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Abstract. We determine over which fields twisted Mumford quotients have rational points.
Using the p-adic uniformization, we apply these results to Shimura curves, and show some new
cases for which the jacobians are even in the sense of [PS].
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1. Introduction and notation

The real points on certain Shimura varieties were determined by Shimura in [Shi].
In [JL1] the case of p-adic points was treated for Shimura curves associated to
maximal orders in indefinite rational quaternion division algebras. The case of
good reduction turned out to reduce to the trace formula via Hensel’s lemma. The
case of bad reduction was handled through the result of Cherednik and Drinfeld,
which assured that these curves admit a p-adic uniformization.

A general result of Varshavsky, Rapoport and Zink (see [Va1,Va2]) gives the
known cases when Shimura varieties admit a p-adic uniformization. Of special
interest in this context is the case of curves, because of the recent results of [PS]
and [JL3]. In this work we answer the question of existence of local points for
some of these varieties. Using this we show in some new curve cases that the
jacobians are even in the sense of [PS].

We now set some notation. Let F be a totally real number field of degree g over
Q, let∞1, . . . ,∞g be all the real embeddings of F , and let F∞ be the product∏g

i=1 F∞i
. Denote by F+∞ and F×+ the set of totally positive elements of F∞ and

F respectively.
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Let A = AF , Af , Of and Av
f denote the rings of adèles of F , the finite adèles

of F , the finite integral adèles of F and the finite adèles of F without the v

component for a certain finite place v. Also for any ring A we denote by A× the
group of invertible elements of A.

For an algebraic group G/F , we abbreviate G = G(F ), Gv = G(Fv),
Gf = G(Af) and Gv

f = G(Av
f ). We view G as contained in G(A) and in each Gv

f
and Gv via the natural embeddings.

For a local field L, denote by valL the valuation of L which sends the uni-
formizer to 1. Denote by Lnr the completion of the maximal unramified extension
of L. For each positive integer r , denote by L(r) the extension of degree r of L in
Lnr. We denote the center of a group G by Z(G).

2. Local points of twisted Mumford quotients

Let K be a finite extension field of Qp, let d ≥ 2 be an integer, and let � ⊂ GLd(K)

be a subgroup. Set Z� := � ∩ Z(GLd(K)), and for every subgroup � ⊂ �

containing Z�, we will write P� instead of �/Z�. Finally, let k and k+ be
non-negative integers such that valK(Z�) = kZ and valK(det �) = k+Z. In
particular, dk is a multiple of k+.

Assume that:

(A) P� is a cocompact lattice in PGLd(K);
(B) Z� is not relatively compact in K×.

Assumpion (B) imply that k and k+ are non-zero. Let

�′ := {γ ∈ �|dk divides valK(det(γ ))}.
Then �′ is a normal subgroup of � containing Z�, and �/�′ is cyclic of order
dk/k+. For a subgroup � ⊂ � we denote by �′ the intersection of � with �′.

Let �d
K be Drinfeld’s symmetric space. It is the K-analytic space ([Ber]) �d

K

obtained by removing all K-rational hyperplanes from Pd−1
K . It is equipped with a

natural action of PGLd(K). Moreover the K-analytic space �
d,nr
K := �d

K⊗̂KKnr

is equipped with a K-rational action of GLd(K) such that g ∈ GLd(K) acts on
�

d,nr
K via the natural (left) action on �d

K and the action of FrvalK(det g)

K on Knr.
Consider the quotient X̃ = X̃� := �\�d,nr

K . Then

X̃ = P�\(Z�\�d,nr
K ) = P�\(�d

K ⊗K K(dk)),

hence assumption (A) implies that X̃ algebraizes canonically to a projective
geometrically connected variety X over K(k+). More precisely, assumption (A)
implies that the quotient �′\�d

K algebraizes canonically to a projective geometri-
cally connected variety X′ over K (see [Mus]), and X = (�/�′)\(X′ ⊗K K(dk)).
We say that X is a (Frobenius) twist of the Mumford uniformized variety X′.
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Let L be any finite extension of K(k+), and let e = e(L/K(k+)) and f =
f (L/K(k+)) be the ramification index and the residue class degree of L over
K(k+) respectively. Notice that [L : K] = ef k+.

Finally, it will be sometimes convenient for us to assume that � satisfies

(C) det � ⊂ Z�.

Notice that most interesting subgroups (e.g. congruence ones) satisfy assump-
tion (C). Actually, what we will use is a consequence of (C) which asserts that k

divides k+.

Theorem 2.1. Let � be a subgroup satisfying assumptions (A) and (B).

a) If X(L) �= ∅, then there exists a subgroup � ⊂ � containing Z� such that:
(i) the group P� is finite;

(ii) valK(det(�)) = dkZ+ f k+Z;
(iii) d|ef k+m, where m is the order of P�′.

b) The converse of a) holds if we assume in addition either that d is prime and �

satisfies assumption (C) or that d|ef k+. In particular, the converse of a) holds
if P�′ is torsion-free.

Proof. Let d ′ be the least positive integer for which L(d ′) contains K(dk). Then d ′

is the smallest positive integer such that dk divides f k+d ′, hence we have that
d ′ = dk/ gcd(dk, f k+). Observe that conditions (ii) and (iii) of the theorem can
be restated as

(ii)′ valK(det(�)) = (dk/d ′)Z and
(iii)′ d ′|ekm

respectively. Then

K(dk) ⊗K(k+) L 
 ⊕Hom
K(k+) (K

(kd/d′),L)L
(d ′).

This yields the following description of XL:

XL = X ⊗K(k+) L 
 (�/�′)\
(
�Hom

K(k+) (K
(kd/d′),L)X

′ ⊗K L(d ′)
)


 (�1/�′)\(X′ ⊗K L(d ′)),

where �1 is the stabilizer in � of any (and hence of each) connected component
of X′ ⊗K (K(dk) ⊗K(k+) L). Thus

�1 = {γ ∈ �|dk/d ′ divides valK(det(γ ))}.
The quotient �1/�′ is cyclic of order d ′, generated by the projection of any element
γ0 ∈ �1 such that valK(det(γ0)) = dk/d ′. Fix such a γ0. Then

X(L) = {P ′ ∈ X′(L(d ′))|γ0(P
′) = P ′}. (1)
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These considerations prove the following

Lemma 2.2. X(L) �= ∅ if and only if there exists P ∈ �d
K(L) such that for every

σ ∈ Gal(L/L) there exists an element φ(σ) ∈ �1 satisfying σ(P ) = φ(σ)(P )

and φ(σ) ∈ γ i
0�′ if σ|L(d′) = Fri

L. (Here �1 acts on �d
K(L) through its projection

to PGLd(K).)

