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1. Introduction

This article deals with Dirichlet’s beta function which is defined by

β(s) :=
∞∑

n=0

(−1)n

(2n+ 1)s

for any complex s such that Re(s) > 0. Euler showed that, for odd s, β(s) is a
rational multiple of πs , namely

β(2n+ 1) = (−1)nE2n

22n+2(2n)!
π2n+1 for n = 0, 1, 2, . . .

Here the integers E2n are the Euler numbers, whose exponential-generating
function is given by the formula

1

cosh(z)
=

∞∑

k=0

Ek

k!
zk.

Therefore, Lindemann’s theorem “π is transcendental over Q ” implies that the
odd beta values β(2n+ 1) are transcendental over Q .

For even s, no Euler-type formula is known, and no method has yet been found
for determining the arithmetic nature of even beta values. Thus, the situation for
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the beta function appears to be the same as the situation for the Riemann zeta
function

ζ(s) :=
∞∑

n=1

1

ns
.

This is not completely true since the equivalent of Apéry’s theorem “ζ(3) /∈ Q ”
[Ap] for Catalan’s constant

G :=
∞∑

n=0

(−1)n

(2n+ 1)2
= β(2)

has not yet been proved.
At the end of the last century, in [Ri1] (see also [BR]), a method was introduced

for tackling the problem of determining the arithmetical nature of odd zeta values:

Theorem. For any odd a ≥ 3, the dimension of the Q-vector space spanned by
1, ζ(3), ζ(5), . . . , ζ(a) is greater than 1

3 log(a).

It follows that infinitely many odd zeta values are irrational. The search of new
irrational odd zeta values was started in [Ri2] “At least one of the nine numbers
ζ(5), ζ(7), . . . , ζ(21) is irrational” and improved in [Zu2], [Zu3]:

Theorem. At least one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

We refer the interested reader to [Zu1] for similar results. Our aim is to trans-
late both theorems above into the context of the beta function. We will prove the
following two results.

Theorem 1. Let a be an even integer ≥ 2 and let δ(a) denote the dimension of
the Q-vector space spanned by 1, β(2), β(4), . . . , β(a). Then

δ(a) ≥ 1 + o(1)

2 + log(2)
log(a) as a → ∞. (1)

Moreover, there exists a computable constant c0 > 0 such that δ(a) > c0 log(a)
for any even integer a.

Theorem 2. At least one of the seven numbers

β(2), β(4), β(6), β(8), β(10), β(12), β(14) (2)

is irrational.



Diophantine properties of numbers related to Catalan’s constant 707

2. The hypergeometric construction

Let q be an integer ≥ 4 and let η = (η0, η1, . . . , ηq) be a family of q+ 1 integral
parameters satisfying the conditions

0 < ηj <
1

2
η0 for j = 1, . . . , q and η1 + η2 + · · · + ηq ≤ q − 1

2
η0.

(3)

For any non-negative integer n consider the tuple h = (h0, h1, . . . , hq) given by
the formulae

h0 = η0n+ 1, hj = ηjn+ 1
2 for j = 1, . . . , q − 1, and hq = ηqn+ 1.

(4)

Both proofs are based on a detailed study of the following hypergeometric series:

Sn(z) = Sn,q,η(z)

:= γn · �(1 + h0)
∏q

j=1 �(hj )∏q

j=1 �(1 + h0 − hj )

× q+2Fq+1

(
h0, 1 + 1

2h0, h1, . . . , hq

1
2h0, 1 + h0 − h1, . . . , 1 + h0 − hq

∣∣∣∣ z
−1

)

(5)

= γn ·
∞∑

t=0

(2t + h0)
�(t + h0)

∏q

j=1 �(t + hj )

�(t + 1)
∏q

j=1 �(t + 1 + h0 − hj )
z−t , (6)

which, by the conditions (3) on the parameters η, is convergent for any complex
z, |z| ≥ 1. The factor

γn = γn,q,η :=
∏q−1
j=1(h0 − 2hj )!

(hq − 1)!2
=

∏q−1
j=1((η0 − 2ηj )n)!

(ηqn)!2

that appears in the definition of Sn(z) corresponds to an arithmetic normalization
of the series.

