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Abstract. The Cauchy problem for semilinear heat equations with singular initial data
w, = Aw~+w” inRY x(0,00) and w(x,0) = ra (x/|x]) |x|~¥P~D  in RY \ {0}

is studied, where N > 2, A > 0 is a parameter, and a > 0, a #% 0. We show that when
p > (N +2)/N and (N —2)p < N + 2, there exists a positive constant A such that the
problem has two positive self-similar solutions w, and w; with w, < w; if A € (0, ) and no
positive self-similar solutions if A > A. Furthermore, for each fixed t > 0, w; (-,#) — 0 and
Wy (-, 1) = wo(-, 1) in L*(RY) as A — 0, where wyq is a non-unique solution to the problem
with zero initial data, which is constructed by Haraux and Weissler.

Mathematics Subject Classification (2000): 35K55, 35J60

1. Introduction

We consider the Cauchy problem for semilinear heat equations with singular initial
data:

w, = Aw + w? in RY x (0, 00), (1.1)

w(x,0) = ra (x/|x|) |x|~¥ P~V in RV \ {0}, (1.2);,

where N > 2, p > (N +2)/N,a : SN-1 5 R,and A > Ois a parameter. We
assume thata € L®°(SY¥ N anda > 0, a % 0. A typical caseisa = 1.
The equation (1.1) is invariant under the similarity transformation

2P=Dy(ux, u’t) forall u > 0.

wx, )= wy(x, 1) =p
A solution w is said to be self-similar, when w = w,, for all u > 0, that is,
w(x, 1) = nP Dw(ux, u’t) forall u > 0. (1.3)

Such self-similar solutions are global in time and often used to describe the large
time behavior of global solutions to (1.1), see, e.g., [20,21,4,28,29].
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If w(x, 1) is a self-similar solution of (1.1) and has an initial value A(x), then
we easily see that A has the form A(x) = A(x/|x|)|x|~% =D, Then the problem
of existence of self-similar solutions is essentially depend on the solvablity of the
Cauchy problem (1.1)-(1.2),.

It is well known by [10,34,20] thatif 1 < p < (N 4+ 2)/N then (1.1) has
no time global solution w such that w > 0 and w # 0. Therefore, the condition
p > (N + 2)/N is necessary for the existence of positive self-similar solutions
of (1.1).

We briefly review some results concerning the Cauchy problem for (1.1) with
initial date in L¢ (RY). Weissler [32,33] showed that the IVP (1.1) with w(x, 0) =
A € L9(R") admits a unique time-local solution if ¢ > N(p — 1)/2. He also
showed in [34] that the solution exists time-globally if ¢ = N(p — 1)/2 and if
| All Larny is sufficiently small. Giga [12] has constructed a unique local regular
solution in L%(0, T : L#), where « and 8 are chosen so that the norm of L%(0, T :
LP) is invariant under scaling. On the other hand, for 1 < ¢ < N(p — 1)/2,
Haraux and Weissler [16] constructed a solution wy € C([0, oo); LY(RY)) of
(1.1) satisfying wo(x, £) > O forz > 0 and [|wo(-, )| Lsrr¥) —> 0 ast — O when
p > (N+2)/N and (N —2)p < N + 2 by seeking solutions of self-similar
form. Therefore, if p > (N +2)/N and (N —2)p < N + 2, the Cauchy problem

w; = Aw+w” inRY x (0,00) and w(x,0)=0 in RY (1.4)

admits a non-unique solution in C([0, 00); LY(RV)) for 1 < g < N(p — 1)/2.

Kozono and Yamazaki [22] constructed Besov-type function spaces based on
the Morrey spaces, and then obtained global existence results for the equation (1.1)
and the Navier-Stokes system with small initial data in these spaces. By [22] the
problem (1.1)-(1.2), admits a time-global solution for sufficiently small A > 0.
Cazenave and Weissler [4] proved the existence of global solutions, including
self-similar solutions, to the nonlinear Schrédinger equations and the equations
(1.1) with small initial data by using the weighted norms.

Galaktionov and Vazquez [11] have investigated the uniqueness of the solu-
tions to the problem (1.1)-(1.2), witha = 1. In [11, p. 41] they have conjectured
that the problem (1.1)-(1.2); has exactly two solutions (the minimal and maximal)
when N >3and N/ (N —=2) < p < (N +2)/(N —2).

Letting .« = t~/?in (1.3), we see that the self-similar solution w has the form

wx, 1) =1 VP Vy(x /1), (1.5)

where u satisfies the elliptic equation

1
lu—l—up:O inRY. (1.6)

1
Au—+ —x-Vu +
2 p—



Semilinear heat equations 163

By Lemma B.1 in Appendix below we find that if w satisfies (1.2), in the sense
of LI (RM), that is,

loc

/ lw(x, 1) — ra(x/|xD|x| 7P~ V|dx -0 ast— 0
K

for any compact subset K of R, then u satisfies

lim r?P Dy (rw) = ra(w)  forae. we SV (1.7);
Conversely,ifu € C?(R") is a solution of (1.6) satisfying (1.7),, then the function
w defined by (1.5) satisfies (1.1) and (1.2); in the sense of LllOC (RM).

In this paper we investigate the problem (1.6)-(1.7); by making use of the
methods for semilinear elliptic equations, and then derive the results for the
Cauchy problem (1.1)-(1.2), to give a partially affirmative answer to the conjec-
ture by [11]. First we will state the results concerning the problem (1.6)-(1.7);,
and then apply these results to the problem (1.1)-(1.2);.

Before stating our results, we introduce some notations. Set p(x) = elxIP/4,
We define the weighted Sobolev space

H)RY) = {u e H'RY): / (\Vul* + u?)pdx < oo} (1.8)
RN
equipped with the norms

1/2
||u||H;<R~)=(/ <|Vu|2+u2)pdx> :
RN

It has been shown by Weissler [36, Theorem 1] and Escobedo and Kavian
[8, Theorem 0.14] independently that there exists a solution u( of the problem

P — ; N
p_lu—i-u =0 in R, (19)

ueHg(RN) and >0 inR",

1
Au—|—§x~Vu+

with p > (N +2)/N and (N — 2)p < (N + 2). The uniqueness of the solution
to the problem (1.9) has been obtained by [25, Corollary 2].

We refer to u as a solution of (1.6) if u € C*(R") is a classical solution of
(1.6). Our main results are stated in the following theorems:

Theorem 1. Assume that p > (N + 2)/N. Then there exists a constant . > 0
such that

(i) forO < A < A, (1.6)-(1.7); has a minimal positive solution u, ; u, is increase
with respect to ). and satisfies ||u, || Lo@rny = O(X) as A — 0;
(ii) for A > A, there are no positive solutions of (1.6)—(1.7),.
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Theorem 2. Assume that p > (N + 2)/N and (N_— 2)p < N + 2. Let A>0
be the constant in Theorem 1. Then, for 0 < A < A, (1.6)-(1.7), has a positive
solution u, satisfying u, > u, and

Uy —u, € H; RY) and w,(x) —u,(x) = O(eflx‘2/4) as |x| — oo.
Furthermore
Up —u, — up in H;(RN)HLOO(RN) as h — 0,

where uy is the solution of the problem (1.9). In particular, we have u, — ug in
L¥RY)as » — 0.

Remark 1. (1) We now restrict our attention to radial solutions of (1.6), i.e., a solu-
tion of the form u = u(r), r = |x|. Then u(r) must satisfies the initial value

problem
Y EL A P
Upp - =) Ur
r 2 p—1

u(0) =a >0 and u,(0)=0.

u+ul”'u=0, r>0,

We denote by u(r; o) the unique solution of this problem. It has been shown by
Haraux-Weissler [16, Proposition 3.4 and Theorem 5] that u (r; ) has the follow-
ing properties: the limit L(«x) = lim,_, r2/ =Dy (r; o) exists and is a locally
Lipschitz function of « € R;if p > (N 4+ 2)/N then u(r; ) > Oforallr > 0
and L(a) > O for sufficiently small « > 0; if in addition (N —2)p < (N + 2)
then there exists some «y > 0 such that L(ag) = 0 and u(r; ap) > 0 for r > 0;
u(r; o) is positive for r > 0if 0 < o < «yp. (See the proof of Proposition 3.7 in
[16].) Moreover, it has been shown by Yanagida [38, Theorem 1] and Dohmen-
Hirose [7, Theorem 1.2 and Corollary 1.3] that u(r; o) cannot be positive for all
r > 0if ¢ > op. (In fact, they in [38,7] showed the uniqueness of the «g such
that L(cg) = 0 and u(r; ag) > 0 for r > 0.) From these facts we find that, when
p>(N+2)/Nand (N —2)p < (N +2), u(r; @) > 0 for r > 0 if and only
if « € (0, op], and that L is a nonnegative continuous function on [0, cp] with
L(0) = L(ag) =0and L # 0. Let A = max{L(«a) : 0 < & < a}. Then A > 0,
and it is clear that there are at least two different values of « satisfying L(a) = A
if A € (0, 1), and there exists at least one value of « satisfying L(ca) = A. Thus,
when p > (N 4+ 2)/N and (N —2)p < (N + 2), the problem (1.6)—(1.7);, with
a = 1 has at least two radial solutions if 0 < A < A, and at least one radial
solution if A = A. Moreover, there is no radial positive solution of (1.6)—(1.7);,
witha = 1if A > A.

