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Abstract. A holomorphic triple over a compact Riemann surface consists of two holomorphic
vector bundles and a holomorphic map between them. After fixing the topological types of the
bundles and a real parameter, there exist moduli spaces of stable holomorphic triples. In this
paper we study non-emptiness, irreducibility, smoothness, and birational descriptions of these
moduli spaces for a certain range of the parameter. Our results have important applications to the
study of the moduli space of representations of the fundamental group of the surface into unitary
Lie groups of indefinite signature ([5,7]). Another application, that we study in this paper, is to
the existence of stable bundles on the product of the surface by the complex projective line.

1. Introduction

Let X be a closed Riemann surface of genus g > 2. The theory of holomorphic
triples has its origins [13,4] in the search for solutions to certain gauge theoretic
equations on X, obtained by dimensional reduction of the Hermitian—Einstein
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equation in 4 dimensions. More precisely, solutions to the Hermitian—Einstein
equation on X x P! which are invariant under the standard action of SU(2) on
P! correspond to solutions to the so-called vortex equations on X. The Hitchin—
Kobayashi correspondence states that a solution to the Hermitian—Einstein equa-
tion on X x P! gives rise to a polystable holomorphic bundle and that, conversely,
any stable holomorphic bundle admits a Hermitian—Einstein metric. The coun-
terpart on X states that there is a Hitchin—Kobayashi correspondence between
solutions to the coupled vortex equations and stable holomorphic triples. A holo-
morphic triple consists of a pair of holomorphic vector bundles, E; and E;, over
X and a holomorphic map ¢: E, — E;| between them. An important feature of
the stability condition for triples is that it depends on a real parameter ¢, corre-
sponding to the fact that there is a real parameter in the vortex equations; thus one
is led to the concept of «-stability of a holomorphic triple. This parallels the fact
that when studying Hermitian—Einstein metrics and stable bundles on X x P! it
is necessary to choose a polarization on this complex surface. We note that, as
usual, there are corresponding concepts of a-polystable and «-semistable triples
(see Section 2 below for precise definitions).

It was shown in [4] (see also [13]) that projective moduli spaces for holomorphic
triples exist. (Later a direct construction was given by Schmitt using geometric
invariant theory [25].) Since the stability condition depends on the real parameter
o, so do the moduli spaces. Fixing the topological invariants n; = rk(FE;) and
d; = deg(E;), we denote the moduli space of a-polystable triples with the given
invariants by

Ny = Ny(ny, ny, dy, da)

and the moduli space of a-stable triples by N3 C A,. In this paper we address
the questions of smoothness, non-emptiness and irreducibility of these moduli
spaces.

Before describing our results in more detail, we explain our motivation, which
comes from the problem of determining the connected components of the moduli
space of representations of the fundamental group of X in PU(p, ¢g). A detailed
study of this moduli space appears in a companion paper [7]; in the following
we briefly outline the main ideas. The first point to notice is that we may as well
study the connected components of the moduli space of projectively flat U(p, g)
bundles on X. This moduli space can be divided into disjoint closed subspaces
M(a, b) indexed by a pair of integers (a, b), the Chern classes obtained from a
reduction of structure group to the maximal compact subgroup U(p) x U(g). The
values of (a, b) are bounded by the Milnor—Wood type inequality

aq —bp
P+q

For each allowed value of (a, b) one expects the space M (a, b) to be non-empty
and connected, thus forming a connected component of the moduli space.

< min{p,q}(g—1).
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By the work of Hitchin [18, 19], Donaldson [12], Simpson [26—-29] and Corlette
[9], the moduli spaces M (a, b) are homeomorphic to moduli spaces of so-called
U(p, q)-Higgs bundles on X: these are pairs (E, @), where E is a holomorphic
vector bundle which decomposes as a direct sum £ = V @ W and the Higgs field
®: F - E ® K is of the form

0p
"= (V 0)

with respect to the direct sum decomposition of E. Here K is the canonical line
bundle of X and the invariants a and b appear as the degrees of V and W respec-
tively. The L?-norm of the Higgs field gives us a Bott-Morse function on the
moduli space (cf. Hitchin [18,19]). Thus, connectedness of the spaces M (a, b)
will be a consequence of connectedness of the corresponding subspaces of local
minima. In the case of flat U(2, 2)-bundles, it was shown in [15] that the local
minima are represented by Higgs bundles for which either 8 or y vanishes. One
of the main results in [7] is that this is true in general. The crucial observation
is now that there is a bijective correspondence between U(p, g)-Higgs bundles
(E, ®) with 8 = 0 or y = 0 and holomorphic triples: if, say, y = 0, we obtain
a holomorphic triple T = (E|, E», ¢) by setting E; = V ® K, E; = W and
¢ = B. It turns out that (E, ®) is (poly)stable as a U(p, g)-Higgs bundle if and
only if the corresponding holomorphic triple T is a-(poly)stable for @ = 2g — 2.
It follows that the subspace of local minima on M (a, b) is isomorphic to a moduli
space of (2g — 2)-polystable holomorphic triples. Thus the results of the present
paper imply results on non-emptiness and connectedness of the moduli spaces
M(a, b). We refer the reader to [7] for the precise statements.

We now return to our main subject of study, the holomorphic triples. In order
for NV, to be non-empty, one must have « > a,, with a,, = di/n; — da/ny > 0.
In the case n; # n, there is also a finite upper bound «y;. When the parameter o
varies, the nature of the «-stability condition only changes for a discrete number
of so-called critical values of « (see Section 2 for the precise statements). We can
now state our main results.

Theorem A. (1) A triple T = (Ey, E3, ¢) of type (ny, na, dy, dy) is a,,-polysta-
ble if and only if ¢ = 0 and E| and E; are polystable. We thus have

Ny, (n1,np,dy, dy) = M(ny, dy) x M(ny, dy).

where M (n, d) denotes the moduli space of polystable bundles of rank n and
degree d. In particular, Nam (n1, ny, dy, dy) is non-empty and irreducible.

2) If o > ay, is any value such that 2g — 2 < a (and o < oy if ny # ny) then
the moduli space N >(ny, na, dy, dp) is non-empty, irreducible, and smooth of
dimension (g — 1)(n% + n% — nny) — nids + nady + 1. Moreover:
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e If ny = ny = n then the moduli space Ng(n, n,dy, d) is birational-
ly equivalent to a PN -fibration over M*(n, d») x Sym?~%?(X), where
M*(n,d,) denotes the subspace of stable bundles of type (n,d,),
Sym? =% (X) is the symmetric product, and the fiber dimension is N =
I’l(dl — dz) — 1.

o Ifny > ny then the moduli space J\/’Oj (ny, ny, dy, dy) is birationally equiv-
alent to a PN -fibration over M*(n, — na, di — d») x M*(n», d»), where
the fiber dimension is N = nyd; — nyd, +ny(ny —np)(g — 1) — 1.

o Ifny < ny then the moduli space /\/:j (ny, ny, dy, dy) is birationally equiv-
alent to a PN -fibration over M*(n,» — ny,d,» — dy) x M*(n1, dy), where
the fiber dimension is N = nod; —nidy +ny(ny —ny)(g—1) — 1.

(3) If ny # ny then the moduli space Ny,,(n1, na, dy, dy) is non-empty and irre-
ducible. Moreover

M(ny,dy) x M(ny —nay,dy —ds) ifny > ny

N ’ 7d ’d ;
aM(nl np, aj 2) {M(n],dl) X M(nz—nl,dz—dl) ifn] < nj.

Our strategy for studying the moduli spaces is similar in spirit to the one used
by Thaddeus [31]: basically it consists in obtaining a good understanding of the
moduli space for a particular (large) value of @ and then keeping track of how the
moduli space changes as « varies. In the following we explain this in more detail
and outline the contents of the paper.

After recalling the basic facts about holomorphic triples in Section 2, we go on
to study extensions and deformations of triples in Section 3. Here we show that
the quasi-projective variety N C N/, corresponding to a-stable triples is smooth
for all values of « greater than or equal to 2g — 2 (Theorem 3.8).

In Sections 4 and 5 we examine how the moduli spaces differ for values of «
on opposite sides of a critical value. If Naf denote the moduli spaces for values of
o above and below a critical value «., we denote the loci along which they differ
by S, respectively. Our main result (Theorem 5.12) is that for all @ > 2g —2 the
codimension of S,z is strictly positive. It follows that the number of irreducible
components of the' spaces NS are the same for all « satisfying « > 2g — 2 and
o, < o < ay. In order to estimate the codimension of the S, £ we need to esti-
mate the dimension of certain spaces of extensions of triples. It is notable that this
requires us to consider objects more general than triples, namely the holomorphic
chains studied in [1]. The rather technical details are in Section 4: the main result
is Proposition 4.3 which is then used to deduce the key Proposition 4.7.

Next we turn to the question of understanding the moduli spaces N, for large
values of the parameter «. After obtaining some preliminary results in Section 6,
we consider the case of triples with n; # n, in Section 7. Let N denote the
moduli space of a-polystable triples for o between «, and the largest critical
value smaller than «y,. We show that this ‘large o’ moduli space is birationally
equivalent to a PN -fibration over a product of moduli spaces of stable bundles
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(Theorem 7.7). Combining this fact with our codimension estimates we obtain
our main results on non-emptiness and irreducibility of the moduli spaces N, and
N; these appear as Theorem 7.9 and Corollary 7.10.

In Section 8 we obtain analogous results in the case when n; = n,. Even
though there is no upper limit to « in this case, the moduli spaces do stabilize for
o sufficiently large (Theorem 8.6) and hence it makes sense to consider the large
a moduli space N7 also in this case. The birational description of Ay is given in
Theorem 8.15, while the main results on non-emptiness and irreducibility are in
Theorem 8.16.

Finally, in Section 9, we go back to the origins of the theory of holomor-
phic triples and apply our results on moduli of triples to deduce the existence
of SU(2)-invariant Hermitian—Einstein metrics on complex vector bundles on
X x PP!; equivalently, our results imply the existence of stable vector bundles on
X x P!,

This paper and its companion [7] form a substantially revised version of the
preprint [6]. The main results proved in this paper were announced in the note [5].
In that note we claim (without proof) that for o« > 2g — 2, the moduli spaces N,
are irreducible without imposing the conditions in (2) or (3) of Theorem A. This
is a reasonable conjecture, which we hope to come back to in a future publication.

Acknowledgements. We thank the Mathematics Departments of the University of Illinois at
Urbana-Champaign, the University Auténoma of Madrid and the University of Aarhus, the
Department of Pure Mathematics of the University of Porto, the Mathematical Sciences Research
Institute of Berkeley, the Mathematical Institute of the University of Oxford, and the Erwin
Schrodinger International Institute for Mathematical Physics in Vienna for their hospitality dur-
ing various stages of this research. We thank Ron Donagi, Tomds Gémez, Rafael Herndndez,
Nigel Hitchin, Alastair King, Vicente Mufioz, Peter Newstead, and S. Ramanan for many insights
and patient explanations.

2. Definitions and basic facts

2.1. Holomorphic triples and their moduli spaces

Let X be a compact Riemann surface (some of what follows is also true also for a
compact Kihler manifold [13, 1]). Recall ([4] and [13]) that a holomorphic triple
T = (E1, E,, ¢) on X consists of two holomorphic vector bundles £, and E; on X
and a holomorphic map ¢: E; — E;. A homomorphism from 7’ = (E{, E}, ¢')
to T = (E1, E,, ¢) is a commutative diagram

L

E, — E,
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where the vertical arrows are holomorphic maps. A triple 7" = (E{, E}, ¢') is a
subtriple of T = (E}, E, ¢) if the sheaf homomorphims E| — E; and E; — E,
are injective. A subtriple 7’ C T is called properif T’ #0and T' # T.

Definition 2.1. For any o € R the a-degree and a-slope of T are defined to be

deg,(T) = deg(E;) + deg(E») + ark(E»),

_ deg,(T)
HalD) = D + 1k (E2)

tk(E>)
tk(E) + rtk(E,)’
where deg(E), tk(E) and uw(E) = deg(E)/tk(E) are the degree, rank and slope

of E, respectively.
We say T = (E1, E;, ¢) is a-stable if

wa(T") < pa(T)

for any proper subtriple T' = (E{, E}, ¢'). Sometimes it is convenient to use

A(T") = pa(T") — pa(T), 2.1

in terms of which the a-stability of T is equivalent to Ay, (T’) < O for any proper
subtriple T'. We define a-semistability by replacing the above strict inequality
with a weak inequality. A triple is called o-polystable if it is the direct sum of
a-stable triples of the same a-slope.

=uwE @ E)+a

Write n = (ny, ny) and d = (d;, d»). We denote by
No =Ny, d) = N (ny, na, dy, do)

the moduli space of a-polystable triples T = (E, E», ¢) which have rk(E;) = n;
and deg(E;) = d, fori = 1, 2. The subspace of «-stable triples is denoted by N.
We refer to (n, d) = (ny, ny, di, d») as the type of the triple.

