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Abstract

We derive an optimal scaling law for the energy of thin elastic films under
isotropic compression, starting from three-dimensional nonlinear elasticity. As a
consequence we show that any deformation with optimal energy scaling must ex-
hibit fine-scale oscillations along the boundary, which coarsen in the interior. This
agrees with experimental observations of folds which refine as they approach the
boundary.

We show that both for three-dimensional elasticity and for the geometrically
nonlinear Bppl-von Karman plate theory the energy of a compressed film scales
guadratically in the film thickness. This is intermediate between the linear scaling
of membrane theories which describe film stretching, and the cubic scaling of
bending theories which describe unstretched plates, and indicates that the regime
we are probing is characterized by the interplay of stretching and bending energies.

Blistering of compressed thin films has previously been analyzed using the
Foppl-von Karman theory of plates linearized in the in-plane displacements, or
with the scalar eikonal functional where in-plane displacements are completely
neglected. The predictions of the linearized plate theory agree with our result, but
the scalar approximation yields a different scaling.

1. Introduction

Blistering phenomena in compressed thin elastic films have recently attracted
widespread interest in the mechanics [32,16, 5], physics [29,23,1, 35,34,4,9] and
mathematics [3,7,17,12] literature. Most studies so far have concentrated on the
linearized ©ppl-von Karman (FvK) model [24,10], in which the in-plane com-
ponents of the displacement field are treated only to leading order. Here we study
this problem starting from the full nonlinear three-dimensional theory of elasticity,
and show that the energy per unit volume scales linearly in the film thicknéss
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terms of the total energy referred to in the abstract, this corresponds to a quadratic
scaling ink. In the following we always consider energies per unit volume.

The derivation of dimensionally reduced theories for thin elastic films has
been studied by Euler, J. Bernoulli, Cauchy, Kirchhoff, Love, E. and F. Cosserat,
Foppl, von Kdrmén and a great many modern authors (see [30,10] and references
therein). The only theories which have been derived rigorously from nonlinear
three-dimensional elasticity by meandbtonvergence are membrane theory [25—
27] and more recently bending theory ([13, 14], see also [33] for a derivation under
more stringent assumptions); and the FvK plate theory in a different regime, char-
acterized by an energy density proportional to the fourth power of the thickness
[15]. Membrane theories account for deformations where the film is stretched in a
way which is essentially uniform in the thickness, and give energy densities of or-
der one in the film thickness. Bending theories instead focus on unstretched plates,
i.e., they are limited to deformations where the stretching term vanishes and only
consider higher-order corrections in the film thickness. The resulting energy den-
sities are quadratic in the film thickness. In the regime of interest here, however,
both stretching and bending are active and relevant. Indeed, membrane theories
would predict zero energy, and bending theories would predict infinite energy —
neither of which gives much insight into the material behavior. More precisely,
since no zero-stretch deformation exists with the given boundary conditions and
finite bending energy, we need to allow for finite stretching. The resulting patterns
are therefore determined by the interplay of the two energy terms, and analogously
the linear scaling we obtain for the energy density is intermediate between the two
mentioned.

The study of blistering using the tools of calculus of variations was initiated
in 1994 byOrTtiz & Gioia [32], who noticed that many experimental observa-
tions could be reproduced with a scalar model, which can be obtained from the
linearized FvK theory by neglecting the in-plane displacements. Since then, con-
siderable mathematical effort [3,7,17,12] has gone into the study of the resulting
scalar functional, which constitutes the natural generalization to two-dimensional
gradient fields of the classical Modica-Mortola functionals in the theory of Gamma-
convergence, and had already been proposed with a different physical interpretation
by AviLEs & GiGa in 1987 [6].

Only recently has attention has been devoted to rigorous studies of the ener-
getics of the vectorial FvK model. The solutions of the scalar problem correspond
to an energy per unit volume of ordef(1 + o), wheres, is the compression
ratio ando is the rescaled film thickness, which constitutes the small parameter
in this problem, defined after (1.1). (The corresponding total energy is linear in
the film thickness.) Already in their 1994 paper [3@gTiZ & Groia exhibited a
construction which, after suitable smoothing, achieved an energy of @& in
a half-plane geometry. In 19PbmEAU & Rica also proposed [35] (see also [34])
that energy-minimizing states develop oscillations orthogonal to the boundary, and
based on scaling estimates for the fold energies they proposed that oscillations
would refine approaching the boundary. Recent rigorous results on energy scaling
in FvK [8,19, 18] were based on the ideas propose&byN & MULLER in their
mathematical theory of self-similar twin branching in martensites [21,22] (see also
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[11]). The correct energy scaling turned out tasBe ?/2 for the restricted problem
considered in [19], anefo for the full geometrically linear FvK problem [8,18]. In
these three papers, fold-branching patterns are constructed which, at least in their
gross features, are similar to the one proposed by Pomeau and Rica. A different
o233 energy scaling was instead obtained considering sharp ridges of length
L which appear in situations, such as paper crumpling, in which the boundary
condition is replaced by a volume constraint [29, 28,23, 9].

In this paper we focus on the problem of thin-film blistering and study the
energetics of blistered thin films using both a geometrically nonlinear treatment of
the FvK ansatz and directly the full three-dimensional elastic energy, which does
not rely in any way on the FvK theory of plates. We show that the same estimates we
had obtained for the energy in the geometrically linear model [8] hold also in this
case, hence proving that — at least as far as energy scaling for compressed isotropic
plates is concerned — the FvK approximation correctly reproduces the behavior of
elasticity theory, and a geometrically linear treatment of the in-plane deformations
is justified. As a consequence we show that any deformation with optimal energy
scaling must exhibit fine-scale oscillations along the boundary, which coarsen in
the interior. This agrees with experimental observations of folds which refine as
they approach the boundary [2].

We consider a uniform, isotropic elastic film of given cross-sectiband
thicknessh, subject to an isotropic in-plane compressign> 0. We take the
compressed state as reference, and impose no-displacement boundary conditions
ondQ. Letg : Q x (0, h) — R3 be the deformation field, an?sp(F) be the
elastic energy density, which vanishes foe (1+¢,)S 0 (3). We show (Theorems
3 and 4) that for smooth domaifsthe energy per unit thickness of a minimizer

h,ey 1
159,91 = 5 /Q o, 0T (1.1)

scales ag2o when the scaled thickness = h/si/2 is small. In proving this
result we assume that the potentiddp(F) behaves as the squared distance from
its null setC = (1 + ¢,)SO(3) in a neighborhood of, and that it has at least
guadratic growth at infinity. Boundary conditions are imposed only on the in-plane
components at the lateral boundaries, igg(x) = x; for x € (3Q2) x (0, h) and
i =1, 2, with the out-of-plane component satisfyifgg — x3| < k.

The FvK ansatz amounts to enslaving the deformagidoa its behavior on the
mid-plane of the film (see Section 4.2 for details). The resulting variational problem
is

Iy Ty, Q1 = /Q Wan (V) + h%|Vvl?, (1.2)

wherey (x1, x2) = ¢(x1, x2, h/2) is the deformation of the mid-plane,
b ViAY2
Y1 A Y2

is the normal to the surface defined By and |Vv|2 = |91v|% + |dov]2. The
new potentialWop(a|b) is obtained fromWsp(a|b|c) by optimizing over vectors

(1.3)
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¢ parallel toa A b, and it has invariance and growth properties similar to those
of W3p, with the group of three-dimensional linear isometd&(3) replaced by
the group of linear orthogonal maps &f into R3, called O (2, 3). In particular,

in a neighborhood ofl + ¢,)0(2, 3), W>p is bounded from above and below
by constants times di&tF, (1 + &,) O(2, 3)). The boundary conditions are now
Y; = x; fori =1, 2 andys = 0 forx € 9Q2. We show that both inf,p and inf I3p
scale awre2 = he/? for smallh ande,.

The construction for the upper bound is, in its general lines, analogous to the
one we used for the geometrically linear problem [8], and is presented in Section 3.
Since the FvK model is obtained from three-dimensional elasticity by assuming a
specific form for the deformation, the bound on FvK leads naturally to abound on the
three-dimensional elastic energy (see Section 4.2). The lower bounds are presented
separately, in Section 2 for FvK and in Section 4.1 for the three-dimensional case.
In all constructions the natural length-scale for in-plane oscillations is given by
o = h/eX? and hence in the following we replak&by o 2¢,, in the FVK functional
(1.2).

2. Lower bound

In this section we prove the lower bound on the geometrically nonlinear two-
dimensional Bppl-von Karman energyl>p defined in (1.2), under the assumption

Wan(F) = cdisB(F, (1+ &) 0(2, 3)), (2.1)

where 0 (2, 3) is the group of orthogonal linear maps frd&# to R3. Here and
below, we denote by a positive constant, which might change from line to line,
but does not depend on the parameters of the probderands).