(i1) In the case N = 1, Weissler [35] has shown that u(r; «) > 0 for r > 0 if
and only if ¢ € (0, «p] for some oy > 0, and that L is a positive concave function
on (0, ap) with L(0) = L(ap) = 0. Thus there are precisely two different value
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of o satisfying L(a) = A if 0 < A < A, and so the problem has precisely two
solutions if 0 < A < A.

(iii) At this time we do not know whether (1.6)—(1.7), withA = Ahasa positive
solution when a is not constant. The exact multiplicity of positive solutions of
(1.6)—(1.7);, for A € (0, A] is also an open question.

Now we consider the Cauchy problem (1.1)—(1.2),. We refer to w as a solution
of (1.1)if w € C*(RY x (0, 00)) is a classical solution of (1.1). If u is a solution of
(1.6)—(1.7),, then the function w defined by (1.5) is a solution of (1.1) satisfying
(1.2) in the sense of L] .(R") by Lemma B.1 below. Put

wo(x, 1) =t/ P Vyg(x /1), (1.10)

where u is the solution of the problem (1.9). It has been shown by [8, Proposition
3.5] that uy € C2(RY) and ug(x) = O(e"/8) as |x| — oo. (See, also, [26,
Theorem 1].) Then we have ug € L¢(R") for all ¢ > 1 and

—1 —1)+N/2
lwo G, Ol Loy =t~/ PNy g vy,

Consequently, wq solves the the Cauchy problem (1.4) in C ([0, co); L(R")) for
1 <g < N(p — 1)/2. We note that the positive solution u of (1.6) satisfying

u(x) = o(|x|7*~V) as x| > oo

is unique and radially symmetric by [25, Corollary 1]. Therefore, wy defined by
(1.10) coincides with the non-unique solution constructed by Haraux and Weissler
[16].

As a consequence of Theorems 1 and 2, we obtain the following results.

Corollary 1. Assume that p > (N + 2)/N. Then there exists a constant . > 0
such that

(i) for 0 < A < A, (1.1)-(1.2);. has a positive self-similar solution w,; for each
fixedt > 0, the solution w, (-, t) is increasing with respect to A and satisfies

lw, ¢, Dllpowyy = O@R) asir — 0;
(ii) for » > A, (1.1)-(1.2); has no positive self-similar solutions.

Corollary 2. Assume that p > (N +2)/N and (N —2)p < N +2. Let » > 0 be
the constant in Corollary 1. Then, for 0 < A < A, (1.1)-(1.2); has a positive self-
similar solution W, satisfying wy (x,t) > w, (x, 1) for (x,t) € (RY x (0, 00));
the solution w,, satisfies, for each fixed t > 0,

[wa(, 1) — woC, )l gowyy —> 0 as A — 0,

where wy is the non-unique solution of (1.4) in C([0, 00); LY(RN)) for 1 < q <
N(p — 1)/2, which is constructed by [16].
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Remark 2. (i) The existence of a positive self-similar solution of (1.1)—(1.2); has
been shown by [4] under a weaker condition on a.

(i) It is already known that there is no solutions of (1.1)-(1.2), if A is large
enough, see, e.g., [33, Corollary 5.1], [37, Corollary 1.1], and [24, Remark 3.7].
These results, however, do not quite apply to self-similar solutions in stated, we
easily see that the proofs easily apply to self-similar solutions, or any positive
measurable solutions.

(iii) From (i) of Remark 1 we see that, when p > (N +2)/N and (N —2)p <
(N + 2), the problem (1.1)-(1.2), with A = A has a radial positive self-similar
solution if @ = 1. It is an open question whether (1.1)—(1.2), with A = X has a
positive self-similar solution if a is not constant. The exact multiplicity of positive
self-similar solutions of (1.1)—(1.2);, for A € (0, A] is still an open question.

We prove Theorem 1 by using of the explicit supersolution and comparison
arguments based on the maximum principle. We prove Theorem 2 by variational
approach essentially due to Ambrosetti-Rabinowitz [1] and Crandall-Rabinowitz
[5].

As far as we are aware, the idea of constructing self-similar solutions by solv-
ing the initial value problem for homogeneous initial data was first used by Giga
and Miyakawa [13], for the Navier-Stokes equation in vorticity form. The idea
of [13] was used later by several authors for various problems. Concerning the
equation

U, — Au+u? =0 in RV, (1.11)

we refer to Kwak [23] and Cazenave et al. [3]. They also obtained the asymptoti-
cally self-similar behavior for a class of general solutions. See, also [15,19,9,18].

After the paper was completed, we learned the work by Souplet and Weiss-
ler [30] where the existence of radial self-similar solutions of (1.6) were studied
precisely in the subcritical, supercritical, and critical cases by using a shooting
argument.

This paper is organized as follows: in Section 2 we show the maximum princi-
ple and comparison results for the operator related to the equation (1.6). In Section
3 we consider the linearized eigenvalue problems. Sections 4 and 5 devoted to
the proofs of Theorems 1 and 2, respectively. For completeness, we show the
regularity and some properties of the solutions in the appendixes.

In the remaining part of the paper, we assume that p > (N 4+ 2)/N.

2. Preliminaries

In this section we show the following two propositions which are crucial for the
proofs of the theorems. For simplicity, we define Lu by
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1 1
Lu=—Au——x-Vu—
2 p—1

u

foru € C2(RVM).
Proposition 2.1. Assume that Lu > 0 in RY, and that

liminf |x|*?~Yu(x) > 0.
|x]—o00

Thenu > 0oru = 0in RN, In particular, if Lu > 0 andu > 0in R thenu > 0
oru=0inR"N.

Proposition 2.2. Assume that o,  : SN~! — R satisfy a, B € L*°(SV~") and
0<a(w) < pB(w) forae we SV
Suppose that there exists a positive function v satisfying Lv > v? in RN and

lim r¥ P Yy(rw) = B(w) forae we SN
rF—0Q

Then there exists a positive solution u of Lu = u? in RV satisfying u < v in RV
and

lim r¥?P Dy(ro) = a(w) fora.e we sN-L (2.1)
r—00

Moreover, for any positive function w satisfying Lw > w? in RN and

liminf P Vw(rw) > a(w) fora.e. we SN,
r—00

we have u < w in RV.

First we show the following lemma.

Lemma 2.1. Assume that o : S¥~' — R satisfies o« € L®(SVN~!) and o > 0,
o % 0 for ae. w € SN~!. Then there exists a positive function ¢, € C*(RN)
satisfying Lo, = 0 in RN and

lim r¥?P Ve, (row) = a(w)  forae we SN 2.2)
r—00
Proof. Put
1 2
— —lx—y|7/(41) =2/(p—1
w0 = G /R e a(y/IyDIyl dy.  (23)

We note that a(y/|y])|y|"¥*~D e LL (RY) from p > (N + 2)/N. By
[6, Chapter 5, Theorem 6.1], w defined by (2.3) satisfies w, = Aw in RY x (0, 00)
and

w(x, ) — alx/|x)|x|7¥* D in Ll RY) as t— 0.
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Define the rescaled functions w, by w, (x, t) = wP=Dw(ux, u?t) for u > 0.
From (2.3) we obtain w(x, t) = w,(x, t) for all & > 0. Putting u = 1//t, we
find that

wix, 1) =1~ Vg, (x /1), (2.5)
where ¢, (x) = w(x, 1). It can be easily checked that ¢, satisfies Lg, = 0in RV,
By Lemma B.1 in Appendix B below, we obtain (2.2). O

Lemma 2.2. Let @ C RY be a bounded domain with smooth boundary 3.

(i) Assume that Lu > 0in Q andu > 0 on 02. Thenu > 0 oru = 0 in Q2.
(ii) Assume that f € C?(Q) for some 8 € (0,1) and g € C(3Q). Then there
exists a solution u of Lu = fin Q andu = g on 0S2.