There are certain necessary conditions in order for a-semistable triples to exist.
Let u; = d;/n; fori = 1, 2. We define

O =1 — K2, (2.2)
ny+n;

ay =(1+ ——)(u1 — p2), ny #ny. (2.3)
|ny — nal

Proposition 2.2. [4, Theorem 6.1 ] The moduli space Ny (ny, ny, dy, d>) is a com-
plex analytic variety, which is projective when o is rational. A necessary condition
for Ny(n1, na, dy, dy) to be non-empty is

O<on <a<ay if ni#ny,

Ogaméa lf ny = nj.
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Remark 2.3. If o, = 0 and n| # n, then «,,, = o)y = 0 and the moduli space of
o stable triples is empty unless o = O.

A direct construction of these moduli spaces has been given by Schmitt [25]
using geometric invariant theory.

Given a triple T = (E|, E», ¢) one has the dual triple T* = (E3, Ef, ¢*),
where E is the dual of E; and ¢* is the transpose of ¢. The following is not
difficult to prove ([4, Proposition 3.16]).

Proposition 2.4. The o-(semi)stability of T is equivalent to the a-(semi)stability
of T*. The map T +— T* defines a bijection

Na(nl, na, dl, d2) = NO{(”Z? n, _dZv _dl)’

which is moreover an isomorphism.

This can be used to restrict our study to n; > n, and appeal to duality to deal
with the case n| < n,.

2.2. Critical values

A holomorphic triple T = (Ey, E3, ¢) of type (ny, n», dy, dy) is strictly a-semi-
stable if and only if it has a proper subtriple 7" = (E{, E}, ¢') such that jo (T') =
e (T), i.e.

/

n
W(E} ® E) +a——— = u(E; @ Ex) +«
ny+n

= 2.4)
1 /2 ny+np
There are two ways in which this can happen: The first one is if there exists a
subtriple 7"’ such that
n ny
- —- = , and
ny+ny, np+np

w(E} @ E}) = n(E| @ Ey).

In this case the terms containing « drop from (2.4) and T is strictly «-semistable
for all values of «. We refer to this phenomenon as «-independent semistability.
This cannot happen if GCD(n,, n; + n», d, + d>) = 1. The other way in which
strict «-semistability can happen is if equality holds in (2.4) but

/
n, ny

(2.5)

U / :
ny+n,  np+np

The values of « for which this happens are called critical values.
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Definition 2.5. We say that o € [o,,, 00) is a critical value if there exist integers
ny, ny, dy and d;, such that

d +d, ! d+d
1+2—|—a n, —1+2+a ny

/ ’ ! ;T ’
ny +n, ny +n, ny +no ny +no

that is,
o — (ny 4+ n2)(d} +dy) — (n} +ny)(d + dy)

’ ’
nyny; —nin,

with 0 < nj < n;, (), ny,dy,dy) # (n1,ny,dy, da), (n},ny) # (0,0) and
niny # nin’,. We say that o is generic if it is not critical.

Proposition 2.6. [4] Fix (ny, ny, dy, d»).

(1) The critical values of o form a discrete subset of o € [, 00), Where o, is
asin (2.2).

(2) If ny # ny the number of critical values is finite and lies in the interval
[ctm, ap], where apy is as in (2.3).

(3) The stability criteria for two values of o lying between two consecutive critical
values are equivalent; thus the corresponding moduli spaces are isomorphic.

@) If o is generic and GCD(ny, ny + ny, dy + dy) = 1, then a-semistability is
equivalent to a-stability.

For the application of triples to U(p, g)-Higgs bundles ([7]; see also the Intro-
duction), it is important to have criteria to rule out strict «-semistability when
o = 2g — 2, where g is the genus of the surface. One such criterion, dealing
actually with any integral values of «, is given by the following.

Lemma 2.7. Let m be an integer such that GCD(n| + ny,d; + dy — mn;) = 1.
Then

(1) @« = m is not a critical value,
(2) there are no a-independent semistable triples.

Proof. To prove (1), suppose that « = m is a critical value. There exist then a
triple T and a proper subtriple 7’ so that

(d] + d5 + mn5)(ny + ny) = (dy + dr + mny)(n) + ny).

Thus n; + ny divides (d; + d» + mny)(n} + nb). But ny + ny > n} + nj, so
we get that GCD(n; + ny, dy + do + mny) > 1. Writing d) + d, + mny =
dy + dr) — mny +m(n; + ny), we see that GCD(n; + ny, dy +dr — mny) > 1,
in contradiction with the hypothesis. To prove (2), we show that GCD(n,, n +
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ny,d; + d») = 1, from which the result follows by (4) in Proposition 2.6. Sup-
pose that GCD(ny, ny + n», di + d») # 1. Then there is (n}, n, d}, d;) such that

n’ dy+d} di+d
2 — n 1 2 41 2
W, T mim W = mitns It follows that

dy+d,—mny di+dy—mn
ny+ny,  ni+m

9’

and hence GCD(n|+n,, di+d, —mny) # 1, in contradiction with the hypothesis.
[}

2.3. Vortex equations

There is a correspondence between stability and the existence of solutions to cer-
tain gauge-theoretic equations on a triple 7 = (E, E», ¢), known as the vortex
equations ([4] and [13]). The vortex equations

V—=IAF(E)) + ¢¢* = 1, 1dg,,

(2.6)
V—1AF(Ey) — ¢*¢ = 1, 1d,,

are equations for Hermitian metrics on E; and E;. Here A is contraction by the
Kihler form of a metric on X (normalized so that vol(X) = 2m), F(E;) is the
curvature of the unique connection on E; compatible with the Hermitian metric
and the holomorphic structure of E;, and t; and 7, are real parameters satisfying
dy +d, = nit1 4+ ny1p. Here ¢* is the adjoint of ¢ with respect to the Hermitian
metrics. One has the following.

Theorem 2.8. [4, Theorem 5.1] A solution to (2.6) exists if and only if T is a-
polystable for « = t; — 1.

Using the vortex interpretation of the moduli space of triples one can easily
identify the moduli space of triples for o = .

Proposition 2.9. A triple T = (E|, E,, ¢) is a,,-polystable if and only if ¢ = 0
and E| and E, are polystable. We thus have

Na,, (01, 02, dv, do) = M(ny, dy) x M(na, d»),

where M (n;, d;) is the moduli space of semistable bundles of rank n; and degree
d;.

Proof. Consider equations (2.6) on T'. If « = «, then t; = ) and 7, = u; and
hence in order to have solutions of (2.6) we must have ¢ = 0. In this case, (2.6)
say that the Hermitian metrics on E| and E, have constant central curvature. But
this is equivalent to the polystability of E; and E; by the theorem of Narasimhan
and Seshadri [24]. O
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3. Extensions and deformations of triples

In order to analyse the differences between the moduli spaces N, as a changes,
as well as the smoothness properties of the moduli space for a given value of «,
we need to study the homological algebra of triples. This is done by considering
the hypercohomology of a certain complex of sheaves, in a similar way to what
is done in the study of infinitesimal deformations by Biswas and Ramanan [3]. In
fact, it is a special case of the more general situation considered in [16].

3.1. Extensions
Let 7' = (E}, E}, ¢") and T” = (EY, E, ¢") be two triples and, as usual, let
', d') = (n}, n), dy, dy),
(n//v d//) = (n/]/i n/z/v 1/7 dé/)y
where n; = rk(E)), n! = 1k(E/), d = deg(E) and d/ = deg(E]). Let
Hom(7T"”, T’) denote the linear space of homomorphisms from 7” to 7', and

let Ext!(T”, T') denote the linear space of equivalence classes of extensions of
the form

0—T7T —T—T"—0,

where by this we mean a commutative diagram

0 E| E E/ 0
¢/T ¢T ¢//
0 E} E, E} 0.

Hence, to analyse Ext!(T”, T’) one considers the complex of sheaves
C*(T",T): E|* ® E| ® Ef* ® E} — E}* ® E}, (3.1
where the map c is defined by
(Y1, ¥) = ¢’V — Yig”.

Proposition 3.1. There are natural isomorphisms

Hom(T", Ty = H(C*(T", T")),

Ext' (7", T") = H'(C*(T", T")),
and a long exact sequence associated to the complex C*(T", T'):

0 — H(C(T", T") — H(E{" ® E} & E;" ® E;) — H(E;" ® E})
— H'(C*(T",T")) — H'(E{" ® E{ ® E}" ® E}) — H'(E]" ® E})
— HX(C(T", T")) — 0.

(3.2)
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Proof. The proof is omitted since it is very similar to that given in [3] in the study
of deformations, and it is a special case of a much more general result proved in
[16]. O

We introduce the following notation:

W(T", T = dimH (C*(T", T")),

X(T//’ T/) — hO(TN, T/) _ hl(TN, T/) + hz(TN, T/) (33)
Proposition 3.2. For any holomorphic triples T' and T” we have

x(T", T = x(E{" ® E}) + x(E}* ® E}) — x(EY" ® E})

= (1 — g)(n{n)| + nyny — njn))
+nid; —n\d{ + n5dy — nydy — nyd; + n'\dj,
where x(E) = dim H°(E) — dim H'(E) is the Euler characteristic of E.

Proof. Immediate from the long exact sequence (3.2) and the Riemann—Roch
formula. m|

Corollary 3.3. For any extension) — T' — T — T” — 0 of triples,
x(T,T)=x(T" T+ x(T".T")+ x(T", T+ x(T', T"). O

Remark 3.4. Proposition 3.2 shows that x (T”, T') depends only on the topolog-
ical invariants (n’, d’) and (n”, d”) of T’ and T”. Whenever convenient we shall
therefore use the notation

xm",d",n',d) = x(T", T).

3.2. Vanishing of H° and H?>

The following vanishing results play a central role in our study.

Proposition 3.5. Suppose that T' and T” are o-semistable.

(1) If ua(T") < pa(T") then HO(C*(T", T")) = 0.
(2) If o (T") = uo(T") and T" is a-stable, then

C ifT' =T"

Oce !t /Ny ~
@ ’T))_{o ifT 2T
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Proof. By Proposition 3.1 we can identify H(C*(T”, T")) with Hom(T", T").
The statements (1) and (2) are thus the direct analogs for triples of the same results
for semistable bundles. The proof is identical. Suppose that 4 : T — T'is anon-
trivial homomorphism of triples. If 7" = (E{, E}, ®') and T" = (E{, EJ, ")
then % is given by a pair of holomorphic maps u; : E' — E! fori = 1,2 such
that ' o up, = u; o ®”. We can thus define subtriples of 7”7 and T’ respectively
by Ty = (ker(uy), ker(uy), ®”) and T; = (im(u,), im(uz), '), where in Ty, it is
in general necessary to take the saturations of the image im(ux;) and im(u,). By
the semistability conditions, we get

Ma(TN) Ma(T//) :uoc(TI) Moc(T )

The conclusions follow directly from this. O
Proposition 3.6. Suppose that the triples T' and T" are a-semistable and satisfy
o (T") = 1o (T"). Then

(1) H>(C*(T", T")) = 0 whenever a > 2g — 2.
(2) If one of T', T" is a + €-stable for some € > 0, then H>(C*(T",T')) = 0
whenever o > 2g — 2.

Proof. From (3.2) it is clear that the vanishing of H?(C*(T”, T')) is equivalent
to the surjectivity of the map

HYE"® E| ® Ef* ® E)) — HY“(E)" ® EY).
By Serre duality this is equivalent to the injectivity of the map
HY(E{" ® B} ® K) — H(E[" ® E{ ® K) & H'(E}* @ E{ @ K) (3.4
v — (9" @Id) oy, Y 0 ¢).

Proof of (1). Suppose that P is not injective. Then there is a non-trivial homo-
morphism ¢ : E} — E) ® K inker P. Let ] = imy and N = ker ¢. Since
(" ®Idg) oy = 0,1 C ker¢” and hence T, = (0, I ® K*, 0) is a proper subt-
riple of T”. Similarly, the fact that ¥ o ¢’ = 0 implies that im ¢’ C N and thus
Ty, = (ker ¥, E}, ¢') is a proper subtriple of 7'. Let k = rk(N) and [ = deg(N).
Then, from the exact sequence

0—N—E —1I1—0
we see that rk(/) = n} — k and deg(/) = d| — . Hence
l—i—d% e n .
k +n, k +n,

ta(Ty) =

dy —1
wo(T)) = ——+2—-2g +a.
ny —k



Moduli spaces of holomorphic triples over compact Riemann surfaces 311

Adding these two expressions, and clearing denominators we see that
di +dy + (n}) — k)2 — 28) + a(n| +ny — k)
= (k +n)ue(Ty) + () — Dpa(T7).

But po(Ty) < pa(T"), o (T7) < po(T") and o (T') = 1o (T"). From this we
obtain that

di+d5+ (ny — k)2 —2¢) +an]+n, —k) <d|+d,+ an), (3.5)
and hence

an| —k) < (n] —k)Q2g —2).

Since n| — k > 0 we get that « < 2g — 2. Hence P must be injective if the
hypotheses of the part (1) of the proposition are satisfied.

