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Abstract. The Cauchy problem for semilinear heat equations with singular initial data

wt = �w + wp in RN × (0, ∞) and w(x, 0) = λa (x/|x|) |x|−2/(p−1) in RN \ {0}
is studied, where N ≥ 2, λ > 0 is a parameter, and a ≥ 0, a �≡ 0. We show that when
p > (N + 2)/N and (N − 2)p < N + 2, there exists a positive constant λ such that the
problem has two positive self-similar solutions wλ and wλ with wλ < wλ if λ ∈ (0, λ) and no
positive self-similar solutions if λ > λ. Furthermore, for each fixed t > 0, wλ(·, t) → 0 and
wλ(·, t) → w0(·, t) in L∞(RN) as λ → 0, where w0 is a non-unique solution to the problem
with zero initial data, which is constructed by Haraux and Weissler.

Mathematics Subject Classification (2000): 35K55, 35J60

1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular initial
data:

wt = �w + wp in RN × (0, ∞), (1.1)

w(x, 0) = λa (x/|x|) |x|−2/(p−1) in RN \ {0}, (1.2)λ

where N ≥ 2, p > (N + 2)/N , a : SN−1 → R, and λ > 0 is a parameter. We
assume that a ∈ L∞(SN−1) and a ≥ 0, a �≡ 0. A typical case is a ≡ 1.

The equation (1.1) is invariant under the similarity transformation

w(x, t) �→ wµ(x, t) = µ2/(p−1)w(µx, µ2t) for all µ > 0.

A solution w is said to be self-similar, when w = wµ for all µ > 0, that is,

w(x, t) = µ2/(p−1)w(µx, µ2t) for all µ > 0. (1.3)

Such self-similar solutions are global in time and often used to describe the large
time behavior of global solutions to (1.1), see, e.g., [20,21,4,28,29].
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If w(x, t) is a self-similar solution of (1.1) and has an initial value A(x), then
we easily see that A has the form A(x) = A(x/|x|)|x|−2/(p−1). Then the problem
of existence of self-similar solutions is essentially depend on the solvablity of the
Cauchy problem (1.1)-(1.2)λ.

It is well known by [10,34,20] that if 1 < p ≤ (N + 2)/N then (1.1) has
no time global solution w such that w ≥ 0 and w �≡ 0. Therefore, the condition
p > (N + 2)/N is necessary for the existence of positive self-similar solutions
of (1.1).

We briefly review some results concerning the Cauchy problem for (1.1) with
initial date in Lq(RN). Weissler [32,33] showed that the IVP (1.1) with w(x, 0) =
A ∈ Lq(RN) admits a unique time-local solution if q ≥ N(p − 1)/2. He also
showed in [34] that the solution exists time-globally if q = N(p − 1)/2 and if
‖A‖Lq(RN) is sufficiently small. Giga [12] has constructed a unique local regular
solution in Lα(0, T : Lβ), where α and β are chosen so that the norm of Lα(0, T :
Lβ) is invariant under scaling. On the other hand, for 1 ≤ q < N(p − 1)/2,
Haraux and Weissler [16] constructed a solution w0 ∈ C([0, ∞); Lq(RN)) of
(1.1) satisfying w0(x, t) > 0 for t > 0 and ‖w0(·, t)‖Lq(RN) → 0 as t → 0 when
p > (N + 2)/N and (N − 2)p < N + 2 by seeking solutions of self-similar
form. Therefore, if p > (N + 2)/N and (N − 2)p < N + 2, the Cauchy problem

wt = �w + wp in RN × (0, ∞) and w(x, 0) = 0 in RN (1.4)

admits a non-unique solution in C([0, ∞); Lq(RN)) for 1 ≤ q < N(p − 1)/2.
Kozono and Yamazaki [22] constructed Besov-type function spaces based on

the Morrey spaces, and then obtained global existence results for the equation (1.1)
and the Navier-Stokes system with small initial data in these spaces. By [22] the
problem (1.1)-(1.2)λ admits a time-global solution for sufficiently small λ > 0.
Cazenave and Weissler [4] proved the existence of global solutions, including
self-similar solutions, to the nonlinear Schrödinger equations and the equations
(1.1) with small initial data by using the weighted norms.

Galaktionov and Vazquez [11] have investigated the uniqueness of the solu-
tions to the problem (1.1)-(1.2)λ with a ≡ 1. In [11, p. 41] they have conjectured
that the problem (1.1)-(1.2)λ has exactly two solutions (the minimal and maximal)
when N ≥ 3 and N/(N − 2) < p ≤ (N + 2)/(N − 2).

Letting µ = t−1/2 in (1.3), we see that the self-similar solution w has the form

w(x, t) = t−1/(p−1)u(x/
√

t), (1.5)

where u satisfies the elliptic equation

�u + 1

2
x · ∇u + 1

p − 1
u + up = 0 in RN. (1.6)
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By Lemma B.1 in Appendix below we find that if w satisfies (1.2)λ in the sense
of L1

loc(R
N), that is,

∫
K

∣∣w(x, t) − λa(x/|x|)|x|−2/(p−1)
∣∣ dx → 0 as t → 0

for any compact subset K of RN , then u satisfies

lim
r→∞ r2/(p−1)u(rω) = λa(ω) for a.e. ω ∈ SN−1. (1.7)λ

Conversely, if u ∈ C2(RN) is a solution of (1.6) satisfying (1.7)λ, then the function
w defined by (1.5) satisfies (1.1) and (1.2)λ in the sense of L1

loc(R
N).

In this paper we investigate the problem (1.6)-(1.7)λ by making use of the
methods for semilinear elliptic equations, and then derive the results for the
Cauchy problem (1.1)-(1.2)λ to give a partially affirmative answer to the conjec-
ture by [11]. First we will state the results concerning the problem (1.6)-(1.7)λ,
and then apply these results to the problem (1.1)-(1.2)λ.

Before stating our results, we introduce some notations. Set ρ(x) = e|x|2/4.
We define the weighted Sobolev space

H 1
ρ (RN) =

{
u ∈ H 1(RN) :

∫
RN

(|∇u|2 + u2)ρdx < ∞
}

(1.8)

equipped with the norms

‖u‖H 1
ρ (RN) =

(∫
RN

(|∇u|2 + u2)ρdx

)1/2

.

It has been shown by Weissler [36, Theorem 1] and Escobedo and Kavian
[8, Theorem 0.14] independently that there exists a solution u0 of the problem




�u + 1

2
x · ∇u + 1

p − 1
u + up = 0 in RN,

u ∈ H 1
ρ (RN) and u > 0 in RN,

(1.9)

with p > (N + 2)/N and (N − 2)p < (N + 2). The uniqueness of the solution
to the problem (1.9) has been obtained by [25, Corollary 2].

We refer to u as a solution of (1.6) if u ∈ C2(RN) is a classical solution of
(1.6). Our main results are stated in the following theorems:

Theorem 1. Assume that p > (N + 2)/N . Then there exists a constant λ > 0
such that

(i) for 0 < λ < λ, (1.6)-(1.7)λ has a minimal positive solution uλ; uλ is increase
with respect to λ and satisfies ‖uλ‖L∞(RN) = O(λ) as λ → 0;

(ii) for λ > λ, there are no positive solutions of (1.6)–(1.7)λ.
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Theorem 2. Assume that p > (N + 2)/N and (N − 2)p < N + 2. Let λ > 0
be the constant in Theorem 1. Then, for 0 < λ < λ, (1.6)-(1.7)λ has a positive
solution uλ satisfying uλ > uλ and

uλ − uλ ∈ H 1
ρ (RN) and uλ(x) − uλ(x) = O(e−|x|2/4) as |x| → ∞.

Furthermore

uλ − uλ → u0 in H 1
ρ (RN) ∩ L∞(RN) as λ → 0,

where u0 is the solution of the problem (1.9). In particular, we have uλ → u0 in
L∞(RN) as λ → 0.

Remark 1. (i) We now restrict our attention to radial solutions of (1.6), i.e., a solu-
tion of the form u = u(r), r = |x|. Then u(r) must satisfies the initial value
problem




urr +
(

N − 1

r
+ r

2

)
ur + 1

p − 1
u + |u|p−1u = 0, r > 0,

u(0) = α > 0 and ur(0) = 0.

We denote by u(r; α) the unique solution of this problem. It has been shown by
Haraux-Weissler [16, Proposition 3.4 and Theorem 5] that u(r; α) has the follow-
ing properties: the limit L(α) = limr→∞ r2/(p−1)u(r; α) exists and is a locally
Lipschitz function of α ∈ R; if p > (N + 2)/N then u(r; α) > 0 for all r > 0
and L(α) > 0 for sufficiently small α > 0; if in addition (N − 2)p < (N + 2)

then there exists some α0 > 0 such that L(α0) = 0 and u(r; α0) > 0 for r > 0;
u(r; α) is positive for r > 0 if 0 < α < α0. (See the proof of Proposition 3.7 in
[16].) Moreover, it has been shown by Yanagida [38, Theorem 1] and Dohmen-
Hirose [7, Theorem 1.2 and Corollary 1.3] that u(r; α) cannot be positive for all
r > 0 if α > α0. (In fact, they in [38,7] showed the uniqueness of the α0 such
that L(α0) = 0 and u(r; α0) > 0 for r > 0.) From these facts we find that, when
p > (N + 2)/N and (N − 2)p < (N + 2), u(r; α) > 0 for r > 0 if and only
if α ∈ (0, α0], and that L is a nonnegative continuous function on [0, α0] with
L(0) = L(α0) = 0 and L �≡ 0. Let λ = max{L(α) : 0 ≤ α ≤ α0}. Then λ > 0,
and it is clear that there are at least two different values of α satisfying L(α) = λ

if λ ∈ (0, λ), and there exists at least one value of α satisfying L(α) = λ. Thus,
when p > (N + 2)/N and (N − 2)p < (N + 2), the problem (1.6)–(1.7)λ with
a ≡ 1 has at least two radial solutions if 0 < λ < λ, and at least one radial
solution if λ = λ. Moreover, there is no radial positive solution of (1.6)–(1.7)λ
with a ≡ 1 if λ > λ.

(ii) In the case N = 1, Weissler [35] has shown that u(r; α) > 0 for r > 0 if
and only if α ∈ (0, α0] for some α0 > 0, and that L is a positive concave function
on (0, α0) with L(0) = L(α0) = 0. Thus there are precisely two different value
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of α satisfying L(α) = λ if 0 < λ < λ, and so the problem has precisely two
solutions if 0 < λ < λ.