There is an alternative “Pochhammer representation” of (6),

Sn(z) = γn ·
∞∑

t=0

(2t + h0)
(t + 1)hq−1 (t + 1 + h0 − hq)hq−1

∏q−1
j=1(t + hj )1+h0−2hj

z−t , (7)

where (a)l := �(a+ l)/�(a) = a(a+ 1) · · · (a+ l− 1) for l ∈ N denotes Poch-
hammer’s symbol, which is very similar to the one introduced in [Ri1] and [BR]
in the study of odd zeta values.
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The key point is that the series in (5) is of a special kind. Namely it is a
well-poised hypergeometric series in the terminology of [Bai], [Sl]: the sum of
corresponding upper and lower parameters in (5) is invariant,

h0 + 1 = (
1 + 1

2h0
) + 1

2h0 = h1 + (1 + h0 − h1) = · · · = hq + (1 + h0 − hq).

The expression (5) gives rise to the following Euler–Beukers-type integral
representation of Sn(z).

Lemma 1. The formula

Sn(z) = �(1 + h0)

�(hq)2 �(1 + h0 − 2hq)

×zh0

∫

[0,1]q

∏q

j=1 t
hj−1
j (1 − tj )

h0−2hj

(z− t1t2 · · · tq)h0

z+ t1t2 · · · tq
z− t1t2 · · · tq dt1 dt2 · · · dtq (8)

holds for any z ∈ C, |z| ≥ 1.

Proof. Using Section 4.1 of [Sl], we can derive the following integral represen-
tation for all complex z such that |z| > 1:

Sn(z) = �(1 + h0)

�(hq)2 �(1 + h0 − 2hq)

×
∫

[0,1]q

q∏

j=1

t
hj−1
j (1−tj )h0−2hj

2F1

(
h0, 1+ 1

2h0

1
2h0

∣∣∣∣ t1 · · · tqz−1

)
dt1 · · · dtq .

Formula (1.5.21) in [Sl] implies that, for |t | < 1,

2F1

(
2h0, 1 + 1

2h0

1
2h0

∣∣∣∣ t
)

= 1 + t

(1 − t)h0+1

and the desired integral formula follows for |z| > 1. In the case |z| = 1, mutatis
mutandis, the proof is the same as the one of Lemma 2 in [BR]. ��

The beta values are specialisations of the Lerch function

�s(z) = �
(
s, 1

2 ; z) :=
∞∑

k=0

zk

(k + 1/2)s

for complex z, |z| ≤ 1, and s, Re(s) > 1, since

β(s) = 2s�s(−1) for s ∈ C, Re(s) > 0.
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3. The structure of Sn,q,η(z)

We need to decompose Sn,q,η(−1) as a linear form in 1 and even beta values only.
The following Lemma 2 is almost the same as the corresponding one in [BR] and
we only include a sketch of the proof. We would like to emphasise the fact that
it is essentially the well-poisedness of the series that enables us to produce this
parity-dependant behaviour when z = ±1.

Consider the rational function summand in (7) or (6)

Rn(t) = Rn,q,η(t) := γn · (2t + h0)
(t + 1)hq−1 (t + 1 + h0 − hq)hq−1

∏q−1
j=1(t + hj )1+h0−2hj

= γn · (2t + h0)

∏q

j=0 �(t + hj )∏q

j=0 �(t + 1 + h0 − hj )
(9)

and define the rational numbers ckj = ck,j,n,q,η, where j = 1, . . . , q − 1 and

k = hj + 1
2 , . . . , h0 − hj + 1

2 , as the coefficients in the partial-fraction decompo-
sition

Rn(t) =
q−1∑

j=1

h0−hj+ 1
2∑

k=hj+ 1
2

ckj
(
t + k − 1

2

)j . (10)

Using this notation, we define the polynomials

Pjn(z) = Pj,n,q,η(z) :=
h0−hj+ 1

2∑

k=hj+ 1
2

ckj z
k−1 for j = 1, . . . , q − 1, (11)

P0n(z) = P0,n,q,η(z) :=
q−1∑

j=1

h0−hj+ 1
2∑

k=hj+ 1
2

ckj

k−hq∑

l=1

zk−l

(l − 1/2)j
, (12)

which belong to Q[z] (for k < hq in (12), we mean
∑k−hq

l=1 := − ∑−1
l=k−hq , and

the sum is 0 if k = hq).