Proof of (2). Suppose that T” is o + e-stable for some € > 0. It follows that
Pate(T)) < pate(T"), i€

"

n
T/ — T <€ 2 __1)<0.
ma(Ty) — o (T7) (n’1’+n’2’ )

Thus, following exactly the same argument as in the proof of (1), we get a strict
inequality in (3.5). We conclude that that if P is not injective then ¢ < 2g — 2,
ie.if ¢ > 2g — 2 then P must be injective. If T’ is o + e-stable for some € > 0
then we get that

/ /
n

n
T — T <€ z <0
Mo N) e (T") (n,1+n,2 k—i—l’l/z)
The rest of the argument is the same as in the case that 7" is « + e-stable. O

Corollary 3.7. Let T' and T" be a-semistable triples with o (T') = ua(T"),
ando > 2g — 2. Then

dimExt (7", T") = h%(T", T') — x(T", T").

The same holds for o > 2g — 2 if in addition T' or T" is o + €-stable for some
e =2 0.

Proof. Tt follows from Proposition 3.1 and (3.3) that
dimExt" (7", Ty = h°(T", T") + W*(T", T") — x(T", T". (3.6)

The result follows immediately from this and the vanishing of A*(T", T') given
by Proposition 3.6. O
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3.3. Deformation theory for triples

Since the space of infinitesimal deformations of T is isomorphic to H' (C*(T, T)),
the considerations of the previous sections also apply to studying deformations
of a holomorphic triple T. To be precise, one has the following.

Theorem 3.8. Let T = (E1, E3, ¢) be an a-stable triple of type (n1, na, di, dy).

(1) The Zariski tangent space at the point defined by T in the moduli space of
stable triples is isomorphic to H' (C*(T, T)).

(2) IfH?(C*(T, T)) = 0, then the moduli space of a-stable triples is smooth in a
neighbourhood of the point defined by T.

(3) H?(C*(T, T)) = 0 if and only if the homomorphism

HY (EI® E, ® E} ® E;) — H'(E} ® E))

in the corresponding long exact sequence is surjective.
(4) At a smooth point T € N:(ny, ny, dy, dy) the dimension of the moduli space
of a-stable triples is

dim N (n1, na, di, dy) = h' (T, T) = 1 — (T, T)
=(g— 1)(n% +n% —nny) — nids + nady + 1.
3.7

(5) If ¢ is injective or surjective then T = (E1, E;, ¢) defines a smooth point in
the moduli space.

6) If o =2 2g — 2, then T defines a smooth point in the moduli space, and hence
./\/of (ny, ny, dv, do) is smooth.

Proof. Statements (1) and (2) follow from Theorems 2.3 and 3.1 in [3], respec-
tively. An indirect proof of (1) and (2), exploiting the correspondence between
triples on X and stable bundles on X x P! (see Section 9) also follows from [4].
Statement (3) follows from the long exact sequence (3.2) with T =T' = T". (4)
follows from (1), (2) and Propositions 3.2 and 3.7. (5) is proved in [4, Proposition
6.3]. (6) is a consequence of Proposition 3.6. O

4. Bounds for yx

In our approach to the study of how the moduli spaces of triples vary with the
parameter, it is of crucial importance to be able to estimate the Euler character-
istics x(T",T") = x(m”,d”,n’,d’) when T’ and T” are polystable triples with
the same a-slope. The basic idea is to identify x (7", T’) as a hypercohomology
Euler characteristic for the complex C*(T"”, T) defined in (3.1) and to notice that
the complex is itself a holomorphic triple. As such it ought to satisfy a stability
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condition induced from the stability condition of 7’ and T”. In principle, a way
to obtain the stability condition for C*(T”, T’) should be provided by the corre-
spondence between the stability of the holomorphic triples and the existence of
solutions to the vortex equations given by Theorem 2.8. However, there seem to
be no simple way to construct a solution to the vortex equations for C*(T”, T’)
from solutions on 7’ and T”. Instead we consider slightly more general objects
than triples, known as holomorphic chains. These are studied in [1].

4.1. Holomorphic chains

A holomorphic chain is a diagram

C:En 2 E, 23 .. g,

where each E; is a holomorphic vector bundle and ¢; : E; — E;_; is a holomor-
phic map. Let

tk(E;)
1il0) = —=—7—, =0,...,m.
© > im0 tk(E) "
For o = (ay, ... ,a,) € R™, the a-slope of C is defined to be

1a(©) = 1(€) + )ik ().
i=1
The notion of a-stability is defined via the standard a-slope condition on sub-
chains, that is, for any holomorphic subchain ¢’ C C we must have uy(C") <
e (C). Semistability and polystability are defined as usual. A holomorphic tri-
ple is a holomorphic chain of length 2, and the stability notions coincide, taking
a = (o). As for triples, there are natural gauge-theoretic equations for holomor-
phic chains, which we now describe. Define T = (1o, ... , 7,) € R"*! by

T = (C) —a;, 1=0,...,m, 4.1
where we make the convention ¢y = 0. Then & can be recovered from t by
o =17—1, i=0,...,m. “4.2)
The T-vortex equations
V=IAF(E) + ¢in10f,, — ¢i¢i =t ldg, i=0,...,m,

are equations for Hermitian metrics on Ey, . .. , E,,. Here, asin (2.6), F'(E;) is the
curvature of the Hermitian connection on E;, A is contraction with the Kahler form
and vol(X) = 2x. By convention ¢9 = ¢,,,1 = 0. One has the generalization of
Theorem 2.8 to the case of holomorphic chains.

Theorem 4.1. [ 1, Theorem 3.4] A holomorphic chain C is a-polystable if and only
if the T-vortex equations have a solution, where o and T are related by (4.1).
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4.2. A length 3 holomorphic chain

Let 7' = (E}, E}, ¢') and T" = (EY, E}, ¢") be two triples. Let us consider the
length 3 holomorphic chain

C(T".TY: E*"QE, 3 E"QE ®E; QE, > E*®E,,  (43)
where

a(Y) = ('Y, —y¢"),
ar(Y1, Vo) = 'V — Y19

We shall sometimes write this chain briefly as
c(T",T): 0, 53 0 S G,

Note that the last two terms of Ce (T", T') coincide with the complex C*(T", T").
Note also that C*(7", T') is not in general a complex. Our goal in this section is
to prove, using Theorem 4.1, that if 7’ and 7" are «-polystable then C*(T", T”)
is a-polystable for a suitable choice of a.

Lemma 4.2. Let T’ and T" be holomorphic triples and suppose we have solutions
to the (t{, Tp)-vortex equations on T' and the (t{, ©))-vortex equations on T",
such that t{ — t{' = v — ©4. Then the induced Hermitian metric on C*(T", T')
satisfies the chain vortex equations

V—1AF(Cp) + a1a;* = 7y Idc,, (4.4)
V—1AF(C)) + aar* — ay*a; = 7, 1d¢,, 4.5)
A —lAF(Cz) — az*ag = 'Ez Idcz, (46)

for t = (T, 71, T2) given by

=~ / "
=17 —1,),
=~ / " ! "
‘[1:‘[1—'[1:‘[2_‘[2,

h=1—1.

Proof. We shall only show that the induced Hermitian metric satisfies (4.5), since
the proofs that it satisfies the two remaining equations are similar (but simpler).
The vortex equations for 7/ and 7" are

/—IAF(E) +¢'¢"™ = 1{1dg,  V—1AF(E)) +¢"¢"" =1 ldg,
V=IAF(E) —¢"¢' = 1,1dg, V—1AF(E;)) —¢""¢" =1,/ 1dgy .
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We shall write the left hand side of (4.5) in terms of these known data of the triples
T’ and T”. First, we note that

F(E)=—-F(E), i=12,
and similarly for F(E!™). Hence

F(C))=F(E["®E| ® E;" ® E})
= (F(E{") ® ld+1d®F(E}), F(E;") ® ld+1d ®F (E}))
= (—F(E)) ® ld+1d®F(E}), —F(E))'  ld+1d ®F (E})). (4.7)

Next we calculate aj: note that for £ ® x € Cp and (1 ® y1, 2 @ y2) € C we
have

[afE®x), Mm@y, me Y2))C1
={E®@x, aim ® yi,m ® ),
=(E®@x, —me" @y +m @' (),
=(E®x, =" M) @y +m®F (),
= —(g, ¢//t(771))E5* (. y1>Ei + (&, nz)Eé/* x ¢/(y2))E;
= —{¢""E). )y (v 1)y + (6 2]y (67 ). 32
=((=¢""® @ x,§ ® (1)), (N ®y1,12 @) -

Hence,
afE ®x) = (—¢" ") ®@x, £ @9 (x)). (4.8)
Similarly, to calculate a3 consider £ ® x € C> and (71 ® y1, 72 ® y2) € Ci. Then

G YL, mey) =m0 () — 0" (1) ® y2. (4.9)

Using (4.9) and (4.8) we can now calculate for (71 ® y1, 72 ® y2) € C:

aas(m ® y1,m®y) = (m ¢ () —¢"" () @ ¢' (1),
—" () @) +¢" 9" () ® y2), (4.10)

and

afai(m ® yi, 1 ® y2) = (¢"7¢" () @ y1 — ¢ (1) ® ¢' (),
—¢" ) @ () + Mm@ P (). (411

Putting together (4.7), (4.10) and (4.11) we finally obtain
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(V=IAF(C)) + mar* — ar*ar) (n1 ® y1. 12 ® y2)
= (m ® (VTAF(E) +¢'9")0n) + (—v/=TAF(E])
+¢""¢") (1) ® y1, 112 ® (V=TAF(E)) — ¢ ¢) (2)
C(VIIAFED — 6" 8" © yz)‘ 4.12)

Notice that the unpleasant mixed term (—q&”'* (1) ® ' (), —¢" (1) ® ¢’*(y1))
appears both in afa; and a>a; and therefore cancels. This would not have been
the case if we had considered the vortex equations on the triple C* (T”,T’) and is
the reason why we must consider the chain C*(T”, T’). Combining (4.12) with
the vortex equations (or their transposes) for the triples 7/ and 7" we get

(V=1AF(C)) + a2a* — ar*a)) (i @ y1, m2 @ ¥2)
= ((r{ = 1)m ® y1, (3 — T,)m @ y2). (4.13)

Since t{ — 7/ = 7} — 7 this concludes the proof. o

Proposition 4.3. Let T’ and T" be a-polystable triples. Then the holomorphic
chain C*(T", T') is a-polystable for a = (a1, az) = (a, 2a).

Proof. Since the triples T’ and T” are a-polystable, it follows from Theorem 2.8
that they support solutions to the (‘L’l, 75)- and (r] , rz) -vortex equations respec-
tively, where « = 7] —1; = 7/ — 1. Notice that 7{ — 7' = 7, — 7;". Thus it follows
from Lemma 4.2 that the holomorphic chain C ’(T” T') supports a solutions to
the chain vortex equations for T = (] — 7, 7{ — 7/, 75 — 7). Now Theorem 4.1
and (4.2) imply that C(T", T is a- -polystable for

4.3. Bounds for x(T", T")

We start with some technical lemmas needed to estimate the Euler characteristic
x(T",T.

Lemma 4.4. Let T' = (E},E},¢")and T" = (E{, E, ¢") be triples for which
the chain C'(T” T is o = («, 2a)-polystable. Let

C,=E/"®E,®E)"®E,,

Co=EJ" ® E},
and ay: C; — Cy be defined as in (4.3). Then the following inequalities hold.
deg(ker(a1)) < rk(ker(a))(ua(T") — na(T")), (4.14)

deg(im(ar)) < (tk(Co) — rk(im(a)))(pe (T")
—ta(T') — ) + deg(Co). (4.15)
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Proof. Ifrk(ker(a;)) =0then (4.14)is obvious. Assume thereforg}hat rk(ker(a;))
> 0. Using ker(a;), we can then define a quotient of the chain C*(T”, T') by

K:0— ker(a;) — 0.

Thus, since wy(K) = wn(ker(ay)) + «, it follows from the definition of a-poly-
stability that

pker(an)) + @ < g (C*(T", T')) = 1 (T") — uo(T") + .
We therefore have

p(ker(an) < po(T') — ua(T"),

which is equivalent to (4.14). The second inequality, i.e. (4.15), is obvious when
rk(im(a;)) = rk(Cyp). We thus assume rk(im(a;)) < rk(Cyp). Using the cokernel
coker(a;) (or its saturation if it is not torsion free), we can define a subchain of
the chain EJ’(T”, T') by

Q:0— 0— coker(a;).

By the a-polystability of C*(T”, T') we have 11q(Q) > 1a(C*(T”, T')). This,
together with the fact that

deg(Cp) — deg(im(a;))
tk(Cy) — rk(im(a;)) ’

w(coker(ay)) <

leads directly to 4.15. O

Lemma 4.5. Let ¢': V; — V| and ¢": V) — V|’ be linear maps between finite
dimensional vector spaces. Assume that V| @ V, # 0 and V{' @ V,' # 0. Define
f: Hom(V", V) @ Hom(V,', V;) — Hom(V;', V)

(W1, ¥2) > Yy — Y’
If f is an isomorphism, then exactly one of the following alternatives must occur:
(HV/=V/=0andc =c"=0.
Q) V! =0,V V}, V) #0andc': V| —> V|,
BV, =0,V,V/', V) #0andc": Vy — V/.

In particular, if V|, V;, V" and V' are all non-zero then f cannot be an isomor-
phism.
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Proof. If (¢/, ¢") = (0, 0) then f = 0 and therefore
Hom(V;', V{) = Hom(V/', V) = Hom(V}', V;) = 0.