We return to the proof of the Theorem:

a) Assume that X(L) �= ∅, and let P be as in the lemma. Set

� := {γ ∈ �1|γ (P ) = τ(P ) for some τ = τ(γ ) ∈ Gal(L/L)}.
Then � is a subgroup of �1, containing Z�, so it will suffice to show that �

satisfies the conditions (i)-(iii) of the Theorem.
(i) Since the natural GLd(K)-equivariant map from �d

K to the Bruhat-Tits
building Bd

K of PGLd(K) is constant on the Galois orbits, � stabilizes a certain
point of Bd

K . By assumption (A) on �, the group P� ⊂ PGLd(K) is compact
and discrete. Hence it is finite.

(ii) By Lemma 2.2, the existence of P forces � to contain an element from
γ0�

′. Since � ⊃ Z�, the statement follows.
(iii) Let δ0 be an element from γ0�

′ ∩� ⊂ �1. Multiplying δ0 by an element
of Z� we may and will assume that valK(det(δ0)) = valK(det(γ0)) = kd/d ′.
Let n be the order of the image of δ0 in P�, and let δn

0 = a ∈ K× ⊂ L×. Then
det(δ0)

n = ad , hence valL(a) = n valL(det(δ0))/d = ekn/d ′.
Let L′ be the field of rationality of P (corresponding by Galois theory to

the stabilizer H ⊂ Gal(L/L) of P ). Then for every σ ∈ Gal(L/L) and every
τ ∈ H we have

τ(σ (P )) = τ(φ(σ )(P )) = φ(σ)(τ (P )) = φ(σ)(P ) = σ(P ),

hence L′ is a Galois extension of L. Also we have a natural surjective homo-
morphism π : �→ Gal(L′/L) such that π(δ)(P ) = δ(P ) for each δ ∈ �.

Let v ∈ (L′)d be a representative of P ∈ �d
L(L′) ⊂ Pd−1(L′). Then by our

assumption, there exist τ ∈ Gal(L/L) and λ ∈ L′ such that δ0(v) = λτ(v).
Since the action of δ0 ∈ GLd(K) commutes with that of τ , we get av =
δn

0 (v) = λτ(λ)τ 2(λ) · · · τn−1(λ)(v). Hence a = λτ(λ)τ 2(λ) · · · τn−1(λ). Tak-
ing valuations, we get valL(λ) = valL(a)/n = ek/d ′. Since valL′(λ) is an
integer, d ′|eke(L′/L), so it will suffice to show that e(L′/L) divides m.

But e(L′/L) obviously equals the ramification degree of L′L(d ′) over L(d ′),
hence it divides the degree [L′L(d ′) : L(d ′)]. This degree is equal to the number
of conjugates of P over L(d ′). But conjugates of P over L(d ′) form a homoge-
neous space for the action of the group �′/Z�, hence the number of conjugates
divides the order of �′/Z�, which is m. This completes the proof of part a).

b) We will show the existence of local points by a case-by-case analysis.
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I) Assume first that d|ef k+ or, equivalently, that d ′|ek. Let δ0, n and a be
as in the proof of iii) in a). It will suffice us to show that there exists a point
P ∈ �d

K(L(n)) such that δ0(P ) = FrL(P ).
The assumption d ′|ek implies that n| valL(a). Therefore there exist λ ∈ L(n)

such that NL(n)/L(λ) = a. Hence δ′ := λ−1δ0 ∈ GLd(L
(n)) satisfies Frn−1

L (δ′)
Frn−2

L (δ′) · · · δ′ = 1. By Hilbert Theorem 90 for GLd , there exists B ∈ GLd(L
(n))

such that δ′ = FrL(B) · B−1. Hence for every vector v ∈ Ld , the image P = Pv

of Bv ∈ (L(n))d in Pd−1(L(n)) satisfies δ0(P ) = FrL(P ). Therefore it remains to
show that there exists v ∈ Ld such that the corresponding Pv belongs to �d

K .
Let W be the L(n)-vector subspace of Matd(L(n)) spanned by the Galois con-

jugates of B over L. Then W is invariant under the action of the Galois group
Gal(L(n)/L), hence is defined over L by descent theory. Therefore W contains an
element B ′ ∈ GLd(L).

By our assumption, d|ef k+, hence [L : K] = ef k+ ≥ d. In particular, L con-
tains d elements which are linearly independent over K . Equivalently, there exists
v′ ∈ Ld not lying in any K-rational hyperplane. We claim that for v := (B ′)−1(v′)
the corresponding Pv lies in �d

K . In fact, let w ∈ Kn be a row vector such that
wBv = 0. Since w and v are L-rational, we get wCv = 0 for every matrix
C ∈ W . In particular, we have wv′ = wB ′v = 0. By our choice of v′, the vector
w is therefore the trivial vector, so that Pv ∈ �d

K .
II) It remains to consider the case when � satisfies assumption (C) and d is

prime not dividing ef k+. Then d ′ = d, k+ = k and [� : �′] = d. Let δ0, n and a

be as above.
We claim that for every field extension L̃/K whose ramification degree e(L̃/K)

is prime to d (in particular for L̃ = L), the subalgebra L̃0 = L̃[δ0] ⊂ Matd(L̃)

is a totally ramified field extension of L̃ of degree d. Indeed, since the minimal
polynomial of δ0 divides xn− a, the algebra L̃0 is either a field or a direct sum of
fields. Let L̃′0 be one of the direct factors of L̃0, and let δ′0 be the image of δ0 in
L̃′0. Then (δ′0)

n = a, therefore

valL̃′0(δ
′
0) = valL̃′0(a)/n = e(L̃′0/K)ekn/nd = e(L̃′0/K)ek/d.

Since valL̃′0(δ
′
0) is an integer, our assumption implies that

d|e(L̃′0/L̃)|[L̃′0 : L̃] ≤ [L̃0 : L̃] = d.

From this the statement follows.
It follows from our assumption that d2 divides the order of P�. We distinguish

two cases: i) d2|n and ii) d2 does not divide n.

Case i) We will prove that there is a cyclic extension M/L of degree n, whose
ramification degree is d such that a ∈ NmM/L M×. Write n as a product dtn′,
where n′ is prime to d.As before, valL(a) = ekn/d = dt−1ekn′, hence n′| valL(a).
It follows that a belongs to NmL(n′)/L(L(n′))×. If we find a cyclic extension M ′/L
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of degree dt with ramification degree d such that a ∈ NmM ′/L(M ′)×, then the
composite field M := M ′L(n′) satisfies the required property. Indeed, as M ′ and
L(n′) are linearly disjoint over L, we have

NmM ′L(n′)/L(M ′L(n′))× = NmM ′/L(M ′)× ∩ NmL(n′)/L(L(n′))×.

