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Abstract. In this paper we study central extensions of the identity component G of the Lie
group C∞(M,K) of smooth maps from a compact manifold M into a Lie group K which
might be infinite-dimensional. We restrict our attention to Lie algebra cocycles of the form
ω(ξ, η) = [κ(ξ, dη)], where κ: k × k → Y is a symmetric invariant bilinear map on the Lie
algebra k of K and the values of ω lie in �1(M, Y )/dC∞(M, Y ). For such cocycles we show
that a corresponding central Lie group extension exists if and only if this is the case forM = S

1.
IfK is finite-dimensional semisimple, this implies the existence of a universal central Lie group
extension Ĝ of G. The groups Diff(M) and C∞(M,K) act naturally on G by automorphisms.
We also show that these smooth actions can be lifted to smooth actions on the central extension
Ĝ if it also is a central extension of the universal covering group G̃ of G.

Introduction

Let M be a compact manifold and K a Lie group (which may be infinite-dimen-
sional). Then the so called current groups C∞(M,K) with pointwise multiplica-
tion are interesting infinite-dimensional Lie groups arising in many circumstances.
The most studied class of such groups are the loop groups (M = S

1 and K com-
pact) which is completely covered by Pressley and Segal’s monograph [PS86].
The goal of this paper is a systematic understanding of a certain class of cen-
tral extensions of the identity components of these groups, namely those whose
Lie algebra cocycle is of product type, which is defined in more detail below.
Here the main point is to see which Lie algebra cocycle can be integrated to a
central Lie group extension. These central extensions occur naturally in math-
ematical physics, where the problem to integrate projective representations of
groups to representations of central extensions is at the heart of quantum me-
chanics ([Mic87], [LMNS98], [Wu01]). The central extensions of current groups
are often constructed via representations by pulling back central extensions of
certain operator groups ([Mic89]). It is our philosophy that one should try to un-
derstand the central extensions of a Lie group G first, and then try to construct
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representations of these central extensions. In this context certain discreteness
conditions for Lie algebra cocycles appear naturally because they ensure that the
corresponding central Lie algebra extensions integrate to group representations
([Ne02b]). We think of these discreteness conditions as an abstract version of
the discreteness of quantum numbers in quantum physics. As an outcome of our
analysis, we will see that we do not have to impose any conditions on the group
K for our general results.

We now describe our results in some more detail. Let M be a compact mani-
fold, Y a sequentially complete locally convex space, �p(M, Y ) the space of
smooth Y -valued p-forms on M , and zM(Y ) = �1(M, Y )/dC∞(M, Y ). Then
zM(Y ) carries a natural locally convex topology and if Y is Fréchet, then the
same holds for zM(Y ). Now let K be a possibly infinite-dimensional con-
nected Lie group and k its Lie algebra. We associate to each invariant continuous
bilinear form κ: k × k → Y a continuous Lie algebra cocycle on g := C∞(M, k)
by ω(ξ, η) := [κ(ξ, dη)] ∈ zM(Y ). We call such cocycles of product type. The
main objective of this paper is to understand central Lie group exten-
sions of the identity component G := C∞(M,K)e of the Lie group C∞(M,K)
corresponding to the Lie algebra cocycle ω. According to the results in [Ne02b,
Sect. 7], there are two obstructions for the existence of a central Lie group
extension Ĝ of G corresponding to ω. First the image of the associated period
map perω:π2(G) → zM(Y ) may not be discrete, and second, the adjoint action
of g on the Lie algebra ĝ := g ⊕ω zM(Y ) does not integrate to a smooth rep-
resentation of G. The main point in the choice of this general setting is that it
permits us to use arbitrary infinite-dimensional Lie groupsK , hence in particular
groups of the type K = C∞(N,H), H a finite-dimensional Lie group. Then
C∞(M,K) ∼= C∞(M × N,H), so that we may use product decompositions of
manifolds to study current groups on manifolds.

In the first section we investigate the discreteness of the period group �ω :=
im(perω). Our main result states that �ω is discrete for all compact manifolds
M if and only if it is discrete for the manifold M = S

1. This is remarkable
because the group π2(G) is not well accessible for dimM > 2. In Section II
we turn to the case where K is finite-dimensional and κ: k × k → V (k) is the
universal invariant symmetric bilinear form on k. In this case we show that the
period group is discrete for M = S

1, hence also for arbitrary M by the results of
Section I.

In Section III we turn to the central Lie group extensions. Here we show in
particular that for any Lie algebra cocycle ω of product type the adjoint represen-
tation of g on ĝ integrates to a smooth Lie group representation of the generally
non-connected group C∞(M,K). Therefore the second obstruction to the exis-
tence of a central Lie group extension is always trivial, and we obtain for each
κ for which the period group �ω is discrete a central Lie group extension of the
identity component G = C∞(M,K)e. In Section IV we show that if K is finite-
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dimensional and semisimple, then we even obtain a universal central Lie group
extension of G by the abelian group π1(G)× (zM(V (k))/�ω).

Because of its relevance for the construction of representations of Diff(M)
and abelian extensions of this group, it is interesting to know to which extent the
Lie group Diff(M) acts on the central extensions of G. It obviously acts on G
itself by composition ϕ.f := f ◦ ϕ−1 for f ∈ G, ϕ ∈ Diff(M). Suppose that
Z ↪→ Ĝ →→ G is a central Lie group extension corresponding to a cocycle of
product type and that Ĝ also is a central extension of the universal covering group
G̃ of G, which means that the connecting homomorphism π1(G) → π0(Z) is an
isomorphism. Then we show in Section VI that the action of Diff(M) has a unique
lift to an action on Ĝ. This result is based on general results in Section V which
are concerned with lifting automorphic Lie group actions R×G → G to actions
of R on central extensions Ĝ of G by Z. We show that if G is simply connected,
a pair of smooth actions of R on G and Z can be lifted to a smooth action of R
on Ĝ whenever there is a smooth action of R on the Lie algebra ĝ of Ĝ extending
the actions on g and z.

The universal central extension Ĝ of the universal covering group G̃ of G =
C∞(M,K)e,K a simple compact Lie group, appears in [PS86] for the first time,
although no rigorous argument for its existence is given there. As we will see
in Section III, the group π2(Ĝ) is not always trivial, contradicting a correspond-
ing statement in [PS86]. The construction of a central extension of the group
G, instead of its universal covering group, seems to be new (see [LMNS98]
for a construction for which it is not clear to the authors that it produces a Lie
group). It is clear that this point of view has the advantage that the groupG itself
has a concrete realization, which need not be the case for its universal covering
group.

It is also interesting to study “algebraic” relatives of the central extensions of
current groups arising in this paper. In [Shi92] Shi constructs so-called
toroidal groups associated to the universal central extension ĝ of the Lie alge-
bra g := C [t±, s±] ⊗ k, where k is a simple complex Lie algebra. These groups
are defined as groups generated by root groups in such a way that they act in all
integrable representations of ĝ. He also makes a connection to Steinberg groups
of the algebra C [t±, s±] of Laurent polynomials. It would be interesting to un-
derstand the precise relationship between these groups and the universal central
Lie group extension of C∞(T2,K)e. For M = T

d , the d-dimensional torus, we
think of our central extensions Ĝ, or the corresponding semidirect product groups
Ĝ�T

d , as natural Lie group versions of toroidal groups. The Lie algebras of these
groups and their representations have been studied intensively in recent years (see
f.i. [CF01], [Tan99], [Pi00], [BB99]). In [Ta98] Takebayashi approaches the prob-
lem to find groups for the Lie algebra ĝ, or rather for g in his context, by using
a Chevalley basis of k to construct a group corresponding to g as an algebraic
group over the algebra C [t±, s±] via the Chevalley-Demazure construction. He
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also examines the structure of the “elementary subgroup” generated by all root
groups, which is a quotient of the group constructed by Shi.

This paper contributes to a larger program dealing with Lie groups G whose
Lie algebras g are root graded in the sense that there exists a finite irreducible
root system 
 such that g has a 
-grading g = g0 ⊕ ⊕

α∈
 gα, it contains the
split simple Lie algebra k corresponding to
 as a graded subalgebra, and is gen-
erated, topologically, by the root spaces gα, α ∈ 
. All Lie groups of the type
C∞(M,K), M compact and K simple complex, are of this type, and the same
holds for their central extension. A different but related class of groups arising
in this context are the Lie groups SLn(A) and their central extensions, where A
is a continuous inverse algebra, i.e., a locally convex unital associative algebra
with open unit group and continuous inversion ([Gl01c]). In [Ne02a] we discuss
the universal central extensions of the groups SLn(A), which are Lie group ver-
sions of the Steinberg groups Stn(A). In the end of Section II we show that for
K = SLn(A), A a commutative continuous inverse algebra, we have V (k) ∼= A

with κ(x, y) = tr(xy) and that the image of the corresponding period map is
discrete for the corresponding product type cocycle on the Lie algebra C∞(M, k)
of the group C∞(M,K). For non-commutative algebras the image of the period
map is not always discrete.

We are greatful to the referee for many useful suggestions which improved the
presentation of the paper.

I. The period map

Definition I.1. For a finite-dimensional manifoldM (for this definition we do not
have to assume that M is compact) and a sequentially complete locally convex
(s.c.l.c.) space Y we define

zM(Y ) := �1(M, Y )/d�0(M, Y )

and observe that the image of the space of closed forms in zM(Y ) is the subspace
H 1

dR(M, Y ).

We endow�1(M, Y ) with the natural topology given by locally uniform con-
vergence of all derivatives. Then we obtain for each α ∈ C∞(S1,M) a continuous
linear map �1(M, Y ) → Y by integration over α. Since the space d�0(M, Y )

of all exact 1-forms coincides with the annihilator of these functionals, it is a
closed subspace, and we thus obtain on zM(Y ) a natural locally convex Hausdorff
topology and continuous linear maps given by

αz: zM(Y ) → Y, [β] �→
∫

α

β. 	


In the following we write Lin(E, F ) for the space of continuous linear maps
between topological vector spaces E and F .
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Remark I.2. (a) Since an element β ∈ �1(M, Y ) is an exact form if and only if all
integrals

∫

α
β, α ∈ C∞(S1,M), vanish, the linear functions αz ∈ Lin(zM(Y ), Y )

separate the points of zM(Y ).
(b) A 1-form β ∈ �1(M, Y ) is closed if and only if for all pairs of homotopic
paths α1, α2 the integrals of β over α1 and α2 coincide. Therefore the subspace
H 1

dR(M, Y ) ⊆ zM(Y ) is the annihilator of the functionals α1,z − α2,z, [α1] = [α2]
in π1(M), which implies in particular that it is closed. Moreover, for [β] ∈ zM(Y )
the condition [β] ∈ H 1

dR(M, Y ) is equivalent to the independence of αz([β]) from
the homotopy class of α.
(c) ForM = S

1 we have zS1(Y ) ∼= Y because the map�1(M, Y ) → Y, β �→ ∫

S1 β

is surjective with kernel d�0(M, Y ). We identify the class of β ∈ �1(S1, Y ) in
zS1(Y ) with the integral

∫

S1 β.

(d) On the subspace H 1
dR(M, Y ) we can define continuous linear maps by

integration over continuous loops because we may use the isomorphism

H 1
dR(M, Y )

∼= H 1
sing(M, Y )

∼= Hom(π1(M), Y ). 	

From now on we assume M to be compact. The following remark will be

helpful for the calculation of period groups.

Remark I.3. For every compact connected smooth manifold M the group π1(M)

is finitely generated (M can be triangulated), which is inherited by the singu-
lar homology group H1(M) ∼= π1(M)/(π1(M), π1(M)) (Hurewicz). Let k :=
b1(M) := rankH1(M) and fix α1, . . . , αk ∈ C(S1,M) such that the correspond-
ing 1-cycles [αj ] form a basis of the free abelian group H1(M)/ tor(H1(M)).

Since H0(M) is a free abelian group, the Universal Coefficient Theorem
implies that

H 1
sing(M,Z)

∼= Hom(H1(M),Z) ∼= Hom(π1(M),Z).

Moreover, in view of Huber’s Theorem ([Hu61]) and the local contractibility ofM,
this group is isomorphic to Ȟ 1(M,Z) ∼= [M,S1]. In particular there exist contin-
uous functions f1, . . . , fk:M → S

1 such that [fj ◦αi] = δij ∈ π1(S
1) ∼= Z. Since

every homotopy class in [M,S1] contains a smooth function ([Ne02b, Th. A.3.7],
based on an argument in [Hi76]), we will assume in the following that the func-
tions fj are smooth. This implies in particular that its logarithmic derivative
δ(fj ) := f −1

j .dfj can be viewed as a closed 1-form on M , which is not exact
because

∫

αj
δ(fj ) = 1. With the basis [αj ] of the groupH1(M)/ tor(H1(M)), we

immediately obtain an isomorphism

�:H 1
dR(M, Y )

∼= Hom(H1(M)/ tor(H1(M)), Y ) → Y k, [β] �→
( ∫

αj

β
)

j=1,...,k

whose continuous inverse is given by�−1(y1, . . . , yk) =
[∑k

j=1 δ(fj ) ·yj
]

. 	
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Definition I.4. (The topology on C∞(M,K)) (a) If K is a Lie group and X is a
compact space, thenC(X,K), endowed with the topology of uniform convergence
is a Lie group with Lie algebra C(X, k) ([Ne02b, App. A.3]).
(b) If K is a Lie group with Lie algebra k, then the tangent bundle of K is a
Lie group isomorphic to k � K , where K acts by the adjoint representation on
k (cf. [Ne01b]). Iterating this procedure, we obtain a Lie group structure on all
higher tangent bundles T nK which are diffeomorphic to k2n−1 ×K .

For each n ∈ N0 we obtain topological groups C(T nM, T nK) by using the
topology of uniform convergence on compact subsets. Therefore the inclusion

C∞(M,K) ↪→
∏

n∈N0

C(T nM, T nK)

leads to a natural topology onC∞(M,K) turning it into a topological group. For
compact manifolds M these groups can even be turned into Lie groups with Lie
algebra C∞(M, k). Here C∞(M, k) is endowed with the topology defined above
if we consider k as an additive Lie group. For details we refer to [Gl01b]. 	

Definition I.5. (a) Let z be a topological vector space and g a topological Lie
algebra. A continuous z-valued 2-cocycle is a continuous skew-symmetric bilin-
ear functionω: g×g → z satisfyingω([x, y], z)+ω([y, z], x)+ω([z, x], y) = 0.
It is called a coboundary if there exists a continuous linear map α ∈ Lin(g, z)
with ω(x, y) = α([x, y]) for all x, y ∈ g. We write Z2

c (g, z) for the space of
continuous z-valued 2-cocycles and B2

c (g, z) for the subspace of coboundaries
defined by continuous linear maps. We define the second continuous Lie algebra
cohomology space to be

H 2
c (g, z) := Z2

c (g, z)/B
2
c (g, z).

(b) If ω is a continuous z-valued cocycle on g, then we write g ⊕ω z for the
topological Lie algebra whose underlying topological vector space is the product
space g × z, and the bracket is defined by

[(x, z), (x ′, z′)] = (
[x, x ′], ω(x, x ′)

)
.

Then q: g ⊕ω z → g, (x, z) �→ x is a central extension and σ : g → g ⊕ω z,
x �→ (x, 0) is a continuous linear section of q. 	


Let K be a Lie group and k its Lie algebra. Further let G := C∞(M,K)e
denote the identity component of the Lie group C∞(M,K) with Lie algebra
g = C∞(M, k). We consider a continuous invariant symmetric bilinear map
κ: k × k → Y . We thus obtain a continuous zM(Y )-valued cocycle on g by

ωM(ξ, η) := ωM,κ(ξ, η) := [κ(ξ, dη)] ∈ zM(Y ), (1.1)
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where we view κ(ξ, dη) as the element of�1(M, Y )whose value in a tangent vec-
tor v ∈ Tp(M) is given by κ(ξ(p), dη(p)(v)). We write �M for the left invariant
zM(Y )-valued 2-form on G with �M(e) = ωM .

In this first section we will discuss the image of the period homomorphism

perωM :π2(G) → zM(Y ), perωM ([σ ]) :=
∫

σ

�M,

where σ : S
2 → G is a piecewise smooth representative (with respect to a tri-

angulation) (see [Ne02b, Sect. 5] for the fact that the integration formula de-
fines a group homomorphism and [Ne02b, Th. A.3.7] for the existence of smooth
representatives in homotopy classes). In particular we are interested in whether
the period group �M,κ := im(perωM,κ ) is a discrete subgroup of zM(Y ).