If V/ # 0then V' = V) = 0Oie. V' ® V) = 0. Hence V{ = 0. Similarly
one sees that V,” = 0 and thus alternative (1) occurs. Henceforth assume that
(c’,c”) #(0,0). Let v/ = dim V/ and r] = dim V" fori = 1, 2. If f is an iso-
morphism then r{'r{ 4 r5'ry = rj'r| from which it follows that r) (r{ —ry) = r'r|

/ 4 "N — I
and r|(ry —r{) = ryr,. Hence

ry = rh, (4.16)
ry =y 4.17)

Assume that we have strict inequality in (4.16) and (4.17). Then, in particular,
coker(c’) and ker(c”) must both be non-zero. Choose a complement to im(c’) in
V/ so that

V) =im(c") @ im(c’)*.
We then have an inclusion
Hom (ker(c”), im(c')*) < Hom(Vy', V).
Let ¢ = (Y1, ¥2) € Hom(V/’, V) @ Hom(V}’, V,) and x € ker(c”), then
FW@)(x) = 'Pa(x) — Yic'(x) = ' (x),

which belongs to im(c’). Hence im(f) and Hom(ker(c”), im(c’)*) have trivial
intersection and, therefore, f cannot be an isomorphism, which is absurd. It fol-
lows that equality must hold in at least one of the inequalities (4.16) and (4.17).
Suppose that equality holds in (4.16), i.e. r{ = r; = 0. Then rjr{ = 0, i.e.
r; = 0 or r{ = 0. Suppose first that r; = 0, then ; = r; = 0, which contra-
dicts our assumption that V| @ V, # 0. Thus we must have r{ = 0 and r| # 0.
We thus also have V, # 0 (since v, = rj) and V, # 0 (since rj) + r{ # 0).
Furthermore, since (¢, ¢”) # (0, 0) we can assume that ¢’ # 0. In this case
F W, ¥n) = f(¥,0) = —yic”. In particular, if f is an isomorphism then so is
¢”. Thus alternative (2) occurs. In a similar manner one sees that if equality holds
in (4.17) then alternative (3) occurs. Obviously the three alternatives are mutually
exclusive. O

Lemma 4.6. Suppose that T' and T" are non-zero triples of types (n';, n, dy, dj)
and (ny, njy, d{, d}) respectively. Let ny = n'| +n/{, n, = n +nj, d| = d; +dy,
dy = dy+dy, w1 = di/ny, and py = dy/ny. Let o, and oy be the extreme o
values for the triples of type (ny, ny, dy, d»), as defined in (2.2) and (2.3), with
the convention that apy = 00 if ny = ny. Let o, < o < ayy and suppose that
o (T") = o (T"), then the map

a: El"®E,®E)"®E, - EI*"®E]

cannot be an isomorphism.



Moduli spaces of holomorphic triples over compact Riemann surfaces 319

Proof. Letus consider the triple T = T’ @ T". Itis clear that o (T) = u(T') =
po(T").

If @, is an isomorphism then, applying Lemma 4.5 fibrewise, it follows that
one of the following alternatives must occur:

() Ej=E/=0and¢' =¢" =0.

(b) E{ =0,E|,E}, E} #0and ¢': E, i: E|.

(c) E}=0,E, E{,Ey #0and ¢": Ef — EJ.

We shall consider each case in turn. Case (a). In this case we have T’ = (0, E, 0),
T" = (E,0,0) and T = (E,, E,, 0). It follows from pu(T") = e (T) that
o = n(E) — u(Ez) = ay. Case (b). In this case we have n; = n and n, =

ny + n) = n| +nj. Hence ny > n,. Furthermore, from j1,(T") = 14 (T) we get
U(E) +5 = n(E @ Ey) + 72— ie.a = 21 = ay. Case (c). In this case

ni+ny’ ny—ng
we have ny = nj and n; = n} 4+ n{ = n} + nj. Hence n; > n,. Furthermore,
from o (T”) = e (T) we geta = nzfln o, = oy If ny = n, then case (a) is the

only possibility, so o = «,,. If ny # n,, then (a) or exactly one of (b) and (c) are
the only possibilities, depending on whether n; < n; or n; > n,. In both cases
we see that ¢ = «,,, or @ = 4. O

Proposition 4.7. Suppose that T" and T" are non-zero triples of types (n}, nj,
di, dy) and (n'[, n}, dy, dy) respectively. Let ny = n| + ny, np = n +nj, d; =
dy +d{, dy = d5 +d, py = dy/ny, and py = dy/ny. Let o, and oy be the
extreme o values for the triples of type (ny, na, dy, dy), as defined in (2.2) and
(2.3), with the convention that apy = 00 if nj = na. Let oy, < o < apy. Sup-
pose that e (T") = o (T") and that the chain C*(T”, T'), as defined in (4.3), is
(a, 2a)-stable. Then

X(TN, T,) g 1 — &
ifa > 2g — 2. In particular, if g > 2 then x(T", T") < 0.

Proof. From the long exact sequence (3.2) and the Riemann-Roch formula we
obtain

x(T", T = (1 = &)(tk(C) — 1k(Cop)) + deg(C)) — deg(Co), (4.18)

where C; and Cj are as in (4.3). We can apply Lemma 4.4, and then use the
estimates (4.14) and (4.15). Together with

deg(Cy) = deg(ker(a;)) + deg(im(ay)), (4.19)
rk(Cy) = rk(ker(a;)) + rk(im(ay)), (4.20)

these yield
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deg(C1) < (o (T") — p1a(T")) (tk(Cy) — 1k (Co))
—a(rk(Co) — rk(im(ay))) + deg(Co).

Using that puy(T') = ue(T"), we can then deduce that
deg(C)) — deg(Co) < —a(rk(Co) — rk(im(ay))).
Combining this with (4.18) we get
x(T", T < (1 — g)(tk(Cy) — 1k(Cp)) — a(rk(Co) — rk(im(a;))).  (4.21)
If o > 2g — 2 then we get
x(T", T') < (1 — &) (tk(Co) + 1k(Cy) — 2rk(im(ay))),

with equality if and only if « = 2g — 2. Furthermore rk(im(a;)) < rk(Cp) and
rk(a;) < rk(C;), with equality in both if and only if a; is an isomorphism. Thus
in all cases we get x (T", T') < 0, with equality if and only if « = 2g — 2 and a;
is an isomorphism. But by Lemma 4.6, since «,,, < o < &y, then a; cannot be an
isomorphism. Thus in all cases we get rk(Co) + rk(C;) — 2rk(im(a;)) = 1 and
hence x(T", T") <1 —g. O

Remark 4.8. Since the roles of 77 and T” in Proposition 4.7 are symmetric, we
obtain the same bound for x (7', T").

5. Crossing critical values

In this section we study the differences between the stable loci NV (n, d) in the
moduli spaces N, (n, d), for fixed values of n = (ny,n,) and d = (d;, d») but
different values of «. Since in this section n and d are fixed, we use the abbreviated
notation
NS =N:(m,d) and N, =N,(n,d).

Our main result is that for all « > 2g — 2 any differences between the N} are
confined to subvarieties of positive codimension. In particular, the number of irre-
ducible components of the spaces \? are the same for all « satisfying o« > 2g —2
and o, < @ < oy If the coprimality condition GCD(ny, ny +n;,dy +dx) = 1
is satisfied, then N3 = A/, at all non-critical vales of «, so the results apply to
N, for all non-critical & > 2g — 2.

We begin with a set theoretic description of the differences between two spaces
N, and N when o and o, are separated by a critical value (as defined in sec-
tion 2.2). For the rest of this section we adopt the following notation: Let o, be a
critical value such that

Uy < o < Oy (5.1)

1 When n, # n, the bounds ,, and oy are as in (2.2) and (2.3). When n; = n» we adopt the
convention that ay; = 00
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Set

of =a.+e€, o =a.—¢, (5.2)

where € > 0 is small enough so that ¢, is the only critical value in the interval
(a, o).

5.1. Flip Loci

Definition 5.1. Let o, € (o, ap) be a critical value for triples of type (n, d).
We define flip loci S+ C Nofi by the conditions that the points in S+ represent
triples which are af-stable but o -unstable, while the points in S, represent
triples which are o -stable but o} -unstable.

Remark 5.2. The definition of S+ can be extended to the extreme case ot = .
However, since all «f -stable trlples must be o, -unstable, we see that S+ = =N,

Similarly, when n; ;é ny we get Sa;] =N of, . The only interesting cases are thus
M

those for which «,,, < o, < ayy.

Lemma 5.3. In the above notation:
Ny = Sy = Ng, = Ni- = 5, 5:3)

Proof. By definition we can identify N, — S+ = N =S,

Suppose now that ¢ is a point in NS L— S+ = NS -8, but that 7 is not in
N . Let T be a triple representing ¢. Then T has a subtrlple T’ € T for which
/J,O,L,(T ) = g, (T), and also [,l,aét(T ) < Maci(T) This is not possible, and hence
teN;.

Finally, suppose that ¢t € ./\/Ofc and let T be a triple representing ¢. Then
Mo (T") < g (T) for all subtriples 7 C T. But since the set of possible
values for p,, (T') is a discrete subset of R, we can find a 6 > 0 such that
Mo (T") — o (T) < —4 for all subtriples T' C T.Thus = (T") — px(T) < 0.
That is, ¢ is in V3., and hence Nj € N3, — S,=. 4 ' O

Our goal is to show that the flip loci S+ are contained in subvarieties of positive
codimension in Nofi respectively.

Proposition 5.4. Let . € (a,,, ay) be a critical value for triples of type (n, d) =
(ni,ny,dy, dy). Let T = (Eq, E3, ¢) be a triple of this type.

(1) Suppose that T represents a point in S+, i.e. suppose that T is o -stable but
a, -unstable. Then T has a description as the middle term in an extension

0T -T—->T"=0 (5.4)

in which
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(a) T" and T" are both «-stable, with Pt (T") < g+ (T),
(b) T" and T" are both o.-semistable with j1o (T") = (g, (T).

(2) Similarly, if T represents a pointin S,—, i.e. if T is o -stable but o -unstable,
then T has a description as the middle term in an extension (5.4) in which
(a) T" and T" are both o -stable with p,—(T") < pi,-(T),

(b) T" and T" are both a.-semistable with 1, (T") =uac(T).

Proof. In both cases (i.e. (1) and (2)), since its stability property changes at .,
the triple T must be strictly «.-semistable, i.e. it must have a proper subtriple T’
with pg. (T") = e, (T). We can thus consider the (non-empty) set

Fi={T"C T | pa(T") = po.(T) }.

Proof of (1). Suppose first that T is o -stable but . -unstable. We observe that

if T' € F, then ,nzn, nl’jfn , since otherwise 7' could not be o -stable. But the
2

allowed values for —2—+~ T + - are limited by the constraints 0 < n} <n;,0 <n) < ny
]

and n} +n) # 0. We Can thus define

/

Ao=max{ n ‘T'Efl}

/ /
nyT+n,

and set

n/
fz:{TICfl' /2/:)\0}_
ny 4+ n,

Now let T’ be any triple in J>. Since T’ has maximal «.-slope, we can assume
that T” = T/T' is a locally free triple, i.e. if 7" = (EJ, E{, ®) then EJ and
E{ are both locally free. Furthermore, since 7 is a.-semistable and o (7') =
Mo (T) = g (T"), it follows that both 77 and T” are o.-semistable and of the
same a,-slope. We now show that 7" is o] -stable. Suppose not. Then there is
a proper subtriple T" c T" with Ma+(T” ) = i+ (T"). However, since we can

assume that o is not a critical value for triples of type (T"), we must have
Mot (T") > pros (T7).

Thus, since (T") is a,.-semistable, we must have MQL(T”) e, (T") and also

~/
1y 1,

~// ~// " ”n*
| +ny; nf+n,

If ,u%(f"”) < g (T"), say Mar(f’/) = o (T") — 8, then in order to have
Mo+ (T") > py+(T") we must have

=1/ "
n, M )
CE T
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~//

Letting € approach zero, we see that ”,,nﬁ must be arbitrarily large. This cannot
beif 0 < i < nfand 0 < 7 < nj (and 7} + 175 > 0). We may thus assume that
Mo (T") = pa,(T"). Consider now the subtriple 7" C T defined by the pull-back
diagram ~ 3
0T —-T —-T"—0.
This has g (T') = fto,(T") = jia, (T) and thus
7 n’
e Sk = i
ny +n, ny 4+ n,
It follows from this and the above extension that
~// /

ny n
~/,+~,2/\ 0= n,l_'_n,z
However, since o, (T") = o (T) but w,+(T") < pu,+(T), we have that
n’ ny
ny+ny nf+nj

Combining the previous two inequalities we get

~/
) n

"‘// =1/ 4
+ny, nf+nj

which is a contradiction.
Now take 7" € F, with minimum rank (i.e. minimum n) + n}) in F,. We
claim that 7" is o - stable If not, then as before it has a proper subtriple 7’ with

MaL(T ) < g (T") and - = +ﬁ’ = :n .Thenn +n, < n|+n), which contradicts
the minimality of n| + n). Thus T/ is o f-stable. Moreover, since T is o' -stable
it follows that w,+(T") < p,+(T). Thus taking 7’ € F, with minimum rank,
and T”" = T/T’, we get a description of T as an extension in which (a)-(b) are
satisfied.

