
Arch. Rational Mech. Anal. 164 (2002) 1–37
Digital Object Identifier (DOI) 10.1007/s002050200206

Energy Scaling of Compressed Elastic Films –
Three-Dimensional Elasticity

and Reduced Theories

Hafedh Ben Belgacem, Sergio Conti,
Antonio DeSimone & Stefan Müller

Communicated by the Editors

Abstract

We derive an optimal scaling law for the energy of thin elastic films under
isotropic compression, starting from three-dimensional nonlinear elasticity. As a
consequence we show that any deformation with optimal energy scaling must ex-
hibit fine-scale oscillations along the boundary, which coarsen in the interior. This
agrees with experimental observations of folds which refine as they approach the
boundary.

We show that both for three-dimensional elasticity and for the geometrically
nonlinear F¨oppl-von Kármán plate theory the energy of a compressed film scales
quadratically in the film thickness. This is intermediate between the linear scaling
of membrane theories which describe film stretching, and the cubic scaling of
bending theories which describe unstretched plates, and indicates that the regime
we are probing is characterized by the interplay of stretching and bending energies.

Blistering of compressed thin films has previously been analyzed using the
Föppl-von Kármán theory of plates linearized in the in-plane displacements, or
with the scalar eikonal functional where in-plane displacements are completely
neglected. The predictions of the linearized plate theory agree with our result, but
the scalar approximation yields a different scaling.

1. Introduction

Blistering phenomena in compressed thin elastic films have recently attracted
widespread interest in the mechanics [32,16,5], physics [29,23,1,35,34,4,9] and
mathematics [3,7,17,12] literature. Most studies so far have concentrated on the
linearized F¨oppl-von Kármán (FvK) model [24,10], in which the in-plane com-
ponents of the displacement field are treated only to leading order. Here we study
this problem starting from the full nonlinear three-dimensional theory of elasticity,
and show that the energy per unit volume scales linearly in the film thicknessh. In
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terms of the total energy referred to in the abstract, this corresponds to a quadratic
scaling inh. In the following we always consider energies per unit volume.

The derivation of dimensionally reduced theories for thin elastic films has
been studied by Euler, J. Bernoulli, Cauchy, Kirchhoff, Love, E. and F. Cosserat,
Föppl, von Kármán and a great many modern authors (see [30,10] and references
therein). The only theories which have been derived rigorously from nonlinear
three-dimensional elasticity by means of� convergence are membrane theory [25–
27] and more recently bending theory ([13,14], see also [33] for a derivation under
more stringent assumptions); and the FvK plate theory in a different regime, char-
acterized by an energy density proportional to the fourth power of the thickness
[15]. Membrane theories account for deformations where the film is stretched in a
way which is essentially uniform in the thickness, and give energy densities of or-
der one in the film thickness. Bending theories instead focus on unstretched plates,
i.e., they are limited to deformations where the stretching term vanishes and only
consider higher-order corrections in the film thickness. The resulting energy den-
sities are quadratic in the film thickness. In the regime of interest here, however,
both stretching and bending are active and relevant. Indeed, membrane theories
would predict zero energy, and bending theories would predict infinite energy –
neither of which gives much insight into the material behavior. More precisely,
since no zero-stretch deformation exists with the given boundary conditions and
finite bending energy, we need to allow for finite stretching. The resulting patterns
are therefore determined by the interplay of the two energy terms, and analogously
the linear scaling we obtain for the energy density is intermediate between the two
mentioned.

The study of blistering using the tools of calculus of variations was initiated
in 1994 byOrtiz & Gioia [32], who noticed that many experimental observa-
tions could be reproduced with a scalar model, which can be obtained from the
linearized FvK theory by neglecting the in-plane displacements. Since then, con-
siderable mathematical effort [3,7,17,12] has gone into the study of the resulting
scalar functional, which constitutes the natural generalization to two-dimensional
gradient fields of the classical Modica-Mortola functionals in the theory of Gamma-
convergence, and had already been proposed with a different physical interpretation
byAviles & Giga in 1987 [6].

