g(x) − gT (x)| ≤ osc(gT , x), in particular g(x) = gT (x) if gT (x) is
continuous at x. By the assumption that K − F is connected, we conclude that
g is constantly 0 or 1. Denote by g the corresponding constant function defined
on the entire K . Note that 2.2 b) implies that {x ∈ K : |g(x) − gT (x)| > ε} is
finite for every ε > 0. To prove that (g − gT )I is weakly compact we will need
the following:

Claim: Suppose h : K → R. hI : M(K) → M(K) is weakly compact if and
only if {x ∈ K : |h(x)| > ε} is finite for every ε > 0.

Proof of the Claim. If there are xn ∈ K with |h(xn)| > ε for all n, we may
assume that they form a discrete set and then the bounded sequence of measures
(δxn : n ∈ N) is send to (h(xn)δxn : n ∈ N) which is not relatively weakly com-
pact by the Dieudonné-Grothendieck theorem. Conversely, if one wants to check
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that hµn’s form a relatively weakly compact set inM(K) for a bounded sequence
inM(K), again by the Dieudonné-Grothendieck theorem. it is enough to consider
a family of pairwise disjoint open sets (Un : n ∈ N) and their hµk(Un). They
obviously tend to 0 uniformly in k, hence (hµn)n∈N is weakly relatively compact
which completes the proof of the claim.

Let S ′ = (gT − g)I + S. The claim implies that S ′ is weakly compact. We
also have that P ∗ = I + S ′ or P ∗ = S ′. Since I −P ∗ = (I −P)∗, by Gantmach-
er’s theorem I − P or P is a weakly compact projection. But using the fact that
weakly compact operators on C(K) are strictly singular ([Pe]) we conclude that
P or I − P has finite-dimensional range, as required. �

Theorem 2.6. Suppose that a space C(K) for some compact K is indecompos-
able, then C(K) is non-isomorphic to any space C(K ′) for any zero-dimensional
compact K ′.

Proof. The space of continuous functions on one-point compactification of a
discrete infinite set has, for example, many non-trivial projections, hence C(K)
cannot be isomorphic to such a space. Thus, if C(K ′) is isomorphic to C(K),
then K ′ has at least two distinct non-isolated points, consequently, if K ′ is zero-
dimensional, it has a clopenA ⊆ K ′ such that bothA andK−A are infinite. The
restriction of functions to A is an example of nontrivial projections. �


Recall that Y ⊆ X is C∗-embedded in X if and only if every bounded contin-
uous function on Y extends to a bounded continuous function on X.

Theorem 2.7. The following are equivalent for a compact space K:

a) All operators T : C(K) → C(K) are of the form gI + S where g ∈ C(K)

and S is weakly compact.
b) All operators on C(K) are weak multipliers and for every x ∈ K the space
K − {x} is C∗-embedded in K .

Proof. To see that a) implies b) we may assume that K has no convergent se-
quences (otherwise a complemented copy of c0 would give rise to many operators
not as in a)). One only needs to prove that if there is a y ∈ K and a continuous
bounded function h : (K − {y}) → R which has no continuous extension to
K , then T (f ) = h(f − f (y)) is an operator which is not of the form as in a).
Otherwise, suppose that T = gI + S where g ∈ C(K) and S is weakly compact.
As h has no continuous extension to K , y must be non-isolated and so, there are
distinct points xn 	= y and an ε > 0 such that |h(xn)− g(xn)| ≥ ε for all n ∈ N .
As K has no convergent sequences, one of the accumulation points of the xn’s,
say z, is distinct from y, it is also non-isolated and |h(z)−g(z)| ≥ ε. This implies
that there is an infinite open set U with the closure not containing y such that
|h(x) − g(x)| ≥ ε/2 for all x ∈ U . Note that T − gI is an isomorphism on the
subspace of all functions with supports in U , but on the other hand it is a weakly
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compact operator S which is impossible as weakly compact operators on C(K)’s
are strictly singular ([Pe]) which completes the proof of b) assuming a).

Now let us see that b) implies a). Note that it would be enough to show that
for every function f : K → [0, 1] such that {x : osc(f, x) > ε} is finite for
each ε > 0, f |(K −X) can be extended to a continuous function f ′ onK where
X is the set of all points of discontinuity of f . Indeed, theorem 2.2., b) implies
that T ∗ − gT I : M(K) → M(K) is weakly compact, and we would have that
(gT − f ′)I : M(K) → M(K) is weakly compact (see the claim of 2.5), and so
T ∗ − f ′I is weakly compact. But f ′ is continuous so T − f ′I would be a well
defined operator on C(K) whose conjugate is T ∗ − f ′I . By Gantmacher theo-
rem, which says that an operator is weakly compact if and only if its conjugate is
weakly compact, we would get that T − f ′I is weakly compact obtaining a).

Suppose that an f and X are as above and f |(K − X) cannot be extended
to a continuous function on K . This means that there is a point y of K and an
ε > 0 such that every neighbourhood of y contains points y ′, y ′′ ∈ K − X such
that |f (y ′) − f (y ′′)| > ε. Making this assumption we will construct a g which
is bounded and discontinuous only at y and cannot be extended to a continuous
function on entireK which will contradict the second part of b). For this we need
the following:

Claim: Suppose L is a compact space and F,G ⊆ L are disjoint and closed and
φ : L → [0, 1] is a function such that osc(f, x) < ε for all x ∈ G. Then there
exists a function ψ : L → [0, 1] such that ψ |F = φ|F , ψ |G is continuous,
osc(ψ, x) ≤ osc(φ, x) for every x ∈ L and |φ(x)− ψ(x)| ≤ ε for all x ∈ L.

Proof of the Claim. Let U be an open set such that F ⊆ U and U ∩G = ∅ and
let (fi : i ∈ I ) be a locally finite partition of unity subordinated to an open cover
{U} ∪ V where osc(V, φ) < ε and V ∩F = ∅ for all V ∈ V . For each i ∈ I pick
an ri ∈ [0, 1] such that φ(x) = ri for some x ∈ X such that fi(x) 	= 0. Define
I1 ∪ I2 = I so that i ∈ I1 if there is V ∈ V such that {x ∈ X : fi(x) 	= 0} ⊆ V

and otherwise i ∈ I2. Define

ψ(x) =
∑

{rifi(x) : i ∈ I1} +
∑

{φ(x)fi(x) : i ∈ I2}.
It is clear that ψ |F = φ|F because fi(x) = 0 if x ∈ F and i ∈ I1, that ψ |G

is continuous because fi(x) = 0 if x ∈ G and i ∈ I2 and that the oscillation does
not grow. Also note that if i ∈ I1 and fi(x) 	= 0, then φ(x)− ε ≤ ri ≤ φ(x)+ ε,
i.e., |ψ(x)− ∑

i∈I φ(x)fi(x)| ≤ ε, as required in the claim.
Now using the claim we can construct a sequence of functions fn : K → [0, 1]

such that:

1) f0 = f , osc(fn,K − {y}) ≤ 1/2n, osc(fn, x) ≤ osc(f, x) for all x ∈ X,
2) |fn(x)− fn+1(x)| ≤ 1/2n,
3) for each n ∈ N there is an open neighbourhood Un of y such that fn|Un =
f |U .
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Indeed, given fn, find an open neighbourhoodUn of y such thatF = Un is disjoint
from the finite set G of points x 	= y where osc(fn, x) ≥ 1/2n+1, we may apply
the lemma obtaining the fn+1.

It is easy to see that since fn’s form a uniformly Cauchy sequence of functions
on X − {y} of decreasing oscillations, they converge to a continuous function on
K − {y}. By 3) the function cannot be extended to a continuous function g onK ,
since in any neighbourhood of y there are y ′, y ′′ satisfying |g(y ′′) − g(y ′′)| > ε

because f had this property. This contradicts the fact thatK−{y} isC∗-embedded
in K . �

Lemma 2.8. Suppose that K is a compact space such that whenever U1, U2 are
open subsets ofK satisfying U 1 ∩U 2 	= ∅, then U 1 ∩U 2 contains more than one
point, then for every x ∈ K the space K − {x} is C∗-embedded in K .

