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Abstract. We show that the β-parabolic Harnack inequality for random walks on graphs is equiv-
alent, on one hand, to the sub-Gaussian estimate for the transition probability and, on the other
hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the
fact that the mean exit time in any ball of radius R is of the order Rβ . The latter condition can be
replaced by a certain estimate of the resistance of annuli.

1 Introduction

In 1986, P.Li and S.-T.Yau [27] proved the following remarkable Gaussian esti-
mate for the heat kernel pt(x, y) on any complete Riemannian manifold M with
non-negative Ricci curvature:

pt(x, y) � 1

V (x,
√

t)
exp

(
−d2(x, y)

ct

)
. (1.1)

Here d(x, y) is the geodesic distance between points x, y ∈ M , V (x, r) is the
Riemannian volume of a geodesic ball B(x, r) of radius r centered at x; the sign
� means that the ratio of the two sides of (1.1) is bounded from above and below
by two positive constants, for all x, y ∈ M and t > 0 (the value of the constant c

may be different for the upper and the lower bounds). This estimate reflects the
fact that the Brownian motion Xt on the manifold M travels at distance ≈ √

t

over time t .
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Many efforts were made to understand what geometric properties of the man-
ifold are responsible for (1.1). The first author [18] and L.Saloff-Coste [31] ob-
tained (1.1) under the assumption that M satisfies the volume doubling property:
for all x ∈ M and R > 0

V (x, 2R) ≤ CV (x, R), (V D)

and a certain Poincaré inequality. Moreover, L.Saloff-Coste proved that (V D)

and the Poincaré inequality are equivalent to (1.1).
For the purposes of the present paper it is important to mention that (1.1) is

equivalent to a parabolic Harnack inequality (see for example [15]) which says
the following: for any non-negative function u(x, t) solving the heat equation
∂u
∂t

= ∆u in a cylinder B(z, 2R) × (0, 4R2),

sup
B(z,R)×(R2,2R2)

u(x, t) ≤ C inf
B(z,R)×(3R2,4R2)

u(x, t), (PH2)

where the constant C does not depend on z, R. Clearly, the same space/time
scaling t ime ≈ distance2 appears here as well.

The parabolic Harnack inequality implies the elliptic Harnack inequality: for
any non-negative harmonic function u(x) in a ball B(z, 2R),

sup
B(z,R)

u ≤ C inf
B(z,R)

u. (H )

Historically, the first significant results on elliptic and parabolic Harnack inequal-
ities are due to J.Moser [28], [29], who proved them for solutions of uniformly
elliptic and parabolic equations in the divergence form in R

n. In the geometric
terms the results of Moser mean that (PH2) and (H) hold on any Riemannian
manifold quasi-isometric to R

n.
Moser’s method of proving Harnack inequalities as well as the competing

methods ([15], [18], [25], [31] and many others) yield (PH2) and (H) under
the same set of assumptions about M . For quite a long time it was not clear if
(H) was actually weaker than (PH2). A solution to this problem arose from a
different field – analysis on fractals.

By fractals we mean sets like a Sierpinski carpet, which can be constructed
by using certain self-similar procedures. Normally fractals can be equipped with
a distance function d, a (Hausdorff) measure µ, and an energy functional E .
Denote by M such a metric-measure-energy space. Using methods of abstract
potential theory, one defines a Hunt process Xt on M (see [16]), which in many
interesting cases happens to be diffusion with a continuous heat kernel pt(x, y)

(see [1]).
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M. Barlow and E. Perkins [8], M. Barlow and R. Bass [3], [4], [5] showed that,
for a large variety of fractal sets, the following heat kernel estimate takes place:

pt(x, y) � 1

tα/β
exp

(
−
(

dβ(x, y)

ct

) 1
β−1
)

, (1.2)

for a certain natural range of x, y, t . Here α, β are parameters related by 2 ≤
β ≤ α + 1. M. Barlow and R. Bass [5] also showed that on such fractals a β-
parabolic Harnack inequality

(
PHβ

)
holds. This inequality is a generalization

of (PH2) which one obtains by replacing everywhere R2 by Rβ . The existence
of spaces satisfying (PHβ) with β > 2 proves that (H) is actually weaker than
(PH2) because (PHβ) �⇒ (H) for any β whereas (PHβ) are not equivalent
for different β. However, a new interesting question arises:

What is “the difference” between (PHβ) and (H)?

This question is very much related to obtaining criteria for the following
sub-Gaussian estimate of the heat kernel:

pt(x, y) � 1

V (x, t1/β)
exp

(
−
(

dβ(x, y)

ct

) 1
β−1
)

. (1.3)

In the case of fractals satisfying (1.2) one has V (x, r) � rα. Hence, (1.3) unifies
(1.1) and (1.2). Observe that the parameter β governs the space/time scaling by
the relation

t ime = distanceβ.

In the case β > 2, the propagation of Xt is slower than in the Gaussian case
β = 2.

The present paper answers the above questions in the setting of random walks
on graphs (it is well understood that a large scale behavior of random walks
exhibits the same phenomena as that of diffusions on manifolds or fractals).
Note first that the volume doubling condition (V D) and the elliptic Harnack
inequality (H) are necessary for (PHβ). These two conditions ensure a certain
homogeneity of the space M but neither of them contains a parameter β. To
recover β one needs a third condition. Let E(x, R) be the mean exit time of the
process Xt from the ball B(x, R) provided X0 = x. For example in R

n we have
E(x, R) � R2. Consider the hypothesis

E(x, R) � Rβ. (Eβ)

Then our main result says that (in the setting of random walks on infinite graphs)

(1.3) ⇐⇒ (PHβ) ⇐⇒ (V D) + (H) + (Eβ).
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Alternatively, the condition (Eβ) can be replaced by a certain estimate of the
resistance of annuli (see Sections 2, 3 below). In many interesting cases, (V D)

and
(
Eβ

)
(or the resistance condition) can be effectively verified. However, ver-

ifying the elliptic Harnack inequality (H) may be very difficult, and it is still an
open problem to find optimal criteria for (H).

Technically speaking, the main novelty of this paper is in obtaining the on-
diagonal upper estimate

pt(x, x) ≤ C

V (x, t1/β)
(DUEβ)

from (V D)+(H)+(Eβ). For an off-diagonal upper bound as well as for a lower
bound, we use previously known arguments. The major difficulty in proving
(DUEβ) is that the right hand side depends on x. A celebrated method of Nash
[30] that was successfully applied for proving x-independent estimates like

pt(x, x) ≤ f (t) (1.4)

(see for example [35], [9], [19], [11]), does not work in our case. The estimate of
Li and Yau (1.1) can be proved using a certain parabolic mean value inequality
(see [19], [26]). However, all known proofs of the latter are too much linked to
the classical Gaussian time/space scaling and do not work in the case β > 2. This
difficulty can be overcome in the strongly recurrent case by using the resolvent
method – see for example [8], [33], [34] (note for comparison that R

n is strongly
recurrent only for n = 1).

To prove (DUEβ) in the full generality, we develop in this paper a new
method (partly inspired by [1] and [33]) that is based on a certain estimate (5.31)
for λ-polyharmonic functions. This estimate can be considered as an extension
of the maximum principle for harmonic functions, and it is proved by virtue of
a higher order Feynman-Kac formula (5.25) (see Sect. 5).

As we have already mentioned, we prove all the results in the framework of
random walks on infinite graphs. We believe that a certain modification of our
method will work also in the setting of diffusions on manifolds and fractals. We
intend to return to this problem elsewhere.

In Sect. 2 we describe the framework and give the background material. In
Sect. 3 we state the main Theorem 3.1 and discuss some consequences and exam-
ples. Sections 4 – 6 contain the proofs. We use the letters c, C to denote positive
constants whose values are unimportant and may change at each occurrence.

Acknowledgements. We are grateful to Martin Barlow and Thierry Coulhon for useful discussions.
We are indebted to the unnamed referee for a number of suggestions that helped to improve the
paper.
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2 Preliminaries

The results cited here can be found in many places (cf. [10], [12], [22]).