Theorem 1 (Lower bound, 2[). Let 2 be an open, bounded, Lipschitz domain in
R2, and assumé2.1) holds. Then, there is a constan > 0, depending only on
Q, such that

13571, @1 2 cq min (hed/?, &2) 2.2)
for any which obeys the boundary conditigi(xy, x2) = (x1, x2, 0) ON 9.

Remark 1. We observe that no boundary condition is imposed .orhe same can

be done in the geometrically linear case. Indeed, Theorem 1 in [8] holds, with minor
changes in the proof, without the hypothegis = 0 ond<2. Further, the boundary
condition onyr can be weakened as in (2.5) below, with no changes in the proof.

The basic idea in the proof is to show that, due to the boundary condition, in a
neighborhood of the boundary of widththe energy per unit area is at least of
orderef, which is the energy of the identity map. Roughly speaking, a function
with infinitesimal energy would hav€v vanishing inL2, hence its image would

be contained in a plane. This allows us to pass, locally, from fidps- R3 with
gradient in(1 + &,)0(2, 3) to mapsR? — R? with gradient in(1 + ,)SO(2).
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But a gradient which is a rotation a.e. is a constant rotation, hence our hypothetical
function with infinitesimal energy density is linear, and both singular values of its
gradient equal ¥ ¢,. This contradicts the no-stretch boundary condition.

To make this argument precise, we consider a subsRtaifthe form

Uro ={x e R?: x5 € (0,0), f(x2) £ x1 £ fx2) + 0}, (2.3)

where f : (0,0) — R is a Lipschitz function with Lipschitz constait. The
{x1 = f(x2)} part of the boundary o/,

Tro = {(f(x2),x2) 1 x2 € (0,0)}, (2.4)

is assumed to be part 6f2. For small enougla, any given Lipschitz domait

has at least/o such disjoint subsets (modulo rotations and translations), where
depends omf2. In each such domain, a lower bound for the energy is obtained by
finding a fixed rotatiorR € SO (2) whose distance from the gradient fidlds can

be estimated in terms of the distanceMof from the set of all rotation§ O (2).

Here we use a quantitative version of Reshetnyak’s estimate recently obtained by
FRIESECKE, JAMES & MULLER [13,14], which is stated precisely in Proposition 1
below. The basic estimate in a domadip,, is given in the following Lemma

Lemma 1. For anyy : Uy, — R3such that

X1
1
¥ (x1, x2) — (xz < Zh&yz for (x1,x2) € Tyg, (2.5)
0
the energy is bounded from below by
Ioply, Urel 2 crelo?, (2.6)
wherec;, depends only on the Lipschitz constanf 1.

Proof. We first rescala/ according to

1
Yo (6) = ~ o), @7
which givesVy, (x) = (Vi) (ox), vs (x) = v(ox), Vs (x) = o(Vv)(ox), and

correspondinglyfy (x2) = %f(oxz), which does notchange the Lipschitz constant.
Hence

ey 2,6 % e,
]2D [V, Urol =0 IZD (Yo, Uy, 1] (2.8)

and it suffices to prove the resultfer= 1, i.e.,h% = ¢,. We argue by contradiction,
and suppose that the assertion is false. Then there exist sequgraretl; given
by uniformly Lipschitz functionsf; (ando = 1) such that

1 .
8_.2 /;/ W;S(VI//J) + 8j|Vl)j|2dx — 0, (2.9)
J J
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with the boundary condition
T| < 1 f
Yi(x) — (x1,x2,0)" | = Zej orx el;. (2.10)

Letn;(y1, y2) = vi(y1+ f;(y2), y2). Then,

1 1+L
121Vl = —gz I1VVllzw,) = 0. (2.11)
j J

Hence we can find unit vectofs € $2 such that

1 _ 1 _
y”vj - Vj||L1’(U,») = ﬁ”nj = VillLro.12) = 0 Vp <oo. (212)
J J

Letnow Q; € SO(3) be a rotation such tha?;i; = e3, and define; = PQ;y;,

where P = 8(12) ® e(l3) + ef) ® eg3> is the canonical projection d&3 into R2

(see Appendix A for details on notation). The two-dimensional vector figld
is the projection ofyy; on the plane orthogonal t3, and therefore has gradient
close to(1+¢;)SO(2). More precisely, from Lemma 12 of Appendix A applied to
F = Q;Vy andvr = Q;v; we get, for any € Uj,

dist(Vy/, (1+)S0(2)) < ¢ [dist(wf, 1+£)0(2.3) + v — |2] .

(2.13)
Comparing this with (2.12) (witlp = 4) we see that
8;2/ dist? (V. (14 £/)S0(2)) — 0. (2.14)
Uj
By Proposition 1 there exist rotatio®s € SO (2) such that
1 !/
IV = A+ )Rl = 0. (2.15)
J

We now consider the trace gf. on the boundary';. By the trace theorem and the
Poincag inequality there are constanfssuch that

1
J

But this contradicts the boundary condition (2.10). To see this, consider for example
that (2.16) implies

1 .
[w;m =Y — L+ )R (x — y)] — 0 in L2(C; x T)). (2.17)

€j
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From the boundary condition (and the fact thidtis an orthogonal projection of
¥) we get

Vi@ = w0 £ [0 = v o)
< v =yl 4 Y0 — 5| + [0 = 5
< v =yl + 3¢, (2.18)

wherex = (x1, x2,0) andy has similar meaning. BUR;(x — y)| = |x — y|,
because®; is a rotation, hence

1, , 1
= Vi) = W) — A+ e)Ryx = )| Z Ik =y = 5, (2.19)

which contradicts (2.17).

We now conclude the proof of the lower bound. The details of the evaluation
of the distance of projected gradients from the rotation group are presented in
Appendix A.

Proof of Theorem 1. If o is small enough there atg |02| /o disjoint domains of
the form (2.3) along the boundary &f. Since by Lemma 1, in each of them the
energy is at least; 202, for ¢ < op we conclude

Iy, Q1 2 crlaQloe?. (2.20)

If insteado = h/ei/2 = 00, We observe that
oy, Q) 2 155 5 [y, Q1 = 1190062 2.21
2D wv ] = 2D [I/fv ] = CL| |008* ( ' )

Sinceog depends only o, the result follows.

Remark 2. In general, we cannot expect to be able to express the congfant
in (2.2) asc|092|. To see this, consider for example = (0,a) x (0,1 — a),
with @ small. Then, the energy of the identity megggx) = (x1, x2, 0)7, which is
proportional tae?|Q2| = e2a(1— a), vanishes for — 0, whereasg; |d$2| does not
depend o (og does).

3. Upper bound

We now prove the upper bound for the geometrically nonlineawpivon
Karmén problem, by explicitly constructing a deformation field with the optimal
energy scaling. The FvK ansatz will allow us to naturally extend the same construc-
tion to the three-dimensional problem (see Section 4.2). Throughout this section
we assume that

2
Won(F) < ¢ |[FTF — (14 &,)2dy| . (3.1)

Since in the constructiotr” F)1/2 — |d, is bounded by constants times, this
bound is needed only far sufficiently close to the null set 8¥,p. Our main result
is the following
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Theorem 2 (Upper bounjl Let be an open, bounded subseRsfwith piecewise
C*boundary, and leW,p obey(3.1). Then, there is a positive constaigt such that
for anye, € (0, 1) and small enougt there is a deformation fiel¢r : Q — R3
such that

1541y, Q1 < coed*h = cqelo, (3.2)

which obeys the boundary conditions(x1, x2) = (x1, x2,0), Vi (x1, x2) =
V(x1, x2,0) for x € 9Q2.

The main ideas in the construction are best explained by considering a part of
Q around a flat boundary. For greater clarity, we first discuss (Section 3.1) the
construction in a square, and then show how it can be extended to generic domains
(Section 3.2). The proof of Theorem 2 is then given at the end of Section 3, after
all necessary ingredients have been presented. As mentioned above, the scaling of
the constructed/ is obtained more naturally in terms of the compression rgtio

and of the rescaled thicknegss= h/ei/z.

3.1. Straight-boundary problem

In this section we construct a small-energy map[0, 112 — R3 on a square
which satisfies) (0, 1) = (0, ¢, 0), ;4 (0, ) = (1, 0, 0). The construction is done
in such a way that it can be adapted, by an appropriate choice of coordinates, to
smoothly curved boundaries (see Section 3.2). To better illustrate the structure of
the various bounds, we do not indicate explicit values for the numeric constants. In
this section¢ denotes global numeric constants, which can change from appearance
to appearance but do not depend on any of the parameters of the problem. In the
following sections, when dealing with curved boundariesyill depend on the
domain, but never on the small parameterer 4. We will always tacitly assume
that the strairz, is bounded.