Only recently has attention has been devoted to rigorous studies of the ener-
getics of the vectorial FvK model. The solutions of the scalar problem correspond
to an energy per unit volume of orderε2∗(1 + σ), whereε∗ is the compression
ratio andσ is the rescaled film thickness, which constitutes the small parameter
in this problem, defined after (1.1). (The corresponding total energy is linear in
the film thickness.) Already in their 1994 paper [32],Ortiz & Gioia exhibited a
construction which, after suitable smoothing, achieved an energy of orderε2∗σ 1/2 in
a half-plane geometry. In 1997Pomeau & Rica also proposed [35] (see also [34])
that energy-minimizing states develop oscillations orthogonal to the boundary, and
based on scaling estimates for the fold energies they proposed that oscillations
would refine approaching the boundary. Recent rigorous results on energy scaling
in FvK [8,19,18] were based on the ideas proposed byKohn & Müller in their
mathematical theory of self-similar twin branching in martensites [21,22] (see also
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[11]). The correct energy scaling turned out to beε2∗σ 2/3 for the restricted problem
considered in [19], andε2∗σ for the full geometrically linear FvK problem [8,18]. In
these three papers, fold-branching patterns are constructed which, at least in their
gross features, are similar to the one proposed by Pomeau and Rica. A different
σ 5/3L1/3 energy scaling was instead obtained considering sharp ridges of length
L which appear in situations, such as paper crumpling, in which the boundary
condition is replaced by a volume constraint [29,28,23,9].

In this paper we focus on the problem of thin-film blistering and study the
energetics of blistered thin films using both a geometrically nonlinear treatment of
the FvK ansatz and directly the full three-dimensional elastic energy, which does
not rely in any way on the FvK theory of plates. We show that the same estimates we
had obtained for the energy in the geometrically linear model [8] hold also in this
case, hence proving that – at least as far as energy scaling for compressed isotropic
plates is concerned – the FvK approximation correctly reproduces the behavior of
elasticity theory, and a geometrically linear treatment of the in-plane deformations
is justified. As a consequence we show that any deformation with optimal energy
scaling must exhibit fine-scale oscillations along the boundary, which coarsen in
the interior. This agrees with experimental observations of folds which refine as
they approach the boundary [2].

We consider a uniform, isotropic elastic film of given cross-section	 and
thicknessh, subject to an isotropic in-plane compressionε∗ > 0. We take the
compressed state as reference, and impose no-displacement boundary conditions
on ∂	. Let φ : 	 × (0, h) → R

3 be the deformation field, andW3D(F ) be the
elastic energy density, which vanishes forF ∈ (1+ε∗)SO(3). We show (Theorems
3 and 4) that for smooth domains	 the energy per unit thickness of a minimizerφ,

I
h,ε∗
3D [φ,	] =

1

h

∫
	×(0,h)

W3D(∇φ), (1.1)

scales asε2∗σ when the scaled thicknessσ = h/ε
1/2∗ is small. In proving this

result we assume that the potentialW3D(F ) behaves as the squared distance from
its null setK = (1+ ε∗)SO(3) in a neighborhood ofK, and that it has at least
quadratic growth at infinity. Boundary conditions are imposed only on the in-plane
components at the lateral boundaries, i.e.,φi(x) = xi for x ∈ (∂	) × (0, h) and
i = 1,2, with the out-of-plane component satisfying|φ3− x3| 
 h.

The FvK ansatz amounts to enslaving the deformationφ to its behavior on the
mid-plane of the film (see Section 4.2 for details). The resulting variational problem
is

I
h,ε∗
2D [ψ,	] =

∫
	

W2D(∇ψ)+ h2|∇ν|2, (1.2)

whereψ(x1, x2) = φ(x1, x2, h/2) is the deformation of the mid-plane,

ν = ψ,1 ∧ ψ,2

|ψ,1 ∧ ψ,2| (1.3)

is the normal to the surface defined byψ , and |∇ν|2 = |∂1ν|2 + |∂2ν|2. The
new potentialW2D(a|b) is obtained fromW3D(a|b|c) by optimizing over vectors
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c parallel toa ∧ b, and it has invariance and growth properties similar to those
of W3D, with the group of three-dimensional linear isometriesSO(3) replaced by
the group of linear orthogonal maps ofR

2 into R
3, calledO(2,3). In particular,

in a neighborhood of(1 + ε∗)O(2,3), W2D is bounded from above and below
by constants times dist2(F, (1+ ε∗)O(2,3)). The boundary conditions are now
ψi = xi for i = 1,2 andψ3 = 0 forx ∈ ∂	. We show that both infI2D and infI3D

scale asσε2∗ = hε
3/2∗ for smallh andε∗.

The construction for the upper bound is, in its general lines, analogous to the
one we used for the geometrically linear problem [8], and is presented in Section 3.
Since the FvK model is obtained from three-dimensional elasticity by assuming a
specific form for the deformation, the bound on FvK leads naturally to a bound on the
three-dimensional elastic energy (see Section 4.2). The lower bounds are presented
separately, in Section 2 for FvK and in Section 4.1 for the three-dimensional case.
In all constructions the natural length-scale for in-plane oscillations is given by
σ = h/ε

1/2∗ , and hence in the following we replaceh2 byσ 2ε∗ in the FvK functional
(1.2).