Proof. Suppose that f : (K − {x}) → R is bounded and continuous. Without
loss of generality we may assume that it is into [0, 1] and that x is non-isolated.
The family

{f [U − {x}] : x ∈ U, U is open in K}
is a centered family of closed sets in a compact space, hence its intersection con-
tains a point t ∈ [0, 1]. If it is the unique point of the intersection, one can easily
show that putting f (x) = t defines a continuous extension of f .

But otherwise, if the intersection contains two points t1 < t2, the closures inK
of open setsU1 = f −1[[0, t1+ε)] andU1 = f −1[(t1−ε, 1]] where ε = (t2−t1)/3
contain x. By the hypothesis onK , they must contain some other point x ′ ∈ K as
well, which would contradict the continuity of f at x ′. �


3. Construction of the zero-dimensional compact space

Theorem 3.1. There is a Boolean algebra A ⊆ ℘(N) containing all finite sets
such that given

a) a sequence (An : n ∈ N) of pairwise disjoint elements of A,
b) a sequence (ln : n ∈ N) of distinct natural numbers such that ln 	∈ Am for
n,m ∈ N , there is an infinite b ⊆ N such that

c) {Am : m ∈ b} has its supremum A in A and
d) the intersection of the sets {ln∗ : n ∈ b} and {ln∗ : n 	∈ b} in the Stone spaceK

of A is nonempty.

The rest of this section is devoted to the proof of the above theorem. We con-
struct by transfinite induction Boolean algebras Aα for α ≤ 2ω which can be
considered as subalgebras of the algebra ℘(N), taking unions at limit ordinals,
i.e., Aλ = ⋃

α<λ Aα for λ ≤ 2ω limit. Along this construction we consider the
Stone spaces Kα of Aα and the dense discrete subset of isolated points Nα =
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{n∗|α : n ∈ N} ⊆ Kα, where n∗|α is the principal ultrafilter of Aα generated
by {n}. We require that A1 is the algebra of finite and cofinite subsets of N , i.e.,
K1 is a convergent sequence with its limit. The construction is very similar to a
construction of R. Haydon ([Ha]).

At a successor stage, Aα+1 is obtained from Aα so that a case of c) of theorem
2.1. is taken care of. This extension is obtained by adding one element Aα, to Aα

which works as theA of 2.1. c). At each stage we will have to preserve some cases
of d).
At the beginning of the construction we fix an enumeration:

(An(α), ln(α))α<2ω,n∈N

such that for every α < 2ω and for every pair ((An)n∈N, (ln)n∈N) consisting of a
countable pairwise disjoint sequence of sets of integers (remember we work in
℘(N)) and of an increasing sequences of integers satisfying

∗) ln 	∈ Am for n,m ∈ N,
there is α < α′ < 2ω such that An(α′) = An and ln = ln(α

′) for all n ∈ N . This
enumeration exists since, (2ω)ω = 2ω implies that there are 2ω such pairs and
2ω × 2ω = 2ω implies that 2ω can be divided into 2ω pairwise disjoint sets, each
cofinal in 2ω.
At stage α < 2ω we are given Aα and its Stone space Kα and families (bβ)β<α,
(aβ)β<α of subsets of N such that for every β < α we have bβ ⊆ aβ and

∗∗) {n∗|α : n ∈ bβ} ∩ {n∗|α : n ∈ aβ − bβ} 	= ∅,
where the closures are taken in Kα.
At successor stages α + 1 consider the Stone space Kα of the algebra Aα. We
will choose a ⊆ N so that for any choice of an infinite b ⊆ a after adding
A = ∨

n∈b An to Aα the conditions **) are preserved in Kα+1 for all β < α .
There is no doubt that some choices of b ⊆ a ⊆ N destroy **), for example, if
one of the sets in **) is included in such an A and the other is disjoint from it.
The point here is that since we have 2ω choices and less than 2ω commitments in
**), there is one choice which works for all the commitments. This idea is based
on lemma 1D of [Ha].
Let (aθ : θ < 2ω) denote an almost disjoint family of subsets of N , i.e., aθ ’s
are infinite while aθ ∩ aθ ′

is finite for θ < θ ′ < 2ω. We claim that there is a
θ < 2ω such that **) is satisfied in any extension Aα+1 of Aα obtained by adding
A = ∨{An : n ∈ b} for b ⊆ aθ ⊆ N .

Assume, to the contrary, that for each choice of θ < 2ω there is a bθ ⊆ aθ such
that there isβ < α so that the closures of the setsR′ = {n∗|α+1 : n ∈ bβ} ⊆ Kα+1

and S ′ = {n∗|α + 1 : n ∈ aβ − bβ} ⊆ Kα+1 get separated in Kα+1 obtained
using bθ . Using general form of an element of a Boolean algebra generated by
one element A over a subalgebra, we conclude that there are pairwise disjoint
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elements B,C,D ∈ Aα such that R′ ⊆ ([B] ∩ [A]) ∪ ([C] − [A]) ∪ [D] and
S ′∩{([B]∩[A])∪([C]−[A])∪[D]} = ∅ (Recall that [X] stands for the clopen set
of the Stone space of an algebra corresponding to the element X of the algebra).
Since the ultrafilters n∗|α + 1 are generated from Aα, we conclude in ℘(N) that

R ⊆ (B ∩ Aθ) ∪ (C − Aθ) ∪D

S ∩ {(B ∩ Aθ) ∪ (C − Aθ) ∪D} = ∅,
where R = {n : n∗ ∈ bβ} and S = {n : n∗ ∈ aβ − bβ} and Aθ = ⋃{An : n ∈ bθ }.
As we have 2ω choices for θ and less than 2ω sets B’s, C’s and D’s in Aα, there
are distinct θ and θ ′ for which we have the same R, S and the same B’s, C’s and
D’s work. Taking intersections with B or C and intersections or unions, we get

R ∩ B ⊆ (B ∩ Aθ ∩ Aθ ′
)

S ∩ (B ∩ (Aθ ∩ Aθ ′
)) = ∅,

R ∩ C ⊆ C ∩ (−Aθ ∪ −Aθ ′
) = C − (Aθ ∩ Aθ ′

)

S ∩ C ∩ (C ∩ (−Aθ ∪ −Aθ ′
)) = S ∩ C ∩ (C − (Aθ ∩ Aθ ′

)) = ∅.
As Aθ ∩ Aθ ′

is a finite union of An’s (since bθ ∩ bθ ′
is finite), it corresponds

to a clopen set in Kα and this implies that R′ and S ′ can be separated in Kα, a
contradiction with the inductive assumption **). Thus one of aθ ’s works for all
choices of b ⊆ aθ , call it a.

Now we can choose b ⊆ a. For every infinite a ⊆ N there is b ⊆ a such that
{l∗n : n ∈ b} intersects {l∗n : n ∈ a − b} where the closures are taken in Kα. This
follows from the fact that the topological weight of Kα is less than 2ω and in a
compact space the separations of closed sets can be done by finitely many basic
open sets. As l∗n|α + 1 are generated from Aα and by *), ln∗|α’s do not belong
to Am’s for n,m ∈ N , one can conclude that all ln∗|α + 1’s do not belong to
[
⋃{An : n ∈ b}] that is the above sets are not separated inKα+1. So we can define
bα = {ln : n ∈ b} and aα = {ln : n ∈ a} and add these sets to our list from **) of
pairs of sets whose closures will never be disjoint.

We define Aα = ⋃{An : n ∈ b} = ∨{An : n ∈ b} which exists in the com-
plete Boolean algebra ℘(N). This completes the description of the construction

Now to prove that A satisfies conditions c) and d) of theorem 2.1, let (An : n ∈
N) ⊆ A and (ln : n ∈ N) satisfy conditions a), b) of 2.1. There are αn ∈ 2ω such
that An ∈ Aαn . Since the cofinality of 2ω is uncountable (see [Ku] or [Je]), there
is an α < 2ω such that αn < α for each n ∈ N . Applying the properties of our
enumeration from *), we conclude that the pair ((An)n∈N, (ln)n∈N) is considered
at some α < 2ω such that {An : n ∈ N} ⊆ Aα. The construction guarantees e)
and that the corresponding case of d) holds in Aα+1. But this case of d) enters our
list **), which is preserved, by the construction at successor stages.
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The requirements **) cannot be destroyed first time at limit stages, in par-
ticular at 2ω, by the fact that separated closed sets in compact zero-dimensional
spaces are separated by clopen sets i.e., belonging to the clopen algebra which at
the limit stage is the union of the previous algebras. This completes the proof of
theorem 3.1. �

Lemma 3.2. Every operator T : C(K) → C(K) is a weak multiplier.