Measure and distance. Let Γ be an infinite connected locally finite graph
endowed with a weight µxy . The latter is a symmetric non-negative function on
Γ × Γ such that µxy > 0 if and only if x and y are connected by an edge (in
which case we write x ∼ y). The weight µxy on edges induces a weight µ(x) on
vertices and hence a measure µ on subsets A ⊂ Γ defined by

µ(x) :=
∑

y:y∼x

µxy and µ(A) :=
∑
x∈A

µ(x).

Let d(x, y) be the graph distance between the points x, y ∈ Γ , that is the
minimal number of edges in any edge path connecting x and y. Denote metric
balls and their measures as follows:

B(x, R) := {y ∈ Γ : d(x, y) < R} and V (x, R) := µ(B(x, R)) .

A weighted graph (Γ, µ) satisfies the volume doubling property if

V (x, 2R) ≤ CV (x, R) ∀x ∈ Γ, ∀R > 0 (V D)

for some constant C. It is known that (V D) self-improves to the following
inequality

V (x, R)

V (y, r)
≤ C

(
d(x, y) + R

r

)α

, (2.1)

for all pairs of balls B(x, R) and B(y, r) such that r ≤ R and for some α,C > 0.

Random walk. The main object of our study is a random walk Xn on Γ , which
is a reversible Markov chain with respect to µ, defined by the following one-step
transition probability

P(x, y) = µxy

µ(x)
.

We also consider P(x, y) as a Markov operator which acts on functions on Γ by

Pf (x) =
∑

y

P (x, y)f (y).

For any non-negative integer n, the n-step transition probability Pn is defined by
Pn(x, y) = Px(Xn = y). Alternatively, Pn is the n-th convolution power of the
operator P . Define the heat kernel of (Γ, µ) by

pn(x, y) = Pn(x, y)

µ(y)
. (2.2)
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It is easy to see that pn(x, y) = pn(y, x), and for any y ∈ Γ , the function
un(x) = pn(x, y) satisfies the heat equation

un+1(x) − un(x) = ∆un. (2.3)

Here ∆ is the Laplace operator of the graph (Γ, µ) defined by ∆ = P − I, that
is

∆u(x) =
∑

y

P (x, y)u(y) − u(x) = 1

µ (x)

∑
y

(u(y) − u(x)) µxy.

For any parameter β > 1, consider the following estimates of the heat kernel,
which in general may be true or not: for all x, y ∈ Γ

pn(x, y) ≤ C

V (x, n1/β)
exp

[
−
(

d(x, y)β

Cn

) 1
β−1
]

, ∀n ≥ 1, (UEβ)

(pn + pn+1)(x, y) ≥ c

V (x, n1/β)
exp

[
−
(

d(x, y)β

cn

) 1
β−1
]

, ∀n ≥ d(x, y) ∨ 1.

(LEβ)

The conjunction
(
UEβ

) + (
LEβ

)
is a discrete analogue of the estimate (1.3)

from the Introduction. The obvious distinctions between (UEβ) and
(
LEβ

)
–

the restriction n ≥ d(x, y) and the term pn + pn+1 instead of pn – reflect the
discreteness of the time (see [22, Section 14]). Although a priori β is any number
> 1, in fact

(
UEβ

)+ (
LEβ

)
imply β ≥ 2.

In some parts of this paper, we assume that the following condition is satisfied:
for some positive p0

P(x, y) ≥ p0 for all x ∼ y. (p0)

In particular, (p0) implies that each point x ∈ Γ has a uniformly bounded number
of edges.

Green function and killed random walk. For any finite non-empty subset
A ⊂ Γ , denote by c0(A) the set of all functions on A extended to be 0 outside
A. Define operator ∆A on c0(A) as follows: for any f ∈ c0(A)

∆Af (x) =
{

∆f (x), x ∈ A,

0, x /∈ A.

The operator −∆A is positive definite and has the inverse GA = (−∆A
)−1

which
is called the Green function. Respectively, the Green kernel is defined by

gA(x, y) = GA(x, y)

µ(y)
.
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Note that gA(x, y) is non-negative and vanishes if one of the points x, y is outside
A. Also, gA(x, y) = gA(y, x), and gA(·, y) satisfies the equation

∆gA = −δy

where δy(x) = 0 if x �= y and δy(y) = 1/µ(y).
Let P A be restriction of the Markov operator P to the set A. The iterates of

P A are denoted by P A
n and define the random walk XA

n with the killing condition
outside A. Then we have

GA(x, y) =
∞∑

n=0

P A
n (x, y) and gA(x, y) =

∞∑
n=0

pA
n (x, y),

where pA
n is the density of P A

n .

Mean exit time. The exit time from a set A ⊂ Γ is defined as

TA := min{n ≥ 0 : Xn /∈ A}.
Its expectation Ex(TA) is called the mean exit time and will be denoted also by
Ex(A). If A = B(x, R) then we write

Tx,R := TB(x,R) and E(x, R) := Ex

(
TB(x,R)

)
.

The mean exit time is related to the Green function by the identity

Ex(A) =
∑

y

GA(x, y) =
∑

y

gA(x, y)µ(y). (2.4)

Denote

E(A) := sup
z

Ez(A)

and

E(x, R) := E (B(x, R)) = sup
z∈B(x,R)

Ez

(
TB(x,R)

)
. (2.5)

The following two conditions will be frequently used:

E(x, R) � Rβ, for all x ∈ Γ and R ≥ 1, (Eβ)

and

E(x, R) ≤ CE(x, R), for all x ∈ Γ and R > 0. (E)

If
(
Eβ

)
is satisfied then we have also
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E(x, R) � Rβ, for all x ∈ Γ and R ≥ 1, (2.6)

which in particular implies (E) (see [22, Proposition 6.1]).

Resistance. For any function f on Γ define its energy by

E (f ) = 1

2

∑
x,y: x∼y

(f (x) − f (y))2 µxy.

For any two sets A ⊂ B ⊂ Γ the resistance ρ(A, B) is defined by

ρ−1(A, B) = inf {E (f ) : f |A = 1 and f |Bc = 0} , (2.7)

where Bc := Γ \B. The following condition is an analog of (Eβ) for resistance:

ρ (B(x, R), B(x, MR)) � Rβ

V (x, R)
, for all x ∈ Γ and R ≥ 1, (ρβ)

for some fixed (large) number M whose value is unimportant.

Harnack inequalities. A function u is said to be harmonic in a set A ⊂ Γ if
u is defined in A (that consists of all points in A and all their neighbors) and if
∆u(x) = 0 for any x ∈ A.

Definition 2.1. We say that (Γ, µ) satisfies an elliptic Harnack inequality if, for
all x ∈ Γ , R > 0, and for any non-negative harmonic function u in B(x, 2R),
the following inequality holds

max
B(x,R)

u ≤ C min
B(x,R)

u. (H )

Definition 2.2. Given β > 1, we say that (Γ, µ) satisfies a β-parabolic Harnack
inequality if, for all x ∈ Γ , R ≥ 1 and for any non-negative function un(y)

defined for n ∈ [0, 4N ], y ∈ B(x, 2R) and satisfying the heat equation (2.3) in
[0, 4N) × B(x, 2R), the following inequality holds

max
n∈[N,2N)

y∈B(x,R)

un(y) ≤ C min
n∈[3N,4N)

y∈B(x,R)

(un(y) + un+1(y)) , (PHβ)

where N is a positive integer such that N � Rβ and N ≥ 2R.

Since any harmonic function satisfies also the heat equation,
(
PHβ

) �⇒ (H)

for any β.

Remark 2.1. If the graph (Γ, µ) satisfies the condition (p0) then the Harnack
inequality (H) automatically holds for all balls with a bounded range of the
radius R and for all non-negative superharmonic functions u in B(x, 2R) (see
[22, Proposition 3.2]); in this case the constant C in (H) depends on the upper
bound of the radius. The main point of Definition 2.1 (and Definition 2.2) is that
(H) (resp.,

(
PHβ

)
) holds for arbitrarily large R with the same constant C.
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3 Main result

Theorem 3.1. If graph (Γ, µ) satisfies (p0) then, for any β ≥ 2, the following
conditions are equivalent:

(i) (UEβ) + (LEβ)

(ii) (PHβ)

(iii) (V D) + (H) + (ρβ)

(iv) (V D) + (H) + (Eβ)

Some of the implications in Theorem 3.1 were already known and are included
here for completeness as for instance, (i) ⇐⇒ (ii) – see [15], [13] for the case
β = 2, and [23] for any β (see also [5]). The implication (ii) �⇒ (iii) was
proved in [33, Section 7].

