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Abstract. Extending our earlier results, we prove that certain tight contact structures on circle
bundles over surfaces are not symplectically semi–fillable, thus confirming a conjecture of Ko
Honda.
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1. Introduction

Let Y be a closed, oriented three–manifold.A positive, coorientable contact struc-
ture on Y is the kernel

ξ = ker α ⊂ T Y

of a one–form α ∈ �1(Y ) such that α ∧ dα is a positive volume form on Y . The
pair (Y, ξ) is a contact three–manifold. In this paper we only consider positive,
coorientable contact structures, so we call them simply ‘contact structures’. For
an introduction to contact structures the reader is referred to [1, Chapter 8] and [7].

There are two kinds of contact structures ξ on Y . If there exists an embedded
disc D ⊂ Y tangent to ξ along its boundary, ξ is called overtwisted, otherwise
it is said to be tight. The isotopy classification of overtwisted contact structures
coincides with their homotopy classification as tangent two–plane fields [4]. Tight
contact structures are much more mysterious, and difficult to classify. A contact
structure on Y is virtually overtwisted if its pull–back to some finite cover of Y

becomes overtwisted, while it is called universally tight if its pull–back to the
universal cover of Y is tight.
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Rényi Institute of Mathematics, HungarianAcademy of Sciences, H-1053 Budapest, Reáltanoda
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A contact three–manifold (Y, ξ) is symplectically fillable, or simply fillable,
if there exists a compact symplectic four–manifold (W, ω) such that (i) ∂W = Y

as oriented manifolds (here W is oriented by ω ∧ ω) and (ii) ω|ξ �= 0 at every
point of Y . (Y, ξ) is symplectically semi–fillable if there exists a fillable contact
manifold (N, η) such that Y ⊂ N and η|Y = ξ . Semi–fillable contact struc-
tures are tight [6,13]. The converse is known to be false by work of Etnyre and
Honda, who recently found two examples of tight but not semi–fillable contact
three–manifolds [8]. Nevertheless, all such examples known at present are virtu-
ally overtwisted, so it is natural to wonder whether every universally tight contact
structure is symplectically semi–fillable.

In this paper we study certain virtually overtwisted tight contact structures
discovered by Ko Honda. Denote by Yg,n the total space of an oriented S1–bundle
over �g with Euler number n. Honda gave a complete classification of the tight
contact structures on Yg,n [14]. The three–manifolds Yg,n carry infinitely many
tight contact structures up to diffeomorphism. The hardest part of the classifica-
tion involves two virtually overtwisted contact structures ξ0 and ξ1, which exist
only when n ≥ 2g. Honda conjectured that ξ0 and ξ1 are not symplectically semi–
fillable [14]. The main theorem of the present paper extends our earlier results
regarding these structures [19], establishing Honda’s conjecture:

Theorem 1.1. For n ≥ 2g > 0, the tight contact structures ξ0 and ξ1 on Yg,n are
not symplectically semi–fillable.

The proof of Theorem 1.1 consists of two steps. In the first step, we derive a contact
surgery presentation for ξ0 and ξ1 in the sense of [3], and we use it to determine
the homotopy type of ξ0 and ξ1 considered as oriented two–plane fields. This is
done in Sections 2 and 3.

In the second step, using specific properties of the Spinc structures tξi
on Yg,n

induced by ξi (i = 0, 1) we generalize a result of the first author [17] so it applies
to the situation at hand. Using this generalization together with an analytic com-
putation of Nicolaescu’s [20], we are able to determine the possible homotopy
types of a semi–fillable contact structure inducing either tξ0 or tξ1 . This is done in
Section 4.

Theorem 1.1 follows immediately from the fact that the two sets of homotopy
classes determined in the two steps above have empty intersection.

2. Contact surgery presentations for ξ0 and ξ1

A smooth knot K in a contact three–manifold (Y, ξ) which is everywhere tangent
to ξ is called Legendrian. The contact structure ξ naturally induces a framing of
K called the contact framing.