The following theorem is the key result of this section.

Theorem I.6. (Reduction Theorem) The period group �M,κ is contained in the
subspace H 1

dR(M, Y ) of zM(Y ). Identifying H 1
dR(M, Y ) with Y k via the map �,

where k := b1(M) := dimH 1
dR(M,R) is the first Betti number of M , we have

�M,κ
∼= �k

S1,κ
⊆ Y k ∼= H 1

dR(M, Y ) ⊆ zM(Y ).

In particular �M,κ is discrete if and only if �S1,κ is discrete. 	

For the proof we need several lemmas. Since the linear maps αz on zM separate

points (Remark I.2), it is crucial to get a better description of the compositions
αz ◦ perωM .

Lemma I.7. For each α ∈ C∞(S1,M) we have

αz ◦ perωM = perω
S1

◦π2(αK), (1.2)

where π2(αK):π2(G) → π2(C
∞(S1,K)) is the group homomorphism induced

by the Lie group homomorphism αK :G → C∞(S1,K), f �→ f ◦ α.

Proof. First we observe that αz ◦ �M is a Y -valued left invariant 2-form on G
whose value in e is αz ◦ωM . Further α∗

K�S1 is a left invariant 2-form onG whose
value in e is given by

(ξ, η) �→ ωS1(ξ ◦ α, η ◦ α) = [κ(ξ ◦ α, d(η ◦ α))]
= [κ(α∗ξ, α∗(dη))] =

∫

S1
κ(α∗ξ, α∗(dη))

=
∫

α

κ(ξ, dη) = αz

(
ωM(ξ, η)

)
.

This implies αz ◦�M = α∗
K�S1 , which in turn leads to (1.2). 	
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Lemma I.8. Let Mi , i = 1, 2, be two compact manifolds with base points xMi

and α1,2:M1 → M2 two smooth homotopic maps with αj (xM1) = xM2 . Then the
Lie group homomorphisms

αj,K :C∞(M2,K) → C∞(M1,K), f �→ f ◦ αj
satisfy πm(α1,K) = πm(α2,K) for each m ∈ N0.

Proof. Let F : [1, 2] × M1 → M2 be a homotopy with F1 = α1 and F2 = α2.
Then the map

�: [1, 2] × C(M2,K) → C(M1,K), �(t, f )(s) := f (F (t, s))

is continuous because the map

�̃: [1, 2] × C(M2,K)×M1 → K, �̃(t, f, s) := f (F (t, s)) = ev(f, F (t, s))

is continuous, which in turn follows from the continuity of the evaluation map

ev:C(M2,K)×M2 → K.

We conclude that the two maps�1,�2:C(M2,K) → C(M1,K) are homotopic,
hence induce the same homomorphisms πm(C(M2,K)) → πm(C(M1,K)) for
each m ∈ N0.

The restriction, resp., corestriction of these two maps to the subgroup
C∞(M2,K) of smooth functions are the maps α1,K and α2,K . Since the inclusion
C∞(Mj ,K) ↪→ C(Mj,K) is a homotopy equivalence ([Ne02b, Th. A.3.7]), the
commutativity of the diagram

πm(C
∞(M2,K))

∼=−−→ πm(C(M2,K))

�πm(αj,K )



�πm(�j )

πm(C
∞(M1,K))

∼=−−→ πm(C(M1,K))

implies πm(α1,K) = πm(α2,K) because of πm(�1) = πm(�2). 	

Corollary I.9. �M,κ ⊆ H 1

dR(M, Y ).

Proof. From (1.2) and Lemma I.8 we derive that for each α ∈ C∞(S1,M) the
map αz ◦ perωM only depends on the homotopy class of α, and therefore that
im(perωM ) ⊆ H 1

dR(M, Y ) (Remark I.2(b)). 	

Lemma I.10. Let C∞

∗ (S
1,K) := {f ∈ C∞(S1,K): f (1) = e} denote the

Lie group of based loops. For h ∈ C∞(S1,S1) and m ∈ N0 the map
πm(hK):πm(C∞

∗ (S
1,K)) → πm(C

∞
∗ (S

1,K)) is given by

πm(hK)([σ ]) = deg(h) · [σ ],

where deg(h) = [h] ∈ π1(S
1) ∼= Z is the mapping degree of h.
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Proof. We realize S
1 as R/Z, so that continuous functions S

1 → K correspond
to continuous 1-periodic functions R → K . In view of Lemma I.8, πm(hK) only
depends on the homotopy class of h, so that we may assume that h(z) = nz for
some n ∈ Z. In this case n = deg(h).

Since the inclusion C∞
∗ (S

1,K) ↪→ C∗(S1,K) is a weak homotopy equiva-
lence ([Ne02b, Th. A.3.7]), it suffices to consider the maps

ϕn:C∗(S1,K) → C∞
∗ (S

1,K), ϕn(f )(t) = f (nt).

We claim that ϕn is homotopy equivalent to the map ψn(f ) := f n.
We assume that n > 0. The case n = 0 is trivial and the case n < 0 is treated

similarly. For each interval [ i
n
, i+1

n
], i = 0, . . . , n − 1, we define a continuous

map

αi :C∗(S1,K) → C∗(S1,K), αi(f )(t) := f (̃αi(t)), 0 ≤ t ≤ 1,

where

α̃i : [0, 1] → [0, 1], t �→





0 for t ≤ i
n

nt − i for i
n

≤ t ≤ i+1
n

1 for i+1
n

≤ t ≤ 1.

This means that the functions αi(f ) are “supported” by the Z-translates of the
interval [ i

n
, i+1

n
]. Then each map α̃i is homotopic to the identity of [0, 1] with

fixed endpoints, and the same carries over to αi . Now

ϕn(f ) = α1(f ) · α2(f ) · · ·αn(f )
is a pointwise product because the supports of the factors are disjoint. As each
map αi is homotopic to idC∗(S1,K), the map ϕn is homotopic to the nth power map.

The nth power map on C∗(S1,K) induces the nth power map on the
corresponding homotopy groups, where the multiplication is induced by pointwise
multiplication in K , and we conclude that

πm(ϕn):πm(C∗(S1,K)) → πm(C∗(S1,K))

is the nth power map in the abelian group πm(C∗(S1,K)). 	

Proof. (of Theorem I.6) We already know from Corollary I.9 that

�M,κ ⊆ H 1
dR(M, Y ) =

k⊕

j=1

[δ(fj )] · Y ∼= Y k,

and the linear maps αj,z correspond to the projections onto the components in Y k.
We have to evaluate these maps on �M . To approach �M from below, we
associate to each f ∈ C∞(M,S1) the map fK :C∞(S1,K) → G = C∞(M,K),
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η �→ η ◦ f, which in turn induces a map π2(fK):π2(C
∞(S1,K)) → π2(G). For

α ∈ C∞(S1,M) we obtain with Lemma I.10

αz ◦ perωM ◦ π2(fK) = perω
S1

◦ π2(αK) ◦ π2(fK) = perω
S1
◦ π2(αK ◦ fK)

= perω
S1

◦ π2((f ◦ α)K) = deg(f ◦ α) · perω
S1
.

For f = fi and α = αj it follows in particular that αi,z ◦ perωM ◦π2(fj,K) =
δij perω

S1
. Hence

perωM
(

im π2(fj,K)
) = [δ(fj )] ·�S1

and further �M ⊇ ∑k
j=1[δ(fj )] ·�S1 ∼= �k

S1 .

For the converse inclusion, we observe that αj,z ◦ perωM = perω
S1

◦π2(αK)

implies that for each j we have αj,z ◦perωM ⊆ �S1 and therefore�M ⊆ �k
S1 . 	


In view of Theorem I.6, the discreteness of the group �M,κ does not depend
onM (if b1(M) > 0), so that as far as the discreteness of the period group is con-
cerned, it suffices to consider the simplest non-trivial compact manifoldM = S

1.
In this first section we did not use any specific information on κ , but for the dis-
creteness of �S1,κ the specific choice of κ plays a crucial role. For b1(M) = 0
the period map vanishes, so that its image is trivially discrete.

Remark I.11. (a) In this section we have analyzed the period map π2(C
∞(M,K))

→ zM(Y ) by indirect methods based on smooth homomorphisms of loop groups
into C∞(M,K) and on homomorphisms into loop groups. It is remarkable that
this method provides a complete description of the period group.

Let xM ∈ M be a base point and C∗(M,K) ⊆ C(M,K) denote the kernel
of the evaluation homomorphism C(M,K) → K, f �→ f (xM). For general
groups K and general compact manifolds the Approximation Theorem ([Ne02b,
Th. A.3.7]) implies that

π2(C
∞(M,K)) ∼= π2(C(M,K)) ∼= π2(K)× π2(C∗(M,K))∼= π2(K)× [S2, C(M,K)]∗∼= π2(K)× [S2 ∧M,K]∗ ∼= π2(K)× π0(C∗(S2 ∧M,K)).

In general the group of homotopy classes [M,K] for a CW-complex M may
be quite hard to access if dimM ≥ 3. For 2-dimensional manifolds one can use the
classification of compact surfaces to obtain good descriptions of π2(C(M,K)).
(b) We consider the case where M = T

d is a d-dimensional torus. Then

C(Td,K) ∼= C(T, C(Td−1,K)) ∼= C∗
(
T, C(Td−1,K)

)
� C(Td−1,K)

inductively leads to πk(C(Td,K)) ∼= ∑d
j=0 πk+j (K)

(dj). 	




Central extensions of current groups 377

II. The case of loop groups

We keep the notation of Section I. In addition, we assume in this section that
K is finite-dimensional. In this case we show that if κ is the universal invariant
symmetric bilinear form on k, then the period group �S1,κ is discrete.

Definition II.1. For a finite-dimensional Lie algebra k we write V (k) :=
S2(k)/k.S2(k), where the action of k on S2(k) is the natural action inherited by the
one on the tensor product k ⊗ k by x.(y ⊗ z) = [x, y] ⊗ z + y ⊗ [x, z]. There
exists a natural invariant symmetric bilinear form

κ: k × k → V (k), (x, y) �→ [x ∨ y]

such that for each invariant symmetric bilinear form β: k × k → W there exists
a unique linear map ϕ:V (k) → W with ϕ ◦ κ = β. We call the natural map
κ: k × k → V (k) the universal invariant symmetric bilinear form on k. 	


We start with some observations that will be needed later on.

Remark II.2. (1) The assignment g → V (g) is a covariant functor from Lie
algebras to vector spaces.
(2) If g = a ⊕ b with a perfect, then V (g) ∼= V (a) ⊕ V (b) because for every
symmetric invariant bilinear map κ: g × g → V we have for x, y ∈ a, z ∈ b the
relation κ([x, y], z) = κ(x, [y, z]) = κ(x, 0) = 0.
(3) If h � g is an ideal and the quotient morphism q: g → q := g/h splits, then
g ∼= h�q, and the natural mapV (q) → V (g) is an embedding. In fact, letη: q → g
be the inclusion map. Then q ◦ η = idq and this leads to V (q) ◦ V (η) = idV (q),
showing that V (η) is injective.
(4) If s is reductive with the simple ideals s1, . . . , sn, then (2) implies that

V (s) ∼= V (z(s))⊕
n⊕

j=1

V (sj ) ∼= V (z(s))⊕ R
n.

(5) If k = r � s is a Levi decomposition, then (3) implies that the natural map
V (s) → V (k) is an embedding.
(6) If k = gl(n,R), then V (k) ∼= R

2 follows from (4). 	

Remark II.3. We recall some results on the homotopy groups of finite-dimensional
Lie groupsK . First we recall E. Cartan’s Theoremπ2(K) = 1 ([Mim95, Th. 3.7]),
and further Bott’s Theorem that for a compact connected simple Lie groupK we
have π3(K) ∼= Z ([Mim95, Th. 3.9]).

In [Mim95, pp. 969/970] one also finds a table with πk(K) up to k = 15,
showing that

π4(K) ∼=






Z2 ⊕ Z2 for K = SO(4)
Z2 for K = Sp(n),SU(2),SO(3),SO(5)
1 for K = SU(n), n ≥ 3, and SO(n), n ≥ 6,
1 for K = G2, F4, E6, E7, E8.
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π5(K) ∼=






Z2 ⊕ Z2 for K = SO(4)
Z2 for K = Sp(n),SU(2),SO(3),SO(5)
Z for K = SU(n), n ≥ 3, and SO(6)
1 for K = SO(n), n ≥ 7, G2, F4, E6, E7, E8.

	

Remark II.4. (a) Let K be a connected finite-dimensional Lie group, C ⊆ K a
maximal compact subgroup, C0 the identity component of the center of C and
C1, . . . , Cm the connected simple normal subgroups ofC. Then the multiplication
map C0 × C1 × · · · × Cm → C has finite kernel, hence is a covering map. Now
the existence of a manifold factor in K implies that

π3(K) ∼= π3(C) ∼=
m∏

j=1

π3(Cj ) ∼= Z
m

(Remark II.3) because C0 is a torus, so that π3(C0) is trivial.
(b) If C is compact and simple, then a generator of π3(C) can be obtained from
a homomorphism η: SU(2) → C. More precisely, let α be a long root in the root
system 
c of c and c(α) ⊆ c the corresponding su(2)-subalgebra. Then the
corresponding homomorphism SU(2) ∼= S

3 → C represents a generator of
π3(C) ([Bo58]). 	

Remark II.5. If E and F are locally convex vector spaces, then we write E ⊗π F

for the tensor product space endowed with the projective tensor product topology
(cf. [Tr67]) and E⊗̂F for the completion of this space.

If M is a finite-dimensional σ -compact manifold and E a complete locally
convex space, then C∞(M,E) ∼= C∞(M,R) ⊗̂E follows from [Gr55, Ch. 2,
p.81]. In particular, the subspace

C∞(M,R)⊗ E ∼= span {ϕ · y:ϕ ∈ C∞(M,R), y ∈ E}
is dense in C∞(M,E). 	

Lemma II.6. Let Y be a s.c.l.c. space and zM(Y ) as in Definition I.1. Then the
subspace zM(R) · Y spanned by the elements of the form [β · y], β ∈ �1(M,R),
y ∈ Y , is dense in zM(Y ).

Proof. It suffices to show that�1(M,R) ·Y spans a dense subspace of�1(M, Y ).
Let (ϕj )j∈J be a finite partition of unity in C∞(M,R) such that the support of

each function ϕj is contained in an open set Uj diffeomorphic to an open subset
of R

d for d := dimM . For each Uj we then have �1(Uj , Y ) ∼= C∞(Uj , Y )d,
and Remark II.5 implies that for the completion Y of Y we have C∞(Uj , Y ) ∼=
C∞(Uj ,R)⊗̂Y . Since C∞(Uj ,R) · Y is dense in C∞(Uj ,R)⊗̂Y , it is also dense
in C∞(Uj , Y ).
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Writing β ∈ �1(M, Y ) as a sum β = ∑

j ϕjβ, the preceding argument
implies that each ϕjβ is contained in the closure of �1(M,R) · Y , and this
proves that �1(M,R) · Y is dense in �1(M, Y ). 	

Lemma II.7. Let k be a locally convex Lie algebra, M a smooth manifold, g :=
C∞(M, k), κ: k × k → Y a continuous invariant symmetric bilinear form, and
ωM,κ ∈ Z2

c (g, zM(Y )) defined by

ωM,κ(η, ξ) := [κ(η, dξ)],

so that in particular ωM,κ(f ⊗ x, g ⊗ y) := [f dg]κ(x, y) ∈ zM(Y ). If im(κ)
spans Y , then the central extension ĝ := g ⊕ωM,κ zM(Y ) is a covering, i.e., zM(Y )
is contained in the closure of the commutator algebra of ĝ.

Proof. For x, y ∈ k and f, g ∈ C∞(M,R) we have in ĝ the relation

[f ⊗ x, g ⊗ y]−[g ⊗ x, f ⊗ y] = (
fg ⊗ [x, y]−gf⊗[x, y], 2[f dg] · κ(x, y))

= (
0, 2[f dg] · κ(x, y)).

This implies that the dense subspace zM(R)·Y of zM(Y ) (Lemma II.6) is contained
in [̂g, ĝ] and therefore that ĝ → g is a covering. 	


We now return to our assumption thatK is finite-dimensional and consider the
loop groupG := C∞(S1,K). Let κ: k × k → V (k) denote the universal invariant
symmetric bilinear form and define a cocycle on g = C∞(S1, k) as in Section I
by ω(f, g) := ωS1,κ (f, g) := [κ(f, dg)].