Proof. (i) From Lemma 2.1 there exists a positive function ¢ satisfying
Lop=0 inRY and lim r¥P Vgp@rw)=1 forae. we SV (2.6)
r—00

Let v(x) = u(x)/¢(x). Then v satisfies

2 1
—Av — ($V¢+§x)-Vv >0 in2 and v >0ondf2.
By the maximum principle [27] we have v > 0 or v = 0 in €2, which implies
thatu > QO oru = 0in Q.
(ii) Let ¢ be a positive function satisfying (2.6). We have a solution v € C>?(Q)
of

A 2V ! Vv =
— U—(a ¢+§X> vV =

(See, e.g., [14].) Then u(x) = v(x)¢(x) satisfies Lu = fin Qandu = g
on 0€2. |

Proof of Proposition 2.1. Let v(x) = u(x)/¢(x), where ¢ is a positive function
satisfying (2.6). Then v satisfies

—Av — (EW) + lx) -Vv>0 inRY and liminfuv(x) > 0.
¢ 2 |x|]—00
First we show v > 0 in RY. Assume to the contrary that v(xy) < O for some
xo € RY. Choose & > 0 so small that ¢ < —v(xg), and take R > 0 so large that
R > |xo| and v(x) > —¢& on |x| = R. By the maximum principle [27] we have
v > —¢ in |x| < R. This contradicts v(xy) < —e. Hence, v > 0in RY. As a
consequence of (i) of Lemma 2.2 we have v > 0 or v = 0 in R", which implies
thatu > Ooru = 0in RV, O
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Lemma 2.3. Let f € C]%C(RN)for some 0 € (0, 1), and let f > 0. Assume that
there exists a positive function v such that Lv > f in RN, Then there exists a

solutionu of Lu = f in RY suchthatO0 <u <vinRY.

Proof. Define B, = {x € RY : |x| < r}forr > 0. From (ii) of Lemma 2.2, there
exists a solution u; of

Luy=f inB;y and up=v ondbBy

for each k = 1,2,.... From (i) of Lemma 2.2 we have u; > 0 in B;. Put
wi(x) = v(x) — ug(x). Then wy satisfies Lw; > 0 in By and wy = 0 on 9 By.
From (i) of Lemma 2.2 again we have w; > 0. Thus we have 0 < u; < v in By.

Take R > 0. Since u; satisfies Luy = f in By for k > R, by the Schauder
estimates {u;} is bounded in Clzo’f (Bg) for some 0 < 6 < 1. Then, by the
Ascolli-Arzela, a subsequence in {uy} converges in CZ,.(Bg). We may do the same
arguments for a sequence {R,} such that R, — oo as n — oco. By the diagonal
method there exists a function u € C?(R") such that a subsequence converges
to u in C_(R"). Thus u satisfies Lu = f in RY with 0 < u < v in R". This
concludes the proof. O

Lemma 2.4. Let ¢, be a positive function satisfying Lo, = 0 in RN and (2.2).
Assume that there exists a positive function v satisfying

LY > (04 ¢,)” inRY and |1|im x| P~ Dj(x) = 0.
X[—> 00

Then there exists a solution ii of Lit = (ii + ¢o)” in RV satisfying 0 < i < 1.
Moreover, for any positive function W satisfying

L) > W +¢o)” inRY and liminf |x|¥PDd(x) > 0, (2.7)

|x]—00
we have i < W in RV.

Proof. For each u € C*(R"), we define the mapping Tu as follows: v = Tu if
Lv=(u+¢s)” inR¥ and 0<v<? inR". (2.8)

Assume that 0 < u < 0. Since 0 satisfies L0 > (u + ¢ )”, from Lemma 2.3 there
exists a function v satisfying (2.8). Then the mapping T is well defined for each
u € C*(RV) satisfying 0 < u < 9. We also find that

lim |x|¥? DTux)=0 (2.9)

|x]—00

from 0 < Tu < ¥ and lim ;| o0 |x|¥ P~V (x) = 0.
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Assume that uy, u, € C*>(RV). We show that 0 < u; < u, < v implies
Tu, < Tu,. Infact, if u; < uy then L(Tuy — Tu;) > 0 in RY. From (2.9) we
have

lim |x|%P"D(Tuy(x) — Tuy(x)) = 0.
|x]—00
Hence, from Proposition 2.1 we have Tu| < Tu,.
Define {it;} inductively by

up=0 and =T, fork=1,2,.... (2.10)

Since we have L(Tiiy) = ¢4 > 0in RY and lim,|_, « [x|¥ P~V Tilp(x) = 0, we
obtain Ty > 0 in RY by Proposition 2.1. Then, by induction, ii; is well defined
and satisfies

lo <y <--- <y <lgs; <---<0 inRY,

0

Define éi(x) = limy_, o fix(x). Take R > 0 and define B = {x € R : |x| < R}.
Since {i1;} satisfies

Lig = (k-1 + ¢o)? < (V4 ¢4)” in Bg,

it follows from elliptic interior estimates that {i;} is bounded in Wli’cp (Bg) for
every p > 1. By the Sobolev embedding theorem and the Schauder estimates,
{1} is bounded in Clzo’f (Bg) forsome 6 € (0, 1). Therefore, {ii;} converges to i in
(& 120(:(B r). We may do the same arguments for a sequence { R, } such that R,, — oo
as n — 00. By the diagonal method {it;} converges to i in ClzoC (RYM), and thus
we have Lii = (il + ¢)” and 0 < i1 < ¥ in RV,

Let w be a positive function satisfying (2.7). We claim that w > u implies
W > Tu for u € C*>(RV) satisfying 0 < u < 9. In fact, if ® > u we have
LW — Tu) > 0inR" and

liminf |x|*?~Y (b — Tu(x)) = liminf |x|*?~Y® > 0.
x| =00 [x]—00
From Proposition 2.1 we obtain w > Tu.
Let {#i,} be the sequence defined by (2.10). Then we have w > o = 0 and
w > uy fork = 1,2, ..., by induction. Therefore, we have w > i. O

Proof of Proposition 2.2. Let ¢ be a positive function satisfying L¢g = 0in RV
and

lim r¥?" VYo @rw) = B(w) forae we SV
rF—0Q

Then, from Proposition 2.1 we have ¢, < ¢g in RY. Define 9 (x) = v(x) — pp(x).
From L = v? > 0in RY and lim ;|- [x[¥?~D3(x) = 0 we have § > 0 by
Proposition 2.1. We also find that 9 satisfies LD > (D + @5)? > (0 + ¢o)? in RY.
Then it follows from Lemma 2.4 that there exists a solution # of Lii = (it +¢,)” in
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RY satisfying 0 < & < 9 in RV. In particular, we have lim, | o [x|* 7~ Dii(x) =
0. Put u = @i + ¢,. Then u satisfies Lu = u” in RY with (2.1).
Define w = w — ¢,. Then w satisfies

L >wl =@ +¢,)” >0 inRY and llil‘ninf x> P= D (x) > 0.
X|—> 00

Proposition 2.1 implies that > 0 in RY. From Lemma 2.4 we have &i < 1,
which implies # < w in R". This completes the proof of Proposition 2.2. O

3. Eigenvalue problems

We recall here some results about the weighted Sobolev space H /} (RV) defined
by (1.8). For 1 < p < oo, we define

I/p
Lg(RN):lueLP(RN): u”,odx<oo} and ||u||L5:(/ u”pdx) ,
RN

RN
where p(x) = el**/4,

Lemma 3.1. (i) Foreveryu € H; (RM), we have

N

— uzpdxsf |Vul?pdx.
2 RN RN

(ii) The embedding Hg (RM) ¢ L/%(RN) is compact.

(iii) If N > 3, then the embedding H/; (RY) c Lg“(RN) is continuous for
1 <p<(N+2)/(N—-2),andis compactforl < p < (N+2)/(N—=2).If
N = 2 then the embedding H ; (R? C L,’;H (R?) is continuous and compact
for p > 1.

For the proof, see Escobedo and Kavian [8] and Kavian [20]. From (i) of
Lemma 3.1, foru € H; (RV) we have

1 N 1
|Vu|? — W) pdx > — — —— wpdx  (3.1)
RN p— 1 2 pP— 1 RN

/ <|Vu|2— ! u2) pdx > (1 —#)/ IVul>pdx. (3.2)
RV p—1 - Np—-1)) Jrv

Let us consider the eigenvalue problem

and

114 = um(x)u in RY,

1 1
AU — —x -V —
R M- (3.3)

ue H\(RY),

where m € L*(R") N C?(RY) for some € (0, 1) and m > 0 in R". First, we
show the following:
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Lemma 3.2. The problem (3.3) has the first eigenvalue o > 0 and the corre-
sponding eigenfunction ug > 0 in RN. Furthermore, we have

1
o = inf {/ (|W|2 —
RV p—

Proof. We claim that g > 0 and the minimization problem (3.4) is achieved by
some function uy > 0. First we show 1y > 0. Indeed, we see that

1:/ mu’ pdx < ”m”Loo/ u*pdx.
RV RV

Then it follows from (3.1) that
N 1 1
1 2 p—1/lmlp~

1
/ (|Vu|2 -
RN P —

for u € H)(RY), which implies 19 > 0.
Let{uy} C H ;} (RV) be a minimizing sequence of 1, that is,

1
/ muipdx =1 and / (IVMHZ -
RV RN p—

From (3.2) and (i) of Lemma 3.1 we find that {u;} is bounded in H /} (RM). Then,
from (ii) of Lemma 3.1, there exist a subsequence that we still denoted {u;} and
a function ug € H ; (R") such that

uz) pdx :u € H'(RM), / mu’pdx = 1} .
1 L RN
(3.4)

lui) pdx — uy ask — oo.

up —~ ug weakly in H/}(RN) as k — oo,

up — up strongly in L%(RN) as k — oo.