Let �g be a closed, oriented surface of genus g ≥ 1, and let

π : Yg,n → �g



Tight, not semi–fillable contact circle bundles 287

denote an oriented circle bundle over �g with Euler number n. Let ξ be a contact
structure on Yg,n such that a fiber

f = π−1(s) ⊂ Yg,n (s ∈ �g)

is Legendrian. We say that f has twisting number k if the contact framing of f is
k with respect to the framing determined by the fibration π . A contact structure
on Yg,n is called horizontal if it is isotopic to a contact structure transverse to the
fibers of π .

Let ζ be a horizontal contact structure on Yg,2g−2 such that a fiber f of the
projection π is Legendrian with twisting number −1 (the existence of such a
contact structure is well–known, cf. [10, §1.D]). Let n ≥ 2g, and view the bundle
Yg,n → �g as obtained by performing a − 1

p+1 –surgery, where

p = n − 2g + 1,

along the fiber f of π : Yg,2g−2 → �g with respect to the trivialization induced
by the fibration π . It was observed by Honda ([14, §5]) that when n > 2g there
are two possible ways of extending ζ from the complement of a standard neigh-
borhood of f to a tight contact structure on Yg,n, while when n = 2g there is only
one possible extension. This determines the contact structures ξ0 and ξ1, which
coincide when n = 2g.

The construction of ξ0 and ξ1 can be viewed as a particular case of a more gen-
eral construction. In fact, given a Legendrian knot K in a contact three–manifold
(Y, ξ) and a nonzero rational number r ∈ Q, it is possible to perform a contact
r–surgery along K to obtain a new contact three–manifold (Y ′, ξ ′) [2,3]. Here Y ′

is the three-manifold obtained by a smooth r–surgery along K with respect to the
contact framing, while ξ ′ is constructed by extending ξ from the complement of
a standard neighborhood of K to a tight contact structure on the glued–up solid
torus. Such extension exists once r �= 0. In general there are several ways to
extend ξ , but up to isotopy there is only one if

r = 1

k
, k ∈ Z,

and two if

r = p

p + 1
, p > 1,

as follows from [2, Propositions 3, 4 and 7]. When r = −1 the corresponding
contact surgery coincides with Legendrian surgery [5,11,23]. A simple computa-
tion using the fact that the fiber f of Yg,2g−2 has twisting number −1 with respect
to the contact structure ζ shows that {ξ0, ξ1} can be defined as the set of contact
structures obtainable by contact p

p+1 –surgery along f .
From now on, we shall indicate a contact r–surgery along a Legendrian knot

K by writing the coefficient r next to it. Consider the result of performing contact
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(−1)–surgery on the Legendrian knot in standard form in Figure 1 (here we are
using the notation of [11], see especially Definition 2.1). Since contact (−1)–sur-
gery is equivalent to Legendrian surgery, Figure 1 also represents a Stein four–
manifold W with boundary [11]. As a smooth four–manifold, W is diffeomorphic
to the two–disc bundle Dg,2g−2 with Euler number 2g − 2 over a surface of genus
g. This can be checked by converting the contact surgery coefficient into the cor-
responding smooth surgery coefficient e.g. via the formulas found in [11] or [12].
Since by construction the boundaries of Stein four–manifolds come equipped with
Stein fillable contact structures, we have a Stein fillable contact structure ζ(g) on
Yg,2g−2, which is tight by [6,13].

Fig. 1. The Stein four–manifold W (with boundary), diffeomorphic to Dg,2g−2
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Fig. 2. The Legendrian surgeries equivalent to contact − p
p−1 –surgery

Lemma 2.1. The contact structure ζ(g) is horizontal.