Remark II.8. (a) If K is a finite-dimensional Lie group, then π2(K) = 1 implies
that π3(K) ∼= π2(C∗(S1,K)) ∼= π2(G), and we can view the period map of ω as
a homomorphism

perK :π3(K) → V (k).

(b)For any infinite-dimensional Lie groupK we can also define a homomorphism
π3(K) → V (k) as follows. To define V (k) for an infinite-dimensional Lie algebra
k, we first endow k⊗k with the projective tensor product topology and define V (k)
as the quotient of this space by the closure of the subspace spanned by all elements
of the form x ⊗ y − y ⊗ x, and [x, y] ⊗ z+ y ⊗ [x, z], x, y, z ∈ k. If [z] denotes
the image of z ∈ k ⊗ k in V (k), we obtain a continuous invariant bilinear map

κ: k × k → V (k), κ(x, y) := [x ⊗ y]

which leads to the cocycleω ∈ Z2
c (g, V (k))ong := C∞(S1, k)given byω(ξ, η) :=

[κ(ξ, dη)].
Let G := C∞(S1,K)e. Since the restriction of ω to the subalgebra k of g

consisting of constant k-valued functions vanishes, the period map perω:π2(G) ∼=
π3(K)×π2(K) → V (k) vanishes on π2(K) and defines a group homomorphism
perK :π3(K) → V (k) with the same image. 	


The following theorem shows that for each finite-dimensional Lie group K
the homomorphism perK has discrete image, and it is not so easy to find infinite-
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dimensional Lie groups where this is not the case. Below we discuss some related
examples and special classes.

Theorem II.9. For every finite-dimensional connected Lie groupK and the V (k)-
valued cocycle ω(f, g) = [κ(f, dg)] on C∞(S1, k), the image of perω in V (k) is
discrete.

Proof. If ϕ:K1 → K2 is a Lie group morphism and L(ϕ): k1 → k2 the corre-
sponding Lie algebra morphism, then we have

κk2 ◦L(ϕ×ϕ) = V (L(ϕ))◦κk1, and perωM,k2
◦π3(ϕ) = V (L(ϕ))◦perωM,k1

.

In view of Remark II.4, this reduces the problem to the determination ofV (L(ηj ))
for the generators ηj : SU(2) → K , j = 1, . . . , m, of π3(K).

For K = SU(2) pick x ∈ k with Spec(ad x) = {0,±2i}. All these elements
are conjugate under inner automorphisms. Therefore vk := 1

2κ(x, x) ∈ V (k) is
well defined (κ can be viewed as a multiple of the Cartan-Killing form; see also
Remark II.2(4)). Then the calculations in Appendix IIa to Section II in [Ne01a]
imply that perω([idK ]) = vk.

Therefore, in the general case, im(per ω) ⊆ V (k) is the subgroup generated by
the elements v1, . . . , vm corresponding to the homomorphisms ηj : SU(2) → Cj
mentioned above. If s ⊆ k is a Levi complement, then we may assume that
im(L(ηj )) ⊆ s for each j , so that it suffices to determine the image of perω in the
case where k = s is semisimple (Remark II.2(5)). This problem immediately re-
duces to the case where s is simple. Let sc ⊆ s be a maximal compact semisimple
subalgebra. Then sc need not be simple and we write s

j
c , j = 1, . . . , l, for its simple

ideals. (For s = su(p, q)we have sc ∼= su(p)×su(q), so that l = 2 forp, q ≥ 2.)
We are interested in the subgroup of V (s) ∼= R generated by the elements vj

coming from the basis elements v
s
j
c

= 1
2κ(xj , xj ) ∈ V (sjc ), where xj denotes an

element in a suitable su2-subalgebra of the simple ideal s
j
c of sc which is normal-

ized in such a way that Spec(ad xj ) = {±2i, 0} holds on the su2-subalgebra. The
choice of the elements xj ∈ s

j
c and the representation theory of sl(2,C) imply that

all eigenvalues of ad xj are contained in iZ, so that tr((ad xj )2) ∈ −N0. Therefore
the values of the Cartan–Killing form on the vj are integral, so that they generate
a discrete subgroup of V (s) ∼= R. We finally conclude that in the general situation
the image of perω in V (k) is discrete. 	

Remark II.10. Let γ ∈ V (k)∗, so that κγ := γ ◦κ defines a real-valued symmetric
bilinear form on k. Then the image of the corresponding period map in R is
determined by the values of γ on the image of the period map π3(K) → V (k)
in Theorem II.9 which is generated by the elements v1, . . . , vm ∈ V (k) obtained
as follows. Let cj denote the simple ideals in the Lie algebra c of a maximal
compact subgroup C ⊆ K . Further let su(2)j ⊆ cj be a subalgebra correspond-
ing to a long root and xj ∈ su(2)j with Spec(ad xj |su(2)j ) = {0,±2i}. Then
vj = 1

2κ(xj , xj ) ∈ V (k), and we have
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im(perω) =
k∑

j=1

Zγ (vj ) =
k∑

j=1

1

2
Zγ (κ(xj , xj )). 	


Lemma II.11. Let k be a finite-dimensional simple Lie algebra, and κk its Cartan-
Killing form of k. Further letA be a locally convex unital commutative associative
algebra and consider the locally convex Lie algebra g := A⊗π k with the bracket
given by [a ⊗ x, b ⊗ y] := ab ⊗ [x, y]. Then the map

κ: g × g → A, (a ⊗ x, b ⊗ y) �→ κk(x, y)ab

is a universal invariant symmetric bilinear form. In particular V (g) ∼= A.

Proof. From κ([a ⊗ x, b ⊗ y], c ⊗ z) = κk([x, y], z)abc = κk(x, [y, z])abc =
κ(a⊗ x, [b⊗ y, c⊗ z]) we see that κ is an invariant symmetric bilinear form on
g. Its construction implies the continuity.

To verify the universal property, let β: g × g → Y be a continuous invari-
ant symmetric bilinear form. For each pair a, b ∈ A we then obtain an invariant
bilinear form

βa,b: k × k → Y, (x, y) �→ β(a ⊗ x, b ⊗ y).

Now V (k) = Rκk implies the existence of a unique element η(a, b) ∈ Y with
βa,b = κk · η(a, b). Pick x, y ∈ k with κk(x, y) �= 0. Then the continuity of the
map

A× A → Y, (a, b) �→ β(a ⊗ x, b ⊗ y) = κk(x, y)η(a, b)

implies the continuity of η:A× A → Y .
Since k is a perfect Lie algebra, we also find three elements x, y, z ∈ k with

κk([x, y], z) �= 0. Then the invariance of β further leads to

κk([x, y], z)η(ab, c) = β([a ⊗ x, b ⊗ y], c ⊗ z) = β(a ⊗ x, [b ⊗ y, c ⊗ z])
= κk(x, [y, z])η(a, bc) = κk([x, y], z)η(a, bc),

so that η(ab, c) = η(a, bc), a, b, c ∈ A. Let 1 ∈ A denote the unit element and
define the continuous linear map γ :A → Y, a �→ η(a, 1). Then

β(a ⊗ x, b ⊗ y) = κk(x, y)η(a, b) = κk(x, y)η(ab, 1)
= κk(x, y)γ (ab) = (γ ◦ κ)(a ⊗ x, b ⊗ y)

shows that β factors through κ , which implies the universal property of κ . Here
the uniqueness of γ follows from A = 1 · A = A · A. 	

Remark II.12. (a) We call an associative unital locally convex algebraA a contin-
uous inverse algebra if its group of unitsA× is open and the inversionA× → A×

is a continuous map. Such algebras have been studied in [Gl01c]. In particular the
following results have been obtained:
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(1) If A is a sequentially complete continuous inverse algebra, then all matrix
algebras Mn(A), n ∈ N, also have this property ([Gl01c, Prop. 4.5]).

(2) IfA is a continuous inverse algebra, thenA× is a Baker–Campbell–Hausdorff–
Lie group (BCH-Lie group), i.e., it has an exponential map expA → A (given
by holomorphic functional calculus) which restricts to a diffeomorphism of
some open 0-neighborhoodU inA to some open 1-neighborhood inA× and on
some 0-neighborhoodW ⊆ U with expW expW ⊆ expU the multiplication
x ∗ y := exp |−1

U (exp x exp y) is given by the BCH-series.

By combining (1) and (2), we can use the theory of analytic subgroups of
BCH-Lie groups ([Gl01b]) to derive for each closed Lie subalgebra g ⊆ Mn(A)

the existence of a global Lie group G with an exponential function obtained by
restricting the one of Mn(A) ([Gl01b, Prop. 2.13]).
(b) Let A be a unital locally convex algebra andHC0(A) := A/[A,A]. We write
[a] for the class of a ∈ A inHC0(A). Then the map Tr:Mr(A) → HC0(A), x �→
[
∑

j xjj ] is a continuous Lie algebra homomorphism and we define slr (A) :=
ker Tr. Inspecting the arguments in [BGK96, Lemma 2.8] in the algebraic set-
ting, one obtains V (slr (A)) ∼= HC0(A) and that a universal invariant symmetric
bilinear form is given by κ(x, y) := Tr(xy).

Suppose that A is a complete complex commutative continuous inverse
algebra. According to [Bos90, Prop. A.1.5], A satisfies

K0(A) ∼= K2(A) := lim−→ π3(GLn(A)).

One can show that the period map perSLr (K):π3(SLr (A)) → HC0(A) is the com-
position of the natural maps π3(SLr (A)) → π3(GLr (A)) → K0(A) and the trace
map

TA:K0(A) → HC0(A), [p] �→ Tr(p),

where p = p2 ∈ Mn(A) is an idempotent representing an element of K0(A) (see
[Ne02a] for details).

If A is commutative, then HC0(A) = A and the image of the trace map TA is
contained in the kernel of the exponential function expA:A → A×, x �→ e2πix ,
hence discrete. This implies that im(perSLr (A)) is discrete. The smallest examples
of non-commutative algebras for which im(TA) is not discrete are the irrational
rotation algebras, certain 2-dimensional quantum tori. In this case HC0(A) ∼= C

and im(TA) = Z + θZ for some irrational real number θ .
(c) In the context of (b), we can use (a) to obtain for each simple complex Lie
algebra k the existence of a Lie groupG with Lie algebra g := A⊗ k because we
can embed k into some Mn(C) and then extend scalars to obtain an embedding
g ↪→ Mn(A). We then have g ⊆ sln(A), and the natural map V (g) → V (sln(A))
is an isomorphism (Lemma II.11). Therefore (b) implies that im(perG) is discrete
if im(perSLr (A)) is discrete, which holds whenever A is a complete commutative
continuous inverse algebra. 	
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III. Existence of corresponding central Lie group extensions

In the following we will use the concept of an infinite-dimensional Lie group
described in detail in [Mil83] (see also [Gl01a] and [Ne01b]). This means that
a Lie group G is a smooth manifold modeled on a locally convex space g for
which the group multiplication and the inversion are smooth maps. We write
λg(x) = gx, resp., ρg(x) = xg for the left, resp., right multiplication on G.
Then each X ∈ Te(G) corresponds to a unique left invariant vector field Xl with
Xl(g) := dλg(1).X, g ∈ G. The space of left invariant vector fields is closed
under the Lie bracket of vector fields, hence inherits a Lie algebra structure. In
this sense we obtain on g := Te(G) a continuous Lie bracket which is uniquely
determined by [X, Y ]l = [Xl, Yl].

In this context central extensions of Lie groups are always assumed to have a
smooth local section. Let Z ↪→ Ĝ →→ G be a central extension of the connected
Lie groupG by the abelian groupZ. We assume that the identity componentZe of
Z can be written as Ze = z/π1(Z), where the Lie algebra z of Z is a s.c.l.c. space.
This means that the additive group of z can be identified in a natural way with the
universal covering group of Ze, and that Ze is a quotient of z modulo a discrete
subgroup which can be identified with π1(Z). Since the quotient map q: Ĝ → G

has a smooth local section, the corresponding Lie algebra homomorphism ĝ → g
has a continuous linear section, hence can be described by a continuous Lie algebra
cocycle ω ∈ Z2

c (g, z) as

ĝ ∼= g ⊕ω z with the bracket [(x, z), (x ′, z′)] = ([x, x ′], ω(x, x ′)).

Let Z2
s (G,Z) denote the abelian group of 2-cocycles f :G×G → Z which

are smooth in a neighborhood of (e, e) andB2
s (G,Z) the subgroup of all functions

of the form (g, g′) �→ h(gg′)h(g)−1h(g′)−1, where h:G → Z is smooth in an
identity neighborhood. We recall from [Ne02b, Prop. 4.2] that central Lie group
extensions as above can always be written as

Ĝ ∼= G×f Z with (g, z)(g′, z′) = (
gg′, zz′f (g, g′)

)
,

with f ∈ Z2
s (G,Z). Two cocycles f1, f2 define equivalent Lie group extensions if

and only if f1 · f −1
2 ∈ B2

s (G,Z) (for f −1
2 (x, y) := f2(x, y)

−1), and the quotient
group H 2

s (G,Z) := Z2
s (G,Z)/B

2
s (G,Z) parametrizes the equivalence classes

of central Z-extensions of G with smooth local sections ([Ne02b, Def. 4.4]).
On the Lie algebra level the space H 2

c (g, z) = Z2
c (g, z)/B

2
c (g, z) classifies the

central z-extensions of g with continuous linear sections. There is a natural map
H 2
s (G,Z) → H 2

c (g, z) induced by the map

D:Z2
s (G,Z) → Z2

c (g, z), D(f )(x, y) = d2f (e, e)((x, 0), (0, y))
−d2f (e, e)((y, 0), (x, 0)) (3.1)
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([Ne02b, Lemma 4.6]), where d2f (e, e) is well-defined because df (e, e)

vanishes. For more details on central extensions of infinite-dimensional Lie groups
we refer to [Ne02b].

In this section we discuss the existence of a central Lie group extension for
the Lie algebra cocycles ωM,κ of product type (see (1.1)), where K may be an
infinite-dimensional Lie group.

The group C∞(M,K) acts on g by the adjoint action which is given by

(Ad(f ).ξ)(m) := Ad(f (m)).ξ(m) for m ∈ M.
We also define an action of C∞(M,K) on k-valued 1-forms on M by

(Ad(f ).α)(m) := Ad(f (m)) ◦ α(m) for m ∈ M.
Definition III.1. For an element f ∈ C∞(M,K) we write

δl(f )(m) := dλf (m)−1(f (m))df (m): Tm(M) → k ∼= Te(K)

for the left logarithmic derivative of f . This derivative can be viewed as a k-val-
ued 1-form on M . We also write simply δl(f ) = f −1.df and define the right
logarithmic derivative by δr(f ) = df.f −1. We then have the cocycle properties

δl(f1f2) = Ad(f2)
−1.δl(f1)+ δl(f2) and δr(f1f2) = δr(f1)+Ad(f1).δ

r(f2)

(3.2)
([KM97, 38.1]).

The form θ lK := δl(idK) ∈ �1(K, k) is called the left Maurer–Cartan form on
K and θrK := δr(idK) the right Maurer–Cartan form. Using the Maurer–Cartan
forms, we have δl(f ) = f ∗θ lK and δr(f ) = f ∗θrK. 	

Lemma III.2. The smooth maps δl, δr :C∞(M,K) → �1(M, k) satisfy

(dδl)(e)(η) = (dδr)(e)(η) = dη for η ∈ C∞(M, k) ∼= Te(C
∞(M,K)).

Proof. Let V ⊆ k be an open convex 0-neighborhood and ϕ:V → U := ϕ(V )

a chart of K with ϕ(0) = e and dϕ(0) = idk. Let η ∈ g = C∞(M, k). Then
there exists an ε > 0 such that for each t ∈ [0, ε] we have tη(M) ⊆ V . Now
γ : [0, ε] → C∞(M,K), γt (m) := ϕ(tη(m)) is a smooth curve on C∞(M,K)
with γ (0) = e and γ ′(0) = η. We now have for v ∈ Tm(M)

dγt (m).v = dϕ(tη(m))tdη(m)v ∈ Tγ (m)(K)
and therefore

δl(γt )(m).v = γt (m)
−1.(dγt (m).v) = ϕ(tη(m))−1.dϕ(tη(m)) · t · dη(m)v ∈ k.

In view of dγ0 = 0, it follows that

d

dt t=0
γt (m)

−1.(dγt (m).v) = lim
t→0

ϕ(tη(m))−1.dϕ(tη(m))dη(m)v

= ϕ(0)−1.dϕ(0)dη(m)v = dη(m)v.