2. Lower bound

In this section we prove the lower bound on the geometrically nonlinear two-
dimensional F¨oppl-von Kármán energyI2D defined in (1.2), under the assumption

W2D(F ) � c dist2(F, (1+ ε∗)O(2,3)), (2.1)

whereO(2,3) is the group of orthogonal linear maps fromR2 to R
3. Here and

below, we denote byc a positive constant, which might change from line to line,
but does not depend on the parameters of the problem (ε∗ andh).

Theorem 1 (Lower bound, 2D). Let	 be an open, bounded, Lipschitz domain in
R

2, and assume(2.1)holds. Then, there is a constantc	 > 0, depending only on
	, such that

I
h,ε∗
2D [ψ,	] � c	 min

(
hε

3/2∗ , ε2∗
)

(2.2)

for anyψ which obeys the boundary conditionψ(x1, x2) = (x1, x2,0) on ∂	.

Remark 1. We observe that no boundary condition is imposed onν. The same can
be done in the geometrically linear case. Indeed, Theorem 1 in [8] holds, with minor
changes in the proof, without the hypothesis∇w = 0 on∂	. Further, the boundary
condition onψ can be weakened as in (2.5) below, with no changes in the proof.

The basic idea in the proof is to show that, due to the boundary condition, in a
neighborhood of the boundary of widthσ the energy per unit area is at least of
orderε2∗, which is the energy of the identity map. Roughly speaking, a function
with infinitesimal energy would have∇ν vanishing inL2, hence its image would
be contained in a plane. This allows us to pass, locally, from mapsR

2→ R
3 with

gradient in(1+ ε∗)O(2,3) to mapsR2 → R
2 with gradient in(1+ ε∗)SO(2).
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But a gradient which is a rotation a.e. is a constant rotation, hence our hypothetical
function with infinitesimal energy density is linear, and both singular values of its
gradient equal 1+ ε∗. This contradicts the no-stretch boundary condition.

To make this argument precise, we consider a subset of	 of the form

Uf,σ = {x ∈ R
2 : x2 ∈ (0, σ ), f (x2) � x1 � f (x2)+ σ }, (2.3)

wheref : (0, σ ) → R is a Lipschitz function with Lipschitz constantL. The
{x1 = f (x2)} part of the boundary ofUf,σ ,

�f,σ = {(f (x2), x2) : x2 ∈ (0, σ )}, (2.4)

is assumed to be part of∂	. For small enoughσ , any given Lipschitz domain	
has at leastc/σ such disjoint subsets (modulo rotations and translations), wherec

depends on	. In each such domain, a lower bound for the energy is obtained by
finding a fixed rotationR ∈ SO(2) whose distance from the gradient field∇ψ can
be estimated in terms of the distance of∇ψ from the set of all rotationsSO(2).
Here we use a quantitative version of Reshetnyak’s estimate recently obtained by
Friesecke, James & Müller [13,14], which is stated precisely in Proposition 1
below. The basic estimate in a domainUf,σ is given in the following Lemma

Lemma 1. For anyψ : Uf,σ → R
3 such that∣∣∣∣∣∣ψ(x1, x2)−


x1
x2
0



∣∣∣∣∣∣ �

1

4
hε

1/2∗ for (x1, x2) ∈ �f,σ , (2.5)

the energy is bounded from below by

I2D[ψ,Uf,σ ] � cLε
2∗σ 2, (2.6)

wherecL depends only on the Lipschitz constantL of f .

Proof. We first rescaleψ according to

ψσ (x) = 1

σ
ψ(σx), (2.7)

which gives∇ψσ (x) = (∇ψ)(σx), νσ (x) = ν(σx), ∇νσ (x) = σ(∇ν)(σx), and
correspondinglyfσ (x2) = 1

σ
f (σx2), which does not change the Lipschitz constant.

