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Abstract. A holomorphic triple over a compact Riemann surface consists of two holomorphic
vector bundles and a holomorphic map between them. After fixing the topological types of the
bundles and a real parameter, there exist moduli spaces of stable holomorphic triples. In this
paper we study non-emptiness, irreducibility, smoothness, and birational descriptions of these
moduli spaces for a certain range of the parameter. Our results have important applications to the
study of the moduli space of representations of the fundamental group of the surface into unitary
Lie groups of indefinite signature ([5,7]). Another application, that we study in this paper, is to
the existence of stable bundles on the product of the surface by the complex projective line.

1. Introduction

Let X be a closed Riemann surface of genus g � 2. The theory of holomorphic
triples has its origins [13,4] in the search for solutions to certain gauge theoretic
equations on X, obtained by dimensional reduction of the Hermitian–Einstein
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equation in 4 dimensions. More precisely, solutions to the Hermitian–Einstein
equation on X × P

1 which are invariant under the standard action of SU(2) on
P

1 correspond to solutions to the so-called vortex equations on X. The Hitchin–
Kobayashi correspondence states that a solution to the Hermitian–Einstein equa-
tion onX×P

1 gives rise to a polystable holomorphic bundle and that, conversely,
any stable holomorphic bundle admits a Hermitian–Einstein metric. The coun-
terpart on X states that there is a Hitchin–Kobayashi correspondence between
solutions to the coupled vortex equations and stable holomorphic triples. A holo-
morphic triple consists of a pair of holomorphic vector bundles, E1 and E2, over
X and a holomorphic map φ : E2 → E1 between them. An important feature of
the stability condition for triples is that it depends on a real parameter α, corre-
sponding to the fact that there is a real parameter in the vortex equations; thus one
is led to the concept of α-stability of a holomorphic triple. This parallels the fact
that when studying Hermitian–Einstein metrics and stable bundles on X × P

1 it
is necessary to choose a polarization on this complex surface. We note that, as
usual, there are corresponding concepts of α-polystable and α-semistable triples
(see Section 2 below for precise definitions).

It was shown in [4] (see also [13]) that projective moduli spaces for holomorphic
triples exist. (Later a direct construction was given by Schmitt using geometric
invariant theory [25].) Since the stability condition depends on the real parameter
α, so do the moduli spaces. Fixing the topological invariants ni = rk(Ei) and
di = deg(Ei), we denote the moduli space of α-polystable triples with the given
invariants by

Nα = Nα(n1, n2, d1, d2) ,

and the moduli space of α-stable triples by N s
α ⊆ Nα. In this paper we address

the questions of smoothness, non-emptiness and irreducibility of these moduli
spaces.

Before describing our results in more detail, we explain our motivation, which
comes from the problem of determining the connected components of the moduli
space of representations of the fundamental group of X in PU(p, q). A detailed
study of this moduli space appears in a companion paper [7]; in the following
we briefly outline the main ideas. The first point to notice is that we may as well
study the connected components of the moduli space of projectively flat U(p, q)
bundles on X. This moduli space can be divided into disjoint closed subspaces
M(a, b) indexed by a pair of integers (a, b), the Chern classes obtained from a
reduction of structure group to the maximal compact subgroup U(p)×U(q). The
values of (a, b) are bounded by the Milnor–Wood type inequality

∣
∣
∣
∣

aq − bp

p + q

∣
∣
∣
∣
� min{p, q}(g − 1) .

For each allowed value of (a, b) one expects the space M(a, b) to be non-empty
and connected, thus forming a connected component of the moduli space.
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By the work of Hitchin [18,19], Donaldson [12], Simpson [26–29] and Corlette
[9], the moduli spaces M(a, b) are homeomorphic to moduli spaces of so-called
U(p, q)-Higgs bundles on X: these are pairs (E,�), where E is a holomorphic
vector bundle which decomposes as a direct sumE = V ⊕W and the Higgs field
� : E → E ⊗K is of the form

φ =
(

0 β
γ 0

)

with respect to the direct sum decomposition of E. Here K is the canonical line
bundle of X and the invariants a and b appear as the degrees of V andW respec-
tively. The L2-norm of the Higgs field gives us a Bott-Morse function on the
moduli space (cf. Hitchin [18,19]). Thus, connectedness of the spaces M(a, b)

will be a consequence of connectedness of the corresponding subspaces of local
minima. In the case of flat U(2, 2)-bundles, it was shown in [15] that the local
minima are represented by Higgs bundles for which either β or γ vanishes. One
of the main results in [7] is that this is true in general. The crucial observation
is now that there is a bijective correspondence between U(p, q)-Higgs bundles
(E,�) with β = 0 or γ = 0 and holomorphic triples: if, say, γ = 0, we obtain
a holomorphic triple T = (E1, E2, φ) by setting E1 = V ⊗ K , E2 = W and
φ = β. It turns out that (E,�) is (poly)stable as a U(p, q)-Higgs bundle if and
only if the corresponding holomorphic triple T is α-(poly)stable for α = 2g− 2.
It follows that the subspace of local minima on M(a, b) is isomorphic to a moduli
space of (2g − 2)-polystable holomorphic triples. Thus the results of the present
paper imply results on non-emptiness and connectedness of the moduli spaces
M(a, b). We refer the reader to [7] for the precise statements.

We now return to our main subject of study, the holomorphic triples. In order
for Nα to be non-empty, one must have α � αm with αm = d1/n1 − d2/n2 � 0.
In the case n1 �= n2 there is also a finite upper bound αM . When the parameter α
varies, the nature of the α-stability condition only changes for a discrete number
of so-called critical values of α (see Section 2 for the precise statements). We can
now state our main results.

Theorem A. (1) A triple T = (E1, E2, φ) of type (n1, n2, d1, d2) is αm-polysta-
ble if and only if φ = 0 and E1 and E2 are polystable. We thus have

Nαm(n1, n2, d1, d2) ∼= M(n1, d1)×M(n2, d2).

whereM(n, d) denotes the moduli space of polystable bundles of rank n and
degree d. In particular, Nαm(n1, n2, d1, d2) is non-empty and irreducible.

(2) If α > αm is any value such that 2g − 2 � α (and α < αM if n1 �= n2) then
the moduli space N s

α (n1, n2, d1, d2) is non-empty, irreducible, and smooth of
dimension (g − 1)(n2

1 + n2
2 − n1n2)− n1d2 + n2d1 + 1. Moreover:
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• If n1 = n2 = n then the moduli space N s
α (n, n, d1, d2) is birational-

ly equivalent to a P
N -fibration over Ms(n, d2) × Symd1−d2(X), where

Ms(n, d2) denotes the subspace of stable bundles of type (n, d2),
Symd1−d2(X) is the symmetric product, and the fiber dimension is N =
n(d1 − d2)− 1.

• If n1 > n2 then the moduli space N s
α (n1, n2, d1, d2) is birationally equiv-

alent to a P
N -fibration over Ms(n1 − n2, d1 − d2) ×Ms(n2, d2), where

the fiber dimension is N = n2d1 − n1d2 + n2(n1 − n2)(g − 1)− 1.
• If n1 < n2 then the moduli space N s

α (n1, n2, d1, d2) is birationally equiv-
alent to a P

N -fibration over Ms(n2 − n1, d2 − d1) ×Ms(n1, d1), where
the fiber dimension is N = n2d1 − n1d2 + n1(n2 − n1)(g − 1)− 1.

(3) If n1 �= n2 then the moduli space NαM (n1, n2, d1, d2) is non-empty and irre-
ducible. Moreover

NαM (n1, n2, d1, d2) ∼=
{

M(n2, d2)×M(n1 − n2, d1 − d2) if n1 > n2

M(n1, d1)×M(n2 − n1, d2 − d1) if n1 < n2.

Our strategy for studying the moduli spaces is similar in spirit to the one used
by Thaddeus [31]: basically it consists in obtaining a good understanding of the
moduli space for a particular (large) value of α and then keeping track of how the
moduli space changes as α varies. In the following we explain this in more detail
and outline the contents of the paper.

After recalling the basic facts about holomorphic triples in Section 2, we go on
to study extensions and deformations of triples in Section 3. Here we show that
the quasi-projective variety N s

α ⊆ Nα corresponding to α-stable triples is smooth
for all values of α greater than or equal to 2g − 2 (Theorem 3.8).

In Sections 4 and 5 we examine how the moduli spaces differ for values of α
on opposite sides of a critical value. If Nα±

c
denote the moduli spaces for values of

α above and below a critical value αc, we denote the loci along which they differ
by Sα±

c
respectively. Our main result (Theorem 5.12) is that for all α � 2g−2 the

codimension of Sα±
c

is strictly positive. It follows that the number of irreducible
components of the spaces N s

α are the same for all α satisfying α � 2g − 2 and
αm < α < αM . In order to estimate the codimension of the Sα±

c
we need to esti-

mate the dimension of certain spaces of extensions of triples. It is notable that this
requires us to consider objects more general than triples, namely the holomorphic
chains studied in [1]. The rather technical details are in Section 4: the main result
is Proposition 4.3 which is then used to deduce the key Proposition 4.7.

Next we turn to the question of understanding the moduli spaces Nα for large
values of the parameter α. After obtaining some preliminary results in Section 6,
we consider the case of triples with n1 �= n2 in Section 7. Let NL denote the
moduli space of α-polystable triples for α between αM and the largest critical
value smaller than αM . We show that this ‘large α’ moduli space is birationally
equivalent to a P

N -fibration over a product of moduli spaces of stable bundles
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(Theorem 7.7). Combining this fact with our codimension estimates we obtain
our main results on non-emptiness and irreducibility of the moduli spaces Nα and
N s
α ; these appear as Theorem 7.9 and Corollary 7.10.

In Section 8 we obtain analogous results in the case when n1 = n2. Even
though there is no upper limit to α in this case, the moduli spaces do stabilize for
α sufficiently large (Theorem 8.6) and hence it makes sense to consider the large
α moduli space NL also in this case. The birational description of NL is given in
Theorem 8.15, while the main results on non-emptiness and irreducibility are in
Theorem 8.16.

Finally, in Section 9, we go back to the origins of the theory of holomor-
phic triples and apply our results on moduli of triples to deduce the existence
of SU(2)-invariant Hermitian–Einstein metrics on complex vector bundles on
X × P

1; equivalently, our results imply the existence of stable vector bundles on
X × P

1.
This paper and its companion [7] form a substantially revised version of the

preprint [6]. The main results proved in this paper were announced in the note [5].
In that note we claim (without proof) that for α � 2g − 2, the moduli spaces Nα

are irreducible without imposing the conditions in (2) or (3) of Theorem A. This
is a reasonable conjecture, which we hope to come back to in a future publication.

Acknowledgements. We thank the Mathematics Departments of the University of Illinois at
Urbana-Champaign, the University Autónoma of Madrid and the University of Aarhus, the
Department of Pure Mathematics of the University of Porto, the Mathematical Sciences Research
Institute of Berkeley, the Mathematical Institute of the University of Oxford, and the Erwin
Schrödinger International Institute for Mathematical Physics in Vienna for their hospitality dur-
ing various stages of this research. We thank Ron Donagi, Tomás Gómez, Rafael Hernández,
Nigel Hitchin,Alastair King,Vicente Muñoz, Peter Newstead, and S. Ramanan for many insights
and patient explanations.

2. Definitions and basic facts

2.1. Holomorphic triples and their moduli spaces

LetX be a compact Riemann surface (some of what follows is also true also for a
compact Kähler manifold [13,1]). Recall ([4] and [13]) that a holomorphic triple
T = (E1, E2, φ) onX consists of two holomorphic vector bundlesE1 andE2 onX
and a holomorphic map φ : E2 → E1. A homomorphism from T ′ = (E′

1, E
′
2, φ

′)
to T = (E1, E2, φ) is a commutative diagram

E′
2

φ′
−−−→ E′

1


�



�

E2
φ−−−→ E1,
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where the vertical arrows are holomorphic maps. A triple T ′ = (E′
1, E

′
2, φ

′) is a
subtriple of T = (E1, E2, φ) if the sheaf homomorphimsE′

1 → E1 andE′
2 → E2

are injective. A subtriple T ′ ⊂ T is called proper if T ′ �= 0 and T ′ �= T .

Definition 2.1. For any α ∈ R the α-degree and α-slope of T are defined to be

degα(T ) = deg(E1)+ deg(E2)+ α rk(E2),

µα(T ) = degα(T )

rk(E1)+ rk(E2)

= µ(E1 ⊕ E2)+ α
rk(E2)

rk(E1)+ rk(E2)
,

where deg(E), rk(E) and µ(E) = deg(E)/ rk(E) are the degree, rank and slope
of E, respectively.

We say T = (E1, E2, φ) is α-stable if

µα(T
′) < µα(T )

for any proper subtriple T ′ = (E′
1, E

′
2, φ

′). Sometimes it is convenient to use

�α(T
′) = µα(T

′)− µα(T ), (2.1)

in terms of which the α-stability of T is equivalent to �α(T
′) < 0 for any proper

subtriple T ′. We define α-semistability by replacing the above strict inequality
with a weak inequality. A triple is called α-polystable if it is the direct sum of
α-stable triples of the same α-slope.

Write n = (n1, n2) and d = (d1, d2). We denote by

Nα = Nα(n,d) = Nα(n1, n2, d1, d2)

the moduli space of α-polystable triples T = (E1, E2, φ)which have rk(Ei) = ni
and deg(Ei) = di for i = 1, 2. The subspace of α-stable triples is denoted by N s

α .
We refer to (n,d) = (n1, n2, d1, d2) as the type of the triple.

There are certain necessary conditions in order forα-semistable triples to exist.
Let µi = di/ni for i = 1, 2. We define

αm =µ1 − µ2, (2.2)

αM =(1 + n1 + n2

|n1 − n2|)(µ1 − µ2), n1 �= n2. (2.3)

Proposition 2.2. [4, Theorem 6.1] The moduli space Nα(n1, n2, d1, d2) is a com-
plex analytic variety, which is projective when α is rational. A necessary condition
for Nα(n1, n2, d1, d2) to be non-empty is

0 � αm � α � αM if n1 �= n2,
0 � αm � α if n1 = n2.
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Remark 2.3. If αm = 0 and n1 �= n2 then αm = αM = 0 and the moduli space of
α stable triples is empty unless α = 0.

A direct construction of these moduli spaces has been given by Schmitt [25]
using geometric invariant theory.

Given a triple T = (E1, E2, φ) one has the dual triple T ∗ = (E∗
2 , E

∗
1 , φ

∗),
where E∗

i is the dual of Ei and φ∗ is the transpose of φ. The following is not
difficult to prove ([4, Proposition 3.16]).

Proposition 2.4. The α-(semi)stability of T is equivalent to the α-(semi)stability
of T ∗. The map T �→ T ∗ defines a bijection

Nα(n1, n2, d1, d2) = Nα(n2, n1,−d2,−d1),

which is moreover an isomorphism.

This can be used to restrict our study to n1 � n2 and appeal to duality to deal
with the case n1 < n2.

2.2. Critical values

A holomorphic triple T = (E1, E2, φ) of type (n1, n2, d1, d2) is strictly α-semi-
stable if and only if it has a proper subtriple T ′ = (E′

1, E
′
2, φ

′) such thatµα(T ′) =
µα(T ), i.e.

µ(E′
1 ⊕ E′

2)+ α
n′

2

n′
1 + n′

2

= µ(E1 ⊕ E2)+ α
n2

n1 + n2
. (2.4)

There are two ways in which this can happen: The first one is if there exists a
subtriple T ′ such that

n′
2

n′
1 + n′

2

= n2

n1 + n2
, and

µ(E′
1 ⊕ E′

2) = µ(E1 ⊕ E2).