The implication (iii) �⇒ (iv) is proved in the present paper in Sect. 4.3. In
the view of

(
ρβ

)
and

(
Eβ

)
, this can be regarded as the proof of the following

relation

E(x, R) � ρ (B(x, R), B(x, MR)) V (x, R) ,

which we call Einstein’s relation.
The major part of this paper is devoted to the proof of

(
UEβ

)
in the implication

(iv) �⇒ (i). The proof consists of many steps and goes via an upper estimate(
Gβ

)
for the resolvent and a diagonal upper bound (DUEβ) for the heat kernel

as is shown on the diagram:

(V D)

(H)(
Eβ

)



T hm.5.9�⇒
(V D)(
Gβ

) } T hm.6.1�⇒
(V D)

(DUEβ)(
Eβ

)



T hm.6.2�⇒ (
UEβ

)

(see also Sect. 6.3). The derivation of
(
LEβ

)
from (V D) + (H) + (

Eβ

)
is prac-

tically contained in [22, Section 13] and is briefly outlined in Sect. 6.3.
Note that the equivalence

(PHβ) ⇐⇒ (V D) + (H) + (Eβ)

is new even for β = 2. For the case β = 2, we have a further result. Denote by
λ(x, R) the smallest eigenvalue of −∆B(x,R) and consider the following hypoth-
esis:

λ (x, R) ≥ c

R2
, for all x ∈ Γ and R ≥ 1. (λ)

Corollary 3.2. If (Γ, µ) satisfies (p0) then (PH2) ⇐⇒ (V D) + (H) + (λ) .
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Indeed, the direction “ �⇒ " follows from Theorem 3.1(iv) using (2.6) and
the inequality

λ1 (x, R) ≥ E(x, R)−1

(see [22, Propositions 6.1,6.2]), whereas the direction “ ⇐� " follows from
Theorem 3.1(iii) and the inequalities

R2

V (x, 2R)
≤ ρ (B(x, R), B(x, 2R)) ≤ 1

λ(x, 2R)V (x, R)

(see [33]).
The proof ofTheorem 3.1 contains the following new implication (see Remark

6.4):

(V D) + (MV ) + (Eβ) �⇒ (
UEβ

)
, (3.1)

where (MV ) stands for the elliptic mean value inequality defined in Sect. 5.2.
It is interesting to recall that (UE2) is equivalent to (V D)+a parabolic version
of (MV ) (see [12], [26]). Theorem 3.1 recovers also the results obtained in [22]
and [33].

In conclusion of this section, we give some examples highlighting the rela-
tions between the hypotheses in questions.

Example 3.1. Let us observe that (V D) + (H) does not imply (Eβ) since there
are graphs with (V D) + (H) + (Eβ) with different β (see for example [2], [6],
[24]).

Let us sketch an example where (V D)+(Eβ) holds but (H) does not. Indeed,
take two copies Γ1 and Γ2 of the same graph that satisfies (V D) + (H) + (Eβ)

and such that the random walk on it is transient. Create a new graph Γ whose
vertex set is the disjoint union of those of Γ1 and Γ2, and the edge set consists
of those of Γ1 and Γ2 plus one additional edge connecting a vertex in Γ1 to
the corresponding vertex in Γ2. Then it is not difficult to prove that Γ satisfies
(V D)+(Eβ) but not (H) (see [21] for a manifold analogue of this construction).
In addition, it is possible to prove that (UEβ) holds on Γ ; hence (LEβ) must
fail.

Probably, (H) + (
Eβ

)
does not imply (V D) but we do not have an example

for that.

Example 3.2. Here we describe a weighted graph satisfying (V D)+(H)+(Eβ)

and such that V (x, R) substantially depends on x. Let Γ be the Vicsek tree
(embedded in R

2) that is the union of the increasing sequence of blocks {Γk}∞k=1
– see Fig. 1. Here Γ0 = {o}, and Γk+1 consists of Γk and its four copies translated
and glued in an obvious way.
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Γ3

Γ2

Γ1

o

Fig. 1. Blocks Γ1, Γ2, Γ3, . . . in the Vicsek tree

Fix a ≥ 1 and define weight µxy for any edge xy by µxy = ak where k

is the minimal index such that Γk contains x or y. Since d(x, o) � 3k for any
x ∈ Γk \ Γk−1, this implies for all x �= o,

µ(x) � d(x, o)δ (3.2)

where δ = log3 a.
Let xk be the symmetry center of Γk and set Rk = 3k−1 + 1

2 ; then Γk =
B(xk, Rk). Clearly,

|B(xk, Rk)| = |Γk| � 5k � Rα
k

where |·| is the cardinality of a set and α = log3 5. It is not difficult to see that
the same relation holds for all balls B(x, R) in Γ with R ≥ 1, that is

|B(x, R)| � Rα. (3.3)

From (3.2) and (3.3), one easily obtains, for all x ∈ Γ and R ≥ 1,

V (x, R) = µ (B(x, R)) � Rα (R + d (x, o))δ , (3.4)

which in particular proves (V D) for (Γ, µ).
Due to the tree structure of Γ , it is easy to compute the Green kernel gΓk (xk, ·)

(cf. [7, Section 4]). The set Γk \Γk consists of a single point; denote it by zk (see
Fig. 2).

Let gk(y) be a function on Γ satisfying the following conditions:

• gk vanishes outside Γk, in particular at zk;
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xk

zk

Γk

o

Γk-1

Fig. 2. Points xk and zk

• gk increases linearly along the path from zk to xk with a constant increment
ck at each step;

• gk remains constant along all other paths in Γk.

These conditions uniquely determine gk, up to the choice of ck. Clearly, gk is
harmonic in Γk \ xk. At point xk, we have ∆gk = −ck/4. Therefore, if we take
ck := 4/µ (xk) = a−k then we obtain for all y ∈ Γk

∆gk(y) = −δxk
(y)

and hence gk ≡ gΓk (xk, ·).
For any point y on the paths from zk to xk, we have gk(y) = ckd(y, zk). In

particular, for any y ∈ B(xk,
1
3Rk),

gk(y) �
(

3

a

)k

and gk(y)µ (y) � 3k.

Therefore, by (2.4)

E (xk, Rk) =
∑
y∈Γk

gk(y)µ (y) � 3k |Γk| � 15k � R
β

k

where β = log3 15. It is easy to show that the same relation E(x, R) � Rβ holds
for all x ∈ Γ and R ≥ 1, which proves

(
Eβ

)
.

The Green kernel gk = gΓk (xk, ·) constructed above is nearly radial1. A
similar argument shows that the same is true for all balls in Γ , which implies
(H) by [22, Proposition 10.1].

1 More precisely this means that the Green kernel satisfies a certain condition (HG) described
below in Sect. 4.1.
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Hence, (Γ, µ) satisfies (V D) + (H) + (
Eβ

)
and, by Theorem 3.1, (Γ, µ)

satisfies
(
UEβ

)+ (
LEβ

)
with the volume function (3.4).

4 Harnack inequality and resistance

4.1 Harnack inequality for Green function

Definition 4.1. We say (Γ, µ) satisfies a ball covering property (BC) if, for all
ε > 0, any ball B(x, R) can be covered by N = N(ε) balls of radii εR.

It is well known that (V D) implies (BC).

Definition 4.2. We say that (Γ, µ) satisfies a Harnack inequality for the Green
function if, for some (large) constants M, C, for all x ∈ Γ and R > 0 and for
any finite set U ⊃ B(x, MR),

sup
y /∈B(x,R)

gU(x, y) ≤ C inf
z∈B(x,R)

gU(x, z). (HG)

It is possible to show that (HG) �⇒ (H) (cf. [22, Proposition 10.1]). Here
we need a converse statement.

Proposition 4.1. Assume that (Γ , µ) satisfies (p0). Then (BC) + (H) �⇒
(HG). In particular, (V D) + (H) �⇒ (HG).

The main part of the proof is contained in the following lemma.