By Local Class Field Theory, to construct M ′ it is equivalent to construct an
open subgroup H ⊂ L×, containing a and contained in {l ∈ L×|dt−1 divides
valL(l)} such that L×/H ∼= Z/dtZ.

First we show that a is not a d th power in L. In fact, suppose that a = bd for
some b ∈ L. Let η be a primitive d th root of unity inside L. Then the ramification
degree of L̃ := L(η) over L (hence over K) is prime to d, so by the claim above
the algebra L̃0 = L̃[δ0] ⊂ Matd(L̃) is a field. The equality

(δ
n/d

0 − b)(δ
n/d

0 − ηb)...(δ
n/d

0 − ηd−1b) = δn
0 − a = 0

then implies that some δ
n/d

0 − ηib equal to 0. Hence δ
n/d

0 is central in Matd(L̃),
contradicting the fact that δ0 has an order n modulo center.

The group A := L×/(L×)d
t

is a finite abelian d-group. Let ā and π̄ be the
images in A of a and of some uniformizer of L respectively, and set A′ :=
O×L/(O×L )d

t ⊂ A. We claim that there exists a subgroup H ′ ⊂ A′ such that A

decomposes as a direct sum 〈π̄〉⊕〈ā〉⊕H ′, where by 〈π̄〉 (resp. 〈ā〉) we denote the
cyclic subgroup generated by π̄ (resp. ā). Indeed, using the fact that dt−1| valL(a)

and that a is not a d th power in L, we first see that the cyclic subgroups 〈π̄〉 and
〈ā〉 have a trivial intersection. Put a′ := aπ− valL(a) ∈ O×L . It remains to show
that 〈ā′〉 is a direct summand in A′, or equivalently that a′ is not a d th power. As
d| valL(a) and a is not a d th power in L, the statement follows. Now we can take
H ⊂ L× be the inverse image of 〈ā〉 ⊕H ′ in L×.

Let σ be a generator of Gal(M/L) such that σ|L(n/d) = FrL. As in the previous
case, it will suffice to find a pointP ∈ �d

K(M) such that δ0(P ) = σ(P ). Letλbe an
element of M such that NmM/L(λ) = a.As before, there exists B ∈ GLd(M) such
that σ(B) = λ−1δ0B. Then for every v ∈ Ld the image P = Pv ∈ Pd−1(M) of
Bv ∈ Md satisfies δ0(P ) = σ(P ), so it remains to show that some Bv does not lie
in aK-rational hyperplane. In fact, suppose thatwBv = 0 for some row vectorw ∈
Kd . Since σ(Bv) = λ−1δ0Bv, it follows that wδi

0Bv = 0 for all i. Since the mini-
mal polynomial of δ0 has degree d, we get that for a generic v the vectors δi

0Bv =
B(B−1δ0B)iv span all of Md . For such a v we therefore get w = 0, as claimed.

Case ii) Let δ̄0 be the image of δ
n/d

0 in P�, and let �d be a d-Sylow subgroup
of P� containing δ̄0. By our assumptions, �d ∩P�′ is a non-trivial d-subgroup,
hence it contains a central element δ̄1 of �d of order d. Since n/d is prime to
d , we get that δ̄0 /∈ P�′. Therefore δ̄0 and δ̄1 generate a subgroup isomorphic to
(Z/dZ)2.

Let δ1 ∈ � be a representative of δ̄1, then (δ1)
d ∈ K×. Replacing δ0 by δ

n/d

0 ,
we get δ0δ1 = bδ1δ0 for some b ∈ K×. Taking determinants we see that bd = 1.
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We claim that b �= 1. In fact, if b were equal to 1, then δ1 would belong to the
centralizer of δ0 in Matd(K), which is K(δ0). Since K(δ0) is a totally ramified
extension of K , the only elements of K(δ0)

× whose d th power is in K× are of the
form c(δ0)

i for some c ∈ K× and some i. But then we get δ̄1 = (δ̄0)
i , contradicting

our assumptions. Hence b is a primitive d th root of unity.
The characteristic polynomial of δ0 is irreducible over K . Therefore δ0 has d

distinct eigenvectors V1, ..., Vd (conjugate over K). They correspond to d conju-
gate fixed points P1, ..., Pd ∈ �d

K of δ0. To finish the proof of the theorem it will
suffice to show that the cyclic group generated by δ̄1 acts simply-transitively on
the Pi’s.

Let λ1, ..., λd be the eigenvalues of δ0, corresponding the Vi’s, that is, δ0(Vi) =
λiVi for all i = 1, ..., d. Then for each i = 1, ..., d and each j = 1, ..., d − 1 we
have δ0(δ1)

j (Vi) = bj (δ1)
j δ0(Vi) = bjλi(δ1)

j (Vi). Thus (δ̄1)
j (Pi) �= Pi , as was

claimed. ��

Remarks 2.3. a) By similar analysis, we can show that the converse of a) holds in
some more cases, but we do not know whether it holds in general. In particular,
we do not know whether assumption (C) in part b) is neccessary.

b) We suspect that there should be a simpler “topological” proof of Theorem 2.1,
which uses the fact that the Bruhat-Tits building of PGLd(K) can be naturally
embedded into (Berkovich’s) �d

K .
c) The curve case of Theorem 2.1 was studied in [JL1], and generalizing these

results to the higher dimensional case is one of our aims here — see also Sec-
tion 4. It is in fact possible to obtain our results here through a generalization
of the method of loc. cit., namely by an analysis of the special fiber and the
resolution of its singularities.

Corollary 2.4. a) If dk|f k+, then X(L) �= ∅.
b) The converse of a) holds, if P� is torsion-free.

Proof. Since valK(det(Z�)) = dkZ, the statement follows immediately from the
theorem applied to � = Z�. ��

3. P -adic uniformization of Shimura curves

First we recall the definition of Shimura curves (cf. [De2], [Va2, Sect. 5]):

Let B int/F be a quaternion division algebra, Let Gint/F be the algebraic group
associated to its multiplicative group, and let ν int : Gint → Gm be the F -mor-
phism induced from the reduced norm from B int to F . Assume that B int ⊗F,∞i

R

is indefinite for i = 1 and definite for 2 ≤ i ≤ g. Fix identifications of B int
∞i

with Mat2×2(R) for i = 1 and with the Hamilton quaternions H for 2 ≤ i ≤ g.
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Then B int⊗QR ∼= Mat2×2(R)×Hg−1. Let h : ResC/R Gm(R)→ ResF/Q Gint(R)

be the Hodge type

h(z) = (m(z), 1, . . . , 1) ∈ GL2(R)× (H×)g−1 = ResF/Q Gint(R) ,

where for z = x +√−1y ∈ C× = ResC/R Gm(R) we set m(z) =
[

x y

−y x

]−1

.