Then we obtain

1
/ (|wo|2 —
RN P —

and

1
u(z) pdx < liminf |Vug > — u% pdx = g
1 k— 00 RN P — 1

k— o0

I = lim muj pdx :/ mugpdx.
RY RV

Hence, we find that u( achieves . Clearly, |ug| also achieves . By the ellip-
tic regularity theory and Proposition 2.1, we have uy € C*>(R"Y) and uy > 0
in RV. o
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In this section we show the following two propositions.

Proposition 3.1. Assume that there is a positive function w € C*(RV) satisfying
1 1
Aw+§x-Vw+—1w+um(x)w <0, =xeRY, (3.5)
p —

for some u € R. Then u < o, where g is the first eigenvalue of the problem
(3.3).

Proposition 3.2. Assume that m;, m> € L®RN) satisfy 0 < m;(x) < ms(x),
my(x) % my(x). Let u; be the first eigenvalue of the problem

1
—Au—ix-Vu—p_luz,umi(x)u inRV, (3.6);
ue H[}(RN),
foreachi = 1,2. Then ) > uo.
To prove Proposition 3.1, we consider the eigenvalue problems
1
—Av — Ex -Vv — — 1v = um(x)v in By, BT
v € H} (By),

where By = {x ¢ RV : |x| < k},fork = 1,2, .... We can prove that the problem
(3.7); has the first eigenvalue u; > 0 and the corresponding eigenfunction vy > 0
in By. Furthermore, we find that

mvz,odx = 1} ,
(3.8)«

1
W = inf {/ (lel2 — vz) pdx ;v € Hol(Bk),
By 14 -1

By

and that v, € C%(By) achieves the minimization (3.8);.
Suppose that v € H] (By), and extend v to be zero outside By. Then v €
H{ (By+1). From (3.8); we have juy > ppqq fork =1,2,....

Lemma 3.3. We have limy_, o, iy = o, where g is the first eigenvalue of the
problem (3.3).

Proof. Suppose that v, € H| (By) is the first eigenfunction of the problem (3.7)y,
and extend vy to be zero outside By. Then v, € H)(R") and satisfies

1
/ (Vvk Vo — v — Mkmvk¢> pdx =0
RV p—1

for any ¢ € C3°(By). Since vy achieves the the minimization (3.8)x, we have

1
/ mv,f,odx =1 and / (lekl2 — v,f) pdx = .
RV RV p—1
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From (3.4) we have u; > wo. From (3.2) and wy > g1,k = 1,2, ..., it follows

that
2 -1 2 -1
VulPpdx < (1 — ——— <(1-—— .
/RN' ”"'”‘( N(p—l)) “k‘( N(p—l)) .

Therefore, from (i) of Lemma 3.1, {v} is bounded in H ;} (RY). Then, from (ii)
of Lemma 3.1, there exist a subsequence that we still denote {v;} and a function
vo € H)(RY) such that

vy — vo weakly in H;(RN) as k — oo,

v — vy strongly in Li(RN) as k — oo.

Then we obtain fRN mvg pdx = 1, which implies that vy £ 0. We also obtain

/ (Vvo -Vo¢ — ! Vo — uoomvoq&) pdx =0 3.9)
RV p—1

for any ¢ € C8°(RN), where (o = limy_ oo pg. Since CSO(RN) is dense in
le (RV), we obtain (3.9) for any ¢ € H[} (RM). Putting ¢ = uy > 01in (3.9),
where u is the eigenfunction of the problem (3.3), we obtain

1
Moo/ muvouppdx = / (Vvo -Vug —
RV RN p—

= Ko muougpdx,
RN

7 v0u0> pdx

which implies po = o O

Proof of Proposition 3.1. We claim that u < pu foreachk = 1,2, ..., where u;
is the first eigenvalue of the problem (3.7),. Assume that vy is the corresponding
eigenfunction. We note that v; € C?(By) and satisfies

2 2 1
mv;pdx =1 and V| —
By By P —

Let w € C*>(R") be a positive function satisfying (3.5). Then, by the straight
forward calculation we have the following Picone’s identity (cf. [17,31]):

1v,§> pdx = . (3.10)

2 Ui\ |? v;? 2 U/% .
pw )V (—)‘ + V.| —=(pVw) ) =p|Vul|"+ =V - (pVw) in By.
w w w
Since w satisfies

1
V-(pVw)+p (—lw —i—umw) <0,
p_
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we obtain
2 Uk \ |2 v 2 1 2
pw? |V (Z) 49 (v ) = (IVul = (== +um ) ) p
w w p—1
3.11)

in By. Note that vy = 0 on d By. Then, by using Green’s formula, we have

v2
f V. (—k(pr)) dx =0.
By w

Therefore, integrating (3.11) on B; we obtain

2 1
0</ pwz‘v<%)‘ dxf[ (IVvklz—
By w By p—

From (3.10) we have 0 < py — . Then py > u foreach k = 1,2, .... From
Lemma 3.3 we obtain u < . O

v,f) pdx — ,u/ mv,%,odx.
1 By

Proof of Proposition 3.2. Let u; > 0 be the first eigenfunction of the problem
(3.6); foreachi = 1,2. Then u;, i = 1, 2, satisfies

1
f (Vui V¢ — Mi¢>> pdx = i / miu;ppdx
RV p—1 RY

for any ¢ € H)(R"). Therefore, we have

1
,u]/ miuuypdx :/ (Vu] -Vu, — u1u2> pdx
RN RV p—1
= K2 mauiuzpdx.
RN
Since m| < my, m| % my, we obtain @y > . O

4. Existence of the minimal solution: Proof of Theorem 1

For each A > 0 we introduce the solution set
S, ={ueC*RY):uisa positive solution of (1.6)-(1.7),}.

We call a minimal solution u, € S;, if u, satisfiesu, < u forallu € §,.
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First we show the following results.

Lemma 4.1. (i) We have S, # 0 for some A > 0. Moreover, if S,, # @ for some
Ao > 0, then Sy # W for all ) € (0, ip).
(i) If Sy # O then there exists a minimal solution u, € S). Moreover, for any
positive function w satisfying

1 I o
—Aw——x -Vw— ——w > w? inR"Y and
2 p—1 @.1)
liminf r>* Yw(rw) > ra(w) forae we SN,
r—0o0

we have u, < w.
Proof. (i) Let v = v(r), r = |x|, be a positive solution of (1.6) satisfying

lim r2®PVy@r) =2
r—0o0

for some £ > 0. The existence of such v is obtained by [16, Theorem 5]. Take
Ay > 0 so small that A, < £/||a|| ~sv-1y. By applying Proposition 2.2 with
a(w) = Aa(w) and B(w) = £, we obtain a positive solution u of (1.6)—(1.7),
with A = A, thatis, S, # ¢.

Assume that S, # @ for some Ay > 0. Let A € (0, X¢). Then, by applying
Proposition 2.2 with a(w) = Aa(w) and B(w) = Aga(w), we have a positive
solution u of (1.6)—(1.7),. Therefore, S, # @ for all A € (0, Ag).

(i1) Assume that u; € S,. Applying Proposition 2.2 with v = u; and ¢(w) =
B(w) = Aa(w), we have a positive solution u, of (1.6)-(1.7), such thatu, < w
for any w > O satisfying (4.1). In particular, we obtain u, < u for all u € §,.
This implies that u, is the minimal solution of ;. O

Lemma 4.2. (i) Assume that u, € S, and u,, € S,, are minimal solutions
with 0 < Ay < Ay. Then

u u
<22 RV, 4.2)
AT A

In particular, u, < u, in RV,
(ii) Let u, € S, be the minimal solution. Then ||u, || gry)y = O(A) as L — 0.

(iii) Let A = sup{A > 0 : S, # @}. Then 1 < oo.

Remark 4.1. As already mentioned in (i1) of Remark 2, the result (iii) of this lemma

is essentially obtained by [33,37,24]. However, we give here a slight simple proof

for convenience.

Proof. (i) Define v = u, /A;. Then v satisfies
1

1 _ _
_Av_ix.vv_ 1v=k§ lvpzxf P inRY and

lim r¥?" Yy(rw) = a(w) forae we SV
r—0o0
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Put w = A;v. Then w satisfies

1 1 .
—Aw—ix-Vw——lwzw” inRY and

lim P Ywrw) = ra(w) forae oe SN
r—00

From (ii) of Lemma 4.1 we have u, S w, which implies that (4.2) holds. In
particular, we have u, < u, in RV.