In this case the terms containing α drop from (2.4) and T is strictly α-semistable
for all values of α. We refer to this phenomenon as α-independent semistability.
This cannot happen if GCD(n2, n1 + n2, d1 + d2) = 1. The other way in which
strict α-semistability can happen is if equality holds in (2.4) but

n′
2

n′
1 + n′

2

�= n2

n1 + n2
. (2.5)

The values of α for which this happens are called critical values.
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Definition 2.5. We say that α ∈ [αm,∞) is a critical value if there exist integers
n′

1, n′
2, d ′

1 and d ′
2 such that

d ′
1 + d ′

2

n′
1 + n′

2

+ α
n′

2

n′
1 + n′

2

= d1 + d2

n1 + n2
+ α

n2

n1 + n2
,

that is,

α = (n1 + n2)(d
′
1 + d ′

2)− (n′
1 + n′

2)(d1 + d2)

n′
1n2 − n1n

′
2

,

with 0 � n′
i � ni , (n′

1, n
′
2, d

′
1, d

′
2) �= (n1, n2, d1, d2), (n′

1, n
′
2) �= (0, 0) and

n′
1n2 �= n1n

′
2. We say that α is generic if it is not critical.

Proposition 2.6. [4] Fix (n1, n2, d1, d2).

(1) The critical values of α form a discrete subset of α ∈ [αm,∞), where αm is
as in (2.2).

(2) If n1 �= n2 the number of critical values is finite and lies in the interval
[αm, αM ], where αM is as in (2.3).

(3) The stability criteria for two values of α lying between two consecutive critical
values are equivalent; thus the corresponding moduli spaces are isomorphic.

(4) If α is generic and GCD(n2, n1 + n2, d1 + d2) = 1, then α-semistability is
equivalent to α-stability.

For the application of triples to U(p, q)-Higgs bundles ([7]; see also the Intro-
duction), it is important to have criteria to rule out strict α-semistability when
α = 2g − 2, where g is the genus of the surface. One such criterion, dealing
actually with any integral values of α, is given by the following.

Lemma 2.7. Let m be an integer such that GCD(n1 + n2, d1 + d2 − mn1) = 1.
Then

(1) α = m is not a critical value,
(2) there are no α-independent semistable triples.

Proof. To prove (1), suppose that α = m is a critical value. There exist then a
triple T and a proper subtriple T ′ so that

(d ′
1 + d ′

2 +mn′
2)(n1 + n2) = (d1 + d2 +mn2)(n

′
1 + n′

2).

Thus n1 + n2 divides (d1 + d2 + mn2)(n
′
1 + n′

2). But n1 + n2 > n′
1 + n′

2, so
we get that GCD(n1 + n2, d1 + d2 + mn2) > 1. Writing d1 + d2 + mn2 =
d1 + d2 − mn1 + m(n1 + n2), we see that GCD(n1 + n2, d1 + d2 − mn1) > 1,
in contradiction with the hypothesis. To prove (2), we show that GCD(n2, n1 +
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n2, d1 + d2) = 1, from which the result follows by (4) in Proposition 2.6. Sup-
pose that GCD(n2, n1 + n2, d1 + d2) �= 1. Then there is (n′

1, n
′
2, d

′
1, d

′
2) such that

n′
2

n′
1+n′

2
= n2

n1+n2
and d ′

1+d ′
2

n′
1+n′

2
= d1+d2

n1+n2
. It follows that

d ′
1 + d ′

2 −mn′
1

n′
1 + n′

2

= d1 + d2 −mn1

n1 + n2
,

and hence GCD(n1+n2, d1+d2−mn1) �= 1, in contradiction with the hypothesis.
�

2.3. Vortex equations

There is a correspondence between stability and the existence of solutions to cer-
tain gauge-theoretic equations on a triple T = (E1, E2, φ), known as the vortex
equations ([4] and [13]). The vortex equations

√−1�F(E1)+ φφ∗ = τ1 IdE1,√−1�F(E2)− φ∗φ = τ2 IdE2,
(2.6)

are equations for Hermitian metrics on E1 and E2. Here � is contraction by the
Kähler form of a metric on X (normalized so that vol(X) = 2π ), F(Ei) is the
curvature of the unique connection on Ei compatible with the Hermitian metric
and the holomorphic structure of Ei , and τ1 and τ2 are real parameters satisfying
d1 + d2 = n1τ1 + n2τ2. Here φ∗ is the adjoint of φ with respect to the Hermitian
metrics. One has the following.

Theorem 2.8. [4, Theorem 5.1] A solution to (2.6) exists if and only if T is α-
polystable for α = τ1 − τ2.

Using the vortex interpretation of the moduli space of triples one can easily
identify the moduli space of triples for α = αm.

Proposition 2.9. A triple T = (E1, E2, φ) is αm-polystable if and only if φ = 0
and E1 and E2 are polystable. We thus have

Nαm(n1, n2, d1, d2) ∼= M(n1, d1)×M(n2, d2),

where M(ni, di) is the moduli space of semistable bundles of rank ni and degree
di .

Proof. Consider equations (2.6) on T . If α = αm then τ1 = µ1 and τ2 = µ2 and
hence in order to have solutions of (2.6) we must have φ = 0. In this case, (2.6)
say that the Hermitian metrics on E1 and E2 have constant central curvature. But
this is equivalent to the polystability of E1 and E2 by the theorem of Narasimhan
and Seshadri [24]. �
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3. Extensions and deformations of triples

In order to analyse the differences between the moduli spaces Nα as α changes,
as well as the smoothness properties of the moduli space for a given value of α,
we need to study the homological algebra of triples. This is done by considering
the hypercohomology of a certain complex of sheaves, in a similar way to what
is done in the study of infinitesimal deformations by Biswas and Ramanan [3]. In
fact, it is a special case of the more general situation considered in [16].

3.1. Extensions

Let T ′ = (E′
1, E

′
2, φ

′) and T ′′ = (E′′
1 , E

′′
2 , φ

′′) be two triples and, as usual, let

(n′,d′) = (n′
1, n

′
2, d

′
1, d

′
2),

(n′′,d′′) = (n′′
1, n

′′
2, d

′′
1 , d

′′
2 ),

where n′
i = rk(E′

i ), n
′′
i = rk(E′′

i ), d
′
i = deg(E′

i ) and d ′′
i = deg(E′′

i ). Let
Hom(T ′′, T ′) denote the linear space of homomorphisms from T ′′ to T ′, and
let Ext1(T ′′, T ′) denote the linear space of equivalence classes of extensions of
the form

0 −→ T ′ −→ T −→ T ′′ −→ 0,

where by this we mean a commutative diagram

0 −−−→ E′
1 −−−→ E1 −−−→ E′′

1 −−−→ 0

φ′
�

 φ

�

 φ′′

�



0 −−−→ E′
2 −−−→ E2 −−−→ E′′

2 −−−→ 0.

Hence, to analyse Ext1(T ′′, T ′) one considers the complex of sheaves

C•(T ′′, T ′) : E′′
1

∗ ⊗ E′
1 ⊕ E′′

2
∗ ⊗ E′

2
c−→ E′′

2
∗ ⊗ E′

1, (3.1)

where the map c is defined by

c(ψ1, ψ2) = φ′ψ2 − ψ1φ
′′.

Proposition 3.1. There are natural isomorphisms

Hom(T ′′, T ′) ∼= H
0(C•(T ′′, T ′)),

Ext1(T ′′, T ′) ∼= H
1(C•(T ′′, T ′)),

and a long exact sequence associated to the complex C•(T ′′, T ′):

0 −→ H
0(C•(T ′′, T ′)) −→ H 0(E′′

1
∗ ⊗ E′

1 ⊕ E′′
2

∗ ⊗ E′
2) −→ H 0(E′′

2
∗ ⊗ E′

1)

−→ H
1(C•(T ′′, T ′)) −→ H 1(E′′

1
∗ ⊗ E′

1 ⊕ E′′
2

∗ ⊗ E′
2) −→ H 1(E′′

2
∗ ⊗ E′

1)

−→ H
2(C•(T ′′, T ′)) −→ 0.

(3.2)
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Proof. The proof is omitted since it is very similar to that given in [3] in the study
of deformations, and it is a special case of a much more general result proved in
[16]. �

We introduce the following notation:

hi(T ′′, T ′) = dim H
i (C•(T ′′, T ′)),

χ(T ′′, T ′) = h0(T ′′, T ′)− h1(T ′′, T ′)+ h2(T ′′, T ′). (3.3)

Proposition 3.2. For any holomorphic triples T ′ and T ′′ we have

χ(T ′′, T ′) = χ(E′′
1

∗ ⊗ E′
1)+ χ(E′′

2
∗ ⊗ E′

2)− χ(E′′
2

∗ ⊗ E′
1)

= (1 − g)(n′′
1n

′
1 + n′′

2n
′
2 − n′′

2n
′
1)

+ n′′
1d

′
1 − n′

1d
′′
1 + n′′

2d
′
2 − n′

2d
′′
2 − n′′

2d
′
1 + n′

1d
′′
2 ,

where χ(E) = dimH 0(E)− dimH 1(E) is the Euler characteristic of E.

Proof. Immediate from the long exact sequence (3.2) and the Riemann–Roch
formula. �

Corollary 3.3. For any extension 0 → T ′ → T → T ′′ → 0 of triples,

χ(T , T ) = χ(T ′, T ′)+ χ(T ′′, T ′′)+ χ(T ′′, T ′)+ χ(T ′, T ′′). �

Remark 3.4. Proposition 3.2 shows that χ(T ′′, T ′) depends only on the topolog-
ical invariants (n′,d′) and (n′′,d′′) of T ′ and T ′′. Whenever convenient we shall
therefore use the notation

χ(n′′,d′′,n′,d′) = χ(T ′′, T ′).

3.2. Vanishing of H
0 and H

2

The following vanishing results play a central role in our study.

Proposition 3.5. Suppose that T ′ and T ′′ are α-semistable.

(1) If µα(T ′) < µα(T
′′) then H

0(C•(T ′′, T ′)) ∼= 0.
(2) If µα(T ′) = µα(T

′′) and T ′′ is α-stable, then

H
0(C•(T ′′, T ′)) ∼=

{

C if T ′ ∼= T ′′

0 if T ′ �∼= T ′′.
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Proof. By Proposition 3.1 we can identify H
0(C•(T ′′, T ′)) with Hom(T ′′, T ′).

The statements (1) and (2) are thus the direct analogs for triples of the same results
for semistable bundles. The proof is identical. Suppose that h : T ′′ → T ′ is a non-
trivial homomorphism of triples. If T ′ = (E′

1, E
′
2,�

′) and T ′′ = (E′′
1 , E

′′
2 ,�

′′)
then h is given by a pair of holomorphic maps ui : E′′

i → E′′
i for i = 1, 2 such

that �′ ◦ u2 = u1 ◦�′′. We can thus define subtriples of T ′′ and T ′ respectively
by TN = (ker(u1), ker(u2),�

′′) and TI = (im(u1), im(u2),�
′), where in TI , it is

in general necessary to take the saturations of the image im(u1) and im(u2). By
the semistability conditions, we get

µα(TN) � µα(T
′′) � µα(TI ) � µα(T

′).

The conclusions follow directly from this. �
Proposition 3.6. Suppose that the triples T ′ and T ′′ are α-semistable and satisfy
µα(T

′) = µα(T
′′). Then

(1) H
2(C•(T ′′, T ′)) = 0 whenever α > 2g − 2.

(2) If one of T ′, T ′′ is α + ε-stable for some ε � 0, then H
2(C•(T ′′, T ′)) = 0

whenever α � 2g − 2.

Proof. From (3.2) it is clear that the vanishing of H
2(C•(T ′′, T ′)) is equivalent

to the surjectivity of the map

H 1(E′′
1

∗ ⊗ E′
1 ⊕ E′′

2
∗ ⊗ E′

2) −→ H 1(E′′
2

∗ ⊗ E′
1).

By Serre duality this is equivalent to the injectivity of the map

H 0(E′
1
∗ ⊗ E′′

2 ⊗K)
P−→ H 0(E′

1
∗ ⊗ E′′

1 ⊗K)⊕H 0(E′
2
∗ ⊗ E′′

2 ⊗K)

ψ �−→ ((φ′′ ⊗ Id) ◦ ψ,ψ ◦ φ′).
(3.4)

Proof of (1). Suppose that P is not injective. Then there is a non-trivial homo-
morphism ψ : E′

1 → E′′
2 ⊗ K in ker P . Let I = imψ and N = kerψ . Since

(φ′′ ⊗ IdK) ◦ψ = 0, I ⊂ ker φ′′ and hence T ′′
I = (0, I ⊗K∗, 0) is a proper subt-

riple of T ′′. Similarly, the fact that ψ ◦ φ′ = 0 implies that im φ′ ⊂ N and thus
T ′
N = (kerψ,E′

2, φ
′) is a proper subtriple of T ′. Let k = rk(N) and l = deg(N).

Then, from the exact sequence

0 −→ N −→ E′
1 −→ I −→ 0

we see that rk(I ) = n′
1 − k and deg(I ) = d ′

1 − l. Hence

µα(T
′
N) = l + d ′

2

k + n′
2

+ α
n′

2

k + n′
2

,

µα(T
′′
I ) = d ′

1 − l

n′
1 − k

+ 2 − 2g + α.
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Adding these two expressions, and clearing denominators we see that

d ′
1 + d ′

2 + (n′
1 − k)(2 − 2g)+ α(n′

1 + n′
2 − k)

= (k + n′
2)µα(T

′
N)+ (n′

1 − k)µα(T
′′
I ).

But µα(T ′
N) � µα(T

′), µα(T ′′
I ) � µα(T

′′) and µα(T ′) = µα(T
′′). From this we

obtain that

d ′
1 + d ′

2 + (n′
1 − k)(2 − 2g)+ α(n′

1 + n′
2 − k) � d ′

1 + d ′
2 + αn′

2, (3.5)

and hence

α(n′
1 − k) � (n′

1 − k)(2g − 2).

Since n′
1 − k > 0 we get that α � 2g − 2. Hence P must be injective if the

hypotheses of the part (1) of the proposition are satisfied.

Proof of (2). Suppose that T ′′ is α + ε-stable for some ε � 0. It follows that
µα+ε(T ′′

I ) < µα+ε(T ′′), i.e

µα(T
′′
I )− µα(T

′′) < ε(
n′′

2

n′′
1 + n′′

2

− 1) � 0.

Thus, following exactly the same argument as in the proof of (1), we get a strict
inequality in (3.5). We conclude that that if P is not injective then α < 2g − 2,
i.e. if α � 2g − 2 then P must be injective. If T ′ is α + ε-stable for some ε � 0
then we get that

µα(T
′
N)− µα(T

′) < ε(
n′

2

n′
1 + n′

2

− n′
2

k + n′
2

) � 0.

The rest of the argument is the same as in the case that T ′′ is α + ε-stable. �
Corollary 3.7. Let T ′ and T ′′ be α-semistable triples with µα(T ′) = µα(T

′′),
and α > 2g − 2. Then

dim Ext1(T ′′, T ′) = h0(T ′′, T ′)− χ(T ′′, T ′).

The same holds for α � 2g − 2 if in addition T ′ or T ′′ is α + ε-stable for some
ε � 0.

Proof. It follows from Proposition 3.1 and (3.3) that

dim Ext1(T ′′, T ′) = h0(T ′′, T ′)+ h2(T ′′, T ′)− χ(T ′′, T ′). (3.6)

The result follows immediately from this and the vanishing of h2(T ′′, T ′) given
by Proposition 3.6. �
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3.3. Deformation theory for triples

Since the space of infinitesimal deformations of T is isomorphic to H
1(C•(T , T )),

the considerations of the previous sections also apply to studying deformations
of a holomorphic triple T . To be precise, one has the following.