Hence

I
h,ε∗
2D [ψ,Uf,σ ] = σ 2I

ε
1/2∗ ,ε∗

2D [ψσ ,Ufσ ,1] (2.8)

and it suffices to prove the result forσ = 1, i.e.,h2 = ε∗.We argue by contradiction,
and suppose that the assertion is false. Then there exist sequencesψj andUj given
by uniformly Lipschitz functionsfj (andσ = 1) such that

1

ε2
j

∫
Uj

W
εj
2D(∇ψj )+ εj |∇νj |2dx → 0, (2.9)
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with the boundary condition

∣∣∣ψj (x)− (x1, x2,0)T
∣∣∣ � 1

4
εj for x ∈ �j . (2.10)

Let nj (y1, y2) = νj (y1+ fj (y2), y2). Then,

1

ε
1/2
j

||∇nj ||L2((0,1)2) � 1+ L

ε
1/2
j

||∇νj ||L2(Uj )
→ 0. (2.11)

Hence we can find unit vectorsν̄j ∈ S2 such that

1

ε
1/2
j

||νj − ν̄j ||Lp(Uj ) =
1

ε
1/2
j

||nj − ν̄j ||Lp((0,1)2)→ 0 ∀p <∞. (2.12)

Let nowQj ∈ SO(3) be a rotation such thatQj ν̄j = e3, and defineψ ′j = PQjψj ,

whereP = e
(2)
1 ⊗ e

(3)
1 + e

(2)
2 ⊗ e

(3)
2 is the canonical projection ofR3 into R

2

(see Appendix A for details on notation). The two-dimensional vector fieldψ ′j
is the projection ofψj on the plane orthogonal tōνj , and therefore has gradient
close to(1+ εj )SO(2). More precisely, from Lemma 12 of Appendix A applied to
F = Qj∇ψ andνF = Qjνj we get, for anyx ∈ Uj ,

dist(∇ψ ′j , (1+ εj )SO(2)) � c
[
dist(∇ψ, (1+ εj )O(2,3))+ |νj − ν̄j |2

]
.

(2.13)

Comparing this with (2.12) (withp = 4) we see that

ε−2
j

∫
Uj

dist2(∇ψ ′j , (1+ εj )SO(2))→ 0. (2.14)

By Proposition 1 there exist rotationsRj ∈ SO(2) such that

1

εj
||∇ψ ′j − (1+ εj )Rj ||L2(Uj )

→ 0. (2.15)

We now consider the trace ofψ ′j on the boundary�j . By the trace theorem and the
Poincaré inequality there are constantscj such that

1

εj
||ψ ′j − (1+ εj )Rjx − cj ||L2(�j )

→ 0. (2.16)

But this contradicts the boundary condition (2.10). To see this, consider for example
that (2.16) implies

1

εj

[
ψ ′j (x)− ψ ′j (y)− (1+ εj )Rj (x − y)

]
→ 0 inL2(�j × �j ). (2.17)
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From the boundary condition (and the fact thatψ ′ is an orthogonal projection of
ψ) we get ∣∣∣ψ ′j (x)− ψ ′j (y)

∣∣∣ �
∣∣ψj (x)− ψj (y)

∣∣
� |x − y| + ∣∣ψj (x)− x̃

∣∣+ ∣∣ψj (y)− ỹ
∣∣

� |x − y| + 1
2εj , (2.18)

wherex̃ = (x1, x2,0) and ỹ has similar meaning. But|Rj (x − y)| = |x − y|,
becauseRj is a rotation, hence

1

εj

∣∣∣ψ ′j (x)− ψ ′j (y)− (1+ εj )Rj (x − y)

∣∣∣ � |x − y| − 1

2
, (2.19)

which contradicts (2.17).

We now conclude the proof of the lower bound. The details of the evaluation
of the distance of projected gradients from the rotation group are presented in
Appendix A.

Proof of Theorem 1. If σ is small enough there arecL|∂	|/σ disjoint domains of
the form (2.3) along the boundary of	. Since by Lemma 1, in each of them the
energy is at leastcLε2∗σ 2, for σ < σ0 we conclude

I
h,ε∗
2D [ψ,	] � cL|∂	|σε2∗. (2.20)

If insteadσ = h/ε
1/2∗ � σ0, we observe that

I
h,ε∗
2D [ψ,	] � I

σ0ε
1/2∗ ,ε∗

2D [ψ,	] � cL|∂	|σ0ε
2∗. (2.21)

Sinceσ0 depends only on	, the result follows.

Remark 2. In general, we cannot expect to be able to express the constantc	
in (2.2) ascL|∂	|. To see this, consider for example	 = (0, a) × (0,1 − a),
with a small. Then, the energy of the identity mapψ(x) = (x1, x2,0)T , which is
proportional toε2∗|	| = ε2∗a(1− a), vanishes fora→ 0, whereascL|∂	| does not
depend ona (σ0 does).