(iii)At this time we do not know whether (1.6)–(1.7)λ with λ = λ has a positive
solution when a is not constant. The exact multiplicity of positive solutions of
(1.6)–(1.7)λ for λ ∈ (0, λ] is also an open question.

Now we consider the Cauchy problem (1.1)–(1.2)λ. We refer to w as a solution
of (1.1) if w ∈ C2(RN ×(0, ∞)) is a classical solution of (1.1). If u is a solution of
(1.6)–(1.7)λ, then the function w defined by (1.5) is a solution of (1.1) satisfying
(1.2)λ in the sense of L1

loc(R
N) by Lemma B.1 below. Put

w0(x, t) = t−1/(p−1)u0(x/
√

t), (1.10)

where u0 is the solution of the problem (1.9). It has been shown by [8, Proposition
3.5] that u0 ∈ C2(RN) and u0(x) = O(e−|x|2/8) as |x| → ∞. (See, also, [26,
Theorem 1].) Then we have u0 ∈ Lq(RN) for all q ≥ 1 and

‖w0(·, t)‖Lq(RN) = t−1/(p−1)+N/2q‖u0‖Lq(RN).

Consequently, w0 solves the the Cauchy problem (1.4) in C([0, ∞); Lq(RN)) for
1 ≤ q < N(p − 1)/2. We note that the positive solution u of (1.6) satisfying

u(x) = o(|x|−2/(p−1)) as |x| → ∞
is unique and radially symmetric by [25, Corollary 1]. Therefore, w0 defined by
(1.10) coincides with the non-unique solution constructed by Haraux and Weissler
[16].

As a consequence of Theorems 1 and 2, we obtain the following results.

Corollary 1. Assume that p > (N + 2)/N . Then there exists a constant λ > 0
such that

(i) for 0 < λ < λ, (1.1)-(1.2)λ has a positive self-similar solution wλ; for each
fixed t > 0, the solution wλ(·, t) is increasing with respect to λ and satisfies

‖wλ(·, t)‖L∞(RN) = O(λ) as λ → 0;
(ii) for λ > λ, (1.1)-(1.2)λ has no positive self-similar solutions.

Corollary 2. Assume that p > (N + 2)/N and (N − 2)p < N + 2. Let λ > 0 be
the constant in Corollary 1. Then, for 0 < λ < λ, (1.1)-(1.2)λ has a positive self-
similar solution wλ satisfying wλ(x, t) > wλ(x, t) for (x, t) ∈ (RN × (0, ∞));
the solution wλ satisfies, for each fixed t > 0,

‖wλ(·, t) − w0(·, t)‖L∞(RN) → 0 as λ → 0,

where w0 is the non-unique solution of (1.4) in C([0, ∞); Lq(RN)) for 1 ≤ q <

N(p − 1)/2, which is constructed by [16].
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Remark 2. (i) The existence of a positive self-similar solution of (1.1)–(1.2)λ has
been shown by [4] under a weaker condition on a.

(ii) It is already known that there is no solutions of (1.1)–(1.2)λ if λ is large
enough, see, e.g., [33, Corollary 5.1], [37, Corollary 1.1], and [24, Remark 3.7].
These results, however, do not quite apply to self-similar solutions in stated, we
easily see that the proofs easily apply to self-similar solutions, or any positive
measurable solutions.

(iii) From (i) of Remark 1 we see that, when p > (N +2)/N and (N −2)p <

(N + 2), the problem (1.1)–(1.2)λ with λ = λ has a radial positive self-similar
solution if a ≡ 1. It is an open question whether (1.1)–(1.2)λ with λ = λ has a
positive self-similar solution if a is not constant. The exact multiplicity of positive
self-similar solutions of (1.1)–(1.2)λ for λ ∈ (0, λ] is still an open question.

We prove Theorem 1 by using of the explicit supersolution and comparison
arguments based on the maximum principle. We prove Theorem 2 by variational
approach essentially due to Ambrosetti-Rabinowitz [1] and Crandall-Rabinowitz
[5].

As far as we are aware, the idea of constructing self-similar solutions by solv-
ing the initial value problem for homogeneous initial data was first used by Giga
and Miyakawa [13], for the Navier-Stokes equation in vorticity form. The idea
of [13] was used later by several authors for various problems. Concerning the
equation

ut − �u + up = 0 in RN, (1.11)

we refer to Kwak [23] and Cazenave et al. [3]. They also obtained the asymptoti-
cally self-similar behavior for a class of general solutions. See, also [15,19,9,18].

After the paper was completed, we learned the work by Souplet and Weiss-
ler [30] where the existence of radial self-similar solutions of (1.6) were studied
precisely in the subcritical, supercritical, and critical cases by using a shooting
argument.

This paper is organized as follows: in Section 2 we show the maximum princi-
ple and comparison results for the operator related to the equation (1.6). In Section
3 we consider the linearized eigenvalue problems. Sections 4 and 5 devoted to
the proofs of Theorems 1 and 2, respectively. For completeness, we show the
regularity and some properties of the solutions in the appendixes.

In the remaining part of the paper, we assume that p > (N + 2)/N .

2. Preliminaries

In this section we show the following two propositions which are crucial for the
proofs of the theorems. For simplicity, we define Lu by
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Lu = −�u − 1

2
x · ∇u − 1

p − 1
u

for u ∈ C2(RN).

Proposition 2.1. Assume that Lu ≥ 0 in RN , and that

lim inf
|x|→∞

|x|2/(p−1)u(x) ≥ 0.

Then u > 0 or u ≡ 0 in RN . In particular, if Lu ≥ 0 and u ≥ 0 in RN then u > 0
or u ≡ 0 in RN .

Proposition 2.2. Assume that α, β : SN−1 → R satisfy α, β ∈ L∞(SN−1) and

0 ≤ α(ω) ≤ β(ω) for a.e. ω ∈ SN−1.

Suppose that there exists a positive function v satisfying Lv ≥ vp in RN and

lim
r→∞ r2/(p−1)v(rω) = β(ω) for a.e. ω ∈ SN−1.

Then there exists a positive solution u of Lu = up in RN satisfying u ≤ v in RN

and

lim
r→∞ r2/(p−1)u(rω) = α(ω) for a.e. ω ∈ SN−1. (2.1)

Moreover, for any positive function w satisfying Lw ≥ wp in RN and

lim inf
r→∞ r2/(p−1)w(rω) ≥ α(ω) for a.e. ω ∈ SN−1,

we have u ≤ w in RN .

First we show the following lemma.

Lemma 2.1. Assume that α : SN−1 → R satisfies α ∈ L∞(SN−1) and α ≥ 0,
α �≡ 0 for a.e. ω ∈ SN−1. Then there exists a positive function φα ∈ C2(RN)

satisfying Lφα = 0 in RN and

lim
r→∞ r2/(p−1)φα(rω) = α(ω) for a.e. ω ∈ SN−1. (2.2)

Proof. Put

w(x, t) = 1

(4πt)N/2

∫
RN

e−|x−y|2/(4t)α(y/|y|)|y|−2/(p−1)dy. (2.3)

We note that α(y/|y|)|y|−2/(p−1) ∈ L1
loc(R

N) from p > (N + 2)/N . By
[6, Chapter 5, Theorem 6.1], w defined by (2.3) satisfies wt = �w in RN ×(0, ∞)

and
w(x, t) → α(x/|x|)|x|−2/(p−1) in L1

loc(R
N) as t → 0.
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Define the rescaled functions wµ by wµ(x, t) = µ2/(p−1)w(µx, µ2t) for µ > 0.
From (2.3) we obtain w(x, t) = wµ(x, t) for all µ > 0. Putting µ = 1/

√
t , we

find that

w(x, t) = t−1/(p−1)φα(x/
√

t), (2.5)

where φα(x) = w(x, 1). It can be easily checked that φα satisfies Lφα = 0 in RN .
By Lemma B.1 in Appendix B below, we obtain (2.2). 
�
Lemma 2.2. Let 	 ⊂ RN be a bounded domain with smooth boundary ∂	.

(i) Assume that Lu ≥ 0 in 	 and u ≥ 0 on ∂	. Then u > 0 or u ≡ 0 in 	.
(ii) Assume that f ∈ Cθ(	) for some θ ∈ (0, 1) and g ∈ C(∂	). Then there

exists a solution u of Lu = f in 	 and u = g on ∂	.

Proof. (i) From Lemma 2.1 there exists a positive function φ satisfying

Lφ = 0 in RN and lim
r→∞ r2/(p−1)φ(rω) = 1 for a.e. ω ∈ SN−1. (2.6)

Let v(x) = u(x)/φ(x). Then v satisfies

−�v −
(

2

φ
∇φ + 1

2
x

)
· ∇v ≥ 0 in 	 and v ≥ 0 on ∂	.

By the maximum principle [27] we have v > 0 or v ≡ 0 in 	, which implies
that u > 0 or u ≡ 0 in 	.

(ii) Letφ be a positive function satisfying (2.6).We have a solutionv ∈ C2,θ (	)

of 


−�v −
(

2

φ
∇φ + 1

2
x

)
· ∇v = f

φ
in 	, and

v = g

φ
on ∂	.

(See, e.g., [14].) Then u(x) = v(x)φ(x) satisfies Lu = f in 	 and u = g

on ∂	. 
�
Proof of Proposition 2.1. Let v(x) = u(x)/φ(x), where φ is a positive function
satisfying (2.6). Then v satisfies

−�v −
(

2

φ
∇φ + 1

2
x

)
· ∇v ≥ 0 in RN and lim inf

|x|→∞
v(x) ≥ 0.

First we show v ≥ 0 in RN . Assume to the contrary that v(x0) < 0 for some
x0 ∈ RN . Choose ε > 0 so small that ε < −v(x0), and take R > 0 so large that
R > |x0| and v(x) ≥ −ε on |x| = R. By the maximum principle [27] we have
v ≥ −ε in |x| ≤ R. This contradicts v(x0) < −ε. Hence, v ≥ 0 in RN . As a
consequence of (i) of Lemma 2.2 we have v > 0 or v ≡ 0 in RN , which implies
that u > 0 or u ≡ 0 in RN . 
�
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Lemma 2.3. Let f ∈ Cθ
loc(R

N) for some θ ∈ (0, 1), and let f ≥ 0. Assume that
there exists a positive function v such that Lv ≥ f in RN . Then there exists a
solution u of Lu = f in RN such that 0 ≤ u ≤ v in RN .