A similar argument works for the right logarithmic derivatives. 	
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Proposition III.3. Let g := C∞(M, k), κ: k × k → Y be a continuous invariant
symmetric bilinear form, and define

�:C∞(M,K) → Lin(g, zM(Y )), �(f )(ξ) := [κ(δl(f ), ξ)].

Then we obtain for the cocycle ω(ξ, η) := [κ(ξ, dη)] an automorphic action of
C∞(M,K) on ĝ := g ⊕ω zM(Y ) by

f.(ξ, z) := (Ad(f ).ξ, z−�(f )(ξ)) = (Ad(f ).ξ, z− [κ(δl(f ), ξ)]). (3.3)

The corresponding derived action is given by

η.(ξ, z) = [(η, 0), (ξ, z)] = ([η, ξ ], ω(η, ξ)). (3.4)

Proof. Using (3.2), we first verify the cocycle condition for �:

�(f1f2)(ξ) = [κ(δl(f1f2), ξ)] = [κ(δl(f2)+ Ad(f2)
−1.δl(f1), ξ)]

= �(f2)(ξ)+ [κ(δl(f1),Ad(f2).ξ)]
= �(f2)(ξ)+�(f1)(Ad(f2).ξ).

This relation implies that

f1.(f2.(ξ, z)) = f1.(Ad(f2).ξ, z−�(f2)(ξ))

= (Ad(f1f2).ξ, z−�(f2)(ξ)−�(f1)(Ad(f2).ξ))

= (Ad(f1f2).ξ, z−�(f1f2)(ξ)) .

To see that C∞(M,K) acts by automorphisms of ĝ, we note that

d(Ad(f ).η)(m) = ((d Ad)(f (m))df (m)).η(m)+ Ad(f (m)) ◦ dη(m)
= (Ad(f (m))d Ad(e)dλf (m)−1(f (m))df (m)).η(m)

+ Ad(f (m)) ◦ dη(m)
= (Ad(f (m)) ◦ ad δl(f )(m)).η(m)+ Ad(f (m)) ◦ dη(m),

which means that

d(Ad(f ).η) = Ad(f ).[δl(f ), η] + Ad(f ).dη. (3.5)

Therefore

ω(Ad(f ).ξ,Ad(f ).η) = [κ(Ad(f ).ξ, d(Ad(f ).η))]
= [κ(Ad(f ).ξ,Ad(f ).dη + Ad(f ).[δl(f ), η])]
= [κ(ξ, dη)] + [κ(ξ, [δl(f ), η])]
= [κ(ξ, dη)] − [κ(δl(f ), [ξ, η])]
= ω(ξ, η)−�(f )([ξ, η]).

That C∞(M,K) acts by automorphisms on ĝ now follows from
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f.[(ξ1, z1), (ξ2, z2)] = (Ad(f ).[ξ1, ξ2], ω(ξ1, ξ2)−�(f )([ξ1, ξ2]))
= (

[Ad(f ).ξ1,Ad(f ).ξ2], ω(Ad(f ).ξ1,Ad(f ).ξ2)
)

= [f.(ξ1, z1), f.(ξ2, z2)].

To verify (3.4), we have to show that the differential of � in e is given by
d�(e)(η)(ξ) = ω(ξ, η). Using Lemma III.2, we obtain

d�(e)(η)(ξ) = [κ
(
(dδl)(e)(η), ξ

)
] = [κ(dη, ξ)] = [κ(ξ, dη)] = ω(ξ, η). 	


Definition III.4. Let G be a connected Lie group with Lie algebra g and ω ∈
Z2
c (g, z) a continuous Lie algebra cocycle with values in the s.c.l.c. space z. Let
� ⊆ z be a discrete subgroup and Z := z/� the corresponding quotient Lie
group. Further let � be the corresponding left invariant closed z-valued 2-form
on G. Then we define a homomorphism

P :H 2
c (g, z) → Hom(π2(G), Z)× Hom(π1(G),Lin(g, z))

as follows. For the first component we take

P1([ω]) := qZ ◦ perω,

where qZ: z → Z is the quotient map and perω:π2(G) → z is the period map of
ω. To define the second component, for each X ∈ g we write Xr for the corre-
sponding right invariant vector field onG. Then iXr� is a closed z-valued 1-form
([Ne02b, Lemma 3.11]) to which we associate a homomorphism π1(G) → z via

P2([ω])([γ ])(X) :=
∫

γ

iXr�.

We refer to [Ne02b, Sect. 7] for arguments showing that P is well-defined, i.e.,
that the right hand sides only depend on the Lie algebra cohomology class of
ω. 	

Theorem III.5. Let ω ∈ Z2

c (g, z) be a continuous Lie algebra cocycle. Then the
central Lie algebra extension z ↪→ ĝ := g ⊕ω z →→ g integrates to a central Lie
group extension Z ↪→ Ĝ →→ G if and only if P([ω]) = 0.

Proof. [Ne02b, Th. 7.12]. 	

Theorem III.6. Let K be a connected Lie group, M a compact manifold, G :=
C∞(M,K)e and ωM,κ ∈ Z2

c (g, zM(Y )) as above. Suppose that the period group
�M,κ ⊆ zM(Y ) is discrete. For Z := zM(Y )/�ωM,κ we then obtain a central Lie
group extension Z ↪→ Ĝ →→ G corresponding to the cocycle ωM,κ .

Proof. In view of Theorem III.5, we only have to see that P2([ωM,κ ]) = 0, but
this follows from Proposition III.3 and [Ne02b, Prop. 7.6]. 	
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Corollary III.7. If dimK < ∞, Y = V (k), and κ: k × k → V (k) is the universal
symmetric invariant bilinear map, then there exists forZ := V (k)/�M,κ a central
Lie group extension

Z ↪→ Ĝ →→ G = C∞(M,K)e.

Proof. This is a consequence of Theorem II.9 and Theorem III.6. 	

Remark III.8. (a) (cf. [Ne02b, Rem. 5.12]) Let Z ↪→ Ĝ →→ G be a central exten-
sion of Lie groups, whereG and Ĝ are connected. In view of [Ne02b, Prop. 5.11],
the long exact homotopy sequence of the principal Z-bundle Ĝ over G leads to
an exact sequence

π2(Z) → π2(Ĝ) → π2(G)
perω−−−−→π1(Z) → π1(Ĝ) → π1(G)

→ π0(Z) → π0(Ĝ) = 1,

so that π2(Z) ∼= π2(z) = 1 leads to

π2(Ĝ) ↪→ π2(G)
perω−−−−→π1(Z) → π1(Ĝ) →→ π1(G) → π0(Z).

If the connecting mapπ1(G) → π0(Z) is injective, then the mapπ1(Z) → π1(Ĝ)

is surjective, and we obtain

π2(Ĝ) ∼= ker perω ⊆ π2(G) and π1(G) ∼= π1(Ĝ)/ coker perω .

These relations show how the period homomorphism controls how the first two
homotopy groups of G and Ĝ are related.
(b) We consider the special case where K is a simple compact Lie group and
G = C∞(Td,K)e, whereM = T

d is a d-dimensional torus. ThenY = V (k) ∼= R,
where the Cartan–Killing form κk of k is universal, and π1(T

d) ∼= Z
d implies

zTd (R)
∼= R

d , where the projection onto the components is given by integrating
over the coordinate loops αj : T ↪→ T

d , j = 1, . . . , d.
According to Remark I.11(b), we have

π2(G) ∼= π2(K)⊕ π3(K)
d ⊕ π4(K)

(d2) ⊕ . . . .

Since π2(K) is trivial and π3(K) ∼= Z (Remark II.3), we have π2(G) ∼= Z
d ⊕E,

whereE ∼= π4(K)(
d
2)⊕. . .. The natural homomorphism Z

d ↪→ π2(G) is obtained
from the map

C∞(T,K)d → G, (gj )j=1,...,d �→ (g1 ◦ p1) · · · (gd ◦ pd),
where pj : T

d → T is the projection onto the j -component. As we have seen
above, the period map perωM,κ maps the subgroup Z

d bijectively onto the full
period group

�Td ,κ
∼= �d

S1,κ
∼= Z

d ⊆ H 1
dR(T

d,R) ∼= R
d .
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We conclude in particular with (a) that

π2(Ĝ) ∼= ker(perω
Td ,κ
) ∼= π2(G)/π3(K)

d ∼= π4(K)
(d2) ⊕ · · ·

As we have seen in Remark II.3, this group is not always trivial, showing that
π2(Ĝ) is not always trivial. This contradicts a statement in [PS86, Prop. 4.10.1]
saying that π2(Ĝ) is trivial. 	


For the following theorem we recall that we can use the continuous bilinear
form κ: k × k → Y to define a wedge product

∧κ :�1(M, k)×�1(M, k) → �2(M, Y )

by (α ∧κ β)(v,w) := κ(αp(v), βp(w)) − κ(βp(v), αp(w)), v,w ∈ Tp(M). We
also define for ξ ∈ C∞(M, k) and α ∈ �1(M, k) the wedge product ξ ∧κ α :=
−α ∧κ ξ := κ(ξ, α) and observe that d(ξ ∧κ α) = dξ ∧κ α+ κ(ξ, dα). For each
smooth map f :M → G we then have

(
Ad(f ).α

) ∧κ β = α ∧κ
(

Ad(f )−1.β
)
, (3.6)

where (Ad(f ).α)(v) = Ad(f (p)).α(v) for v ∈ Tp(M), because the bilinear map
κ is invariant under Ad(K). We likewise get

[ξ, α] ∧κ β = −α ∧κ [ξ, β] (3.7)

for ξ ∈ C∞(M, k), where [β, ξ ]p(v) := −[ξ, β]p(v) := [βp(v), ξ(p)]. We also
have a wedge product

[·, ·]∧:�1(M, k)×�1(M, k) → �2(M, k)

defined by [α, β]∧(v,w) := [αp(v), βp(w)] − [αp(w), βp(v)], v, w ∈ Tp(M).

Note that [α, β]∧ = [β, α]∧. The two wedge products are related by the formula

κ([α, β]∧, ξ) = α ∧κ [β, ξ ], ξ ∈ C∞(M, k). (3.8)

Theorem III.9. Let G+ := C∞(M,K). Then the map

c:G+ ×G+ → �2(M, Y ), c(f, g) := δl(f ) ∧κ δr(g)
defines a a smooth �2(M, Y )-valued group 2-cocycle on G+, so that we obtain
a central Lie group extension Ĝ+ := G+ ×c �

2(M, Y ). The corresponding Lie
algebra cocycle Dc from (3.1) is given by

Dc(ξ, η) = 2dξ ∧κ dη for ξ, η ∈ C∞(M, k).

The map γ : zM(Y ) → �2(M, Y ), [β] �→ 2dβ satisfies γ ◦ ωM,κ = Dc and
induces a Lie algebra homomorphism

γg: ĝ = g ⊕ωM,κ zM(Y ) → ĝ+ := g ⊕Dc �
2(M, Y ), (X, [β]) �→ (X, 2dβ).

This homomorphism is G+-equivariant with respect to the action on ĝ+

induced by the adjoint action of Ĝ+, given by

Adĝ+(g).(ξ, z) = (
Ad(g).ξ, z− d(κ(δl(g), ξ))

)
.
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Proof. The smoothness of the cocycle follows from the smoothness of the maps
δl and δr :C∞(M,K) → �1(M, k) and the continuity of κ .

For the constant function f = ewe have δl(f ) = δr(f ) = 0, so that c(g, e) =
c(e, g) = 0. Moreover, we obtain with (3.2) and (3.6):

c(f, gh)− c(fg, h) = δl(f ) ∧κ δr(gh)− δl(fg) ∧κ δr(h)
= δl(f ) ∧κ

(
δr(g)+ Ad(g).δr(h))

−(δl(g)+ Ad(g)−1.δl(f )
) ∧κ δr(h)

= c(f, g)− c(g, h)+ δl(f ) ∧κ
(

Ad(g).δr(h))
−(Ad(g)−1.δl(f )

) ∧κ δr(h) = c(f, g)− c(g, h)

Therefore c is a group cocycle.
According to [Ne02b, Lemma 4.6] and Lemma III.2, the corresponding Lie

algebra cocycle Dc ∈ Z2
c (C

∞(M, k), Y ), is given by

Dc(ξ, η) = d2c(e, e)(ξ, η)− d2c(e, e)(η, ξ)

= dδl(e)(ξ) ∧κ dδr(e)(η)− dδl(e)(η) ∧κ dδr(e)(ξ)
= dξ ∧κ dη − dη ∧κ dξ = 2dξ ∧κ dη.

To relate the Lie algebra cocyclesωM,κ andDc, we first observe that the differ-
ential d:�1(M, Y ) → �2(M, Y ) leads to a linear map γ : zM(Y ) → �2(M, Y ),

[β] �→ 2dβ. This map satisfies

γ ◦ ωM,κ(ξ, η) = 2d(κ(ξ, dη)) = 2d(ξ ∧κ dη) = 2dξ ∧κ dη = Dc(ξ, η).

This implies that γg is a Lie algebra homomorphism.
Next we derive an explicit formula for the action of G+ on the Lie algebra

ĝ+ := g ⊕Dc �
2(M, Y )

from which it will follow that γg is G+-equivariant. The conjugation action of
G+ on the group Ĝ+ is given by

g.(h, 0) := (g, 0)(h, 0)(g, 0)−1 = (
ghg−1, c(g, h)− c(ghg−1, g)

)

([Ne02b, Rem. 1.2]) which implies that the derived action is given by

Adĝ+(g).(ξ, 0) = (
Ad(g).ξ, dc(g, e)(0, ξ)− dc(e, g)(Ad(g).ξ, 0)

)
.

We have seen in Lemma III.2 that dc(g, e)(0, ξ) = δl(g) ∧κ dξ, and with (3.5)
we further get

dc(e, g)(Ad(g).ξ, 0) = d(Ad(g).ξ) ∧κ δr(g) = Ad(g).[δl(g), ξ ] ∧κ δr(g)
+(Ad(g).dξ

) ∧κ δr(g)
= Ad(g).[δl(g), ξ ] ∧κ δr(g)+ dξ ∧κ

(
Ad(g)−1.δr(g)

)

= [δl(g), ξ ] ∧κ δl(g)+ dξ ∧κ δl(g).



390 P. Maier, K-H. Neeb

This leads to

Adĝ+(g).(ξ, 0) = (
Ad(g).ξ, 2δl(g) ∧κ dξ + δl(g) ∧κ [δl(g), ξ ]

)
.

To show that γg is G+-equivariant, we have to verify that

Adĝ+(g).(ξ, 0) := (
Ad(g).ξ,−2d

(
κ(δl(g), ξ)

))
(3.9)

(see (3.3)). The Maurer–Cartan Equation

dδl(f ) = −1

2
[δl(f ), δl(f )]∧, f ∈ C∞(M,K)

([KM97, p.405]) implies

d
(
κ(δl(f ), ξ)

) = d(δl(f ) ∧κ ξ) = dδl(f ) ∧κ ξ − δl(f ) ∧κ dξ
= −1

2
[δl(f ), δl(f )]∧ ∧κ ξ − δl(f ) ∧κ dξ

= −1

2
δl(f ) ∧κ [δl(f ), ξ ] − δl(f ) ∧κ dξ.

This relation immediately gives the desired formula for Adĝ+(f ). 	

Remark III.10. Since the central extension Ĝ+ ofG+ has a smooth global section,
its period group�Dc = γ (�M,κ) ⊆ �2(M, Y ) is trivial ([Ne02b, Prop. 8.5]). This
is another argument for the inclusion �M,κ ⊆ H 1

dR(M, Y ) (Corollary I.9). It is
remarkable that we obtain a central extension of the whole groupG+ and not only
of its identity component G. 	

Remark III.11. (a) Since M is compact, its fundamental group π1(M) is finitely
generated. Let k := b1(M) := rkH1(M) and choose α1, . . . , αk ∈ C∞(S1,M) as

in Remark I.3. Then the integration map�: zM(Y ) → Y k, [β] �→
( ∫

αj
β
)

j=1,...,k

maps the subspaceH 1
dR(M, Y ) bijectively onto Y k, so that we obtain a topological

splitting
zM(Y ) ∼= H 1

dR(M, Y )⊕ ker�.