(i) Take A9 > O so that S, # @. Let A € (0, A¢). From (i) of this lemma, we
have
Lo Do RN,

A Ao

Then we obtain ||u; [[po®ryy < (A/2o)llu;, llzowny for A € (0, o). This
implies that (ii) holds.

(iii) Assume that S) # @ forsome A > 0.Letu, € S, be the minimal solution.
Then v = u, /X satisfies

1 1 p—1 . N
Av+§x-Vv+ 1v+g v=20 in R™. 4.3)
p—

Take A9 € (0, 1), and let u, o € S be the minimal solution. Then, from (i) of this
lemma, we have u, /A > u, /Xo. Hence, from (4.3) we have

1 u, \P!
1v+ﬂ’—1<——“> v<0 inRY,

1
A —x-V
v+2x v+p_ o

On the other hand, from Lemma 3.2 the eigenvalue problem

1 1 u, "7
—Aw—Ex-Vw——w:pL _—)“0> w inRY,

has the first eigenvalue o > 0. By Proposition 3.1 we have A?~' < uo. This
implies that sup{A > 0: S, # @} < /""", O

Proof of Theorem 1. (i) Let A= sup{A > 0 : S, # @}. Then, from (i) of Lemma
4.1 and (iii) of Lemma 4.2, we have 0 < A < 0. By Lemma 4.1, for A € (0, ),
S # ¥ and there exists a minimal solution u, € S,. From (i) and (ii) of Lemma
4.2, u, is increasing in A and satisfies [|u; || Lo gy) = O(A) as A — 0.

(ii) By the definition of X, we can conclude that (1.6)—(1.7);, has no positive
solution for A > A. O
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5. Existence of the second solution: Proof of Theorem 2

Let u, be the minimal positive solution of (1.6)-(1.7), for A € (0, A) obtained
in Theorem 1. In order to find a second solution of (1.6)-(1.7), we introduce the
following problem:

1 P P in RY
Au+§x-Vu+p_1M+(”+ﬂk) —u,; =0 inRY, (5.

ueH®RY) and u>0 inRY.
Clearly, we can get another positive solution u; = u, + u; of (1.6)-(1.7),, if

(5.1), possesses a solution u, satisfying (5.2) below. In this section we show the
following two propositions.

Proposition 5.1. Let p > (N +2)/N and (N —2)p < N + 2. For A € (0, ),
there exists a solution u, € C2(RN) of (5.1),, satisfying

w,(x) = 0 % as x| = oco. (5.2)

Proposition 5.2. Assume that p > (N +2)/N and (N —2)p < N+ 2. Let u; be
the solution of (5.1);, obtained in Proposition 5.1. Then u, — ug in H; RY N

L®RN) as A — 0, where uy is the solution of the problem (1.9).

As a consequence of Propositions 5.1 and 5.2 we obtain Theorem 2.
We show the existence of the solution of (5.1); by using a variational method.
To this end we define the corresponding variational functional of (5.1); by

1 1
Iy(u) = —/ |Vu|? — u? ) pdx —/ G(u,u,)pdx
2 RN pP— 1 RN

withu € H pl (RY), where

1
(t + )Pt — — gt Py,

G(t,s) =
p+1 p+1

We know that the nontrivial critical point u € H ; (RY) of the functional I; is a
weak solution of the equation in (5.1);, that is, u satisfies

/ (Vu -Vo¢ — ! u¢> pdx — / glu,u,)ppdx =0
RN pP— 1 RN

for any ¢ € H; (R"), where

g(t,s) = (t+s)! —s?.

We easily see that u;, € C>(RY) and u; > 0 in RY from Proposition A.l in
Appendix A and Proposition 2.1.
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First we investigate the properties of the functions g(¢, s) and G (t, s).
Lemma 5.1. (i) For sg > 0, there is a constant C = C(sg) > 0 such that
0<g(t,s) <C(t+1t"), t>0,0<s <so.
(ii) For § > O, there is a constant C = C(8) > 0 such that
0<g(,s) <Ct, 0<s,t<3.

Furthermore, C(§) — 0as § — O.
(iii) We have

1
G(t,s) > ——tP*! s, 1> 0.
P

+1 7
(iv) For any ¢ > 0 and so > 0, there is a constant C = C (g, sg) > 0 such that
G(t,s) — gs”‘lﬂ <et?4+CtPT',  1>0,0<s <s.
(v) Put ¢, = min{l, p — 1}. Then
CpP p-1,2
g, )t — (2+¢p)G(t,5) > —Ts” e, s,t>0.

Proof. (i) For 0 <s < 5o we have

t, . , _
lim 8(t. 5) =1 and lim 8, 5) = psP~!
t—oo P t—0 t
by using I’Hospital’s rule. Hence we obtain (i).
(i1) For 0 < s,t < § we have

gi(t,8) = pt+)r~" < p2s)»".

Integrating the above on [0, #] with respect ¢, we obtain g(¢, s) < C(§)¢, where
C(8) = p(28)?~!. Thus, C(§) — 0as s — 0.

(iii) We have G(0, s) = G,(0,s) = 0 and G (t,s) = p(t +s)?~' > ptP~!
for ¢, s > 0. By integrating on [0, ¢] twice with respect ¢, we obtain (iii).

(iv) Put h(t,s) = G(t,s) — (p/2)s”~'t>. We have h(0,s) = h,(0,s) =
h (0, s) = 0. Then, by using I’Hospital’s rule, we obtain

h(t,
lim 25 _
-0 2
By virtue of
h(t,s) 1

we obtain (iv).
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(v) Define
CpP p-1,2
H(t,s) =g, s)t —2+cp)G(t,5) + Ts” .
Then we have H (0, s) = H;(0, s) = H;(0,s) = 0 and

p(p—DQR=p)t+s5)P3sifl < p <2,

Hyy(t,s) = {p(p_l)(p_z)(t+s)p_3t if p=>2.

Thus Hy,(t,s) > 0 for s, ¢ > 0. By integrating on [0, t] three times with respect
t, we obtain H (¢, s) > 0 for s, t > 0. Thus (v) holds. m]

Let u, be the minimal positive solution of (1.6)-(1.7), for A € (0, 1). By
Lemma 3.2 the corresponding eigenvalue problem

1 _
—Aw — Ex-Vw i = ppul 'w inRY,
w e H)(RY),
has the first eigenvalue @ (1) > 0. Furthermore, we have
w(A) = inf {/N<|Vw|2 - %uﬁ)pdx Tw € H;(RN), p/Ngfflwzpdx = 1} .
R pP— R

Then it follows that

1 _
/ ) (|Vw|2 - ﬁwz) pdx = (A)p / ufTwipdy(53)
R R

for any w € H)(RY).

Lemma 5.2. For 0 <_A < A, we have u(A) > 1. Moreover, () is strictly
decreasing in X € (0, 1).

Proof. Take A1, Ay € (0, ) with A; < A,. From (i) of Theorem 1 we have u;, >
u, inRY, and hence gfz_l > gfl_l. By Proposition 3.2, we have pt(A2) < (Aq).
Therefore, (4 (A) is strictly decreasing in A.

Let A € (0,4), and let Ay € (A, ). Put w = Uy, — Uy Then w > 0 and w
satisfies

1 1 p—1 N
Aw+ =x-Vw+ —w+ pu; w =<0, x € RY.
2 p—1
By Proposition 3.1 we have ((A) > 1. Then u(X) > 1 fgr A € (0, A). Since p(A)
is strictly decreasing, we have p(A) > 1 forall A € (0, ). O

In the following we verify the existence of nontrivial solution of (5.1), by
means of the Mountain Pass lemma.
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Lemma 5.3. Assume that {u;} is the Palais-Smale sequence for I, (u), that is,
Uy € H; [RY), {L(uy)} is bounded, and L(uy) » 0ask —> oo (54)
in the dual space of H ; (RN). Then {uy} is bounded in H ; (RM).