Theorem 3.8. Let T = (E1, E2, φ) be an α-stable triple of type (n1, n2, d1, d2).

(1) The Zariski tangent space at the point defined by T in the moduli space of
stable triples is isomorphic to H

1(C•(T , T )).
(2) If H

2(C•(T , T )) = 0, then the moduli space of α-stable triples is smooth in a
neighbourhood of the point defined by T .

(3) H
2(C•(T , T )) = 0 if and only if the homomorphism

H 1(E∗
1 ⊗ E1 ⊕ E∗

2 ⊗ E2) −→ H 1(E∗
2 ⊗ E1)

in the corresponding long exact sequence is surjective.
(4) At a smooth point T ∈ N s

α (n1, n2, d1, d2) the dimension of the moduli space
of α-stable triples is

dim N s
α (n1, n2, d1, d2) = h1(T , T ) = 1 − χ(T , T )

= (g − 1)(n2
1 + n2

2 − n1n2)− n1d2 + n2d1 + 1.

(3.7)

(5) If φ is injective or surjective then T = (E1, E2, φ) defines a smooth point in
the moduli space.

(6) If α � 2g − 2, then T defines a smooth point in the moduli space, and hence
N s
α (n1, n2, d1, d2) is smooth.

Proof. Statements (1) and (2) follow from Theorems 2.3 and 3.1 in [3], respec-
tively. An indirect proof of (1) and (2), exploiting the correspondence between
triples on X and stable bundles on X × P

1 (see Section 9) also follows from [4].
Statement (3) follows from the long exact sequence (3.2) with T = T ′ = T ′′. (4)
follows from (1), (2) and Propositions 3.2 and 3.7. (5) is proved in [4, Proposition
6.3]. (6) is a consequence of Proposition 3.6. �

4. Bounds for χ

In our approach to the study of how the moduli spaces of triples vary with the
parameter, it is of crucial importance to be able to estimate the Euler character-
istics χ(T ′′, T ′) = χ(n′′,d′′,n′,d′) when T ′ and T ′′ are polystable triples with
the same α-slope. The basic idea is to identify χ(T ′′, T ′) as a hypercohomology
Euler characteristic for the complex C•(T ′′, T ′) defined in (3.1) and to notice that
the complex is itself a holomorphic triple. As such it ought to satisfy a stability
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condition induced from the stability condition of T ′ and T ′′. In principle, a way
to obtain the stability condition for C•(T ′′, T ′) should be provided by the corre-
spondence between the stability of the holomorphic triples and the existence of
solutions to the vortex equations given by Theorem 2.8. However, there seem to
be no simple way to construct a solution to the vortex equations for C•(T ′′, T ′)
from solutions on T ′ and T ′′. Instead we consider slightly more general objects
than triples, known as holomorphic chains. These are studied in [1].

4.1. Holomorphic chains

A holomorphic chain is a diagram

C : Em
φm−→ Em−1

φm−1−→ · · · φ1−→ E0,

where each Ei is a holomorphic vector bundle and φi : Ei → Ei−1 is a holomor-
phic map. Let

µ(C) = µ(E0 ⊕ · · · ⊕ Em),

λi(C) = rk(Ei)
∑m

i=0 rk(Ei)
, i = 0, . . . , m.

For α = (α1, . . . , αm) ∈ R
m, the α-slope of C is defined to be

µα(C) = µ(C)+
m

∑

i=1

αiλi(C).

The notion of α-stability is defined via the standard α-slope condition on sub-
chains, that is, for any holomorphic subchain C ′ ⊂ C we must have µα(C ′) <
µα(C). Semistability and polystability are defined as usual. A holomorphic tri-
ple is a holomorphic chain of length 2, and the stability notions coincide, taking
α = (α). As for triples, there are natural gauge-theoretic equations for holomor-
phic chains, which we now describe. Define τ = (τ0, . . . , τm) ∈ R

m+1 by

τi = µα(C)− αi, i = 0, . . . , m, (4.1)

where we make the convention α0 = 0. Then α can be recovered from τ by

αi = τ0 − τi, i = 0, . . . , m. (4.2)

The τ -vortex equations√−1�F(Ei)+ φi+1φ
∗
i+1 − φ∗

i φi = τi IdEi , i = 0, . . . , m,

are equations for Hermitian metrics onE0, . . . , Em. Here, as in (2.6),F(Ei) is the
curvature of the Hermitian connection onEi ,� is contraction with the Kähler form
and vol(X) = 2π . By convention φ0 = φm+1 = 0. One has the generalization of
Theorem 2.8 to the case of holomorphic chains.

Theorem 4.1. [1, Theorem 3.4] A holomorphic chain C is α-polystable if and only
if the τ -vortex equations have a solution, where α and τ are related by (4.1).
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4.2. A length 3 holomorphic chain

Let T ′ = (E′
1, E

′
2, φ

′) and T ′′ = (E′′
1 , E

′′
2 , φ

′′) be two triples. Let us consider the
length 3 holomorphic chain

C̃•(T ′′, T ′) : E′′
1

∗ ⊗ E′
2
a2−→ E′′

1
∗ ⊗ E′

1 ⊕ E′′
2

∗ ⊗ E′
2
a1−→ E′′

2
∗ ⊗ E′

1, (4.3)

where

a2(ψ) = (φ′ψ,−ψφ′′),
a1(ψ1, ψ2) = φ′ψ2 − ψ1φ

′′.

We shall sometimes write this chain briefly as

C̃•(T ′′, T ′) : C2
a2−→ C1

a1−→ C0.

Note that the last two terms of C̃•(T ′′, T ′) coincide with the complexC•(T ′′, T ′).
Note also that C̃•(T ′′, T ′) is not in general a complex. Our goal in this section is
to prove, using Theorem 4.1, that if T ′ and T ′′ are α-polystable then C̃•(T ′′, T ′)
is α-polystable for a suitable choice of α.

Lemma 4.2. Let T ′ and T ′′ be holomorphic triples and suppose we have solutions
to the (τ ′

1, τ
′
2)-vortex equations on T ′ and the (τ ′′

1 , τ
′′
2 )-vortex equations on T ′′,

such that τ ′
1 − τ ′′

1 = τ ′
2 − τ ′′

2 . Then the induced Hermitian metric on C̃•(T ′′, T ′)
satisfies the chain vortex equations

√−1�F(C0)+ a1a1
∗ = τ̃0 IdC0, (4.4)√−1�F(C1)+ a2a2

∗ − a1
∗a1 = τ̃1 IdC1, (4.5)√−1�F(C2)− a2
∗a2 = τ̃2 IdC2, (4.6)

for τ = (τ̃0, τ̃1, τ̃2) given by

τ̃0 = τ ′
1 − τ ′′

2 ,

τ̃1 = τ ′
1 − τ ′′

1 = τ ′
2 − τ ′′

2 ,

τ̃2 = τ ′
2 − τ ′′

1 .

Proof. We shall only show that the induced Hermitian metric satisfies (4.5), since
the proofs that it satisfies the two remaining equations are similar (but simpler).

The vortex equations for T ′ and T ′′ are
√−1�F(E′

1)+ φ′φ′∗ = τ ′
1 IdE′

1
,

√−1�F(E′′
1 )+ φ′′φ′′∗ = τ ′′

1 IdE′′
1
,

√−1�F(E′
2)− φ′∗φ′ = τ ′

2 IdE′
2
,

√−1�F(E′′
2 )− φ′′∗φ′′ = τ ′′

2 IdE′′
2
.
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We shall write the left hand side of (4.5) in terms of these known data of the triples
T ′ and T ′′. First, we note that

F(E′
i

∗
) = −F(E′

i )
t , i = 1, 2,

and similarly for F(E′′
i

∗
). Hence

F(C1) = F(E′′
1

∗ ⊗ E′
1 ⊕ E′′

2
∗ ⊗ E′

2)

= (

F(E′′
1

∗
)⊗ Id + Id ⊗F(E′

1), F (E
′′
2

∗
)⊗ Id + Id ⊗F(E′

2)
)

= (−F(E′′
1 )
t ⊗ Id + Id ⊗F(E′

1), −F(E′′
2 )
t ⊗ Id + Id ⊗F(E′

2)
)

. (4.7)

Next we calculate a∗
1 : note that for ξ ⊗ x ∈ C0 and (η1 ⊗ y1, η2 ⊗ y2) ∈ C1 we

have

〈

a∗
1(ξ ⊗ x), (η1 ⊗ y1, η2 ⊗ y2)

〉

C1

= 〈

ξ ⊗ x, a1(η1 ⊗ y1, η2 ⊗ y2)
〉

C0

= 〈

ξ ⊗ x, −η1φ
′′ ⊗ y1 + η2 ⊗ φ′(y2)

〉

C0

= 〈

ξ ⊗ x, −φ′′t (η1)⊗ y1 + η2 ⊗ φ′(y2)
〉

C0

= −〈

ξ, φ′′t (η1)
〉

E′′
2

∗
〈

x, y1
〉

E′
1

+ 〈

ξ, η2
〉

E′′
2

∗
〈

x, φ′(y2)
〉

E′
1

= −〈

φ′′t∗(ξ), η1
〉

E′′
1

∗
〈

x, y1
〉

E′
1

+ 〈

ξ, η2
〉

E′′
2

∗
〈

φ′∗(x), y2
〉

E′
2

= 〈

(−φ′′t∗(ξ)⊗ x, ξ ⊗ φ′∗(x)), (η1 ⊗ y1, η2 ⊗ y2)
〉

C1
.

Hence,

a∗
1(ξ ⊗ x) = (−φ′′t∗(ξ)⊗ x, ξ ⊗ φ′∗(x)

)

. (4.8)

Similarly, to calculate a∗
2 consider ξ ⊗ x ∈ C2 and (η1 ⊗ y1, η2 ⊗ y2) ∈ C1. Then

a∗
2(η1 ⊗ y1, η2 ⊗ y2) = η1 ⊗ φ′∗(y1)− φ′′t∗(η2)⊗ y2. (4.9)

Using (4.9) and (4.8) we can now calculate for (η1 ⊗ y1, η2 ⊗ y2) ∈ C1:

a2a
∗
2(η1 ⊗ y1, η2 ⊗ y2) = (

η1 ⊗ φ′φ′∗(y1)− φ′′t∗(η2)⊗ φ′(y2),

−φ′′t (η1)⊗ φ′∗(y1)+ φ′′tφ′′t∗(η2)⊗ y2
)

, (4.10)

and

a∗
1a1(η1 ⊗ y1, η2 ⊗ y2) = (

φ′′t∗φ′′t (η1)⊗ y1 − φ′′t∗(η2)⊗ φ′(y2),

−φ′′t (η1)⊗ φ′∗(y1)+ η2 ⊗ φ′∗φ′(y2)
)

. (4.11)

Putting together (4.7), (4.10) and (4.11) we finally obtain
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(√−1�F(C1)+ a2a2
∗ − a1

∗a1
)

(η1 ⊗ y1, η2 ⊗ y2)

=
(

η1 ⊗ (√−1�F(E′
1)+ φ′φ′∗)(y1)+ (−√−1�F(E′′

1 )
t

+φ′′t∗φ′′t)(η1)⊗ y1, η2 ⊗ (√−1�F(E′
2)− φ′∗φ′)(y2)

−(√−1�F(E′′
2 )
t − φ′′tφ′′t∗)(η2)⊗ y2

)

. (4.12)

Notice that the unpleasant mixed term
(−φ′′t∗(η2)⊗φ′(y2),−φ′′t (η1)⊗φ′∗(y1)

)

appears both in a∗
1a1 and a2a

∗
2 and therefore cancels. This would not have been

the case if we had considered the vortex equations on the triple C•(T ′′, T ′) and is
the reason why we must consider the chain C̃•(T ′′, T ′). Combining (4.12) with
the vortex equations (or their transposes) for the triples T ′ and T ′′ we get

(√−1�F(C1)+ a2a2
∗ − a1

∗a1
)

(η1 ⊗ y1, η2 ⊗ y2)

= (

(τ ′
1 − τ ′′

1 )η1 ⊗ y1, (τ
′
2 − τ ′′

2 )η2 ⊗ y2
)

. (4.13)

Since τ ′
1 − τ ′′

1 = τ ′
2 − τ ′′

2 this concludes the proof. �
Proposition 4.3. Let T ′ and T ′′ be α-polystable triples. Then the holomorphic
chain C̃•(T ′′, T ′) is α-polystable for α = (α1, α2) = (α, 2α).

Proof. Since the triples T ′ and T ′′ are α-polystable, it follows from Theorem 2.8
that they support solutions to the (τ ′

1, τ
′
2)- and (τ ′′

1 , τ
′′
2 )-vortex equations, respec-

tively, where α = τ ′
1 −τ ′

2 = τ ′′
1 −τ ′′

2 . Notice that τ ′
1 −τ ′′

1 = τ ′
2 −τ ′′

2 . Thus it follows
from Lemma 4.2 that the holomorphic chain C̃•(T ′′, T ′) supports a solutions to
the chain vortex equations for τ = (τ ′

1 − τ ′′
2 , τ

′
1 − τ ′′

1 , τ
′
2 − τ ′′

1 ). Now Theorem 4.1
and (4.2) imply that C̃•(T ′′, T ′) is α-polystable for

α1 = τ ′
1 − τ ′′

2 − τ ′
2 + τ ′′

2 = α,

α2 = τ ′
1 − τ ′′

2 − τ ′
2 + τ ′′

1 = 2α. �

4.3. Bounds for χ(T ′′, T ′)

We start with some technical lemmas needed to estimate the Euler characteristic
χ(T ′′, T ′).

Lemma 4.4. Let T ′ = (E′
1, E

′
2, φ

′) and T ′′ = (E′′
1 , E

′′
2 , φ

′′) be triples for which
the chain C̃•(T ′′, T ′) is α = (α, 2α)-polystable. Let

C1 = E′′
1

∗ ⊗ E′
1 ⊕ E′′

2
∗ ⊗ E′

2,

C0 = E′′
2

∗ ⊗ E′
1,

and a1 : C1 → C0 be defined as in (4.3). Then the following inequalities hold.

deg(ker(a1)) � rk(ker(a1))(µα(T
′)− µα(T

′′)), (4.14)

deg(im(a1)) �
(

rk(C0)− rk(im(a1))
)

(µα(T
′′)

−µα(T ′)− α)+ deg(C0). (4.15)
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Proof. If rk(ker(a1))=0 then (4.14) is obvious.Assume therefore that rk(ker(a1))

> 0. Using ker(a1), we can then define a quotient of the chain C̃•(T ′′, T ′) by

K : 0 → ker(a1) → 0.

Thus, since µα(K) = µ(ker(a1)) + α, it follows from the definition of α-poly-
stability that

µ(ker(a1))+ α � µα(C̃•(T ′′, T ′)) = µα(T
′)− µα(T

′′)+ α.

We therefore have

µ(ker(a1)) � µα(T
′)− µα(T

′′),

which is equivalent to (4.14). The second inequality, i.e. (4.15), is obvious when
rk(im(a1)) = rk(C0). We thus assume rk(im(a1)) < rk(C0). Using the cokernel
coker(a1) (or its saturation if it is not torsion free), we can define a subchain of
the chain C̃•(T ′′, T ′) by

Q : 0 → 0 → coker(a1).