Lemma 4.2. Assume that (Γ , µ) satisfies (p0), (BC), (H). Let y, z be two points
in a ball B (x, R) such that the shortest path

y = ξ0 ∼ ξ1 ∼ ... ∼ ξk = z (4.1)

connecting y and z in Γ , does not intersect B(x, εR) for some ε ∈ (0, 1). Then,
for any finite set U containing B(x, 3R),

gU(x, y) ≤ Cεg
U(x, z). (4.2)

Proof. If R is in a bounded range then (4.2) follows from the hypothesis (p0)

(cf. Remark 2.1 or [22, Proposition 3.2]). Assume in the sequel that R is large
enough, and observe that for any ξi

d(x, ξi) ≤ d(x, y) + d(y, ξi) and d(x, ξi) ≤ d(x, z) + d(ξi, z),

whence

d(x, ξi) ≤ d(x, y) + d(x, z) + d(y, z)

2
≤ d(x, y) + d(x, z) < 2R.
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z

x

y

B(x,R)

B(ξj,2r)
_

B(x,εR)

B(ξj+1,2r)
_

ξi

Fig. 3. Covering the path from y to z by balls B(ξj , 2r)

In particular, we have ξi ∈ B(x, 2R).

By (BC), the ball B(x, 2R) can be covered by at most N = N (ε/16) balls
of radius r = ε

8R. Select out of them only those balls which contain at least one
point ξi , and denote their centers by oj , j = 0, 1, ..., n, where n ≤ N . Among
the points ξi which belong to the ball B(oj , r) select one and denote it by ξj ,
making sure that the points y = ξ0 and z = ξk are selected. Since the balls
B(oj , r) cover the path (4.1) and B(oj , r) ⊂ B(ξj , 2r), the balls B(ξj , 2r) also
cover this path. Let us rearrange the points ξj in the order of increasing d(y, ξj )

(see Fig. 3). Then y = ξ 0, z = ξn, and

d(ξj , ξj+1) < 4r, (4.3)

for all 0 ≤ j < n.
By hypothesis, we have

d(x, ξj ) ≥ εR = 8r,

so that the point x is outside the ball B(ξj , 8r). Since ξj ∈ B(x, 2R) and 8r < R,
we see that

B(ξj , 8r) ⊂ B(x, 3R) ⊂ U.

Hence, the function gU(x, ·) is harmonic in B(ξj , 8r). By (4.3), we have ξj+1 ∈
B(ξj , 4r), and the Harnack inequality (H) applied in the ball B(ξj , 8r), yields

gU(x, ξj ) ≤ CgU(x, ξj+1).

Iterating this inequality n times, we obtain (4.2).
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Proof of Proposition 4.1. The following argument is due to T.Delmotte (private
communication). Let y and z be the points where the sup and inf in (HG) are
attained, respectively. As follows from the maximum principle,

y ∈ B(x, R + 1) \ B(x, R) and z ∈ B(x, R) \ B(x, R − 1).

We need to prove that

gU(x, y) ≤ CgU(x, z) (4.4)

where U ⊃ B(x, MR) for some M . In fact, any M ≥ 11 will do as we will see
below.

For a bounded range of R, (4.4) follows from (p0) (cf. Remark 2.1). Assume
in the sequel that R is large enough, connect y and z by the shortest path in Γ

as in (4.1), and consider two cases.

Case 1. All points ξi are outside B(x, 1
4R). Then (4.4) follows from Lemma 4.2

since y, z ∈ B(x, 2R) and U ⊃ B(x, 6R).

Case 2. One of the points ξi is in the ball B(x, 1
4R). Let us show that the shortest

path connecting x and z in Γ does not intersect B(y, 1
4R). Indeed, set ξ = ξi so

that d(x, ξ) < 1
4R. By the triangle inequality, we have

d(y, z) = d(y, ξ) + d(z, ξ)

≥ (d(x, y) − d(x, ξ)) + (d(x, z) − d(x, ξ))

> d(x, y) + d(x, z) − R

2
,

whence

d(y, z) − d(x, z) > d(x, y) − R

2
≥ R

2
>

R

4
. (4.5)

For any vertex η on the shortest path between x and z, we obtain by (4.5)

d(y, η) ≥ d(y, z) − d(η, z) ≥ d(y, z) − d(x, z) >
R

4
,

which means that the shortest path from x to z lies outside the ball B(y, 1
4R).

Since x, z ∈ B(y, 3R) and

U ⊃ B(x, 11R) ⊃ B(y, 9R),

we obtain by Lemma 4.2

gU(y, x) ≤ CgU(y, z).

Similarly, connecting x to y, we obtain

gU(z, y) ≤ CgU(z, x).

Multiplying these inequalities and using the symmetry of the Green kernel, we
obtain (4.4). ��
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4.2 Green function and resistance

Proposition 4.3. Assume that the graph (Γ, µ) satisfies (p0) and (HG). Then
for any ball B(x, R) and for any 0 < r ≤ R/M , we have

sup
y /∈B(x,r)

gB(x,R)(x, y) � ρ(B(x, r), B(x, R)) � inf
y∈B(x,r)

gB(x,R)(x, y). (4.6)

Proof. For an arbitrary graph (Γ, µ), the following is true: if A, B are finite
subsets of Γ such that A ⊂ B then for any x ∈ Ao

sup
y /∈Ao

gB(x, y) ≥ ρ(A, B) ≥ inf
y∈A

gB(x, y), (4.7)

where Ao consists of the points in A which have neighbors only in A (see [20,
Proposition 4.1] for a continuous version of (4.7)). Applying (4.7) for A =
B(x, r), B = B(x, R) and combining with (HG) and (p0) we obtain (4.6).

Proposition 4.4. Assume that the graph (Γ, µ) satisfies (p0) and (HG). Fix any
ball B(x, r) and denote Bk = B(x, Mkr) for k = 0, 1, . . . . Then for all integers
n > m ≥ 0,

sup
y /∈Bm

gBn(x, y) �
n−1∑
k=m

ρ(Bk, Bk+1) � inf
y∈Bm

gBn(x, y). (4.8)

Proof. The following general property of resistance follows directly from the
variational definition (2.7):

n−1∑
k=m

ρ(Bk, Bk+1) ≤ ρ (Bm, Bn) .

Together with Proposition 4.3, it implies the lower bound for inf gBn in (4.8).
To obtain the upper bound for sup gBn observe that the difference

gBk+1(x, ·) − gBk (x, ·)
is a harmonic function in Bk. The maximum principle implies for any y ∈ Γ

gBk+1(x, y) − gBk (x, y) ≤ sup
z/∈Bk

gBk+1(x, z).

By Proposition 4.3, we obtain

gBk+1(x, y) − gBk (x, y) ≤ Cρ (Bk, Bk+1) . (4.9)

For any y /∈ Bm, Proposition 4.3 yields

gBm+1(x, y) ≤ Cρ(Bm, Bm+1). (4.10)

For such y, adding up (4.10) with (4.9) for m < k < n, we obtain the upper
bound of sup gBn in (4.8).
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4.3 Proof of (iii) �⇒ (iv) in Theorem 3.1

We need to prove that

(V D) + (H) + (
ρβ

) �⇒ (
Eβ

)
.

Using (2.4), (4.6),
(
ρβ

)
and (V D), we obtain for r = R/M

E(x, R) ≥
∑

y∈B(x,r)

gB(x,R)(x, y)µ(y) ≥ cρ(B(x, r), B(x, R))V (x, r) ≥ cRβ.

For the upper bound, denote rk = Mk, Bk = B(x, rk) and let n be the minimal
integer so that R < rn. Then we have

E(x, R) ≤ E(x, rn) =
∑
y∈Bn

gBn(x, y)µ(y) (4.11)

=
∑
y∈B0

gBn(x, y)µ(y) +
n−1∑
m=0

∑
y∈Bm+1\Bm

gBn(x, y)µ(y).

As follows from (p0) (see Remark 2.1) the first term in the right hand side of
(4.11) – the sum over B0 – is majorized by a multiple of a similar sum over
B1 \ B0, which is a part of the second term. Estimating gBn by Proposition 4.3
and applying

(
ρβ

)
, we obtain

E(x, R) ≤ C

n−1∑
m=0

[
n−1∑
k=m

ρ(Bk, Bk+1)

]
µ (Bm+1 \ Bm)

≤ C

n−1∑
k=0

[
k∑

m=0

µ (Bm+1 \ Bm)

]
ρ (Bk, Bk+1)

≤ C

n−1∑
k=0

µ(Bk+1)ρ(Bk, Bk+1) ≤ C

n−1∑
k=0

r
β

k+1 ≤ CRβ.