Proof of (2). If T is «, -stable but [ -unstable, then

2, > 2 _forall T’ e

ny+nj ni+nz
JF1. The proof of (a) must thus be modified as follows. W1th
. n, 1
onmln{ﬁ TEfl}
ny +n,
we can define )
f2={T/Cf1 —/n2/=)\0}
ny +n,

and select T’ € F, such that 7’ has minimal rank in 7. It follows in a similar
fashion to that above that T has a description as

0T -T—->T'>0

in which all the requirements of the proposition are satisfied. O
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Remark 5.5. Unlike for Jordan-Holder filtrations for semistable objects, the fil-
trations produced by the above proposition are always of length two, i.e. always
yield a description of the semistable object as an extension of stable objects. This
is achieved by exploiting the extra ‘degree of freedom’ provided by the parameter
o.. The true advantage of never having to consider extensions of length greater
than two is that it removes the need for inductive procedures in the analysis of the
flip loci.

Definition 5.6. Let . € (o, ap) be a critical value for triples of type (n, d).
Let (', d') = (n},n}, d}, d)) and n",d") = (n{,n},d{, d;) be such that

(n,d) = (', d) + (", d"), (5.5
(i.e.ny =ny +nf,ny =n)+n),d =d +d, and dr = dj + d}), and also
dy +d; n) _ di +dj nj

o = o (5.6)
! / c ! " " c // "
ny +n, ny+ny, nj+n, 1+ 15

(1) Define Saj m”,d”,n’, d') to be the set of all isomorphism classes of extensions
0—T —T—T'—0,

where T' and T" are o} -stable triples with topological invariants (', d') and
m”,d") respectively, and the isomorphism is on the triple T.
(2) Define SO m”,d",n,d) c S o (", d", 0, d) to be the set of all exten-

sions for which moreover T is o -stable. In an analogous manner, define
S o, d", 0, d') and SO m’,d’, v, d)cS @’ d’ ', d).
(3) Define

Saj' — US"O[:_ (Il//, d//, Il/, d/) ’ g;)_f_ — US{S_}_ (Il//, d//, n/’ d/)

where the union is over all (n}, n, di, dy) and (n{,n}, d{, d}) such that the
above conditions apply, and also — i ; "2

+n n'{+n
(4) Similarly, define o e

5 _ Usa; (n//’ d’.n, d/) , ng — US(S.‘ (n//’ d’.n, d/)

where the union is over all (n), n’2, , d}) and (nf,n},d{,d}) such that the

above conditions apply, and also - + > + 7.

nz n
Remark 5.7. It can happen that 50 or 30 is empty. For instance there may be
no possible choices of (n, nj, d{, dz) and (nf,nf,d{,d) which satisfy all the
required conditions. In this case, the implication of the next lemma is that one or
both of the flip loci S+ is empty.
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Lemma 5.8. There are maps, say v* : SO — N - which map triples to their
equivalence classes. The images contain the flip locz Sy

Proof. The existence of the maps is clear. The second statement, about the images
of the maps, follows by Proposition 5.4. Indeed, suppose that 7' represents a point
in S,+ and that

0T -T—->T'—-0

is an extension of the type described in proposition 5.4, with T’ a triple of type
(n’,d’) and T"” a triple of type (n”, d”). Then (n’,d’) and (n”, d”) satisfy con-
ditions (5. 5) and (5.6). Furthermore, since w,+(T") < p,+(T"), we must have

’

n/'ifn, n,, + 7. Thus T is contained in v+(80 ). A similar argument shows that

1 2

S+ is contamed inv(S°). O
c o

5.2. Codimension estimates and comparison of moduli spaces

Consider a critical value o, € (@, apy) for triples of type (n, d). Fix (n’,d) =
(n},n5,dj,dy)and ", d") = (n,ny,d}, d”) as in Definition 5.6. For simplic-
ity we shall denote the moduli spaces of aF-semistable triples of type (n’,d’),
respectively (n”, d”), by

N(;Ci — Naci(n/, d/) and (;:i — Na?: (n//’ d”).

Proposition 5.9. If ¢, > 2g — 2 then Saci m”,d”,w', d) is a locally trivial fibra-
tion over No/z.i X /\/(;;, with projective fibers of dimension

_X(n//, d”, n/’ d/) _ 1‘
In particular, Saf? m”,d”,n’, d’) has dimension
l—x@m,d n,d)—x@m" d" n", d)—xym" d, nd),

where (', d’,n’, d’) etc. are as in section 3. The same is true for Sa; m”,d”,
n',d) when a, =2g — 2.

Proof. From the defining properties of Saci (m”,d”,n’, d’) there is map
Sz’ d" n,d) — Niw x N, (5.7)
which sends an extension
0T -T—->T"—-0

to the pair ([T’], [T"]), where [T'] denotes the class represented by 7’ and simi-
larly for [T"]. We first examine the fibers of this map.
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Notice that T’ and T satisfy the hypothesis of Proposition 3.6 and therefore of
Corollary 3.7. Notice moreover that, since 1+ (7”) < w,(T"), itis not possible
to have T’ = T". Thus (cf. Corollary 3.7 and Proposition'3.5(2)) we have

dim P(Ext'(T”, T")) = dimExt"(T", T') — 1
_X(T//’ T/) _ 1
=—xm”,d",n',d) -1, (5.8)
which is independent of 7" and T”. Note that ifa, =2g —2, T and T” satisfy
the hypothesis of Proposition 3.5(2)) for e, but not for o

It remains to establish that the fibration (5 7)is locally tr1v1a1. If the coprimal-
ity conditions GCD(n/, nz, d; + dj) =1 = GCD(nf{, n}, d{ + dJ) hold then the
moduli spaces N ! - and ok Are fine moduli spaces (cf. [25]) That is, there are
universal objects, say U and U”, defined over J\/ '+ x X and Ny x X. These can
be viewed as coherent sheaves of algebras (cf. [2]) or more prec1sely as examples
of the Q-bundles considered in [16]. Pulling these back to N’ ’i X ai x X we
can construct Hom(U",U") (where we have abused notation for the sake of clar-
ity). Taking the projection from N ! £ X ai x X onto NV’ ’i x N s We can then
construct the first direct image sheaf By the results in [16] we can identify the
fibers as hypercohomology groups which, in this case, parameterize extensions
of triples. We thus obtain S+ as the projectivization of the first direct image of
HomU",U"). If the coprimality conditions fail, then the universal objects do
not exist globally. However they still exist locally over (analytic) open sets in
the stable locus in the base N/ /i X N ", . This is sufficient for our purpose since

by construction the image of the map in (5.7) lies in the stable locus. The result
now follows from (5.8) and formula (3.7) (in Theorem 3.8) as applied to No/zi and

N(;/* O
Proposition 5.10. [f o, > 2g — 2 then the loci S+ C N ;f are locally contained
in subvarieties of codimension bounded below by

min{—x(m”,d"”, n’, d")},
where the mmlmum lS overall (n',d") and (n”, d”) whlch satzsfy (5.5) and (5.6)

and also /+2 - < ,," " (inthe case of S,+) or - n "2 —2 (in the case of S~ ).
1 ny ni+ +n2 "1 +n, e

The same is true for S + when o =2g — 2.

Proof. Ifa, > 2g—2then we canassume o > 2g—2. Clearly also, o > 2g—2

when a. = 2g — 2. Thus by Theorem 3.8 the moduli spaces N3, are smooth and
have dimension 1 — x (n, d, n, d). By Corollary 3.3 and Proposition 5.9 we obtain
dimJ\/’ofi =1—x@m,d,n,d)— xm",d", n", d)
_X(n//, d//’ n/’ d/) _ X(n/, d/’ n//’ d//)
=dimS,:(m",d",n’,d) — x (', d’,n", d"). O



Moduli spaces of holomorphic triples over compact Riemann surfaces 327

Proposition 5.11. Let T’ and T" be o *_polystable triples. Then the holomorphic
chain C’(T” T') (as defined in (4. 3)) is (e, 20.)-polystable.

Proof. From Proposmon 4.3, we have that the o *_polystability of 7’ and T”
implies the (aF, 20F)-polystability of C C(T", T.

Now, the critical values for the chain form a dlscrete set of points in the (oq , 002)
plane. We can thus pick € > 0 so that, with o = a, =+ €, the point (oF, 2aF)
is not a critical point. We can in fact assume that there are no critical points in
B (o, 2a.), i.e. in the punctured ball of radius € centered at (o, 2ct.). Thus
(aF, 2a:F)-polystability is equivalent to (o, 2c)-polystability. O

Theorem 5.12. Let «. € (a,,, ) be a critical value for triples of type (n, d).
If o, > 2g — 2 then the loci S, + C N . are contained in subvarieties of codi-
mension at least g — 1. In partlcular they are contained in subvarieties of strictly
positive codimension if g > 2. If o, = 2g — 2 then the same is true for S,+.

Proof. Combining Propositions 4.7 and 5.11 we have that
—X(Il/, d/, n//’ d//) — _X(T/, T//) > g _ 1

(notice that the order of 7" and 7" in these Propositions is irrelevant). The result
follows now from Proposition 5.10. O

Theorem 5.13. Let oy and o; be any two values in (a,,, ctpy) suchthat2g —2 < o
and a,, < &y < ay < ay. Then the moduli spaces N, and N}, have the same
number of irreducible components, in particular, N} | is irreducible if and only if
N, is

Proof. This follows immediately from Theorem 5.12 if o} and o, are non-critical,
and from Theorem 5.12 together with Lemma 5.3 if either of them is critical. O

6. Special values of «

In this section we identify some critical values and special subintervals in the range
(o, a2pr). We describe their significance for the structure of «-stable triples.

6.1. Small o

Let ant = a,, + €, with € such that the interval (c,,, a;; ] does not contain any
critical value (sometimes we refer to this value of « as small. The following is
important in the construction of the moduli space for small o ([4]).

Proposition 6.1. [f a triple T = (E1, E,, ¢) is o} -semistable triple, Ey and E;
are semistable. In the converse direction, if one of E| and E; is stable and the
other is semistable, T = (Ey, E,, ¢) is o} -stable.
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Corollary 6.2. If GCD(n;,dy) = 1 and GCD(n,,dr) = 1, then ./\/'Df+ (ny,
ny, dy, dy) is isomorphic to the projectivization of a Picard sheaf over M (n, rfz’l) X
M (ny, dy), where M (n, d) is the moduli space of stable bundles of rank n and
degree d.

Proof. LetE; and [E, the universal bundles over X x M (n1, dy) and X x M (n,, d»),
respectively. Consider the canonical projections

m: X X M(ny,d) Xx M(na,dy) > M(ny,dy) x M(ny, ds) ;

a: X x M ,d) x M(ny,dr) = X ;

T X X M(ny,d) x M(ny,dr) - X x M(ny,dy) ;

T X X M(ny,dy) x M(na,dp) > X x M(ny, dp) .

From Proposition 6.1 we deduce that

Ney(nino, di, dy) = P(R'm (i Ey @ 5 ES @ 77 K)"). O

6.2. Critical values determined by the kernel

Throughout this section we assume that the triple (£}, E>, ¢) has type (1, ny,
dy, dy), with ny > ny. The case n; < n, can be dealt with via duality of triples.

Definition 6.3. For each integer 0 < j < nj set

i ( ) ©.1)
o = ; m1 — K2). .
T (=) + (4 Dy 4 n2)
Proposition 6.4. Let T = (E1, E;, ¢) be a triple in whichn, > ny. Let N C E,
be the kernel of ¢ : E; —> E. Suppose that T is a-semistable for some a > «;.
Then N has rank at most j. In particular, if T is o-semistable for some a >

then N = 0, i.e. ¢ is injective.

Proof. Suppose that
rk(N) =k > 0. (6.2)

We consider the subtriples Ty = (0, N, 0) and 7} = (I, E3, ¢), where I denotes
the image sheaf im(¢). If N # 0, then the triple Ty is a proper subtriple, and so
is T; since n; > n;. The «-semistability condition applied to Ty yields

any < (ny +n2)(L — 4n), (6.3)
where y denotes the slope of N and u is the slope of E| & E,.
The «-semistability condition applied to 7; yields

n
WE, &)+« 2

<puta (6.4)

. 9
1 +ny ny+ny
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where i = rk(/). Furthermore, from the exact sequence
O—N—E,—->1—0, (6.5)
we get
k41 =ny, (6.6)
kuy +ipr = naps. (6.7)

Using (6.7) we can write

2 —k
W(E, ® 1) = “Maps = KUN (6.8)
21’12 —k
and hence (6.4) yields
—k(n1 +n)uny < (n1 +n2)(2ny — k) — 2nopn) + anz(ny — k — ny).
(6.9)
Combining k times (6.3) and (6.9) yields
2n1n
=2 (1 — (). (6.10)

o <
ny(ny —ny) + k(ny + ny)
We have thus shown that if tk(N) = k and the triple is «-stable, then
a < o
where oy is given by (6.1) with j = k — 1. Since
Qg—] > O > -+ > Olpy_1,

we can conclude that if the triple is a-semistable with & > o _1, then the rank of
N is strictly less than k. In particular, if « > o, where
2nin;

0T i — ) + (11 + 1) (1 = 2), (6.11)

then T is injective. O

As an immediate consequence we obtain the following.
Proposition 6.5. Let o > g, where a is given by (6.11).