Remark. Following the usual procedure, we can show that

ckj = Dq−1−j
(
Rn(t)

(
t + k − 1

2

)q−1)
|t=−k+ 1

2
∈ Q, (13)

where

Dλ := 1

λ!

(
d

dt

)λ
, λ = 0, 1, 2, . . . , (14)

for the numbers ckj , k = hj + 1
2 , . . . , h0 − hj + 1

2 and j = 1, . . . , q − 1.
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Lemma 2. For all complex z, |z| ≥ 1,

Sn(z) =
q−1∑

j=1

Pjn(z)�j (z
−1)− P0n(z). (15)

Moreover, if q is even then for any odd j ≥ 1, Pjn(−1) = 0 and hence

Sn(−1) =
q/2−1∑

l=1

P2l,n(−1) · 2−2lβ(2l)− P0n(−1) (16)

is a linear form in 1 and the even beta values β(2), β(4), . . . , β(q − 2).

Proof. Using the decomposition (10) and the fact that the rational function (9)
has zeros at the points t = −1,−2, . . . , 1 − hq , we obtain

Sn(z) =
∞∑

t=0

Rn(t)z
−t =

∞∑

t=1−hq
Rn(t)z

−t

=
q−1∑

j=1

h0−hj+ 1
2∑

k=hj+ 1
2

ckj z
k−1

∞∑

t=1−hq

z−(t+k−1)

(t + k − 1
2 )
j

=
q−1∑

j=1

h0−hj+ 1
2∑

k=hj+ 1
2

ckj z
k−1

( ∞∑

l=1

−
k−hq∑

l=1

)
z−l+1

(l − 1
2 )
j

which gives the desired representation (15).
Further, the definition (9) gives that

Rn(−t − h0) = −(−1)h0(q−1)Rn(t),

hence ch0−k+1,j = (−1)h0(q−1)+j−1ck,j for k = hj + 1
2 , . . . , h0 − hj + 1

2 and
j = 1, . . . , q − 1. Thus, as in Lemmas 1 of [Ri1], [Ri2], [BR] it follows that the
polynomials Pjn(z) are “±-reciprocal”:

zh0−1Pjn(z
−1) = (−1)h0(q−1)+j−1Pjn(z), j = 1, . . . , q − 1,

and the substitution z = −1 gives us to the relations

Pjn(−1) = (−1)h0q+jPjn(−1), j = 1, . . . , q − 1,

that is Pjn(−1) = 0 for odd j , 1 ≤ j ≤ q − 1, provided that q is even. ��
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4. Asymptotic behaviour of the series

In this paragraph, we determine the asymptotics of Sn,q,η(−1).

Lemma 3. As n → ∞, the limit of |Sn(−1)|1/n exists and is equal to

ϕ = ϕq,η := η
η0
0 η

−2ηq
q

(η0 − 2ηq)η0−2ηq
· max
t∈[0,1]q

∏q

j=1 t
ηj
j (1 − tj )

η0−2ηj

(1 + t1t2 · · · tq)η0
. (17)

In particular, ϕq,η 	= 0.

Proof. Using the integral representation (8) for Sn(−1) together with the corre-
spondence (4) between the parameters η and h, the existence and the theoretical
value of the limit follow easily from the Laplace method and arguments such as
those used in the first proof of Lemma 3 in [BR]. The non-vanishing of ϕq,η is
clear from its definition. ��
Remark. In fact, the maximum in (17) is achieved at a point t = (t1, . . . , tq) ∈
]0, 1[q that can be calculated as a function of some root t0 = t0(η) ∈ ]0, 1[ of the
polynomial

Q(t) = Qq,η(t) := t

q∏

j=1

(
(η0 − ηj )− ηj t

) −
q∏

j=1

(
ηj − (η0 − ηj )t

)
. (18)

Indeed, setting

F(t) = log

(∏q

j=1 t
ηj
j (1 − tj )

η0−2ηj

(1 + t1t2 · · · tq)η0

)
,

we see that the extrema in (17) are attained at points satisfying the conditions

0 = ∂F

∂tj
= 1

tj

(
ηj − η0 − 2ηj

1 − tj
tj − η0

t1t2 · · · tq
1 + t1t2 · · · tq

)
, j = 1, 2, . . . , q.