By the α-polystability of C̃•(T ′′, T ′) we have µα(Q) � µα(C̃•(T ′′, T ′)). This,
together with the fact that

µ(coker(a1)) � deg(C0)− deg(im(a1))

rk(C0)− rk(im(a1))
,

leads directly to 4.15. �

Lemma 4.5. Let c′ : V ′
2 → V ′

1 and c′′ : V ′′
2 → V ′′

1 be linear maps between finite
dimensional vector spaces. Assume that V ′

1 ⊕ V ′
2 �= 0 and V ′′

1 ⊕ V ′′
2 �= 0. Define

f : Hom(V ′′
1 , V

′
1)⊕ Hom(V ′′

2 , V
′

2) −→ Hom(V ′′
2 , V

′
1)

(ψ1, ψ2) �−→ c′ψ2 − ψ1c
′′.

If f is an isomorphism, then exactly one of the following alternatives must occur:

(1) V ′
1 = V ′′

2 = 0 and c′ = c′′ = 0.

(2) V ′′
1 = 0, V ′

1, V
′

2, V
′′

2 �= 0 and c′ : V ′
2

∼=−→ V ′
1.

(3) V ′
2 = 0, V ′

1, V
′′

1 , V
′′

2 �= 0 and c′′ : V ′′
2

∼=−→ V ′′
1 .

In particular, if V ′
1, V ′

2, V ′′
1 and V ′′

2 are all non-zero then f cannot be an isomor-
phism.
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Proof. If (c′, c′′) = (0, 0) then f = 0 and therefore

Hom(V ′′
2 , V

′
1) = Hom(V ′′

1 , V
′

1) = Hom(V ′′
2 , V

′
2) = 0.

If V ′
1 �= 0 then V ′′

1 = V ′′
2 = 0 i.e. V ′′

1 ⊕ V ′′
2 = 0. Hence V ′

1 = 0. Similarly
one sees that V ′′

2 = 0 and thus alternative (1) occurs. Henceforth assume that
(c′, c′′) �= (0, 0). Let r ′i = dim V ′

i and r ′′
i = dim V ′′

i for i = 1, 2. If f is an iso-
morphism then r ′′1 r

′
1 + r ′′

2 r
′
2 = r ′′

2 r
′
1 from which it follows that r ′′

2 (r
′
1 − r ′

2) = r ′′
1 r

′
1

and r ′
1(r

′′
2 − r ′′

1 ) = r ′′
2 r

′
2. Hence

r ′
1 � r ′

2, (4.16)

r ′′
2 � r ′′

1 . (4.17)

Assume that we have strict inequality in (4.16) and (4.17). Then, in particular,
coker(c′) and ker(c′′) must both be non-zero. Choose a complement to im(c′) in
V ′

1 so that

V ′
1 = im(c′)⊕ im(c′)⊥.

We then have an inclusion

Hom(ker(c′′), im(c′)⊥) ↪→ Hom(V ′′
2 , V

′
1).

Let ψ = (ψ1, ψ2) ∈ Hom(V ′′
1 , V

′
1)⊕ Hom(V ′′

2 , V
′

2) and x ∈ ker(c′′), then

f (ψ)(x) = c′ψ2(x)− ψ1c
′(x) = c′ψ2(x),

which belongs to im(c′). Hence im(f ) and Hom(ker(c′′), im(c′)⊥) have trivial
intersection and, therefore, f cannot be an isomorphism, which is absurd. It fol-
lows that equality must hold in at least one of the inequalities (4.16) and (4.17).
Suppose that equality holds in (4.16), i.e. r ′

1 = r ′
2 = 0. Then r ′

1r
′′
1 = 0, i.e.

r ′
1 = 0 or r ′′

1 = 0. Suppose first that r ′
1 = 0, then r ′

2 = r ′
1 = 0, which contra-

dicts our assumption that V ′
1 ⊕ V ′

2 �= 0. Thus we must have r ′′1 = 0 and r ′
1 �= 0.

We thus also have V ′
2 �= 0 (since r ′

2 = r ′
1) and V ′

2 �= 0 (since r ′′
2 + r ′′

1 �= 0).
Furthermore, since (c′, c′′) �= (0, 0) we can assume that c′′ �= 0. In this case
f (ψ1, ψ2) = f (ψ1, 0) = −ψ1c

′′. In particular, if f is an isomorphism then so is
c′′. Thus alternative (2) occurs. In a similar manner one sees that if equality holds
in (4.17) then alternative (3) occurs. Obviously the three alternatives are mutually
exclusive. �
Lemma 4.6. Suppose that T ′ and T ′′ are non-zero triples of types (n′

1, n
′
2, d

′
1, d

′
2)

and (n′′
1, n

′′
2, d

′′
1 , d

′′
2 ) respectively. Let n1 = n′

1 + n′′
1, n2 = n′

2 + n′′
2, d1 = d ′

1 + d ′′
1 ,

d2 = d ′
2 + d ′′

2 , µ1 = d1/n1, and µ2 = d2/n2. Let αm and αM be the extreme α
values for the triples of type (n1, n2, d1, d2), as defined in (2.2) and (2.3), with
the convention that αM = ∞ if n1 = n2. Let αm < α < αM and suppose that
µα(T

′) = µα(T
′′), then the map

a1 : E′′
1

∗ ⊗ E′
1 ⊕ E′′

2
∗ ⊗ E′

2 → E′′
2

∗ ⊗ E′
1

cannot be an isomorphism.
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Proof. Let us consider the triple T = T ′ ⊕T ′′. It is clear that µα(T ) = µα(T
′) =

µα(T
′′).

If a1 is an isomorphism then, applying Lemma 4.5 fibrewise, it follows that
one of the following alternatives must occur:

(a) E′
1 = E′′

2 = 0 and φ′ = φ′′ = 0.

(b) E′′
1 = 0, E′

1, E
′
2, E

′′
2 �= 0 and φ′ : E′

2

∼=−→ E′
1.

(c) E′
2 = 0, E′

1, E
′′
1 , E

′′
2 �= 0 and φ′′ : E′′

2

∼=−→ E′′
1 .

We shall consider each case in turn. Case (a). In this case we have T ′ = (0, E2, 0),
T ′′ = (E1, 0, 0) and T = (E1, E2, 0). It follows from µα(T

′) = µα(T ) that
α = µ(E1) − µ(E2) = αm. Case (b). In this case we have n1 = n′

1 and n2 =
n′

2 + n′′
2 = n′

1 + n′′
2. Hence n2 > n1. Furthermore, from µα(T

′) = µα(T ) we get
µ(E1)+ α

2 = µ(E1 ⊕E2)+ n2
n1+n2

, i.e. α = 2n2
n2−n1

αm = αM . Case (c). In this case
we have n2 = n′′

2 and n1 = n′
1 + n′′

1 = n′
1 + n′′

2. Hence n1 > n2. Furthermore,
fromµα(T

′′) = µα(T )we get α = 2n1
n1−n2

αm = αM . If n1 = n2 then case (a) is the
only possibility, so α = αm. If n1 �= n2, then (a) or exactly one of (b) and (c) are
the only possibilities, depending on whether n1 < n2 or n1 > n2. In both cases
we see that α = αm or α = αM . �
Proposition 4.7. Suppose that T ′ and T ′′ are non-zero triples of types (n′

1, n
′
2,

d ′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) respectively. Let n1 = n′

1 + n′′
1, n2 = n′

2 + n′′
2, d1 =

d ′
1 + d ′′

1 , d2 = d ′
2 + d ′′

2 , µ1 = d1/n1, and µ2 = d2/n2. Let αm and αM be the
extreme α values for the triples of type (n1, n2, d1, d2), as defined in (2.2) and
(2.3), with the convention that αM = ∞ if n1 = n2. Let αm < α < αM . Sup-
pose that µα(T ′) = µα(T

′′) and that the chain C̃•(T ′′, T ′), as defined in (4.3), is
(α, 2α)-stable. Then

χ(T ′′, T ′) � 1 − g

if α � 2g − 2. In particular, if g � 2 then χ(T ′′, T ′) � 0.

Proof. From the long exact sequence (3.2) and the Riemann-Roch formula we
obtain

χ(T ′′, T ′) = (1 − g)
(

rk(C1)− rk(C0)
) + deg(C1)− deg(C0), (4.18)

where C1 and C0 are as in (4.3). We can apply Lemma 4.4, and then use the
estimates (4.14) and (4.15). Together with

deg(C1) = deg(ker(a1))+ deg(im(a1)), (4.19)

rk(C1) = rk(ker(a1))+ rk(im(a1)), (4.20)

these yield
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deg(C1) � (µα(T
′)− µα(T

′′))
(

rk(C1)− rk(C0)
)

−α(

rk(C0)− rk(im(a1))
) + deg(C0).

Using that µα(T ′) = µα(T
′′), we can then deduce that

deg(C1)− deg(C0) � −α(

rk(C0)− rk(im(a1))
)

.

Combining this with (4.18) we get

χ(T ′′, T ′) � (1 − g)
(

rk(C1)− rk(C0)
) − α

(

rk(C0)− rk(im(a1))
)

. (4.21)

If α � 2g − 2 then we get

χ(T ′′, T ′) � (1 − g)
(

rk(C0)+ rk(C1)− 2 rk(im(a1))
)

,

with equality if and only if α = 2g − 2. Furthermore rk(im(a1)) � rk(C0) and
rk(a1) � rk(C1), with equality in both if and only if a1 is an isomorphism. Thus
in all cases we get χ(T ′′, T ′) � 0, with equality if and only if α = 2g− 2 and a1

is an isomorphism. But by Lemma 4.6, since αm < α < αM , then a1 cannot be an
isomorphism. Thus in all cases we get rk(C0)+ rk(C1)− 2 rk(im(a1)) � 1 and
hence χ(T ′′, T ′) � 1 − g. �
Remark 4.8. Since the roles of T ′ and T ′′ in Proposition 4.7 are symmetric, we
obtain the same bound for χ(T ′, T ′′).

5. Crossing critical values

In this section we study the differences between the stable loci N s
α (n,d) in the

moduli spaces Nα(n,d), for fixed values of n = (n1, n2) and d = (d1, d2) but
different values of α. Since in this section n and d are fixed, we use the abbreviated
notation

N s
α = N s

α (n,d) and Nα = Nα(n,d).

Our main result is that for all α � 2g − 2 any differences between the N s
α are

confined to subvarieties of positive codimension. In particular, the number of irre-
ducible components of the spaces N s

α are the same for all α satisfying α � 2g−2
and αm < α < αM

1. If the coprimality condition GCD(n2, n1 + n2, d1 + d2) = 1
is satisfied, then N s

α = Nα at all non-critical vales of α, so the results apply to
Nα for all non-critical α � 2g − 2.

We begin with a set theoretic description of the differences between two spaces
N s
α1

and N s
α2

when α1 and α2 are separated by a critical value (as defined in sec-
tion 2.2). For the rest of this section we adopt the following notation: Let αc be a
critical value such that

αm < αc < αM. (5.1)

1 When n1 �= n2 the bounds αm and αM are as in (2.2) and (2.3). When n1 = n2 we adopt the
convention that αM = ∞
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Set

α+
c = αc + ε, α−

c = αc − ε, (5.2)

where ε > 0 is small enough so that αc is the only critical value in the interval
(α−
c , α

+
c ).

5.1. Flip Loci

Definition 5.1. Let αc ∈ (αm, αM) be a critical value for triples of type (n,d).
We define flip loci Sα±

c
⊂ N s

α±
c

by the conditions that the points in Sα+
c

represent

triples which are α+
c -stable but α−

c -unstable, while the points in Sα−
c

represent
triples which are α−

c -stable but α+
c -unstable.

Remark 5.2. The definition of Sα+
c

can be extended to the extreme case αc = αm.
However, since all α+

m-stable triples must be α−
m-unstable, we see that Sα+

m
= N s

α+
m

.
Similarly, when n1 �= n2 we get Sα−

M
= N s

α−
M

. The only interesting cases are thus

those for which αm < αc < αM .

Lemma 5.3. In the above notation:

N s

α+
c

− Sα+
c

= N s
αc

= N s

α−
c

− Sα−
c
. (5.3)

Proof. By definition we can identify N s

α+
c

− Sα+
c

= N s

α−
c

− Sα−
c

.
Suppose now that t is a point in N s

α+
c

− Sα+
c

= N s

α−
c

− Sα−
c

, but that t is not in

N s
αc

. Let T be a triple representing t . Then T has a subtriple T ′ ⊆ T for which
µαc(T

′) � µαc(T ), and also µα±
c
(T ′) < µα±

c
(T ). This is not possible, and hence

t ∈ N s
αc

.
Finally, suppose that t ∈ N s

αc
and let T be a triple representing t . Then

µαc(T
′) < µαc(T ) for all subtriples T ′ ⊂ T . But since the set of possible

values for µαc(T
′) is a discrete subset of R, we can find a δ > 0 such that

µαc(T
′)−µαc(T ) � −δ for all subtriples T ′ ⊂ T . Thus µα±

c
(T ′)−µα±

c
(T ) < 0.

That is, t is in N s
α± , and hence N s

α ⊆ N s
α± − Sα± . �

Our goal is to show that the flip loci Sα±
c

are contained in subvarieties of positive
codimension in N s

α±
c

respectively.

Proposition 5.4. Let αc ∈ (αm, αM) be a critical value for triples of type (n,d) =
(n1, n2, d1, d2). Let T = (E1, E2, φ) be a triple of this type.

(1) Suppose that T represents a point in Sα+
c

, i.e. suppose that T is α+
c -stable but

α−
c -unstable. Then T has a description as the middle term in an extension

0 → T ′ → T → T ′′ → 0 (5.4)

in which
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(a) T ′ and T ′′ are both α+
c -stable, with µα+

c
(T ′) < µα+

c
(T ),

(b) T ′ and T ′′ are both αc-semistable with µαc(T
′) = µαc(T ).

(2) Similarly, if T represents a point in Sα−
c

, i.e. if T is α−
c -stable but α+

c -unstable,
then T has a description as the middle term in an extension (5.4) in which
(a) T ′ and T ′′ are both α−

c -stable with µα−
c
(T ′) < µα−

c
(T ),

(b) T ′ and T ′′ are both αc-semistable with µαc(T
′) = µαc(T ).

Proof. In both cases (i.e. (1) and (2)), since its stability property changes at αc,
the triple T must be strictly αc-semistable, i.e. it must have a proper subtriple T ′

with µαc(T
′) = µαc(T ).We can thus consider the (non-empty) set

F1 = {T ′
� T | µαc(T ′) = µαc(T ) }.

Proof of (1). Suppose first that T is α+
c -stable but α−

c -unstable. We observe that

if T ′ ∈ F1, then n′
2

n′
1+n′

2
< n2

n1+n2
, since otherwise T could not be α+

c -stable. But the

allowed values for n′
2

n′
1+n′

2
are limited by the constraints 0 � n′

1 � n1, 0 � n′
2 � n2

and n′
1 + n′

2 �= 0. We can thus define

λ0 = max

{
n′

2

n′
1 + n′

2

∣
∣
∣
∣
T ′ ∈ F1

}

and set

F2 =
{

T1 ⊂ F1

∣
∣
∣
∣

n′
2

n′
1 + n′

2

= λ0

}

.

Now let T ′ be any triple in F2. Since T ′ has maximal αc-slope, we can assume
that T ′′ = T/T ′ is a locally free triple, i.e. if T ′′ = (E′′

2 , E
′′
1 ,�) then E′′

2 and
E′′

1 are both locally free. Furthermore, since T is αc-semistable and µαc(T
′) =

µαc(T ) = µαc(T
′′), it follows that both T ′ and T ′′ are αc-semistable and of the

same αc-slope. We now show that T ′′ is α+
c -stable. Suppose not. Then there is

a proper subtriple T̃ ′′ ⊂ T ′′ with µα+
c
(T̃ ′′) � µα+

c
(T ′′). However, since we can

assume that α+
c is not a critical value for triples of type (T̃ ′′), we must have

µα+
c
(T̃ ′′) > µα+

c
(T ′′).