Proof. Since {I, (u;)} is bounded, we have

1 1
3 f (|Vuk|2 - ui) pdx — / Gug, u)pdx <M (5.5)
RN p — 1 RN

for some M > 0.Let e > 0. From I; (ux) — 0 as k — oo, we have, for sufficient
large k,

1
/ (Vuk V¢ — uk¢) pdx —f gug, uy)ppdx| < &Pl
RN P — 1 RN P
for any ¢ € H)(RY). Putting ¢ = ure/|lugll 1, we have
/ ( ui) pdx — / 8 (up, wy yurpdx| < ellug| -
RN RN

Then we obtain

Jo (17 =555

Put ¢, = min{1, p — 1}. From (5.5) and (5.6) we have

Cp 2 1,
Q+cp)M > (1 + ?) Vi > — u2) pdx
RV p—1

-2+ cp)/ G (ug, u,)pdx

>_f ( iluk>pdx
“ho

u,%) pdx > / gl updx — elluglyy. (56)
R

(gui, u)ux — 2+ ¢p)G(ug, u;)) pdx — ellurllmy-

From (v) of Lemma 5.1, (5.3), and (3.2), it follows that

2+cp)M > %’ (/ ( u,%) pdx — p/ Ei’—luipdx)
RV RV

—&luell

zc—”(l—L)/ (|w 2
2 ur) ) Jry

(- L\ (i 2 ) Vel — elluel
— - — - — 1.
~2 w(h) N(pp—1) ki KA,

We note here that (1) > 1 from Lemma 5.2. Therefore, {||Vu|| L%} is bounded,
and hence, from (i) of Lemma 3.1, {u;} is bounded in H ; (RM). O

2
uk) px — ellucll
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Lemma 5.4. The functional I, satisfies the Palais-Smale condition, that is, any
Palais-Smale sequence contains a subsequence which converges in H /} (RM).

Proof. We show the case where N > 3. We can verify the case where N = 2 with
a slight modification. Let {u;} be a Palais-Smale sequence, that is, (5.4) holds.
By Lemma 5.3 we have {u;} is bounded in H) (R"). Then, from (ii) and (iii) of
Lemma 3.1, there exist a subsequence that we still denote {u;} and a function
u € H)(R") such that

up — u  weakly in H)(R") as k — oo, (5.7)
up — u strongly in LZ(RN) N L§+1(RN) as k — oo. (5.8)

We claim that ||V (u; — u)||le) — 0 as k — 00. We see that
IV(@ur —u)ll2 = / Vuy - (Vup — Vu)pdx — / Vu - (Vuy — Vu)pdx.
i RV RV
It follows from (5.7) that
/ Vu - (Vuy — Vu)pdx — 0 ask — oo.
RN
We observe that
1
/ Vug - (Vug — Vu)pdx = I} (uy) (ux —u) + —— u(uy —u)pdx
RV p—1 /v

+/ g(uk, u,)(ux —u)pdx.
RN

Since I, (ux) — 0 as k — 0o, we have
| (i) (e — )| < 1L (uolllug — ullgg — 0 ask — oo.

From (i) of Lemma 5.1 we obtain

<C (f u(up — u)pdx +/ u,f(uk — u),odx)
RV RV

for some constant C > 0. By using Holder inequality and (5.8), we obtain

/ uy(uy — u)pdx
RN

‘/ gug, u,)(ur — u)pdx
RN

2 2
= Ml e —ully; > 0 ask — oo

and

/ u,’:(uk —u)pdx
RN

+1
< Nl e Nl — ull ps1r — 0 ask — oo,
o
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Therefore, we have

/ Vuy - (Vupy — Vu)pdx — 0 ask — oo,
RN

and conclude that ||V (u; — u)||L% — 0 as k — o0. From (i) of Lemma 3.1 we

have uy — u in H; (RM).

0

Lemma 5.5. There exist some constants 6 = §(A) > 0 and n = n(A) > 0 such

that
Li(u)>n>0
forallu € H)(R") satisfying IVullz = 8.

Proof. For any u € H)(R") we have

1 1 _
I,(u) = —f (|Vu|2 - u> — pgf ]uz) pdx
2 RN P — 1

—/ (G(u,gk) — ng—luz) pdx = J, — Jb.

RN

From (5.3) and Lemma 5.2 we obtain

(1) L (1w
hs=(1-— \Vul? —
2 u@) ) Jry p—

with ;£ (A) > 1. Then, from (3.2), we have

1u2> pdx

(5.9

1 1 2
Ji = CollVull3,, whereCo=—<1——> (1——> > 0.
; 2 p() N(p—1)

From (iv) of Lemma 5.1, for any ¢ > 0 there is a constant C; = C (g, ||y, [|L~) >

0 such that
Jgfs/ uzpdx—i-Cl/ uP pdx.
RV RV

From (i) and (iii) of Lemma 3.1 we have

p+1

2
Jr < Nenwuig +CiGVul

for some constant C, > 0. Take & > 0 so small that ¢ < NCy/2. Then we have

2
1) = C3|[Vullyy = CiCal| Va7, where Cy = Co — ¢ > 0,
]

2
Ly

which implies that (5.9) holds for some § > 0 and > 0.
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Define the corresponding functional of (1.9) by

1 1 1
Ip(u) = —/ [Vul® — u?) pdx — —— uP pdx
2 RN pP— 1 P =+ 1 RN

with u € H)(R"). Let ug be the solution of the problem (1.9). Then uy satisfies

1
/ (|Vuo|2 —
RN P —

Therefore, we have

1143) pdx = /N ul™ pdx. (5.10)
R

1 1
Io(ug) = <_ - —)/ ul™ pdx. (5.11)
2 p +] RN

Lemma 5.6. Let uq be the solution of the problem (1.9), and let 0 < A < M. Then
(i) L.(tug) < 0 fort > ((p + 1)/2)"/#=;
(ii) sup,.o 11 (tug) < Io(uo).

Proof. From (5.10) we have

t? 1
L (tuo) = 3 /N (|VM0|2 o 1”%) pdx — /N G(tug, u,)pdx
R - R

2

t
=3 ug+1,odx — f G(tug, u,)pdx.
RV RV

From (iii) of Lemma 5.1 we have

p+1 Pl
G (tuo, > .
(tuo Z}L)_p+1”0
Then it follows that
l2 tp+1
L (tug) < (5 i 1) /N ul* pdx. (5.12)
R

Since (t2/2 —tP*1/(p+1)) < Ofort > ((p +1)/2)"/?~D we obtain (i). From
(5.11) and (5.12) we obtain

12 [ian sl
sup I, (tug) < sup (— — )/ uy pdx
t>0 * t>i) 2 | 14 + 1 RV 0

= (5 o) fo 8 = oo,
R

which implies that (ii) holds. O

Lemma 5.7. For 0 < A < A, there exists a critical point u;, € Hﬁ} RM) of I.(n)
such that I, (u;) < Io(ug). Moreover, u, € C*(RY) and u; (x) — 0as|x| — oo.
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Proof. From Lemma 5.4, [, (u) satisfies the Palais-Smale condition. From (i) of
Lemma 5.6, there exists aconstant 77 > Osuchthate = Tjug satisfies || Ve|| > 8
and 7, (e) < 0, where § is the constant appearing in Lemma 5.5. Denote

¢ = inf max I, (v(s)),
vel s€[0,1] )\( ( ))

where I' = {v € C([0, 1]; H/}(RN)) :v(0) =0, v(l) = e}. Then, from Lemma
5.5 and (ii) of Lemma 5.6, it follows that

0 <n <c < Iup).

The Mountain Pass Lemma [1, 5] enables us to find a critical point u, € H /ﬁ (RM)
of I, (u). Hence, u; is a weak solution of the equation in (5.1), and satisfies
I, (1) < Iy(up). By Proposition A.1 in Appendix A, we have u; € C*(R") and
u,(x) — Oas |x| — oo. O

Proof of Proposition 5.1. The existence of solution u; of the problem (5.1); has
been obtained by Lemma 5.7. Therefore it suffices to show (5.2). Take a constant
cosothat0 < ¢p < (N/2) —1/(p — 1). Recall that both u, (x) and u, (x) tend to
0 as |x| — o0. Then, from (ii) of Lemma 5.1, there is a constant R > 0 such that

0 < g(us(x), u; (x)) < cour(x), |x[=R. (5.13)

Putw(x) = Cle_|x‘2/4,where Ci = maxyj<r ux(x)e"”z/“.Clearly, w(x) > u;(x)
for |x| < R.Since w € H}(R") and w satisfies —V - (0Vw) = (N/2)pw inR",
we have

N
f Vw - Vopdx = —/ wopdx (5.14)
RN 2 RN

for any ¢ € H;(RN). Let ¢(x) = (up(x) — w(x))™, where a™ = max{a, 0}.
Then ¢ € H)(R"), ¢ = 0 for |x| < R, and

| Vup = Vwifu, > w,
Vo = { 0 ifu, <w. (5.15)

Now we claim that ¢ = 0 in R". We observe that

1
/ (V”A Vo — (— + Co) Mx¢) pdx = / (g(us, uy) — cous) ppdx.
RN p — 1 RN

From (5.13) and ¢ = O for |x| < R it follows that

/ <Vux V¢ — <L + CO> ux¢> pdx
RY p—1 (5.16)

= (8(us, uy) — couy) ppdx < 0.