(19)

Set t0 := t1t2 · · · tq ; then by (19) we obtain

ηj − η0 − 2ηj
1 − tj

tj = η0t0

1 + t0
, j = 1, 2, . . . , q,

that yields

tj = ηj − η0t0/(1 + t0)

η0 − ηj − η0t0/(1 + t0)
= ηj − (η0 − ηj )t0

(η0 − ηj )− ηj t0
, j = 1, 2, . . . , q.

Substitution of these last expressions into t0 = t1t2 · · · tq implies that t0 is a zero
of the polynomial (18).

One can ask whether t0 is unique. The answer is not obvious but,
fortunately, we do not need it! Indeed, Lemma 3 is enough to prove Theorem 1
and the uniqueness will be numerically verified in the case of Theorem 2.
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5. Denominators of linear forms

In this paragraph, we prove a very general result which gives a common denomina-
tor of the coefficients of the linear forms in even beta values which are constructed
in Lemma 2. Denote the least common multiple of the numbers 1, 2, . . . , n by dn
and note the following consequence of the prime number theorem:

lim
n→∞ d

1/n
n = e. (20)

To find convenient denominators for the numbers (13), we split the func-
tion Rn(t) into a product of rational functions of the form

G(t) = G(a, b; t) := (t + b)a−b
(a − b)!

= 1

�(a − b + 1)

�(t + a)

�(t + b)
if a ≥ b,

(21)

and

H(t) = H(a, b; t) := (b − a − 1)!

(t + a)b−a
= �(b − a)

�(t + a)

�(t + b)
if a < b, (22)

with an integral difference a − b.
For a, b ∈ Z, the functions (21) are integer-valued polynomials and the

following property is well known (see, e.g., [Bak], Lemma 1).

Lemma 4. Let a, b be integers, a ≥ b, and let G(t) be defined in (21). Then for
any non-negative integer λ, we have

4a−bdλa−b ·DλG(t)|t=−k+ 1
2

∈ Z for k ∈ Z,

where the differential operator Dλ is defined in (14).

The next assersion is proved in [BR], proof of Lemma 5.

Lemma 5. Let a, b, a0, b0 be integers, a0 ≤ a < b ≤ b0, and let H(t) be defined
by (22). Then for any non-negative integer λ, we have

dλb0−a0−1 ·Dλ

(
H(t)(t + k)

)
|t=−k ∈ Z for k = a0, a0 + 1, . . . , b0 − 1.

The following result about the arithmetic of the polynomials (11) and (12) is
a simple consequence of Lemmas 4 and 5. Suppose q is even and the parameters
η are ordered as follows:

η1 ≤ η2 ≤ · · · ≤ ηq−1.

Set

m0 = max{η0 − 2η1, ηq},
mj = max{m0, 2(η0 − ηj − ηq), 2(ηq − ηj )} for j = 1, . . . , q − 1

(obviously, m1 ≥ m2 ≥ · · · ≥ mq−1 ≥ m0).
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Lemma 6. Under the above conditions, for j = 0, 1, . . . , q − 1,

dm1ndm2n · · · dmq−1−j n · 16ηqn · Pjn(z) ∈ Z[z]. (23)

Proof. Decomposing

Rn,q,η(t)
(
t + k − 1

2

)q−1 = (2t + h0) ·G(hq, 1; t) ·G(h0, 1 + h0 − hq; t)

×
q−1∏

j=1

H(hj , 1 + h0 − hj ; t)
(
t + k − 1

2

)
,

and applying Lemmas 4, 5 and the Leibniz rule for differentiating a product to
formulae (13), we get that

dq−1−j
m0n

· 16ηqn · ckj ∈ Z (24)

for k = hj + 1
2 , . . . , h0 −hj + 1

2 and j = 1, . . . , q−1. On the other hand, we get

j∏

i=1

dmax{2h0−2hi−2hq ,2hq−2hi } ·
k−hq∑

l=1

1

(2l − 1)j
∈ Z. (25)

By (24) and (25), we finally arrive at the desired result (23) for the polynomials
Pjn(z) and P0n(z). ��
Remark. Lemma 6 is not the end of our arithmetic investigations : we will slightly
modify the relations (23) for Theorem 1 in the next paragraph and then sharpen
them by using p-adic valuation of the numbers (13) for Theorem 2 in Paragraph 7.