Proof. Suppose that a bounded, linear operator T : C(K) → C(K) is not a weak
multiplier, i.e., by 2.2 that there exist a sequence of pairwise disjoint clopen sets
(An : n ∈ N) such that there is ε > 0 and points xn ∈ K such that xn 	∈ An and
|T (χAn)(xn)| > ε for infinitely many n’s. Since finite sums of the characteristic
functions of An’s are of norm one, if xn were constant for infinitely many n’s, we
would get a contradiction with the fact that T is bounded. Thus, we may assume
without loss of generality that |T (χAn)(xn)| > ε holds for all n ∈ N and that
xn = ln

∗ for some increasing sequence (ln : n ∈ N) of positive integers, since
{n∗ : n ∈ N} is dense in K .

We may also assume without loss of generality that the points ln∗ are not in
the sets Am for n,m ∈ N : if there is one n0 such that ln∗ ∈ An0 for n’s from an
infinite setM ⊆ N , we may considerM−{n0} and use the disjointedness ofAn’s.
Otherwise, one can construct by induction an infinite set of indices as required.
Thus (An : n ∈ N) and (ln : n ∈ N) satisfy a) and b) of theorem 3.1.
Let µn be the Radon measures on K which correspond (see [Se], §18.), by the
Riesz representation theorem, to the linear bounded functionals φn onC(K) given
by the relation

φn(f ) = T (f )(ln
∗) =

∫

K

f dµn

which holds for all f ∈ C(K), i.e., µn = T ∗(δln∗). In particular, we have
|µn(An)| > ε. Now we may find an infinite N ′ ⊆ N such that for n ∈ N ′

we have

∗ ∗ ∗)
∑

{|µn|(Am) : n 	= m, m ∈ N ′} < ε/3.

This is a lemma of Rosenthal (see [Ro] lemma 1.1. also in the stronger version
that we are using see [Di] page 82.) applied to the measures µn as above.
For M ⊆ N ′ define

∂M =
⋃

n∈M
An −

⋃

n∈M
An.

Note that ∂M is exactly the set of all points ofK whose all neighbourhoods inter-
sect infinitely many sets An for n ∈ M . It follows that ∂M ′ ⊆ ∂M , if M ′ ⊆ M and
moreover that ∂M ′ ⊆ ∂M , if M ′ −M is finite.
Let {Nξ : ξ < ω1} be a family of infinite subsets ofN ′ such thatNξ ∩Nξ ′ is finite
whenever ξ 	= ξ ′ for all ξ ∈ ω1. We may apply theorem 2.1. to {An : n ∈ Nξ }
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and (ln : n ∈ Nξ) for each ξ < ω1, obtaining bξ ⊆ Nξ , and a supremum Aξ like
in theorem 3.1. Note that, as a clopen set, Aξ includes ∂bξ and is disjoint from
∂bη−bξ for any η 	= ξ , hence the family (∂bξ )ξ<ω1 is pairwise disjoint, and so, one
of its sets, for instance ∂bξ0 must be null with respect to all the measures µn. Since
Aξ0 = ⋃{An : n ∈ bξ0} ∪ ∂bξ0 we have

∗ ∗ ∗∗) µn(Aξ0) = µn(
⋃

m∈bξ0
Am)

Aξ0 = A is clopen and so χA is continuous, let us analyze T (χA). By ***) and
****) we conclude that if n ∈ b = bξ0 we have

|T (χA)(ln∗)| = |µn(A)| = |µn(An)+
∑

{µn(Am) : m 	= n, m ∈ b}|
≥ ε − ε/3 = 2ε/3.

But if n ∈ Nξ0 − b, where a = aξ0 , we have

|T (χA)(ln∗)| = |µn(A)| = |
∑

{µn(Am) : m ∈ b}| ≤ ε/3.

Since T (χA) is continuous we have that the closures of the sets {ln∗ : n ∈ b} and
{ln∗ : n ∈ Nξ − b} are disjoint. This contradicts d) of theorem 2.1. and completes
the proof of lemma 3.2. �

Theorem 3.3. There is a separable compact zero-dimensional spaceK such that
no proper subspace and no proper quotient of C(K) is isomorphic to C(K), in
particular the hyperplanes of C(K) are not isomorphic to the entire C(K).

Proof. Apply theorems 2.4 and lemma 3.2. �


4. Adding suprema of pairwise disjoint families of functions on connected
spaces

First, let us make elementary observations and introduce some notation about
bounded pairwise disjoint sequences of continuous functions. Infinite sums of
functions are always considered pointwise. We consider the latticeC(K)with the
usual pointwise order.

Lemma 4.1. LetK be a compact, Hausdorff space and let (fn)n∈N be a bounded
pairwise disjoint sequence of continuous functions from K into [0, 1].

a) f ∈ C(K) is sup{fn : n ∈ N} in the lattice C(K) if and only if

�(f, (fn)n∈N) = {x ∈ K :
∑

n∈N
fn(x) 	= f (x)}

is nowhere dense in K.
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b)
∑

n∈N fn is well-defined and continuous in the dense open set

D((fn)n∈N) =
⋃

{U : U is open and {n : supp(fn) ∩ U 	= ∅} is finite}.
Proof. For a), first suppose that f = sup{fn : n ∈ N}, in particular f ≥ fn ≥ 0
for all n ∈ N . It is clear that there cannot be any x ∈ K where 0 < fn(x) < f (x)

for some n, i.e., �(f, (fn)n∈N) ⊆ {x ∈ K : ∀n ∈ N fn(x) = 0}. Now, note
that if �(f, (fn)n∈N) were not nowhere dense, then, there would be an open set
U such that fn(x) = 0 for all n ∈ U and f (x) > 0 for some x ∈ U . A slight
modification of f would contradict the fact that f is the supremum. Conversely
if g ≥ fn for all n ∈ N but f 	≤ g, then there is an ε > 0 and an open U such that
g(x) ≤ f (x)− ε for x ∈ U , then U ⊆ �(f, (fn)n∈N) .

In b) the density of D((fn)n∈N) follows from the fact that if an open U inter-
sects some supp(fn), then there is x ∈ U such that fn(x) 	= 0 and consequently
there is an open V ⊆ U ∩D((fn)n∈N), since (fn)n∈N is pairwise disjoint.

The continuity follows from the fact that
∑

n∈N fn is locally a finite sum of
continuous functions in D((fn)n∈N). �


In this section we discuss an operation on connected compact spaces that
is analogous to adding

∨
n∈N An for a pairwise disjoint sequence (An)n∈N to

Boolean algebras. The latter played an important role in the construction leading
to theorem 3.1. and will be used here as the motivation. To understand topolog-
ically the process of adding

∨
n∈N An to a Boolean algebra, we need to use the

Stone duality to translate the natural notion like
∨
n∈N An into, at the first sight,

less natural topological concepts.
Recall that ifX is an element of a Boolean algebra, then [X] denotes the clopen

basic set of the Stone space of the algebra consisting of all ultrafilters which con-
tain X. We may use [X]K if the Boolean algebra and its Stone space K is to be
specified. If K is the Stone space of a Boolean algebra A then the Stone space
L of the algebra B generated by a new element A over A can be interpreted as a
subset of K × {0, 1} defined by

L = {(x, 0) : x ∈ K : x ∪ {−A} extends to an ultrafilter of B}∪
∪{(x, 1) : x ∈ K : x ∪ {A} extends to an ultrafilter of B}.

That is, if π stands for the projection on the first coordinate, i.e., from L onto K ,
and if x ∈ K , then π−1({x}) is sometimes only the singleton {(x, 1)}, sometimes
only the singleton {(x, 0)} and sometimes {(x, 0), (x, 1)}, depending on the rela-
tion between x and A. In fact, we are in the first case if and only if there is A′ ∈ x
such that A′ ≤ A in the Boolean order in B, we are in the second case if and only
if there is A′ ∈ x such that A′ ≤ −A and we are in the third case if none of the
above holds.