Proof. Define Br = {x ∈ RN : |x| < r} for r > 0. From (ii) of Lemma 2.2, there
exists a solution uk of

Luk = f in Bk and uk = v on ∂Bk

for each k = 1, 2, . . . . From (i) of Lemma 2.2 we have uk > 0 in Bk. Put
wk(x) = v(x) − uk(x). Then wk satisfies Lwk ≥ 0 in Bk and wk = 0 on ∂Bk.
From (i) of Lemma 2.2 again we have wk ≥ 0. Thus we have 0 < uk ≤ v in Bk.

Take R > 0. Since uk satisfies Luk = f in BR for k ≥ R, by the Schauder
estimates {uk} is bounded in C

2,θ
loc (BR) for some 0 < θ < 1. Then, by the

Ascolli-Arzela, a subsequence in {uk} converges in C2
loc(BR). We may do the same

arguments for a sequence {Rn} such that Rn → ∞ as n → ∞. By the diagonal
method there exists a function u ∈ C2(RN) such that a subsequence converges
to u in C2

loc(R
N). Thus u satisfies Lu = f in RN with 0 ≤ u ≤ v in RN . This

concludes the proof. 
�
Lemma 2.4. Let φα be a positive function satisfying Lφα = 0 in RN and (2.2).
Assume that there exists a positive function v̂ satisfying

Lv̂ ≥ (v̂ + φα)p in RN and lim
|x|→∞

|x|2/(p−1)v̂(x) = 0.

Then there exists a solution û of Lû = (û + φα)p in RN satisfying 0 ≤ û ≤ v̂.
Moreover, for any positive function ŵ satisfying

Lŵ ≥ (ŵ + φα)p in RN and lim inf
|x|→∞

|x|2/(p−1)ŵ(x) ≥ 0, (2.7)

we have û ≤ ŵ in RN .

Proof. For each u ∈ C2(RN), we define the mapping T u as follows: v = T u if

Lv = (u + φα)p in RN and 0 ≤ v ≤ v̂ in RN. (2.8)

Assume that 0 ≤ u ≤ v̂. Since v̂ satisfies Lv̂ ≥ (u+φα)p, from Lemma 2.3 there
exists a function v satisfying (2.8). Then the mapping T is well defined for each
u ∈ C2(RN) satisfying 0 ≤ u ≤ v̂. We also find that

lim
|x|→∞

|x|2/(p−1)T u(x) = 0 (2.9)

from 0 ≤ T u ≤ v̂ and lim|x|→∞ |x|2/(p−1)v̂(x) = 0.
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Assume that u1, u2 ∈ C2(RN). We show that 0 ≤ u1 < u2 ≤ v̂ implies
T u1 < T u2. In fact, if u1 < u2 then L(T u2 − T u1) > 0 in RN . From (2.9) we
have

lim
|x|→∞

|x|2/(p−1)(T u2(x) − T u1(x)) = 0.

Hence, from Proposition 2.1 we have T u1 < T u2.
Define {ûk} inductively by

û0 ≡ 0 and ûk = T ûk−1 for k = 1, 2, . . . . (2.10)

Since we have L(T û0) = φ
p
α > 0 in RN and lim|x|→∞ |x|2/(p−1)T û0(x) = 0, we

obtain T û0 > 0 in RN by Proposition 2.1. Then, by induction, ûk is well defined
and satisfies

0 ≡ û0 < û1 < · · · < ûk < ûk+1 < · · · < v̂ in RN.

Define û(x) = limk→∞ ûk(x). Take R > 0 and define BR = {x ∈ RN : |x| < R}.
Since {ûk} satisfies

Lûk = (ûk−1 + φα)p ≤ (v̂ + φα)p in BR,

it follows from elliptic interior estimates that {ûk} is bounded in W
2,p

loc (BR) for
every p > 1. By the Sobolev embedding theorem and the Schauder estimates,
{ûk} is bounded in C

2,θ
loc (BR) for some θ ∈ (0, 1). Therefore, {ûk} converges to û in

C2
loc(BR). We may do the same arguments for a sequence {Rn} such that Rn → ∞

as n → ∞. By the diagonal method {ûk} converges to û in C2
loc(R

N), and thus
we have Lû = (û + φα)p and 0 < û ≤ v̂ in RN .

Let ŵ be a positive function satisfying (2.7). We claim that ŵ > u implies
ŵ > T u for u ∈ C2(RN) satisfying 0 ≤ u ≤ v̂. In fact, if ŵ > u we have
L(ŵ − T u) > 0 in RN and

lim inf
|x|→∞

|x|2/(p−1)(ŵ − T u(x)) = lim inf
|x|→∞

|x|2/(p−1)ŵ ≥ 0.

From Proposition 2.1 we obtain ŵ > T u.
Let {ûn} be the sequence defined by (2.10). Then we have ŵ > û0 ≡ 0 and

ŵ > ûk for k = 1, 2, . . . , by induction. Therefore, we have ŵ ≥ û. 
�
Proof of Proposition 2.2. Let φβ be a positive function satisfying Lφβ = 0 in RN

and
lim
r→∞ r2/(p−1)φ(rω) = β(ω) for a.e. ω ∈ SN−1.

Then, from Proposition 2.1 we have φα ≤ φβ in RN . Define v̂(x) = v(x)−φβ(x).
From Lv̂ = vp > 0 in RN and lim|x|→∞ |x|2/(p−1)v̂(x) = 0 we have v̂ > 0 by
Proposition 2.1. We also find that v̂ satisfies Lv̂ ≥ (v̂ + φβ)p ≥ (v̂ + φα)p in RN .
Then it follows from Lemma 2.4 that there exists a solution û of Lû = (û+φα)p in
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RN satisfying 0 ≤ û ≤ v̂ in RN . In particular, we have lim|x|→∞ |x|2/(p−1)û(x) =
0. Put u = û + φα. Then u satisfies Lu = up in RN with (2.1).

Define ŵ = w − φα. Then ŵ satisfies

Lŵ ≥ wp = (ŵ + φα)p > 0 in RN and lim inf
|x|→∞

|x|2/(p−1)ŵ(x) ≥ 0.

Proposition 2.1 implies that ŵ > 0 in RN . From Lemma 2.4 we have û ≤ ŵ,
which implies u ≤ w in RN . This completes the proof of Proposition 2.2. 
�

3. Eigenvalue problems

We recall here some results about the weighted Sobolev space H 1
ρ (RN) defined

by (1.8). For 1 ≤ p < ∞, we define

Lp
ρ(RN)=

{
u∈Lp(RN) :

∫
RN

upρdx <∞
}

and ‖u‖L
p
ρ
=

(∫
RN

upρdx

)1/p

,

where ρ(x) = e|x|2/4.

Lemma 3.1. (i) For every u ∈ H 1
ρ (RN), we have

N

2

∫
RN

u2ρdx ≤
∫

RN

|∇u|2ρdx.

(ii) The embedding H 1
ρ (RN) ⊂ L2

ρ(R
N) is compact.

(iii) If N ≥ 3, then the embedding H 1
ρ (RN) ⊂ L

p+1
ρ (RN) is continuous for

1 ≤ p ≤ (N +2)/(N −2), and is compact for 1 < p < (N +2)/(N −2). If
N = 2 then the embedding H 1

ρ (R2) ⊂ L
p+1
ρ (R2) is continuous and compact

for p > 1.

For the proof, see Escobedo and Kavian [8] and Kavian [20]. From (i) of
Lemma 3.1, for u ∈ H 1

ρ (RN) we have
∫

RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx ≥

(
N

2
− 1

p − 1

) ∫
RN

u2ρdx (3.1)

and ∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx ≥

(
1 − 2

N(p − 1)

) ∫
RN

|∇u|2ρdx. (3.2)

Let us consider the eigenvalue problem


−�u − 1

2
x · ∇u − 1

p − 1
u = µm(x)u in RN,

u ∈ H 1
ρ (RN),

(3.3)

where m ∈ L∞(RN) ∩ Cθ(RN) for some θ ∈ (0, 1) and m > 0 in RN . First, we
show the following:
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Lemma 3.2. The problem (3.3) has the first eigenvalue µ0 > 0 and the corre-
sponding eigenfunction u0 > 0 in RN . Furthermore, we have

µ0 = inf

{∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx : u ∈ H 1

ρ (RN),

∫
RN

mu2ρdx = 1

}
.

(3.4)

Proof. We claim that µ0 > 0 and the minimization problem (3.4) is achieved by
some function u0 > 0. First we show µ0 > 0. Indeed, we see that

1 =
∫

RN

mu2ρdx ≤ ‖m‖L∞

∫
RN

u2ρdx.

Then it follows from (3.1) that

∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx ≥

(
N

2
− 1

p − 1

)
1

‖m‖L∞

for u ∈ H 1
ρ (RN), which implies µ0 > 0.

Let {uk} ⊂ H 1
ρ (RN) be a minimizing sequence of µ0, that is,

∫
RN

mu2
kρdx = 1 and

∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx → µ0 as k → ∞.

From (3.2) and (i) of Lemma 3.1 we find that {uk} is bounded in H 1
ρ (RN). Then,

from (ii) of Lemma 3.1, there exist a subsequence that we still denoted {uk} and
a function u0 ∈ H 1

ρ (RN) such that

uk ⇀ u0 weakly in H 1
ρ (RN) as k → ∞,

uk → u0 strongly in L2
ρ(R

N) as k → ∞.

Then we obtain
∫

RN

(
|∇u0|2 − 1

p − 1
u2

0

)
ρdx ≤ lim inf

k→∞

∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx = µ0

and

1 = lim
k→∞

∫
RN

mu2
kρdx =

∫
RN

mu2
0ρdx.

Hence, we find that u0 achieves µ0. Clearly, |u0| also achieves µ0. By the ellip-
tic regularity theory and Proposition 2.1, we have u0 ∈ C2(RN) and u0 > 0
in RN . 
�
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In this section we show the following two propositions.

Proposition 3.1. Assume that there is a positive function w ∈ C2(RN) satisfying

�w + 1

2
x · ∇w + 1

p − 1
w + µm(x)w ≤ 0, x ∈ RN, (3.5)

for some µ ∈ R. Then µ ≤ µ0, where µ0 is the first eigenvalue of the problem
(3.3).