3.1.1. Preliminariesand general scheme. We make the ansatz

Y(s, 1) = Yols, 1) + Pals, 1), (3.3
where
S
Vos, )=t | =tes+s(L+5)Y%e2 A1 (3.4)
Ss

is a plane inclined with slop& and the unit vectors ande; A T are defined so that
7 is the normal to the plane, and the triple, t, e2 A 7} forms an orthonormal
basis ofR3 with the canonical orientation. In components, we have

) 1 1

eQONT = m g . (3.5)

! 0
T = 11012 ’
A+8)¥2\ 4
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The slopes is chosen so thafg relaxes the compression in the direction, i.e.,
that|yo.s° = (14 ). This gives

1+8%2=(1+e,)2 (3.6)

which for smalle,, amounts taS = (2¢,)Y/2 + O(e,). In the following we use
interchangeably or ¢, with the understanding that they are always related by
(3.6).

The oscillations around the plang, which relax the compression in tlee
direction, are included via

Y1(s,t) = a(s,t)ex + b(s, 1)t +d(s,t)ea A T. 8.7

The functionsz, b andd, which are Cartesian components of the oscillatory part
of the deformation, have smooth dependence and high-frequency oscillations
in ¢, and are constructed in Sections 3.1.2 and 3.1.3.

To estimate the energy in termsafb andd we compute

Vs =aser+byt+ (d,s + 1+ 52)1/2) AT (3.8)
and
Yvi=QQ4a)e2+b,t+dex AT, (3.9
which give
V512 — (1467 = a? + b2 +d2 + 201+ 6)Y 2, (3.10)
V-V = Q2+dd;, (3.11)
Wal? = (1+6%) = 01+ 45, (3.12)
where
01=(1+a)?+b%—(1+69 (3.13)
and
Or=as(14a;)+bb, +1A+)Y2d,. (3.14)

In writing (3.10)—(3.12) we have collected the “dangerous” terms into the two
quantitiesQ1 and Q», whereas the others are bounded by

R=a% +b% +21+e)ld| +d? + d>3. (3.15)

This separation is motivated by the fact that in our construction therivatives

will be larger than the derivatives, and will be smaller thar: andb (see, e.qg.,
(3.35), or the construction in Lemma 3 for more details). Then, it is easy to check
that

2 2
Wap(Vi) < ¢ {[wf,sﬁ — @t o]+ (b )+ [P - At e?] }

<c(0}+03+R?). (3.16)



10 HAFEDH BEN BELGACEM et al.

Further, we observe that

101] + 102l + [RI £ 3 (3.17)
implies thata, b andd are uniformly Lipschitz, and
Vs AP = 9295 — s ¥.0° 2 3, (3.18)

hence — at least as long as (3.17) is satisfied — we can estiwatby |V2y|. We
first construct functions which satist91 = 0 and consider suitable rescalings to
obtain highly oscillatory functions with small amplitude. The main point is then
to estimate the energy in a box inside which the period of the oscillationg (in
doubles.

3.1.2. Construction of periodic solutions. We first construct small-energy func-
tions(a, b, d) which are periodic im, and do not depend enThe main requirement

on such functions is tha®4, as defined in (3.13), be zero. This gives a differential
relation between andb, which is best dealt with by collecting the two into a single
vectorial functiony (see (3.29)). In the definition of we also impose periodicity
conditions which will be helpful in the branching construction of Section 3.1.3.
Whereas in the geometrically linear case we could exhibit an explicit solution for
the periodic profile, here an implicit characterization turns out to be simpler, and it
is given by the following

Lemma 2. For everye, > O there exists aC™ curvey : R — R? with the
properties:

Y| =14 &, (3.19)
y120, (3.20)
Y+ =y + (é) , (3.21)
y(=t) = —y (@), (3.22)

1
y(%) - (8) , (3.23)
and satisfying the bound
v =+ vl = 1 + |v] | £ cew, lval + 3] + |v3| < e, (3.24)
wherec does not depend o).

Proof. We constructy by rescaling the curves
0 =4 o (3.25)
vl = Fsin2er )’ '
which obey (3.20)—(3.23) for any. To achieve (3.19) we first choogeso that the

length of y ([0, 1]) is 1+ ¢,, and then reparametrize proportionally to arc length.
More specifically, consider the rescaled length of #gO, t]) curve,

A(r) = 1 fr 17/ (t)|dt = 1 /T V14 A2co¥2rtdr. (3.26)
0 0

1+ e, 1+ e,
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Since A(1), is a smooth monotone function df, there exists a uniqua, such
thatA(1) = 1. Fix A = A,. ThenA is smooth and oddA” = 1/(1 + &), and
A(r +1) = A(x) + 1. Thus the inverse function 1 is smooth, odd and has
the propertyA=1(r + 1) = A~1(r) + 1. Hencey = 7 o A1 has the properties
(3.19)—(3.23). To check (3.24) we consider the smalimit. From (3.26) we get

1 1
A+e)A(t) =1+ 21A2 <r + = sin 4m> + 0(AY, (3.27)
TT
hence the condition (1) = 1 givesA, = Zsi/z + O(e4). Then,
1/2
Ex . 2 Ex .
@) =1t-— e sindrt + O(sgy), y2(t) = — sin2rt + O(gy), (3.28)
JT T

which proves the bounds dfy; — ¢| and |y2]| in (3.24). The remaining bounds
are easily established by computing the derivatives of both sides of the relation
7 =y o A, which givesy’ = y’A’ andj” = y”A'* + y'A".

Giveny (t), we define odd, one-periodic functions by

an =y — 1, b(t) = ya(t) (3.29)

which satisfy
a(-3)=a0 =a(3)=0 (3.30)
b(-3)=b0)=b(3)=0 (3.31)

Moreover, forr € [—-1, 1],

40 = 50505 2@+ e0? = vE0) - v20]. (3.32)
which is even and satisfies
A+e)d +A+aa—1ta)+ b (b —1h)y=0. (3.33)
The bounds (3.24) op are directly translated into
Al + 1’ + ")+ 1d| +1d'| +1d"| < ces. 1Bl + 15| +15"] < cei?.
(3.34)

To conclude this section, we display a periodic solution with pekiod

a(s, ) = ha (;—l) b(s, 1) = hb (%) d(s, 1) = 0. (3.35)

(The use ofi here and below to denote periods should not be confused with the use
of i as film thickness in the introduction.) It is easy to check #ap(Vy) = 0
and|V2y |2 < ce,h 2, hence the energy in a given box is bounded by

2
Lol (0, 1) x (0, h)] < csfhl%. (3.36)
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.
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Fig. 1. Subdivision of the domai® used in the construction of Lemma[&ff) and repre-
sentation of the constructef (right).

Remark 3. In the smalle, limit the present construction reduces to the one used
for the geometrically linear theory in [8]. Indeed, comparing (A.6) and (3.2) of
[8] with (3.7) above, we see that to leading orderijnthe triplet(a, b, d) used
here coincides witli2e, v, (2¢)Y2w, 2¢,z) in the notation of [8]. Then, the small-

&, limit of (3.28) gives exactly (3.4) and (3.5) of [8]. Further, (3.32) and (3.33)
correspond to (3.12) and (3.13) of [8].

3.1.3. Fold branching. We now show how the oscillation period of the construc-
tion (3.35) can change with In particular, we take (3.35) with some peribdor

s = 0, the same profile with double period at some distanee/, and construct

the deformation in the intermediate region, where the width of the central fold de-
creases to zero. In order to keep the stretching endtgy V) small we use the
third component of the deformation, which is described by the funeti®ince a
change in the slope of order 1 in a distance less¢habuld determine high bend-
ing energy| Vv|?, we can smoothly reduce the width of the inner fold only down to
some finite value (calleg below), and then we must decrease its amplitude instead
of its width (see (3.64)). The decreasing width of the central fold in the first part
of the construction is described by means of a funcgfonR — [0, 1] such that
¢(@)=0fort £0,¢() +¢(1—1) =1, with its first, second and third derivative
bounded, and () = 2 in (0, 1). The bending term will be bounded using the
estimate

S dr ®  dt c
/0 A+LP(D) :/o A+ 13 T A2BY3 (3.37)

where¢ € (0, 1), andx, ¢ > 0.
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Lemma 3. There exists a constant> 0 such that in any rectangl®8 = (0, [) x
(0, h) withl = ¢h, h 2 o, there is a deformatiorl which satisfies

a=b=d=0, a,=40), b,=b0), d; =0 forr=0andr = h,
(3.38)

a=lal Y p="5( ) 4 =b.=d=d,=0 fors=o,
2\ /2 2"\npz) =" :
(3.39)

t ~ft
a:hfz(z), b:hb<z>, ay=by=d=d,=0 fors=1, (3.40)

with energy bounded by

5

h o\1/2 o\1/8
2 2 2 21v2 2
/BQ1+ 02+ R? + £,0%|V2(albld)| < ce? [1—3 tol (Z) toh (Z) }

(3.41)
and with the pointwise bound®1| + | Q2| + |R| < 4,
la| + |d| < cesh,  |Va|+|Vd| S cey,  o|VZa|+0|V?d| < ce,,
(3.42)
b] < cel?h, Vb < cet?, 0|V < el (3.43)

Remark 4. Using (3.16) we can immediately transform the present result (3.41)
into a bound on',p,

Loly, B] < ce? [};3 + l(h)l+ h(h)l/ } (3.44)

The statement of the lemma just presented allows for a simpler extension to the
curvilinear case (see (3.98)).