(1) An a-semistable triple (E|, E», ¢) defines a sequence of the form

0—> Ey 2> E, — F®S —> 0, (6.12)

where F is locally free and S is a torsion sheaf.
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(2) If ny = ny then an a-semistable triple (E{, E», ¢) defines a sequence of the
form

0— E, -5 E — § —> 0, (6.13)
where S is a torsion sheaf of degree di — d,.
Lemma 6.6. Let o be given by (6.11).
(1) If ny > ny then

ny(ny — ny) 2n1no
oy = oy = s (6.14)
nz(nl —n2)+n1+n2 nz(nl —I’lz)-f—l’ll -f-l’lz

where o, and oy are given by (2.2) and (2.3), respectively.
2) If ny = ny = n then

oo = noy, = n(pwy — uo) =dy — dp. (6.15)
3) If ny = ny then g 2 oy, with equality if and only if o, = 0 or np = 1.
Proof. Parts (1) and (2) are immediate. Using (1) we compute

ny+np
Qp — Oy = (n2 — Doy,
ny(ny —ny) +ny+no

from which (3) follows. O

6.3. Critical values determined by the cokernel

In this section we assume that n; > n,. The range for « is then [«,,, aps], where
o, and oy are given by (2.2) and (2.3). Let us define

ny+np

ny(ny —ny)’

(6.16)

O (= Op) —

Proposition 6.7. Suppose that a triple T = (E|, E, ¢) of the form (6.12) with
ny > ny is a-semistable for some a > «,,. Then

na(ny — ny)

T ) (ay — ),

where s is the degree of S. In particular, if @ > «;, then S = 0, i.e. the quotient
sheaf E|/ E, is locally free.
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Proof. f T = (E|, E», ¢) is of the form in (6.12), with § # 0, then we can find
a proper subtriple 7" = (E/, E», ¢) of the form

0— E, -2 E| — S — 0. (6.17)

Indeed, E; is the kernel of the sheaf map E; — F @ S — S. Notice that
ny = nyand d; = d, + s, where n|, d| denote the rank and degree of E{, etc. We
compute

Ag(T) = —1 o () 2 (6.18)
* o+ Ha = 2 \ny+ny 2n5’ '

where, as in (2.1), Ay (T") = o (T’) — e (T). But

n Oy (R — N
(1 — p2) = —

ny +ny 2 \ni+n
and hence
, ny —np ni + ny
A(TY=—|a—ay+—5). 6.19
«) 2("1+n2)< M 2y — o) ) €19
If the triple is a-semistable then A, (7”) < 0 and the result follows. O

Let us define
o, = max{w,,, o, & }. (6.20)
The following is an immediate consequence of Proposition 6.7.
Proposition 6.8. Let o > «,. An a-semistable triple (E1, E,, @) defines an exten-
sion
0— E, % E, — F —> 0, (6.21)
with F locally free.

It turns out that for extension like (6.21), arising from semistable triples the dimen-
sion of H'(E, ® F*) does not depend on the given triple. More precisely:

Proposition 6.9. Let (E|, E», ¢) be an a-semistable triple in whichker ¢ = 0and
coker ¢ is locally free, defining an extension like (6.21). Then H*(E, ® F*) =0
and hence

dim H'(E; ® F*) = nady — nidy +ny(ny —na)(g — 1). (6.22)

Proof. From [4, Lemma 4.5] we have that the «a-semistability of (Ey, E;, ¢)
for arbitrary o implies that H*(E; ® E3) = 0. From (6.21), we have an injective
homomorphism F* — E}, which after tensoring with E; gives that H(E, ® F*)
injects in H*(E| ® E3), and hence the desired vanishing. By Riemann—Roch we
obtain (6.22). O



332 S.B. Bradlow et al.

7. Moduli space of triples with ny # n,

Throughout this section we assume that n; > n;. The case n; < nj can be dealt
with by triples duality. Recall that the allowed range for the stability parameter is
o, < a < ay, where o, = 1 — up and ayy = nlzf‘nzozm, and we assume that

w1 — 2 > 0. We describe the moduli space N, for 2g —2 < o < oy, beginning
with ¢ = ay,.

7.1. Moduli space for o = oy

Proposition 7.1. Let T = (E;, E;, ¢) be an ay-polystable triple. Then E, =
im¢ @ F, where F = coker ¢, and T decomposes as the direct sum of two
ay-polystable triples of the same o yy-slope, T' and T, where T' = (im ¢, E,, ¢),
and T” = (F,0,0). In particular, T is never a;-stable. Moreover, E, = im ¢
and Ey and F are polystable.

Proof. By Proposition, 6.8, T defines an extension

0— E, % E, — F — 0, (7.1)

with F locally free. Let T’ = (im ¢, E>, ¢). Of course ¢ : E; — im¢ is an
isomorphism, and
£

Moy (T) = (E2) + >

but this is equal to (4, (T) and hence T cannot be cys-stable. Since we assume
that T is ap-polystable, it must decompose as T’ @ T”, where T” = (F, 0, 0).
It is clear from the polystability of T that 7’ and T"” are oy,-polystable with
the same orys-slope. Applying the oy,-semistability condition to the subtriples
(E}, ¢(ES), ¢) C T'and (F',0,0) C T”, we obtain that u(E}) < w(E>) and
w(F") < u(F), and hence E, and F are semistable. In fact the polystability of
T’ and T” imply the polystability of E, and F, respectively. |

As a consequence of Proposition 7.1, we obtain the following.

Corollary 7.2. Suppose that ny > n, and (11 — , > 0. Then
Nay (n1,n2,dy, do) = Ny, (ng,na, do, do) X M(ny —ny,dy —do),  (7.2)

where M(ny — ny,d; — dy) is the moduli space of polystable bundles of rank
ny — ny and degree d; — d,.
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7.2. Moduli space for large o

Let o7, be the largest critical value in (o, oty), and let Ny, (respectively A7)
denote the moduli space of «-polystable (respectively a-stable) triples for «; <
a < ay. We refer to Ny as the ‘large o’ moduli space. By definition, «; is at
least as big as a, (where «, is as in (6.20)). Thus if T is «-stable for ¢ > «, then
we can assume it is of the form (6.21), i.e. it gives rise to an extension

0—> E, -2 E, —> F —> 0.

In particular, / = im¢ is a subbundle with torsion free quotient in E;, and
¢ : E; —> [ is an isomorphism. Thus we get a subtriple 7; = (I, E», ¢) in
which the bundles have the same rank and degree, and ¢ is an isomorphism.

Proposition 7.3. Let T = (E,, E,, ¢) represent a point in N, i.e. suppose that
the triple is a-semistable for some o in the range a; < a < ayy. Then

(1) the triple T; = (I, E», @) is ap-semistable,
(2) the bundle E, is semistable.

Proof. (1). Let T" = (E1, E}, ¢') be any subtriple of 7;. Since 7" is also a subt-
riple of T', we get

ta(T') < po(T). (7.3)

A direct computation shows that

pa(T) = pa(Tp) + 201+ ) (ay — ), (7.4)

where we have used the fact that n; > n, in 7 and hence oy =
w2) = 2(u(F) — o). Thus for all @) < a < oy we have

2n1 o
ni—tg (i1

, ny —np _
o (T") — o (Tr) < 200 ) (am — ).

Taking the limit @« — o)y, we get

My, (T/) — May (TI) < 0,

i.e. T} 18 orys-semistable.

(2). Let E} C E;be any proper subsheaf. Then (¢ (E}), E), ¢) is asubtriple of 7;.
Since ¢ : E; —> ¢ (E>) is an isomorphism, this subtriple has (¢ (E})) =
w(E}) and n/, = n/. The a)/-semistability condition of 7; thus gives

, (0474 (0474
E — < -
m(Ey) + y St
(where we have made use of the fact that u(¢p(E;)) = w(Ey) = o). It
follows from this that (E}) < o, i.e. that E; is semistable. O
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Proposition 7.4. Suppose that the triple T = (E1, E,, @) is of the form in (6.21),
ie.

O—>E21>E1—>F—>0,
with F locally free. Then there is an € > 0 such that F is semistable if the triple
is a-semistable for any a > oy — €. Indeed the conclusion holds for any

2
0 _, 7.5
<€E< mm —1)? (7.5)

where m = ny — np = rk(F).

Proof. Let F' C F be any proper subsheaf. Denote the rank and slope of F (resp.
F') by m and pp (resp. m" and ppr). We can always find E{ C E; such that
F' = E'/E,, i.e. such that we have

0—>E21>E{—>F/—>0.

Let T’ = (E’, E,, ¢). For convenience, define

Ay = Ao(T') = o (T — pa(T). (7.6)
Using
ny =ny+m,
ny=ny+m,
nipy = nafly +mpr, (7.1
n\wy = nopo +m'ppr,
we get
2ny +m)(2ny +m') m—m’
MF — (F = - Ay — — | (@ = 2(nr — p2))-
2nom 2m
(7.8)
But 2(uup — 2) = apy. Thus, setting
o =0y — €, (7.9)
we get
2ny +m)2ny +m') m—m'\ €
wp = = T (e A CAT)
2n,m’ m 2

If now we take |

E < —,
2 m@m—1)2
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then for all 0 < m’ < m we get

(m —m’) € 1
- < . (7.11)
m’ 2 mm-—1)

Hence, if the triple is «-semistable, so that A, < 0, then we get

1

MF — UF <

Since ur and pp are rational numbers, the first with denominator m, and the sec-
ond with denominator m’ < (m — 1), equation (7.12) equivalent to the condition
mr — pr < 0. m|

We can combine Propositions 6.8, 7.4 and 7.3 to obtain the following.

Proposition 7.5. Let T = (E, E;, ¢) be an a-semistable triple for some o in the
range oy < o < ayy. Then T is of the form

0—>E2i>E1—>F—>O,

with F locally free, and E, and F are semistable.
In the converse direction we have:

Proposition 7.6. Let T = (E|, E,, ¢) be a triple of the form
O—>E2i>E1—>F—>O,

with F locally free. If E, is semistable and F is stable then T is a-stable for
o =ay —€intherange ap < a < ay.

Proof. Any subtriple 7" = (E{, E}, ¢') defines a commutative diagram

¢

0 E, E, F 0
/! ¢/ !/ /!
0 E, E| F 0,

where F' C F.Then

Aa = Aa(T/) = Ma(T/) - /-'Lot(T)

, n
= w(E| ® E) — u(E, ® Es) + a( 2

/

2 —_—

ny+ny ni+ny
(7.13)
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Denote the rank and slope of F (resp. F’) by m and g (resp. m’ and pg/). Using
ny=ny+m,
ny=n5+m',
Ny = napy +muUr,
n\y = nypy +m'ppr,
and the fact that oy = 2(up — 12), and setting & = oy — €, we obtain

_2ny syt mpp 2y 4 po +mpr

o

2n, +m’ 2ny+m
n, ny n’ np
+2 — 2_ _ —€ 2 _
(ur Mz>(2n/2 +m' 2ny —i—m) (2n/2—|—m’ 2n, —i—m)
2n ! " m’ ( ) e nym — nym’ )
__ £ — _— ’ — — € .
2nh +m’ Ha— 2 2ny +m’ Hr = HKr (2ny +m’')(2ny + m)
(7.14)
Clearing denominators in (7.14) we obtain
@nh + m') Ay = ny2A " m (A —2 )
n m =n - —€ m ~__€)
2 * 2 2 2]’12 +m d 2112 +m
where
Ay =ps—pa, and  Ap = pup — ur. (7.15)

Now suppose that E, is semistable and F is stable. The semistability of E; implies
that

m
20 — ——€ < 0,
2ny +m

while the stability of F implies there exists § > 0 such that Ap < —§ < 0. Thus

by taking € < 2’3%8, we have Ap + zn;’ime < 0, and hence A, < O. O

Theorem 7.7. Assume that ny > ny and dy/n; > dy/n,. Then the moduli space
;= Nz (n1, ny, dy, dy) is smooth of dimension

(g — D} +n3 —nina) —nydy + nady + 1,

and is birationally equivalent to a PN -fibration over M*(n; — n,, d; — d») x
M*(ny, dy), where M*(n, d) is the moduli space of stable bundles of rank n and
degree d, and

N =nydy —nidr +ni(ny —ny)(g—1) — 1.

In particular, N 1 (n1, na, dy, d>) is non-empty and irreducible.

If GCD(ny — ny,d; — dy) = 1 and GCD(n,, d,) = 1, the birational equiva-
lence is an isomorphism.

Moreover, in all cases, N = Ni(ni, ny, dy,d>) is irreducible and hence
birationally equivalent to N
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Proof. Forevery triple T = (E1, E3, ¢) in N3, the homomorphism ¢ is injective
and hence, by (5) in Proposition 3.8, T defines a smooth point in the moduli space,
whose dimension is then given by (4) in Proposition 2.6.