Proposition 3.2. Assume that m1, m2 ∈ L∞(RN) satisfy 0 < m1(x) ≤ m2(x),
m1(x) �≡ m2(x). Let µi be the first eigenvalue of the problem


−�u − 1

2
x · ∇u − 1

p − 1
u = µmi(x)u in RN,

u ∈ H 1
ρ (RN),

(3.6)i

for each i = 1, 2. Then µ1 > µ2.

To prove Proposition 3.1, we consider the eigenvalue problems


−�v − 1

2
x · ∇v − 1

p − 1
v = µm(x)v in Bk,

v ∈ H 1
0 (Bk),

(3.7)k

where Bk = {x ∈ RN : |x| < k}, for k = 1, 2, . . . . We can prove that the problem
(3.7)k has the first eigenvalue µk > 0 and the corresponding eigenfunction vk > 0
in Bk. Furthermore, we find that

µk = inf

{∫
Bk

(
|∇v|2 − 1

p − 1
v2

)
ρdx : v ∈ H 1

0 (Bk),

∫
Bk

mv2ρdx = 1

}
,

(3.8)k
and that vk ∈ C2(Bk) achieves the minimization (3.8)k.

Suppose that v ∈ H 1
0 (Bk), and extend v to be zero outside Bk. Then v ∈

H 1
0 (Bk+1). From (3.8)k we have µk ≥ µk+1 for k = 1, 2, . . . .

Lemma 3.3. We have limk→∞ µk = µ0, where µ0 is the first eigenvalue of the
problem (3.3).

Proof. Suppose that vk ∈ H 1
0 (Bk) is the first eigenfunction of the problem (3.7)k,

and extend vk to be zero outside Bk. Then vk ∈ H 1
ρ (RN) and satisfies

∫
RN

(
∇vk · ∇φ − 1

p − 1
vkφ − µkmvkφ

)
ρdx = 0

for any φ ∈ C∞
0 (Bk). Since vk achieves the the minimization (3.8)k, we have

∫
RN

mv2
kρdx = 1 and

∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx = µk.
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From (3.4) we have µk ≥ µ0. From (3.2) and µk ≥ µk+1, k = 1, 2, . . . , it follows
that

∫
RN

|∇vk|2ρdx ≤
(

1 − 2

N(p − 1)

)−1

µk ≤
(

1 − 2

N(p − 1)

)−1

µ1.

Therefore, from (i) of Lemma 3.1, {vk} is bounded in H 1
ρ (RN). Then, from (ii)

of Lemma 3.1, there exist a subsequence that we still denote {vk} and a function
v0 ∈ H 1

ρ (RN) such that

vk ⇀ v0 weakly in H 1
ρ (RN) as k → ∞,

vk → v0 strongly in L2
ρ(R

N) as k → ∞.

Then we obtain
∫

RN mv2
0ρdx = 1, which implies that v0 �≡ 0. We also obtain

∫
RN

(
∇v0 · ∇φ − 1

p − 1
v0φ − µ∞mv0φ

)
ρdx = 0 (3.9)

for any φ ∈ C∞
0 (RN), where µ∞ = limk→∞ µk. Since C∞

0 (RN) is dense in
H 1

ρ (RN), we obtain (3.9) for any φ ∈ H 1
ρ (RN). Putting φ = u0 > 0 in (3.9),

where u0 is the eigenfunction of the problem (3.3), we obtain

µ∞
∫

RN

mv0u0ρdx =
∫

RN

(
∇v0 · ∇u0 − 1

p − 1
v0u0

)
ρdx

= µ0

∫
RN

mv0u0ρdx,

which implies µ∞ = µ0. 
�
Proof of Proposition 3.1. We claim that µ < µk for each k = 1, 2, . . . , where µk

is the first eigenvalue of the problem (3.7)k. Assume that vk is the corresponding
eigenfunction. We note that vk ∈ C2(Bk) and satisfies

∫
Bk

mv2
kρdx = 1 and

∫
Bk

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx = µk. (3.10)

Let w ∈ C2(RN) be a positive function satisfying (3.5). Then, by the straight
forward calculation we have the following Picone’s identity (cf. [17,31]):

ρw2
∣∣∣∇

(vk

w

)∣∣∣2
+ ∇ ·

(
v2

k

w
(ρ∇w)

)
= ρ|∇vk|2 + v2

k

w
∇ · (ρ∇w) in Bk.

Since w satisfies

∇ · (ρ∇w) + ρ

(
1

p − 1
w + µmw

)
≤ 0,
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we obtain

ρw2
∣∣∣∇

(vk

w

)∣∣∣2
+ ∇ ·

(
v2

k

w
(ρ∇w)

)
≤

(
|∇vk|2 −

(
1

p − 1
+ µm

)
v2

k

)
ρ

(3.11)

in Bk. Note that vk = 0 on ∂Bk. Then, by using Green’s formula, we have

∫
Bk

∇ ·
(

v2
k

w
(ρ∇w)

)
dx = 0.

Therefore, integrating (3.11) on Bk we obtain

0 <

∫
Bk

ρw2
∣∣∣∇

(vk

w

)∣∣∣2
dx ≤

∫
Bk

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx − µ

∫
Bk

mv2
kρdx.

From (3.10) we have 0 < µk − µ. Then µk > µ for each k = 1, 2, . . . . From
Lemma 3.3 we obtain µ ≤ µ0. 
�

Proof of Proposition 3.2. Let ui > 0 be the first eigenfunction of the problem
(3.6)i for each i = 1, 2. Then ui , i = 1, 2, satisfies

∫
RN

(
∇ui · ∇φ − 1

p − 1
uiφ

)
ρdx = µi

∫
RN

miuiφρdx

for any φ ∈ H 1
ρ (RN). Therefore, we have

µ1

∫
RN

m1u1u2ρdx =
∫

RN

(
∇u1 · ∇u2 − 1

p − 1
u1u2

)
ρdx

= µ2

∫
RN

m2u1u2ρdx.

Since m1 ≤ m2, m1 �≡ m2, we obtain µ1 > µ2. 
�

4. Existence of the minimal solution: Proof of Theorem 1

For each λ > 0 we introduce the solution set

Sλ = {u ∈ C2(RN) : u is a positive solution of (1.6)-(1.7)λ}.

We call a minimal solution uλ ∈ Sλ, if uλ satisfies uλ ≤ u for all u ∈ Sλ.
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First we show the following results.

Lemma 4.1. (i) We have Sλ �= ∅ for some λ > 0. Moreover, if Sλ0 �= ∅ for some
λ0 > 0, then Sλ �= ∅ for all λ ∈ (0, λ0).

(ii) If Sλ �= ∅ then there exists a minimal solution uλ ∈ Sλ. Moreover, for any
positive function w satisfying


−�w − 1

2
x · ∇w − 1

p − 1
w ≥ wp in RN and

lim inf
r→∞ r2/(p−1)w(rω) ≥ λa(ω) for a.e. ω ∈ SN−1,

(4.1)

we have uλ ≤ w.

Proof. (i) Let v = v(r), r = |x|, be a positive solution of (1.6) satisfying

lim
r→∞ r2/(p−1)v(r) = �

for some � > 0. The existence of such v is obtained by [16, Theorem 5]. Take
λ∗ > 0 so small that λ∗ ≤ �/‖a‖L∞(SN−1). By applying Proposition 2.2 with
α(ω) = λ∗a(ω) and β(ω) ≡ �, we obtain a positive solution u of (1.6)–(1.7)λ
with λ = λ∗, that is, Sλ∗ �= ∅.

Assume that Sλ0 �= ∅ for some λ0 > 0. Let λ ∈ (0, λ0). Then, by applying
Proposition 2.2 with α(ω) = λa(ω) and β(ω) = λ0a(ω), we have a positive
solution u of (1.6)–(1.7)λ. Therefore, Sλ �= ∅ for all λ ∈ (0, λ0).

(ii) Assume that uλ ∈ Sλ. Applying Proposition 2.2 with v = uλ and α(ω) =
β(ω) = λa(ω), we have a positive solution uλ of (1.6)-(1.7)λ such that uλ ≤ w

for any w > 0 satisfying (4.1). In particular, we obtain uλ ≤ u for all u ∈ Sλ.
This implies that uλ is the minimal solution of Sλ. 
�
Lemma 4.2. (i) Assume that uλ1

∈ Sλ1 and uλ2
∈ Sλ2 are minimal solutions

with 0 < λ1 < λ2. Then
uλ1

λ1
≤ uλ2

λ2
in RN. (4.2)

In particular, uλ1
< uλ2

in RN .
(ii) Let uλ ∈ Sλ be the minimal solution. Then ‖uλ‖L∞(RN) = O(λ) as λ → 0.

(iii) Let λ = sup{λ > 0 : Sλ �= ∅}. Then λ < ∞.

Remark 4.1. As already mentioned in (ii) of Remark 2, the result (iii) of this lemma
is essentially obtained by [33,37,24]. However, we give here a slight simple proof
for convenience.

Proof. (i) Define v = uλ2
/λ2. Then v satisfies




−�v − 1

2
x · ∇v − 1

p − 1
v = λ

p−1
2 vp ≥ λ

p−1
1 vp in RN and

lim
r→∞ r2/(p−1)v(rω) = a(ω) for a.e. ω ∈ SN−1.
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Put w = λ1v. Then w satisfies




−�w − 1

2
x · ∇w − 1

p − 1
w ≥ wp in RN and

lim
r→∞ r2/(p−1)w(rω) = λ1a(ω) for a.e. ω ∈ SN−1.

From (ii) of Lemma 4.1 we have uλ1
≤ w, which implies that (4.2) holds. In

particular, we have uλ1
< uλ2

in RN .
(ii) Take λ0 > 0 so that Sλ0 �= ∅. Let λ ∈ (0, λ0). From (i) of this lemma, we

have
uλ

λ
≤ uλ0

λ0
in RN.

Then we obtain ‖uλ‖L∞(RN) ≤ (λ/λ0)‖uλ0
‖L∞(RN) for λ ∈ (0, λ0). This

implies that (ii) holds.
(iii) Assume that Sλ �= ∅ for some λ > 0. Let uλ ∈ Sλ be the minimal solution.

Then v = uλ/λ satisfies

�v + 1

2
x · ∇v + 1

p − 1
v + u

p−1
λ v = 0 in RN. (4.3)

Take λ0 ∈ (0, λ), and let uλ0
∈ Sλ0 be the minimal solution. Then, from (i) of this

lemma, we have uλ/λ ≥ uλ0
/λ0. Hence, from (4.3) we have

�v + 1

2
x · ∇v + 1

p − 1
v + λp−1

(
uλ0

λ0

)p−1

v ≤ 0 in RN.