Proof. We first decompose the domain into the part of lengtivhere the inner
fold smoothly decreases its width frol2 to n, and the one where it disappears
by interpolation, of lengtlm = I — Iy (see Fig. 1). The values of andn will be
chosen below, now we merely assume the ordefiigm < k& < [ which leads to
many simplifications.

Fors € [0, lp] the width of the inner fold is given by

) I N

which smoothly decreases frami2 ton. The construction is done in three separate
pieces, is the regiony — /2| < A(s)/2 occupied by the “small” fold2), is
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the region 0< y < [h — A(s)]/2 occupied by the first half of the “large” fold, and
Q, is the one occupied by the other half (see Fig. 1).
We start the construction from the lower side of the rectangl&;lme set

a(s,t) =[h — A(s)]a ( ) , (3.46)

h — A(s)

~ t
b(s,t) =[h —A(s)]b (h — )»(S)> , (3.47)

d(s, 1) = —A(s)'Th — A(s)1d ( (3.48)

_r
h—Ms))'

Sincea andb are 1-periodicA(0) = k/2 andA’'(0) = A”(0) = 0, the boundary
condition (3.39) is satisfied. It is easily checked that also (3.38) is satisfied for
t = 0. On the upper boundary= (h — 1)/2 we get

a=b=0, d=-3h-nd3),
ap = C,\l/(%), b’[ = E/(%), d,[ = _)L/dA/(%) (349)

Now consider the central regidd,, which corresponds tg — /2| < A/2 (see
Fig. 1). We set

_ ~ft—h/2
a(s,t) = A(s)a ( o) ) , (3.50)
. ~f(t—"h/2
b(s, 1) _A(s)b< o ) (3.51)
d(s, 1) = X(s) [A(s)c? (t —_ h/z) + ;(s)], (3.52)
A(s)

whereg (s) will be chosen later. The boundary condition (3.39)fe+ O is again
automatically satisfied. Sinéeandb are odd and is even, forr = (h — 1)/2 we
obtain again (3.49), provided that

= 0d(3) = [2d(3) +¢] (3.53)

which is satisfied if we choose= —hd(1/2). Fort = (h + )/2 only the sign of
the derivative ot/ changes,

a=b=0, d=3rd(3)+ 90,
ap = &/(%), b,t = l;/ %), d,t = A/cj/(%) (354)
Finally in &) we set
a(s, 1) = [h — A(s)la ( t=h ) , (3.55)
h — \(s)
~( t—h
b(s,t) =[h — A(s)]b (h — A(s)) , (3.56)

/ ~f t—h
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It is a simple check that the boundary conditions (3.39) ffee 0], (3.54) [for

t = (h+2)/2] and (3.38) [for = k] are satisfied. This concludes the construction

in the regions € [0, [p]. To estimate the energy of this test function, we compute
01, 02 andR and use (3.16). We give details of the computation only for the region
Q,, since the other ones need only minor changes. First we observe that

01=(A+a)?+b2—1+8%) =1+a)+ ) - (1+e)?=0, (3.58)

wherea andb are evaluated &= (t —h/2)/1(s). Thes-derivatives have the form
as=MN(s)a—é&a')E). Then, we get

02 =a,(1+a,) +bsb,+1+ed, (3.59)
[(a—S&’)(l—l— N+ (b — 5b)b’+(1+s*)d] 0 (3.60)

(from (3.33)). Finally, from (3.34) we get

2

h
R < ce, (A + A ) cti iy (3.61)
0

which givesWyp < ce2h*/14. Since we assumed < /¢, with a suitable choice
of ¢ we can enforc&® < 1/8 (and use (3.18)).
Now we compute the second gradient. The most dangerous term Ei;zthe

derivative inQ2,, which diverges asi/z/k. However the area is only of siz¢ and
we get, using (3.37),

lo r/2 o g, cle,
< . .62
/ /A/Z ()\(s))2 /o o) As) = n2/3n13 (362)

The other terms inV2a|? + |V2b|2 + |V2d|? are bounded bye,./h2 + ce,/ 12,
and after integration give the lower-order contributieng/ / h + ce.h /1. Hence

) h° l
IZD[w, Qa U QZ, U QZ] § Cé‘f |:l3 +o hl/3—;72/3j| (363)

Itremains to construat in the regiors € [lp, []. This is done by using a smooth
interpolation between the valuessat /g and ands = 1,

V.0 =vlo.n[1-¢ (=) ][+ v@ne (=), (3.64)

wherey (I, t) is given by (3.40). This has small energy because the two values
between which we are interpolating differ significantly only in the smalfxet

[lo, 1] x [(h —n)/2, (h + n)/2], whereas in the larger s&; = [lp, ] x {n/2 <

|t — h/2| £ h/2} they are similar and both have small energy. More precisely, in
Q. we haveVb| < cel/?,|Va| < ce,,d = 0 and henceéQ1| + | Q2| + | R| < ce2.

The second gradient is controlled sz < cel/z(n/m2 +1/n). Thus
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In 24, however,
la(lo.t) —a(l,t)] < cesn, la;(o.t) —a (1, 1)] < 68*% (3.66)

and

b(lo. ) — b(l, 1)| < cer?y, b (o, 1) — b (1, )] < cei/zg (3.67)

sincea(l, -) anda(lp, -) have been defined as different rescalings of the same smooth
functiona (and similarly forb), andd = 0. It follows that

2
01+ 02 < ceur, R < cents (3.68)
m m
which give [, Wap < cgZhn?/m. The bending term is bounded By?y| <
ceX?(1/ h + n/m? + n/mh). Hence
Loly, Qi £ ce2[hn?/m + o®m/h + ahn?/m°]. (3.69)

Collecting the various terms in (3.63), (3.65) and (3.69), and dropping the irrelevant
ones, we get

5 o2l n2h

Loly, B < ce? AR AT, WL L 2l (3.70)
s Sc m o o . .
2D =BT T T, " 7

m3

We finally fixy = o3/4hY4 andm = ¢(nh)Y/? = ¢03/81%8 and obtain (3.41). The
bound on| Q1] + | Q2| + | R| is then obtained by choosirig(which determines:)
large enough with respect to all other constants entering the estimates above.

3.1.4. Global solution in a square and qualitative discussion.  To better illus-

trate the role of the previous results in the global construction, we now show how
they can be used to obtain a test function to a model problem in the unit square, as
outlined at the beginning of Section 3.1. The construction is done in two steps: first
we obtain a deformation field with small energy which obeys the boundary condi-
tion ons = 0 only approximately, i.e., such that (s, t) — (0, ¢, 0)| < cai/zo, and

then modify it at smalk to obtain an exact solution. The resultitigis illustrated

in Fig. 2.

The approximate boundary condition is clearly satisfied by an oscillatory so-
lution of (3.35) with periodh = o. We take this solution in the regione [0, o],
where we shall later interpolate. This function has enefgyer unit area, hence we
cannot use it in a region of area larger tharin the interior part of the sample we
use coarser oscillations, which are obtained through a number of period-doubling
transitions (as constructed in Section 3.1.3)./Let 2/ o be the period at step/;
be the width of the-th period-doubling step, ant, = )", <, Ix be the cumulative
width up to thei-th step. Then, for each in each of the rectangles

. . . 1
Rij = (Li—1, L) x (jhi, (j + Dhy), 0=

— 71
SN Y
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Fig. 2. Construction ofy on a square with boundary conditions on one side.

we definey as in Lemma 3 withi = [; andh = h;. The energy of} is estimated
by

, , 15 o \1/2 o\ /8
Iply, (0, )] < cef Z |:l3 +ol; <hz> + oh; (E) i| (3.72)

We substitute in this expressi@n = 02’ andl; = 02*/, and obtain
_ . _3); .
Lol (0, D)% < ce20 247301 4 oo=3) 4 p-ive (3.73)
i

All geometric series converge provided t@k a < :—23 hence for all suclx we
get the desired bound. The constructedbeys the bounds

1/2
Vi —1d] < cer?, V2 < (3.74)
o
and fors < o also
_ S
v —|t]] < et (3.75)

0

Finally, we smooth) close to the boundary, and define
N - N $
v =0(2)den+[1-9(3)] ') (3.76)

whereg is a smoothed step function, as defined before (3.37)s Eob, ¥ = .
Fors = 0, ¢ agrees with the identity map, ¢, 0) up to the first derivative, hence
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the boundary condition is satisfied. In the regiort o, the bounds (3.74) hold
also fory. SinceWop(ld 4+ G) < ¢(s2 + |G|?), we obtain the desired estimate

Lply, (0, 1)?] < ce20 = ce2?h. (3.77)

This concludes the construction in the case of a square with boundary conditions
only on one side.