5 The resolvent

5.1 Definition of λ, m-resolvent

For any non-empty finite set B ⊂ Γ , for all real λ ≥ 0 and integer m ≥ 0,
define the λ, m-resolvent of ∆ in B by

GB
λ,m = (

λI − ∆B
)−m

. (5.1)
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Since the spectrum of −∆B is strictly positive, the operator GB
λ,m is well-defined.

It follows from the definition that GB
λ,0 = I and GB

0,1 = GB , where GB is the
usual Green function in B. Clearly, we have also

GB
λ,m = (

GB
λ,1

)m
. (5.2)

Since ∆B = P B − I, we obtain from (5.1)

GB
λ,m = (

(λ + 1) I − P B
)−m = ωm

(
I − ωP B

)−m
.

where ω = (λ + 1)−1. The binomial formula yields

GB
λ,m = ωm

(
I + mωP B + m(m + 1)

2
ω2
(
P B
)2 + ...

)
(5.3)

=
∞∑

n=0

Qm(n)ωn+mP B
n ,

where Q0(0) = 1, Q0(n) = 0 for n ≥ 1, and for m ≥ 1

Qm(n) =
(

n + m − 1

m − 1

)
= (n + m − 1) (n + m − 2) ... (n + 1)

(m − 1)! . (5.4)

By (5.3) we extend the definition of GB
λ,m to infinite sets B. If λ > 0 then the

series in (5.3) always converges. If λ = 0 then GB
λ,m may be equal to ∞ for

infinite B.
The λ, m-resolvent has a symmetric kernel defined by

gB
λ,m(x, y) = GB

λ,m(x, y)

µ(y)
=

∞∑
n=0

Qm(n)ωn+mpB
n (x, y). (5.5)

If B is finite and m ≥ 1 then (5.1) implies

(∆ − λ) gB
λ,m = −gB

λ,m−1 in B. (5.6)

5.2 Upper bound for 0, m-resolvent

Definition 5.1. We say that the mean-value inequality (MV ) holds on (Γ, µ) if,
for any ball B(x, r) and for any non-negative harmonic function u in B(x, r),

u(x) ≤ C

V (x, r)

∑
y∈B(x,r)

u(y)µ(y) . (MV )

Clearly, (H) + (V D) �⇒ (MV ) because

u(x) ≤ C inf
B(x,r/2)

u ≤ C

V (x, r/2)

∑
y∈B(x,r/2)

u(y)µ(y).
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Lemma 5.1. If (Γ, µ) satisfies (V D) + (MV ) then for all x ∈ Γ , R > 0, and
y �= x,

gB(x,R)(x, y) ≤ C
E(x, 2R)

V (x, d)
, (5.7)

where d = d(x, y).

Proof. If d > R then gB(x,R)(x, y) = 0 and there is nothing to prove. Otherwise,
consider the function

u(z) := gB(x,2R)(x, z).

This function is non-negative and harmonic in the ball B(y, d) ⊂ B(x, 2R).
Hence, by (MV ), (2.4), and (E), we obtain

u(y) ≤ C

V (y, d)

∑
z∈B(y,d)

u(z)µ(z) ≤ C

V (x, d)
E(x, 2R).

Finally, (5.7) follows from gB(x,R) ≤ gB(x,2R).

Lemma 5.2. For any set B ⊂ Γ , for all integers m ≥ 0 and reals λ ≥ 0, we
have

‖GB
λ,m‖ ≤ E(B)m, (5.8)

where ‖GB
λ,m‖ is the operator norm in the space c0 (B) endowed with the sup-

norm.

Proof. Consider first the case λ = 0, m = 1 when we have GB
0,1 = GB . For any

f ∈ c0(B) and any x ∈ B, (2.4) and (2.5) imply

GBf (x) =
∑

y

GB(x, y)f (y) ≤
∑

y

GB(x, y)‖f ‖ ≤ E(B)‖f ‖,

where ‖f ‖ := sup |f |. Therefore, we obtain

‖GB‖ = sup
f ∈c0(B)\{0}

‖GBf ‖
‖f ‖ ≤ E(B) . (5.9)

Iterating (5.9) and using (5.2) we obtain

‖GB
0,m‖ ≤ ‖GB

0,1‖m ≤ E(B)m,

which proves (5.8) for the case λ = 0 and any m ≥ 1.
It easily follows from (5.5) that gB

λ,m ≤ gB
0,m which implies

‖GB
λ,m‖ ≤ ‖GB

0.m‖,
whence (5.8) follows for any λ ≥ 0.
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Lemma 5.3. If (Γ, µ) satisfies (V D)+(MV ) then for any m ≥ 1, for all x ∈ Γ ,
R > 0, and y �= x,

g
B(x,R)
0,m (x, y) ≤ C

E(x, 5R)m

V (x, d)
, (5.10)

where d = d(x, y) and the constant C depends on m and on the constants from
the hypotheses.

Proof. The case m = 1 follows from Lemma 5.1, so we can assume m ≥ 2 and
argue by induction in m. Denote for simplicity B = B(x, R), GB

m := GB
0,m and

gB
m := gB

0,m.Assuming y ∈ B(x, R), let us set r = d(x, y)/2 and observe that the
balls B(x, r) and B(y, r) do not intersect. Therefore, using GB

m = GB
m−1 ◦ GB

1 ,
we obtain

gB
m(x, y) =

∑
z

gB
m−1(x, z)gB

1 (z, y)µ(z)

≤

 ∑

z/∈B(x,r)

+
∑

z/∈B(y,r)


 gB

m−1(x, z)gB
1 (z, y)µ(z).

Denoting

f (z) := gB
1 (z, y)1{z/∈B(y,r)} and h(z) := gB

m−1 (x, z) 1{z/∈B(x,r)}

we obtain

gB
m(x, y) ≤ GB

m−1f (x) + GB
1 h(y). (5.11)

Since the Green kernels in questions are symmetric and increase with B, we
obtain by (5.7) and (V D),

‖f ‖ = sup
z/∈B(y,r)

g
B(x,R)
1 (z, y) ≤ sup

z/∈B(y,r)

g
B(y,2R)

1 (y, z)

≤ C
E(y, 4R)

V (y, r)
≤ C

E(x, 5R)

V (x, r)
,

and by the inductive hypothesis

‖h‖ = sup
z/∈B(x,r)

g
B(x,R)
m−1 (x, z) ≤ C

E(x, 5R)m−1

V (x, r)
.

Combining together (5.11), (5.8), and the above estimates for ‖f ‖,‖g‖, we obtain
(5.10).
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5.3 Upper bound for λ-harmonic functions

Lemma 5.4. Assume that (Γ, µ) satisfies
(
Eβ

)
. Let B = B(x0, R) be an arbi-

trary ball on Γ , and let f be a non-negative function in B, which satisfies in B

the equation ∆f − λf = 0 with a constant 0 < λ < 1. Then

f (x0) ≤ C exp
(−cλ1/βR

)
max
B\B

f, (5.12)

where the constants C, c > 0 depend on the constants in hypothesis
(
Eβ

)
.

This lemma was essentially proved in [22, Lemma 7.4]. Since it plays an
important role in the proof of Theorem 3.1, we reproduce the proof below, with
minor improvements.

Let us start with a weaker version of Lemma 5.4.

Lemma 5.5. Assume that the hypothesis (E) holds on (Γ, µ). Let A = B(x0, r)

be an arbitrary ball on Γ , and let f be a non-negative function in A, which
satisfies in A the equation ∆f − λf = 0 with a constant λ such that

λ ≥ (EA)−1. (5.13)

Then

f (x0) ≤ (1 − ε ) max
A

f, (5.14)

where ε > 0 depends on the constants in hypothesis (E).

Proof. Without loss of generality, we can assume maxA f = 1. As follows from
(2.4), the function u(x) := EA(x) satisfies in A the equation ∆u = −1; besides,
u vanishes outside A. Set

λ0 := (EA)−1 = 1

max u
,

and consider the function w = 1 − λ0
2 u. Clearly, we have 1

2 ≤ w ≤ 1 and

∆w = λ0

2
≤ λ0w ≤ λw in A.