On the other hand, from Lemma 3.2 the eigenvalue problem




−�w − 1

2
x · ∇w − 1

p − 1
w = µ

(
uλ0

λ0

)p−1

w in RN,

w ∈ H 1
ρ (RN),

has the first eigenvalue µ0 > 0. By Proposition 3.1 we have λp−1 ≤ µ0. This
implies that sup{λ > 0 : Sλ �= ∅} ≤ µ

1/(p−1)

0 . 
�

Proof of Theorem 1. (i) Let λ = sup{λ > 0 : Sλ �= ∅}. Then, from (i) of Lemma
4.1 and (iii) of Lemma 4.2, we have 0 < λ < ∞. By Lemma 4.1, for λ ∈ (0, λ),
Sλ �= ∅ and there exists a minimal solution uλ ∈ Sλ. From (i) and (ii) of Lemma
4.2, uλ is increasing in λ and satisfies ‖uλ‖L∞(RN) = O(λ) as λ → 0.

(ii) By the definition of λ, we can conclude that (1.6)–(1.7)λ has no positive
solution for λ > λ. 
�
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5. Existence of the second solution: Proof of Theorem 2

Let uλ be the minimal positive solution of (1.6)-(1.7)λ for λ ∈ (0, λ) obtained
in Theorem 1. In order to find a second solution of (1.6)-(1.7)λ we introduce the
following problem:




�u + 1

2
x · ∇u + 1

p − 1
u + (u + uλ)

p − u
p

λ = 0 in RN,

u ∈ H 1
ρ (RN) and u > 0 in RN.

(5.1)λ

Clearly, we can get another positive solution uλ = uλ + uλ of (1.6)–(1.7)λ, if
(5.1)λ possesses a solution uλ satisfying (5.2) below. In this section we show the
following two propositions.

Proposition 5.1. Let p > (N + 2)/N and (N − 2)p < N + 2. For λ ∈ (0, λ),
there exists a solution uλ ∈ C2(RN) of (5.1)λ satisfying

uλ(x) = O(e−|x|2/4) as |x| → ∞. (5.2)

Proposition 5.2. Assume that p > (N + 2)/N and (N − 2)p < N + 2. Let uλ be
the solution of (5.1)λ obtained in Proposition 5.1. Then uλ → u0 in H 1

ρ (RN) ∩
L∞(RN) as λ → 0, where u0 is the solution of the problem (1.9).

As a consequence of Propositions 5.1 and 5.2 we obtain Theorem 2.
We show the existence of the solution of (5.1)λ by using a variational method.

To this end we define the corresponding variational functional of (5.1)λ by

Iλ(u) = 1

2

∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx −

∫
RN

G(u, uλ)ρdx

with u ∈ H 1
ρ (RN), where

G(t, s) = 1

p + 1
(t + s)p+1 − 1

p + 1
sp+1 − spt.

We know that the nontrivial critical point u ∈ H 1
ρ (RN) of the functional Iλ is a

weak solution of the equation in (5.1)λ, that is, u satisfies
∫

RN

(
∇u · ∇φ − 1

p − 1
uφ

)
ρdx −

∫
RN

g(u, uλ)φρdx = 0

for any φ ∈ H 1
ρ (RN), where

g(t, s) = (t + s)p − sp.

We easily see that uλ ∈ C2(RN) and uλ > 0 in RN from Proposition A.1 in
Appendix A and Proposition 2.1.
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First we investigate the properties of the functions g(t, s) and G(t, s).

Lemma 5.1. (i) For s0 > 0, there is a constant C = C(s0) > 0 such that

0 ≤ g(t, s) ≤ C(t + tp), t ≥ 0, 0 ≤ s ≤ s0.

(ii) For δ > 0, there is a constant C = C(δ) > 0 such that

0 ≤ g(t, s) ≤ Ct, 0 ≤ s, t ≤ δ.

Furthermore, C(δ) → 0 as δ → 0.
(iii) We have

G(t, s) ≥ 1

p + 1
tp+1, s, t ≥ 0.

(iv) For any ε > 0 and s0 > 0, there is a constant C = C(ε, s0) > 0 such that

G(t, s) − p

2
sp−1t2 ≤ εt2 + Ctp+1, t ≥ 0, 0 ≤ s ≤ s0.

(v) Put cp = min{1, p − 1}. Then

g(t, s)t − (2 + cp)G(t, s) ≥ −cpp

2
sp−1t2, s, t ≥ 0.

Proof. (i) For 0 ≤ s ≤ s0 we have

lim
t→∞

g(t, s)

tp
= 1 and lim

t→0

g(t, s)

t
= psp−1

by using l’Hospital’s rule. Hence we obtain (i).
(ii) For 0 ≤ s, t ≤ δ we have

gt (t, s) = p(t + s)p−1 ≤ p(2δ)p−1.

Integrating the above on [0, t] with respect t , we obtain g(t, s) ≤ C(δ)t , where
C(δ) = p(2δ)p−1. Thus, C(δ) → 0 as δ → 0.

(iii) We have G(0, s) = Gt(0, s) = 0 and Gtt (t, s) = p(t + s)p−1 ≥ ptp−1

for t, s ≥ 0. By integrating on [0, t] twice with respect t , we obtain (iii).
(iv) Put h(t, s) = G(t, s) − (p/2)sp−1t2. We have h(0, s) = ht(0, s) =

htt (0, s) = 0. Then, by using l’Hospital’s rule, we obtain

lim
t→0

h(t, s)

t2
= 0.

By virtue of

lim
t→∞

h(t, s)

tp+1
= 1

p + 1
,

we obtain (iv).
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(v) Define

H(t, s) = g(t, s)t − (2 + cp)G(t, s) + cpp

2
sp−1t2.

Then we have H(0, s) = Ht(0, s) = Htt (0, s) = 0 and

Httt (t, s) =
{

p(p − 1)(2 − p)(t + s)p−3s if 1 < p < 2,

p(p − 1)(p − 2)(t + s)p−3t if p ≥ 2.

Thus Httt (t, s) ≥ 0 for s, t ≥ 0. By integrating on [0, t] three times with respect
t , we obtain H(t, s) ≥ 0 for s, t ≥ 0. Thus (v) holds. 
�

Let uλ be the minimal positive solution of (1.6)-(1.7)λ for λ ∈ (0, λ). By
Lemma 3.2 the corresponding eigenvalue problem




−�w − 1

2
x · ∇w − 1

p − 1
w = µpu

p−1
λ w in RN,

w ∈ H 1
ρ (RN),

has the first eigenvalue µ(λ) > 0. Furthermore, we have

µ(λ) = inf

{∫
RN

(
|∇w|2 − 1

p − 1
w2

)
ρdx : w ∈ H 1

ρ (RN), p

∫
RN

u
p−1
λ w2ρdx = 1

}
.

Then it follows that∫
RN

(
|∇w|2 − 1

p − 1
w2

)
ρdx ≥ µ(λ)p

∫
RN

u
p−1
λ w2ρdx (5.3)

for any w ∈ H 1
ρ (RN).

Lemma 5.2. For 0 < λ < λ, we have µ(λ) > 1. Moreover, µ(λ) is strictly
decreasing in λ ∈ (0, λ).

Proof. Take λ1, λ2 ∈ (0, λ) with λ1 < λ2. From (i) of Theorem 1 we have uλ2
>

uλ1
in RN , and hence u

p−1
λ2

> u
p−1
λ1

. By Proposition 3.2, we have µ(λ2) < µ(λ1).
Therefore, µ(λ) is strictly decreasing in λ.

Let λ ∈ (0, λ), and let λ0 ∈ (λ, λ). Put w = uλ0
− uλ. Then w > 0 and w

satisfies

�w + 1

2
x · ∇w + 1

p − 1
w + pu

p−1
λ w ≤ 0, x ∈ RN.

By Proposition 3.1 we have µ(λ) ≥ 1. Then µ(λ) ≥ 1 for λ ∈ (0, λ). Since µ(λ)

is strictly decreasing, we have µ(λ) > 1 for all λ ∈ (0, λ). 
�
In the following we verify the existence of nontrivial solution of (5.1)λ by

means of the Mountain Pass lemma.
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Lemma 5.3. Assume that {uk} is the Palais-Smale sequence for Iλ(u), that is,

uk ∈ H 1
ρ (RN), {Iλ(uk)} is bounded, and I ′

λ(uk) → 0 as k → ∞ (5.4)

in the dual space of H 1
ρ (RN). Then {uk} is bounded in H 1

ρ (RN).

Proof. Since {Iλ(uk)} is bounded, we have

1

2

∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx −

∫
RN

G(uk, uλ)ρdx ≤ M (5.5)

for some M > 0. Let ε > 0. From I ′
λ(uk) → 0 as k → ∞, we have, for sufficient

large k,∣∣∣∣
∫

RN

(
∇uk · ∇φ − 1

p − 1
ukφ

)
ρdx −

∫
RN

g(uk, uλ)φρdx

∣∣∣∣ ≤ ε‖φ‖H 1
ρ

for any φ ∈ H 1
ρ (RN). Putting φ = uk/‖uk‖H 1

ρ
, we have

∣∣∣∣
∫

RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx −

∫
RN

g(uk, uλ)ukρdx

∣∣∣∣ ≤ ε‖uk‖H 1
ρ
.

Then we obtain∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx ≥

∫
RN

g(uk, uλ)ukρdx − ε‖uk‖H 1
ρ
. (5.6)

Put cp = min{1, p − 1}. From (5.5) and (5.6) we have

(2 + cp)M ≥
(

1 + cp

2

) ∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx

−(2 + cp)

∫
RN

G(uk, uλ)ρdx

≥ cp

2

∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx

+
∫

RN

(
g(uk, uλ)uk − (2 + cp)G(uk, uλ)

)
ρdx − ε‖uk‖H 1

ρ
.

From (v) of Lemma 5.1, (5.3), and (3.2), it follows that

(2 + cp)M ≥ cp

2

(∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx − p

∫
RN

u
p−1
λ u2

kρdx

)

−ε‖uk‖H 1
ρ

≥ cp

2

(
1 − 1

µ(λ)

) ∫
RN

(
|∇uk|2 − 1

p − 1
u2

k

)
ρdx − ε‖uk‖H 1

ρ

≥ cp

2

(
1 − 1

µ(λ)

) (
1 − 2

N(p − 1)

)
‖∇uk‖2

L2
ρ
− ε‖uk‖H 1

ρ
.