Suppose that (An)n∈N is a pairwise disjoint sequence of elements of A and∨
n∈N An does not exist in A, however

∨
n∈N An = A appears in B as above.
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Simple applications of the Stone duality can be summarized in the following list
which uses the notation K , L and π as above:

1) (χ[An]K )n∈N has no supremum in C(K).
2) χ[

∨
n∈N An]L is the supremum of (χ[An]L)n∈N in C(L),

3) χ[An]K ◦ π = χ[An]L ,
4)

⋃
{[An]K : n ∈ N} −

⋃
{[An]K : n ∈ N}

is the set of all points in K whose preimages under π have two elements, it is
closed and nowhere dense inK and its preimage under π is nowhere dense in
L.

5) L is the closure in K × {0, 1} of the graph of a continuous function f :
dom(f ) → {0, 1} which is given by f (x) = 1 for x ∈ ⋃{[An]K : n ∈ N}
and f (x) = 0 for x 	∈ ⋃{[An]K : n ∈ N}; the domain of f is the complement
of the set in 4).
This motivates the following definition which should be traced back to [Fe].

Definition 4.2. Suppose that K is a compact space, L ⊆ K × [0, 1] and (fn)n∈N
is a pairwise disjoint sequence of continuous functions fromK into [0, 1]. We say
that L is an extension of K by (fn)n∈N if and only if L is the closure of the graph
of the restriction (

∑
n∈N fn)|D((fn)n∈N). Moreover we say that L as above is a

strong extension of K by (fn)n∈N if and only if the graph of
∑

n∈N fn is a subset
of L.

Lemma 4.3. Suppose that K is a compact space, that (fn)n∈N is a pairwise dis-
joint sequence of continuous functions from K into [0, 1], that L is an extension
of K by (fn)n∈N and π is the projection from L onto K , then the following hold:

a) If M ⊆ K is nowhere dense in K , then π−1[M] is nowhere dense in L.
b) There is sup{fn ◦ π : n ∈ N} in C(L).

Proof. a) Let (x, t) ∈ L and let U × V be an open neighbourhood of (x, t) in
K × [0, 1]. Let (x ′, t ′) be in the graph of

∑
n∈N fn|D((fn)n∈N) and in U ×V .

SinceD((fn)n∈N) is open dense where
∑

n∈N fn is continuous by 4.1. b), there
is a non-empty open U ′ ⊆ U ∩ D((fn)n∈N) such that (

∑
n∈N fn)[U

′] ⊆ V

andM ∩U ′ = ∅. So (U ′ ×V )∩L is nonempty open subset of U ×V disjoint
from π−1[M] as required.

b) Let f (x, t) = t for (x, t) ∈ L. As the restriction of a continuous function, f
is continuous. It is clear, by the definition of L, that

f (x, t) =
∑

n∈N
fn(x) =

∑

n∈N
fn(π(x, t))
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if x ∈ D((fn)n∈N) and (x, t) ∈ L. By 4.3 a) and 4.1. b) the remaining points
of L, i.e., π−1[K − D((fn)n∈N)] form a nowhere dense set. Hence f is the
supremum of (fn ◦ π : n ∈ N) in C(L) by 4.1. a). �

In higher dimensions there appear extensions as above which are not strong.

The reason we consider strong extensions is the following:

Lemma 4.4. Suppose that K is compact and connected and (fn : n ∈ N) is a
sequence of pairwise disjoint continuous functions from K into [0, 1]. Then the
closure of the graph of

∑
n∈N fn is connected subspace ofK×[0, 1]. In particular,

if L is a strong extension of a connected K by (fn)n∈N , then L is connected.

Proof. Let M be the closure of the graph of
∑

n∈N fn. Suppose that it is not
connected. By the compactness, there are two disjoint open subsets U1, U2 of
K × [0, 1] such that M ⊆ U1 ∪ U2 and M ∩ U1 	= ∅ 	= M ∩ U2. Let Mn be the
graph of

∑
i<n fi . It is clear thatMn intersect both U1 and U2 for n large enough,

so we may assume without loosing generality that it happens for all n ∈ N .
Note that Mn’s are compact and connected, as graphs of continuous functions on
K , since the projection from the graph is a homeomorphism ([E], 2.3). Hence
Fn = Mn − (U1 ∪ U2) 	= ∅. Note that Fn’s are compact and decreasing and
included in {x :

∑
i<n f (x) = 0} × {0}, since if fi(x) > 0, then (x, fi(x)) ∈ M .

Hence the Fn’s have nonempty intersection which is included in M which con-
tradicts the fact that M ⊆ U1 ∪ U2.

The second part of the lemma is a consequence of the fact that if the graph of∑
n∈N fn is included in L, then it its closure is L. �

Note that we consider extensions like in definition 4.2. and not the closures

of the graph of
∑

n∈N fn, because the latter in general may not satisfy 4.3. a) The
following lemma is a tool for obtaining strong extensions.

Lemma 4.5. Suppose that K is compact, and of topological weight κ < 2ω and
X1, X2 ⊆ K be two disjoint relatively discrete subsets ofK such thatX1∩X2 	= ∅.
Suppose that (fn)n∈N is pairwise disjoint sequence of continuous functions from
K into [0, 1] and (Nξ : ξ < 2ω) is a family of infinite subsets of N such that
Nξ ∩Nξ ′ is finite for any ξ 	= ξ ′. For an infinite b ⊆ N let K(b) be the extension
of K by (fn)n∈b and let π(b) denote the projection from K(b) onto K . Let

X′
i = {(x, 0) : x ∈ Xi, x 	∈ D((fn)n∈b)}∪

∪{(x, t) : x ∈ Xi, x ∈ D((fn)n∈b), (
∑

n∈b
fn)(x) = t, }.

There is A ⊆ 2ω of cardinality not bigger than κ such that the following hold
for all ξ ∈ 2ω − A and all infinite b ⊆ Nξ :

a) K(b) is a strong extension of K by (fn)n∈b.
b) X′

1 ∩X′
2 	= ∅, where the closures are taken in K(b).
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Proof. (a) suppose that a) does not hold, i.e., there is a subset A1 ⊆ 2ω of cardi-
nality bigger than κ such that a) fails for some bξ ⊆ Nξ for all ξ ∈ A1. It is clear
that if (xξ , t)witnesses the fact that the difference between the graph of

∑
n∈bξ fn

and the closure of the graph of (
∑

n∈bξ fn)|D(
∑

n∈bξ fn) = K(bξ ) is non-empty,
then t = 0. Note also that xξ is not in the closure of

⋃{supp(fn) : n 	∈ bξ }
since (

⋃{supp(fn) : n 	∈ bξ }) × {0} is included in the closure of the graph of
(
∑

n∈bξ fn)|D(
∑

n∈bξ fn). Let Uξ ⊆ X be an open neighbourhood of xξ disjoint
from

⋃{supp(fn) : n 	∈ bξ }. But xξ cannot be in D(
∑

n∈bξ fn), hence xξ is in
the closure of

⋃{supp(fn) : n ∈ bξ − F } for every finite F ⊆ N . Thus we can
conclude that xξ ∈ Uη if and only if ξ = η, and so {xξ : ξ ∈ A1} is a discrete
subspace of X of cardinality bigger than κ which is impossible since the weight
of X is κ . This completes the proof of a).

(b) It is clear that if x ∈ D(∑n∈b fn)∩X1 ∩X2 then (x, t) ∈ X1
′ ∩X2

′
where

(
∑

n∈b fn)(x) = t .
So consider x ∈ X1 ∩ X2 such fn(x) = 0 for all n ∈ N . In this case by a), if

ξ 	∈ A1 then (x, 0) ∈ K(bξ ), so it is enough to prove that (x, 0) ∈ X′
1 ∩X′

2 where
the closures are taken inK(bξ ) for ξ ∈ 2ω −A for someA ⊇ A1 of cardinality κ .