Since f ≤ 1 = w in A \ A, the comparison principle for the operator ∆ − λ

implies that f ≤ w in A. In particular,

f (x0) ≤ w(x0) = 1 − λ0

2
u(x0) ≤ 1 − u(x0)

2 max u
.

The hypothesis (E) implies

u(x0)

max u
= E(x0, r)

E(x0, r)
≥ c,

whence (5.14) follows.
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Proof of Lemma 5.4. By [22, Proposition 6.1], the hypothesis (Eβ) implies (E),
which will enable us to use Lemma 5.5.

Without loss of generality, we can assume maxB\B f = 1. The function f is
subharmonic in B, which implies by the maximum principle that

max
B

f ≤ max
B\B

f = 1. (5.15)

If λ1/βR is bounded by a (large but fixed) constant then the right hand side
of (5.12) can be made > 1 just by adjusting the constant C. Since f (x0) ≤ 1, in
this case (5.12) is trivially satisfied.

Assume in the sequel that

λ1/βR > 2K1/β , (5.16)

where K > 1 is a large enough constant to be chosen below. Since λ < 1, we
obtain from (5.16)

R > 2K1/β > 2

and

λ > K

(
R

2

)−β

> K (R − 1)−β . (5.17)

By the hypothesis
(
Eβ

)
, we can choose the constant K so large that

E(x, r) ≥ K−1rβ for all x ∈ Γ and r ≥ 1. (5.18)

Find a number r from the equation

λ = Kr−β. (5.19)

Clearly, we have for this r

r < R − 1 and r =
(

K

λ

)1/β

> 1.

It follows from (5.18) and (5.19) that

λ ≥ 1

E(x, r)
≥ 1

E(x, r)
,

so that Lemma 5.5 applies in any ball of radius r .
For any i = 1, 2, ..., let xi be a point of maximum of the function f in the

ball B(x0, ir
′) where r ′ := r + 1. Set mi = f (xi) and m0 = f (x0). Consider

the ball Ai = B(xi, r) for any i = 0, 1, 2, ..., k − 1, where

k := �R/r ′� ≥ 1

(see Fig. 4).
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x0 xi

xi+1

(i+1)rI

r

irI

Ai

R

B(x0, R)

Fig. 4. The point xi and the ball Ai = B(xi, r)

Then we have

Ai ⊂ B(xi, r
′) ⊂ B(x0, (i + 1)r ′) ⊂ B(x0, R),

whence we see that

∆f − λf = 0 in Ai and max
Ai

f ≤ mi+1.

Applying Lemma 5.5 to the function f in the ball Ai , we obtain

mi ≤ (1 − ε)mi+1.

Iterating this inequality k times and using mk ≤ 1 (which follows from (5.15))
we conclude

f (x0) = m0 ≤ (1 − ε)k. (5.20)

Finally, by the choice of k and r , we have

k � R

r
� λ1/βR,

so that (5.20) implies (5.12). ��
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5.4 Feynman-Kac formula for λ-polyharmonic functions

Let f be a function on Γ such that

∆f − λf = 0 in B, (5.21)

for a finite non-empty set B ⊂ Γ . Then the function v = GB
λ,mf satisfies

(∆ − λ)m+1 v = 0 in B (5.22)

so that vm is a λ-polyharmonic function. Moreover, v satisfies the following
boundary conditions outside B:

v = 0, (∆ − λ) v = 0, (∆ − λ)2 v = 0, ..., (∆ − λ)m v = (−)m f, (5.23)

so that v can be regarded as a solution to the boundary value problem (5.22)-
(5.23). The following statement provides a probabilistic representation of such
a solution.

Lemma 5.6. (A Feynman-Kac formula) Let f be a function on Γ satisfying
(5.21). Then for all x ∈ B,

f (x) = Ex

[
ωT f (XT )

]
, (5.24)

where T = TB is the first exit time from B and ω = (1 + λ)−1.
Furthermore, for all m ≥ 0, λ ≥ 0, and x ∈ B,

GB
λ,mf (x) = Ex

[
Qm+1(T )ωT +mf (XT )

]
. (5.25)

Proof. For any integer m ≥ −1, denote

vm(x) = Ex

[
Qm+1(T )ωT +mf (XT )

]
. (5.26)

Clearly, v−1 = 0 in B, v0 = f in Bc and vm = 0 in Bc for all m ≥ 1. Let us
prove that, for all m ≥ 0,

∆vm − λvm = −vm−1 in B. (5.27)

Indeed, for any x ∈ B, the Markov property implies

Ex

[
Qm+1(T − 1)ωT −1+mf (XT )

] =
∑
y∼x

P (x, y)Ey

[
Qm+1(T )ωT +mf (XT )

]

= Pvm(y). (5.28)

By the property of the binomial coefficients, we have for all m ≥ 0 and T ≥ 1

Qm+1 (T − 1) = Qm+1(T ) − Qm(T ).
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Hence, the left hand side of (5.28) is equal to

Ex

[
Qm+1(T )ωT −1+mf (XT )

]− Ex

[
Qm(T )ωT −1+mf (XT )

]
= ω−1vm(x) − vm−1(x).

Substituting this into (5.28) and using ω−1 = 1 + λ, we obtain (5.27).
For m = 0 we obtain from (5.27) ∆v0 − λv0 = 0. Since v0 = f outside B,

we conclude v0 = f also in B. Therefore, (5.24) follows from (5.26) for m = 0.
If m ≥ 1 then solving (5.27) with the boundary condition vm = 0 outside B, we
obtain vm = GB

λ vm−1. Therefore vm = GB
λ,mf , whence (5.25) follows.

Corollary 5.7. For any non-empty finite set B ⊂ Γ and for any non-negative
function f in Γ such that ∆f − λf = 0 in B,

(
GB

λ,mf (x)
)2 ≤ cmf (x)GB

λ,2mf (x), (5.29)

for all x ∈ Γ , m ≥ 0, λ ≥ 0.

Proof. Using the notation (5.26) we have by the Cauchy-Schwarz inequality

vm(x)2 ≤ Ex

[
ωT f (XT )

]
Ex

[
Q2

m+1(T )ωT +2mf (XT )
]
. (5.30)

By (5.4) we obtain

Q2
m+1(T ) ≤ cmQ2m+1(T ).

Hence, (5.30) implies

v2
m ≤ cmv0v2m ,

which by Lemma 5.6 coincides with (5.29).

Corollary 5.8. Under the hypotheses of Lemma 5.4, we have for any integer
k ≥ 0

GB
λ,kf (x0) ≤ CRβk exp

(−cλ1/βR
)

max
B\B

f. (5.31)

Proof. Indeed, by (5.29), (5.8), and (5.15), we obtain
[
GB

λ,kf (x0)
]2 ≤ Cf (x0)G

B
λ,2kf (x0)

≤ Cf (x0)‖GB
λ,2k‖ max

B
f

≤ Cf (x0)E(B)2k max
B\B

f.

Using the estimate (5.12) for f (x0) and the hypothesis
(
Eβ

)
, we conclude the

proof.
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5.5 Upper bound for λ, m-resolvent

Theorem 5.9. Assume that (Γ, µ) satisfies (V D) + (MV ) + (
Eβ

)
. Then for a

large enough m > 1 and for all 0 < λ < 1, x ∈ Γ

gλ,m(x, x) ≤ C
λ−m

V (x, λ−1/β)
, (Gβ)

where the constant C depends on the constants in the hypotheses as well as on
m.

We start with a lemma.

Lemma 5.10. Assume that (Γ, µ) satisfies (V D)+ (MV )+ (Eβ

)
. Then, for all

x ∈ Γ and positive r, R such that R ≥ r + 1, the following estimate holds

g
B(x,R)
λ,m (x, x) − g

B(x,r)
λ,m (x, x) ≤ C

Rβm

V (x, r)
exp

(−cλ1/βr
)
,

where the constants C, c > 0 depend on the constants in the hypotheses, and C

depends also on m.

Proof. Fix a point x ∈ Γ , set A = B(x, r), B = B(x, R), and consider the
functions

vm(y) := gB
λ,m(x, y) − gA

λ,m(x, y).