Then the differential d: zM(Y ) → �2(M, Y ), [β] �→ dβmaps ker� continuously
onto the closed subspace B2

dR(M, Y ) of exact 2-forms in �2(M, Y ).
Suppose that �M,κ is discrete. Then the group Z from Theorem III.6 has a

product decomposition

Z ∼=
(

H 1
dR(M, Y )/�M,κ

)

× ker� ∼=
(

Y/�S1,κ

)k
× ker�

(cf. Theorem I.6).
(b) The differential d: zM(Y ) → �2(M, Y ) induces a Lie algebra homomorphism

γg: ĝ = g ⊕ωM,κ zM(Y ) → ĝ+ = g ⊕Dc �
2(M, Y ), (ξ, [β]) �→ (ξ, 2dβ).
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The construction of a corresponding Lie group homomorphism Ĝ → Ĝ+,
where Ĝ is a central extension of G by Z = zM(Y )/�M,κ (Theorem III.6) is
not so obvious because the values of the cocycle c in Theorem III.9 are in gen-
eral not exact forms (Remark III.13 below), hence do not lie in the range of the
map d. Nevertheless, the range of the Lie algebra cocycle Dc is contained in the
space of exact forms. Suppose that Y is a Fréchet space. Then the quotient map
p:�2(M, Y ) → E := �2(M, Y )/B2

dR(M, Y ) is an open morphism of Fréchet
spaces. We obtain a smooth group cocycle c− := p ◦ c ∈ Z2

s (G
+, E) whose

corresponding Lie algebra cocycle is trivial. According to [Ne02b, Th. 8.8], there
exists a homomorphism α:π1(G) → E such that G ×c− E

∼= (G̃ × E)/�(α),
where �(α) ⊆ π1(G) × E is the graph of α. Is this extension trivial? Since
G is smoothly paracompact, there exists a smooth function f : G̃ → E with
f (gd) = f (g)+ α(d), g ∈ G̃, d ∈ π1(G) ([Ne02b, Prop. 3.8]).
(c) If Y is Fréchet, the same holds for the space �2(M, Y ). Therefore Ĝ+ is a
central extension of the regular Fréchet–Lie groupG+ by the regular Fréchet–Lie
group �2(M, Y ), hence regular ([KM97, Th. 38.6]). Therefore the Lie algebra
homomorphism γg: ĝ → g ⊕Dc B

2
dR(M, Y ) integrates to a unique Lie group

homomorphism γ̃G:G� → G̃ ×c̃ �
2(M, Y ), where G� is the central Lie group

extension of the universal covering group G̃ of G by Z = zM(Y )/�M,κ (Theo-
rem III.6). Then the surjectivity of the period homomorphism π2(G) ∼= π2(G̃) →
π1(Z) implies thatG� is simply connected (Remark III.8). Since the natural map
π1(Ĝ) → π1(G) is an isomorphism (Remark III.8), it follows that γ̃G(π1(Ĝ)) ⊆
π1(G), and hence that γ̃G factors through a Lie group homomorphism γG: Ĝ →
Ĝ+ with L(γG) = γg. 	

Remark III.12. (The abelian case) We assume that K is a connected abelian Lie
group with universal covering group K̃ = (k,+). Then K ∼= k/�, where � ∼=
π1(K) is a discrete subgroup of k. Let qK : k → K denote the quotient map.

Let M be a compact connected manifold. Then the group G+ = C∞(M,K)
is abelian and its identity component G = C∞(M,K)e is the image of the
exponential map

expG: g = C∞(M, k) → G, ξ �→ qK ◦ ξ.
Therefore G̃ = g = C∞(M, k) is contractible, and πk(G) = 1 for k ≥ 2. We
further have

π1(G) ∼= ker expG ∼= C∞(M,�) ∼= � and π0(G) ∼= Hom(π1(M), �) ∼= �k

for k = b1(M). Here we use [Ne02b, Prop. 3.9] to see that each homomorphism
π1(M) → � is obtained from a smooth map M → K and that a smooth map
f :M → K lifts to a smooth map M → k if and only if π1(f ):π1(M) →
π1(K) ∼= � is trivial. Let κ: k × k → Y be a continuous bilinear form and
ω(ξ, η) := [κ(ξ, dη)] the corresponding Lie algebra cocycle.
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(a) Since each element of π1(G) ⊆ g corresponds to a constant function, we
have ω(π1(G), g) = {0}, so that cG(expG ξ, expG η) := 1

2ω(ξ, η) = 1
2 [κ(ξ, dη)]

defines a global zM(Y )- valued group cocycle on G, and we obtain a central
extension Ĝ = G×cG zM(Y ) which can be lifted to a central Lie group extension

G̃×c̃G zM(Y ) with c̃G := cG ◦ (expG × expG),

i.e., c̃G(ξ, η) = [κ(ξ, dη)].
On the other hand we have the central extension G+ ×c �

2(M, Y ) given by
the cocycle

c(g, h) = δl(g) ∧κ δr(h) = δl(g) ∧κ δl(h)
(Theorem III.9). Note that δr = δl follows from K being abelian. Since each left
invariant 1-form on an abelian Lie group is closed, the Maurer–Cartan form θK is
closed, hence δl(f ) = f ∗θK is closed for each smooth function f :M → K , so
that all 2-forms c(g, h) are closed.

As we will see below, they are not always exact. For elements g = expG ξ and
h = expG η in the identity component G of G+ we have

c(g, h) = dξ ∧κ dη = d
(
κ(ξ, dη)

) = 2d
(
cG(g, h)),

so that

G×cG zM(Y ) → G+ ×c �
2(M, Y ), (g, [β]) �→ (g, 2dβ)

is a Lie group homomorphism.
(b) Let qM : M̃ → M denote the universal covering map and g ∈ G+. Then the
map g̃ := g ◦ qM can be written as expK ◦̃ξ , where ξ̃ ∈ C∞(M̃, k). We likewise
write h̃ = expK ◦η̃ for a second element h ∈ G+. Then

q∗
Mc(g, h) = q∗

M(δ
l(g) ∧κ δl(h)) = dξ̃ ∧κ dη̃ = d(̃ξ ∧κ dη̃)

is an exact 2-form on M̃ . This means that [c(g, h)]∈H 2(M, Y )∼=Hom(H2(M), Y )

vanishes on the image of π2(M) ∼= H2(M̃) in H2(M).
(c) ForM = T

2,K = T,Y = R,κ(x, y) = xy,g(t1, t2) = t1 andh(t1, t2) = t2 we
obtain on M̃ ∼= R

2 the formulaq∗
Mc(g, h) = dx∧dy and therefore

∫

M
c(g, h) �= 0.

In particular c(g, h) is not exact.
(d) SinceK is abelian, the group π0(G

+) acts trivially on G̃ and hence on π1(G).
The actions ofG+ on ĝ and ĝ+ are given by Adĝ(g).(ξ, z) = (ξ, z−[κ(δl(g), ξ)])
and

Adĝ+(g).(ξ, z) = (ξ, z− dκ(δl(g), ξ)) = (ξ, z− δl(g) ∧κ dξ).
For each constant map ξ ∈ � ⊆ G̃ ∼= g we therefore obtain Adĝ+(g).(ξ, z) =
(ξ, z), but for each g ∈ G the 1-form κ(δl(g), ξ) = δl(g) ∧κ ξ is closed, and for
α ∈ C∞(S1,M) we have

∫

α

κ(δl(g), ξ) = κ
( ∫

α

δl(g), ξ
)
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with
∫

α
δl(g) ∈ �. Therefore the action ofπ0(G

+)onπ1(G)×zM(Y ) ∼= �×zM(Y )
is given by

g.(γ, z) = (γ, z− [κ(δl(g), γ )]),

where [κ(δl(g), γ )] ∈ H 1
dR(M, Y )

∼= H 1(M, Y ) ∼= Hom(π1(M), Y ) corresponds
to the homomorphism κ(π1(g), γ ):π1(M) → Y . This action is non-trivial if and
only if κ(�, �) �= {0}. 	

Remark III.13. LetK be a compact Lie group andM := K×K . We consider the
smooth maps

f :M → K, (k1, k2) �→ k1 and g:M → K, (k1, k2) �→ k−1
2 .

Let p1, p2:M → K denote the projections onto the factors. Then δl(f ) = p∗
1θ
l
K

and δr(g) = −p∗
2θ
l
K holds for the left Maurer–Cartan form θ lK on K . Hence

c(f, g) = −p∗
1θ
l
K ∧κ p∗

2θ
l
K is a left invariant 2-form on the compact Lie group

M = K ×K . Let β := c(f, g)e. Then

β((x, y), (x ′, y ′)) = −κ(x, y ′)+ κ(x ′, y).

SinceK is a compact connected Lie group, the form c(f, g) is closed/exact if and
only if β is closed/exact as a Lie algebra cochain. For every continuous linear
map α: k × k → Y we have

α([(x, y), (x ′, y ′)]) = α([x, x ′], 0)+ α(0, [y, y ′]).

Therefore c(f, g) is exact if and only if κ = 0. The closedness of c(f, g) is
equivalent to the vanishing of

κ([x ′, x ′′], y) − κ([y ′, y ′′], x)+ κ([x ′′, x], y ′)− κ([y ′′, y], x ′)
+ κ([x, x ′], y ′′)− κ([y, y ′], x ′′).

Using this identity for y ′ = y ′′ = 0, we see that c(f, g) is closed if and only if
κ(k, [k, k]) = {0}. 	


IV. Universal central extensions

In this section we turn to the question whether the central extension from Corollary
III.7 is universal. This question will be answered affirmatively if k is finite-dimen-
sional and semisimple. First we recall some concepts and a result from [Ne01c]
on weakly universal central extensions of Lie groups and Lie algebras.

Definition IV.1. (cf. [Ne01c]) Let g be a topological Lie algebra over K ∈ {R,C }
and a be a topological vector space considered as a trivial g-module. We call
a central extension q: ĝ = g⊕ω z → g with z = ker q (or simply the Lie algebra ĝ)
weakly universal for a if the corresponding map δa: Lin(z, a) → H 2

c (g, a), γ �→
[γ ◦ ω] is bijective.
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We call q: ĝ → g universal for a if for every linearly split central exten-
sion q1: ĝ1 → g of g by a there exists a unique homomorphism ϕ: ĝ → ĝ1 with
q1 ◦ϕ = q. Note that this universal property immediately implies that two central
extensions ĝ1 and ĝ2 of g by a1 and a2 which are both universal for both spaces
a1 and a2 are isomorphic. A central extension is said to be (weakly) universal if
it is (weakly) universal for all locally convex spaces a. 	

Definition IV.2. We call a central extension Ĝ = G×f Z

q−−→G of the connected
Lie groupG by the abelian Lie groupZ weakly universal for the abelian Lie group
A if the map

δA: Hom(Z,A) → H 2
s (G,A), γ �→ [γ ◦ f ]

is bijective. It is called universal for the abelian group A if for every central
extension

q1:G×ϕ A → G, ϕ ∈ Z2
c (G,A),

there exists a unique Lie group homomorphism ψ :G ×f Z → G ×ϕ A with
q1 ◦ψ = q. A central extensional is said to be (weakly) universal if it is (weakly)
universal for all Lie groups A with Ae ∼= a/π1(A) and a s.c.l.c. 	

Definition IV.3. If g is a Fréchet–Lie algebra, then we writeH1(g) := g/g′, where
g′ := [g, g] is the closed commutator algebra. The spaceH1(g) is a Fréchet space
because g′ is closed. IfG is a connected Lie group with Lie algebra g and G̃ its uni-
versal covering group, then we have a natural homomorphism dG: G̃ → H1(g).
Its kernel is denoted by (G̃, G̃). If G is finite-dimensional, then (G̃, G̃) is the
commutator group of G̃. 	

Theorem IV.4. (Recognition Theorem; [Ne01c, Th. IV.13]) Assume that
q: Ĝ → G is a central Z-extension of Fréchet–Lie groups over K ∈ {R,C }
for which

(1) the corresponding Lie algebra extension ĝ → g is weakly K-universal,
(2) Ĝ is simply connected, and
(3) π1(G) ⊆ (G̃, G̃).

If ĝ is weakly universal for a Fréchet space a, then Ĝ is weakly universal for each
abelian Fréchet–Lie group A with Lie algebra a and Ae ∼= a/π1(A). 	

Theorem IV.5. Suppose that K is finite-dimensional semisimple and let G :=
C∞(M,K)e. Let z := zM(V (k)) andω ∈ Z2

c (g, z) the cocycle given byω(η, ξ) =
[κ(η, dξ)]. Then the corresponding central Lie algebra extension ĝ := g ⊕ω z
is universal and there exists a corresponding central Lie group extension Z ↪→
Ĝ →→ GwithZ ∼= π1(G)×(z/�ω)which is universal for all abelian Fréchet–Lie
groups A with Ae ∼= a/π1(A).

Proof. First we note that ĝ → g is a covering (Lemma II.7), so that for each
locally convex space a the natural map δ: Lin(z, a) → H 2

c (g, a), γ �→ [γ ◦ ω] is
injective ([Ne01c, Rem. I.6]).
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It has been shown in [Ma02, Thm. 16] that δ is also surjective, so that ĝ is
weakly universal for all locally convex spaces a. Since g is perfect because k is
perfect and [1 ⊗ x, f ⊗ y] = f ⊗ [x, y], the Lie algebra ĝ is a universal central
extension of g.

Furthermore, the period map perω:π2(G) → z has discrete image �ω (Theo-
rem II.9). In view of Theorem III.6, [Ne02b, Prop. 7.13] now implies the existence
of a central Lie group extension Z ↪→ Ĝ →→ G with Z ∼= (z/�ω)× π1(G) cor-
responding to the Lie algebra extension z ↪→ ĝ → g and such that the connecting
homomorphism π1(G) → π0(Z) is an isomorphism.

To prove the universality of Ĝ, we use the Recognition Theorem IV.4. For that
we have to verify that

(1) ĝ is weakly universal, (2) k is Fréchet, (3) π1(Ĝ) = 1,
(4) π1(G) ⊆ (G̃, G̃).

Condition (1) has been verified above, and (2) follows from the fact k is
finite-dimensional. Further (4) follows from the perfectness of g, which implies
(G̃, G̃) = G̃. It therefore remains to verify (3). For that we consider a part of the
long exact homotopy sequence of the Z-principal bundle q: Ĝ → G (cf. Remark
III.8):

π2(G)
δ−−→π1(Z) → π1(Ĝ) → π1(G) → π0(Z). (4.1)

According to [Ne02b, Prop. 5.11], we have δ = − perω, so that π1(Z) = �ω (as
subsets of z) implies that δ is surjective. Moreover, the natural homomorphism
π1(G) → π0(Z) is an isomorphism by the construction of Ĝ, so that the exactness
of (4.1) implies that Ĝ is simply connected. 	

Remark IV.6. (a) IfK is finite-dimensional and reductive, then K̃ ∼= z(k)×(K̃, K̃).
Therefore π1(K) is contained in (K̃, K̃) if and only ifK ∼= z(k)× (K,K). In this
case we have

C∞(M,K) ∼= C∞(M, z(k))× C∞(M, (K,K))

and hence we have for G = C∞(M,K)e the direct product decomposition

G = GD ×GZ with GD := C∞(M, (K,K))e and GZ := C∞(M, z(k)).

In this case the Lie algebra g = C∞(M, k) has the direct decomposition
g = g′ ⊕ z(g)with g′ = C∞(M, k′) and z(g) = C∞(M, z(k)). It is easy to see that
every Lie algebra cocycle ω ∈ Z2

c (g, Y ) vanishes on g′ × z(g) ⊆ g×g because g′

is perfect. From that one further derives that a weakly universal central extension
of g can be obtained with

z := zM(V (k
′))⊕�2(z(g)),

where for a locally convex space E the space �2(E) is defined as the quotient
of E ⊗π E modulo the closure of the subspace spanned by the elements e ⊗ e,
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e ∈ E. To describe the corresponding cocycle, we write ξ ∈ g as ξ = (ξ ′, ξz)
with ξ ′ ∈ g′ and ξz ∈ z(g). Then a weakly universal cocycle is given by

ω(ξ, η) = ([κk′(ξ ′, dη′)], ξz ∧ ηz).

Let ĜD be the universal central extension ofGD from Theorem IV.5 and define
Ĝ := ĜD × ĜZ, where ĜZ is the 2-step nilpotent Lie algebra

z(g)×ωZ �
2(z(g)) with ωZ(ξ, η) = ξ ∧ η.

Using Theorem IV.4, we see that ĜZ is a weakly universal central extension of
GZ

∼= gZ. Theorems IV.4 and IV.5 now imply that Ĝ is a weakly universal central
extension of G.
(b) The Lie algebra g = C∞(M, k) has the commutator algebra g′ = C∞(M, k′).
On the other hand g = g∗ � k, where k corresponds to the constant functions in
g, and g∗ := {ξ ∈ g: ξ(xM) = 0}, where xM ∈ M is any point. For two elements
ξ, η ∈ g∗ we then have d[ξ, η](xM) = 0, showing that [g∗, g∗] is in general not
dense in C∞

∗ (M, k
′). This defect comes from the observation that in the algebra

C∞
∗ (M,R) the ideal C∞

∗ (M,R)
2 is contained in {f ∈ C∞

∗ (M,R): df (xM) = 0},
and it is easy to see that we actually have equality. 	