Thus, since (T ′′) is αc-semistable, we must have µαc(T̃
′′) � µαc(T

′′) and also

ñ′′
2

ñ′′
1 + ñ′′

2

>
n′′

2

n′′
1 + n′′

2

.

If µαc(T̃
′′) < µαc(T

′′), say µαc(T̃
′′) = µαc(T

′′) − δ, then in order to have
µα+

c
(T̃ ′′) > µα+

c
(T ′′) we must have

ñ′′
2

ñ′′
1 + ñ′′

2

>
n′′

2

n′′
1 + n′′

2

+ δ

ε
.
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Letting ε approach zero, we see that ñ′′
2

ñ′′
1+ñ′′

2
must be arbitrarily large. This cannot

be if 0 � ñ′′
1 � n′′

1 and 0 � ñ′′
2 � n′′

2 (and ñ′′
1 + ñ′′

2 > 0). We may thus assume that
µαc(T̃

′′) = µαc(T
′′). Consider now the subtriple T̃ ′ ⊂ T defined by the pull-back

diagram
0 → T ′ → T̃ ′ → T̃ ′′ → 0.

This has µαc(T̃
′) = µαc(T

′′) = µαc(T ) and thus

ñ′
2

ñ′
1 + ñ′

2

� λ0 = n′
2

n′
1 + n′

2

.

It follows from this and the above extension that
ñ′′

2

ñ′′
1 + ñ′′

2

� λ0 = n′
2

n′
1 + n′

2

.

However, since µαc(T
′) = µαc(T ) but µα+

c
(T ′) < µα+

c
(T ), we have that

n′
2

n′
1 + n′

2

<
n′′

2

n′′
1 + n′′

2

.

Combining the previous two inequalities we get

ñ′′
2

ñ′′
1 + ñ′′

2

<
n′′

2

n′′
1 + n′′

2

which is a contradiction.
Now take T ′ ∈ F2 with minimum rank (i.e. minimum n′

1 + n′
2) in F2. We

claim that T ′ is α+
c -stable. If not, then as before it has a proper subtriple T̃ ′ with

µαc(T̃
′) � µαc(T

′) and ñ′
2

ñ′
1+ñ′

2
>

n′
2

n′
1+n′

2
. Then ñ′

1+ñ′
2 < n′

1+n′
2, which contradicts

the minimality of n′
1 + n′

2. Thus T ′ is α+
c -stable. Moreover, since T is α+

c -stable
it follows that µα+

c
(T ′) < µα+

c
(T ). Thus taking T ′ ∈ F2 with minimum rank,

and T ′′ = T/T ′, we get a description of T as an extension in which (a)-(b) are
satisfied.

Proof of (2). If T is α−
c -stable but α+

c -unstable, then n′
2

n′
1+n′

2
> n2

n1+n2
for all T ′ ∈

F1. The proof of (a) must thus be modified as follows. With

λ0 = min

{
n′

2

n′
1 + n′

2

∣
∣
∣
∣
T ′ ∈ F1

}

we can define

F2 =
{

T ′ ⊂ F1

∣
∣
∣
∣

n′
2

n′
1 + n′

2

= λ0

}

and select T ′ ∈ F2 such that T ′ has minimal rank in F2. It follows in a similar
fashion to that above that T has a description as

0 → T ′ → T → T ′′ → 0

in which all the requirements of the proposition are satisfied. �
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Remark 5.5. Unlike for Jordan-Hölder filtrations for semistable objects, the fil-
trations produced by the above proposition are always of length two, i.e. always
yield a description of the semistable object as an extension of stable objects. This
is achieved by exploiting the extra ‘degree of freedom’ provided by the parameter
αc. The true advantage of never having to consider extensions of length greater
than two is that it removes the need for inductive procedures in the analysis of the
flip loci.

Definition 5.6. Let αc ∈ (αm, αM) be a critical value for triples of type (n,d).
Let (n′,d′) = (n′

1, n
′
2, d

′
1, d

′
2) and (n′′,d′′) = (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) be such that

(n,d) = (n′,d′)+ (n′′,d′′), (5.5)

(i.e. n1 = n′
1 + n′′

1, n2 = n′
2 + n′′

2, d1 = d ′
1 + d ′′

1 , and d2 = d ′
2 + d ′′

2 ), and also

d ′
1 + d ′

2

n′
1 + n′

2

+ αc
n′

2

n′
1 + n′

2

= d ′′
1 + d ′′

2

n′′
1 + n′′

2

+ αc
n′′

2

n′′
1 + n′′

2

. (5.6)

(1) Define S̃α+
c
(n′′,d′′,n′,d′) to be the set of all isomorphism classes of extensions

0 −→ T ′ −→ T −→ T ′′ −→ 0,

where T ′ and T ′′ are α+
c -stable triples with topological invariants (n′,d′) and

(n′′,d′′) respectively, and the isomorphism is on the triple T .
(2) Define S̃0

α+
c
(n′′,d′′,n′,d′) ⊂ S̃α+

c
(n′′,d′′,n′,d′) to be the set of all exten-

sions for which moreover T is α+
c -stable. In an analogous manner, define

S̃α−
c
(n′′,d′′,n′,d′) and S̃0

α−
c
(n′′,d′′,n′,d′) ⊂ S̃α+

c
(n′′,d′′,n′,d′).

(3) Define

S̃α+
c

=
⋃

S̃α+
c
(n′′,d′′,n′,d′) , S̃0

α+
c

=
⋃

S̃0
α+
c
(n′′,d′′,n′,d′)

where the union is over all (n′
1, n

′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) such that the

above conditions apply, and also
n′

2
n′

1+n′
2
<

n′′
2

n′′
1+n′′

2
.

(4) Similarly, define

S̃α−
c

=
⋃

S̃α−
c
(n′′,d′′,n′,d′) , S̃0

α−
c

=
⋃

S̃0
α−
c
(n′′,d′′,n′,d′)

where the union is over all (n′
1, n

′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) such that the

above conditions apply, and also
n′

2
n′

1+n′
2
>

n′′
2

n′′
1+n′′

2
.

Remark 5.7. It can happen that S̃0
α−
c

or S̃0
α−
c

is empty. For instance there may be

no possible choices of (n′
1, n

′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) which satisfy all the

required conditions. In this case, the implication of the next lemma is that one or
both of the flip loci Sα±

c
is empty.
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Lemma 5.8. There are maps, say v± : S̃0
α±
c

−→ N s

α±
c

, which map triples to their
equivalence classes. The images contain the flip loci Sα±

c
.

Proof. The existence of the maps is clear. The second statement, about the images
of the maps, follows by Proposition 5.4. Indeed, suppose that T represents a point
in Sα+

c
and that

0 → T ′ → T → T ′′ → 0

is an extension of the type described in proposition 5.4, with T ′ a triple of type
(n′,d′) and T ′′ a triple of type (n′′,d′′). Then (n′,d′) and (n′′,d′′) satisfy con-
ditions (5.5) and (5.6). Furthermore, since µα+

c
(T ′) < µα+

c
(T ′′), we must have

n′
2

n′
1+n′

2
<

n′′
2

n′′
1+n′′

2
. Thus T is contained in v+(S̃0

α+
c
). A similar argument shows that

Sα+
c

is contained in v−(S̃0
α−
c
). �

5.2. Codimension estimates and comparison of moduli spaces

Consider a critical value αc ∈ (αm, αM) for triples of type (n,d). Fix (n′,d′) =
(n′

1, n
′
2, d

′
1, d

′
2) and (n′′,d′′) = (n′′

1, n
′′
2, d

′′
1 , d

′′
2 ) as in Definition 5.6. For simplic-

ity we shall denote the moduli spaces of α±
c -semistable triples of type (n′,d′),

respectively (n′′,d′′), by

N ′
α±
c

= Nα±
c
(n′,d′) and N ′′

α±
c

= Nα±
c
(n′′,d′′).

Proposition 5.9. If αc > 2g− 2 then S̃α±
c
(n′′,d′′,n′,d′) is a locally trivial fibra-

tion over N ′
α±
c

× N ′′
α±
c

, with projective fibers of dimension

−χ(n′′,d′′,n′,d′)− 1.

In particular, S̃α±
c
(n′′,d′′,n′,d′) has dimension

1 − χ(n′,d′,n′,d′)− χ(n′′,d′′,n′′,d′′)− χ(n′′,d′′,n′,d′),

where χ(n′,d′,n′,d′) etc. are as in section 3. The same is true for S̃α+
c
(n′′,d′′,

n′,d′) when αc = 2g − 2.

Proof. From the defining properties of S̃α±
c
(n′′,d′′,n′,d′) there is map

S̃α±
c
(n′′,d′′,n′,d′) −→ N ′

α±
c

× N ′′
α±
c

(5.7)

which sends an extension

0 → T ′ → T → T ′′ → 0

to the pair ([T ′], [T ′′]), where [T ′] denotes the class represented by T ′ and simi-
larly for [T ′′]. We first examine the fibers of this map.
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Notice that T ′ and T ′′ satisfy the hypothesis of Proposition 3.6 and therefore of
Corollary 3.7. Notice moreover that, since µα±

c
(T ′) < µα±

c
(T ′′), it is not possible

to have T ′ ∼= T ′′. Thus (cf. Corollary 3.7 and Proposition 3.5(2)) we have

dim P(Ext1(T ′′, T ′)) = dim Ext1(T ′′, T ′)− 1

= −χ(T ′′, T ′)− 1

= −χ(n′′,d′′,n′,d′)− 1, (5.8)

which is independent of T ′ and T ′′. Note that if αc = 2g − 2, T ′ and T ′′ satisfy
the hypothesis of Proposition 3.5(2)) for α+

c , but not for α−
c .

It remains to establish that the fibration (5.7) is locally trivial. If the coprimal-
ity conditions GCD(n′

1, n
′
2, d

′
1 + d ′

2) = 1 = GCD(n′′
1, n

′′
2, d

′′
1 + d ′′

2 ) hold then the
moduli spaces N ′

α±
c

and N ′′
α±
c

are fine moduli spaces (cf. [25]). That is, there are

universal objects, say U ′ and U ′′, defined over N ′
α±
c

×X and N ′′
α±
c

×X. These can
be viewed as coherent sheaves of algebras (cf. [2]), or more precisely as examples
of the Q-bundles considered in [16]. Pulling these back to N ′

α±
c

× N ′′
α±
c

× X we

can construct Hom(U ′′,U ′) (where we have abused notation for the sake of clar-
ity). Taking the projection from N ′

α±
c

× N ′′
α±
c

×X onto N ′
α±
c

× N ′′
α±
c

, we can then
construct the first direct image sheaf. By the results in [16], we can identify the
fibers as hypercohomology groups which, in this case, parameterize extensions
of triples. We thus obtain S̃α±

c
as the projectivization of the first direct image of

Hom(U ′′,U ′). If the coprimality conditions fail, then the universal objects do
not exist globally. However they still exist locally over (analytic) open sets in
the stable locus in the base N ′

α±
c

× N ′′
α±
c

. This is sufficient for our purpose since
by construction the image of the map in (5.7) lies in the stable locus. The result
now follows from (5.8) and formula (3.7) (in Theorem 3.8) as applied to N ′

α±
c

and

N ′′
α±
c

. �
Proposition 5.10. If αc > 2g − 2 then the loci Sα±

c
⊂ N s

α±
c

are locally contained
in subvarieties of codimension bounded below by

min{−χ(n′′,d′′,n′,d′)},
where the minimum is over all (n′,d′) and (n′′,d′′) which satisfy (5.5) and (5.6)

and also
n′

2
n′

1+n′
2
<

n′′
2

n′′
1+n′′

2
(in the case of Sα+

c
) or

n′
2

n′
1+n′

2
>

n′′
2

n′′
1+n′′

2
(in the case of Sα−

c
).

The same is true for Sα+
c

when αc = 2g − 2.

Proof. Ifαc > 2g−2 then we can assumeα±
c � 2g−2. Clearly also,α+

c � 2g−2
when αc = 2g− 2. Thus by Theorem 3.8 the moduli spaces N s

α± are smooth and
have dimension 1−χ(n,d,n,d). By Corollary 3.3 and Proposition 5.9 we obtain

dim N s
α± = 1 − χ(n′,d′,n′,d′)− χ(n′′,d′′,n′′,d′′)

−χ(n′′,d′′,n′,d′)− χ(n′,d′,n′′,d′′)
= dim S̃α±

c
(n′′,d′′,n′,d′)− χ(n′,d′,n′′,d′′). �
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Proposition 5.11. Let T ′ and T ′′ be α±
c -polystable triples. Then the holomorphic

chain C̃•(T ′′, T ′) (as defined in (4.3)) is (αc, 2αc)-polystable.

Proof. From Proposition 4.3, we have that the α±
c -polystability of T ′ and T ′′

implies the (α±
c , 2α±

c )-polystability of C̃•(T ′′, T ′).
Now, the critical values for the chain form a discrete set of points in the (α1, α2)

plane. We can thus pick ε > 0 so that, with α±
c = αc ± ε, the point (α±

c , 2α±
c )

is not a critical point. We can in fact assume that there are no critical points in
B◦
ε (αc, 2αc), i.e. in the punctured ball of radius ε centered at (αc, 2αc). Thus
(α±
c , 2α±

c )-polystability is equivalent to (αc, 2αc)-polystability. �
Theorem 5.12. Let αc ∈ (αm, αM) be a critical value for triples of type (n,d).
If αc > 2g − 2 then the loci Sα±

c
⊂ N s

α±
c

are contained in subvarieties of codi-
mension at least g− 1. In particular, they are contained in subvarieties of strictly
positive codimension if g � 2. If αc = 2g − 2 then the same is true for Sα+

c
.

Proof. Combining Propositions 4.7 and 5.11 we have that

−χ(n′,d′,n′′,d′′) = −χ(T ′, T ′′) � g − 1

(notice that the order of T ′ and T ′′ in these Propositions is irrelevant). The result
follows now from Proposition 5.10. �
Theorem 5.13. Letα1 andα2 be any two values in (αm, αM) such that 2g−2 � α1

and αm < α1 < α2 < αM . Then the moduli spaces N s
α1

and N s
α2

have the same
number of irreducible components, in particular, N s

α1
is irreducible if and only if

N s
α2

is.

Proof. This follows immediately from Theorem 5.12 if α1 and α2 are non-critical,
and from Theorem 5.12 together with Lemma 5.3 if either of them is critical. �

6. Special values of α

In this section we identify some critical values and special subintervals in the range
(αm, αM). We describe their significance for the structure of α-stable triples.

6.1. Small α

Let α+
m = αm + ε, with ε such that the interval (αm, α+

m] does not contain any
critical value (sometimes we refer to this value of α as small. The following is
important in the construction of the moduli space for small α ([4]).

Proposition 6.1. If a triple T = (E1, E2, φ) is α+
m-semistable triple, E1 and E2

are semistable. In the converse direction, if one of E1 and E2 is stable and the
other is semistable, T = (E1, E2, φ) is α+

m-stable.
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Corollary 6.2. If GCD(n1, d1) = 1 and GCD(n2, d2) = 1, then N s

α+
m
(n1,

n2, d1, d2) is isomorphic to the projectivization of a Picard sheaf overM(n1, d1)×
M(n2, d2), where M(n, d) is the moduli space of stable bundles of rank n and
degree d.

Proof. Let E1 and E2 the universal bundles overX×M(n1, d1) andX×M(n2, d2),
respectively. Consider the canonical projections

π : X ×M(n1, d1)×M(n2, d2) → M(n1, d1)×M(n2, d2) ;
π̂ : X ×M(n1, d1)×M(n2, d2) → X ;
π1 : X ×M(n1, d1)×M(n2, d2) → X ×M(n1, d1) ;
π2 : X ×M(n1, d1)×M(n2, d2) → X ×M(n2, d2) .