If there is a finite F ⊆ N such that x is in the closure of {x ∈ Xi :∑
n∈F fn(xi) > 0}, then (x, 0) is in the closure of X′

i relative to any K(bξ ).
So we may assume that for any open neighbourhood U of x, for every finite set
F ⊆ N there are points xi ∈ Xi∩U such that

∑
n∈F fn(xi) = 0. Thus for any open

neighbourhoodU of x for any two ξ1, ξ2 ∈ A there are points y ∈ U∩X1 such that∑
n∈bξ1∩bξ2 fn(y) = 0. So for all but one ξ ∈ κ − A1 we have

∑
n∈bξ fn(y) = 0

for some y ∈ U ∩ X1. Applying the same argument to X2 and all κ basic neigh-
bourhoods of x we conclude that for all but κ many ξ ’s in κ − A1 and each
neighbourhood of x there are points y of X1 and X2 such that

∑
n∈bξ fn(y) = 0.

But this means that (x, 0) is in X′
1 ∩X′

2 which completes the proof of b). �

This completes the description of the techniques used at successor stages of

the transfinite inductive construction. At limit stages, we again use the analogy
from the zero-dimensional construction. Taking unions of subalgebras at limit
ordinals corresponds to taking topological inverse limits (see [E]), i.e.,

Kλ = {x ∈ [0, 1]λ : ∀α < λ x|α ∈ Kα},
if λ is a limit ordinal. As the goal of the successor step was to add the supremum of
a pairwise disjoint bounded sequence of positive functions, it would be desirable
not too loose this supremum in the following stages. In general it is possible when
passing from (fn)n∈N to (fn ◦π)n∈N however it cannot happen in our case. It also
turns out that the property of [0, 1] × [0, 1] that it is connected after removing
any finite subset is preserved by strong extensions. This is useful in 2.5. πα,β will
denote the projection fromKβ ontoKα whereKα,Kβ are as below. We will omit
β if it is clear from the context.
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Lemma 4.6. Suppose that β is an ordinal and (Kα)α≤β is such thatK1 = [0, 1]2,
Kα ⊆ [0, 1]α is compact, πα[Kα] = Kα′ for α′ ≤ α ≤ β, the extensions at limits
are inverse limits and the extensions from Kα to Kα+1 are strong extensions by
pairwise disjoint sequences of continuous functions into [0, 1]. Then

a) If f, fn ∈ C(Kα) for n ∈ N and α ≤ β are such that

f = sup{fn : n ∈ N},
then

f ◦ πα,β = sup{fn ◦ πα,β : n ∈ N}.
b) Kβ − F is connected whenever F ⊆ Kβ is finite.

Proof. (a) The proof is by induction in β. If β is a limit ordinal, we note that if
�(f, {fn : n ∈ N}) of 4.1. a) were dense in some basic open set, the lemma would
fail at some ordinal less than β. Now suppose that β = β ′ + 1 and the lemma
holds for β ′, i.e., we may assume that α = β ′. It is enough to apply lemma 4.3 a)
to�(f, {fn : n ∈ N}) which is nowhere dense inKα by lemma 4.1. b). Applying
4.1. b) again in Kα+1 implies the desired conclusion.

(b) It is enough to prove that any finite subsetF ⊆ Kβ is included in a nowhere
dense subset of K whose complement includes a dense connected space. Indeed
then the closure of this set is dense inKβ−F , and henceKβ−F is connected. We
will work with nowhere dense subset ofKα’s of the formNα = π−1

1,α[K1−π1,β[F ]].
One proves that they are nowhere dense by induction on α. For successor α it fol-
lows from lemma 4.3. a) and for a limit α one proves it using the fact that basic
open sets are determined by finitely many coordinates. So, we are left with proving
for 1 ≤ α ≤ β that Kα −Nα’s have dense connected subset.

By induction on α we prove that there are Mn
α ⊆ Kα such that:

1) πα′,α[Mn
α ] = Mn

α′ for α′ ≤ α ≤ β,
2) Mn

α ’s are compact and connected,
3) Mn

α ∩Nα = ∅, Mn
α ⊆ Mn+1

α ,
4)

⋃
n∈N M

n
α is dense in Kα −Nα.

We start by choosingMn
1 to satisfy 2) - 4) and such that [0, 1]2 − ⋃

n∈N M
n
α is the

finite set π1,β[F ] = N1 ⊆ [0, 1]2.
Suppose we are given Mn

α ’s as above. The extension from Kα to Kα+1 is
a strong extension by some pairwise disjoint bounded sequence of continuous
functions (fi)i∈N from Kα into [0, 1]. Define Mn

α+1 to be the closure of the
graph of

∑
i∈N fi |Mn

α . Since the extensions are strong, we have that Mn
α+1 ⊆

Kα+1. By lemma 4.4., we conclude that Mn
α+1 is compact and connected, and

πα+1,α[Mn
α+1] = Mn

α . It is also clear that Mn
α ∩ Nα = ∅ and Mn

α+1 ⊆ Mn+1
α+1. To

prove that
⋃
n∈N M

n
α+1 is dense inKα+1 −Nα+1, note thatD((fi)i∈N)∩

⋃
n∈N M

n
α

is a dense subset ofD((fi)i∈N) by 4) of the inductive assumption, hence the graph
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of
∑

i∈N fi restricted to it is dense in Kα+1, but the graph of this restriction is
included in

⋃
n∈N M

n
α+1.

To preserve 1) - 4) at a limit α, just considerMn
α to be the inverse limit ofMn

α′’s
for α′ < α. Now, 1) and 3) follow from the definitions of the sets. 2) follows from
the fact that inverse limits of compact connected spaces are compact and con-
nected (see [E]). 4) follows from the inductive assumption and from the fact that
the failure of the density is witnessed by some basic open set., i.e., determined by
finitely many coordinates. �


5. Construction of a connected compact space

In this section we construct a connected compact space which has some analogous
properties to the zero-dimensional construction of section 3, the latter can serve
as a motivating example for the present construction. Theorem 3.1. corresponds
to the following:

Theorem 5.1. There is an infinite, compact, connected separable spaceK with a
countable dense set Q = {qn : n ∈ N} having the following properties:

i) Given:
a) a bounded sequence (fn : n ∈ N) of pairwise disjoint continuous functions

from K into [0, 1],
b) a relatively discrete (i.e., no point is in the closure of the remaining points)

sequence (qln : n ∈ N) of distinct points of Q such that fm(qln) = 0 for
n,m ∈ N , there is an infinite b ⊆ N such that

c) {fn : n ∈ b} has its supremum f in the lattice C(K),
d) the intersection of the sets {qln : n ∈ N − b} and {qln : n ∈ b} is nonempty.

ii) For every finite F ⊆ K the subspace K − F is connected.

Proof. We construct by transfinite induction compact connected spaces Kα ⊆
[0, 1]×[0, 1]α for 1 ≤ α ≤ 2ω taking inverse limits (see section 4) at limit ordinals.
Along this construction we will also construct dense sets Qα = {qn|α : n ∈ N}
of Kα. We require that K1 = [0, 1] × [0, 1] and Q1 are the points of the square
[0, 1] × [0, 1] with both rational coordinates.

At a successor stage,Kα+1 is obtained fromKα using a strong extension by an
appropriate pairwise disjoint sequence (gn)n∈N of positive continuous functions
(see section 4) so that c) of theorem 5.1. is taken care of. At each stage we will
have to preserve some cases of d).
At the beginning of the construction we fix an enumeration:

(fn(α), ln(α))α<2ω,n∈N

such that for every α′ < 2ω and for every pair ((fn)n∈N, (ln)n∈N) consisting of
a countable bounded sequence of positive continuous functions fn : [0, 1]2ω →
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[0, 1] and of an increasing sequence of integers (ln)n∈N there is α′ < α < 2ω such
that fn(α) = fn and ln(α) = ln for all n ∈ N . This enumeration exists since, the
separability of [0, 1]2ω implies that there are 2ω×2ω such pairs and 2ω×2ω = 2ω

implies that 2ω can be divided into 2ω pairwise disjoint sets, each cofinal in 2ω.
At stage α < 2ω we are given Kα and sequences (bβ)β<α, (aβ)β<α of subsets

of N such that for every β < α we have bβ ⊆ aβ , {qn|α : n ∈ aβ} is relatively
discrete in Kα and

∗) {qn|α : n ∈ bβ} ∩ {qn|α : n ∈ aβ − bβ} 	= ∅,
where the closures are taken in Kα.
The successor stage from α to α+1 is non-trivial, if (fn(α) : n ∈ N)well-defines
functions onKα which satisfy a) and b) of 3.1. together with {qln(α) : n ∈ N). That
is, we require that {qln |α : n ∈ N} is relatively discrete and that there is a pairwise
disjoint sequence (gn : n ∈ N) of continuous functions from Kα into [0, 1] such
that gn(qlm |α) = 0 for every n,m ∈ N and fn(α)(y) = gn(x), whenever x ∈ Kα
and y|α = x. Otherwise we call the case trivial and define Kα+1 = Kα × {0}
which is homeomorphic to Kα and qn|α + 1 = qn|α�0.