Proof. According to the classification [14, Theorem 2.11] of tight contact struc-
tures on Yg,2g−2, the claim follows once we prove that the twisting number of any
Legendrian knot isotopic to the fiber is negative. This latter negativity follows
from the fact that contact (−1)–surgery on a Legendrian knot isotopic to a fiber
and having twisting number ≥ 0 would result in a Stein four–manifold containing
a sphere with self-intersection ≥ −1, contradicting the adjunction inequality for
Stein four–manifolds [18]. �	

By [3, Proposition 3], any contact r–surgery with r < 0 is equivalent to a
Legendrian surgery along a Legendrian link. Moreover, the set of Legendrian links
which correspond to some contact r–surgery is determined via a simple algorithm
by the Legendrian knot and the continued fraction expansion of r . For example,
let K be a Legendrian unknot in the standard contact three–sphere with Thurston–
Bennequin invariant equal to −1. Then, a contact − p

p−1 –surgery (p > 1) along K

is equivalent to Legendrian surgery along one of the Legendrian links in Figure 2.
According to [3, Proposition 7], a contact p

p+1 –surgery on a Legendrian knot K

is equivalent to a contact 1
2 –surgery on K followed by a contact − p

p−1 –surgery

on a Legendrian push–off of K . By [2, Proposition 9], a contact 1
2 –surgery on a

Legendrian knot K can be replaced by two contact (+1)–surgeries, one on K and
the other on a Legendrian push–off of K .

Consider the Legendrian knot L ⊂ ∂W whose diagram is obtained by replac-
ing the “dotted ellipse” in Figure 1 with Figure 3. If we perform contact p

p+1 –sur-
gery on L, the resulting contact structures will have contact surgery presentations
obtained by replacing the “dotted ellipse” in Figure 1 with either Figure 4(a)
or 4(b). The Legendrian knot

L ⊂ ∂W = Yg,2g−2

is isotopic to a fiber of

π : Yg,2g−2 → �g
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Fig. 3. The Legendrian knot L

Fig. 4. Pictures to be pasted in Figure 1 to obtain ξ0 and ξ1

and it has contact framing −1 with respect to the framing induced by the fibration.
Since ζ(g) is horizontal, we can define ξ0, respectively ξ1, as the contact structure
obtained by using the surgery diagram of Figure 4(a), respectively Figure 4(b).

3. Homotopy classes of ξ0 and ξ1

Homotopy theory of oriented two–plane fields on three–manifolds

Let �Y denote the space of oriented two–plane fields on the closed, oriented three–
manifold Y . Since a Spinc structure on a three–manifold can be interpreted as an
equivalence class of nowhere vanishing vector fields [22], by taking the oriented
normal a coorientable two–plane field ξ ∈ �Y naturally induces a Spinc structure
tξ , which depends only on the homotopy class [ξ ]. Therefore there is a map

p : π0(�Y ) → Spinc(Y )

defined as p([ξ ]) = tξ . It is not difficult to show that, if Y is connected, there
is a non–canonical identification of each fiber p−1(tξ ) with Z/d(tξ )Z, where
d(tξ ) ∈ Z is the divisibility of
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c1(ξ) ∈ H 2(Y ; Z),

and it is zero if c1(ξ) is a torsion element (see, e.g. [11, Proposition 4.1]).
When c1(ξ) is torsion the two–plane fields inducing the same Spinc structure

tξ can be distinguished by a numerical invariant. Suppose that X is a compact
4-manifold with ∂X = Y , with X carrying an almost–complex structure J whose
complex tangents at the boundary form an oriented two–plane field homotopic
to ξ on Y . Observe that the fact that c1(ξ) is torsion implies that c2

1(X, J ) ∈ Q

makes sense.

Theorem 3.1 ([11]). The rational number

d3(ξ) = 1

4
(c2

1(X, J ) − 3σ(X) − 2χ(X)) ∈ Q

depends only on [ξ ], not on the almost–complex four–manifold (X, J ). Moreover,
two two–plane fields ξ1 and ξ2 inducing the same Spinc structure with torsion
first Chern class are homotopic if and only if

d3(ξ1) = d3(ξ2). �	
In the following, the invariant d3 will be called the three–dimensional invari-

ant.