The simple geometry of this example enables us to discuss the qualitative aspects
of the construction. First, we observe that the (11) component of the compressive
stress is simply relaxed by the tilting of the horizontal plane to the plane described
by 0. Therefore the problem is essentially equivalent to a uniaxial compression
in the (22) direction, which cannot be relaxed by large-scale deformations, due to
the boundary conditions. This is the reason for the appearance of the oscillations.
Interesting analogies can be drawn with the phenomenon of twin-branching near
an austenite—martensite interface studied in [21,22,11]. In our problem, oscillation
branching arises because the boundary condition enforces short-scale oscillations
at smalls, whereas the bending term favors large-scale oscillations in the bulk. At
variance with the martensitic problem, there is no preferred slope in this problem,
and only a constraint in the total length. This explains why we have smooth oscil-
lations here, whereas there are flat regions separated by thin interfaces in the case
of martensitic twins. It is also interesting to observe the similarity of the straight-
twin constructions used in the study of martensites before the branching analysis
of Konn & MULLER [21,22] and the straight-fold construction used@®wriz &

Giroia [32] for the present problem.

3.2. Domains with curved boundary

In this section we show how the preceding construction can be adapted to
generic smooth domains. The mapping from the straight boundary of Section 3.1
to a curved one is done by using as coordinates arc length and distance to the
boundary, see Section 3.2.1. Then, in Section 3.2.2 we show how to construct a
low-energy test functiorr in a curvilinear triangle which, via triangulation of the
original domain, suffices to prove Theorem 2. In the following we denote &y
generic constant that depends only on the domain.

3.2.1. Neighborhood of acurved boundary. Consider aC* curvea : (0, L) —

RR? (which later will be part of the boundary of the domain where we perform the
construction), parametrized by arc length. ket (a5, —7) be a unit normal of

«a (later the inward normal to the boundary®j. Thenn’ = —ka’, wherex is the
curvature ofx, and

D (s,1) = (x1,x2) = a(t) +sn(t) (3.78)
defines a diffeomorphism of a rectang® H) x (0, L) to a (one-sided) tubular

neighborhood of the curwe, providedH is sufficiently small (in the following, we
always assume thaf|«| < 3).
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To extend our construction from rectangles to curved domains we adapt our
ansatz (3.3) as follows. We set

¥ (x1, x2) = Yo(x1, x2) + Y1(x1, x2) (3.79)
where the plane (3.4) is replaced by
~ x:l-
Yo(x1, x2) = x2 (3.80)
s dist(x, )

and distx, @) = s is the distance to the curve describeddoyrhe normal tajo,
expressed ifts, ) coordinates, is

1
'L'([) W(—én(i) + e3). (381)

T+

The generalization of the oscillatory part (3.7) is then

Yi(s, 1) = (L —sk(@) [als, e’ (@) + b(s, HT@)] + (1 — sk ()3d(s, e (1) A T
(3.82)

Here and below, we denote Igy(x1, x») a deformation field expressed in Cartesian
coordinates, and by = 4 o® the same deformation field expressed as a function of
the boundary-adapted coordinatesr). For example, the fielgr1 (x1, x2) entering
(3.79) is obtained frong (s, 1) definedin (3.82) by/1 = y¥10®~1, and analogously

Yoo ® = Yols, 1) = a(t) + sn(t) + dses. (3.83)

To proceed, we first express the strain energy in the new coordinates. Then we
bound it in terms ofz, b andd (and their derivatives) alone. More precisely we
establish a bond solely in the quantiti@s, 0> andR introduced in (3.13)—(3.15).

This will allow us to apply the estimates derived for the rectangle to a generic
domain without changes. The corresponding estimate for the second derivatives is
straightforward.

Lemma 4. Letyr be of the form(3.79)3.82) wherea, b andd satisfy

la| + |d] < cenq.  |Val+|Vd| S cee, b S cer?q. VD] £ cer'?

(3.84)
for someg > 0. Then, at any pointx, x2) = ®(s, 1),

Vi

Wap(Va¥h) = Wap (w T=sc)

)sc(0d+ 03+ R 4e2?) (3o9)
whereQ1, Q2 and R have been defined {{8.13)3.15) and

V2D 2 < e[en + g%, + V2 @, b, d) 2] (3.86)
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Proof. To prove the first equality, we compute the gradient of the diffeomorphism
(Dl

d(x1, x2)

=V¢ = 1-— '®d .87
3G.1) p=n®®n+ 1L—sx)a' Qa', (3.87)

and observe tha¥,p is invariant under rotations. Hence the change fkeme>)
components tqn, a’) components leave®,p unchanged, and only the factor
(1 — s«x) needs to be taken explicitly into account.

To prove the upper bound in (3.85), we first compute

Vos =n(t) +8es = (L+e)d AT (3.88)
and
Vo, =a'(t) +sn'(t) = (1 —sk)a’. (3.89)

In computing the derivatives of the oscillatory pgitwe can avoid explicit consid-
eration of all terms bounded layg, i.e., all terms where eitheror d is not differen-
tiated. Terms wherkis not differentiated can be ignored only ifthere is an additional

factor ofsi/z, which is the case, e.g., for the terms whére = —6n’/(1 + &4)
enters as a factor. The result is

‘(ﬁ‘s:(l—SK)|:aXOl/+<bs— K b)-c:|
' ' ’ 1— sk
+ [(1 +e)+(1—- SK)Zd’S:I o' AT+ O(84q) (3.90)

and

V.1
1-—

/

oK b) T+ A= si)d,a AT+ Oenq),
— SK
(3.91)

= (1+ a,,)Ol/ + (b,l —
K 1

whereO (e.q) represents terms which can be bounded in absolute value.y
Then, we compute, analogously to (3.10)—(3.12),

W52 = At e0? = Q=502 (a2 + 53 ) + (1 = si)*a?
+2(1+ &) (L — 56)%ds + O(e4q), (3.92)

1/1": ;/,K" = (L= 5)Q2+ (L= s1)%dsd; + O(exq), (3.93)
2

The two terms containingr have become also of ordeyg since they are squared or
multiplied by derivatives ob in computing the scalar products. All factors 4« are
uniformly bounded since we assumgd| < % This concludes the proof of (3.85).

To prove (3.86) we observe thatdiffers from the identityig (x1, x2) = (x1, x2, 0)
only by quantities which are bounded b, b, d)| + § < cai/z. Since we are
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considering second derivatives, we can replacgith y» — v/ig. From the previous
definitions we have

U — Vg = (8se3 + Y1) o d L. (3.95)

In computing the second gradient of (3.95), we differentiate bpbrandd (which
enteryr;) and thex-dependent quantities(r), o’ (¢), « (), etc.]. The latter have
at least two bounded derivatives. The only term which does not contain any of the
three functions§ses, is proportional taS. Hence
- 2
V2D < ¢ (84 1@ by )|+ Vss(a, b, D) + V2 @, b)), (3.96)

and the thesis follows.

We observe that, since the Jacobian d« of the transformatio® is bounded, the
same estimates hold for the integrated quantities.

We now show how the estimates we had obtained for the half-plane problem
are extended to the case of curved boundaries. First, fix a peréodi consider
the periodic solution of (3.35) in some rectangle= (0, /) x (0, #). ThenQ1 =
02 = R =0, (3.84) is satisfied witg = h, and|V2(a|b|d)| < cer/?/h. Hence
from the two previous Lemmas we get

2
Lo, ®(A)] < ce2hl <h2 + Z—2> (3.97)

Remark 5. Comparing (3.97) with the analogous estimate (3.36) holding for the
case of a straight boundary, we notice that the first term proportior&l imnew

(and it is simple to check, from the proof of Lemma 4, that its coefficient vanishes
whenk, «’ tend to zero). While in the case of a straight boundary the energy bound is
decreasing with increasirig(and the only reason for using smalis the boundary
condition), (3.97) shows that, for a curved boundary, the optinigbf orders /2.

This implies that, for curved boundaries, period-doubling of the folding pattern will
stop when the period has reached a value of asdét, which gives the optimal
energy per unit area, of ordefo .

We now extend to curved boundaries the result of Lemma 3 on the period-
doubling box. From (3.42) and (3.43) we see that we can gake i, and from
(3.41) and the two previous Lemmas we obtain

- hd o3 o\1/8
< 2|0 Y32 < 3 2
Lol ®(B)] < ce? [13 +ol (h) +oh (h) +i¥l 4o hli|. (3.98)
This is the direct extension of (3.44) to the curvilinear case. The last two terms in
(3.98) are however new, and they have the same origin and role as the new term in
(3.97).
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3.2.2. Construction in piecewise smooth domains, viatriangulation. We now

put together the various pieces of analysis presented above, following a strategy
similar to the one illustrated in Section 3.1.4, to obtain a construction on curvilinear
triangles. We start by showing how to handle a region close to one of the edges.