6. Proof of Theorem 1

This paragraph is devoted to the proof of Theorem 1, which is based on the
following theorem of Nesterenko [Ne].

Linear independence criterion . Let θ1, θ2, . . . , θN , with N ≥ 2, be real
numbers, and assume there exist N sequences of integers (pln)n≥0 such that:

(i) αn+o(n)
1 ≤

∣∣∣∣
N∑

l=1

plnθl

∣∣∣∣ ≤ α
n+o(n)
2 for certain 0 < α1 ≤ α2 < 1;

(ii) for all l = 1, . . . , N , |pln| ≤ βn+o(n) for certain β > 1.

Then,

dimQ(Qθ1 + Qθ2 + · · · + QθN) ≥ log(β)− log(α1)

log(β)− log(α1)+ log(α2)
.
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In order to complete the proof, we now take the following special values for
the parameters η:

η0 = 2r + 1, η1 = η2 = · · · = ηq = r, where 1 ≤ r ≤ q − 1

2
. (26)

The new parameter r is an even integer that will be chosen later as a function of q.
As the criterion explicitly indicates, we also have to find the asymptotic behaviour
of the coefficients of the linear form in this special case (26).

Lemma 7. For all j = 0, 1, . . . , q − 1,

lim sup
n→∞

|Pjn(−1)|1/n ≤ 2q−2r−1(2r + 1)2r+1r−2r .

We omit the proof of this lemma since it follows the same lines as [BR], Lemma 4:
we use Cauchy’s formula

ckj = 1

2πi

∫

|t+k− 1
2 |= 1

2

Rn(t)
(
t + k − 1

2

)j−1
dt

for the numbers (13) and then use a suitable estimation for Rn(t) on the circle.

Lemma 8. For all j = 0, 1, . . . , q − 1,

d
q−1−j
2n · 16rn · (rn)!

2

(2n)!r
· Pjn(z) ∈ Z[z]. (27)

Proof. Using the decomposition

(rn)!2

(2n)!r
· Rn(t)

(
t + k − 1

2

)q−1

= (2t + h0) ·
r/2∏

j=1

G(2jn+ 1, 2(j − 1)n+ 1; t)

×
r/2∏

j=1

G((r + 2j + 1)n+ 1, (r + 2j − 1)n+ 1; t)

× (
H

(
rn+ 1

2 , (r + 1)n+ 3
2 ; t)(t + k − 1

2

))q−1

for k = rn+ 1, . . . , (r + 1)n+ 1 and then proceeding in the same way as in the
proof of Lemma 6, we get Lemma 8. ��

We also need a simplified version of Lemma 3, given by the following

Lemma 9. With the above choice (26) of the parameters η, the quantity (17)
satisfies

0 < ϕ ≤ 22r+1

rq−1
.
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Proof. By Lemma 3, ϕq,η > 0 and since 1 + t1t2 · · · tq ≥ 1 for tj ∈ [0, 1], we
obtain

ϕq,η ≤ (2r + 1)2r+1

r2r
· max
t∈[0,1]q

q∏

j=1

t rj (1 − tj ) = (2r + 1)2r+1

r2r
·
(

max
t∈[0,1]

t r (1 − t)
)q

≤ (2r + 1)2r+1

r2r
· rqr

(r + 1)q(r+1)
≤ 22r+1

rq−1
.

��
In order to obtain linear forms in 1 and even beta values, we assume from now

on that q is even (as in Lemma 2).

Define, for j = 0, 1, . . . , q/2 − 1,

pjn := 2q−2d
q−1
2n 16rn(rn)!2(2n)!−rP2j,n(−1);

from Lemma 8, pjn ∈ Z for all j .
We also define

�n := 2q−2d
q−1
2n 16rn(rn)!2(2n)!−rSn(−1).