Given F € M*(n| — ny,d; — d») and E, € M*(ny, d,), we know from Prop-
osition 2.6 that every extension

O—>E2i>E1—>F—>O,

defines a triple T = (Ei, E,, ¢) in N ;- These extensions are classified by
H'(E; ® F*). In fact two classes defining the same element in the projectiviza-
tion PH'(E, ® F*) define equivalent extensions and therefore equivalent triples.
Now,

deg(E, ® F*) = (ny — ny)dy — na(dy — dp) = nina(pa — py) <0

and, since E, ® F* is semistable, then H*(E>® F*) = 0. Hence, by the Riemann—
Roch theorem

h'(Ey ® F*) = nady — nydy +ny(ny — np)(g — 1).

In particular this dimension is constant as F and E; vary in their corresponding
moduli spaces.

We can describe this globally in terms of Picard sheaves. To do that we con-
sider first the case in which GCD(n; —n,, d; —d») = 1 and GCD(n,, d») = 1.In
this situation there exist universal bundles IF and [E, over X x M (n; —n,, di —d>)
and X x M (ny, d,), respectively. Consider the canonical projections

T X xM(n1 —I’lz,dl —dz) XM(I’lz,dz)
— M(ny —na,dy —dz) x M(n2, d>)
|2 XxM(m —nz,d] —dz) XM(I”Q,dz)—) XXM(I’[] —nz,dl —dz),

and

. X xM(n1 —I’lz,dl —dz) XM(nz,dz) — X x M(nz,dz) .

The Picard sheaf
S := R'n, (7} E, @ v*TF),

is then locally free and we can identify A, = N; with P = P(S). This is indeed
alPV fibration with N = npd; —nidy +n1(ny —n»)(g— 1) — 1, which in particular
is non-empty since M (n| —n», dy —d,) and M (n,, d») are non-empty and N > 0.
If GCD(n; — ny, d; — d») # 1 and GCD(n,, d») # 1, there are no universal
bundles and hence the Picard bundle does not exist. However, its projectivization
over
M*(ny —na, dy — dy) x M*(ny, d>)
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does exist. This can be constructed by working in the open set R of the Quot
scheme corresponding to stable bundles. The point is that an appropriate linear
group GL acts on R, with the centre acting trivially and such that PGL acts freely
with the quotient being M*(n; — ny, di — d>) x M?*(n3, d,). For the action on the
projective bundle associated to the universal bundle over R, the centre of GL still
acts trivially, and standard descent arguments produce the required PV fibration
P over M*(ny — ny, dy — d>) x M*(ny, dy).

We now show that the complement of P has strictly positive codimension
in NV]. This follows from two facts. The first one is that any family of strictly
semistable bundles of rank n; — n;, and degree d; — d> depends on a number of
parameters strictly less than the dimension of M*(n; — n,, d, — d;) (cf. e.g. [8]).
The same argument applies to any family of strictly semistable bundles of rank
n, and degree d,. The second fact is that the dimension of H YE, ® F*) is fixed
by the Riemann—Roch theorem (we use here that E; and F are semistable).

To prove the last statement, i.e. to extend the results to N7, we consider the
family P of equivalence classes of extensions

0—>E21>E1—>F—>0,

where F' and E; are semistable. Clearly, P contains the family P. The family P
is irreducible. This is because since F' and E; are semistable they vary (for fixed
ranks and degrees) in irreducible families F and &, respectively, and as shown
above H'(E, ® F*) = 0. Hence Pisa projective bundle over F x &. From
Proposition 7.5, we know that N7 C P, and since a-semistability is an open
condition (which follows from the construction of the moduli space given in [4]
and [25]), we have that A/}, is irreducible. m]

Remark 7.8. If ny < ny, we have an analogous theorem for /\/’2 (ny,n,,dy, dr) via
the isomorphism

N (ny, na, dy, do) = Ny (ny, ny, —da, —d)

given by duality (Proposition 2.4).

7.3. Moduli space for o, <2g —2 < o < ay

Theorem 7.9. Let o be any value in the range o,, < 2g —2 < « < ay. Then N3
is birationally equivalent to N} . In particular it is non-empty and irreducible.

Proof. This follows from Theorem 5.13 and Theorem 7.7. O

Corollary 7.10. Let (ny, ny, di, d») be such that GCD(n,, ny +ns, dy +dy) = 1.
If o is a generic value satisfying o, < 2g¢ —2 < o < ayy, then Ny, is birationally
equivalent to N, and in particular it is irreducible.
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Proof. From (4) in Proposition 2.6 one has that N, = N} if GCD(ny, ny +
ns, d; + d>) = 1 and « is generic. In particular, N7 = ;> and hence the result
follows from Theorem 7.9. m]

8. Moduli space of triples with ny = n,

Throughout this section we assume that n; = n, = n and d; > d>.

8.1. Moduli space for d| = d,

Proposition 8.1. Suppose that ny = np, = nandd, = d» = d. Let T =
(E1, Eb, ) be a triple of type (n,ny,dy,ds), and let « > 0. Then T is
a-(poly)stable if and only if E\ and E, are (poly)stable and ¢ is an isomorphism.

Proof. In this case the injectivity bound ¢ given by (6.11) is a9 = «, = 0.
Hence for every a-semistable triple T = (E;, E», ¢) with @ > 0, ¢ must be
injective and therefore an isomorphism. The polystability of E; and E; is now
straightforward to see. To show the converse, suppose that E; and E; are both
polystable and let 7" = (E}, E}, ¢') be any subtriple of T'.

/

(T = w(E| @ E;
me(T') = n(E, @ 2)+an’1+n’2
’

SuEI B E)+a

/ !/
ny +n,
1

n’
2
< e (T) + a(

ny +n) 5)

< te(T),
since ny > n), if ¢ is injective. i

Corollary 8.2. The moduli space Ny(n, n, d, d) and the moduli space M (n, d)
of polystable bundles of rank n and degree d are isomorphic. In particular
Ny, n,d, d) is non-empty and irreducible.

Proof. From Proposition 8.1 it is clear that we have a surjective map, say
T Nd(n’ na d’ d) - M(”’ d)'

Suppose that 7 ([T]) = 7 ([T’]), where [T] and [T"] are points in Ny (n, n,d, d)
represented by triples T = (E, E,¢) and T’ = (E', E’, ¢') respectively. We
may assume that 7 and T’ are polystable triples, and hence that £ and E’ are
polystable vector bundles. Thus, since 7 ([T]) = 7 ([T']), we can find an isomor-
phism h; : E + E’.Sethy = ¢’ o hj o ¢~ (remember that ¢ and ¢’ are bundle
isomorphisms). Then (A1, h,) defines an isomorphism form 7 to 7’. Thus 7 is
injective. O
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Combining Proposition 7.1 and Corollaries 7.2 and 8.2, we obtain the follow-
ing.
Corollary 8.3. Suppose that n; > n, and (11 — , > 0. Then
Ny, (1,02, dy, dy) = M(na, dy) X M(ny — na, dy — dy).

In particular, Ny, (n1, na, dy, dy) is non-empty and irreducible.

8.2. Bounds on E| and E; for o > oy

Lemma 8.4. Let (E|, E,, ¢) be a triple with ker¢ = 0. Let (EY{, E}, ¢’) be a
subtriple with n'y = n’, = n'. Thus we get the following diagram, in which S and
S’ are torsion sheaves:

0 E, E, S 0

Then

1 /
Au(T") = po(T") — pa(T) = (U(E)) — pa) + 2 (S/ - )

s
n
= uEp -2 (222
e R\ T )
Here s and s’ are the degrees of S and S’ respectively.
Proof. From the above diagram we get

npa +s = nui,
nu(Ey) +s" = nu(EY).

Thus
A 1 / / o , S/
pa(T") = E(M(El) + n(Ey) + 5= (Z,U«(Ez) + ;) +

<2M<E1> - ,ST) +

and similarly for . (T). O

N = N =
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Proposition 8.5. Let (E1, E», ¢) be an o-semistable triple with ker ¢ = 0. Then
(1) For any subsheaf E| C E;

1
w(ED < pr + 5(” — D (1 — p).

(2) For any subsheaf E}, C E,

1
W(EY) < o + E(Ml — Wu2).

Proof. Since ker ¢ = 0 the results of Lemma 8.4 apply. Furthermore, any subs-
heaf E| C E, is part of a subtriple (E}, E}, ¢') with n| = n}, = n'. Likewise,
given any subsheaf E) C E,, we can take E| = ¢(E}). Thus we can use the
results of Lemma 8.4, plus the fact that a-stability implies A, (7T") < 0 for all
subtriples, to conclude

(E)) 1 /s s 0
- —=l—-—--]<
MLy 231 >\ T
for all E| C E,. Similarly
E) -+ (E-5) <0
ML, 2% AT

for all E) C E,. The results now follow using the fact that 0 < s’ < s and
1<n <n. O

8.3. Stabilization of moduli

Theorem 8.6 (Stabilization Theorem). Let « be as in (6.15).

(1) Let oy, ap be any real numbers such that oy < o) < op, then
Ny, (n,n,dy, dy) € Ny, (n,n,dy, dy).
(2) There is a real number oy, > o such that
Ny, (n,n,dy, dy) = Ny, (n,n,d, dy)
foralloy 2 oy > ap.

Proof. (1). Recall from Proposition 6.5 that if « > o« then any triple, T =
(Ey, E3, @), in Ny (n, n, d,, dy) has tk(¢) = n. It follows that in any subtriple,
say T' = (E{, E}, ¢'), the rank of E| is at least as big as the rank of EJ, i.e.
n| > n,. We treat the cases n} > n) and n| = n), separately. In both cases we
must show that

Api(T)) S0 = Ay, (T) <0
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if o) < ap. If n} = n/, then for any «
A (T") = u(E| ® Ey) — w(E1 @ E). (8.1)

In particular, A, (7’) is independent of « and hence Ay, (T') = Ay (T'). If
ny > n), then for any «

n’ 1
Ao(T') = W(E} @ E5) — w(Ey ® Ez) + ( — - —) « (82
ny+n, 2
For each subtriple, A,(7’) is thus a linear function of «, with slope
/ 1 -
MTY = (2 =5 ) = 52— (8.3)
ny+n, 2 2(n| +n3)

and constant term
M(T') = u(E| ® Ej) — n(E1 @ E). (8.4)
We see that if n| > n), then A(T’) < 0. It follows from this that
Ap (T <0 = A, (T) <0

if (03] < o).

(2). Consider any o, ap such that oy < o7 < «p. By Part (1), the difference
(if any) between N, and N, is due entirely to triples which are a,-stable but
not «-stable. Any such triple must have a subobject, say 7' = (E}, E}, ¢'), for
which

Ay (T') <0 < Ay, (T)). (8.5)

As in (1), we need only consider subobjects for which the rank of Ej is at least
as big as the rank of EJ, i.e. n| > n,. Clearly (8.5) is not possible for a subobject
with n| = n/, (since in that case Ay, (T') = Ay, (T")). Suppose then that n} > n).
By (8.2) and the fact that for such a subobject A(T") < 0, we get that
M(T")

(T’

We claim that there is a bound, «;, depending only on the degrees and ranks of
E, and E,, such that

Ag(TH 20 < a <

(8.6)

MIT) (8.7)
(1) S '

for all possible subtriples with n| > n). For a triple T = (E;, E3, ¢) in N,
Proposition 8.5 applies, giving upper bounds on slopes of subsheaves of both E;
and E;. Using these bounds we compute

/

, nn _
M(T') < —2(n,l+n,2)(m W2). (8.8)
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Combined with (8.3), this gives
M(T') < nn
—MT") ~ (n} —nb)
<nn— 1D — p2).

(1 — m2)

We can thus take

arp =n(n — D(ur — @a). (8.9)

We can now complete the proof of Part (2): if «; > &/ then no triple in N, can
have a subtriple satisfying (8.6). Hence N, = N, i

Remark 8.7. If n = 2 then o) = a9 = d| — dy, i.e. the stabilization parameter
coincides with the injectivity parameter.

It is clear from (8.9) that oz, = O correspond to the following especial cases.

Proposition 8.8. Ifn = 1 or «,,, = 0 then oy = 0. Hence if € is any positive real
number,

(1) ifn = 1, then N, is isomorphic to Ny, (1, 1, dy, dp) for every a € (e, 00);
(2) if a,y = 0, then N is isomorphic to N.(n, n, dy, d>) for every a € (0, 00).

8.4. Moduli for large @ and o« > 2g — 2

Let o > g, where « is as in (6.15). By Proposition 6.5, we know that all triples
in N, (n, n, d;, d,) are of the form

0— E, -2 E, —> S —> 0, (8.10)

where S is a torsion sheaf of degree d = d; — d,. By analogy with the n; # n», let
us denote by N7 (n, n, dy, d>) the ‘large &’ moduli space, i.e. the moduli space of
a-semistable triples for any o € («p, 00). Since oy, > g we have that all triples
in N7 (n, di, d,) are of the form in (8.10) and that E; and E, are bounded by the
constraints in Proposition 8.5.

In the converse direction we have the following.