So assume that we are in a non-trivial successor stage from α to α+1. We will
choose aα ⊆ N so that for any choice of an infinite b ⊆ aα after extendingKα by
(gn : n ∈ b) the conditions *) are preserved inKα(b) for all β < α and the exten-
sion is strong (see section 4). Let (Nξ : ξ < 2ω) be a family of infinite subsets of
N such thatNξ ∩Nξ ′ is finite for ξ 	= ξ ′. ConsiderX1(β) = {qn|α : n ∈ aβ − bβ}
and X2(β) = {qn|α : n ∈ bβ}. By lemma 4.5 there are sets A(β) ⊆ 2ω of car-
dinality not bigger than |α| which satisfies the lemma 4.5. for X1 = X1(β) and
X2 = X2(β) for all β < α. Since |α| × |α| = |α| < 2ω, we may conclude that
there is ξ ∈ 2ω such that ξ 	∈ A(β) for all β < α.

First, it means that the extension from Kα to Kα(b) for any infinite b ⊆ Nξ is
a strong extension. Secondly, it means that if we define

qk|α + 1 = qk|α�x where x =
∑

n∈b
fn(qk|α)

if x ∈ D((fn)n∈b) and x = 0 otherwise, then *) is satisfied for every β < α

in the extension Kα(b) (it also serves as the definition of Qα+1). So we are left
with defining bα ⊆ aα ⊆ Nξ so that *) is satisfied for β = α in Kα(bα). Choose
aα = {ln : n ∈ Nξ }, since our case is nontrivial, we know that {qn|α : n ∈ aα} is
discrete in Kα. Now using the fact that Kα has weight less than 2ω and the fact
that in a compact space, disjoint closed sets can be separated by finite unions of
basic open sets, one can find bα such that

{qn|α : n ∈ bα} ∩ {qn|α : n ∈ aα − bα} 	= ∅
Since gn(qlm) = 0 for all n,m ∈ N , we conclude that if x ∈ Kα is in the above
intersection, then

∑
n∈bα gn(x) = 0 and hence
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(x, 0) ∈ {(qn|α)�0 : n ∈ bα} ∩ {(qn|α)�0 : n ∈ aα − bα}
that is *) is satisfied for β = α as well in Kα+1 = Kα(b).
As we mentioned before, at limit stages we take inverse limits. This completes
the description of the construction.

Now, let us verify that the theorem 5.1. holds for K = K2ω . Suppose (fn :
n ∈ N) and (ln : n ∈ N) are as in the theorem. By the Tietze extension theorem,
there is a bounded sequence of continuous (f ′

n : n ∈ N) such that f ′
n|K = fn

for each n ∈ N . By a theorem of Mibu (see [Mi] or [CN]), there are countable
Xn ⊆ 2ω such that if x|Xn = y|Xn, then f ′

n(x) = f ′
n(y). Using the fact that

there is no countable set cofinal in 2ω (see Konig’s lemma in [Ku] or [Je]), let
α′ = sup(

⋃
n∈N Xn). We have that α′ < 2ω an that fn(x) = gn ◦ πα(x) for any

n ∈ N and any α′ < α ≤ 2ω and any x ∈ [0, 1]2ω such that πα(x) ∈ Kα and
some pairwise disjoint continuous gn : Kα → [0, 1]. This means that there is
an α as above such that f ′

n = fn(α) and ln = ln(α). By the construction the
extension fromKα toKα+1 is strong and (gn ◦πα)n∈bα has the supremum inKα+1

by lemma 4.5. Lemma 4.6 implies that (gn ◦ πα)n∈bα has the supremum in K2ω .
On the other hand the α-case of *) which is preserved at each successor stage
of the construction, and hence at all stages (again, separations of closed disjoint
sets can be done by finitely many basic open sets, i.e., which use finitely many
coordinates) implies d) of theorem 5.1.

The fact that ii) is satisfied follows from lemma 4.6 b) and the construction.
One easily proves by induction on α ≤ 2ω that Qα is dense in Kα. �


Note that K as in 5.1 is topologically quite rigid, i.e., if F : K → K is
continuous, then F is constant or the identity. To see this, if F is not constant,
nor the identity, by the connectedness, there must be a relatively discrete infinite
sequence of distinct points yn ∈ K and xn 	= yn such that F(xn) = yn. Take
fn : K → [0, 1] such that f (xn) = 0, f (yn) = 1 and fn’s are pairwise disjoint
and continuous. Following the argument as at the begining of the lemma below,
one can assume that fm(xn) = 0 for all n,m ∈ N and that xn = qln’s are relatively
discrete. Now an application of 5.1. gives that the closures of {yn : n ∈ b} and
{yn : n ∈ N − b} (by taking f −1[[2/3, 1]] and f −1[[0, 1/3]]) are disjoint which
contradicts the fact that the closures of {qln : n ∈ b} and {qln : n ∈ N − b} are not
disjoint. However, in the following lemma, using the notion of a weak multiplier
we can transfer this rigidity to the space C(K).

Lemma 5.2. Every operator T : C(K) → C(K) is a weak multipliplier.

Proof. Suppose that a bounded, linear operator T : C(K) → C(K) is not a
weak multiplier, i.e., that there exist a sequence of pairwise disjoint elements
fn ∈ C(K) with ranges in [−1, 1] and there is ε > 0 and points xn ∈ K such
that fn(xn) = 0 for all n ∈ N and |T (fn)(xn)| > ε for infinitely many n’s. We
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may assume without loss of generality that it happens for all n ∈ N and, by the
density of Q, that xn = qln for some ln ∈ N .

Since finite sums of fn’s are uniformly bounded, if qln were constant for infi-
nitely many n’s, we would get a contradiction with the fact that T is bounded.
Thus, we may assume without loss of generality that (ln : n ∈ N) is a strictly
increasing sequence of positive integers.AsK is compact, any sequence of distinct
points contains a relatively discrete subsequence, hence we may assume without
loss of generality that {qln : n ∈ N} is relatively discrete.

We may assume without loss of generality that fm(qln) = 0 for n,m ∈ N : if
there is one k0 such that fk0(qln) 	= 0 for n’s from an infinite setN ′ ⊆ N , thin-out
N to N ′ − {k0} and use the disjointness of fn’s. Otherwise, one can construct an
infinite subsequence as required by induction. Finally, by considering multiples
of − min(fn, 0) and max(fn, 0) one may assume without loss of generality that
all functions fn have ranges included in [0, 1].

Let µn be the Radon measures on K which correspond (see [Se], §18.), by
the Riesz representation theorem, to the linear bounded functionals φn on C(K)
given by the relation

φn(f ) = T (f )(qln) =
∫

K

f dµn

which holds for all f ∈ C(K), i.e., µn = T ∗(δqln ) and so, (µn)n∈N is a bounded
sequence inM(K). Hence, we have | ∫ fndµn| > ε. Now we may find an infinite
N ′ ⊆ N such that for n ∈ N ′ we have

∗∗)
∑

{|
∫

fmdµn| : n 	= m, m ∈ N ′} < ε/3.