Attaching two–handles and homotopy invariants

Recall that contact (−1)–surgery, i.e. Legendrian surgery, can be viewed as the
result of attaching a symplectic two–handle [23]. In fact, attaching the two–handle
to a contact three–manifold (Y1, ξ1) gives rise to a cobordism W between Y1 and
the three–manifold underlying the contact three–manifold (Y2, ξ2) resulting from
the three–dimensional contact surgery. Furthermore, W carries an almost–com-
plex structure whose complex tangent lines at the boundary coincide with ξ1 and
ξ2 (see e.g. [9]).

In the case of contact (+1)-surgery, there is still a smooth cobordism W be-
tween Y1 and Y2. One can easily check the existence of an almost–complex struc-
ture J on the complement of a ball B in the interior of W , with J inducing ξ1 and
ξ2 as tangent complex lines. We define q to be the three–dimensional invariant
of the two–plane field induced by J on ∂B. Observe that, although J may not
extend to the whole cobordism, J induces a Spinc structure sJ which does extend
– uniquely – to W . A priori q depends on (Y1, ξ1) and the Legendrian knot K

along which we perform the contact surgery. In fact, it can be shown that q is
independent of these data; we will not use this fact here.

Lemma 3.1. With the above notation, if (Y1, ξ1) is the standard contact three–
sphere and K is a Legendrian unknot with Thurston–Bennequin invariant equal
to −1, then q = 1

2 .
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Proof. Consider K in the standard contact three–sphere as above. We view the
standard contact three–sphere as the contact boundary of the unit ball B1(0) ⊂ C2.
Attach a smooth two–handle H1 to B1(0) along K with framing +1 with respect
to the contact framing. The result is a smooth four–manifold X diffeomorphic to
S2 × D2. The unique Spinc structure on B1(0) extends to a Spinc structure s on
X, restricting to H1 as the Spinc structure defined above. Denote by k the value
of c1(s) on a generator of the second homology group of X.

Let K ′ be a Legendrian push–off of K , which we may assume disjoint from
H1, and attach a symplectic two–handle H2 to K ′ realizing Legendrian surgery
on K ′. The Spinc structure s extends over H2, and the value of its first Chern
class on the homology generator corresponding to K ′ is 0, because K ′ has van-
ishing rotation number (see [11], especially the proof of Proposition 2.3). By [2,
Proposition 8] the resulting contact three–manifold is just the standard contact
three–sphere. Its three–dimensional invariant d3 is − 1

2 , but when viewed as the
result of the above construction, d3 can also be expressed as

1

4
(2k2 − 4) + q.

We can generalize this argument using Legendrian push–offs

K1, K
′
1, . . . , Kn, K

′
n

of K by performing contact (+1)–surgeries on

K1, . . . , Kn

and contact (−1)–surgeries on

K ′
1, . . . , K ′

n.

The resulting contact three–manifold is the standard contact three–sphere again.
A homological computation as before gives the identity

1

4
(n + 1)(k2n − 2) + nq = −1

2
,

which must hold for all n ∈ N. This implies that k = 0 and q = 1
2 . �	

Spinc structures on disc and circle bundles

Let Dg,n be the oriented disc bundle with Euler number n over a closed oriented
surface of genus g. By e.g. fixing a metric on Dg,n one sees that the tangent
bundle of Dg,n is isomorphic to the direct sum of the pull–back of T �g and the
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vertical tangent bundle, which is isomorphic to the pull–back of the real oriented
two–plane bundle

Eg,n → �g

with Euler number n. In short, we have

T Dg,n
∼= π∗(T �g ⊕ Eg,n).

This splitting of T Dg,n naturally endows Dg,n with an almost–complex structure
which induces a Spinc structure s0 on Dg,n. The orientation on Dg,n determines
an isomorphism

H 2(Dg,n; Z) ∼= Z,

so the set

Spinc(Dg,n) = s0 + H 2(Dg,n; Z)

can be canonically identified with the integers. We denote by

se = s0 + e ∈ Spinc(Dg,n)

the element corresponding to the integer

e ∈ Z ∼= H 2(Dg,n; Z).

Consider Yg,n = ∂Dg,n. We have

H1(Yg,n; Z) ∼= H 2(Yg,n; Z) ∼= Z2g ⊕ Z/nZ,

where the summand Z/nZ is generated by the Poincaré dual F of the class of a
fiber of the projection

π : Yg,n → �g.