According to Lemma 2,

�n = p0n +
q/2−1∑

j=1

pjnβ(2j) (28)

is a linear form in 1 and even beta values with integral coefficients. Stirling’s
formula and (20) imply that

lim
n→∞

(
2q−2d

q−1
2n 16rn

(rn)!2

(2n)!r

)1/n

= e2(q−1)4r r2r .

From Lemma 3 we deduce that

lim
n→∞ |�n|1/n = e2(q−1)4r r2rϕ =: κ

and from Lemma 7 that for all j = 0, . . . , q/2 − 1,

lim sup
n→∞

|pjn|1/n ≤ e2(q−1)4r2q−2r−1(2r + 1)2r+1 =: τ.

We can now apply Nesterenko’s criterion to the linear form (28) with N = q/2,
α1 = α2 = κ and β = τ : we get the lower bound

δ(q − 2) ≥ (q − 2r − 1) log(2)+ (2r + 1) log(2r + 1)− 2r log(r)− log(ϕ)

(2 + log(2))(q − 1)+ (2r + 1) log(2r + 1)

≥ q log(r)+ (q − 2r − 1) log(2)

(2 + log(2))(q − 1)+ (2r + 1) log(2r + 1)
. (29)
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In the last step, we have used Lemma 9 and the fact that log(2r + 1) ≥ log(2r).
Now, as q, r → ∞,

q log(r)+ (q − 2r − 1) log(2) = q log(r)+ O(q)+ O(r) = q log(r)+ O(q)

and

(2 + log(2))(q − 1)+ (2r + 1) log(2r + 1) = (2 + log(2))q + O(r log(r)).

Thus, for r = 2
q/ log2(q)�, we obtain

δ(q − 2) ≥ (1 + o(1))q log(q)

(2 + log(2))q + o(q)
= 1 + o(1)

2 + log(2)
log(q),

which proves the estimate (1) of Theorem 1. Here and in the rest of this article,

 · � denotes the integral part of a real number. The existence of a constant c0, for
which the inequality δ(a) > c0 log(a) always holds, immediately follows from
the absolute lower bound (29) for the above choice of r .

7. p-adic valuation of the coefficients

Since ordp dN = 1 for those primes p such that
√
N < p ≤ N , Lemma 6 gives

that the p-adic order of the coefficients of the polynomials Pjn(z) and P0n(z) is
at least −(q− 1) if

√
m1n < p ≤ mq−1n. The aim of this paragraph is to sharpen

these lower bounds for p-adic orders.
The next assertion is proved in [Zu2], Lemma 18.

Lemma 10. Let a, b, a0, b0 be integers, a0 ≤ a < b ≤ b0, and let H(t) =
H(a, b; t) be defined as in (22). Then for any non-negative integer j , any
integer k, a0 ≤ k < b0, and any prime p >

√
b0 − a0 − 1, the following holds:

ordp
(
H(t)(t + k)

)(j)
|t=−k ≥ −j +

⌊
b − a − 1

p

⌋
−

⌊
k − a

p

⌋
−

⌊
b − 1 − k

p

⌋
.

The following observation will be useful later on: ordp N ! = 
N/p� for
p >

√
N . An easy consequence of this fact is the formula giving the p-adic order

of the numbers

�(N + 1/2)

�(1/2)
=

(1

2

)

N
= 4−N (2N)!

N !
, (30)

which are sometimes written as (2N)!! · 2−N ; namely,

ordp(2N)!! =
⌊⌊
N

p

⌋⌋
for p >

√
2N, p 	= 2, (31)

where 

x�� := 
2x� − 
x�.
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Lemma 11. Let a, b, a0, b0 be integers, b0 ≤ b < a ≤ a0, and let G(t) =
G(a, b; t) be defined as in (21). Then for any non-negative integer j , any inte-
ger k, b0 < k < a0, and any prime p >

√
2(a0 − b0 − 1), p 	= 2, the following

holds:

ordp G
(j)

(−k + 1
2

) ≥ −j +
⌊⌊
a − k

p

⌋⌋
−

⌊⌊
b − k

p

⌋⌋
−

⌊
a − b

p

⌋

= −j −
⌊⌊
k − a

p

⌋⌋
+

⌊⌊
k − b

p

⌋⌋
−

⌊
a − b

p

⌋
. (32)

Proof. By (30) we deduce that

4a−bG
(−k + 1

2

) =






(2a − 2k)! (b − k)!