This is a lemma of Rosenthal (see [Ro] lemma 1.1. also in the stronger version
that we are using see [Di] page 82.) applied to countably additive atomic mea-
sures νn on subsets ofN determined by νn({m}) = ∫

fmdµn. They are uniformly
bounded since both (µn)n∈N and (fn)n∈N are bounded.
We need to do one more thinning-out to obtain an infinite subset N ′′ ⊆ N ′ such
that for any infinite b ⊆ N ′′ the following holds:

∗ ∗ ∗)
∫

sup{fm : m ∈ b}dµn =
∫ ∑

m∈b
fmdµn.

whenever sup{fm : m ∈ b} exists in C(K). For this it will be enough to prove
that there is an infinite N ′′ ⊆ N ′ such that for every infinite b ⊆ N ′′ such that
sup{fm : m ∈ b} exists, we have

∫

[sup{fm : m ∈ b} −
∑

m∈b
fm(x)]dµn = 0



178 P. Koszmider

for all n ∈ N . Define fb = sup{fm : m ∈ b} − ∑
m∈b fm(x), if the supremum

exists. Suppose that there is no infiniteN ′′ ⊆ N ′ satisfying ***). Let {Nξ : ξ < ω1}
be a family of infinite subsets ofN ′ such thatNξ∩Nξ ′ is finite whenever ξ 	= ξ ′ for
all ξ, ξ ′ ∈ ω1. By the assumption, there are infinite bξ ⊆ Nξ with

∫
fbξ dµn 	= 0

for some n ∈ N (the supremum exists for some bξ by the properties of K). One
n ∈ N works for uncountably many ξ ’s. Since uncountably many disjoint Borel
sets cannot be non-null with respect to a Radon measure, to get a contradiction,
it is enough to prove the following:

Claim. The family {fbξ : ξ ∈ ω1} is pairwise disjoint family of Borel functions
on K .

Proof of the Claim. Note that since (fn : n ∈ bξ ) is a bounded sequence of
pairwise disjoint positive continuous functions which possess its supremum,

sup(fm : m ∈ bξ ) = sup(fm : m ∈ bξ − F)+
∑

m∈F∩bξ
fm

for any finite F ⊆ bξ . This implies that fbξ = fbξ−F for any finite F ⊆ N . On the
other hand fbξ−bξ ′ ≤ sup(fm : m ∈ bξ − bξ ′), fbξ ′−bξ ≤ sup(fm : m ∈ bξ ′ − bξ )

and the functions sup(fm : m ∈ bξ − bξ ′) and sup(fm : m ∈ bξ ′ − bξ ) are disjoint
for distinct ξ, ξ ′ < ω1. This completes the proof of the claim.
Now we may apply theorem 5.1. to {fn : n ∈ N ′′}, (ln : n ∈ N ′′), {µn : n ∈ N ′′}
and ε whereN ′′ is as in ***), obtaining b and f as in theorem 5.1. Let us analyze
the function T (f ). By **) and ***) we conclude that if n ∈ b we have

|T (f )(qln)| = |
∫

f dµn| = |
∫

fndµn +
∫ ∑

{fm : m 	= n, m ∈ b}dµn| ≥

≥ ε − ε/3 = 2ε/3.

But if n ∈ N − b, we have

|T (f )(qln)| = |
∫ ∑

n∈b
fndµn| ≤ ε/3.

Since T (f ) is continuous we have that the closures of the sets {qln : n ∈ b} and
{qln : n ∈ N − b} are disjoint. This contradicts d) of theorem 5.1. and completes
the proof of lemma 5.2. �

Lemma 5.3. There is a compact, connected separable space K , such that C(K)
is an indecomposable Banach space, whose hyperplanes are non-isomorphic to
the entire space and which is non-isomorphic with any C(K ′) forK ′ zero-dimen-
sional.

Proof. Apply 5.2. and 2.5, 2.6 and 2.7. �
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6. C(K)’s where all operators are of the form gI + S

In this section we assume the continuum hypothesis and describe how to construct
K zero-dimensional or connected where besides all the properties obtained in sec-
tion 3 or 5 all operators onC(K) are of the form gI+S, where g ∈ C(K) and S is
weakly compact or equivalently strictly singular. As explained in the introduction,
this is in a sense the minimal possible space of operators for a Banach spacesC(K).
Also this property implies that the hyperplanes of the C(K) are non-isomorphic
to the entire C(K), and in the connected case that C(K) is indecomposable and
non-isomorphic toC(K ′) forK ′ zero-dimensional. The hyperplane problem form
C(K) spaces and the problem whether all spaces C(K) are isomorphic to a C(L)
for an L zero-dimensional can be solved using the constructions presented in the
previous sections, however assuming CH, the proofs of these results are simpler.
CH can be removed from these simpler arguments by working, unlike we below,
with certain nonseparable K’s as shown in [Pl]. We do not know if obtaining a
subspace of l∞ of the form C(K) with few operators in the sense as above can be
done without any special set-theoretic assumption.

Theorem 6.1. Assume the continuum hypothesis. There is a compact connected
(resp. zero-dimensional) K such C(K) can be isometrically embedded into l∞
and every bounded operator T : C(K) → C(K) is of the form gI + S where
g ∈ C(K) and S is weakly compact or equivalently strictly singular.

The rest of this section is devoted to the sketch of the proof of this theorem. In the
light of theorem 2.7 and lemma 2.8 the crucial observation is the following:

Lemma 6.2. Suppose that K is metric and compact, and has a dense countable
subsetQ = {qn : n ∈ N}. Suppose thatU1, U2 are open subsets ofK withU1∩U 2

nonempty. Then there exist a sequence (fn)n∈N of pairwise disjoint continuous
functions fn : K → [0, 1] and strictly increasing sequences (ln(i) : n ∈ N) and
infinite, co-infinite sets b(0), b(1) ⊆ N for i = 0, 1 such that (qln(i) : n ∈ N)

is relatively discrete for each i = 1, 2 such that for every infinite b ⊆ N in the
extension K(b) of K by (fn)n∈b the following holds: there are distinct x(0), x(1)
in K(b) and disjoint closed sets Fi ⊆ K(b) such that

x(i) ∈ π−1[U1] ∩ {q ′
ln(i)

: n ∈ b(i)} ∩ π−1[U2] ∩ {q ′
ln(i)

: n ∈ N − b(i)},
{q ′
ln(i)

: n ∈ b(i)} ⊆ Fi,

where qj ′ = (qj , t) and
∑

n∈b fn(qj ) = t if qj ∈ D((fn)n∈N) or otherwise t = 0.

Proof. Let x ∈ U1 ∩ U 2. Using the fact that K is metrizable we can find two
sequences of non-empty open sets (Wn)n∈N and (Vn)n∈N and a two strictly increas-
ing sequences of integers (kn(i))n∈N for i = 0, 1 such that:

1) every neighbourhood of x includes all but finitely manyWn’s and all but finitely
many Vn’s.
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2) Wn ⊆ U1 and Vn ⊆ U2 for all n ∈ N .
Let fn : K → [0, 1] be such a continuous function that there are xn, yn
satisfying:

3) qkn(0) ∈ Wn, qkn(1) ∈ Vn,
4) fn(qk2n(0)) = fn(qk2n(1)) = 1.
5) supp(fn) ⊆ W2n ∪ V2n.

Let b ⊆ N be infinite, and let us verify that (fn)n∈b satisfies the lemma for
l2n(1) = k2n(0) and l2n+1(1) = k2n(1) where b(1) is the set of even integers; and
for l2n(0) = k2n+1(0) l2n+1(0) = k2n+1(1) where b(0) is the set of even integers.
Note that (qk2n(0), 1) ∈ π−1[U1], (qk2n(1), 1) ∈ π−1[U2] are on the graph on fn’s
for n ∈ b, hence x(1) = (x, 1) satisfies the lemma. On the other hand the sets
W2n+1 ×{0} and V2n+1 ×{0} are included in π−1[U1]∩K(b) and π−1[U1]∩K(b)
respectivly as well. So x(0) = (x, 0) works as well. To complete the lemma note
that F0 = K × [0, 1/3] and F1 = K × [2/3, 1] work. �


Now we will describe how to modify the constructions from section 3 or 5
to obtain K’s of 6.1. As we noted, by theorem 2.7 and lemma 2.8 it is enough
to get K’s as in theorems 3.1 or 5.1 such that additionally whenever U 1 ∩ U 2

is non-empty for two open sets U1 and U2, then it has at least two points. Let
us concentrate on the connected case K which is more complicated. We assume
that the reader is familiar with the details of sections 4 and 5 which will not be
repeated.
The construction is as in section 5, by induction on α < 2ω = ω1 we construct an
inverse system of Kα’s using strong extensions of pairwise disjoint sequences of
continuous functions from Kα into [0, 1] where Kα’s have countable dense sets
Qα. This time the enumeration

(fn(α), ln(α))n∈N,α∈Even

has the domain Even, which is the set of even countable ordinals. At even count-
able ordinals we proceed as in section 5. We are also given an enumeration

(U1(α), U2(α))α∈Odd
whereOdd is the set of odd countable ordinals and such that for every pairU1, U2

of open subsets of [0, 1]ω1 which are countable unions of basic open sets, there
are cofinaly many α’s such thatU1(α) = U1 andU2(α) = U2. It is clear that there
is such an enumeration.