Each Spinc structure

se ∈ Spinc(Dg,n)

determines by restriction a Spinc structure

te ∈ Spinc(Yg,n),

with

te = t0 + eF, e ∈ Z.

Since nF = 0, we see that te+n = te for every e. Therefore,

t0, . . . , tn−1

is a complete list of torsion Spinc structures on Yg,n, i.e. Spinc structures on Yg,n

with torsion first Chern class. In short, the Spinc structures on Yg,n which extend
to the disc bundle are precisely the torsion ones.
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Homotopy invariants of the contact structures ξi

Let W be the Stein four–manifold with boundary diffeomorphic to Dg,2g−2 given
by Figure 1. Consider the smooth four–dimensional handlebody X obtained by
attaching to W the two–handles realizing the contact surgeries described in Fig-
ure 4(a) or 4(b). Converting the contact framing coefficients into the usual ones,
we see that a framed link presentation of X is obtained by pasting Figure 5(a) in
place of the “dotted ellipse” in Figure 1.

By the discussion above on attaching two–handles we know that, correspond-
ing to each of Figure 4(a) and 4(b), there is an almost–complex structure on X

minus two balls lying in the interior of the two–handles realizing the (+1)–surger-
ies. Moreover, the two almost–complex structures determine the two–plane fields
ξ0 and ξ1 on ∂X and two Spinc structures s0 and s1 on X. Observe that, since the
rotation number of the Legendrian knot in Figure 1 vanishes, it follows from [11,
Theorem 4.12] that c1(W) = 0. In the same way, it follows that we can choose
an orientation of the n − 2g linking knots with framing −3 in Figure 5(a) so
that c1(si ) evaluates as (−1)i on all the corresponding homology classes. Finally,
by the argument given in the proof of Lemma 3.1, c1(si ) evaluates trivially on
the generators of H2(X; Z) determined by the two–handles corresponding to the
(+1)–surgeries.

The four–manifold X is diffeomorphic to

Dg,n#S2 × S2#(n − 2g)CP
2
.

One can see this by performing a sequence of handleslides on the Kirby diagram
as shown in Figure 5. In fact, start by sliding over the knot K1 in Figure 5(a) the
remaining (n−2g−1) (−3)–framed circles. Then, slide K1 over K2 and finally K2

over K3, obtaining 5(b). Sliding the long (2g − 2)–framed arc over the 2–framed
knot and using the 0–framed normal circle to separate the 2–framed circle from
the rest of the diagram, we get 5(c). Blowing down the (−1)–circle results in 5(d),
and (n − 2g − 1) further blow downs give 5(e). Following the handle slides of
Figure 5 on the homological level we see that c1(si ) evaluates on the generator of
the second homology of Dg,n as (−1)i(n − 2g). Moreover, it evaluates as (−1)i

on generators of the CP
2

summands, and vanishes when restricted to the S2 × S2

summand. This immediately implies that the Spinc structure tξi
is equal to the

restriction of the unique Spinc structure

se ∈ Spinc(Dg,n)

such that c1(se) evaluates on the generator of H2(Dg,n; Z) as (−1)i(n−2g). Since
the value of c1(s0) on the generator is 2 − 2g + n, e satisfies the equation:

2 − 2g + n + 2e = (−1)i(n − 2g).
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Fig. 5. The diffeomorphism between X and Dg,n#S2 × S2#(n − 2g)CP
2

Therefore we get e = −1 or e = 2g − 1 + n respectively for i = 0 or i = 1.
Since se|Yg,n

= te, we conclude that

tξi
= t2ig−1

for i = 0, 1. Observe that this result is consistent with the independent calculation
made in [19].

Lemma 3.2. The value of the three–dimensional invariant of ξi is

d3(ξi) = n2 − 3n + 4g2

4n
.
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Proof. We have

χ(X) = n − 4g + 4, σ (X) = 1 − n + 2g.

From what we know about c1(si ) it is easy to deduce that

c2
1(si ) = −2

g(n − 2g)

n
.