Lemmabs. LetQ ¢ R2ande C 92 be such that = ®~1(Q) has the form
{(s,0): 1 €[0,L],0=5 = f(1)} (3.99)
where f is uniformly Lipschitz, and

sup slk(n)] < 3 (3.100)
(s,t)eU

wherex is the curvature of. Then, there is a constantsuch that for anyd,, /)
there isy : @ — R3 such that

Iply, Q] < ce2o, (3.101)
with
~ xl
T(x) — X2 < ceX?s onag, (3.102)
s dist(x, o)

and with| VY — Ida| < ce¥/?, o|V2| < ce/?in Q.

Proof. We construciy onU, and then obtain the estimate for= v o =1 using

the two preceding lemmas. We divide the dom@iimto stripst € [iy, (i + 1)y]
wherey is the maximum oscillation period which, as discussed after (3.97), will
be of orders1/2. The precise value of will be given below. On the lines= iy

we impose as boundary conditions

a=b=d=0, a,=4a0), b, =0(0), d,=0 (3.103)

as in Lemma 3. On the vertical boundaries we impose
At ~ft
a=ha (Z) , b=hb (Z) , as=by=d=d;=0, (3.104)

where# is the local period. In each strip, fer= 0 the functions: andb oscillate
with periodo. Then, there is a sequence of period-doubling steps, up to period
y, and finally the period decreases again dowa tehile approaching = f(z).
The construction is hence done composing branching pieces, similar to those con-
structed in Lemma 3, and flat pieces, where the oscillations do not depar{demn
Fig. 3).

More specifically, we take the same sequences of wiltass 2% and heights
h; = o2 for the branching boxes as in Section 3.1.4. Since we want to stop at
h; of ordero/2, we fix a maximum number of branching stej§sas the integer
part of the solution of 2 = o =12, and definey = hy = o2". The construction
is done iteratively, starting from = 1 up toi = N (possibly stopping earlier
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for small domains, see below). At stepthe strip is divided into 2~ intervals
Tij = (jhi, G+ Dh),j=0,..., 2N—i _ 1, and eaclj is considered separately.
The appropriate width for a branching construction which reaches pkriodhe
j-th substrip is

Sij = tlenrf,-j f@). (3.105)

Sij 2 2L;, (3.106)

whereL; =), <, Iy is the cumulative width of all boxes up to th¢h one, we can
use the construction of Lemma 3 in the box

Bjj = (Li-1, L) x Tjj. (3.107)

This gives the increase in period at smallvhile the symmetric one (with — —s)
in the box

Bij = (Sij — Li, Sij — Li—1) x Ty}, (3.108)

gives the decrease in period at lasg&Ve observe thas;; is defined as the largest
value ofs for which B,-j can be placed insid€ without overlapping withB boxes
atsmallet, and that the condition (3.106) ensures thaBadihd B boxes used so far
are disjoint. Itis also clear that the next step (ile= i + 1) will influence only the
regionL; = s < S;j —L;,t € T;j, which is nonempty only if (3.106) is satisfied. In
the regions which have not yet been defined, and which will not be touched by the
next step, we take the periodic solution (3.104) with pefied h; /2. This means
that we take the periodic solution both in the point S;; — L;_1,t € T;; where
¥ has never been defined before, and inthe eitirg < s < §;; —L;_1, f € T},
region if (3.106) was not satisfied. This concludes stefthe construction, which
is then iterated up tb= N.

If, after reaching = N, there is still a central region whege has not been
defined (i.e.Snyo = 2L y), we use the periodic solution (3.104) with perjoe:= hy .

This completes the construction in the entire doniairfo check smoothness, we
observe that only boundaries parallel to the coordinate axis have been introduced;
all horizontal ones satisfy (3.103), all vertical ones satisfy (3.104), with périod

at stepi. The construction is displayed in Fig. 3.

We now estimate the energy of the construafedit stepi, we have ¥ —i+1
branching boxes, each with energy bounded by (3.98). The additional periodic
pieces have width bounded bytimes the Lipschitz constant gf, and the energy
is there bounded by (3.97). The central region with petigchas possibly area of
order 1. The total energy is then controlled by

) N T s o\ 32 o\ 1/8
Ioply, Q1 < ce2 ) [l—é +1; <h—) +o (/7) + h2L;
i=1 i 1 1

2 2
+hiLip f (h,? + %)] + ce2sup| f] (hfv + Z—Z) (3.109)

i N
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Fig. 3. Construction in Lemma 5.

(the last term in the series corresponds to the small periodic pieces, the term outside
the series corresponds to the central region). By takirgo 2%, asin Section 3.1.4,
andhy = o%/2 we get

~ N . 3); . . .
Ipl¥, Q] < ce20 Z [2<4—3“>‘ + 2(“*?)’ + 2718 4 52pCHi 2—’}
=1

i
+ c£20, (3.110)

where the dependence ghhas been included in the constantAll geometric
series except the fourth one converge provided gn'stt a < % The fourth one
gives, after summatiom;222+ON < 52-(2+0)/2 < 51/4 hence we get (3.101).

The bounds orVy and |[V2y| follow directly from (3.42) and (3.43). Also
(3.102) follows from the same equations and from the fact that all the rectangles
which touch the boundary have= o. This concludes the proof.

We turn now to curvilinear triangles, which can be handled by applying Lemma 5
three times, and by smoothly matching the three resulting constructions.

Lemma 6. Let2 be a bounded domain such that its boundary is the union of three
C* curves which join at angles less tharf2, and whose radius of curvature is
always larger than twice the diameter Qf Then, there is a constang such that,

for sufficiently smalk, ando, there isy : € — R3 such that

IplY, Q] £ ceo, (3.111)

with ¥ (x1, x2) = (x1, x2, 0), Vi (x1, x2) = V(x1, x2, 0) on 3. Further, s obeys
the bound

V| +0|V2)| < eyl (3.112)
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Proof. The construction is based on using Lemma 5 around each of the three sides.
A smooth matching between the different pieces is obtained by using a smoothed
distance function as skeleton of the construction. More specificaliyblet smooth
mollifier with support in the ball of radiué, and lety, (x) = 0 ~2n(x /o). Define

Wa(x) = dist(x, 9Q)¢ (M - 1) , (3.113)

and
wg = Ns * Wy, (3.114)

whereg : R — [0, 1] is a smooth function witl (1) = 0 forz < 0, ¢ (1) = 1 for

¢t > 1. ltis easy to verify thatVwy| < ¢, |VZwy| < ¢/o, lwg —dist(x, Q)| < co,
andwy; = Vwy = 0 0ndQ. Henceyy(x) = (x1, x2, dwy) has bounded energy
density, and fulfills the prescribed boundary conditions.

We now use Lemma 5 to reduce the energy in the three pafiswifiere the
distance function is smooth. Let, i = 1, 2, 3, be the three smooth curves which
form 82, and letw; be the set of points & which are closer tg; than to the other
two. Each sety; obeys the hypothesis of Lemma 5, with= y;, hence there is
: (x) with energy of ordee2s which differs fromy; at most bycsX % on dw;.
The boundary of; is in turn composed by three smooth parts, which We;q(ﬁfl,
one of which coincides withy;. We use the function

3 f (k)
¢ix) =[] (d'St(x’ i )>, (3.115)
k=1

o
to interpolate betweett; andv,. More precisely, we set

U (x) = Ui (OB (x) + Y (x) [1 — ¢ (x)] (3.116)

forall x € w;. Itis clear that) # v; only in a region of measures, where it has
energy density bounded ley?, as in (3.76), which implies that still has energy
bounded byeos2. Further,is agrees withy; up to the first gradient alongew;,
hence it satisfies the given boundary conditions and joins smoothly along internal
boundaries. This concludes the proof.

Finally, we generalize this construction to generic piecewi$elomains.

Proof of Theorem 2. Any piecewiseC* domain can be divided into finitely many
curvilinear triangles satisfying the hypothesis of Lemma 6. The result follows by
applying Lemma 6 to each of those triangles, and observing that the imposed
boundary conditions guarantee smooth matching at all interfaces.
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4. Three-dimensional elasticity

In this section we extend the previous results to the full three-dimensional
elasticity theory, i.e., to the function@p defined in (1.1). The elastic potential
Wap(F) : M3*3 — R is nonnegative, vanishes ¢h + ¢,)S0(3), and obeys the
bounds

c1disP(F, (1 + £,)S0(3)) < Wap(F) < codist(F, (1 +£,)S0(3)), (4.1)

wherec; andc, are numerical constants. Since in all our constructiong HjstL +
£x)50(3)) is bounded by a constant times, the upper bound in (4.1) is needed
only in a neighborhood a$ O (3).