For β ∈ Even we are also given conditions like in *) of section 5, which have
to be preserved at all stages α < ω1, even or odd. For β < ω1 and odd, we have
a couple of conditions like in *), namely we have infinite bβ(i) ⊆ aβ(i) ⊆ N for
i = 1, 2 such that

+) {qn : n ∈ bβ(i)} ∩ {qn : n ∈ aβ(i)− bβ(i)} 	= ∅
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for each i = 0, 1, where the closures are taken in Kα and these conditions must
be valid at each α ≥ β.

At odd stages α < ω1, if the closures inKα of πα[U1(α)] and πα[U2(α)] have
nonempty intersection, we use lemma 6.2 to find appropriate (fn)n∈N , (ln(i))n∈N
and b(i) for i = 0, 1. Then, as in the even case of section 5, we follow lemma
4.5 to find an appropriate infinite b ⊆ N which implies that K(b) is a strong
extension and all the conditions from *) and +) can be preserved. For i = 0, 1 we
define

aα(i) = {ln(i) : n ∈ N}, bα(i) = {ln(i) : n ∈ b(i)}.
Thus we have +) at α + 1-th stage. This completes the description of the suc-

cessor stage of the modification of the construction. Again we take inverse limits
at limit ordinals.

The proof of the fact that K = Kω1 satisfies 5.1. is the same as in section 5.
To finish the proof of 6.1., we only need to prove that in K if the closures of two
open set have nonempty intersection, then the intersection has at least two points.
Note that, as K is separable, for every open set U there exist a countable family
(Vn)n∈N of basic open sets included in V such that the closure of V is the same
as the closure of the union of (Vn)n∈N . So we may focus only on closures of such
unions of sequences (Vn)n∈N . For any such two sets U1, U2, there are cofinally
in ω1 countable α’s such that Ui = Ui(α) for i = 1, 2. So, if α is above all the
coordinates which determine the basic open sets whose unions are the Ui’s we
also have

++) π−1
α [πα[Ui]] = Ui.

If the closures of U1 and U2 have non-empty intersection, it also holds for
the projections onto Kα. By the construction at such α’s we applied lemma 6.2.
obtaining two distinct x(i) for i = 0, 1 in Kα+1 which are in the intersections
of the closures of the sets {qn : n ∈ bα+1(i)} and {qn : n ∈ aα+1(i) − bα+1(i)}
respectively for i = 0, 1. But these are conditions +) which hold in all Kα’s and
consequently inK . As the sets {qn|α+1 : n ∈ aα+1(0)}, {qn|α+1 : n ∈ aα+1(1)}
have disjoint closures in Kα+1 by 6.2., they must have disjoint closures in K ,
hence ++) guarantees that the intersections of the closures of U1 and U2 inK has
at least two distinct points as required.

The modification of the zero-dimensional construction is similar, since one
can assume that fn’s of lemma 6.2. are characteristic functions of clopen sets. The
spaces C(K) can be isometrically embedded into l∞ since K is separable. �


One can also consider other versions of the space constructed in this paper. One
can strengthen the properties of the space, following the method of [Ta], making
some of them hereditary with respect to a large class of quotients. This way one
can obtain a separableK as in this paper such that for every infinite closedK ′ ⊆ K

the space C(K ′) has few operators. These results will be published elsewhere.



182 P. Koszmider

References

[ALT] Argyros, S., Lopez-Abad, J., Todorcevic, S.: A class of Banach spaces with no uncon-
ditional basic sequences. Note aux C. R. A. S. Paris 337, 1 (2003)

[Ar] Arhangel’skii, A. V.: Problems in Cp-theory; in Open problems in Topology. J. van
Mill, G. M. Reed eds. North Holland 1990

[Ba] Banach, S.: Théorie des opérations linéaires. Monografje Matematyczne, Państwowe
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[BP] Bessaga, Cz., Pełczyński, A.: Spaces of continuous functions (VI) (On isomorphical
classification of spaces C(S)). Studia Math. 19, 53–62 (1960)

[CN] Comfort, W., Negrepontis, S.: Chain conditions in topology; Cambridge University
Press 1982

[Di] Diestel, J.: Sequences and series in Banach spaces; Springer-Verlag 1984
[DU] Diestel, J., Uhl Jr, J.J.: Vector Measures; Mathematical Surveys 15, AMS. 1977
[DS] Dunford, N., Schwartz, J.: Linear Operators; Part I, General Theory. Interscience Pub-

lishers, INC., New York, Fourth printing, 1967
[E] Engelking, R.: General Topology; PWN 1977
[Fe] Fedorchuk,V.V.: On the cardinality of hereditarily separable compact Hausdorff spaces.

Soviet Math. Dokl. 16, 651–655 (1975)
[Go] Godefroy, G.: Banach spaces of continuous functions on compact spaces; Ch. 7 in in

Recent Progress in General Topology II; eds M. Husek, J. van Mill; Elsevier 2002
[G] Gowers, W. T.: A solution to Banach’s hyperplane problem. Bull. London Math. Soc.

26, 523–530 (1994)
[GM] Gowers, W. T., Maurey, B.: The unconditional basic sequence problem. Journal A. M.

S. 6, 851–874 (1993)
[Ha] Haydon, R.: A non-reflexive Grothendieck space that does not contain l∞; Israel J.

Math. 40, 65–73 (1981)
[Je] Jech, T.: Set Theory. Second edition. Perspectives in Mathematical Logic. Springer-

Verlag, Berlin, 1997
[JM] Jimenez, M., Moreno, J.: Renorming Banach spaces with the Mazur intersection prop-

erty. Jornal of Funct. Anal. 144, 486–804 (1997)
[Ko1] Koszmider, P.: Forcing minimal extensions of Boolean algebras. Trans. Amer. Math.

Soc. 351, 3073–3117 (1999)
[Ko2] Koszmider, P.: On decompositions of Banach spaces of continuous functions on

Mrówka’s spaces; Preprint 2003
[Ku] Kunen, K.: Set Theory. An Introduction to Independence Proofs. North Holland, 1980
[La] Lacey, H. E.: Isometric Theory of Classical Banach Spaces: Springer-Verlag 1974
[LM] Lacey, E., Morris, P.: On spaces of the type A(K) and their duals. Proc. Amer. Math.

Soc. 23, 151–157 (1969)
[Li] Lindenstrauss, J.: Decomposition of Banach spaces; Proceedings of an International

Symposium on Operator Theory (Indiana Univ., Bloomington, Ind., 1970). Indiana
Univ. Math. J. 20 917–919 (1971)

[LT] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I: Sequence Spaces: Springer
Verlag 1977

[Ma] Maurey, B.: Banach spaces with few operators; Handbook of Geometry of Banach
Spaces, Vol 2. Ch. 29, pp. 1247–1297 (eds. W.B. Johnson, J. Lindenstrauss); North
Holland 2003.

[Mi] Mibu: On Baire functions on infinite product spaces. Proc. Imperial Acad. Tokyo (20),
(1944)

[Mar] Marciszewski, W.: A function space Cp(X) not linearly homeomorphic to Cp(X)×R.
Fund. Math. 153, 125–140 (1997)



Banach spaces of continuous functions with few operators 183

[Mi] Miljutin, A. A.: On spaces of continuous functions; Dissertation, Moscow State Uni-
versity, 1952

[Ne] Negrepontis, S.: Banach spaces and topology; in Handbook of Set-theoretic topology;
eds. K Kunen, J Vaughan. North-Holland 1980, pp. 1045–1142
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