(a − k)! (2b − 2k)! (a − b)!
if k ≤ b,

(−1)k−b
(2k − 2b)! (2a − 2k)!

(k − b)! (a − k)! (a − b)!
if b < k < a,

(−1)a−b
(2k − 2b)! (k − a)!

(k − b)! (2k − 2a)! (a − b)!
if k ≥ a.

Using (31) and the formula 

−N/p�� = −

N/p�� (for integers N and primes
p > 2), we obtain the desired estimates (32) for j = 0. Inductive arguments,
similar to that given in the proof of Lemma 17 in [Zu2], prove (32) for all j . ��

Applying Lemmas 10, 11 and the Leibniz rule (for differentiating a product)
to the decomposition

Rn,q,η(t) = (2t + h0) ·G(hq, 1; t) ·G(h0, 1 + h0 − hq; t)

×
q−1∏

j=1

H(hj , 1 + h0 − hj ; t)

gives rise to the estimations

ordp Dλ

(
Rn(t)

(
t + k − 1

2

)q−1)
|t=−k+ 1

2
≥ −λ+�0

(
n

p
,
k − 1

p

)

≥ −λ+�

(
n

p

)

forp > max{√2η0n, q−1},λ = 0, 1, . . . , q−1, and k = h1+ 1
2 , . . . , h0−h1+ 1

2 ,
where

�0(x, y) :=
q−1∑

j=1

(
(η0 − 2ηj )x� − 
y − ηjx� − 
(η0 − ηj )x − y�)

+ 

η0x − y�� − 

y − ηqx�� + 

y�� − 

(η0 − ηq)x − y�� − 2
ηqx�,
�(x) := min

y∈R
�0(x, y) = min

0≤y<1
�0(x, y) .
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The function �(x) is non-negative, 1-periodic and integer-valued. Setting

�n :=
∏

√
2η0n<p≤mq−1n

p�(n/p) (33)

and recalling the formula (13), we finally obtain the following sharpening of
Lemma 6.

Lemma 12. For j = 0, 1, . . . , q − 1, the following hold:

dm1ndm2n · · · dmq−1n · 16ηqn ·�−1
n · Pjn(z) ∈ Z[z].

The asymptotic behaviour of (33) as n → ∞ is given by (20); we refer the
reader to [Ha] and [Zu1], Lemma 4.4, for details.

Lemma 13. In the limit when n → +∞, we have

lim
n→∞

log�n

n
=

∫ 1

0
�(x) dψ(x)−

∫ 1/mq−1

0
�(x)

dx

x2
,

where ψ(x) = �′(x)/�(x).

8. Proof of Theorem 2

Unlike Theorem 1, proving Theorem 2 only requires the following

Irrationality criterion. Let θ1, . . . , θN be real numbers. Assume there exists
N sequences of integers (pln)n≥0 such that the linear form p1nθ1 + p2nθ2 +
· · · + pNnθN is non-zero for infinitely many n and tends to 0 as n → ∞. Then at
least one of the numbers θ1, . . . , θN is irrational.

This clearly follows from Nesterenko’s criterion but in this case the proof is
completely elementary. Note also that here we do not need an estimation of the
coefficients of the linear form.

Taking q = 16 and

η = (101, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45),

we obtain t0 ≈ 0.00005445875955. In this case, it is the unique zero in [0, 1] of
Q(t). Further, ϕq,η ≈ exp(−594.58616762) and

lim
n→∞

log(dm1ndm2n · · · dmq−1n · 16ηqn ·�−1
n )

n
≈ 593.98582857

since

m1 = 56, m2 = 54, m3 = 52, m4 = 50, m5 = 48, m6 = 46,

m7 = · · · = m15 = 45,

and the function �(x) takes values in {0, 1, . . . , 9}. Thus, the irrationality
criterion and Lemma 2 yield that at least one of the numbers (2) is irrational.
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9. Special emphasis on Catalan’s constant