From Proposition 6.1 we deduce that

N s

α+
m
(n1, n2, d1, d2) = P(R1π∗(π∗

1 E1 ⊗ π∗
2 E

∗
2 ⊗ π̂∗K)∗). �

6.2. Critical values determined by the kernel

Throughout this section we assume that the triple (E1, E2, φ) has type (n1, n2,

d1, d2), with n1 � n2. The case n1 < n2 can be dealt with via duality of triples.

Definition 6.3. For each integer 0 � j < n2 set

αj = 2n1n2

n2(n1 − n2)+ (j + 1)(n1 + n2)
(µ1 − µ2). (6.1)

Proposition 6.4. Let T = (E1, E2, φ) be a triple in which n1 � n2. Let N ⊂ E2

be the kernel of φ : E2 −→ E1. Suppose that T is α-semistable for some α > αj .
Then N has rank at most j . In particular, if T is α-semistable for some α > α0

then N = 0, i.e. φ is injective.

Proof. Suppose that

rk(N) = k > 0. (6.2)

We consider the subtriples TN = (0, N, 0) and TI = (I, E2, φ), where I denotes
the image sheaf im(φ). If N �= 0, then the triple TN is a proper subtriple, and so
is TI since n1 � n2. The α-semistability condition applied to TN yields

αn1 � (n1 + n2)(µ− µN), (6.3)

where µN denotes the slope of N and µ is the slope of E1 ⊕ E2.
The α-semistability condition applied to TI yields

µ(E2 ⊕ I )+ α
n2

i + n2
� µ+ α

n2

n1 + n2
, (6.4)
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where i = rk(I ). Furthermore, from the exact sequence

0 −→ N −→ E2 → I −→ 0, (6.5)

we get

k + i = n2, (6.6)

kµN + iµI = n2µ2. (6.7)

Using (6.7) we can write

µ(E2 ⊕ I ) = 2n2µ2 − kµN

2n2 − k
(6.8)

and hence (6.4) yields

−k(n1 + n2)µN � (n1 + n2)((2n2 − k)µ− 2n2µ2)+ αn2(n2 − k − n1).

(6.9)

Combining k times (6.3) and (6.9) yields

α � 2n1n2

n2(n1 − n2)+ k(n1 + n2)
(µ1 − µ2). (6.10)

We have thus shown that if rk(N) = k and the triple is α-stable, then

α � αk−1

where αk−1 is given by (6.1) with j = k − 1. Since

αk−1 > αk > · · · > αn2−1,

we can conclude that if the triple is α-semistable with α > αk−1, then the rank of
N is strictly less than k. In particular, if α > α0, where

α0 = 2n1n2

n2(n1 − n2)+ (n1 + n2)
(µ1 − µ2), (6.11)

then T is injective. �
As an immediate consequence we obtain the following.

Proposition 6.5. Let α > α0, where α0 is given by (6.11).

(1) An α-semistable triple (E1, E2, φ) defines a sequence of the form

0 −→ E2
φ−→ E1 −→ F ⊕ S −→ 0, (6.12)

where F is locally free and S is a torsion sheaf.
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(2) If n1 = n2 then an α-semistable triple (E1, E2, φ) defines a sequence of the
form

0 −→ E2
φ−→ E1 −→ S −→ 0, (6.13)

where S is a torsion sheaf of degree d1 − d2.

Lemma 6.6. Let α0 be given by (6.11).

(1) If n1 > n2 then

α0 = n2(n1 − n2)

n2(n1 − n2)+ n1 + n2
αM = 2n1n2

n2(n1 − n2)+ n1 + n2
αm, (6.14)

where αm and αM are given by (2.2) and (2.3), respectively.
(2) If n1 = n2 = n then

α0 = nαm = n(µ1 − µ2) = d1 − d2. (6.15)

(3) If n1 � n2 then α0 � αm, with equality if and only if αm = 0 or n2 = 1.

Proof. Parts (1) and (2) are immediate. Using (1) we compute

α0 − αm = n1 + n2

n2(n1 − n2)+ n1 + n2
(n2 − 1)αm,

from which (3) follows. �

6.3. Critical values determined by the cokernel

In this section we assume that n1 > n2. The range for α is then [αm, αM ], where
αm and αM are given by (2.2) and (2.3). Let us define

αt := αM − n1 + n2

n2(n1 − n2)
. (6.16)

Proposition 6.7. Suppose that a triple T = (E1, E2, φ) of the form (6.12) with
n1 > n2 is α-semistable for some α > αm. Then

s � n2(n1 − n2)

(n1 + n2)
(αM − α),

where s is the degree of S. In particular, if α > αt , then S = 0, i.e. the quotient
sheaf E1/E2 is locally free.
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Proof. If T = (E1, E2, φ) is of the form in (6.12), with S �= 0, then we can find
a proper subtriple T ′ = (E′

1, E2, φ) of the form

0 −→ E2
φ−→ E′

1 −→ S −→ 0. (6.17)

Indeed, E′
1 is the kernel of the sheaf map E1 −→ F ⊕ S −→ S. Notice that

n′
1 = n2 and d ′

1 = d2 + s, where n′
1, d

′
1 denote the rank and degree of E′

1, etc. We
compute

�α(T
′) = n1

n1 + n2
(µ2 − µ1)+ α

2

(
n1 − n2

n1 + n2

)

+ s

2n2
, (6.18)

where, as in (2.1), �α(T
′) = µα(T

′)− µα(T ). But

n1

n1 + n2
(µ1 − µ2) = αM

2

(
n1 − n2

n1 + n2

)

and hence

�α(T
′) = n1 − n2

2(n1 + n2)

(

α − αM + n1 + n2

n2(n1 − n2)
s

)

. (6.19)

If the triple is α-semistable then �α(T
′) � 0 and the result follows. �

Let us define

αe = max{αm, α0, αt}. (6.20)

The following is an immediate consequence of Proposition 6.7.

Proposition 6.8. Let α > αe. An α-semistable triple (E1, E2, φ) defines an exten-
sion

0 −→ E2
φ−→ E1 −→ F −→ 0, (6.21)

with F locally free.

It turns out that for extension like (6.21), arising from semistable triples the dimen-
sion of H 1(E2 ⊗ F ∗) does not depend on the given triple. More precisely:

Proposition 6.9. Let (E1, E2, φ) be anα-semistable triple in which ker φ = 0 and
coker φ is locally free, defining an extension like (6.21). Then H 0(E2 ⊗ F ∗) = 0
and hence

dimH 1(E2 ⊗ F ∗) = n2d1 − n1d2 + n1(n1 − n2)(g − 1). (6.22)

Proof. From [4, Lemma 4.5] we have that the α-semistability of (E1, E2, φ)

for arbitrary α implies that H 0(E1 ⊗E∗
2) = 0. From (6.21), we have an injective

homomorphismF ∗ → E∗
1 , which after tensoring withE2 gives thatH 0(E2 ⊗F ∗)

injects in H 0(E1 ⊗E∗
2), and hence the desired vanishing. By Riemann–Roch we

obtain (6.22). �
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7. Moduli space of triples with n1 �= n2

Throughout this section we assume that n1 > n2. The case n1 < n2 can be dealt
with by triples duality. Recall that the allowed range for the stability parameter is
αm � α � αM , where αm = µ1 − µ2 and αM = 2n1

n1−n2
αm, and we assume that

µ1 −µ2 > 0. We describe the moduli space Nα for 2g− 2 � α � αM , beginning
with α = αM .

7.1. Moduli space for α = αM

Proposition 7.1. Let T = (E1, E2, φ) be an αM -polystable triple. Then E1 =
im φ ⊕ F , where F = coker φ, and T decomposes as the direct sum of two
αM -polystable triples of the sameαM -slope,T ′ andT ′′, whereT ′ = (im φ,E2, φ),
and T ′′ = (F, 0, 0). In particular, T is never αM -stable. Moreover, E2

∼= im φ

and E2 and F are polystable.

Proof. By Proposition, 6.8, T defines an extension

0 −→ E2
φ−→ E1 −→ F −→ 0, (7.1)

with F locally free. Let T ′ = (im φ,E2, φ). Of course φ : E2 → im φ is an
isomorphism, and

µαM (T
′) = µ(E2)+ αM

2
,

but this is equal to µαM (T ) and hence T cannot be αM -stable. Since we assume
that T is αM -polystable, it must decompose as T ′ ⊕ T ′′, where T ′′ = (F, 0, 0).
It is clear from the polystability of T that T ′ and T ′′ are αM -polystable with
the same αM -slope. Applying the αM -semistability condition to the subtriples
(E′

2, φ(E
′
2), φ) ⊂ T ′ and (F ′, 0, 0) ⊂ T ′′, we obtain that µ(E′

2) � µ(E2) and
µ(F ′) � µ(F), and hence E2 and F are semistable. In fact the polystability of
T ′ and T ′′ imply the polystability of E2 and F , respectively. �

As a consequence of Proposition 7.1, we obtain the following.

Corollary 7.2. Suppose that n1 > n2 and µ1 − µ2 > 0. Then

NαM (n1, n2, d1, d2) ∼= NαM (n2, n2, d2, d2)×M(n1 − n2, d1 − d2), (7.2)

where M(n1 − n2, d1 − d2) is the moduli space of polystable bundles of rank
n1 − n2 and degree d1 − d2.
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7.2. Moduli space for large α

Let αL be the largest critical value in (αm, αM), and let NL (respectively N s
L)

denote the moduli space of α-polystable (respectively α-stable) triples for αL <
α < αM . We refer to NL as the ‘large α’ moduli space. By definition, αL is at
least as big as αe (where αe is as in (6.20)). Thus if T is α-stable for α > αL, then
we can assume it is of the form (6.21), i.e. it gives rise to an extension

0 −→ E2
φ−→ E1 −→ F −→ 0.

In particular, I = im φ is a subbundle with torsion free quotient in E1, and
φ : E2 −→ I is an isomorphism. Thus we get a subtriple TI = (I, E2, φ) in
which the bundles have the same rank and degree, and φ is an isomorphism.

Proposition 7.3. Let T = (E1, E2, φ) represent a point in NL, i.e. suppose that
the triple is α-semistable for some α in the range αL < α < αM . Then

(1) the triple TI = (I, E2, φ) is αM -semistable,
(2) the bundle E2 is semistable.

Proof. (1). Let T ′ = (E′
1, E

′
2, φ

′) be any subtriple of TI . Since T ′ is also a subt-
riple of T , we get

µα(T
′) � µα(T ). (7.3)

A direct computation shows that

µα(T ) = µα(TI )+ n1 − n2

2(n1 + n2)
(αM − α), (7.4)

where we have used the fact that n1 > n2 in T and hence αM = 2n1
n1−n2

(µ1 −
µ2) = 2(µ(F )− µ2). Thus for all αL < α < αM we have

µα(T
′)− µα(TI ) � n1 − n2

2(n1 + n2)
(αM − α).

Taking the limit α → αM , we get

µαM (T
′)− µαM (TI ) � 0,

i.e. TI is αM -semistable.
(2). LetE′

2 ⊂ E2 be any proper subsheaf. Then (φ(E′
2), E

′
2, φ) is a subtriple ofTI .

Since φ : E2 −→ φ(E2) is an isomorphism, this subtriple has µ(φ(E′
2)) =

µ(E′
2) and n′

2 = n′
1. The αM -semistability condition of TI thus gives

µ(E′
2)+ αM

2
� µ2 + αM

2
,

(where we have made use of the fact that µ(φ(E2)) = µ(E2) = µ2). It
follows from this that µ(E′

2) � µ2, i.e. that E2 is semistable. �
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Proposition 7.4. Suppose that the triple T = (E1, E2, φ) is of the form in (6.21),
i.e.

0 −→ E2
φ−→ E1 −→ F −→ 0,

with F locally free. Then there is an ε > 0 such that F is semistable if the triple
is α-semistable for any α > αM − ε. Indeed the conclusion holds for any

0 < ε <
2

m(m− 1)2
, (7.5)

where m = n1 − n2 = rk(F ).

Proof. Let F ′ ⊂ F be any proper subsheaf. Denote the rank and slope of F (resp.
F ′) by m and µF (resp. m′ and µF ′). We can always find E′

1 ⊂ E1 such that
F ′ = E′

1/E2, i.e. such that we have

0 −→ E2
φ−→ E′

1 −→ F ′ −→ 0.

Let T ′ = (E′
1, E2, φ). For convenience, define

�α ≡ �α(T
′) = µα(T

′)− µα(T ). (7.6)

Using

n1 = n2 +m,

n′
1 = n2 +m′,

n1µ1 = n2µ2 +mµF , (7.7)

n′
1µ

′
1 = n2µ2 +m′µF ′,

we get

µF ′ − µF = (2n2 +m)(2n2 +m′)
2n2m′ �α −

(
m−m′

2m′

)

(α − 2(µF − µ2)).

(7.8)

But 2(µF − µ2) = αM . Thus, setting

α = αM − ε, (7.9)

we get

µF ′ − µF = (2n2 +m)(2n2 +m′)
2n2m′ �α +

(
m−m′

m′

)
ε

2
. (7.10)

If now we take
ε

2
<

1

m(m− 1)2
,
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then for all 0 < m′ < m we get
(
m−m′

m′

)
ε

2
<

1

m(m− 1)
. (7.11)

Hence, if the triple is α-semistable, so that �α � 0, then we get

µF ′ − µF <
1

m(m− 1)
. (7.12)

SinceµF andµF ′ are rational numbers, the first with denominatorm, and the sec-
ond with denominator m′ � (m− 1), equation (7.12) equivalent to the condition
µF ′ − µF � 0. �

We can combine Propositions 6.8, 7.4 and 7.3 to obtain the following.

Proposition 7.5. Let T = (E1, E2, φ) be an α-semistable triple for some α in the
range αL < α < αM . Then T is of the form

0 −→ E2
φ−→ E1 −→ F −→ 0,

with F locally free, and E2 and F are semistable.

In the converse direction we have:

Proposition 7.6. Let T = (E1, E2, φ) be a triple of the form

0 −→ E2
φ−→ E1 −→ F −→ 0,

with F locally free. If E2 is semistable and F is stable then T is α-stable for
α = αM − ε in the range αL < α < αM .

Proof. Any subtriple T ′ = (E′
1, E

′
2, φ

′) defines a commutative diagram

0 −−−→ E2
φ−−−→ E1 −−−→ F −−−→ 0

�



�



�



0 −−−→ E′
2

φ′
−−−→ E′

1 −−−→ F ′ −−−→ 0,

where F ′ ⊂ F . Then

�α ≡ �α(T
′) = µα(T

′)− µα(T )

= µ(E′
1 ⊕ E′

2)− µ(E1 ⊕ E2)+ α(
n′

2

n′
1 + n′

2

− n2

n1 + n2
).

(7.13)
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Denote the rank and slope of F (resp. F ′) bym and µF (resp.m′ and µF ′). Using

n1 = n2 +m,

n′
1 = n′

2 +m′,
n1µ1 = n2µ2 +mµF ,

n′
1µ

′
1 = n′

2µ
′
2 +m′µF ′,

and the fact that αM = 2(µF − µ2), and setting α = αM − ε, we obtain

�α =2n′
2 + µ′

2 +mµF ′

2n′
2 +m′ − 2n2 + µ2 +mµF

2n2 +m

+ 2(µF − µ2)(
n′

2

2n′
2 +m′ − n2

2n2 +m
)− ε(

n′
2

2n′
2 +m′ − n2

2n2 +m
)

= 2n′
2

2n′
2 +m′ (µ

′
2 − µ2)+ m′

2n′
2 +m′ (µF ′ − µF )− ε(

n′
2m− n2m

′

(2n′
2 +m′)(2n2 +m)

).