Clearly, we have v0 = 0 and for all m ≥ 1

∆vm − λvm = −vm−1 in A.

Therefore,

vm = GA
λ vm−1 + um in A, (5.32)

where um solves the following boundary value problem
{

∆um − λum = 0 in A,

um|Ac = vm.

Iterating (5.32) and using v0 = 0 we obtain

vm = GA
λ,m−1u1 + GA

λ,m−2u2 + ... + um. (5.33)

Since A ⊂ B, we have by Corollary 5.8

GA
λ,luk(x) ≤ Crβl exp

(−cλ1/βr
)

max
B\A vk , (5.34)
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and by Lemma 5.3

max
B\A vk = max

y∈B\A gB
λ,k(x, y) ≤ C

Rβk

V (x, r)
. (5.35)

Therefore, we obtain from (5.33), (5.34), and (5.35)

vm(x) =
m∑

k=1

GA
λ,m−kuk(x)

≤ C

m∑
k=1

rβ(m−k) exp
(−cλ1/βr

) Rβk

V (x, r)

≤ C
Rβm

V (x, r)
exp

(−cλ1/βr
)
,

which was to be proved.

Proof of Theorem 5.9. Set Bk = B(x, 2k) for k = 0, 1, 2, .... Obviously, we have

gλ,m(x, x) = g
B0
λ,m(x, x) +

∞∑
k=0

(
g

Bk+1
λ,m (x, x) − g

Bk

λ,m(x, x)
)

.

The first term g
B0
λ,m(x, x) is estimated as follows, using (5.5):

g
B0
λ,m(x, x) =

∞∑
n=0

Qm(n)ωn+mpB(x,1)
n (x, x)

= Qm(0)ωmp
B(x,1)
0 (x, x)

= ωm

V (x, 1)
≤ 1

V (x, 1)
.

Applying Lemma 5.10 with r = 2k and R = 2k+1, we obtain for any k ≥ 0

g
Bk+1
λ,m (x, x) − g

Bk

λ,m(x, x) ≤ C
2kβm

V (x, 2k)
exp

(−cλ1/β2k
)

,

whence

gλ,m(x, x) ≤ 1

V (x, 1)
+ C

∞∑
k=0

exp
(−cλ1/β2k

) 2kβm

V (x, 2k)
.

Set r = λ−1/β and rewrite this inequality as follows

gλ,m(x, x) ≤ 1

V (x, 1)
+ C

∞∑
k=0

exp

(
−c

2k

r

)(
2k

r

)βm
V (x, r)

V (x, 2k)

rβm

V (x, r)
.

(5.36)



548 A. Grigor’yan, A.Telcs

Let us choose m so large that

βm > α,

where α is the exponent from (2.1). If 2k ≤ r then by (2.1)

V (x, r)

V (x, 2k)
≤ C

( r

2k

)α

, (5.37)

and the k-th term in the sum (5.36) is estimated from above by(
2k

r

)βm−α
rβm

V (x, r)
. (5.38)

The sequence of these numbers is an increasing geometric series in k; hence, the
sum of all the terms in (5.36) with k such that 2k ≤ r , is bounded by a multiple
of the largest term in (5.38); that is by

C
rβm

V (x, r)
. (5.39)

If 2k > r then the k-th term in the sum (5.36) is bounded by

exp

(
−c

2k

r

)(
2k

r

)βm
rβm

V (x, r)
≤ C exp

(
−c

2

2k

r

)
rβm

V (x, r)
.

The sequence of these numbers decreases in k faster than a geometric series;
hence, the sum of all the terms in (5.36) with k such that 2k > r is again bounded
by (5.39).

Finally, by (5.37) with k = 0, we obtain

1

V (x, 1)
≤ Crα

V (x, r)
≤ Crβm

V (x, r)
,

which means that the term 1
V (x,1)

in (5.36) is also bounded by (5.39). Hence,

gλ,m(x, x) is bounded by (5.39), whence
(
Gβ

)
follows by substituting r = λ−1/β .

��

6 Estimates of the heat kernel

6.1 Diagonal upper estimate

Theorem 6.1. If (Γ, µ) satisfies (V D)+(Gβ

)
then, for all x, y ∈ Γ and n ≥ 1,

pn(x, x) ≤ C

V (x, n1/β)
(DUEβ)

and

pn(x, y) ≤ C√
V (x, n1/β)V (y, n1/β)

. (PUEβ)
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Proof. Let us first prove that, for λ = n−1 and any m ≥ 0,

p2n(x, x) ≤ Cλmgλ,m(x, x). (6.1)

Indeed, p2k(x, x) is non-increasing in k. Therefore, for λ = n−1 we have

gλ,m(x, x) =
∞∑

k=0

Qm(k)ωk+mpk(x, x) ≥
∞∑

k=0

Qm(2k)ω2k+mp2k(x, x)

≥ c

n∑
k=1

km−1ω2k+mp2k(x, x) ≥ cnmp2n(x, x),

(where we have used ω2k+m ≥ (1 + 1/n)−2n−m ≥ e−22−m) whence (6.1) fol-
lows. By the hypothesis

(
Gβ

)
we have for some m

gλ,m(x, x) ≤ C

λmV (x, λ−1/β)
,

which together with (6.1) implies
(
DUEβ

)
for even n.

Using the semigroup property and the Cauchy-Schwarz inequality, we obtain
(PUEβ) for even n:

p2n(x, y) =
∑

z

pn(x, z)pn(z, y)µ(z) (6.2)

≤ √
p2n(x, x)p2n(y, y) (6.3)

≤ C√
V (x, n1/β)V (y, n1/β)

.

Again by the semigroup property, we obtain

p2n+1(x, y) =
∑
z∼x

p1(x, z)p2n(z, y)µ(z) ≤ sup
z∼x

p2n(z, y) (6.4)

whence

p2n+1(x, y) ≤ sup
z∼x

p2n(z, y) ≤ sup
z∼x

C√
V (z, n1/β)V (y, n1/β)

.

By (V D),

V (z, n1/β) � V (x, n1/β)

for all z ∼ x, whence (PUEβ) and (DUEβ) follow for odd n > 1. Finally,
(PUEβ) and (DUEβ) for n = 1 follow directly from the definition (2.2) of
pn(x, y).
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6.2 Off-diagonal upper estimate

Theorem 6.2. For any graph (Γ, µ)

(V D) + (DUEβ) + (
Eβ

) �⇒ (
UEβ

)
.

The following lemma plays a crucial role in the proof.

Lemma 6.3. Let (Γ, µ) satisfy
(
Eβ

)
and let f be a bounded non-negative func-

tion on Γ which vanishes in a ball B(x0, R). Then for any n ≥ 1 the function
Pnf admits the following estimate at the point x0:

Pnf (x0) ≤ C exp

[
−c

(
Rβ

n

) 1
β−1
]

sup
Γ

f, (6.5)

where the constants C, c > 0 depend on the constants in
(
Eβ

)
.

This lemma can be deduced from [22, Lemma 7.4] but we give here a self-
contained proof of it based on Lemma 5.4.

Proof of Lemma 6.3. If R > n then we have Pnf (x0) = 0 and there is nothing
to prove. Assume in the sequel R ≤ n. Without loss of generality, we can also
assume sup f = 1.

Set A = B(x0, R), fix some λ ∈ (0, 1) and find a function h(x) on A solving
the boundary value problem {

∆h = λh in A,

h = 1 in A \ A.

Then the function un(x) := (1+λ)nh(x) solves the heat equation (2.3) in N×A

and satisfies the following initial boundary conditions:

u0(x) ≥ 0 in A,

un(x) ≥ 1 in A \ A.

Comparing with the function Pnf (x) that also solves the heat equation, we
conclude by the parabolic comparison principle that

Pnf (x) ≤ un(x),

for all x ∈ A and n ≥ 0.
On the other hand, by Lemma 5.4, we have

h (x0) ≤ C exp
(−cλ1/βR

)
,

whence

Pfn(x0) ≤ (1 + λ)nh(x0) ≤ C exp
(
λn − cλ1/βR

)
. (6.6)
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Now choose λ from the condition cλ1/βR = 2λn; that is,

λ =
(

cR

2n

) β
β−1

. (6.7)

Of course, we can always assume c < 1. Then the assumption R ≤ n implies
λ < 1 so that this λ can be used in (6.6). Therefore, we obtain

Pfn(x0) ≤ C exp(−λn) = C exp

(
−c′

(
Rβ

n

) 1
β−1
)

,

which finishes the proof. ��
Proof of Theorem 6.2. We can assume that (PUEβ) holds because, as was shown
in the proof of Theorem 6.1, (PUEβ) follows from (V D) + (DUEβ).