4.1. Lower bound

Theorem 3 (Lower bound, 3[). LetQ ¢ R? be a bounded Lipschitz domain. Then,
there are constantsg, cg, such that for sufficiently small ande¢, > 0 and any
¢ : Q x (0, h) — R3 such that

16(x) — x| < min (%ha}/z, cbs*) for x € (3Q) x (0, h) (4.2)

the lower bound on the energy is given by

1 .
- / Wap(V)dx 2 cqmin (e/2h, £2) 4.3)
h Jaxo.n

For simplicity of exposition we first consider the casespffinite, where we just
have to show that for ar§ ande, there is a constant, ., such that (4.3) holds for
anyh. Here, we further assume that the boundarg2afontains a straight part and
that W(F) = ¢|F|? for large| F|. As in the two-dimensional case, we need only
consider cubes of siz®, /)3, with one face on the boundary ©f The argument

for one cube is based on the well-known fact that a gradient vector field which
is a rotation almost everywhere is a constant rotation (in a connected set). More
precisely,

Lemma?. Let f; be equibounded iwl7(Q, R"), with © an open, bounded,
Lipschitz subset dk”, and satisfy

/ dist(V fj, SO(n)) — O. (4.4)
Q
Then, there is one matriR € SO (n) such that, for a subsequence,

/Q|ij—R|"—>0. (4.5)
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Proof. We follow closely the proof of Theorem 2.4 of [31] (see also [20]). Since
f; is equibounded inv1" there is a subsequence weakly converging to W1,
The polyconvex function

g(F) = |F|" — n"/?detF (4.6)

is nonnegative and vanishes only on matrices which are scalar multiples of matrices
in SO (n) (by isotropy it is enough to consider diagonal matrices, the result follows
from the arithmetic-geometric mean inequality). Sina® f;) — 0 in LY, by

weak lower semicontinuitg(V ) = 0 a.e. Sincg detV f; is continuous, we get

IV fil = |V flin L", hence convergence is strong, ahdl € SO (n) a.e. Now we

show thatV f € SO(n) a.e. implies tha¥ f is constant. For any gradient field,
divcof Vf = 0. ButcofVf = Vf,hencediW f = Af =0, i.e., f is harmonic

and smooth. Moreover,

AIVFIZ = (foj fi )i = 2fkiij fe.j + 2fij feij- 4.7

But the left-hand side is zero becausef |2 = n, and the first term in the right-
hand side is zero becaugés harmonic. It follows that the last term|\22 £ |2, also
vanishes, hencg is affine.

With this result, we can now prove the following

Lemmas8. Let 0, = (0, h)3, &, > 0, and assume that’ (F) = c|F|° for large
|F|. Then, there is a positive constant such that ifp : 0, — R® obeysp; = 0,
¢2 = x2 0n{0} x (0, h)?, then

Wap (V) = ce, h>. (4.8)
On

Proof. The statement is invariant under rescalinghinHence we také: = 1,
and proceed by contradiction. If the thesis is false, there is a seqgeénehich
obeys the boundary conditions such thap(V¢/) — 0in L1(Q1). Then,¢/ is
equibounded iW 3, and distVe/, (1+ ,)O0(3)) — 0. By Lemma 7 there is a
subsequence such that

V¢! — (1+e)R in L3(01), (4.9)

with R € SO(3) afixed rotation. By the trace theorem the boundary condition holds
also for the limit. This impliesR12 = R13 = Ro3 = 0, andRy2 = 1/(1 + &,).

But this is a contradiction, since the only triangular matrixif (3) is the identity
(modulo sign changes of the diagonal elements).

From the previous lemma it follows immediately thatdi2 has a straight part
y C 0%, then for small enough any¢ which obeys the boundary condition (4.2)
has

1

Z/ Wap(V)d3x 2 ce. |y lh, (4.10)
Qx(0,h)



28 HAFEDH BEN BELGACEM et al.

where the constant, depends only og. This concludes the proofin the simplified
case.

In order to include the dependence an we use the quantitative version of
Lemma 7 proved in [13,14]. We state here their result in the case of Lipschitz
domains of the special form we need.

Proposition 1 ([13,14). Let f : R*~1 — R be a Lipschitz function with Lipschitz
constantZ, and let

Upp = {(xl,x) eR": f(X) <x1< f(X)+h, ¥eO, h)"—l}. (4.11)

Then, there is a constant,, depending only on the Lipschitz const@nof f and
on the dimensionality, such that for any: : Uy, — R”,

inf / IVu — Q12 <cL dist(Vu, SOn)). (4.12)
gesom Juyy, Ui

In order to keep the dependence gnexplicit, we shall need to partitioty,,
which has dimensions x o x h, into subsets which have characteristic size of
orderh in all directions, and then apply the Proposition above to each of them.
Given a real functionf with Lipschitz constant., we consider domains of the
form @/[(0, o)?] x (O, h), where

Qr(z) = (z1+ f(22), 22). (4.13)

Lemma. Lete : ®[(0, 0)?] x (0, h) — RR3 obey the boundary condition
6(x) — x| < 2hey'? for x € ®[{0} x (0, 0)] x (O, h). (4.14)

Then

/ Wit (V) = cpo?el?, (4.15)
®[(0,06)2]x(0,h)

wherec; depends only on the Lipschitz constandf f.

Proof. As in the two-dimensional case, the statement is invariant under the rescal-
ing ¢(x) = o¢(ox), hence we need only consider the case- 1. We argue by
contradiction, and assume that there are sequences and f; such that

_5/2 .
&% / 1. Wsb(Vé)) = O, (4.16)
®;[0.121x(0.¢/%)

j
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xxxxxxxxx
xxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

Fig.4. Domain used inthe proof of Lemma 9. The crosses mark the points in the transformed
grid @7 (G;). The two hatched areas represent two neighboring dondaim&dC,., (with

(rr) e G}\‘N), which overlap over half of their area.

x| < 1/2

with |¢; — /4 on the left boundary. Far € (0, 3/4), letC, = ®; |:a +

(0 e 2) ] By the quantitative Reshetnyak estimate of Proposition 1 applied to

1/2

the domainC, x (O, &', for everya there is a rotatior@,,, ; € SO(3) such that

| o)1V = )0 P S o | wibve. @1
Cax(0.¢; ax(0,6;"%)

Let G, be a square grid with spaciryjl/2 in (0, )2 andGNN be the set of all
nearest—neighbor pairs i#; x G;, respectivelyG; = (0, 2)2 1 l/ZZZ and
GNN ={(rr) e G2 Ir—r'| =3 ¢¥2). Then, since ifir, ') € GNN the two

domamsC and C,/ overlap in half of their area (see Fig. 4) and each point is
covered by at most 4 of them, we get

1 5/2
; Z 1O, — O ]|2<C‘9] / /

! (rryeN

.
WL (Vi) — 0.
i10.2]x (0.6 S

(4.18)

By the discrete Sobolev embedding (see Lemma 10 below for details) there is a
unique matrixQ; such that

1
—Z|Qr, ojfsc| = >0 10 —0n;| —0 (419

reG, ] (r,r’)EG}\‘N

SinceQ, ; € SO(3) for all r, we can further assum&; < SO (3). Now define
¥ @;[(0, %)2] — R3asthe average @f; overxs,

1/2
Vj(x1, x2) = 1/2 / ¢;(x1, x2, x3)dx3. (4.20)
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Then, by (4.17) in each doma®), we have

o VO = At ) Qa i
u><(0,sj )

1/2
s// |vw,—<1+e,-)Qa,,,PT|2§/
Cy C,

A

¢ f 2 Wab(V9)). (4.21)
Cax(O,sj )
where P = ef) ® ef) + eg2> ® ef) is the canonical immersion @3 into R2.
We proceed as in Lemma 1, and defi;nj’e= PQJ.ij as the projection of/; on
the plane which better approximates the surface describgd ligelf. Then, since
Vi is close to(1 + &) Qa,j, VY| = PQ}vaj is close to(1 + £)SO(2). More

precisely, foralr € G; and allx € C, x (0, s/.l/z), we get

dist(Vy], (1+¢)S0(2) < |V — (L+6)PQ] Q. PT| (4.22)
+ (14 ¢))distPQ] Q. ;P",50(2)
SIVY; — L+6) 0 PTI+ (L +6pI10Q) — 0, 1%,

where the last term has been estimated using Lemma 11. Now we square (4.22),
integrate ovek € C, x (0, ejl/z) and sumover € G;. Using (4.16), (4.19), (4.21),

we see that

iz disB(Vy!, (1+¢)S0(2) — 0 (4.23)
&7 Jo;[0,1?]

ase; — 0. This is exactly equivalent to (2.14). It is also clear from (4.14) that
obeys the same boundary conditions as in the two-dimensional case. The proof is
then concluded as in Lemma 1.

We are now ready to prove the global lower bound.

Proof of Theorem 3. The proof is almost identical to that of Theorem 1. The only
difference is in the case > ooei/z. Then, (2.21) should be replaced by

hjoos®) |,
L.z Y 15y e, Ql 2 L1900, (4.24)
i=1

whereg® represents the restriction ¢fto thei-th slice of thicknessoel/%. The
boundary condition (4.2) gives then (4.14) on each slice, provided that we choose
cq < oo/4.