We note here that µ(λ) > 1 from Lemma 5.2. Therefore, {‖∇uk‖L2
ρ
} is bounded,

and hence, from (i) of Lemma 3.1, {uk} is bounded in H 1
ρ (RN). 
�
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Lemma 5.4. The functional Iλ satisfies the Palais-Smale condition, that is, any
Palais-Smale sequence contains a subsequence which converges in H 1

ρ (RN).

Proof. We show the case where N ≥ 3. We can verify the case where N = 2 with
a slight modification. Let {uk} be a Palais-Smale sequence, that is, (5.4) holds.
By Lemma 5.3 we have {uk} is bounded in H 1

ρ (RN). Then, from (ii) and (iii) of
Lemma 3.1, there exist a subsequence that we still denote {uk} and a function
u ∈ H 1

ρ (RN) such that

uk ⇀ u weakly in H 1
ρ (RN) as k → ∞, (5.7)

uk → u strongly in L2
ρ(R

N) ∩ Lp+1
ρ (RN) as k → ∞. (5.8)

We claim that ‖∇(uk − u)‖L2
ρ

→ 0 as k → ∞. We see that

‖∇(uk − u)‖L2
ρ

=
∫

RN

∇uk · (∇uk − ∇u)ρdx −
∫

RN

∇u · (∇uk − ∇u)ρdx.

It follows from (5.7) that
∫

RN

∇u · (∇uk − ∇u)ρdx → 0 as k → ∞.

We observe that∫
RN

∇uk · (∇uk − ∇u)ρdx = I ′
λ(uk)(uk − u) + 1

p − 1

∫
RN

uk(uk − u)ρdx

+
∫

RN

g(uk, uλ)(uk − u)ρdx.

Since I ′
λ(uk) → 0 as k → ∞, we have

|I ′
λ(uk)(uk − u)| ≤ |I ′

λ(uk)|‖uk − u‖H 1
ρ

→ 0 as k → ∞.

From (i) of Lemma 5.1 we obtain
∣∣∣∣
∫

RN

g(uk, uλ)(uk − u)ρdx

∣∣∣∣ ≤ C

(∫
RN

uk(uk − u)ρdx +
∫

RN

u
p

k (uk − u)ρdx

)

for some constant C > 0. By using Hölder inequality and (5.8), we obtain
∣∣∣∣
∫

RN

uk(uk − u)ρdx

∣∣∣∣ ≤ ‖uk‖2
L2

ρ
‖uk − u‖2

L2
ρ

→ 0 as k → ∞

and ∣∣∣∣
∫

RN

u
p

k (uk − u)ρdx

∣∣∣∣ ≤ ‖uk‖p+1

L
p+1
ρ

‖uk − u‖
L

p+1
ρ

→ 0 as k → ∞.
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Therefore, we have
∫

RN

∇uk · (∇uk − ∇u)ρdx → 0 as k → ∞,

and conclude that ‖∇(uk − u)‖L2
ρ

→ 0 as k → ∞. From (i) of Lemma 3.1 we

have uk → u in H 1
ρ (RN). 
�

Lemma 5.5. There exist some constants δ = δ(λ) > 0 and η = η(λ) > 0 such
that

Iλ(u) ≥ η > 0 (5.9)

for all u ∈ H 1
ρ (RN) satisfying ‖∇u‖L2

ρ
= δ.

Proof. For any u ∈ H 1
ρ (RN) we have

Iλ(u) = 1

2

∫
RN

(
|∇u|2 − 1

p − 1
u2 − pu

p−1
λ u2

)
ρdx

−
∫

RN

(
G(u, uλ) − p

2
u

p−1
λ u2

)
ρdx ≡ J1 − J2.

From (5.3) and Lemma 5.2 we obtain

J1 ≥ 1

2

(
1 − 1

µ(λ)

) ∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx

with µ(λ) > 1. Then, from (3.2), we have

J1 ≥ C0‖∇u‖2
L2

ρ
, where C0 = 1

2

(
1 − 1

µ(λ)

) (
1 − 2

N(p − 1)

)
> 0.

From (iv) of Lemma 5.1, for any ε > 0 there is a constant C1 = C1(ε, ‖uλ‖L∞) >

0 such that

J2 ≤ ε

∫
RN

u2ρdx + C1

∫
RN

up+1ρdx.

From (i) and (iii) of Lemma 3.1 we have

J2 ≤ 2

N
ε‖∇u‖2

L2
ρ
+ C1C2‖∇u‖p+1

L2
ρ

for some constant C2 > 0. Take ε > 0 so small that ε < NC0/2. Then we have

Iλ(u) ≥ C3‖∇u‖2
L2

ρ
− C1C2‖∇u‖p+1

L2
ρ

, where C3 = C0 − 2

N
ε > 0,

which implies that (5.9) holds for some δ > 0 and η > 0. 
�
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Define the corresponding functional of (1.9) by

I0(u) = 1

2

∫
RN

(
|∇u|2 − 1

p − 1
u2

)
ρdx − 1

p + 1

∫
RN

up+1ρdx

with u ∈ H 1
ρ (RN). Let u0 be the solution of the problem (1.9). Then u0 satisfies

∫
RN

(
|∇u0|2 − 1

p − 1
u2

0

)
ρdx =

∫
RN

u
p+1
0 ρdx. (5.10)

Therefore, we have

I0(u0) =
(

1

2
− 1

p + 1

) ∫
RN

u
p+1
0 ρdx. (5.11)

Lemma 5.6. Let u0 be the solution of the problem (1.9), and let 0 < λ < λ. Then

(i) Iλ(tu0) < 0 for t > ((p + 1)/2)1/(p−1);
(ii) supt>0 Iλ(tu0) ≤ I0(u0).

Proof. From (5.10) we have

Iλ(tu0) = t2

2

∫
RN

(
|∇u0|2 − 1

p − 1
u2

0

)
ρdx −

∫
RN

G(tu0, uλ)ρdx

= t2

2

∫
RN

u
p+1
0 ρdx −

∫
RN

G(tu0, uλ)ρdx.

From (iii) of Lemma 5.1 we have

G(tu0, uλ) ≥ tp+1

p + 1
u

p+1
0 .

Then it follows that

Iλ(tu0) ≤
(

t2

2
− tp+1

p + 1

) ∫
RN

u
p+1
0 ρdx. (5.12)

Since (t2/2 − tp+1/(p + 1)) < 0 for t > ((p + 1)/2)1/(p−1), we obtain (i). From
(5.11) and (5.12) we obtain

sup
t>0

Iλ(tu0) ≤ sup
t>0

(
t2

2
− tp+1

p + 1

) ∫
RN

u
p+1
0 ρdx

=
(

1

2
− 1

p + 1

) ∫
RN

u
p+1
0 ρdx = I0(u0),

which implies that (ii) holds. 
�
Lemma 5.7. For 0 < λ < λ, there exists a critical point uλ ∈ H 1

ρ (RN) of Iλ(u)

such that Iλ(uλ) ≤ I0(u0). Moreover, uλ ∈ C2(RN) and uλ(x) → 0 as |x| → ∞.
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Proof. From Lemma 5.4, Iλ(u) satisfies the Palais-Smale condition. From (i) of
Lemma 5.6, there exists a constant T1 > 0 such that e = T1u0 satisfies ‖∇e‖L2

ρ
> δ

and Iλ(e) ≤ 0, where δ is the constant appearing in Lemma 5.5. Denote

c = inf
v∈�

max
s∈[0,1]

Iλ(v(s)),

where � = {v ∈ C([0, 1]; H 1
ρ (RN)) : v(0) = 0, v(1) = e}. Then, from Lemma

5.5 and (ii) of Lemma 5.6, it follows that

0 < η ≤ c ≤ I0(u0).

The Mountain Pass Lemma [1, 5] enables us to find a critical point uλ ∈ H 1
ρ (RN)

of Iλ(u). Hence, uλ is a weak solution of the equation in (5.1)λ and satisfies
Iλ(uλ) ≤ I0(u0). By Proposition A.1 in Appendix A, we have uλ ∈ C2(RN) and
uλ(x) → 0 as |x| → ∞. 
�
Proof of Proposition 5.1. The existence of solution uλ of the problem (5.1)λ has
been obtained by Lemma 5.7. Therefore it suffices to show (5.2). Take a constant
c0 so that 0 < c0 < (N/2) − 1/(p − 1). Recall that both uλ(x) and uλ(x) tend to
0 as |x| → ∞. Then, from (ii) of Lemma 5.1, there is a constant R > 0 such that

0 ≤ g(uλ(x), uλ(x)) ≤ c0uλ(x), |x| ≥ R. (5.13)

Put w(x) = C1e
−|x|2/4, where C1 = max|x|≤R uλ(x)e|x|2/4. Clearly, w(x) ≥ uλ(x)

for |x| ≤ R. Since w ∈ H 1
ρ (RN) and w satisfies −∇ · (ρ∇w) = (N/2)ρw in RN ,

we have ∫
RN

∇w · ∇φρdx = N

2

∫
RN

wφρdx (5.14)

for any φ ∈ H 1
ρ (RN). Let φ(x) = (uλ(x) − w(x))+, where a+ = max{a, 0}.

Then φ ∈ H 1
ρ (RN), φ ≡ 0 for |x| ≤ R, and

∇φ =
{∇uλ − ∇w if uλ ≥ w,

0 if uλ < w.
(5.15)

Now we claim that φ ≡ 0 in RN . We observe that
∫

RN

(
∇uλ · ∇φ −

(
1

p − 1
+ c0

)
uλφ

)
ρdx =

∫
RN

(
g(uλ, uλ) − c0uλ

)
φρdx.

From (5.13) and φ ≡ 0 for |x| ≤ R it follows that
∫

RN

(
∇uλ · ∇φ −

(
1

p − 1
+ c0

)
uλφ

)
ρdx

=
∫

|x|≥R

(
g(uλ, uλ) − c0uλ

)
φρdx ≤ 0.

(5.16)
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From (5.14) and c0 < (N/2) − 1/(p − 1), we obtain
∫

RN

(
∇w · ∇φ −

(
1

p − 1
+ c0

)
wφ

)
ρdx

=
(

N

2
− 1

p − 1
− c0

) ∫
RN

wφρdx ≥ 0.

(5.17)

Then, from (5.16) and (5.17) we obtain
∫

RN

(
(∇uλ − ∇w) · ∇φ −

(
1

p − 1
+ c0

)
(uλ − w)φ

)
ρdx ≤ 0.