[x|=R
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From (5.14) and ¢y < (N/2) — 1/(p — 1), we obtain

/ (Vw -V¢ — (; + co) wqb) pdx
RV p—1 (5.17)

1
:(3———%)/ weopdx > 0.
p—1 RV

Then, from (5.16) and (5.17) we obtain

/ ((M —Vw) - Ve — (# + Co) (w0, — w)c/)) pdx < 0.
RY p—1

By virtue of (5.15) it follows that

/ (|V¢|2 - (# + co> ¢2) pdx <0,
RN p—1

From (i) of Lemma 3.1 we have

N 1 & pds <0
————c X .
> T o1 @) ), el s

This implies that ¢ = 0 in RY, and hence, u;(x) < w(x) = Cie P’/ for
x € RV, |

The next result is fundamental to the proof of Proposition 5.2.

Lemma 5.8. Let M; = sup, gv ;. (x) for0 < A < A. Thenliminf, oy M > 0.

Proof. Assume to the contrary that liminf; ¢+ M, = 0. Take a constant ¢y so
that 0 < ¢o < (N/2) — 1/(p — 1). Recall that ||u, ||z~ — 0 as A — 0. From
(ii) of Lemma 5.1, we can take a A > 0 so that g(u, (x), u, (x)) < cou, (x) for
x € R". Then we have

1
f (|VMA|2 -
RV pP—

It follows that

1 N
/RN Vi, |* pdx < (co + F) /RN us pdx < 3/1{N u? pdx

with u, € H[} (RY). This contradicts (i) of Lemma 3.1. Hence, we obtain
liminf, o4 M; > 0. m|

ui) pdx =/ g, uy)up pdx < CO/ u; pdx.
1 RN RN

Proof of Proposition 5.2. Let {A;}beasequence suchthatA; > ArrjandA; — 0
as k — oo. For simplicity, one sets vy = u;, and v, = u;, . The proof is divided
into several steps.
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Step 1. We claim that {v;} is bounded in H, (R").
From Lemma 5.7 we have I, (vx) < Io(up), that is,

1 1
3 / (IV 2 v,f) pdx — f G (i, v pdx < Io(uo).
RN p— 1 RN

Since vy satisfies

1
/ ( 2 v,f) pdx = / gk, v v pdx,
RV p—1 RV
we obtain

1
e+l = (1+2) [ (|Wk|2 -

—(2+cp)f G(vk,vk),odx

(o)

. (g (v, Uk)Uk 2+ ¢,)G (v, vy)) pdx,

lv,f) pdx

where ¢, = min{1, p — 1}. From (v) of Lemma 5.1 and (5.3), it follows that

c 1 _
2+ cp)lo(up) = Ep / <|Vvk|2 _ lvlz) pdx — p/ ylf lvipdx)
RV p— RV

Cp 1 >f ( 2 2)
1 - [Vug| v; | pdx.
2 1)) Jan U :

Since w(X) is strictly decreasing and (1) > 1 by Lemma 5.2, we have w(i;) >
(A1) > 1. From (3.2) we obtain

1 2 ,
2+ cp)lo(ug) = > (1 — m) (1 - m) ||VU/<||L%,

which implies that {|| Vv, ||L%} is bounded. Hence, {v;} is bounded in H; (RM).

\Y

IV
|

Step 2. We show that there exist a subsequence that we still denote {v;} and a
function vy € H)(R") such that v; — vy in H) (RY) as k — oo.

Since {v;} is bounded in H /} (RV), from (ii) and (iii) of Lemma 3.1, there exist
a subsequence (still denoted by {v;}) and some vy € H ; (R") such that

vy — vg weakly in H;(RN) as k — oo,

v — v strongly in Li(RN) N LgH(RN) as k — oo.
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We claim that ||V (v — v0)||L% — 0 as k — 00. We observe that

V(e —vo)llz2 = /

Ve - (Vo — Vg pdx — /
RN

Vg - (Vv — Vug) pdx
RN

and
1
/ Ve - (Vg — Vg pdx = —/ ve (v — u)pdx
RV P — 1 RN

+/ g (g, v)(vx — vo)pdx.
RN

By the similar argument as in the proof of Lemma 5.4, we obtain ||V (v, —
v0)||L% — 0 as k — o0, and hence, v; — vy in H;(RN) as k — oo.

Step 3. We show that vy = uy, where ug is the solution of the problem (1.9).
Furthermore, we have vy — ug in H)(RY) N L*(R") as k — oo.

First we show that vy satisfies the equation in (1.9). Since vy — vyin H ;l (RM)
by Step 2, it suffices to prove that

/N g(vg, v)ppdx — /N vidpdx ask — oo (5.18)
R R

for any ¢ € H}(R"). From vy — vpin L;(RV) N LgH(RN), there exist a sub-
sequence (still denoted by {v}) and a function » € L2(RM) N LgH(RN ) such
that

ve(x) < h(x) ae. xRV (5.19)
fork = 1,2,...,and vy — vy a.e. x € RY. (See, e.g., [2].) By virtue of
lvillze — 0 as k — oo, we have

ge, v) = (i — v — vl —> v] ae.x eR".
From (i) of Lemma 5.1 and (5.19) it follows that
gk, v) < C(v +vf) <C(h+h?) ae x e RY.

By the Holder inequality we have

(h+hP)ppdx < ||kl 2@l 2 + 1B i llPll o1 < 00
RN ° » Ly p

Therefore, by the Lebesgue convergence theorem, we obtain (5.18). Hence, vy
satisfies the equation in (1.9).

Next we show vy > 0. From Proposition A.1 in Appendix A, vy € C*>(RY) N
L®@RM) and |Vvy| € L®(RY). By (i) of Proposition A.2, {v;} is bounded in
C'(RM). Thus {vy — vo} is bounded in C'(R"). Recall that vy — vy — O in



Semilinear heat equations 189

H/} (RM) by Step 2. Then, by (ii) of Proposition A.2 we have v, — voin L®(R"),
and hence vy > 0. Lemma 5.8 yields vy % 0. Thus vy > 0 by Proposition 2.1.
Therefore, vy solves the problem (1.9). Since the solution of the problem (1.9) is
unique by [25, Corollary 2], we conclude that vg = ug. In particular, we obtain
v — uo in H)(RV) N L®RY) as k — oo.

Let A; be a sequence satisfying Ay — 0 as k — 0. Then, by Steps 1-3, there
exists a subsequence (still denoted by {A;}) such that u;, — uo in H)(RY) N
L*(R"Y) as k — 0, which implies that u, — uo in H)(R¥) N L2(R") as
A — 0. This completes the proof of Proposition 5.2. O

Appendix A.

Proposition A.1. Letu € H ; (RN) be a solution of

1
Au—}—ix-Vu—l—f(x,u):O inRY, (A.1)
where f is Holder continuous and satisfies
|f,w)| < Cu+u?), xeRY, uel0,00), (A2)

for some constants C > 0and p > 1, (N —2)p < N + 2. Then u € C*(RV),
and both u(x) and |Vu(x)| tend to 0 as |x| — oo.

We prove Proposition A.1 by following the idea of Escobedo and Kavian [8].
First we prepare the following lemma.

LemmaA.l. (i) Letu € H;(RN). Thenu € L"(RY) and |x||Vu| € L"(RY)
forallr € [1,2].
(ii) Assume that u € L%(RN) N LIRN) for some g > 2. Then u € L"(RN) for
allr € 2, q].
(iii) Assume that |Vu| € L%(RN) N L4(RN) for some g > 2. Then |x||Vu| €
L"RN) forallr €[2,q).
(iv) Let u € Li(RN) N L®RN). Then u € L1(RN) forall ¢ > 2.
(v) Let |Vu| € L%(RN) N L®®RN). Then |x||Vu| € LYRN) forall g > 2.

Proof. (i) Itisclearifr =2.For 1 <r < 2 we have

f u'dx = / urpr/Zp—r/de
RV RN

/2 @-r/2
< (/ uz,odx) </ ,o_r/(z_’)dx) < 00
RV RV
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and

f el |Val dx = / el [Vul o o P dx
RN RN

r/2
< ( f |W|2pdx)
RN

2-r)/2
% (/ |x|2r/(2—r)p—r/(2—r)dx) < 00.
RN

(i) Letr € 2,q).Puts = (¢ —2)/(r —2) > 1. Then we have

/ |u|rdx f/ uq/su(Zs—Z)/sp(s—l)/sdx
RV RN

1/s (s—1)/s
< (/ uqu) (/ u2,0dx) < 0.
RV RN

(iii) Letr € (2,¢q).Puts = (¢ —2)/(r —2) > 1. Then we have

/ |x|r|vu|rdx < sup (|x|rp—(s—l)/s)/ |Vu|q/s|Vu|(2S—2)/Sp(s—1)/sdx
RN RV

xeRN

1/s
< sup (7o 0 %) ( /. |W|qu)
R

xeRN

(s=1)/s
X </ |Vu|2,0dx> < 0.
RN

(iv) For g > 2, we have

/ lultdx < / lul? pdx < |lu|{’ / u’pdx < oo.
RN RN RN

(v) For g > 2, we have

/ |x|q|Vu|qussup<|x|qp‘>f |Vul|? pdx
RN RV

xeRN

< sup (Ix|*p™ )| Vullf / Vu?pdx < co.
xeRN RV
Set
1
h(x,u) = Ex -Vu+u+ f(x,u). (A.3)
Then the solution u of (A.1) satisfies

—Au~+u = h(x,u) inRY. (A4)
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We show the following:

LemmaA.2. Let u € H; (RN) be a solution of (A.1) such that u € L1(RN) for
some q > 2. Then h(x, u) defined by (A.3) satisfies h € L1/P?(RV).