The reflex field is∞1(F ) ⊂ R ⊂ C. Let X∞ be the conjugacy class of h. Our
identifications allow us to view X∞ as H := C�R. For a compact open subgroup
S̃ ⊂ Gint

f , the corresponding Shimura variety is given complex analytically by

Ỹ int
S̃
= (

X∞ × (S̃\Gint
f )

) /
Gint ,

whereGint acts on the productX∞×(S̃\Gint
f )by the rule (x, g)γ := (γ−1(x), gγ ).

This variety is denoted by S̃MC(ResF/Q Gint, X∞) in [De1].

The complex manifold Ỹ int
S̃

has a canonical algebraization Y int
S̃

to a complex
projective curve. In fact each Y int

S̃
admits a canonical model over F , embed-

ded into C via∞1, and the Y int
S̃

’s form a projective system. The result of [Va1],
generalizing that of [Ch] (see [Va2, Sect. 5]) implies in particular that Y int =
lim← S̃

Y int
S̃

admits a P-adic uniformization at each finite prime P of F dividing

Disc B int, i.e. at each finite prime in which B int ramifies.
We shall now describe a special case of the result more precisely. This requires

more notation.
Let B be a quaternion algebra over F split at P , ramified at all infinite places,

and with a fixed isomorphism

B int ⊗ AP
f
∼= B ⊗ AP

f .

Let G be the algebraic group over F corresponding to B×, and let ν : G→ Gm be
the F -morphism induced from the reduced norm from B to F . Set
G = GP

f = G
int,P
f .

Fix a quaternion division algebra B̃P over FP . We then have that

Gf 
 GL2(FP)× G and Gint
f 
 B̃×P × G .

The ring of integers OB̃P is normalized by B̃×P , and B̃×P/O×
B̃P

is identified with

Z via the valuation of the norm. Hence the group Gint
f acts on Y int,P := O×

B̃P
\Y int

through its quotient

Gint
f /O×

B̃P
∼= G × Z .

Let n ∈ Z act on �
2,nr
FP through the action of Fr−n

FP on F nr
P . This gives an FP -

rational action of GL2(FP) × Z on �
2,nr
FP . Let G act on �

2,nr
FP via the embedding

G(F) ↪→ GL2(FP), and on G through the natural embedding.
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For a compact open subgroup S ⊂ G, the FP -analytic space (�
2,nr
FP × (S\G))/

G(F) algebraizes canonically to a projective curve YS over FP . The inverse limit
of YS over such S’s is a scheme Y over FP with an FP -rational action by G × Z.

A special case of the main result of [Va1] (see [Va2, Sect. 5]) is the following

Theorem 3.1. There exists a G × Z-equivariant, FP -rational isomorphism

Y int,P ⊗F FP ∼= Y .

4. Local points on Shimura curves

Choose a compact and open subgroup S of G and a geometrically connected com-
ponent X of S\Y int,P ⊗F FP . By Theorem 3.1, there exists a ∈ G such that X

is a projective curve X� as considered in Section 2, with K = FP , d = 2 and
� = �(aSa−1) = aSa−1 ∩ G(F) ⊂ G(FP) = GL2(FP). This � certainly
satisfies assumptions (A) and (B) of Section 2.

As in Section 2, � gives rise to positive integers k and k+. Let us define them
directly in terms of S. Put T := S ∩ ZP

f ⊂ (AP
f )×, T+ := Nm S ⊂ (AP

f )×, T̃ =
T ×O×FP ⊂ A×f and T̃+ = T+ ×O×FP ⊂ A×f . Finally set ClT̃ := T̃ F×∞\A×/F×
and Cl+

T̃
:= T̃ F+∞\A×/F×, and similarly for T̃+. Let πP be any uniformizer of

FP . Then we have the following

Lemma 4.1. a) We have Nm � = T+ ∩ F×+ .
b) The integers k and k+ are the orders of the image of πP in ClT̃ and in Cl+

T̃+
respectively.

Proof. Notice first that for the proof of the statement we can replace aSa−1 by S,
thus assuming that a = 1. Since � = S ∩ B× and B is definite, we get an inclu-
sion Nm � ⊆ T ∩ F×+ . Conversely, take t ∈ T ∩ F×+ (viewed in (AP

f )×). By the
Hasse principle t = Nm b for some b ∈ B×, and also t = Nm s for some s ∈ S.
Then Nm bs−1 = 1 in GP

f . By the Eichler-Kneser strong approximation theorem,
bs−1 = b1s1 for some b1 ∈ B and s1 ∈ S, both of norm 1. Then b−1

1 b = s1s is in
� and has norm t , proving part a).

Part b) is a routine corollary of a) and the equality Z� = T+ ∩F×, and is left
to the reader. ��

Finally, in order to assure that our � satisfies assumption (C) of Section 2, we
assume that the subgroups T and T+ of (AP

f )× obtained from S satisfy

(*) T+ ⊂ T .

Remark 4.2. Our restriction of the level at P means that the level (of Gint) at P
is the maximal subgroup compact modulo the center. Some cases of larger level
subgroups at P are discussed in [JL3], and a little bit is known about the simplest
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case of smaller level at P ([Tei]), but further information seems to be required to
handle the general case. Assumption (*), on the other hand, is mainly for conve-
nience. For example, all congruence subgroups satisfy it.

We can now apply the results of Section 2.As d = 2, we have two possibilities:
either k+ = k, in which case X is the quadratic unramified twist of X′ ⊗FP F

(k+)

P ,

or k+ = 2k, in which case X 
 X′ ⊗FP F
(k+)

P . In the latter case we will say that
X is Mumford uniformized.

For a finite set W of finite primes �= P of F , we denote by K(W) the principal
congruence subgroup of (squarefree) level

∏
Q∈W Q in GP

f . We will now show
that for a “sufficiently small” S we have k+ = k:

Proposition 4.3. Let W1 be a finite set of primes of F . Then there exists a finite
set W2 of finite primes of F , disjoint from W1 ∪ {P }, such that k+ = k for any
open subgroup S ⊂ K(W2) and any a ∈ G.

Proof. We view the center Z� and Nm � as subgroups of O×
F,P , the units away

from P of F . By the Unit Theorem, we have O×
F,P 
 (Z/2Z)×Zg. For 0 ≤ i ≤ g,

choose εi ∈ O×
F,P whose classes modulo squares are a basis for the F2-vector space

O×
F,P/(O×

F,P)2. A routine application of Chebotarev’s Theorem shows that there
are primes Qi , 0 ≤ i ≤ g, not in W1 ∪ {P }, such that εi has a non-square residue
modulo Qj if and only if i = j . Put W2 = {Qi }. Then for any open subgroup
S ⊂ K(W2) we have Z� = aSa−1 ∩ F× = S ∩ F× ⊂ (O×

F,P)2, so a fortiori
Z� = Nm �. The Proposition follows. ��

Remarks 4.4. 1. It follows from the proof that for S ⊂ K(W2) as above, the
P-adic valuation of each x ∈ Z� is even, hence k+ = k is even.