Step 1. Let us prove that (PUEβ) + (V D) + (
Eβ

)
implies, for all R ≥ 0,

In(x, R) :=
∑

z/∈B(x,R)

p2
n(x, z)µ(z) ≤ C

V (x, n1/β)
exp

[
−
(

Rβ

Cn

) 1
β−1
]

. (6.8)

By (2.1) we have for all x, y ∈ Γ , n > 0, ε > 0

V (x, n1/β)

V (y, n1/β)
≤ C

(
1 + d(x, y)

n1/β

)α

≤ Cε exp

[
ε

(
dβ(x, y)

n

) 1
β−1
]

. (6.9)

Therefore, by (PUEβ) and (6.9),

pn(x, y) ≤ C

V (x, n1/β)

[
V (x, n1/β)

V (y, n1/β)

]1/2

(6.10)

≤ Cε

V (x, n1/β)
exp

[
ε

(
dβ(x, y)

n

) 1
β−1
]

.

If Rβ ≤ Cn then (6.8) follows from (6.3) and (DUEβ). Assuming in the se-
quel Rβ > Cn, denote Rk = 2kR where k = 0, 1, 2, .... Splitting the summation
in (6.8) to annuli

Ak := B(x, Rk) \ B(x, Rk−1),

denoting fk = 1Ak
pn(x, ·), and using Lemma 6.3, we obtain

In(x, R) =
∞∑

k=1

∑
z∈Ak

p2
n(x, z)µ(z) (6.11)

=
∞∑

k=1

Pnfk(x) ≤ C

∞∑
k=1

exp


−c

(
R

β

k−1

n

) 1
β−1


 sup fk .
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By (6.10), we obtain

sup fk ≤ sup
y /∈B(x,Rk)

pn(x, y) ≤ Cε

V (x, n1/β)
exp


ε

(
R

β

k

n

) 1
β−1


 .

Substituting this estimate in (6.11) and estimating the sum in (6.11) for small
enough ε, we obtain (6.8).

Step 2. Let us deduce
(
UEβ

)
from (6.8). Denote R = 1

2d(x, y) and observe
that Γ is covered by the union of B(x, R)c and B(y, R)c. Therefore, we have by
(6.2)

p2n(x, y) ≤
∑

z/∈B(x,R)

pn(x, z)pn(z, y)µ(z) +
∑

z/∈B(y,R)

pn(x, z)pn(z, y)µ(z).

(6.12)

By the Cauchy-Schwarz inequality, the first sum in (6.12) is dominated by√
In(x, R)In(y, 0), and the second sum is dominated by

√
In(y, R)In(x, 0). Ap-

plying (6.8) we obtain

p2n(x, y) ≤ C√
V (x, n1/β)V (y, n1/β)

exp

[
−
(

dβ(x, y)

Cn

) 1
β−1
]

,

which together with (6.9) yields
(
UEβ

)
for even n. Finally,

(
UEβ

)
for odd n

follows from (6.4). ��

6.3 Proof of (iv) �⇒ (i) in Theorem 3.1

Let us prove that

(V D) + (H) + (
Eβ

) �⇒ (
UEβ

)
.

As was shown in Sect. 5.2

(V D) + (H) �⇒ (MV ).

By Theorem 5.9

(V D) + (MV ) + (
Eβ

) �⇒ (
Gβ

)
and by Theorem 6.1

(V D) + (
Gβ

) �⇒ (DUEβ).

By Theorem 6.2

(V D) + (DUEβ) + (
Eβ

) �⇒ (
UEβ

)
,

which finishes the proof. ��
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Remark 6.4. Clearly, the hypothesis (H) can be replaced here by (MV ) so that
we obtain (3.1). Note also that the lower bound in the hypothesis

(
Eβ

)
was

required only for Lemma 5.4 and for its consequence Lemma 6.3. In all other
places we used only the upper bound E(x, R) ≤ CRβ .

Let us prove that

(V D) + (H) + (
Eβ

) �⇒ (
LEβ

)
.

By [22, Propositions 7.1,9.1], (V D) + (
Eβ

)
implies

p
B(x,R)
2n (x, x) ≥ c

V (x, n1/β)
, for all n ≤ εRβ, (6.13)

for some c, ε > 0. By Theorem 6.1

(V D) + (H) + (
Eβ

) �⇒ (DUEβ).

By [22, Proposition 13.1], [33], assuming (p0), the conditions

(V D) + (H) + (
Eβ

)+ (DUEβ) + (6.13)

imply

pn(x, y) + pn+1(x, y) ≥ c

V (x, n1/β)
whenever d(x, y) ≤ δn1/β, (6.14)

for some δ > 0. Finally, using (p0) and arguing as in [22, Proposition 13.2] or
[13, Theorem 3.8] or [33], we obtain

(V D) + (6.14) �⇒ (
LEβ

)
.

Remark 6.5. Alternatively, one can deduce
(
LEβ

)
from (V D) + (H) + (

UEβ

)
using a modification of the method described in [22, Remark 15.1] (in the contin-
uous setting, this was done in [23]). In particular, we see that (V D)+(H)+(UEβ

)
is equivalent to each of the conditions (i) − (iv) of Theorem 3.1.

7 Appendix: the lettered conditions

The conditions (H),
(
PHβ

)
, (HG), (MV ) can be found in Definitions 2.1, 2.2,

4.2, 5.1, respectively. Here is the list of most of the other conditions used in this
paper:

P(x, y) ≥ p0, ∀x ∼ y (p0)

V (x, 2R) ≤ CV (x, R), ∀x ∈ Γ ∀R > 0 (V D)
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E(x, R) ≤ CE(x, R), ∀x ∈ Γ ∀R > 0 (E)

E(x, R) � Rβ, ∀x ∈ Γ ∀R ≥ 1 (Eβ)

ρ (B(x, R), B(x, MR)) � Rβ

V (x, R)
, ∀x ∈ Γ ∀R ≥ 1 (ρβ)

pn(x, y) ≤ C

V (x, n1/β)
exp

[
−
(

d(x, y)β

Cn

) 1
β−1
]

, ∀x, y ∈ Γ ∀n ≥ 1

(UEβ)

(pn + pn+1)(x, y) ≥ c

V (x, n1/β)
exp

[
−
(

d(x, y)β

cn

) 1
β−1
]

, ∀n ≥ d(x, y) ∨ 1

(LEβ)

pn(x, x) ≤ C

V (x, n1/β)
, ∀x ∈ Γ ∀n ≥ 1 (DUEβ)

pn(x, y) ≤ C√
V (x, n1/β)V (y, n1/β)

∀x, y ∈ Γ ∀n ≥ 1 (PUEβ)

gλ,m(x, x) ≤ C
λ−m

V (x, λ−1/β)
, ∀x ∈ Γ ∀λ ∈ (0, 1). (Gβ)
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4. Barlow, M.T., Bass, R. F.: Transition densities for Brownian motion on the Sierpinski carpet.
Probab. Th. Rel. Fields, 91 (1992) 307–330

5. Barlow, M.T., Bass, R. F.: Brownian motion and harmonic analysis on Sierpinski carpets.
Canad. J. Math., 54 (1999) 673–744

6. Barlow, M.T., Bass, R. F.: Random walks on graphical Sierpinski carpets. In: Random
walks and discrete potential theory (Cortona, Italy, 1997), Ed. Picardello, M., Woess, W.,
Symposia Math. 39, Cambridge Univ. Press, Cambridge, 1999. 26–55



Harnack inequalities and sub-Gaussian estimates for random walks 555

7. Barlow, M.T., Coulhon, T., Grigor’yan, A.: Manifolds and graphs with slow heat kernel
decay. Invent. Math., 144 (2001) 609–649

8. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Th. Rel.
Fields, 79 (1988) 543–623

9. Carlen, E.A., Kusuoka S., Stroock, D.W.: Upper bounds for symmetric Markov transition
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