V. Lifting automorphisms to central extensions

In this section we discuss the problem to associate to a pair (γG, γZ) of an auto-
morphism γG of G and γZ of Z an automorphism γ̂ of a central extension Ĝ of
G by Z restricting to γZ on Z and inducing γG onG. This section is independent
of the others. Its results apply to general infinite-dimensional Lie groups. The key
results of this section are Proposition V.4 which gives for a simply connectedG a
necessary and sufficient condition for the existence of γ̂ , and Theorem V.9, saying
that for smooth actions of a Lie groupR onG andZ which lead to a smooth action
on the Lie algebra ĝ, there exists a smooth action on the group Ĝ. In Section VI we
will apply these results to the actions of the groups Diff(M) and C∞(M,K) on
C∞(M,K)e. For a discussion of the lifting problem in the context of extensions
of abstract groups we refer to [We71].

For a Lie groupGwe write Aut(G) for the group of Lie group automorphisms
ofG and Hom(G1,G2) for the set of Lie group morphisms fromG1 toG2. For a
homomorphism ϕ:G1 → G2 of Lie groups we write L(ϕ): g1 → g2 for the cor-
responding homomorphism of Lie algebras. In particular we thus obtain a group
homomorphism L: Aut(G) → Aut(g). As above, let Z ↪→ Ĝ

q−−→G be a central
extension of connected Lie groups, where Ze ∼= z/π1(Z).

In the following we write γ = (γG, γZ) for elements γ ∈ Aut(G)× Aut(Z).
The group Aut(G) × Aut(Z) acts on the group Z2

s (G,Z) by γ.f := γZ ◦ f ◦
(γ−1
G , γ−1

G ). It likewise acts on Z2
c (g, z) by

f.ω := L(γZ) ◦ f ◦ (L(γG)−1 × L(γG)−1).
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The following lemma will be quite useful in the following.

Lemma V.1. (a) For i = 1, 2 let Ĝi = Gi ×fi Zi be a central Lie group extension
ofGi by the abelian Lie groupZi defined by fi ∈ Z2

s (Gi, Zi).For γ = (γG, γZ) ∈
Hom(G1,G2)× Hom(Z1, Z2) and a function h:G1 → Z2 which is smooth in an
identity neighborhood, the formula

γ̂ (g, z) := (γG(g), γZ(z)h(g)), g ∈ G1, z ∈ Z1

defines a Lie group morphism Ĝ1 → Ĝ2 if and only if the relation

γZ(f1(g, g
′))h(gg′) = f2

(
γG(g), γG(g

′)
)
h(g)h(g′) (5.1)

holds. Every Lie group homomorphism γ̂ : Ĝ1 → Ĝ2 mapping Z1 into Z2 is of
this form.

ForG = G1 = G2,Z = Z1 = Z2 and (γG, γZ) ∈ Aut(G)×Aut(Z), formula
(5.1) is equivalent to

(γ.f )(g, g′)f (g, g′)−1 = h0(gg
′)h0(g)

−1h0(g
′)−1, g, g′ ∈ G (5.2)

for the function h0 := inv(h) ◦ γ−1
G , where inv(h)(x) := h(x)−1.

(b) For i = 1, 2 let ĝi = gi ×ωi zi be a central extension of the topological
Lie algebra gi by the abelian Lie algebra zi defined by ωi ∈ Z2

c (gi , zi ). If γ =
(γg, γz) ∈ Lin(g1, g2)× Lin(z1, z2), then for α ∈ Lin(g1, z2) the formula

γ̂ (x, z) := (γg(x), γz(z)+ α(x)), x ∈ g1, z ∈ z1,

defines a continuous Lie algebra morphism ĝ1 → ĝ2 if and only if the relation

ω2(γg(x), γg(x
′)
) = γz(ω1(x, x

′))+ α([x, x ′]) (5.3)

holds. Every morphism ĝ1 → ĝ2 mapping z1 → z2 is of this form.
For g = g1 = g2, z = z1 = z2, (γg, γz) ∈ Aut(g)×Aut(z), and α0 := α◦γ−1

g ,
formula (5.3) is equivalent to γ.ω − ω = dα0.

(c) Let R be a Lie group and γ :R → Aut(g)× Aut(z), r �→ (rg, rz) a homomor-
phism such that the corresponding actions on g and z are smooth. Letα:R×g → z
be a smooth map which is linear in the second argument. Then

γ̂ (r).(x, z) := (rg(x), rz(z)+ α(r, x)), r ∈ R, x ∈ g, z ∈ z,

defines a smooth action of R by automorphisms of ĝ if and only if for each r ∈ R
the function αr := α(r, ·) satisfies (5.3) for γ (r), and α satisfies the cocycle
condition

α(rr̃, x) = rz.α(̃r, x)+ α(r, r̃g.x), r, r̃ ∈ R, x ∈ g. (5.4)
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Proof. (a) If (5.1) is satisfied for some function h which is smooth in an identity
neighborhood, then γ̂ is a group homomorphism which is smooth in an identity
neighborhood, hence a morphism of Lie groups.

Assume, conversely, that γ̂ : Ĝ1 → Ĝ2 is a Lie group homomorphism map-
ping Z1 into Z2. Then γ̂ has the form γ̂ (g, z) = (

γG(g), γZ(z)h(g)
)
, where

h:G1 → Z2 is a function which is smooth in an identity neighborhood, and an
easy calculation leads to (5.1).
(b) The proof is a straightforward verification.
(c) According to (b), the requirement γ̂ (r) ∈ Aut(̂g) is equivalent to (5.3) for
γ (r) and αr . Suppose that these conditions are satisfied. It is clear that γ̂ defines
a smooth function R × ĝ → ĝ, so that we only have to see which condition on α
means that γ̂ defines a representation of R on ĝ. That this is equivalent to (5.4)
follows from

r.(̃r.(x, z)) = (rg̃rg.x, rz̃rz.z+ rz.α(̃r, x)+ α(r, r̃g.x))

and (rr̃).(x, z) = (rg̃rg.x, rz̃rz.z+ α(rr̃, x)). 	


Lemma V.2. If γ ∈ Aut(Ĝ) preserves the subgroup Z, then γZ := γ |Z is a
smooth endomorphism of Z.

Proof. This follows from the fact that Z is a submanifold of Ĝ in the sense that
each point in Z has a neighborhood which is diffeomorphic to a product of an
open subset of Z and a transversal manifold. 	


If Z ↪→ Ĝ →→ G is a central extension as discussed above, then we define

Aut(Ĝ, Z) := {γ ∈ Aut(Ĝ): γ (Z) = Z}.

In view of Lemma V.2, we then have a natural homomorphism

η: Aut(Ĝ, Z) → Aut(G)× Aut(Z), η(γ )(q(g), z) = (
q(γ (g)), γ (z)).

To each f ∈ Hom(G,Z) we assign the element of Aut(Ĝ, Z) given by f̂ (g) :=
gf (q(g)). Then ker η = {f̂ : f ∈ Hom(G,Z)} ∼= Hom(G,Z). ([Ne01a, Lemma
II.9]).

Lemma V.3. If γ = (γG, γZ) ∈ Aut(G) × Aut(Z) is contained in the range of
η, then there exists α ∈ Lin(g, z) satisfying (5.3). If, conversely, G is simply con-
nected and α ∈ Lin(g, z) satisfies (5.3), then there exists a unique automorphism
γ̂ ∈ Aut(Ĝ, Z) with η(γ̂ ) = γ and

L(γ̂ )(x, z) = (
L(γG).x,L(γZ)(z)+ α(x)

)
, x ∈ g, z ∈ z.
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Proof. If γ = η(γ̂ ), then L(γ̂ ) ∈ Aut(̂g) preserves z and induces an automor-
phism of z (LemmaV.2). Hence it is of the form L(γ̂ ).(x, z) = (L(γG).x,L(γZ).z+
α(x)), where α: g → z is a continuous linear map (Lemma V.1(b)). This implies
the first part of the assertion.

Suppose, conversely, that (5.3) is satisfied by α ∈ Lin(g, z) for γg := L(γG)
and γz := L(γZ). SinceG is simply connected, the exact sequence for central Lie
group extensions ([Ne02b, Th. 7.12]) implies that the natural map H 2

s (G,Z) →
H 2
c (g, z) is injective.

Now it easily follows that it is equivariant with respect to the action of Aut(G)×
Aut(Z) on both sides. Our assumption implies that [γ.ω] = [ω] in H 2

c (g, z), so
that the equivariance ofD together with the injectivity of the corresponding map
on the cohomology groups implies that [γ.f ] = [f ] in H 2

s (G,Z). Now the exis-
tence of the automorphism γ̂ follows from Lemma V.1(a). The uniquenss of the
automorphism γ̂ follows from the fact that any automorphism of the connected
Lie group Ĝ is uniquely determined by the corresponding automorphism of the
Lie algebra ([Mil83, Lemma 7.1]). 	

Proposition V.4. If G is simply connected and ω ∈ Z2

c (g, z) is a Lie algebra
cocycle corresponding to the Lie algebra extension z ↪→ ĝ →→ g, and Ĝ a corre-
sponding Lie group extension ofG by Z, then γ = (γG, γZ) ∈ Aut(G)× Aut(Z)
lifts to an automorphism γ̂ ∈ Aut(Ĝ, Z) if and only if [γ.ω] = [ω], i.e., if the
corresponding automorphism of g lifts to an automorphism of ĝ.

Proof. This is a direct consequence of Lemma V.3. 	

Lemma V.5. Suppose that σ :R ×G → G is a smooth action of the Lie group R
by automorphisms of the connected Lie group G. Then the action of R on G lifts
to a smooth action σ̃ :R × G̃ → G̃ by automorphisms of the simply connected
covering group G̃ of G.

Proof. [Ne01a, Lemma II.17] 	

If G is not simply connected, then it might have non-trivial central Z-exten-

sions corresponding to trivial Lie algebra extension. These are discussed in the
following lemma.

Lemma V.6. If Ĝ is of the form Ĝ = (G̃ × Z)/�(ϕ), where qG: G̃ → G is the
universal covering morphism ofG, π1(G) ∼= ker qG is identified with a subgroup
of G̃, ϕ:π1(G) → Z is a homomorphism, and �(ϕ) := {(d, ϕ(d)): d ∈ π1(G)}
the graph of ϕ, then γ = (γG, γZ) ∈ Aut(G)× Aut(Z) is in the range of η if and
only if (γ−1

Z ◦ ϕ ◦ π1(γG)) · ϕ−1 extends to a smooth homomorphism G̃ → Z.

Proof. Let γ̃G be the natural lift of γG to G̃ (Lemma V.5). The canonical map
G̃ × Z → Ĝ is a covering, and G̃ × z is the universal covering group of Ĝ.
Therefore, if γ = η(γ̂ ), the automorphism γ̂ also lifts to some automorphism
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γ̃ of G̃ × Z preserving the subgroup �(ϕ). Then γ̃ is of the form γ̃ (g, z) =
(γ̃G(g), γZ(z)f (g)), with f ∈ Hom(G̃, Z). The condition that γ̃ preserves �(ϕ)
means that

f |π1(G) = (γZ ◦ ϕ)−1 · (ϕ ◦ π1(γG)
)
,

where π1(γG) = γ̃G |π1(G). If, conversely, (γZ ◦ ϕ)−1 · ϕ ◦ π1(γG) extends to a
morphism G̃ → Z, then the above formula yields an automorphism γ̃ on G̃×Z

preserving �(ϕ) which then factors to the quotient group Ĝ. 	

If π1(G) ⊆ (G̃, G̃), then γ ∈ im(η) is equivalent to γZ ◦ ϕ = ϕ ◦ π1(γG)

because for every homomorphism of G̃ to an abelian Lie group the restriction to
π1(G) is trivial.

Lifting automorphic group actions to central extensions

In the preceding subsection we have lifted automorphisms ofG to automorphisms
of Ĝ. Now we assume that we have a smooth automorphic action of the Lie group
R on G (an action by automorphisms of G), which leads to a semidirect product
Lie group G � R. We are looking for sufficient conditions to lift the smooth
action of R on G to a smooth action on Ĝ which apply in particular to the
action of Diff(M) and C∞(M,K) on C∞(M,K)e, where K is a Lie group
and M a compact manifold.

The following lemma will be used to reduce the problem to the case where the
group Ĝ is simply connected.

Lemma V.7. Let Z� := z/ im(perω). Then there exists a central extension Z� ↪→
G� q�−−→G̃ of Lie groups corresponding to the cocycle ω, and G� is the universal
covering group of Ĝ.

Proof. [Ne01a, Lemma II.16] 	

The following remark will be relevant for the argument in the proof of the

Lifting Theorem V.9 below.

Remark V.8. (Local description of central Lie group extensions) Let q: Ĝ → G

be a central Lie group extension with kernel Z.
Let� be the left invariant 2-form onGwith�e = ω, where ĝ ∼= g⊕ωz. Further

let pz: ĝ → z denote the projection onto z defined by this identification. We write
α for the left invariant z-valued 1-form on Ĝwithαe = pz. Then the 2-form q∗� is
exact with q∗� = −dα because −dpz((x, z), (x

′, z′)) = pz([(x, z), (x ′, z′)]) =
ω(x, x ′).

In Ĝ we have an open e-neighborhood of the form U × Z ⊆ Ĝ, where the
multiplication is given for x, x ′, xx ′ ∈ U by (x, z)(x ′, z′) = (xx ′, zz′f Z(x, x ′))
for a smooth function f Z : U × U → Z. This means that the left multipli-
cation map λ(x,e) is given by (x ′, z′) �→ (xx ′, z′f Zx (x

′)) for a smooth function
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f Zx :U → Z. Let σ :U → Ĝ denote the smooth section given by σ(g) = (g, e).
Then θ := −σ ∗α is a z-valued 1-form on G with

dθ = −dσ ∗α = −σ ∗dα = σ ∗q∗� = � and θe = −pz ◦ dσ(e) = 0.

In view of the left invariance ofα, we have onU×Z the relationα = −q∗θ+p∗
ZθZ,

where θZ = δl(idZ) is the Maurer–Cartan form on Z with θZ(e) = idz and
pZ:U × Z → Z is the projection onto Z. Therefore

−q∗θ + p∗
ZθZ = α = λ∗

(x,e)α = −q∗λ∗
xθ + p∗

ZθZ + q∗δl(f Zx ),

which leads to λ∗
xθ − θ = δl(f Zx ) and f Zx (e) = e.

We assume that W is an open identity neighborhood in G diffeomorphic to
an open convex subset of g with WW ⊆ U . Then the Poincaré Lemma ([Ne02b,
Lemma 3.3]) implies for each x ∈ W the existence of a smooth function

f z
x :W → z with f z

x (e) = 0 and df z
x = (λ∗

xθ − θ) |W .
Moreover, this function depends smoothly on x, in the sense that the function

f z:W ×W → z, f z(x, y) := f z
x (y)

is smooth. From the uniqueness we now conclude that on W we have for each
x ∈ W the relation f Zx = qZ ◦ f z

x . This construction of the functions f Zx will
become crucial, when we lift automorphic group actions on G to group actions
on Ĝ in Theorem V.9. 	

Theorem V.9 (Lifting Theorem). Let σG:R ×G → G, resp., σZ:R × Z → Z

be smooth automorphic actions of the Lie group R on the connected Lie groups
G, resp., Z. Assume further that G is simply connected and that there exists a
smooth function α:R × g → z such that

σĝ(r)(x, z) := (r.x, r.z+ α(r, x)), r ∈ R, x ∈ g, z ∈ z

is an action of R on ĝ by automorphisms. Then there is a unique smooth action
σĜ:R × Ĝ → Ĝ by automorphisms such that the corresponding derived action
is σĝ.

Proof. In view of Lemma V.3, each automorphism σĝ(r) of ĝ integrates to a
unique automorphism of Ĝ. It is clear that the uniqueness implies that we obtain
an action σĜ of R on Ĝ by smooth automorphisms. It remains to show that this
action is smooth.

The action σĜ lifts uniquely to an action σG� on the universal covering group
G� of Ĝ by Lie group automorphisms which can also be viewed as a central exten-
sion of the simply connected group G by a group Z� ∼= z/π1(Z

�) (Lemma V.7).
If the action σG� is smooth, then the induced action σĜ is also smooth. Hence it
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suffices to show that σG� is smooth. Therefore we may w.l.o.g. assume that Ĝ is
simply connected, i.e., Ĝ = G�.