2. The Proposition can be strengthened in several ways. If ε1, . . . , εh are in the
subgroup O+

F,P of the totally positive elements of O×
F,P and generate it modulo

squares, it suffices to take W2 = {Qi }, h < i ≤ g. It is also possible to choose
W2 in any set of positive density (with the obvious definition of positive density
here), not merely to avoid W1 ∪ {P }. In addition, if the primes of W1 ∪ {P }
are all prime to 2, one can replace K(W2) by an open subgroup of GP

f whose
level divides some power of 2. We shall not need these facts in the sequel.

We will need the following

Lemma 4.5. Let γ ∈ GL2(FP) have finite order modulo the center and suppose
that valP det γ is odd. Then γ reverses a unique edge eγ of the Bruhat-Tits tree.

Proof. The subgroup of PGL2(FP) generated by γ is contained in a maximal
compact subgroup, hence it fixes a vertex or an edge. Since γ moves each vertex
to an odd distance, it cannot fix any vertex, hence must reverse a unique edge. ��
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Theorem 2.1 now says the following:

Theorem 4.6. a) If k+ = 2k, or if f is even, then X(L) �= ∅.
b) Suppose k+ = k and f odd. Then X(L) �= ∅ if and only if there exists an

element γ ∈ �, of finite order modulo the center, satisfying valP det γ = k,
such that either ek is even, or ek is odd and the stabilizer H of eγ in P� as an
oriented edge has even order.

Proof. Part a) is a particular case of part a) of Corollary 2.4. To deduce part b),
suppose first X(L) �= ∅. Then the subgroup P� of Theorem 2.1 contains an
element γ as needed, and either ek is even or P�′ has even order. But if ek is
odd, then P�′ is precisely the stabilizer of eγ as an oriented edge. Conversely,
if ek is even let � be the subgroup of P� generated by γ ; and if ek is odd let �

be the stabilizer in � of the unoriented edge eγ , defined in Lemma 4.5. Then it is
immediate that � has the properties required in Theorem 2.1, so X(L) �= ∅, since
d = 2 is a prime. ��

Corollary 4.7. If M/L is a finite extension of odd degree, then X(M) �= ∅ if and
only if X(L) �= ∅.

If S is small enough, then P� is torsion free. If S moreover satisfies the
condition of Proposition 4.3, we shall say we are in the asymptotic case. It then
follows from the Theorem that

(ASYMP) k+ = k, and X(L) �= ∅ if and only if f is even.

If we only assume that P�′ is torsion free, the Theorem has the following

Corollary 4.8. If P�′ is torsion free, then X(L) = ∅ if and only if k+ = k, f is
odd, and either ek is also odd or P� is torsion free.

Proof. By the theorem, we may assume that k+ = k, that f is odd and that P�

has torsion. It remains to show that X(L) = ∅ if and only if ek is odd. Assume
first that ek is odd. As P�′ is torsion free, no non-trivial element of P� stabi-
lizes an oriented edge, so we get X(L) = ∅. Assume now that ek is even. Let
γ ′ ∈ � be any element of finite order modulo the center. Since P�′ is torsion free,
valP det γ ′ ≡ k (mod 2k). Therefore, modifying γ by an element from Z�, we
get an element γ with valP det γ = k, as claimed. ��

At the other extreme, we can pin down the situation rather precisely when
X(L) �= ∅ and ef k+ is odd (so that k = k+). This will require two lemmas, which
we state in slightly more general form than necessary.

For an nth root ζ of 1, let Q(ζ )+ be the maximal totally real subfield of the
field Q(ζ ) of nth roots of 1. Then we have the following
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Lemma 4.9. Let ζ be a primitive nth root of 1, with n > 2. Let Q+ be a prime
ideal of Q(ζ )+ of residue characteristic q. Then valQ+(1 + ζ )(1 + ζ ) = 1 if
n = 2qr for r ≥ 1. Otherwise this valuation is 0.

Proof. Let A be the positive integer NmQ(ζ )/Q(1 + ζ ). We claim that A = � if
n = 2�r for a prime �, and A = 1 otherwise. Indeed, write n = 2r t with t odd and
r ≥ 0. If r = 0 then A = 1 because NmQ(ζ )/Q(1− ζ ) = NmQ(ζ )/Q(1− ζ 2). For
any u, let �u denote the uth cyclotomic polynomial. If r = 1 then A =∏

η(1−η),
where η goes over all primitive t th roots of 1, so A = �t(1). Then if t is a power
of a prime �, we have �t(x) = (xt − 1)/(xt/� − 1) = x(�−1)t/� + · · · + 1,
so A = �; else t = t ′t ′′ with t ′, t ′′ odd and relatively prime. Then �t(x) divides
Q(x) = (x(t ′−1)t ′′ +· · ·+1)/(xt ′−1+· · ·+1), so A|Q(1) = 1. Similarly, if r ≥ 2,
then A = �n(1). Then if t = 1, we have �n(x) = (xn/2 + 1), so A = 2, whereas
if t > 1, then �n(x) divides Q(x) = �2r (xt )/�2r (x) = (xn/2 + 1)/(x2r−1 + 1),
so A|Q(1) = 1. This proves our claim in all cases. The Lemma is now immediate
if n �= 2qr , r > 0. Else, recall that 1+ ζ is a uniformizer for the (totally ramified)
prime Q of Q(ζ ) above q and Q+. Then valQ+(1+ζ )(1+ζ ) = valQ(1+ζ ) = 1,
proving the Lemma. ��

Assume that k+ = k, and let γ be as in Theorem 4.6. Then F(γ ) is a CM
extension of F , since it splits the definite algebra B and is �= F . Then Nm γ

is a (totally positive) generator of Pk. Writing Nm for NmK/F for a quadratic
extension K of F is unambiguous, because NmK/F and the reduced norm of B

agree for any F -embedding of K into B. Likewise we let x denote both the main
involution of B and the (complex) conjugate of any element x ∈ K ⊂ B.

Lemma 4.10. Let F(γ ) be a (quadratic) CM extension of F , such that some power
γ m is in F , with m (> 1) minimal. Suppose that Nm γ generates a power Pk,
k > 0, of a prime ideal P of F , of residue characteristic p. Set ζ = γ /γ . Then γ

is an integer of F(γ ), ζ is a primitive mth root of 1, and if m is even, then γ m is
totally negative. Moreover,

(i) If m = 2 then γ 2 = −u, where u ∈ F is a positive generator of Pk.
(ii) If m �= 2 then F(γ ) = F(ζ ), and γ = s(1+ ζ ) for some s ∈ F×.