(7.14)

Clearing denominators in (7.14) we obtain

(2n′
2 +m′)�α = n′

2(2�2 − m

2n2 +m
ε)+m′(�F + n2

2n2 +m
ε),

where

�2 = µ′
2 − µ2, and �F = µF ′ − µF . (7.15)

Now suppose thatE2 is semistable andF is stable. The semistability ofE2 implies
that

2�2 − m

2n2 +m
ε < 0,

while the stability of F implies there exists δ > 0 such that �F � −δ < 0. Thus
by taking ε < 2n2+m

n2
δ, we have �F + n2

2n2+mε < 0, and hence �α < 0. �
Theorem 7.7. Assume that n1 > n2 and d1/n1 > d2/n2. Then the moduli space
N s
L = N s

L(n1, n2, d1, d2) is smooth of dimension

(g − 1)(n2
1 + n2

2 − n1n2)− n1d2 + n2d1 + 1,

and is birationally equivalent to a P
N -fibration over Ms(n1 − n2, d1 − d2) ×

Ms(n2, d2), where Ms(n, d) is the moduli space of stable bundles of rank n and
degree d, and

N = n2d1 − n1d2 + n1(n1 − n2)(g − 1)− 1.

In particular, N s
L(n1, n2, d1, d2) is non-empty and irreducible.

If GCD(n1 − n2, d1 − d2) = 1 and GCD(n2, d2) = 1, the birational equiva-
lence is an isomorphism.

Moreover, in all cases, NL = NL(n1, n2, d1, d2) is irreducible and hence
birationally equivalent to N s

L.
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Proof. For every triple T = (E1, E2, φ) in N s
L, the homomorphism φ is injective

and hence, by (5) in Proposition 3.8, T defines a smooth point in the moduli space,
whose dimension is then given by (4) in Proposition 2.6.

Given F ∈ Ms(n1 − n2, d1 − d2) and E2 ∈ Ms(n2, d2), we know from Prop-
osition 2.6 that every extension

0 −→ E2
φ−→ E1 −→ F −→ 0,

defines a triple T = (E1, E2, φ) in N s
L. These extensions are classified by

H 1(E2 ⊗ F ∗). In fact two classes defining the same element in the projectiviza-
tion PH 1(E2 ⊗F ∗) define equivalent extensions and therefore equivalent triples.
Now,

deg(E2 ⊗ F ∗) = (n1 − n2)d2 − n2(d1 − d2) = n1n2(µ2 − µ1) < 0

and, sinceE2⊗F ∗ is semistable, thenH 0(E2⊗F ∗) = 0. Hence, by the Riemann–
Roch theorem

h1(E2 ⊗ F ∗) = n2d1 − n1d2 + n1(n1 − n2)(g − 1).

In particular this dimension is constant as F and E2 vary in their corresponding
moduli spaces.

We can describe this globally in terms of Picard sheaves. To do that we con-
sider first the case in which GCD(n1 −n2, d1 −d2) = 1 and GCD(n2, d2) = 1. In
this situation there exist universal bundles F and E2 overX×M(n1 −n2, d1 −d2)

and X ×M(n2, d2), respectively. Consider the canonical projections

π : X ×M(n1 − n2, d1 − d2)×M(n2, d2)

→ M(n1 − n2, d1 − d2)×M(n2, d2) ,

ν : X ×M(n1 − n2, d1 − d2)×M(n2, d2) → X ×M(n1 − n2, d1 − d2) ,

and

π2 : X ×M(n1 − n2, d1 − d2)×M(n2, d2) → X ×M(n2, d2) .

The Picard sheaf
S := R1π∗(π∗

2 E2 ⊗ ν∗
F

∗),

is then locally free and we can identify NL = N s
L with P = P(S). This is indeed

a P
N fibration withN = n2d1 −n1d2 +n1(n1 −n2)(g−1)−1, which in particular

is non-empty sinceM(n1 −n2, d1 −d2) andM(n2, d2) are non-empty andN > 0.
If GCD(n1 − n2, d1 − d2) �= 1 and GCD(n2, d2) �= 1, there are no universal

bundles and hence the Picard bundle does not exist. However, its projectivization
over

Ms(n1 − n2, d1 − d2)×Ms(n2, d2)
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does exist. This can be constructed by working in the open set R of the Quot
scheme corresponding to stable bundles. The point is that an appropriate linear
group GL acts on R, with the centre acting trivially and such that PGL acts freely
with the quotient beingMs(n1 − n2, d1 − d2)×Ms(n2, d2). For the action on the
projective bundle associated to the universal bundle over R, the centre of GL still
acts trivially, and standard descent arguments produce the required P

N fibration
P over Ms(n1 − n2, d1 − d2)×Ms(n2, d2).

We now show that the complement of P has strictly positive codimension
in N s

L. This follows from two facts. The first one is that any family of strictly
semistable bundles of rank n1 − n2 and degree d1 − d2 depends on a number of
parameters strictly less than the dimension ofMs(n1 − n2, d1 − d2) (cf. e.g. [8]).
The same argument applies to any family of strictly semistable bundles of rank
n2 and degree d2. The second fact is that the dimension of H 1(E2 ⊗ F ∗) is fixed
by the Riemann–Roch theorem (we use here that E2 and F are semistable).

To prove the last statement, i.e. to extend the results to NL, we consider the
family P̃ of equivalence classes of extensions

0 −→ E2
φ−→ E1 −→ F −→ 0,

where F and E2 are semistable. Clearly, P̃ contains the family P . The family P̃
is irreducible. This is because since F and E2 are semistable they vary (for fixed
ranks and degrees) in irreducible families F and E2, respectively, and as shown
above H 0(E2 ⊗ F ∗) = 0. Hence P̃ is a projective bundle over F × E2. From
Proposition 7.5, we know that NL ⊂ P̃ , and since α-semistability is an open
condition (which follows from the construction of the moduli space given in [4]
and [25]), we have that NL is irreducible. �
Remark 7.8. If n1 < n2, we have an analogous theorem for N s

L(n1, n2, d1, d2) via
the isomorphism

N s
α (n1, n2, d1, d2) = N s

α (n2, n1,−d2,−d1)

given by duality (Proposition 2.4).

7.3. Moduli space for αm < 2g − 2 � α < αM

Theorem 7.9. Let α be any value in the range αm < 2g− 2 � α < αM . Then N s
α

is birationally equivalent to N s
L. In particular it is non-empty and irreducible.

Proof. This follows from Theorem 5.13 and Theorem 7.7. �
Corollary 7.10. Let (n1, n2, d1, d2) be such that GCD(n2, n1 + n2, d1 + d2) = 1.
If α is a generic value satisfying αm < 2g− 2 � α < αM , then Nα is birationally
equivalent to NL, and in particular it is irreducible.
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Proof. From (4) in Proposition 2.6 one has that Nα = N s
α if GCD(n2, n1 +

n2, d1 + d2) = 1 and α is generic. In particular, NL = N s
L, and hence the result

follows from Theorem 7.9. �

8. Moduli space of triples with n1 = n2

Throughout this section we assume that n1 = n2 = n and d1 � d2.

8.1. Moduli space for d1 = d2

Proposition 8.1. Suppose that n1 = n2 = n and d1 = d2 = d. Let T =
(E1, E2, φ) be a triple of type (n1, n2, d1, d2), and let α > 0. Then T is
α-(poly)stable if and only if E1 and E2 are (poly)stable and φ is an isomorphism.

Proof. In this case the injectivity bound α0 given by (6.11) is α0 = αm = 0.
Hence for every α-semistable triple T = (E1, E2, φ) with α > 0, φ must be
injective and therefore an isomorphism. The polystability of E1 and E2 is now
straightforward to see. To show the converse, suppose that E1 and E2 are both
polystable and let T ′ = (E′

1, E
′
2, φ

′) be any subtriple of T .

µα(T
′) = µ(E′

1 ⊕ E′
2)+ α

n′
2

n′
1 + n′

2

� µ(E1 ⊕ E2)+ α
n′

2

n′
1 + n′

2

� µα(T )+ α(
n′

2

n′
1 + n′

2

− 1

2
)

� µα(T ),

since n′
1 � n′

2 if φ is injective. �
Corollary 8.2. The moduli space Nα(n, n, d, d) and the moduli space M(n, d)
of polystable bundles of rank n and degree d are isomorphic. In particular
Nα(n, n, d, d) is non-empty and irreducible.

Proof. From Proposition 8.1 it is clear that we have a surjective map, say

π : Nα(n, n, d, d) → M(n, d).

Suppose that π([T ]) = π([T ′]), where [T ] and [T ′] are points in Nα(n, n, d, d)

represented by triples T = (E,E, φ) and T ′ = (E′, E′, φ′) respectively. We
may assume that T and T ′ are polystable triples, and hence that E and E′ are
polystable vector bundles. Thus, since π([T ]) = π([T ′]), we can find an isomor-
phism h1 : E �→ E′. Set h2 = φ′ ◦ h1 ◦ φ−1 (remember that φ and φ′ are bundle
isomorphisms). Then (h1, h2) defines an isomorphism form T to T ′. Thus π is
injective. �
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Combining Proposition 7.1 and Corollaries 7.2 and 8.2, we obtain the follow-
ing.

Corollary 8.3. Suppose that n1 > n2 and µ1 − µ2 > 0. Then

NαM (n1, n2, d1, d2) ∼= M(n2, d2)×M(n1 − n2, d1 − d2).

In particular, NαM (n1, n2, d1, d2) is non-empty and irreducible.

8.2. Bounds on E1 and E2 for α > α0

Lemma 8.4. Let (E1, E2, φ) be a triple with ker φ = 0. Let (E′
1, E

′
2, φ

′) be a
subtriple with n′

1 = n′
2 = n′. Thus we get the following diagram, in which S and

S ′ are torsion sheaves:

0 −−−→ E2
φ−−−→ E1 −−−→ S −−−→ 0

�



�



�



0 −−−→ E′
2

φ′
−−−→ E′

1 −−−→ S ′ −−−→ 0.

Then

�α(T
′) ≡ µα(T

′)− µα(T ) = (µ(E′
2)− µ2)+ 1

2

(
s ′

n′ − s

n

)

= (µ(E′
1)− µ1)− 1

2

(
s ′

n′ − s

n

)

.

Here s and s ′ are the degrees of S and S ′ respectively.

Proof. From the above diagram we get

nµ2 + s = nµ1,

nµ(E′
2)+ s ′ = nµ(E′

1).

Thus

µα(T
′) = 1

2
(µ(E′

1)+ µ(E′
2))+ α

2
= 1

2

(

2µ(E′
2)+ s ′

n′

)

+ α

2

= 1

2

(

2µ(E′
1)− s ′

n′

)

+ α

2
,

and similarly for µα(T ). �
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Proposition 8.5. Let (E1, E2, φ) be an α-semistable triple with ker φ = 0. Then

(1) For any subsheaf E′
1 ⊂ E1

µ(E′
1) � µ1 + 1

2
(n− 1)(µ1 − µ2).

(2) For any subsheaf E′
2 ⊂ E2

µ(E′
2) � µ2 + 1

2
(µ1 − µ2).

Proof. Since ker φ = 0 the results of Lemma 8.4 apply. Furthermore, any subs-
heaf E′

1 ⊂ E1 is part of a subtriple (E′
1, E

′
2, φ

′) with n′
1 = n′

2 = n′. Likewise,
given any subsheaf E′

2 ⊂ E2, we can take E′
1 = φ(E′

2). Thus we can use the
results of Lemma 8.4, plus the fact that α-stability implies �α(T

′) < 0 for all
subtriples, to conclude

µ(E′
1)− µ1 − 1

2

(
s ′

n′ − s

n

)

< 0

for all E′
1 ⊂ E1. Similarly

µ(E′
2)− µ2 + 1

2

(
s ′

n′ − s

n

)

< 0

for all E′
2 ⊂ E2. The results now follow using the fact that 0 � s ′ � s and

1 � n′ < n. �

8.3. Stabilization of moduli

Theorem 8.6 (Stabilization Theorem). Let α0 be as in (6.15).

(1) Let α1, α2 be any real numbers such that α0 < α1 � α2, then

Nα1(n, n, d1, d2) ⊆ Nα2(n, n, d1, d2).

(2) There is a real number αL � α0 such that

Nα1(n, n, d1, d2) = Nα2(n, n, d1, d2)

for all α1 � α2 > αL.

Proof. (1). Recall from Proposition 6.5 that if α > α0 then any triple, T =
(E1, E2, φ), in Nα(n, n, d1, d2) has rk(φ) = n. It follows that in any subtriple,
say T ′ = (E′

1, E
′
2, φ

′), the rank of E′
1 is at least as big as the rank of E′

2, i.e.
n′

1 � n′
2. We treat the cases n′

1 > n′
2 and n′

1 = n′
2 separately. In both cases we

must show that
�α1(T

′) � 0 ⇒ �α2(T
′) � 0
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if α1 � α2. If n′
1 = n′

2 then for any α

�α(T
′) = µ(E′

1 ⊕ E′
2)− µ(E1 ⊕ E2). (8.1)

In particular, �α(T
′) is independent of α and hence �α1(T

′) = �α2(T
′). If

n′
1 > n′

2, then for any α

�α(T
′) = µ(E′

1 ⊕ E′
2)− µ(E1 ⊕ E2)+

(
n′

2

n′
1 + n′

2

− 1

2

)

α. (8.2)

For each subtriple, �α(T
′) is thus a linear function of α, with slope

λ(T ′) =
(

n′
2

n′
1 + n′

2

− 1

2

)

= n′
2 − n′

1

2(n′
1 + n′

2)
(8.3)

and constant term

M(T ′) = µ(E′
1 ⊕ E′

2)− µ(E1 ⊕ E2). (8.4)

We see that if n′
1 > n′

2 then λ(T ′) < 0. It follows from this that

�α1(T
′) � 0 �⇒ �α2(T

′) � 0

if α1 � α2.
(2). Consider any α1, α2 such that α0 < α1 � α2. By Part (1), the difference

(if any) between Nα1 and Nα2 is due entirely to triples which are α2-stable but
not α1-stable. Any such triple must have a subobject, say T ′ = (E′

1, E
′
2, φ

′), for
which

�α2(T
′) � 0 < �α1(T

′). (8.5)

As in (1), we need only consider subobjects for which the rank of E′
1 is at least

as big as the rank of E′
2, i.e. n′

1 � n′
2. Clearly (8.5) is not possible for a subobject

with n′
1 = n′

2 (since in that case�α1(T
′) = �α2(T

′)). Suppose then that n′
1 > n′

2.
By (8.2) and the fact that for such a subobject λ(T ′) < 0, we get that

�α(T
′) � 0 ⇐⇒ α � M(T ′)

−λ(T ′)
. (8.6)

We claim that there is a bound, αL, depending only on the degrees and ranks of
E1 and E2, such that

M(T ′)
−λ(T ′)

� αL (8.7)

for all possible subtriples with n′
1 > n′

2. For a triple T = (E1, E2, φ) in Nα2

Proposition 8.5 applies, giving upper bounds on slopes of subsheaves of both E1

and E2. Using these bounds we compute

M(T ′) � nn′
1

2(n′
1 + n′

2)
(µ1 − µ2). (8.8)
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Combined with (8.3), this gives

M(T ′)
−λ(T ′)

� nn′
1

(n′
1 − n′

2)
(µ1 − µ2)

� n(n− 1)(µ1 − µ2).

We can thus take

αL = n(n− 1)(µ1 − µ2). (8.9)

We can now complete the proof of Part (2): if α1 > αL then no triple in Nα2 can
have a subtriple satisfying (8.6). Hence Nα2 = Nα1 . �
Remark 8.7. If n = 2 then αL = α0 = d1 − d2, i.e. the stabilization parameter
coincides with the injectivity parameter.