When q = 4, our general construction gives us linear forms in 1 and Catalan’s
constantG = β(2), and the corresponding well-poised hypergeometric series (5)
for z = −1 can be reduced to a simpler series using Bailey’s identity [Bai],
Section 4.4, formula (2):

3F2

(
1 + a − b − c, d, e

1 + a − b, 1 + a − c

∣∣∣∣ 1

)
= �(1 + a) �(1 + a − d − e)

�(1 + a − d) �(1 + a − e)

× 6F5

(
a, 1 + 1

2a, b, c, d, e

1
2a, 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e

∣∣∣∣ −1

)
,

if Re(1 + a − d − e) > 0. We obtain

sn,η := Sn,4,η(−1)

= �(h1) �(h2) �(h3) �(1 + h0 − 2h1) �(1 + h0 − 2h2) �(1 + h0 − 2h3)

�(1 + h0 − h1) �(1 + h0 − h2) �(1 + h0 − h3 − h4) �(h4)

× 3F2

(
1 + h0 − h1 − h2, h3, h4

1 + h0 − h1, 1 + h0 − h2

∣∣∣∣ 1

)
(34)

= �(h1) �(h2) �(1 + h0 − 2h1) �(1 + h0 − 2h2) �(1 + h0 − 2h3)

�(1 + h0 − h1 − h3) �(1 + h0 − h2 − h4) �(1 + h0 − h3 − h4) �(h4)2

×
∫

[0,1]2

xh3−1(1 − x)h0−h1−h3yh4−1(1 − y)h0−h2−h4

(1 − xy)h0−h1−h2

dx dy

1 − xy
.

Since the 3F2-series in (34) is invariant under any permutation of its upper or
lower parameters, we deduce that the permutation of its top integral parameters
1 + h0 − h1 − h2 and h4 produces the transformation

b : η �→ (2η0 − η1 − η2 − η4, η0 − η2 − η4, η0 − η1 − η4, η3, η0 − η1 − η2)

(35)

under which
sn,η

∏3
j=1 �(ηjn+ 1

2 ) �(1 + (η0 − 2ηj )n) �(1 + (η0 − η1 − η2 − η3 + ηj )n)

(36)

is invariant. We note that (36) is also stable under permutation of the non-integral
parameters h1, h2, h3 of the original well-poised 6F5-series. There are 6 = 3!
such permutations and we can consider the group G = 〈b,S3〉 of the transfor-
mations of the parameters η that acts trivially on (36). This group has order 24
and is a subgroup of the permutation group of order 120 discovered by Rhin and
Viola [RV] for ζ(2) (where permutations ofh1, h2, h3, andh4 are allowed, cf. [Zu2],
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Section 6). Unfortunately, the ‘denominators’ of the linear forms sn,η given by
Lemma 6 are too large to be able to use the arithmetic arguments in [RV], [Zu2].

Finally, we want to mention an arithmetic observation for linear forms in the
case η0 = 3, η1 = η2 = η3 = η4 = 1:

sn,η = 1

2

∫

[0,1]2

xn−
1
2 (1 − x)nyn(1 − y)n−

1
2

(1 − xy)n+1
dx dy ∈ QG+ Q.

Thanks to Zeilberger’s creative telescoping algorithm, we have found (see [Zu4])
that both the sequence (−1)nsn,η = unG− vn and the corresponding coefficients
un and vn satisfy the Apéry-like difference equation

(2n+ 1)2(2n+ 2)2p(n)un+1 − q(n)un − (2n− 1)2(2n)2p(n+ 1)un−1 = 0,
(37)

where

p(n) = 20n2 − 8n+ 1,

q(n) = 3520n6 + 5632n5 + 2064n4 − 384n3 − 156n2 + 16n+ 7,

with the initial data

u0 = 4, u1 = 7, v0 = 0, v1 = 13

2
.

Using the recursion (37), we have verified numerically (up to n = 1000) that
16n · un ∈ Z and d2

2n · 16n · vn ∈ Z : this is more that one can get from Lemma 6,
although it is not sufficient to prove the irrationality of Catalan’s constant.

Acknowledgements. We would like to express our gratitude to S. Fischler, M. Waldschmidt,
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References
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