Proof. γ is an algebraic integer since its power is. The order of ζ is the smallest
positive integer n such that γ n = γ n or equivalently that γ n ∈ F . Thus n = m, as
claimed. If m is even, then ζm/2 = −1. Hence γ m = −γ m/2γ−m/2 = −Nm γ m/2

is totally negative as asserted, and we also get (i). For (ii), define s = γ γ /(γ +γ ),
which makes sense since γ �= −γ . Then γ = s(1+ ζ ) as asserted. ��

Remark 4.11. s need not belong to O×
F,P : take F = Q(

√
6 ), P = (3,

√
6 ), and

γ = √6(1+√−1 )/2. Then m = 4, and γ = √3ζ8, but
√

6/2 is not in O×
F,P .
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Let t (F ) be the maximal integer such that the maximal totally real subfield
Q(ζ2t (F ) )+ of Q(ζ2t (F ) ) is a subfield of F . Then t (F ) ≥ 2. Let τ be the unique prime
of Q(ζ2t (F ) )+ lying (and totally ramified) above 2. We now have the following

Proposition 4.12. In the notation of Theorem 4.6, suppose that f ek+ is odd. Then
X(L) �= ∅ if and only if either of Conditions (a) or (b) below holds:

(a) P lies above τ with odd ramification index e(P/τ), and there exists an element
γ ′ of �, of order 2t (F ) modulo the center, such that valP Nm(γ ′) = k.

(b) There exist elements α, γ ′ in �, of order 2 modulo the center, such that
valP Nm(γ ′) = k, valP Nm(α) = 0, and αγ = −γα.

Proof. Suppose first that (a) or (b) hold. Lemma 4.1 and the fact that f is odd
enable us to modify γ ′ by a central element in Z� so as to replace it by an ele-
ment γ with the same order modulo the center and such that valP Nm(γ ) = f k+.
Since f k+ is odd, γ reverses an edge. The stabilizer H of this edge contains
γ 2 in case (a), and α in case (b). Hence its order |H | is even in either case. By
Theorem 4.6, X(L) �= ∅.

Conversely, if X(L) �= ∅ let γ be as in Theorem 4.6. Then an odd power
of γ is of order 2t , t ≥ 1, modulo the center. Modifying this power by a cen-
tral element of � we get an element γ1, of order 2t modulo the center, such that
valP Nm γ1 = f k+. We now replace γ by γ1. The new γ has the same fixed edge
d ′ as before, and satisfies the properties of Theorem 4.6, and its order modulo the
center is m = 2t .

Suppose first t = 1. Theorem 4.6 gives an element β ∈ H , of order 2 modulo
the center. Let A be the subgroup of P� generated by the images β and γ of β

and γ . Since A acts discretely on the tree fixing the unoriented edge { d ′, d ′ }, it is
a finite group. Since A is generated by 2 involutions it is a dihedral group, and the
cyclic subgroup A0 generated by βγ is of index 2. Also � = |A0| is even, because
A has another subgroup A1 �= A0 of index 2, namely the elements of A fixing d ′.
Hence the group generated by γ and α, where α = (βγ )�/2, is a non-cyclic group
of order 4. Replacing α by αγ if necessary, we may assume that αd ′ = d ′. In
� ⊂ B× this implies that α2 and γ 2 are in F×, that α is in �′, and that γα = uαγ

for some u ∈ F×. Taking norms (to F ) we see that NmB/F u = u2 = 1, so that
u = ±1. However u = 1 is impossible, since in this case α and γ would generate
a commutative subgroup of GL2(C), whose image modulo the center is finite and
non-cyclic, which cannot happen. This gives case (b) of the Proposition.

Suppose next t ≥ 2. By Lemma 4.10, γ = s(1+ ζ2t ) and F(γ ) = F(ζ2t ), so
that F must contain F0 = Q(ζ2t )+. Then Nm γ = s2θ , where θ = (1+ζ2t )(1+ζ2t )

generates the unique prime τ0 of F0 lying over 2. By Lemma 4.9 we get

f k+ = valP s2θ ≡ e(P/τ0) valτ0 θ = e(P/τ0) (mod 2).

This shows that e(P/τ0) is odd.
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Finally we check that t = t (F ). From its definition t ≤ t (F ); but if t (F ) ≥
t+1 then e(P/τ0) would be divisible by the ramification index of τ0 in Q(ζ2t+1)+,
which is 2, contradicting the fact that e(P/τ0) is odd. Hence t = t (F ), concluding
the proof of the Proposition. ��
Remark 4.13. In case (b) above, the isomorphism type of the quaternion algebras
B and B int is almost forced. Indeed, for a1, a2 ∈ F× let B(a1, a2) denote the
quaternion algebra over F with basis 1, ı̂, ̂ , k̂ satisfying ı̂2 = a1, ̂ 2 = a2, and
k̂ = ı̂ ̂ = −̂ ı̂. Then B(a1, a2) is ramified at a place v of F if and only if the
Hilbert symbol (a1, a2)Fv

is −1. In case (b) we have B 
 B(−Nm γ,−Nm α),
so that B, in addition to being totally definite, is unramified away from primes
above 2 (we know it is unramified at P). For example, if F = Q we get that
B 
 H = B(−1,−1), the Hamilton quaternions over Q; if F is (real) qua-
dratic, then B is isomorphic to the base change of H to F , or is “the” totally
definite algebra of discriminant 1 (or both). It is clear, however, that matters can
get complicated when F has many primes above 2.

5. Relevant deficient local fields

Let S̃ be an open and compact subgroup of Gint
f , and let X be a geometrically

connected component of S̃\Y int. Then under certain assumptions we will deter-
mine the deficient local fields for X in the sense of [JL1], namely those local
fields L containing the field of definition of X for which X(L) = ∅. In fact, we
will consider only those local fields which are either archimedean or are finite
extensions of completions FP for finite prime P of F dividing Disc B int. (These
local fields we will call relevant.)

The first our assumption is as follows.

(Max) S̃ a maximal compact subgroup of Gint
f .

All such S̃’s are conjugate in Gint
f . In fact they are the units of any maximal

OF -order Mint of B int.
Let P be a finite prime of F dividing Disc B int. Then in the notation of Sec-

tion 3, each such S̃ decomposes as a product S × O×
B̃P

for a certain maximal

compact subgroup S of G. Such an S is the group of units of M ⊗OF
OP

f for
a maximal OF [1/P]-order M of B. Therefore it satisfies assumption (*) from
Section 4.