Proof. From (i) and (ii) of Lemma A.1, u € L’ (RY) for all r € [1, q]. Since
f satisfies (A.2), we have f(x,u) € L"(RY) for 1 < r < g/p. Then it suf-
fices to show that |x||Vu| € L4/P(RN). If g/p < 2, from (i) of Lemma A.1, the
result is established. So we assume that ¢/p > 2. From u € H)(R"), we have
h € L?>(R"). Then, by using the equation (A.4) we obtain u € W>2(R"). By the
Sobolev embeddings, we have

1 1 1
[Vu| e L"(RY), —=-—— ifN >2,
ry 2 N

[Vu| € L"(RY) forallr >2 if N =2.

In the cases where N = 2 or ry > ¢/p, from (iii) of Lemma A.1, we have
|x||Vu| € L7 (RY), and the result is established. In the cases where N > 2 and
ri < q/p,from (iii) of LemmaA.1, we have |x||Vu| € L"(RY) forallr € [1, ).
Thenh € L"(RN) forr € [1,r),andsou € W>"(RY) forr € [1, r1). The Sobo-
lev embeddings now yield

1 1 1
[Vu| € Lr(RN) forallr € [1,rp), —=———, ifr; <N,
) rn N

[Vu| € L°@RY), ifr > N.

In the cases where r; > N or r, > g/p, we have |x||Vu| € L4/P(RV). In the
cases where r, < p/q, we have |x||Vu| € L"(R") for all r € [1, r,). Repeating
the arguments in finite times, we obtain |x||Vu| € L4/P(RV). O

Proof of Proposition A.1. We show the case where N > 3. We can verify the case
where N = 2 with a slight modification.

First we show u € L°(R"). From (iii) of Lemma 3.1, u € L%(R"), where
go = 2N /(N —2). Then, from Lemma A.2, we have h € L%/?(R"). By using the
equation (A.4) we obtain u € W24/?(RV). Then the Sobolev embedding implies
that

1 p 2 pN

ue L"RY), — =2 _Z ifg,< -,
®D q q0 N 0 2

N
ue L®RY), ifqgy> pT

We note that g; > g¢ from the assumption p < (N +2)/(N —2).1f g0 < pN/2,
from Lemma A.2, we have h € L?/P(R"), and hence u € W>%/7(R"). Then
the Sobolev embedding implies that
1
welL2®Y), —=2_
9 q1

pN

lf‘h < Ta

2
N
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N
ueL®RY), ifq > pT.

Repeating above arguments in finite times, we obtain u € L>(R").

From (iv) of Lemma A.1 we have u € LP4(R") for all ¢ > N. Then form
Lemma A.2 we have h € LY(R"), and hence u € W>4(R") for all ¢ > N. By
the Sobolev embedding theorem, u € C'¢(RV) for some @ € (0, 1). Then, since
f is Holder continuous, we obtain u € C?(R"). We note that Cye (R") is dense
in W>4(R"). Then, by using the Sobolev embedding theorem again, we obtain
u(x) — 0and |Vu(x)| — 0 as |x| = oo. O

Proposition A.2. (i) Assume that {u;} is bounded in H [} (RN), and that uy, satisfies

1
Aug + 3% Vur + fi(x,ux) =0  inRY (A.5);

fork =1,2,.... We assume in (A.5); that f; satisfies
|fue,w)| < Cu+u?), xeRY, uel0,00),

for some constants C > Qand p > 1, (N —2)p < N + 2, where C and p are
independent of k. Then {u;} is bounded in C' (RV).

(ii) Assume that {uy} is bounded in C'(RN), and that u;, — 0 in H; (RM).
Then uy — 0in L°(RN) as k — oo.

From the proof of Lemma A.1 we obtain the following results.

Lemma A.3. (i) Assume that {u;} is bounded in H/} (RY). Then {u;} and
{|x||Vuk|} are bounded in L™ (RN) forall r € [1,2].
(ii) Assume that {u;} is bounded in Lf) RM) N LIRN) for some g > 2. Then
{ur} is bounded in L’(RN)for allr € [2,q].
(iii) Assume that {|Vuy|} is bounded in L%(RN) N LYIRN) for some g > 2. Then
{|x||Vug|} is bounded in L" (RN) for all r € [2, q).
(iv) Let {uy} is bounded in L/%(RN) NL>®RN). Then {u;)} is bounded in LY (R")
forall g > 2.
(v) Let {|Vuy|} is bounded in L%(RN) N L®RYN). Then {|x||Vuy|} is bounded
in LYRN) forall g > 2.

Set :
hi(x,u) = Ex -Vu+u+ fi(x,u).

Then the solution u; of (A.5), satisfies
—Auyp + up = hy(x, uy) in RV.

By the similar arguments in the proof of Lemma A.2, we obtain the following
results.



Semilinear heat equations 193

Lemma A 4. Assume that uy is a solution of (A.5), such that {u} is bounded in
L4(RN) for some q > 2. Then {h;(-, uy)} is bounded in L1/P(RV).

Proof of Proposition A.2. (i) Following the arguments in the proof of Proposition
A.1, we obtain {u;} is bounded in L>®(R"). From (iv) of Lemma A.3, {u;)} is
bounded in L?4(R") forall g > N.Then {h;} is bounded in L¢(R"), and hence,
{uy} is bounded in W24 (R¥) for all ¢ > N. By the Sobolev embedding theorem,
{ur} is bounded in C'(RV).

(i) Letg > N. Since {uz} is bounded in C'(R") and uy — 0in H)(RY), we
have

-2
il q 5/ uj pdx < |lugllis / ulpdx — 0 ask — oo
RV RY
and

IVurll g E/N |Vui|?pdx < IIVukII‘i;sz |Vugl>pdx — 0 ask — oo,
R R

Hence, uy — 0in W'4(R") as k — oo for ¢ > N. Then by the Sobolev
embedding theorem, we have u; — 0 in L®(RY). O

Appendix B.

Lemma B.1. Let u be a positive function on RY, and let w be a function defined
by (1.5) on RN x (0, 00). Then w satisfies (1.2); in the sense oleloc(RN), if and
only if u satisfies (1.7);.

In order to prove Lemma B.1 we need the following

Lemma B.2. Let w be the function in LemmaB.1. Put B = {x € RY : |x| < R},
where R > 0. Then

Ix|>PDw(x, ) - ra(x/|x]) ast — 0 fora.e. x € Bg (B.1)
if and only if
w(w,t) > Aa(w) ast - 0 forae we SN (B.2)
Proof. Define E C RY such thatif x € RY \ E then
x| P Vw(x, 1) - ra(x/|x]) ast— 0.
It follows from (1.5) thatif x € RV \ E and p > 0 then

|x 2P Vw(ux, 1) = |x|Y P Dw(x, t/u?) — ra(x/|x]) ast— 0.
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This implies that x € RV \ E if and only if ux € R \ E for all & > 0. Thus we
have

x e E ifandonlyif pux e E forall u > 0. (B.3)
Put Eg = ENSY"!and Ez = E N Bg. Then it follows from (B.3) that

R
/ dx :/ NaoyrV™! (/ dS) dr :a)NRN/ das,
Ep 0 Eg Eg

where wy is the volume of unit ball in RY and d S denotes the surface measure
on Eg. This implies that (B.1) holds if and only if (B.2) holds. O

Proof of Lemma B.1. From (1.5) we see that |x|¥ P Dw(x, t) = |y|¥P Du(y),
where y = x/+/t. In particular, we have

w(w, 1) = rYP Dyu(rw), wherer = 1/4/1. (B.4)

Assume that u satisfies (1.7),. Then, from (B.4), we obtain (B.2). Lemma B.2
implies that (B.1) holds for any R > 0. Now, fix a compact set K C R¥. Then,
by the Lebesgue dominated convergence theorem, we have

/ lw(x,t) — Aa(x/|x])| dx
K

:/ x|~V | x| PDw(x, 1) — ra(x/|x])| dx — 0
K

as t — 0. Therefore, w satisfies (1.2); in the sense of LllOC (RM).

Conversely, assume that w satisfies (1.2); in the sense of LllOC (RV).Then (B.1)
holds for R > 0, which implies (B.2) by Lemma B.2. From (B.4) we find that u
satisfies (1.7);.. This completes the proof of Lemma B.1. O
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