By virtue of (5.15) it follows that
∫

RN

(
|∇φ|2 −

(
1

p − 1
+ c0

)
φ2

)
ρdx ≤ 0.

From (i) of Lemma 3.1 we have
(

N

2
− 1

p − 1
− c0

) ∫
RN

φ2ρdx ≤ 0.

This implies that φ ≡ 0 in RN , and hence, uλ(x) ≤ w(x) = C1e
−|x|2/4 for

x ∈ RN . 
�
The next result is fundamental to the proof of Proposition 5.2.

Lemma 5.8. Let Mλ = supx∈RN uλ(x) for 0 < λ < λ. Then lim infλ→0+ Mλ > 0.

Proof. Assume to the contrary that lim infλ→0+ Mλ = 0. Take a constant c0 so
that 0 < c0 < (N/2) − 1/(p − 1). Recall that ‖uλ‖L∞ → 0 as λ → 0. From
(ii) of Lemma 5.1, we can take a λ > 0 so that g(uλ(x), uλ(x)) ≤ c0uλ(x) for
x ∈ RN . Then we have∫

RN

(
|∇uλ|2 − 1

p − 1
u2

λ

)
ρdx =

∫
RN

g(uλ, uλ)uλρdx ≤ c0

∫
RN

u2
λρdx.

It follows that∫
RN

|∇uλ|2ρdx ≤
(

c0 + 1

p − 1

) ∫
RN

u2
λρdx <

N

2

∫
RN

u2
λρdx

with uλ ∈ H 1
ρ (RN). This contradicts (i) of Lemma 3.1. Hence, we obtain

lim infλ→0+ Mλ > 0. 
�
Proof of Proposition 5.2. Let {λk} be a sequence such that λk > λk+1 and λk → 0
as k → ∞. For simplicity, one sets vk = uλk

and vk = uλk
. The proof is divided

into several steps.
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Step 1. We claim that {vk} is bounded in H 1
ρ (RN).

From Lemma 5.7 we have Iλk
(vk) ≤ I0(u0), that is,

1

2

∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx −

∫
RN

G(vk, vk)ρdx ≤ I0(u0).

Since vk satisfies
∫

RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx =

∫
RN

g(vk, vk)vkρdx,

we obtain

(2 + cp)I0(u0) ≥
(

1 + cp

2

) ∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx

−(2 + cp)

∫
RN

G(vk, vk)ρdx

≥ cp

2

∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx

+
∫

RN

(
g(vk, vk)vk − (2 + cp)G(vk, vk)

)
ρdx,

where cp = min{1, p − 1}. From (v) of Lemma 5.1 and (5.3), it follows that

(2 + cp)I0(u0) ≥ cp

2

(∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx − p

∫
RN

v
p−1
k v2

kρdx

)

≥ cp

2

(
1 − 1

µ(λk)

) ∫
RN

(
|∇vk|2 − 1

p − 1
v2

k

)
ρdx.

Since µ(λ) is strictly decreasing and µ(λ) > 1 by Lemma 5.2, we have µ(λk) >

µ(λ1) > 1. From (3.2) we obtain

(2 + cp)I0(u0) ≥ cp

2

(
1 − 1

µ(λ1)

) (
1 − 2

N(p − 1)

)
‖∇vk‖2

L2
ρ
,

which implies that {‖∇vk‖L2
ρ
} is bounded. Hence, {vk} is bounded in H 1

ρ (RN).

Step 2. We show that there exist a subsequence that we still denote {vk} and a
function v0 ∈ H 1

ρ (RN) such that vk → v0 in H 1
ρ (RN) as k → ∞.

Since {vk} is bounded in H 1
ρ (RN), from (ii) and (iii) of Lemma 3.1, there exist

a subsequence (still denoted by {vk}) and some v0 ∈ H 1
ρ (RN) such that

vk ⇀ v0 weakly in H 1
ρ (RN) as k → ∞,

vk → v0 strongly in L2
ρ(R

N) ∩ Lp+1
ρ (RN) as k → ∞.
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We claim that ‖∇(vk − v0)‖L2
ρ

→ 0 as k → ∞. We observe that

‖∇(vk − v0)‖L2
ρ

=
∫

RN

∇vk · (∇vk − ∇v0)ρdx −
∫

RN

∇v0 · (∇vk − ∇v0)ρdx

and ∫
RN

∇vk · (∇vk − ∇v0)ρdx = 1

p − 1

∫
RN

vk(vk − u)ρdx

+
∫

RN

g(vk, vk)(vk − v0)ρdx.

By the similar argument as in the proof of Lemma 5.4, we obtain ‖∇(vk −
v0)‖L2

ρ
→ 0 as k → ∞, and hence, vk → v0 in H 1

ρ (RN) as k → ∞.

Step 3. We show that v0 = u0, where u0 is the solution of the problem (1.9).
Furthermore, we have vk → u0 in H 1

ρ (RN) ∩ L∞(RN) as k → ∞.
First we show that v0 satisfies the equation in (1.9). Since vk → v0 in H 1

ρ (RN)

by Step 2, it suffices to prove that∫
RN

g(vk, vk)φρdx →
∫

RN

v
p

0 φρdx as k → ∞ (5.18)

for any φ ∈ H 1
ρ (RN). From vk → v0 in L2

ρ(R
N) ∩ L

p+1
ρ (RN), there exist a sub-

sequence (still denoted by {vk}) and a function h ∈ L2
ρ(R

N) ∩ L
p+1
ρ (RN) such

that

vk(x) ≤ h(x) a.e. x ∈ RN (5.19)

for k = 1, 2, . . . , and vk → v0 a.e. x ∈ RN . (See, e.g., [2].) By virtue of
‖vk‖L∞ → 0 as k → ∞, we have

g(vk, vk) = (vk − vk)
p − v

p

k → v
p

0 a.e. x ∈ RN.

From (i) of Lemma 5.1 and (5.19) it follows that

g(vk, vk) ≤ C(vk + v
p

k ) ≤ C(h + hp) a.e. x ∈ RN.

By the Hölder inequality we have∫
RN

(h + hp)φρdx ≤ ‖h‖L2
ρ
‖φ‖L2

ρ
+ ‖h‖p

L
p+1
ρ

‖φ‖
L

p+1
ρ

< ∞.

Therefore, by the Lebesgue convergence theorem, we obtain (5.18). Hence, v0

satisfies the equation in (1.9).
Next we show v0 > 0. From Proposition A.1 in Appendix A, v0 ∈ C2(RN) ∩

L∞(RN) and |∇v0| ∈ L∞(RN). By (i) of Proposition A.2, {vk} is bounded in
C1(RN). Thus {vk − v0} is bounded in C1(RN). Recall that vk − v0 → 0 in
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H 1
ρ (RN) by Step 2. Then, by (ii) of Proposition A.2 we have vk → v0 in L∞(RN),

and hence v0 ≥ 0. Lemma 5.8 yields v0 �≡ 0. Thus v0 > 0 by Proposition 2.1.
Therefore, v0 solves the problem (1.9). Since the solution of the problem (1.9) is
unique by [25, Corollary 2], we conclude that v0 = u0. In particular, we obtain
vk → u0 in H 1

ρ (RN) ∩ L∞(RN) as k → ∞.
Let λk be a sequence satisfying λk → 0 as k → 0. Then, by Steps 1-3, there

exists a subsequence (still denoted by {λk}) such that uλk
→ u0 in H 1

ρ (RN) ∩
L∞(RN) as k → 0, which implies that uλ → u0 in H 1

ρ (RN) ∩ L∞(RN) as
λ → 0. This completes the proof of Proposition 5.2. 
�

Appendix A.

Proposition A.1. Let u ∈ H 1
ρ (RN) be a solution of

�u + 1

2
x · ∇u + f (x, u) = 0 in RN, (A.1)

where f is Hölder continuous and satisfies

|f (x, u)| ≤ C(u + up), x ∈ RN, u ∈ [0, ∞), (A.2)

for some constants C > 0 and p > 1, (N − 2)p < N + 2. Then u ∈ C2(RN),
and both u(x) and |∇u(x)| tend to 0 as |x| → ∞.

We prove Proposition A.1 by following the idea of Escobedo and Kavian [8].
First we prepare the following lemma.

Lemma A.1. (i) Let u ∈ H 1
ρ (RN). Then u ∈ Lr(RN) and |x||∇u| ∈ Lr(RN)

for all r ∈ [1, 2].
(ii) Assume that u ∈ L2

ρ(R
N) ∩ Lq(RN) for some q > 2. Then u ∈ Lr(RN) for

all r ∈ [2, q].
(iii) Assume that |∇u| ∈ L2

ρ(R
N) ∩ Lq(RN) for some q > 2. Then |x||∇u| ∈

Lr(RN) for all r ∈ [2, q).
(iv) Let u ∈ L2

ρ(R
N) ∩ L∞(RN). Then u ∈ Lq(RN) for all q > 2.

(v) Let |∇u| ∈ L2
ρ(R

N) ∩ L∞(RN). Then |x||∇u| ∈ Lq(RN) for all q > 2.

Proof. (i) It is clear if r = 2. For 1 ≤ r < 2 we have

∫
RN

urdx =
∫

RN

urρr/2ρ−r/2dx

≤
(∫

RN

u2ρdx

)r/2 (∫
RN

ρ−r/(2−r)dx

)(2−r)/2

< ∞
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and ∫
RN

|x|r |∇u|rdx =
∫

RN

|x|r |∇u|rρr/2ρ−r/2dx

≤
(∫

RN

|∇u|2ρdx

)r/2

×
(∫

RN

|x|2r/(2−r)ρ−r/(2−r)dx

)(2−r)/2

< ∞.

(ii) Let r ∈ (2, q). Put s = (q − 2)/(r − 2) > 1. Then we have
∫

RN

|u|rdx ≤
∫

RN

uq/su(2s−2)/sρ(s−1)/sdx

≤
(∫

RN

uqdx

)1/s (∫
RN

u2ρdx

)(s−1)/s

< ∞.

(iii) Let r ∈ (2, q). Put s = (q − 2)/(r − 2) > 1. Then we have
∫

RN

|x|r |∇u|rdx ≤ sup
x∈RN

(|x|rρ−(s−1)/s
) ∫

RN

|∇u|q/s |∇u|(2s−2)/sρ(s−1)/sdx

≤ sup
x∈RN

(|x|rρ−(s−1)/s
) (∫

RN

|∇u|qdx

)1/s

×
(∫

RN

|∇u|2ρdx

)(s−1)/s

< ∞.