We finally present a short proof of the discrete Sobolev embedding used to
obtain (4.19).
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Lemma 10. LetAy = [1, N]NZ denote the positive integers from 1o For any
fr i Ay x Ay — R" thereisf € R” such that

D= Fr SN D 1A= (4.25)
rEAIZ\’ r,r’eAIZV

|r—r'|=1
wherec depends only on.

This Lemma can be obtained as a direct consequence of the usual embedding
of W2 into L?, using multilinear finite elements. For variety we include a self-
contained discrete proof.

Proof. We first prove the one-dimensional version of (4.25),

2

N _ N-1
Dol EN® (Z |fi — ﬁ+1|2> : (4.26)
i=1 i=1

For anyi andk, | f; — fi| < Z]N:‘ll | fi — fj+1l. Since the bound does not depend

onk, the same holds fdrf; — f|, wheref is the average. We get therefore
N1 1/2

N—
= Z — [+l SN Y = fe0? | (4.27)
j=1

j=1

Taking the fourth power and summing ovegives (4.26).
_ To prove (4.25) we need some notation. lfgtbe the average of; ; over j,
fj/ the average over, and f the average over bothandj. Then,

\fij— FI2<elfij— fil?+clfi — fI?
SeNY Nfij— fijnlP+eN Y Ifi — fial? (4.28)
J i

where we have used (4.27) twice. The last term is bounded by

2
_ - 1
NY Ifi— finlP=N)_ v Do fij— fivng] S firnF=a
i i j i,j
(4.29)

The first term in the right-hand side of (4.28) depends only,@nd its sum over
i is alsoN A. An analogous estimate can be obtained using averages paad
it results in a bound which depends only prMultiplying the two, and summing
overi andj, we prove the thesis.
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4.2. Upper bound

In this section we prove the upper bound in the case of three-dimensional
elasticity. The proof is based on the previous two-dimensional result, which is
extended to 3D with the usuabppl-von Karman ansatz, as was done, e.g., in
Appendix B of [8] for the (in-plane) geometrically linear case.

Theorem 4 (Upper bound, 3 Let 2 ¢ R? be a bounded piecewigg* domain.
Then, there is a constang, such that, for any, € (0, 1) and sufficiently smalt,
there isg : Q x (0, h) — R3 such thaip (x) = x on (3€2) x (0, k) and

1
= / Wap(Vo)d®x < cqed?h. (4.30)
h Jaxo,n)

Proof. Lety : @ c R? — R3 be the two-dimensional deformation defined in
Theorem 2, and let be the normal to the surface generated/byVe constructy
with the usual Bppl-von Karman ansatz,

@ (x1, x2, x3) = Y (x1, X2) + 23V (x1, X2), (4.31)

wherezz = (1 + &,)(x3 — h/2) is the distance to the mid-plane in the reference
configuration, rescaled to its equilibrium value. Then,

V¢ = (0191029 |(1 + €x)v) + 23(1v[d2v]0), (4.32)
where(a|8|y) denotes the matrix whose columns ateg8 andy . Moreover,

Vo Vo — 1+ e)ldg = VY Vi — (1 + e)ldz + z3(Vy ! Vv
+WIvy) + vl v, (4.33)

where 2x 2 matrices are extended to33 by including zeroes. We note theiy "
is close to a projection to the plane tangent to the grapl,dience it does not
change the norm d¥v by more than a factor. More precisely, from

IV TV < VYTVl (4.34)
we deduce
2 2
Vo Ve — (1+ 8*)Id3’ < 2‘V¢Tv1// — (14 e0)ld2
+ 423V 12| Vu? + 225/ Vvt (4.35)
which gives
Wap(Ve) < cWap(VY) + cz3|Vu|? + cz3| V|4, (4.36)

The last term can be absorbed in the last but one term, &pce& aei/z and in

our constructiorr | Vv| is bounded.
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Appendix A. Distance of projected gradientsfrom SO (n)

For the convenience of the reader we now include a proof of two estimates
which have been used to establish the lower bounds. More precisely, Lemma 12
has been used in the two-dimensional lower bound to obtain (2.13), and Lemma 11
has been used in the three-dimensional lower bound to obtain (4.22). We start with
numbers)\EF)},':L._ .« denote the singular values of the n matrix F, i.e.,()\EF))z
are the eigenvalues @’ F. Everyn x n matrix can be written ag = QIAQ’,
whereQ, Q' € SO(), A = diagh\”, ... 1), andI = Id, if detF > 0,

I = diag—1,1,...,1) otherwise. The distance of a matrix from a setK is
defined by

dis?(F, K) = inf |F —G|?, (A.1)
GekK
where| - | denotes the matrix normf |2 = Tr FTF = Y F2.

. . J
The distance of a matrix from the sét(n) of the orthogonal ones can be
represented in terms of its singular values,

2

dis? (F, O(m)) = (AEF) - 1) . (A.2)

By rotational invariance it is enough to prove (A.2) for diagonal matriees-
diag(k(lF), . ,AﬁlF)). Then, for anyQ € O (n), we have

IF— Q0P =|F?+10P”-2) »" 0. (A3)

The first two terms do not depend on the choice@fthe last one is clearly
minimized by Q = Id,. This concludes the proof of (A.2). The same argument
shows that

dist(F, O(n)) = dist(F, SO (n)) for all F such that def > 0. (A.4)
Further, we claim that
dist(F, SO(n)) 2 1 for all F such that der < 0. (A.5)

If det F = O at least one of the singular values vanishes, hence (A.2) is at least 1.
If det F < O, takeQ € SO (n) and consider the matricds, = uF + (1 — n) Q.
Clearly |F, — Q| = n|F — Q|. By continuity there isu* € (0, 1) such that
detF,» = 0. Butthen/F — Q| = |F,» — Q|/n* 2 1. This concludes the proof of
(A.5).

Finally, from the definition of the singular values it is immediately seen that

\FTF —1d,)? = Z ((xf”)z - 1) (A.6)

i=1
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which implies

dist(F, SO (n)) < dist(F, O(n)) < ‘FTF —1d,

< (14 |F|)dist(F, O(n)).
(A7)

We are now ready to state our first result, which regards the distanceSfni2)
of the projection of matrices close §0(3). Since the proof does not depend on
the dimensionality, we state it for general

Lemmall. LetR € SO(n), andP = Z;’;ll ef”fl) ® ef’”. Then,
2
dist(PRPT, SO(n — 1)) < ‘(R —1d)PT| <R =1d,2. (A8)

Proof. First observe that

dist PRPT, SO — 1)) < |PRPT —1d,_1] < |(R — Id,) PT| (A.9)
sinceP is a projection operator anélld,, P” = Id,,_1. This concludes the proof of
the Lemma if the right-hand side is larger than 1. Otherwise, (A.9) and (A.5) imply
that detPRPT > 0. Then, by (A.4) we get

dist(PRPT, SO — 1)) - dist(PRPT, O — 1))

T
< ‘(PRPT) (PRPT) —1d,_1|. (A.20)
ButPTP =1d, — e ® ¢, andRT R = Id,. Hence
T
(PRPT> (PRPT> = PId, PT — (PRTe™) ® (PRT¢™) (A.11)
which gives
H T T 2 T 2
dlst(PRP ,SO(n—l)) < ‘PR M| = ‘P(R —1d,)e™
2
< ‘(R _ Idn)PT‘ (A.12)

sincePld,e™ = 0.

We now consider the projection of thex32 matrix V¢ which arises in the
two-dimensional problem. GiveR € M3*2, the normal to the plane generated by
Fis

F1 A Fo

- 12 (A.13)
|F1L A Fo

VF

whereF; = Fel(z). If the denominator vanishes, i.&3 and F» are linearly depen-
dent, we can take ag- any unit vector orthogonal to both. Then, the following
estimate holds:
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Lemma 12. There is a constant such that, for any" € M3*2, one has
2
dist(PF, SO(2)) < ¢ [dist(F, 0(2,3)) + ‘vF - e§3)( ] , (A.14)

whereP = (2) ® e(3> + e(z) ® e(3)

Proof. SincedistPF, SO(2)) £ 2+|PF| < 4+dist(F, O(2, 3)), we only need
to consider the case digt, 0(2, 3)) + |vr — eé3)|2 < 1. This implies

detP F = det(F1|Fale3) = FL A F2-e3 = |FL A F2| vp - e3 = 3|FL A Fal,
(A.15)

where in the Iast step we useg - e3 = 1 — 3|vp — e3|?> > 3. SincePTP =

Id3 (3) ® e3 , in analogy to (A.10)—(A.12) and using (A.4) we get
dist(PF, SO(2)) = dist(PF, 0(2)) < ‘FTPTPF - |d2‘
< ‘FTF — |d2‘ + )FTegf)]Z. (A.16)
But |FTe§3)| < |F||lvr — e§3)| < 3lvg — e§3)|, and the proof is concluded.
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