It is clear from (8.9) that αL = 0 correspond to the following especial cases.

Proposition 8.8. If n = 1 or αm = 0 then αL = 0. Hence if ε is any positive real
number,

(1) if n = 1, then Nα is isomorphic to Nαm+ε(1, 1, d1, d2) for every α ∈ (αm,∞);
(2) if αm = 0, then Nα is isomorphic to Nε(n, n, d1, d2) for every α ∈ (0,∞).

8.4. Moduli for large α and α � 2g − 2

Let α > α0, where α0 is as in (6.15). By Proposition 6.5, we know that all triples
in Nα(n, n, d1, d2) are of the form

0 −→ E2
φ−→ E1 −→ S −→ 0, (8.10)

where S is a torsion sheaf of degree d = d1 −d2. By analogy with the n1 �= n2, let
us denote by NL(n, n, d1, d2) the ‘large α’ moduli space, i.e. the moduli space of
α-semistable triples for any α ∈ (αL,∞). Since αL � α0 we have that all triples
in NL(n, d1, d2) are of the form in (8.10) and that E1 and E2 are bounded by the
constraints in Proposition 8.5.

In the converse direction we have the following.

Proposition 8.9. Let T = (E1, E2, φ) be a triple such that ker φ = 0 If E1

and E2 are semistable, then T is α-semistable for large enough α, i.e. T ∈
NL(n, n, d1, d2). If either E1 or E2 is stable, then T is α-stable.

Proof. Since ker φ = 0, it follows (as in the proof of Theorem 8.6) that in any
subtriple, say T ′ = (E′

1, E
′
2, φ

′), the rank of E′
1 is at least as big as the rank of

E′
2, i.e. n′

1 � n′
2. If n′

1 > n′
2, then (8.2), (8.3) and (8.4) apply, with λ(T ′) < 0 and
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M(T ′)
−λ(T ′) � αL. Thus µα(T ′)−µα(T ) < 0 for α > αL. For subtriples with n′

1 = n′
2,

equation (8.1) says that

�α(T
′) = µ(E′

1 ⊕ E′
2)− µ(E1 ⊕ E2)

for any α. For such subtriples, and for any α, it thus follows that

(1) �α(T
′) � 0 if both E1 and E2 are semistable, and

(2) �α(T
′) < 0 if at least one of the bundles is stable. �

Theorem 8.10. The moduli space N s
L(n, n, d1, d2) is non-empty.

Proof. Our strategy is to show that there exist rank n stable bundles E1 and E2 of
degree d1 and d2, respectively, and a torsion sheaf S of degree d1 − d2, fitting in
an exact sequence

0 −→ E2 −→ E1 −→ S −→ 0.

The result will then follow from Proposition 8.9.
To prove this, let E be a vector bundle, and let Quotd(E) be the Quot scheme

of quotients E −→ S where S is a torsion sheaf of degree d. The basic fact we
need is the following.

Lemma 8.11. Let L be a line bundle and let ψ : L⊕n −→ S be an element in
Quotd(L⊕n). Then, if L has big enough degree (depending on n and d), for a
generic S, the vector bundle E = kerψ is stable.

Proof. The proof is implicit in the papers by Hernández [17] and Maruyama [22],
where they deal with the case L = O. There, one needs an extra condition on
n and d, which is not required in the twisted case when the degree of L is big
enough.

Let L be a line bundle of degree m and d ′′ > 0 such that d1 = nm − d ′′. By
Lemma 8.11, if ψ : Ln −→ S ′′ ∈ Quotd

′′
(Ln) is generic, then E1 = kerψ is a

stable bundle of rank n and degree d1. Let d = d1 − d2 and consider a generic
element η : E1 −→ S ∈ Quotd(E1). Let E2 = ker η, and let S ′ the cokernel of
the natural inclusion E2 −→ Ln. We have the following commutative diagram:

0 0 0
↓ ↓ ↓

0 → E2 → E1 → S → 0
‖ ↓ ↓

0 → E2 → Ln → S ′ → 0
↓ ↓ ↓
0 → S ′′ = S ′′ → 0

↓ ↓
0 0.
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We see from the diagram that E2 coincides with the kernel of Ln −→ S ′. If S ′

is general enough we can again apply Lemma 8.11 and conclude thatE2 is stable.
To show that this is indeed the case, we observe that the diagram defines a map

Quotd0(E1)× Quotd
′′

0 (L
n) −→ Quotd+d

′′
0 (Ln),

where Quot0 denotes an open non-empty subscheme of Quot, which is surjective
and finite. �

We deal now with the irreducibility of the moduli spaces. Although not for-
mulated in precisely this form, the following result is implicit in [21], in the proof
of Proposition 5.1.

Theorem 8.12 (Markman-Xia [21]). There is an irreducible family S parame-
terizing quotients E1 −→ S −→ 0, where E1 is a rank n and degree d1 vector
bundle such that all its subbundles have their slope bounded above by a given
universal constant, and S is a torsion sheaf of degree d > 0.

Theorem 8.13. If α > α0, then Nα(n, n, d1, d2) is irreducible.

Proof. Since α > α0, an α-semistable triple T = (E1, E2, φ) defines a sequence
as in (8.10) and hence a quotient E1 −→ S −→ 0 in S . By (1) in Proposition
8.5, the slopes of subbundles of E1 are bounded above by the universal constant

µ1 + 1

2
(n− 1)(µ1 − µ2).

Let S0 ⊂ S consist of elements E1 −→ S −→ 0 in S that come from an
α-semistable triple 0 → E2 → E1 → S → 0. Since α-semistability is an open
condition S0 is a Zariski open set of S , which is non-empty by Theorem 8.10, and
hence irreducible by Theorem 8.12. The irreducibility of Nα(n, n, d1, d2) follows
now from that of S0. �
Proposition 8.14. The moduli space NL(n, n, d1, d2) is birationally equivalent
to a P

N -fibration P over Ms(n, d2) × Symd(X), where N = n(d1 − d2) − 1,
Symd(X) is the d-symmetric product ofX, andMs(n2, d2) is the moduli space of
stable bundles of rank n2 and degree d2.

Proof. LetE2 be a rank n and degree d2 vector bundle and let S be a torsion sheaf
of degree d > 0. We construct E1 as an extension

0 −→ E2 −→ E1 −→ S −→ 0. (8.11)

Such extensions are parameterized by Ext1(S,E2). Suppose that S is of the form
S = OD, where D is a divisor in Symd(X). Let L be a line bundle. Consider the
short exact sequence

0 −→ L∗(−D) −→ L∗ −→ OD −→ 0,
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and apply to it the functor Hom(·, E2), to obtain the long exact sequence

0 −→ H 0(E2 ⊗ L) −→ H 0(E2 ⊗ L(D)) −→
Ext1(OD,E2) −→ H 1(E2 ⊗ L) −→ H 1(E2 ⊗ L(D)) −→ 0.

(8.12)

We thus have

dim Ext1(OD,E2) = χ(E2 ⊗ L)− χ(E2 ⊗ L(D)) = nd,

where χ(E) = dimH 0(E) − dimH 1(E). Taking L so that deg(L) >> 0, we
have that H 1(E2 ⊗ L) = 0. If E2 is semistable (or more generally, if it moves in
a bounded family) we can take the same L for every E2. Then

Ext1(OD,E2) = H 0(E2 ⊗ L(D))/H 0(E2 ⊗ L).

Let P be the set of equivalence classes of extensions (8.11), where E2 is stable
then P is a P

N -fibration over Ms(n, d2) × Symd(X), where N = nd − 1 =
dim P(Ext1(OD,E2)). Since we assume that d is positive, N is non-negative and
positive if n > 1. Setting d = d1 − d2, a simple computation shows that

dim P = (g − 1)(n2
1 + n2

2 − n1n2)− n1d2 + n2d1 + 1.

Clearly P is irreducible of the same dimension as NL, and since it is contained in S
(like NL) it must be birationally equivalent to NL. Notice that If GCD(n, d2) = 1,
then P is the projectivization of a Picard bundle. �

Combining the results of this section, we arrive at the following theorems.

Theorem 8.15. The moduli space NL(n, n, d1, d2) is non-empty and irreducible.
Furthermore, it is birationally equivalent to a P

N -fibration over Ms(n, d2) ×
Symd(X), where the fiber dimension is N = n(d1 − d2)− 1.

Proof. It follows from Theorems 8.13 and 8.10 and Proposition 8.14. �
Theorem 8.16. Let α � 2g − 2 > αm. Then

(1) The moduli space N s
α is birationally equivalent to NL and it is hence non-

empty and irreducible.
(2) If in addition either

• GCD(n, 2n, d1 + d2) = 1 and α � 2g − 2 > αm is generic, or
• d1 − d2 < α,

then Nα(n, n, d1, d2) is birationally equivalent to NL(n, n, d1, d2) and hence
irreducible.

Proof. If 2g − 2 > αL, the result follows from Theorems 8.6 and 8.15. Assume
then that 2g − 2 � αL.

(1) From Theorem 8.13 we know that NL is birationally equivalent to N s
L. The

result follows now from Theorem 5.13 and Theorem 8.15.
(2) For the first part, we observe that from (4) in Proposition 2.6 one has that

Nα = N s
α if GCD(n, 2n, d1 + d2) = 1 and α is generic, and hence the result

follows from (1). The second part is a consequence of Theorem 8.13. �
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9. Triples and dimensional reduction

Let P
1 be the complex projective line. The Lie group SL(2,C) acts on X × P

1

via the trivial action on X and the identification P
1 = SL(2,C)/P , where P is

the subgroup of lower triangular matrices.
The theory of holomorphic triples and vortex equations on X is related with

the study of stable SL(2,C)-equivariant bundles on X × P
1 and the existence of

invariant solutions to the Hermitian–Einstein equations. In fact, it is in this way
(known as dimensional reduction) that the theory originated (see [4] and [13] for
details).

In this section we recall the basics of this correspondence and apply our main
results on triples to the theory of vector bundles on X × P

1.

9.1. Existence of stable bundles on X × P
1 and triples

Proposition 9.1. [4, Proposition 2.3] There is a one-to-one correspondence
between holomorphic triples (E1, E2, φ) on X and holomorphic extensions on
X × P

1 of the form

0 −→ p∗E1 −→ E −→ p∗E2 ⊗ q∗O(2) −→ 0, (9.1)

where p and q are the canonical projections from X × P
1 to X and P

1, respec-
tively, and O(2) is the degree 2 line bundle of P

1 (the tangent bundle).

Proof. The proof given in [13] is simply that extensions overX × P
1 of the form

(9.1) are parametrized by

H 1(X × P
1, p∗(E1 ⊗ E∗

2)⊗ q∗O(−2)).

By the Künneth formula, this is isomorphic to

H 0(X,E1 ⊗ E∗
2)⊗H 1(P1,O(−2)) ∼= H 0(X,E1 ⊗ E∗

2).

After fixing an element in H 1(P1,O(−2)), the homomorphism φ can thus be
identified with the extension class defining E. �

Notice that the vector bundles E of the form in (9.1) come equipped with an
action of SL(2,C) which lifts the action on X × P

1. The action on E is trivial on
p∗E1 and p∗E2, is the standard one on O(2), and leaves invariant the extension
class.

To talk about the stability ofE one needs a Kähler metric onX × P
1. Let us fix

a metric onX and the Fubini-Study metric on P
1, both normalized to have volume

2π . Let α > 0 be a real number. We consider onX × P
1 the one-parameter family

of SU(2)-invariant Kähler metrics with Kähler form

ωα = αp∗ωX ⊕ q∗ωP1 .
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Here ωX and ωP1 are the Kahler forms on X and P
1, respectively. The degree of

a complex vector bundle E over X × P
1 with respect to ωα is given by

deg(E) =
∫

X×P1
c1(E) ∧ ωα,

where c1(E) is the first Chern class of E. Recall that E is said to be stable with
respect to ωα if for every non-trivial coherent reflexive subsheaf E′ ⊂ E,

µ(E′) < µ(E),

where µ(E) = deg(E)/ rk(E) is the slope of E. Since we are in complex dimen-
sion 2, E′ is locally free.

Theorem 9.2. [4, Theorem 4.1] Let T = (E1, E2, φ) be a holomorphic triple
over X and let E be the holomorphic bundle over X × P

1 defined by T as in
Proposition 9.1. Then, if E1 and E2 are not isomorphic, T is α-stable if and only
if E is stable with respect to ωα. If E1

∼= E2, the triple T is α-stable if and only
if E decomposes as a direct sum

E = p∗E1 ⊗ q∗O(1)⊕ p∗E2 ⊗ q∗O(1),

and p∗Ei ⊗ q∗O(1) is stable with respect to ωα.

Remark 9.3. The stability of p∗Ei ⊗ q∗O(1) is equivalent to the stability of Ei .

Let (n1, n2, d1, d2) be the type of the triple T = (E1, E2, φ). Let Mα be the
moduli space of stable bundles on X × P

1 with respect to ωα, whose topological
type is that of E in (9.1). Combining Theorems 9.2, 7.9 and 8.16 we can prove
existence of stable bundles on X × P

1. More precisely.

Theorem 9.4. Mα is non-empty if

(1) 2g − 2 � α � αM if n1 �= n2, where αM is given by (2.3);
(2) 2g − 2 � α if n1 = n2.

Remark 9.5. The moduli space Nα can be identified with the SL(2,C)-invariant
part of Mα ([4]). Hence from Theorems 7.9 and 8.16 we can say that within the
range for α in Theorem 9.4 the invariant loci for different values of α are bira-
tionally equivalent. Whether this is true or not for the whole moduli spaces Mα

for different values of α is something that deserves further study (see [23] for a
discussion on this in the rank two case).



Moduli spaces of holomorphic triples over compact Riemann surfaces 349

9.2. Existence of SU(2)-invariant Hermitian–Einstein metrics

By the Hitchin–Kobayashi correspondence proved by Donaldson, Uhlenbeck and
Yau [10,11,32], the stability of the bundle E on X × P

1 is equivalent to the exis-
tence of an irreducible solution to the Hermitian–Einstein equation. Recall that
this is a Hermitian metric on E such that

√−1�F(E) = µ IdE, (9.2)

where, as usual, � is contraction with the Kähler form of X × P
1, F(E) is the

curvature of the unique connection determined by the Hermitian metric
and the holomorphic structure of E, IdE is the identity endomorphism of E and
µ is the slope of E.

The action of SL(2,C) on E restricts to an action of the compact subgroup
SU(2) ⊂ SL(2,C), and, since the metric ωα on X × P

1 is SU(2)-invariant, one
can consider SU(2)-invariant solutions to (9.2). The relevant fact is the following.

Proposition 9.6. [13, Proposition 3.11] Let T = (E1, E2, φ) be a holomorphic
triple of type (n1, n2, d1, d2) over X and let E be the holomorphic bundle over
X × P

1 associated to T by Proposition 9.1. Let τ1 and τ2 be real numbers such
that d1 + d2 = n1τ1 + n2τ2, and τ1 − τ2 > 0. Then T admits a solution to (2.6) if
and only if E admits an SU(2)-invariant Hermitian–Einstein metric with respect
to ωα.

Combining the previous results we have the following.

Corollary 9.7. The vector bundleE associated to a tripleT of type (n1, n2, d1, d2)

has a Hermitian–Einstein metric, with respect to ωα if

(1) 2g − 2 � α � αM if n1 �= n2, where αM is given by (2.3);
(2) 2g − 2 � α if n1 = n2.

In fact this metric is SU(2)-invariant and it is given by a vortex solution on T .

Remark 9.8. This is similar in spirit to the instanton solutions of vortex type on
R

4 studied by Witten [33] and Taubes [30].
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