(iv) For q > 2, we have
∫

RN

|u|qdx ≤
∫

RN

|u|qρdx ≤ ‖u‖q−2
L∞

∫
RN

u2ρdx < ∞.

(v) For q > 2, we have
∫

RN

|x|q |∇u|qdx ≤ sup
x∈RN

(|x|qρ−1)

∫
RN

|∇u|qρdx

≤ sup
x∈RN

(|x|qρ−1)‖∇u‖q−2
L∞

∫
RN

|∇u|2ρdx < ∞.


�
Set

h(x, u) = 1

2
x · ∇u + u + f (x, u). (A.3)

Then the solution u of (A.1) satisfies

−�u + u = h(x, u) in RN. (A.4)
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We show the following:

Lemma A.2. Let u ∈ H 1
ρ (RN) be a solution of (A.1) such that u ∈ Lq(RN) for

some q > 2. Then h(x, u) defined by (A.3) satisfies h ∈ Lq/p(RN).

Proof. From (i) and (ii) of Lemma A.1, u ∈ Lr(RN) for all r ∈ [1, q]. Since
f satisfies (A.2), we have f (x, u) ∈ Lr(RN) for 1 ≤ r ≤ q/p. Then it suf-
fices to show that |x||∇u| ∈ Lq/p(RN). If q/p ≤ 2, from (i) of Lemma A.1, the
result is established. So we assume that q/p > 2. From u ∈ H 1

ρ (RN), we have
h ∈ L2(RN). Then, by using the equation (A.4) we obtain u ∈ W 2,2(RN). By the
Sobolev embeddings, we have

|∇u| ∈ Lr1(RN),
1

r1
= 1

2
− 1

N
if N > 2,

|∇u| ∈ Lr(RN) for all r > 2 if N = 2.

In the cases where N = 2 or r1 > q/p, from (iii) of Lemma A.1, we have
|x||∇u| ∈ Lq/p(RN), and the result is established. In the cases where N > 2 and
r1 ≤ q/p, from (iii) of Lemma A.1, we have |x||∇u| ∈ Lr(RN) for all r ∈ [1, r1).
Then h ∈ Lr(RN) for r ∈ [1, r1), and so u ∈ W 2,r (RN) for r ∈ [1, r1). The Sobo-
lev embeddings now yield

|∇u| ∈ Lr(RN) for all r ∈ [1, r2),
1

r2
= 1

r1
− 1

N
, if r1 < N,

|∇u| ∈ L∞(RN), if r1 > N.

In the cases where r1 > N or r2 > q/p, we have |x||∇u| ∈ Lq/p(RN). In the
cases where r2 ≤ p/q, we have |x||∇u| ∈ Lr(RN) for all r ∈ [1, r2). Repeating
the arguments in finite times, we obtain |x||∇u| ∈ Lq/p(RN). 
�
Proof of Proposition A.1. We show the case where N ≥ 3. We can verify the case
where N = 2 with a slight modification.

First we show u ∈ L∞(RN). From (iii) of Lemma 3.1, u ∈ Lq0(RN), where
q0 = 2N/(N −2). Then, from Lemma A.2, we have h ∈ Lq0/p(RN). By using the
equation (A.4) we obtain u ∈ W 2,q0/p(RN). Then the Sobolev embedding implies
that

u ∈ Lq1(RN),
1

q1
= p

q0
− 2

N
if q0 <

pN

2
,

u ∈ L∞(RN), if q0 >
pN

2
.

We note that q1 > q0 from the assumption p < (N + 2)/(N − 2). If q0 < pN/2,
from Lemma A.2, we have h ∈ Lq1/p(RN), and hence u ∈ W 2,q1/p(RN). Then
the Sobolev embedding implies that

u ∈ Lq2(RN),
1

q2
= p

q1
− 2

N
if q1 <

pN

2
,
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u ∈ L∞(RN), if q1 >
pN

2
.

Repeating above arguments in finite times, we obtain u ∈ L∞(RN).
From (iv) of Lemma A.1 we have u ∈ Lpq(RN) for all q > N . Then form

Lemma A.2 we have h ∈ Lq(RN), and hence u ∈ W 2,q(RN) for all q > N . By
the Sobolev embedding theorem, u ∈ C1,θ (RN) for some θ ∈ (0, 1). Then, since
f is Hölder continuous, we obtain u ∈ C2(RN). We note that C∞

0 (RN) is dense
in W 2,q(RN). Then, by using the Sobolev embedding theorem again, we obtain
u(x) → 0 and |∇u(x)| → 0 as |x| → ∞. 
�
Proposition A.2. (i) Assume that {uk} is bounded in H 1

ρ (RN), and that uk satisfies

�uk + 1

2
x · ∇uk + fk(x, uk) = 0 in RN (A.5)k

for k = 1, 2, . . . . We assume in (A.5)k that fk satisfies

|fk(x, u)| ≤ C(u + up), x ∈ RN, u ∈ [0, ∞),

for some constants C > 0 and p > 1, (N − 2)p < N + 2, where C and p are
independent of k. Then {uk} is bounded in C1(RN).

(ii) Assume that {uk} is bounded in C1(RN), and that uk → 0 in H 1
ρ (RN).

Then uk → 0 in L∞(RN) as k → ∞.

From the proof of Lemma A.1 we obtain the following results.

Lemma A.3. (i) Assume that {uk} is bounded in H 1
ρ (RN). Then {uk} and

{|x||∇uk|} are bounded in Lr(RN) for all r ∈ [1, 2].
(ii) Assume that {uk} is bounded in L2

ρ(R
N) ∩ Lq(RN) for some q > 2. Then

{uk} is bounded in Lr(RN) for all r ∈ [2, q].
(iii) Assume that {|∇uk|} is bounded in L2

ρ(R
N)∩Lq(RN) for some q > 2. Then

{|x||∇uk|} is bounded in Lr(RN) for all r ∈ [2, q).
(iv) Let {uk} is bounded in L2

ρ(R
N)∩L∞(RN). Then {uk} is bounded in Lq(RN)

for all q > 2.
(v) Let {|∇uk|} is bounded in L2

ρ(R
N) ∩ L∞(RN). Then {|x||∇uk|} is bounded

in Lq(RN) for all q > 2.

Set

hk(x, u) = 1

2
x · ∇u + u + fk(x, u).

Then the solution uk of (A.5)k satisfies

−�uk + uk = hk(x, uk) in RN.

By the similar arguments in the proof of Lemma A.2, we obtain the following
results.
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Lemma A.4. Assume that uk is a solution of (A.5)k such that {uk} is bounded in
Lq(RN) for some q > 2. Then {hk(·, uk)} is bounded in Lq/p(RN).

Proof of Proposition A.2. (i) Following the arguments in the proof of Proposition
A.1, we obtain {uk} is bounded in L∞(RN). From (iv) of Lemma A.3, {uk} is
bounded in Lpq(RN) for all q > N . Then {hk} is bounded in Lq(RN), and hence,
{uk} is bounded in W 2,q(RN) for all q > N . By the Sobolev embedding theorem,
{uk} is bounded in C1(RN).

(ii) Let q > N . Since {uk} is bounded in C1(RN) and uk → 0 in H 1
ρ (RN), we

have

‖uk‖q

Lq ≤
∫

RN

u
q

kρdx ≤ ‖uk‖q−2
L∞

∫
RN

u2
kρdx → 0 as k → ∞

and

‖∇uk‖q

Lq ≤
∫

RN

|∇uk|qρdx ≤ ‖∇uk‖q−2
L∞

∫
RN

|∇uk|2ρdx → 0 as k → ∞.

Hence, uk → 0 in W 1,q(RN) as k → ∞ for q > N . Then by the Sobolev
embedding theorem, we have uk → 0 in L∞(RN). 
�

Appendix B.

Lemma B.1. Let u be a positive function on RN , and let w be a function defined
by (1.5) on RN × (0, ∞). Then w satisfies (1.2)λ in the sense of L1

loc(R
N), if and

only if u satisfies (1.7)λ.

In order to prove Lemma B.1 we need the following

Lemma B.2. Let w be the function in Lemma B.1. Put BR = {x ∈ RN : |x| < R},
where R > 0. Then

|x|2/(p−1)w(x, t) → λa(x/|x|) as t → 0 for a.e. x ∈ BR (B.1)

if and only if

w(ω, t) → λa(ω) as t → 0 for a.e. ω ∈ SN−1. (B.2)

Proof. Define E ⊂ RN such that if x ∈ RN \ E then

|x|2/(p−1)w(x, t) → λa(x/|x|) as t → 0.

It follows from (1.5) that if x ∈ RN \ E and µ > 0 then

|µx|2/(p−1)w(µx, t) = |x|2/(p−1)w(x, t/µ2) → λa(x/|x|) as t → 0.
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This implies that x ∈ RN \ E if and only if µx ∈ RN \ E for all µ > 0. Thus we
have

x ∈ E if and only if µx ∈ E for all µ > 0. (B.3)

Put ES = E ∩ SN−1 and EB = E ∩ BR. Then it follows from (B.3) that
∫

EB

dx =
∫ R

0
NωNrN−1

(∫
ES

dS

)
dr = ωNRN

∫
ES

dS,

where ωN is the volume of unit ball in RN and dS denotes the surface measure
on ES . This implies that (B.1) holds if and only if (B.2) holds. 
�
Proof of Lemma B.1. From (1.5) we see that |x|2/(p−1)w(x, t) = |y|2/(p−1)u(y),
where y = x/

√
t . In particular, we have

w(ω, t) = r2/(p−1)u(rω), where r = 1/
√

t . (B.4)

Assume that u satisfies (1.7)λ. Then, from (B.4), we obtain (B.2). Lemma B.2
implies that (B.1) holds for any R > 0. Now, fix a compact set K ⊂ RN . Then,
by the Lebesgue dominated convergence theorem, we have∫

K

|w(x, t) − λa(x/|x|)| dx

=
∫

K

|x|−2/(p−1)
∣∣|x|2/(p−1)w(x, t) − λa(x/|x|)∣∣ dx → 0

as t → 0. Therefore, w satisfies (1.2)λ in the sense of L1
loc(R

N).
Conversely, assume that w satisfies (1.2)λ in the sense of L1

loc(R
N). Then (B.1)

holds for R > 0, which implies (B.2) by Lemma B.2. From (B.4) we find that u

satisfies (1.7)λ. This completes the proof of Lemma B.1. 
�
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