The conjugacy classes of the Mint ’s in B int and of the M’s in B are classi-
fied by appropriate quotients of Cl(F )/2 Cl(F ): (See e. g. [CF, Section 3] for the
case of the Mint ’s). To avoid complications we shall therefore add the following
assumption:

(Odd) The narrow class number h+(F ) is odd.
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We list some consequences of assumption (Odd) in the following

Lemma 5.1. (a) For every 1 ≤ i ≤ g(= [F : Q]) there exists a unit εi of F

satisfying∞i (εi) > 0 and∞j (εi) < 0 for any j �= i, 1 ≤ j ≤ g.
(b) Totally positive units in F are squares.
(c) All the Mint ’s are conjugate in B int and all the M’s are conjugate in B.
(d) All the geometrically connected components of S̃\Y int are isomorphic.
(e) The quotient of the normalizer of Mint in B int

+ by Z(B int)×(Mint)× is a finite
group (Z/2Z)r , where r is the number of primes dividing Disc B int, and where
by B int

+ we denote the set of elements of B int whose norm is totally positive.

Proof. Though the proof is straightforward, we will sketch it for the convenience
of the reader. Our assumption (Odd) is equivalent to the decomposition

A× = (A×)2O×f F×. (2)

Then −εi is any element of F× appearing in the decomposition of the idèle
−1 in F×∞i

⊂ A×F , implying (a). (b) now follows from (a) together with the fact
that {−ε1, . . . ,−εg} form a basis of the F2-vector space O×F /(O×F )2.

The decomposition (2) implies a decomposition A×f = (A×f )2O×f F×+ . Using
the strong approximation theorem, we get that

Gint(Af) = Z(Gint)(Af)Gint(Of)Gint(F )+, (3)

where Gint(F )+ = B int
+ , and similarly for G (compare the proof of Lemma 4.1).

This decomposition immediately implies part (d) and reduces the remaining parts
to the corresponding local statements, which are clear. ��

Now we are ready to determine the relevant deficient local fields for X.
Observe that assumption (Max) implies that the field of definition F ′ of X is
a Hilbert class field of F . Furthermore, by assumption (Odd), F ′ is an abelian
extension of F of odd degree. In particular, it is totally real.

The archimedean case had been settled in much greater generality by Shimura
[Shi]. His results specialize in our case to the following

Proposition 5.2. Let ∞ be a place of F ′ above ∞i . Then X(F ′∞) �= ∅ if and
only if F(

√
εi ) does not split at any prime where B int ramifies, where εi is as

in Lemma 5.1. (Equivalently, if no finite prime of F dividing Disc B int splits in
F(
√

εi )).

Proof. For the convenience of the reader and for comparison with the non-archi-
medean case, we shall briefly sketch the proof.

The theorem on conjugation of Shimura varieties allows us to assume that B int

splits at∞i . By Lemma 5.1 (d), we get that (X ⊗F ′ C∞)an 
 �\H. Then

X(F ′∞) �= ∅ ⇔ (∃x ∈ H, ∃γ ∈ � : γ (x) = x).
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In this case γ 2(x) = x, hence some power γ k of γ is central. Also det γ < 0,

so γ is conjugate in GL2(F
′
∞) = GL2(F∞i

) to a matrix

[
α 0
0 −β

]

with α, β > 0.

Then (α/β)k = 1 since γ k is central, so that α = β. It follows that ε := γ 2 = α2

is in � ∩ F = O×F . By Lemma 5.1 (b), we have F(
√

εi ) = F(
√

ε ), so that this
field splits B int and hence cannot be split (over F ) at any prime dividing Disc B int.

Conversely, assume that F(
√

εi) is not split at any prime dividing Disc B int.
Then F(

√
εi ) embeds into B int, and the image γ of

√
εi must belong to some

maximal order of B int. By Lemma 5.1 (c), we may assume that γ ∈ �. Moreover,

γ is conjugate in GL2(F∞i
) to a matrix

[
α 0
0 −α

]

, since γ 2 = εi is a scalar nega-

tive at∞i . Hence there exists x ∈ H such that γ (x) = x, therefore X(F ′∞) �= ∅.
��

Finally, fix a finite prime P dividing Disc B int, and let S and B be as in the
beginning of the section. Then we get S̃\Y int = S\Y int,P . Hence to determine
rational points of X over finite extensions of FP we may replace X by the corre-
sponding component of S\Y int,P ⊗F FP . In particular, we can apply the notation
and the results of Section 4.

Let π be a totally positive generator of the principal ideal Pk+ , and let L be a
finite extension of F

(k+)

P .

Proposition 5.3. Assume that assumptions (Odd) and (Max) hold and that the
degree [L : FP ] = ef k+ is odd. Then in the notation of Proposition 4.12, we have
that X(L) �= ∅ if and only if either of conditions (a) or (b) below holds:

(a) In the notation of Proposition 4.21 f (ζ2t (F ) ) splits B, and P lies above τ with
odd ramification index.

(b) B is isomorphic to B(−1,−π).

Proof. We will check that our conditions (a) and (b) are equivalent to the
corresponding conditions of Proposition 4.12. The equivalence of conditions (b)
follows from Remark 4.13 and Lemma 5.1 (b). Since t (F ) ≥ 2, Lemma 4.10 (ii)
implies that our condition (a) follows from that of Proposition 4.12.

Finally assume our assumption (a) and choose an embedding of F(ζ2t (F ) ) into
B. Observe that γ := 1 + ζ2t (F ) is an algebraic integer such that Nm γ ∈ O×

F,P .
Lemma 5.1 (c) implies that some conjugate γ ′′ of γ belongs to �. By Lemma 4.10,
γ ′′ is of order 2t (F ) modulo the center, and by Lemma 4.9,

valP Nm(γ ′′) = e(P/τ) valτ (1+ ζ2t (F ) )(1+ ζ 2t (F ) ) = e(P/τ)

is odd. Hence using Lemma 4.1 we can modify γ ′′ by an element of Z� to get an
element γ ′ satisfying valP Nm(γ ′) = k. ��
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6. Evenness of jacobians of Shimura curves

In [PS] Poonen and Stoll defined a dichotomy of principally polarized abelian
varieties over a global field E into even and odd cases. When the abelian variety
is a jacobian of a curve C/E they gave the following criterion for the evenness in
terms of C.

Let g(C) be the genus of C. We will call a (finite or infinite) prime v of E

PS-deficient (that is deficient in the sense of [PS]) if C has no Ev-rational divisor
of degree g(C) − 1. As it was explained in [JL2, Prop. 1.1], a prime v of E is
not PS-deficient for X if v is a finite prime of E in which C has good reduction.
In particular, the number of PS-deficient primes is always finite. The criterion of
Poonen-Stoll [PS, Cor. 10] asserts that the Jacobian of C/E is even if and only if
the number of PS-deficient primes of C is even.

We will apply this criterion to certain Shimura curves X, considered in Sec-
tion 5, generalizing [PS, Thm. 23].