In order to compute the three–dimensional invariant we need to take into account
the correction term q for each of the two contact (+1)–surgeries. Using Lemma 3.1
we conclude

d3(ξi) = 1

4
(c2

1(si ) − 2χ(X) − 3σ(X)) + 2 = n2 − 3n + 4g2

4n
. �	

4. The proof of Theorem 1.1

Theorem 4.1. Let n ≥ 2g > 0, and let ξ be an oriented two–plane field on Yg,n

such that tξ ∈ {tξ0, tξ1}. If ξ is homotopic to a semi–fillable contact structure, then

d3(ξ) = n2 + n + 4g2

4n
− 2g − 2.

Proof. In the proof of [17, Theorem 2.1] it is shown that if Y is a closed three–
manifold and t ∈ Spinc(Y ) is torsion and satisfies:

• all Seiberg-Witten solutions in t are reducible and
• the moduli space of the Seiberg-Witten solutions in t is a smooth manifold

and the corresponding Dirac operators have trivial kernels,

then the expected dimension d1 of the Seiberg-Witten moduli space of solutions
over a symplectic semi–filling of (Yg,n, ξi) equipped with a cylindrical end metric
and fixed asymptotic limit is equal to

d1 = −1 − b1(Yg,n). (1)

The moduli space of Seiberg-Witten solutions on Yg,n has been determined in
[15] (see also [21]). These results show that the assumptions listed above hold
for the moduli spaces associated to the Spinc structures tξi

. Therefore, Equation
(1) holds. This implies that for each i = 0, 1, Yg,n carries only one homotopy
type of two–plane fields potentially containing semi–fillable contact structures
inducing tξi

, because d1 is equal to the three–dimensional invariant plus an expres-
sion involving some topological terms and an η–invariant which depends only on
tξi

[16, Formula 3.1]. In fact, such an expression has been explicitely calculated
in [20], in the formula preceding (3.29), so our proof reduces to translating that
formula into our notations.
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In Nicolaescu’s notations the integer κ corresponds to tg−1+κ . This is because
his “base” Spinc structure is induced by a Spin structure on Yg,n with associated
bundle of spinors

S = π∗K
− 1

2
�g

⊕ π∗K
1
2
�g

→ Yg,n

(see text following Formula (2.6) in [20]), and S is the restriction of

T Dg,n ⊗ π∗K
1
2
�g

→ Dg,n

to the boundary.
The result we need is obtained by substituting n for � and g or n − g in place

of κ into the formula preceding (3.29) in [20]. (The formula we are using here
differs from Formula (3.29) by the additive term 2g − 1 because (3.29) computes
the dimension of the whole moduli space rather than the dimension of the mod-
uli space of solutions with a fixed asymptotic limit, i.e. d1.) Explicitely, in our
notation we have:

−1 − b1(Yg,n) = d1 = d3(ξ) − 1

2
(2g − 1) − 1

4
(n − 1) − κ2

n
+ κ

where b1(Yg,n) = 2g and the value of κ to be substituted is either g or n − g

according to whether tξ = tξ1 or tξ = tξ0 , respectively. In both cases we obtain
for d3(ξ) the value given in the statement. �	

Proof of Theorem 1.1. Let ξ be a two–plane field representing a homotopy class
inducing tξi

which might be represented by a semi–fillable contact structure. Then,
by Lemma 3.2 and Theorem 4.1 we have

d3(ξi) − d3(ξ) = 2g + 1 > 0.

Therefore, the homotopy classes [ξi] cannot be represented by semi–fillable con-
tact structures. �	

Remarks. (1) For n < 2g the circle bundle Yg,n admits no Spinc structure for
which the Seiberg-Witten moduli space has the properties required by the
proof of Theorem 4.1.

(2) The assumption g > 0 in Theorem 4.1 is necessary, since Y0,n is a lens space
on which all tight contact structures are Stein fillable. The proof of Theo-
rem 4.1 breaks down since the formula from [20] used in the proof holds only
for g ≥ 1.
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