First we consider the local situation in a suitable small neighborhood of the
identity in Ĝ. For r ∈ R we write rG := σG(r, ·) and rZ := σZ(r, ·). In Ĝ we
have an open e-neighborhood of the form U × Z ⊆ Ĝ, where the multiplication
is given for x, x ′, xx ′ ∈ U by

(x, z)(x ′, z′) = (xx ′, zz′f Z(x, x ′))

for a smooth function f Z:U × U → Z. Let W and f := f z:W ×W → z with
f Z = qZ ◦ f be as in Remark V.8 determined by

dfx = (λ∗
xθ − θ) |W for fx := f (x, ·).

Now let r ∈ R and W1 ⊆ W be an open e-neighborhood diffeomorphic to a
convex set such that r.W1 ⊆ W . Let αr be the left invariant z-valued 1-form onG
with αr(e) = α(r, ·). Then (5.3) implies that

r∗
G�− L(rZ) ◦� = −dαr

because both sides are left invariant 2-forms which coincide in e because

ω(L(rG).x,L(rG).y)− L(rZ).ω(x, y) = α([x, y]), x, y ∈ g.

On W1 we therefore have d(r∗Gθ − L(rZ) ◦ θ + αr) = 0, so that there exists a
unique function hr :W1 → z with hr(e) = 0 and dhr = r∗

Gθ − L(rZ) ◦ θ + αr .
OnW1×W1 we consider the function (r�.f )(x, y) := L(rZ)−1.f (rG.x, rG.y).

Then (r�.f )x = L(rZ)−1r∗
GfrG.x , so that on W1 we have

d
(
(r�.f )x

) = L(rZ)−1r∗
GdfrG.x = L(rZ)−1r∗

G(λ
∗
rG.x
θ − θ)

= L(rZ)−1((λrG.x ◦ rG)∗θ − r∗
Gθ
) = L(rZ)−1((rG ◦ λx)∗θ − r∗

Gθ
)

= L(rZ)−1(λ∗
xr

∗
Gθ − r∗

Gθ
)
.

Now the left invariance of αr leads to

d((r�.f − f )x) = L(rZ)−1(λ∗
xr

∗
Gθ − r∗

Gθ
)− λ∗

xθ + θ

= L(rZ)−1
(

λ∗
x

(
r∗
Gθ − L(rZ) ◦ θ)− (r∗

Gθ − L(rZ) ◦ θ)
)

= L(rZ)−1
(

λ∗
x

(
r∗
Gθ−L(rZ) ◦ θ+αr

)−(r∗
Gθ−L(rZ) ◦ θ+αr)

)

= L(rZ)−1(λ∗
xdhr − dhr) = d

(
L(rZ)−1(λ∗

xhr − hr)
)
.

In view of the normalizations fx(e) = f (x, e) = 0 = hr(e), we have

((r�.f )x − fx)(e) = L(rZ)−1.f (rG.x, e) = 0

and
L(rZ)−1(λ∗

xhr − hr)(e) = L(rZ)−1hr(x).
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Therefore

(r�.f )x − fx = L(rZ)−1(λ∗
xhr − hr)− L(rZ)−1hr(x),

which leads to

f (rG.x, rG.y)− L(rZ).f (x, y) = hr(xy)− hr(y)− hr(x) (5.5)

for x, y sufficiently close to e.
Let qZ: z → Z be the quotient map, f Z := qZ ◦ f and hZr := qZ ◦ hr . Then

we have an e-neighborhood of the form W2 × Z in Ĝ, where W2 ⊆ W1, and the
multiplication on W2 × Z is given by

(g, z)(g′, z′) = (gg′, zz′f Z(g, g′)).

Pick an open symmetric connected e-neighborhood W3 ⊆ W2 with r.W3 ⊆ W2

such that (5.5) is satisfied for x, y ∈ W3. Then a similar argument as in Lemma
V.1 shows that the map

σ0(r):W3 × Z → W2 × Z ⊆ Ĝ, (g, z) �→ (rG.g, rZ(z)h
Z
r (g))

is a smooth homomorphism of local groups. Using Lemma 2.1 in [Ne02b] and the
simple connectedness of Ĝ, we see that σ0(r) extends to a smooth homomorphism
σ0(r): Ĝ → Ĝ. The derivative of this automorphism in e ∈ Ĝ is given by

dσ0(r)(e)(x, z) = (rG.x, rZ.z+ dhZr (e)(x)) = (rG.x, rZ.z+ dhr(e)(x))

= (rG.x, rZ.z+ α(r, x)+ θ(e)(rG.x)− rZ.θ(e)(x))

= (rG.x, rZ.z+ α(r, x)) = σĝ(r)(x, z).

Since both automorphisms induce the same Lie algebra automorphism, σ0(r) =
σĜ(r) for each r ∈ R, so that we obtain an explicit description of σĜ near to the
identity in Ĝ.

It remains to show that this action is smooth. Since R acts by smooth auto-
morphism on Ĝ, it suffices to show that the action is smooth in a neighborhood
of (e, e) and that all orbit maps R → Ĝ are smooth in a neighborhood of e. Since
the latter property can be derived from the first one (Ĝ is connected), it remains to
see that the action is smooth in a neighborhood of (e, e). To this end, we slightly
adjust the choices ofW1 andW3 above. First we choose an open e-neighborhood
V in R and W1 such that, in addition, V.W1 ⊆ W . Likewise we choose V1 ⊆ V

and W3 ⊆ W2 with V1.W3 ⊆ W2. Then the function (r, x) �→ hr(x) is defined on
V × W1, and the construction of hr with the Poincaré Lemma implies that this
function is smooth in a neighborhood of (e, e) (cf. [Ne02b, Lemma 3.3]). This
implies that the action map σĜ is smooth on a neighborhood of (e, e) contained
in V1 ×W3, and this completes the proof. 	
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Corollary V.10. Let σG:R ×G → G be a smooth automorphic action of the Lie
group R on the connected Lie group G. Assume that G is simply connected and
that r∗

Gω = L(rZ)◦ω holds for all r ∈ R. Then the action ofR onG lifts uniquely
to a smooth automorphic action of R on Ĝ such that the corresponding action of
R on ĝ ∼= g ⊕ω z is given by

r.(x, z) = (L(rG).x,L(rZ).z), r ∈ R, x ∈ g, z ∈ z.

Proof. We apply Theorem V.9 with α = 0. 	

Remark V.11. Suppose that Z ↪→ Ĝ →→ G is a central Lie group extension and
that the R-action on the groupG� from Lemma V.7 exists. If this action preserves
the discrete subgroup π1(Ĝ), then it factors through an action on Ĝ ∼= G�/π1(Ĝ),
but this condition has to be checked directly in concrete cases because there
is no general reason for it to be satisfied. If G is simply connected, then the
natural mal H 2

s (G,Z) → H 2
c (g, z) is injective, which permits us to lift every

γ ∈ Aut(G) × Aut(Z) fixing the cohomology class [ω] in H 2
c (g, z) to an auto-

morphism of Ĝ. IfG is not simply connected, then we only have an exact sequence

. . . → Hom(π1(G), Z) → H 2
s (G,Z) → H 2

c (g, z) → . . .

([Ne02b, Th. 7.12]) which shows that in general there are inequivalent central
Z-extensions Ĝ of G with the same Lie algebra, so that there is no reason for a
γ ∈ Aut(G)× Aut(Z) to lift to a particular one. 	

Remark V.12. (a) If g is topologically perfect, i.e., the commutator algebra [g, g]
is dense in g, then in (5.5) the continuous linear map αr := α(r, ·): g → z is
uniquely determined by r∗ω − ω = −dαr . Therefore

−dαrr̃ = (rr̃)∗ω − L(rZ)L(̃rZ)ω
= r̃∗(r∗ω − L(rZ)ω)+ r̃∗ L(rZ)ω − L(rZ)L(̃rZ)ω
= −r̃∗dαr − L(rZ)dαr̃

implies the relation (5.4). In view of this, (5.4) is only needed if g is not topolog-
ically perfect.
(b) If Ĝ is a regular Lie group in the sense of [Mil83], then every automorphism of
ĝ integrates uniquely to an automorphism of Ĝ ([Mil83, Th. 8.1]). In our context it
does not make sense to work with this additional assumption because we anyway
need the more explicit information obtained in the proof of Theorem V.9 to show
that the action is smooth. 	

Problem V.1. LetG be Lie group and σG:R×G → G an action of the Lie group
R onG by Lie automorphisms such that the corresponding action σg:R× g → g
is smooth. Does this imply that σG is a smooth action? 	
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VI. Diffeomorphism groups acting on current groups

If M is a compact manifold, then the group Diff(M) of all diffeomorphisms of
M has a natural Lie group structure and the action of this group on M induces a
natural smooth action on each group C∞(M,K) of smooth maps into some Lie
group K . In this section we apply the Lifting Theorem of the preceding section
to see how the action of Diff(M) on G = C∞(M,K)e can be lifted to a smooth
action of Diff(M) on a central extension Ĝ whenever this central extension of G
is such that the connecting homomorphism π1(G) → π0(Z) is an isomorphism.
The latter means that Ĝ is weakly universal for discrete abelian groups. This con-
dition is in particular satisfied for the universal central extension of G if K is
finite-dimensional and simple (Theorem IV.5). We also lift the conjugation action
of C∞(M,K) on G to Ĝ.

The manifold structure on Diff(M) is obtained by the observation that this
group is an open subset of the mapping space C∞(M,M) which is a smooth
manifold ([KM97, Th. 43.1]). LetE: Diff(M)×M → M be the natural action of
Diff(M) onM given by the evaluation. To see that E is a smooth map, it suffices
to observe that the corresponding map

E:C∞(M,M)×M → M, (ϕ,m) �→ ϕ(m)

is smooth ([KM97, Th. 42.13]).

Lemma VI.1. If M is a compact manifold and K a Fréchet–Lie group, then the
natural action

Diff(M)× C∞(M,K) → C∞(M,K), (ϕ, f ) �→ f ◦ ϕ−1

is smooth.

Proof. Let U ⊆ K be an open identity neighborhood diffeomorphic to an open
subset of k. Then [Ne01b, Th. III.5] implies that the action of Diff(M) on the open
subset C∞(M,U) ⊆ C∞(M,K) is smooth because Diff(M) and C∞(M,U) are
metrizable.1

For a smooth functionf :M → K the orbit map Diff(M) → C∞(M,K), ϕ �→
f ◦ ϕ−1 is smooth because the map Diff(M)×M → K, (ϕ,m) �→ f (ϕ−1(m))

is smooth, which in turn follows from the smoothness of the action of Diff(M)
on M .

Now the smoothness of the action of Diff(M) onC∞(M,K) follows from the
observation that for each f ∈ C∞(M,K) the map

Diff(M)× C∞(M,U) → C∞(M,K), (ϕ, h) �→ ϕ.(f h) = ϕ.f · ϕ.h
1 The proof of of [Ne01b, Th. III.5] is based on [Ne01b, Lemma III.2(iii)] whose proof is

invalid for actions on function spaces which are not metrizable. If k is a Fréchet space, then
C∞(M, k) also is a Fréchet space, and the conclusions in [Ne01b] are valid.
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is smooth because the orbit map of f is smooth and the action on C∞(M,U) is
smooth. 	


The general argument behind the proof of Lemma VI.1 is that an automorphic
action of a Lie group R on the Lie group G is smooth if

(1) there exists an open identity neighborhood U on which the action map
R × U → G is smooth, and

(2) all orbit maps are smooth.

Remark VI.2. (a) Let G := C∞(M,G)e. On the Lie algebra g = C∞(M, k) of G
we consider the continuous cocycle

ω: g × g → zM(Y ) = �1(M, Y )/d�0(M, Y ), ω(ξ, η) = [κ(ξ, dη)],

where κ is a continuous invariant symmetric bilinear form k × k → Y and Y is a
s.c.l.c. space. For ϕ ∈ Diff(M) we have

ω(ϕ−1.ξ, ϕ−1.η) = [κ(ϕ∗ξ, dϕ∗η)] = [κ(ϕ∗ξ, ϕ∗dη)]
= [ϕ∗κ(ξ, dη)] = ϕ−1.[κ(ξ, dη)] = ϕ−1.ω(ξ, η).

Here the last expression refers to the natural action of Diff(M) on zM(Y ) which
exists because the natural action on �1(M, Y ) preserves the closed subspace
d�0(M, Y ) because ϕ∗(df ) = dϕ∗f for f ∈ �0(M, Y ). Lemma V.1(b) now
implies that

ϕ.(ξ, z) := (ξ ◦ ϕ−1, (ϕ−1)∗.z)

defines a smooth action of R on the Lie algebra ĝ = g ⊕ω z by Lie algebra
automorphisms.
(b) The cocycle ω is fixed by Diff(M) if and only if this group acts trivially on
zM(Y ), which (for Y �= 0) is equivalent to the triviality of the action on zM(R). If
this is the case, then we have in particular that for each vector field X on M and
each 1-form α the 1-form

LX.α = iXdα + d(iX.α)

is exact, which implies dα = 0. That all 1-forms are closed means that dimM ≤ 1,
so thatM = S

1 is the only non-trivial compact manifold for which the Lie algebra
of vector fields acts trivially on zM(R). For a 1-form α on M and ϕ ∈ Diff(M)
we have ∫

S1
ϕ∗α = deg(ϕ)

∫

S1
α.

Therefore the identity component Diff(S1)e of orientation preserving diffeomor-
phisms acts trivially on zS1(R) ∼= R, and if a diffeomorphism changes orientation,
it acts by multiplication by −1 on zS1(R). 	
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Theorem VI.3. LetK be a connected Fréchet–Lie group,M a compact manifold,
G := C∞(M,K)e, ω ∈ Z2

c (g, zM(Y )) a cocycle of product type with discrete
period group. Further let Ĝ → G be a corresponding central extension of G by
a Lie group Z with Lie algebra zM(Y ) for which the connecting homomorphism
π1(G) → π0(Z) is an isomorphism. Then the following assertions hold:

(1) The automorphic action of Diff(M) on ĝ = g ⊕ω zM(Y ) by ϕ.(ξ, z) :=
(ξ ◦ ϕ−1, (ϕ−1)∗.z) integrates to a smooth action of Diff(M) on Ĝ.

(2) The automorphic action of C∞(M,K) on ĝ = g ⊕ω zM(Y ) by

f.(ξ, z) := (Ad(f ).ξ, z− [κ(δl(f ), ξ)])

integrates to a smooth action on Ĝ.

Proof. First we use [Ne01c, Lemma 4.6] to see that the condition that the connect-
ing homomorphism π1(G) → π0(Z) is an isomorphism implies that the central
extension q: Ĝ → G is weakly universal for all discrete abelian groups A. Now
[Ne01c, Prop. 4.7] further implies that Ĝ/Ze ∼= G̃, showing that Ĝ can be viewed
as a central extension of the simply connected group G̃ by Ze.
(1) Using Lemma V.5, we lift the smooth action of Diff(M) on G to a smooth
action on G̃. Now the Lifting Theorem V.9 implies that this action can be lifted to
a smooth action of Diff(M) on Ĝ, integrating the given action on the Lie algebra
ĝ.
(2) follows as in (1) from Proposition III.3 and the Lifting Theorem V.9. 	


For the case of loop groups, part (2) of TheoremVI.3 has already been observed
in [PS86]. Theorem VI.3 is a good starting point for a systematic investigation of
the action of subgroups of Diff(M) on coadjoint orbits of the central extension Ĝ.
Although Diff(M) acts on the group Ĝ and its Lie algebra ĝ, the corresponding
action on the topological dual ĝ′ mixes the coadjoint orbits of Ĝ. Here the inter-
esting point is that specific coadjoint orbits of Ĝ can be assigned to geometric
structures on the manifold M and one can only expect the corresponding sub-
groups of Diff(M) to act on these orbits. This point of view will be explored in
[NV02] (see also [PS86] for the case of loop groups which is somehow trivial,
and [EF94] for the case of complex Riemann surfaces).

VII. Problems arising for non-connected groups

In this section we discuss some of the additional difficulties arising for non-con-
nected groups. One such difficulty is that for a non-connected group the conjuga-
tion action ofG onGmight induce a non-trivial action on the fundamental group
π1(G). A related problem is that the surjective homomorphismG → π0(G) does
in general not split.
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Central extensions of non-connected groups

Remark VII.1. Let G be the identity component of the Lie group G+ and assume
that we have a central extension Z ↪→ Ĝ →→ G as above. When can we extend
this central extension to a central extension Z ↪→ Ĝ+ →→ G+ of the full group
G+?