Theorem 6.1. Assume that F is a quadratic extension of Q and that assumptions
(Max) and (Odd) hold. For technical reasons assume also that F is not isomorphic
to Q(
√

2 ) and that Disc B int is not a prime of residual characteristic 2. Then the
Jacobian of X/F ′ is even.

Before starting the proof we will need certain preparations. Similarly to Sec-
tion 5, we will call a prime of F ′ relevant if it is either infinite of divides Disc B int.
The following result is a straighforward generalization of [JL2, Thm. 2 a)].

Proposition 6.2. A prime v of F ′ is PS-deficient for X if and only if it is a relevant
deficient prime for X, and the genus of X is even.

Proof. Assume first that v is relevant and deficient for X. Then we claim that X

has a rational point over a certain quadratic extension of F ′v, but it does not have
rational points over all extensions of F ′v of odd degree. Indeed, if v is infinite, then
F ′v = R, in which case the statement is clear. Assume now that v is finite. Then
Theorem 4.6 a) implies that X has a rational point over F ′(2)

v . This shows the first
statement, while the second one follows from Corollary 4.7.

It follows from the claim that X has a F ′v-rational divisor of degree 2 (hence
of arbitrary even degree), but does not have F ′v-rational divisors of odd degree.
Thus a relevant deficient prime of X is PS-deficient if and only if the genus of X

is even.
Conversely, suppose that v is PS-deficient. Then it is clearly deficient. On the

other hand, [JL2, Prop. 1.1] implies that v is either infinite or a finite prime of bad
reduction of X. Since Morita proved in [Mo] that all finite primes of bad reduction
of X divide Disc B int, v is relevant, as claimed. ��
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Also we shall need the following

Proposition 6.3. Let F = Q(
√

m ) for a prime m ≡ 1 mod 4. Suppose that
Disc B int is an odd prime P of F . Let k+ be the order of P in Cl+(F ), and let π

be a totally positive generator of Pk+ . Then

(i) The number of infinite deficient primes of X is even if and only if
(−1,−π)FP = 1.

(ii) The number of finite relevant deficient primes of X is even if and only if
(−1,−π)FQ = 1 for Q = P and for all Q of residue characteristic 2.

Proof. As F ′ is an abelian extension of F of odd degree, the number of primes
of F ′ above each of∞1,∞2, and P is odd and they are deficient simultaneously.
For the infinite primes, the fields F(

√
εi ) are unramified at P since P is odd.

By Proposition 5.2, the number of deficient infinite primes is even if and only
if P is split in both or inert in both these fields. This happens if and only if(−1

P
) = (

ε1
P

) (
ε2
P

) = 1, which is equivalent to (−1,−π)FP = 1, as k+ and P are
odd.

For (ii) notice as before that only case (b) of Proposition 5.3 can happen since
P is odd. Thus the number of finite relevant deficient primes of X is even if and
only if the quaternion algebra B(−1,−π) splits at all the finite places of F . The
assertion now follows from Remark 4.13. ��
Corollary 6.4. (a) If m ≡ 5 mod 8 then the number of relevant deficient primes

for X is even.
(b) If m ≡ 1 mod 8 and P = pOF with p a rational prime (inert in F ,

i. e.
(

m
p

)
= −1) which is ≡ 1 mod 4, then the number of relevant deficient

primes for X is odd.

Proof. (a) The condition on m means that the rational prime 2 is inert in F . By
the product formula, (−1,−π)FP = (−1,−π)F2 , so the assertion follows.

(b) Since p is inert in F then without loss of generality π = pk+ . Also −1 is
a square in Fp = FP , so (−1,−π)FP = 1. By the proposition, the number
of infinite deficient primes is even. Now let λ be a prime of F above 2. As 2
splits in F and k+ is odd, we get

(−1,−π)Fλ
= (−1,−p)Q2 = (−1,−p)R(−1,−p)Qp

= −1,

and the claim follows from the Proposition.
��

Proof of Theorem 6.1. The discriminant of B int is a product of an odd number r

of finite primes of F . By Lemma 5.1 (e), the group W 
 (Z/2Z)r acts naturally
on X. The stabilizer of a point x ∈ H in W must be cyclic, hence trivial or of
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order 2. Let n be the number of non-free W -orbits in X. Then the genera g(X)

and g(X/W) of X and of X/W are related by

2− 2g(X) = |W |(2− 2g(X/W))− n |W |/2.

Hence if r ≥ 3 it follows that 4|2 − 2g(X) so that g(X) is odd and the jacobian
Jac(X) is certainly even. Now assume r = 1, so that Disc B int = P for a prime P
of F of residual characteristic p. By genus theory ([BSh, Ch. 3.8, Cor.]), assump-
tion (Odd) forces F = Q(

√
m ) for a prime m which is either 2 or ≡ 1 mod 4.

The case m = 2 is excluded by our assumption. If g(x) is odd, there is nothing to
prove. Else we must be in either case 1.(a) or 1.(b)(i) of [Sad, Theorem 1.1].

In the first of these cases m ≡ 5 mod 12 so that 3 is inert in F and P = 3OF .
Then (−1,−3)Fp

= 1, so that the number of deficient infinite primes is even. We
need therefore to show that the number of relevant deficient finite primes is even as
well; equivalently, by Proposition 6.3, that (−1,−3)FQ

= 1 for all finite primes Q
of residue characteristic 2. Set (−1,−3)F2 =

∏
Q(−1,−3)FQ

, where the product
is over Q of residue characteristic 2. By the product formula (−1,−3)F2 = 1, so
that if 2 is inert we are done. If 2 is split (the only case left), then for a prime Q
above 2 we have FQ = Q2, so that

(−1,−3)FQ
= (−1,−3)Q2 = (−1)

(−1−1)
2

(−3−1)
2 = 1,

proving again what we need.
In the other case, m ≡ 5 mod 8, so Corollary 6.4(a) shows that the number

of relevant deficient primes is even, concluding the proof of the Theorem. ��

References

[Ber] Berkovich, V.G.: Spectral Theory and Analytic Geometry over non-Archimedean
Fields. Mathematical Surveys and Monographs 33, American Mathematical Society,
Providence, 1990

[BSh] Borevich, A.I., Shafarevich, I.R.: Number Theory. Academic Press, New York-
London, 1966

[Ch] Cherednik, I.V.: Uniformization of algebraic curves by discrete arithmetic subgroups
of PGL2(Kw) with compact quotients. Math. USSR Sb. 29, 55–85 (1976)

[CF] Chinburg, T., Friedman, E.:An embedding theorem for quaternion algebras. J. London
Math. Soc. 60, 33–44 (1999)

[De1] Deligne, P.: Variétés de Shimura : Interprétation modulaire, et techniques de construc-
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