Proposition 8.9. Let T = (Ei, E», ¢) be a triple such that ker¢p = 0 If E;
and E, are semistable, then T is a-semistable for large enough o, ie. T €
Ni(n,n,dy, d>). If either E; or E; is stable, then T is a-stable.

Proof. Since ker ¢ = 0, it follows (as in the proof of Theorem 8.6) that in any
subtriple, say 7" = (E}, E}, ¢'), the rank of E is at least as big as the rank of
E},ie. n| = n). If n| > n), then (8.2), (8.3) and (8.4) apply, with A(T") < 0 and
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% < ap. Thus pe(T") — e (T) < Ofor o > «y . For subtriples with n} = nJ,

equation (8.1) says that
Aa(T') = u(E; @ Ey) — n(E1 @ E)

for any «. For such subtriples, and for any «, it thus follows that

(1) A (T") < 0ifboth E; and E, are semistable, and
(2) Ay(T") < 0if at least one of the bundles is stable. O

Theorem 8.10. The moduli space N 1 (n,n,dy, d>) is non-empty.

Proof. Our strategy is to show that there exist rank »n stable bundles E;| and E; of
degree d, and d», respectively, and a torsion sheaf S of degree d; — d», fitting in
an exact sequence

0—FE,— E — S —0.

The result will then follow from Proposition 8.9.

To prove this, let E be a vector bundle, and let Quot (E) be the Quot scheme
of quotients E — S where S is a torsion sheaf of degree d. The basic fact we
need is the following.

Lemma 8.11. Let L be a line bundle and let W : L®" — S be an element in
Quot?(L®"). Then, if L has big enough degree (depending on n and d), for a
generic S, the vector bundle E = ker { is stable.

Proof. The proof is implicit in the papers by Herndndez [17] and Maruyama [22],
where they deal with the case L = (. There, one needs an extra condition on
n and d, which is not required in the twisted case when the degree of L is big
enough.

Let L be a line bundle of degree m and d” > 0 such that d; = nm — d”. By
Lemma 8.11, if ¢ : L" —> §” € Quot? (L") is generic, then E; = ker ¥ is a
stable bundle of rank n and degree d;. Let d = d| — d, and consider a generic
elementn : E; — S € Quotd(El). Let E, = kern, and let S’ the cokernel of
the natural inclusion E, — L". We have the following commutative diagram:

0 0 0

\A 1 \:
0O—-E,—E — S —>0

l \: \
00— E,—-L"—> S =0

A \: \:
0%S”=S//%0

\: \

0 0.
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We see from the diagram that E, coincides with the kernel of L" — §'. If §’
is general enough we can again apply Lemma 8.11 and conclude that Ej is stable.
To show that this is indeed the case, we observe that the diagram defines a map

Quotg(El) X Quotg//(L”) — Quotg’Ld”(L"),

where Quot, denotes an open non-empty subscheme of Quot, which is surjective
and finite. o

We deal now with the irreducibility of the moduli spaces. Although not for-
mulated in precisely this form, the following result is implicit in [21], in the proof
of Proposition 5.1.

Theorem 8.12 (Markman-Xia [21]). There is an irreducible family S parame-
terizing quotients E; —> S —> 0, where E| is a rank n and degree d, vector
bundle such that all its subbundles have their slope bounded above by a given
universal constant, and S is a torsion sheaf of degree d > 0.

Theorem 8.13. If a > «, then Ny (n, n, dy, d>) is irreducible.

Proof. Since o > o, an o-semistable triple T = (E}, E3, ¢) defines a sequence
as in (8.10) and hence a quotient E;, — S — 0 in S. By (1) in Proposition
8.5, the slopes of subbundles of E; are bounded above by the universal constant

1
w1+ E(" — D (w1 — u2).

Let S ¢ S consist of elements E;, —> S —> 0 in S that come from an
a-semistable triple 0 - E, — E; — S — 0. Since a-semistability is an open
condition S” is a Zariski open set of S, which is non-empty by Theorem 8.10, and
hence irreducible by Theorem 8.12. The irreducibility of N, (n, n, di, d,) follows
now from that of S°. |

Proposition 8.14. The moduli space Ny (n, n, dy, d>) is birationally equivalent
to a PN -fibration P over M*(n, d») x Symd(X), where N = n(d, — d») — 1,
Symd (X) is the d-symmetric product of X, and M°* (n,, dy) is the moduli space of
stable bundles of rank n, and degree d,.

Proof. Let E, be arank n and degree d; vector bundle and let S be a torsion sheaf
of degree d > 0. We construct E| as an extension

00— E,—E — S—0. (8.11)

Such extensions are parameterized by Ext! (S, E). Suppose that S is of the form
S = Op, where D is a divisor in Symd (X). Let L be a line bundle. Consider the
short exact sequence

0— L*(-D) — L* — Op — 0,
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and apply to it the functor Hom(:, E5), to obtain the long exact sequence

0 — HYE, ® L) — H%(E, ® L(D)) —
Ext'(Op, E;) — HY(E,® L) — H'(E, ® L(D)) —> 0.

We thus have
dim Ext'(Op, E) = x(E2 ® L) — x(E, ® L(D)) = nd,

where x(E) = dim H°(E) — dim H'(E). Taking L so that deg(L) >> 0, we
have that H'(E; ® L) = 0. If E, is semistable (or more generally, if it moves in
a bounded family) we can take the same L for every E,. Then

Ext' (Op, E2) = H'(E; ® L(D))/H(E; ® L).

(8.12)

Let P be the set of equivalence classes of extensions (8.11), where E is stable
then P is a PV-fibration over M*(n, d2) X Symd(X), where N = nd — 1 =
dim P(Ext! (Op, E,)). Since we assume that d is positive, N is non-negative and
positive if n > 1. Setting d = d; — d,, a simple computation shows that

dim P = (g — 1)(n] +n3 — niny) — nyda + nady + 1.

Clearly P is irreducible of the same dimension as \V; , and since it is contained in S
(like V7)) it must be birationally equivalent to Nz . Notice that If GCD(n, d;) = 1,
then P is the projectivization of a Picard bundle. O

Combining the results of this section, we arrive at the following theorems.

Theorem 8.15. The moduli space Ny (n, n, dy, d>) is non-empty and irreducible.
Furthermore, it is birationally equivalent to a PV -fibration over M*(n, d>) x
Symd(X), where the fiber dimension is N = n(d, — dp) — 1.

Proof. 1t follows from Theorems 8.13 and 8.10 and Proposition 8.14. O
Theorem 8.16. Let « > 2¢ — 2 > «,,. Then

(1) The moduli space N7 is birationally equivalent to N, and it is hence non-
empty and irreducible.
(2) If in addition either
¢ GCD(n,2n,d) +dy) =land o > 2g — 2 > «y, is generic, or
° dl — d2 <,
then N, (n, n, d, dy) is birationally equivalent to Ny (n, n, dy, dy) and hence
irreducible.

Proof. If 2g — 2 > oy, the result follows from Theorems 8.6 and 8.15. Assume
then that 2g — 2 < oy.

(1) From Theorem 8.13 we know that V7, is birationally equivalent to ;. The
result follows now from Theorem 5.13 and Theorem 8.15.

(2) For the first part, we observe that from (4) in Proposition 2.6 one has that
N, = N if GCD(n, 2n,d, + dp) = 1 and « is generic, and hence the result
follows from (1). The second part is a consequence of Theorem 8.13. O
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9. Triples and dimensional reduction

Let P! be the complex projective line. The Lie group SL(2, C) acts on X x P!
via the trivial action on X and the identification P! = SL(2, C)/P, where P is
the subgroup of lower triangular matrices.

The theory of holomorphic triples and vortex equations on X is related with
the study of stable SL(2, C)-equivariant bundles on X x P! and the existence of
invariant solutions to the Hermitian—Einstein equations. In fact, it is in this way
(known as dimensional reduction) that the theory originated (see [4] and [13] for
details).

In this section we recall the basics of this correspondence and apply our main
results on triples to the theory of vector bundles on X x P!

9.1. Existence of stable bundles on X x P! and triples

Proposition 9.1. [4, Proposition 2.3] There is a one-to-one correspondence

between holomorphic triples (Ey, E», ¢) on X and holomorphic extensions on
X x P! of the form

0— pEy, — E — p"E, ®4¢*0O2) — 0, 9.1)

where p and q are the canonical projections from X x P! to X and P', respec-
tively, and O(2) is the degree 2 line bundle of P' (the tangent bundle).

Proof. The proof given in [13] is simply that extensions over X x P! of the form
(9.1) are parametrized by

H'(X xP', p*(E1 ® E3) ® ¢*O(-2)).
By the Kiinneth formula, this is isomorphic to
H(X,E; ® E}) ® H'(P', O(-2)) Z H'(X, E, ® E}).

After fixing an element in H (P!, O(-2)), the homomorphism ¢ can thus be
identified with the extension class defining E. O

Notice that the vector bundles E of the form in (9.1) come equipped with an
action of SL(2, C) which lifts the action on X x P!. The action on E is trivial on
p*E; and p*E,, is the standard one on O(2), and leaves invariant the extension
class.

To talk about the stability of E one needs a Kihler metricon X x P'. Let us fix
ametric on X and the Fubini-Study metric on P! both normalized to have volume
2. Leta > 0be areal number. We consider on X x P! the one-parameter family
of SU(2)-invariant Kdhler metrics with Kdhler form

wy = aptwy ® g wpr.
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Here wy and wp: are the Kahler forms on X and P!, respectively. The degree of
a complex vector bundle E over X x P! with respect to w, is given by

deg(E) = f ¢1(E) A o,
X xP!

where ¢ (F) is the first Chern class of E. Recall that E is said to be stable with
respect to w, if for every non-trivial coherent reflexive subsheaf £’ C E,

w(E") < pn(E),

where u(E) = deg(E)/ rtk(E) is the slope of E. Since we are in complex dimen-
sion 2, E’ is locally free.

Theorem 9.2. [4, Theorem 4.1] Let T = (E;, E3, ¢) be a holomorphic triple
over X and let E be the holomorphic bundle over X x P! defined by T as in
Proposition 9.1. Then, if E| and E, are not isomorphic, T is a-stable if and only
if E is stable with respect to w,. If E1 = E, the triple T is a-stable if and only
if E decomposes as a direct sum

E=p'Ei®@q"O()® p*"E» ®q"O(1),
and p*E; ® q*O(1) is stable with respect to w,.
Remark 9.3. The stability of p*E; ® ¢*O(1) is equivalent to the stability of E;.

Let (ny, na, di, dy) be the type of the triple T = (Ey, E», ¢). Let M, be the
moduli space of stable bundles on X x P! with respect to w,, whose topological
type is that of E in (9.1). Combining Theorems 9.2, 7.9 and 8.16 we can prove
existence of stable bundles on X x P!. More precisely.

Theorem 9.4. M, is non-empty if

(1) 2g —2 < a < ay ifny # ny, where oy is given by (2.3);
2)2g -2 < aifn; =ny.

Remark 9.5. The moduli space N, can be identified with the SL(2, C)-invariant
part of M, ([4]). Hence from Theorems 7.9 and 8.16 we can say that within the
range for o in Theorem 9.4 the invariant loci for different values of « are bira-
tionally equivalent. Whether this is true or not for the whole moduli spaces M,,
for different values of « is something that deserves further study (see [23] for a
discussion on this in the rank two case).
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9.2. Existence of SU(2)-invariant Hermitian—Einstein metrics

By the Hitchin—Kobayashi correspondence proved by Donaldson, Uhlenbeck and
Yau [10,11,32], the stability of the bundle £ on X x P! is equivalent to the exis-
tence of an irreducible solution to the Hermitian—FEinstein equation. Recall that
this is a Hermitian metric on E such that

V=1AF(E) = nldg, 9.2)

where, as usual, A is contraction with the Kihler form of X x P!, F(E) is the
curvature of the unique connection determined by the Hermitian metric
and the holomorphic structure of E, Idg is the identity endomorphism of E and
W is the slope of E.

The action of SL(2, C) on E restricts to an action of the compact subgroup
SU(2) ¢ SL(2, C), and, since the metric w, on X x P! is SU(2)-invariant, one
can consider SU(2)-invariant solutions to (9.2). The relevant fact is the following.

Proposition 9.6. [13, Proposition 3.11] Let T = (Ey, E,, ¢) be a holomorphic
triple of type (ny, na, di, dy) over X and let E be the holomorphic bundle over
X x P! associated to T by Proposition 9.1. Let T, and T, be real numbers such
thatd, +d, = n 1711 +ny7, and 1y — 1y > 0. Then T admits a solution to (2.6) if
and only if E admits an SU(2)-invariant Hermitian—Einstein metric with respect
10 Wy.

Combining the previous results we have the following.

Corollary 9.7. The vector bundle E associatedto atriple T of type (ny, ny, dy, d»)
has a Hermitian—Einstein metric, with respect to wy if

() 2g —2 < o <oy ifny #£ ny, where oy is given by (2.3);
2)2g -2 < aifn; =ny.

In fact this metric is SU(2)-invariant and it is given by a vortex solution on T.

Remark 9.8. This is similar in spirit to the instanton solutions of vortex type on
R* studied by Witten [33] and Taubes [30].
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