Since Z ⊆ Ĝ+ is central, the subgroup Ĝ ⊆ Ĝ+ acts trivially by conjuga-
tion on Z, so that we obtain an action of Ĝ+/Ĝ ∼= G+/G = π0(G

+) by Lie
automorphisms on the group Z. Let σZ denote the corresponding action of G+,
resp.,π0(G

+), onZ.A necessary condition for the existence of a central extension
Ĝ+ of G+ is that the adjoint action of G+ on g can be extended to an action of
G+ ∼= Ĝ+/Z on ĝ ∼= g ⊕ω z of the form

c(g).(x, z) := (
Ad(g).x, σZ(g).z+ α(g, x)

)
,

where α:G+ × g → z is a cocycle, so that c:G+ → Aut(̂g) defines a represen-
tation of G+ on ĝ. The existence of this action implies in particular that

σZ(g) ◦ ω − ω ◦ (Ad(g)× Ad(g)) ∈ B2
c (g, z)

for all g ∈ G+ (Lemma V.1). For g ∈ G this follows automatically from the
existence of the conjugation action of G on Ĝ. 	


In the preceding section we have constructed central extensions of the identity
component C∞(M,K)e of the group C∞(M,K) which in general is not con-
nected. In this subsection we briefly discuss the difficulties involved in extending
central Lie group extensions from the identity component of a Lie group to the
whole group.

Remark VII.2. We resume the situation of Theorem VI.3.As we have seen in Prop-
osition III.3, the condition under (a) is satisfied for the group G+ = C∞(M,K)
and the cocycle ω(ξ, η) = [κ(ξ, dη)] for σZ(g) = idz. We recall that π0(Z) ∼=
π1(G), so that the divisibility of Ze ∼= z/�M,κ implies that Z ∼= Ze × π1(G).
Since the action ofG+ on ĝ fixes z pointwise, the corresponding action on Ĝ fixes
Ze pointwise. Therefore the action is given by an action of π0(G

+) ∼= [M,K] on
π0(Z) ∼= π1(G) ∼= π1(G

+) and a map

ζ :π0(G
+)× π1(G) → Ze defined by α.(z, β) = (zζ(α, β), α.β).

The map ζ satisfies the cocycle identity

ζ(α1α2, β) = ζ(α1, α2.β)ζ(α2, β),

so that ζ is a bihomomorphism if the action of π0(G
+) on π1(G

+) = π1(G) is
trivial. Since the splitting ofZe inZ is not natural, we cannot expect to find a com-
plement which is invariant under the action ofπ0(G

+). Nevertheless, if q: Ĝ → G
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is the quotient map of the central extension and we consider K as a subgroup of
G, then q−1(K) ∼= K̃ × Z1, where Z1 is an open subgroup of Z. To see this, we
first construct the central extension Ĝ∗ of the subgroup G∗ := C∞

∗ (M,K)e of
G ∼= G∗ �K , and then observe that Ĝ ∼= Ĝ∗ � K̃ because this group is simply
connected with the Lie algebra ĝ ∼= g∗ � k. As the cocycle ω on g is invariant
under Ad(K), there is no obstruction to lifting the action ofK onG∗ to Ĝ∗ (The-
orem V.9). In this picture π1(K), realized as a subgroup of K̃ , arises naturally
as a subgroup of Z, but the action of G+ does not leave the subgroup K̃ of Ĝ
invariant. 	


On can show that the action of π0(C∗(M,K)) on π1(C∗(M,K)) is trivial for
M = S

d , d ≥ 1, and more generally if M is homotopic to a space of the form
S

1 ∧N . In this case the action of π0(G
+) on Z is completely encoded in the map

ζ . Passing from G+ to the open subgroup C∞(M, K̃), where K̃ is the universal
covering group of K , reduces the number of connected components, so that in
this context it is more probable that C∞(M, K̃) acts trivially on Z.

Remark VII.3. In this remark we discuss the problem of finding a formula for ζ
which is as explicit as possible. For that we have to understand how an element
γ ∈ G+ = C∞(M,K) acts on the group Ĝ (Theorem VI.3), where the action on
the Lie algebra ĝ is given by

Adĝ(γ ).(ξ, z) = (
Ad(γ ).ξ, z− [κ(δl(γ ), ξ)]

)
.

Let � ∈ �2(G, zM(Y )) be the left invariant 2-form with �e = ωM,K . Then the
calculations in the proof of Proposition III.3 show that Ad(γ )∗ω − ω = dθ(γ )

with θ(γ ) = [κ(δl(γ ), ·)] ∈ Lin(g, zM(Y )). Let �(γ ) ∈ �1(G, zM(Y )) denote
the corresponding left invariant 1-form on G. Then the conjugation automor-
phism cγ (f ) := γf γ−1 of G satisfies c∗f� − � = d�(γ ). For a smooth map
η ∈ C∞

∗ (S
1,G) we then obtain

∫

η

�(γ ) =
∫

S1
[κ( δl(γ )

︸ ︷︷ ︸

∈�1(M,k)

, δl(η)(t)
︸ ︷︷ ︸

∈C∞(M,k)

)] dt ∈ zM(Y ).

Let S
1 ∼= R/2πZ, and z: [0, 2π ] → Z a smooth curve with

z(0) = 0 and δl(z)(t) = −�(γ )(η′(t)) = −θ(γ )(δl(η)(t)).
Further let η̂: [0, 2π ] → Ĝ denote the horizontal lift of the curve cγ .η defined by
η̂(0) = e and δl (̂η)(t) = (Ad(γ ).δl(η)(t), 0), t ∈ [0, 2π ]. Then the pointwise
product η̂ · z: [0, 2π ] → Ĝ is a smooth curve with

δl (̂η · z) = δl (̂η)+ δl(z) = Adĝ(γ ).(δ
l(η)(t), 0)

= (
Ad(γ ).δl(η)(t),−[κ(δl(γ ), δl(η)(t))]

)
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because z is a curve with central values. The endpoint η̂(2π)z(2π) lies over η̃(2π)
for the lift η̃ of η to G̃, hence corresponds to γ.([η], 0) = (γ.[η], ζ(γ, η)) ∈
π1(G)× Z.

Let us assume, in addition, that η(S1) ⊆ K , i.e., that each map η(t):M → K

is constant, so that we can think of η̃ as a curve in K̃ ⊆ Ĝ from e to the element
[η] ∈ π1(K) ↪→ π1(G). This curve is mapped by ĉf ∈ Aut(Ĝ) to η̂ · z ending in
η̂(2π)z(2π). If, in addition, Ad(γ ).δl(η)(t) = δl(η)(t) holds for each t ∈ [0, 2π ],
then η̂(t) = η(t), and therefore

ζ([γ ], [η]) = z(2π) = qZ

(

−
∫ 2π

0
[κ
(
δl(γ ), δl(η)(t)

)
] dt

)

. (7.1)

Since each δl(η)(t) is a constant function, we identify it with an element of k, and
write [δl(γ )] for the class of δl(γ ) ∈ �1(M, k) in zM(k). Then we have for each t
the relation

[κ
(
δl(γ ), δl(η)(t)

)
] = κ

(
[δl(γ )], δl(η)(t)

) ∈ zM(Y ),

via the map zM(k) × k → zM(Y ), ([β], x) �→ [κ(β, x)], which is well-defined
because dκ(ξ, x) = κ(dξ, x) for ξ ∈ C∞(M, k). In this sense we also have

ζ([γ ], [η]) = qZ

(

− κ
(

[δl(γ )],
∫ 2π

0
δl(η)(t) dt

))

. (7.2)

	

Example VII.4. (a) In [PS86] one finds an explicit description of the action of
π0(G

+) on Z for the loop group case M = S
1 and K compact and simple. We

now consider the situation, where M = S
1 for a general connected group K

satisfying π2(K) = 1. This holds in particular for finite-dimensional Lie groups
K . In this case π0(G

+) ∼= π1(K) and π1(G
+) ∼= π2(K) × π1(K) ∼= π1(K). As

the conjugation action of π1(K) on itself is trivial, the action of π1(K) on Z is
completely determined by the bihomomorphism (a function which is a homomor-
phism in each argument if the other argument is fixed) ζ :π1(K)×π1(K) → Ze.

We think of S
1 as R/2πZ, so that we think of functions on S

1 as 2π -periodic func-
tions on R. Further zS1(Y ) ∼= Y via the integration isomorphism [β] �→ 1

2π

∫

S1 β,
and Ze ∼= Y/�S1,κ .

Let γ ∈ C∞
∗ (S

1,K) be a smooth loop. Then we identify [δl(γ )] ∈ zM(k) with
1

2π

∫

S1 δ
l(γ ) and obtain with (7.2) for η ∈ C∞

∗ (S
1,K):

ζ([γ ], [η]) = qZ

(

−κ
(

1

2π

∫

S1
δl(γ ),

∫

S1
δl(η)

))

.

If K is finite-dimensional and T ⊆ K a maximal torus, then the natural map
Hom(T, T ) → π1(K) is surjective, so that [γ ] and [η] have representatives for
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which δl(γ ) = x and δl(η) = y are constant functions. As [x, y] = 0, the
assumptions leading to (7.2) are satisfied, and we obtain the simple formula

ζ([γ ], [η]) = qZ
(− 2πκ(x, y)

)
.

We conclude that ζ is trivial if and only if 2πx, 2πy ∈ ker expT for the exponential
function expT : t → T of the maximal torus T ⊆ K implies κ(x, y) ∈ 1

2π�S1,κ .
(b) To understand this condition, let us assume that K is compact and simple.
Then V (k) is one-dimensional, so that we may w.l.o.g. assume that Y = R. Fur-
ther π2(G) ∼= π3(K) ∼= Z, and we may therefore assume that �S1,κ = 2πZ,
where

ω(ξ, η) = 1

2π

∫ 2π

0
κ(ξ(θ), η′(θ)) dθ.

Let t ⊆ k be the Lie algebra of a maximal torus of K . For the coroots α̌ of
the long roots α ∈ 
k ⊆ it∗ we then have −κ(α̌, α̌) = κ(iα̌, iα̌) = 2 for the
complex bilinear extension of κ to kC (see Appendix IIa to Section II in [Ne01a]).
We claim that for x ∈ tC we then have

κ(
̌, x) ⊆ Z
(x).

In fact, let α ∈ 
 and rα(x) := x − α(x)α̌ the corresponding reflection in tC .
Since the restriction of κ to tC is invariant under all these reflections, we have

κ(α̌, x) = −κ(rα.α̌, x) = −κ(α̌, rα.x) = −κ(α̌, x)+ α(x)κ(α̌, α̌),

so that κ(α̌, x) = 1
2α(x)κ(α̌, α̌) ∈ Zα(x) follows from κ(α̌, α̌) ∈ 2Z for all roots

(including the short ones) (see [Ne01a, loc.cit.]). From
(α̌) ⊆ Z for each coroot,
we obtain in particular κ(
̌, 
̌) ⊆ Z.

If Z(K) is trivial, then for x ∈ t the condition exp 2πx = e is equivalent to
e2π ad x = idk, which means that 
(x) ⊆ iZ. This is satisfied in particular for
x ∈ i
̌. We have

κ(x, i
̌) ⊆ iZ
(x) ⊆ Z

whenever 
(x) ⊆ iZ. Nevertheless, it may happen that there are two elements
x, y ∈ t with 2πx, 2πy ∈ ker expT but κ(x, y) �∈ Z.
(c) Finally we consider an example where ζ is non-trivial. For k = su(2) and
K = SO(3,R) ∼= SU(2,C)/{±e} we have ker expT = Zπiα̌, where
 = {±α}.
For x = y = i

2 α̌ we therefore get

κ(x, y) = −1

4
κ(α̌, α̌) = 1

2
�∈ Z.

We conclude that for K = SO(3,R) the group π0(G
+) ∼= π1(K) ∼= Z2 =

{±1} acts non-trivially on Z ∼= R/2πZ × Z2 by s.(x, t) = (c(s, t)x, t), where
c: Z2×Z2 → Z2 is the unique non-trivial bicharacter satisfying c(−1,−1) = −1.
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Remark VII.5. (a) Let xo ∈ M be a base point, and assume that M is connect-
ed of positive dimension and K is a Banach–Lie group. We consider the group
G∗ := C∞

∗ (M,K)e. If ϕ ∈ Hom(T,G∗), then the map

�:M → Hom(T,K), x �→ (t �→ ϕ(t)(x))

is a continuous map with �(xo) = e (the constant homomorphism). Since K
has no small subgroups, the constant homomorphism e is isolated in the set
Hom(T,K) ⊆ C(T,K). Therefore the continuity of � implies that it is con-
stant, and thus Hom(T,G∗) = {e}. On the other hand π1(G∗) ∼= [M ∧ S

1,K]
may be non-trivial. A typical example is K = SU(2,C) and M = S

2, where
π1(G∗) ∼= π3(K) ∼= Z. Hence G∗ is an example of an infinite-dimensional Lie
group for which π1(G∗) is not generated by the homotopy classes of homomor-
phisms T → G∗.
(b) According to [ASS71], the unit groupsG := A× of von Neumann algebras on
separable Hilbert spaces have the property that Hom(T, A×) generates π1(A

×).
	


Problems VII. (1) Find a good characterization of those non-connected groups
G for which a “universal covering group” exists.
(2) Generalize (7.1) to a general formula for ζ without any additional assump-
tion. 	


The following two examples show that in general the universal covering group
q: G̃ → G cannot be extended to a central/abelian extension of the full group
G+. If the homomorphism G+ →→ π0(G

+) splits, then we can simply form
G̃�π0(G

+) by lifting the natural conjugation action of π0(G
+) onG to an action

on G̃.

Example VII.6. We describe an example of a non-connected Lie group for which
Ge does not split. Let

G :=
{( 1 p z

0 1 q

0 0 1

)

:p, q ∈ Z, z ∈ R

}

.

Then Ge
∼= R and π0(G) ∼= Z

2. The group G is a central extension of Z
2 by R.

An easy calculation shows that the commutator group (G,G) of G is

(G,G) =
{( 1 0 z

0 1 0
0 0 1

)

: z ∈ Z

}

.

As the commutator group is non-trivial, G is not a semidirect product of Ge and
π0(G). 	
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Example VII.7. In the group G of Example VII.6, we consider the normal sub-
group

N :=
{( 1 p z

0 1 q

0 0 1

)

:p, q, z ∈ 2Z

}

.

ThenG/N is a central extension ofπ0(G/N) ∼= Z
2
2 by T ∼= R/Z. The commutator

group of G/N is given by (G,G)/((G,G) ∩N) ∼= Z/2Z ∼= Z2. Therefore

T = (G/N)e ↪→ G/N →→ Z
2
2

∼= π0(G/N)

is a non-trivial central extension.
Suppose that we have an extension T̃ ∼= R ↪→ Ĝ →→ Z

2
2, where Ĝ is a cov-

ering group of G. Then T̃ is central in Ĝ because Z
2
2

∼= π0(G/N) acts trivially
on the Lie algebra ofG/N , hence on (G/N)e. Therefore Ĝ is a central extension
of Z

2
2 by R. For any extension B of an abelian group C ∼= B/A by an abelian

group A the commutator map B × B → A, (x, y) �→ xyx−1y−1 factors through
a bihomomorphism C × C → A. In our case we thus obtain a bihomomorphism
Z

2
2 → R. Since R has no non-trivial finite subgroups, the commutator group of Ĝ

is trivial. Therefore Ĝ is abelian, contradicting the assumption that Ĝ is a covering
of the non-abelian group G.

We have thus shown that the group G has no universal covering group. 	

Lemma VII.8. Let G := C∗(M,K), where K is a Banach–Lie group and M a
connected topological space. Then the constant map e is the only element ofG of
finite order.

Proof. Assume that f k = e holds for some continuous base point preserving map
f :M → K . Further let U ⊆ K be an identity neighborhood containing no small
subgroups and V ⊆ U an open identity neighborhood with V k ⊆ U . Then the
only element of order k in V is e because otherwiseU would contain a non-trivial
subgroup of K . Therefore f −1(V ) is an open subset of M which coincides with
f −1({e}), hence is also closed. As f preserves base points, this set is non-empty,
and the connectedness of M implies that f is constant e. 	

Example VII.9. Let M = S

1, K be a compact connected semisimple Lie group,
and G := C∗(M,K). Then π0(G) ∼= π1(K) is a finite group and Lemma VII.8
implies that the exact sequence Ge ↪→ G →→ π0(G) does not split. 	
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