3. Upper bound

We now prove the upper bound for the geometrically nonlinear F¨oppl-von
Kármán problem, by explicitly constructing a deformation field with the optimal
energy scaling. The FvK ansatz will allow us to naturally extend the same construc-
tion to the three-dimensional problem (see Section 4.2). Throughout this section
we assume that

W2D(F ) � c

∣∣∣FT F − (1+ ε∗)2Id2

∣∣∣2 . (3.1)

Since in the construction(F T F )1/2 − Id2 is bounded by constants timesε∗, this
bound is needed only forF sufficiently close to the null set ofW2D. Our main result
is the following
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Theorem 2 (Upper bound). Let	 be an open, bounded subset ofR
2 with piecewise

C4 boundary, and letW2D obey(3.1). Then, there is a positive constantc̄	 such that
for anyε∗ ∈ (0,1) and small enoughh there is a deformation fieldψ : 	→ R

3

such that

I
h,ε∗
2D [ψ,	] � c	ε

3/2∗ h = c	ε
2∗σ, (3.2)

which obeys the boundary conditionsψ(x1, x2) = (x1, x2,0), ∇ψ(x1, x2) =
∇(x1, x2,0) for x ∈ ∂	.

The main ideas in the construction are best explained by considering a part of
	 around a flat boundary. For greater clarity, we first discuss (Section 3.1) the
construction in a square, and then show how it can be extended to generic domains
(Section 3.2). The proof of Theorem 2 is then given at the end of Section 3, after
all necessary ingredients have been presented. As mentioned above, the scaling of
the constructedψ is obtained more naturally in terms of the compression ratioε∗
and of the rescaled thicknessσ = h/ε

1/2∗ .

3.1. Straight-boundary problem

In this section we construct a small-energy mapψ : [0,1]2→ R
3 on a square

which satisfiesψ(0, t) = (0, t,0), ∂sψ(0, t) = (1,0,0). The construction is done
in such a way that it can be adapted, by an appropriate choice of coordinates, to
smoothly curved boundaries (see Section 3.2). To better illustrate the structure of
the various bounds, we do not indicate explicit values for the numeric constants. In
this section,c denotes global numeric constants, which can change from appearance
to appearance but do not depend on any of the parameters of the problem. In the
following sections, when dealing with curved boundaries,c will depend on the
domain, but never on the small parametersε∗ or h. We will always tacitly assume
that the strainε∗ is bounded.

3.1.1. Preliminaries and general scheme. We make the ansatz

ψ(s, t) = ψ0(s, t)+ ψ1(s, t), (3.3)

where

ψ0(s, t) =

 s

t

δs


 = te2+ s(1+ δ2)1/2e2 ∧ τ (3.4)

is a plane inclined with slopeδ, and the unit vectorsτ ande2∧ τ are defined so that
τ is the normal to the plane, and the triplet{e2, τ, e2 ∧ τ } forms an orthonormal
basis ofR3 with the canonical orientation. In components, we have

τ = 1

(1+ δ2)1/2


−δ0

1


, e2 ∧ τ = 1

(1+ δ2)1/2


1

0
δ


. (3.5)
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The slopeδ is chosen so thatψ0 relaxes the compression in thee1 direction, i.e.,
that|ψ0,s |2 = (1+ ε∗)2. This gives

1+ δ2 = (1+ ε∗)2, (3.6)

which for smallε∗ amounts toδ = (2ε∗)1/2 + O(ε∗). In the following we use
interchangeablyδ or ε∗, with the understanding that they are always related by
(3.6).

The oscillations around the planeψ0, which relax the compression in thee2
direction, are included via

ψ1(s, t) = a(s, t)e2+ b(s, t)τ + d(s, t)e2 ∧ τ. (3.7)

The functionsa, b andd, which are Cartesian components of the oscillatory part
of the deformation, have smooth dependence ons and high-frequency oscillations
in t , and are constructed in Sections 3.1.2 and 3.1.3.

To estimate the energy in terms ofa, b andd we compute

ψ,s = a,se2+ b,sτ +
(
d,s + (1+ δ2)1/2

)
e2 ∧ τ (3.8)

and

ψ,t = (1+ a,t )e2+ b,t τ + d,t e2 ∧ τ, (3.9)

which give

|ψ,s |2− (1+ δ2) = a2
,s + b2

,s + d2
,s + 2(1+ δ2)1/2d,s, (3.10)

ψ,s · ψ,t = Q2+ d,sd,t , (3.11)

|ψ,t |2− (1+ δ2) = Q1+ d2
,t , (3.12)

where

Q1 = (1+ a,t )
2+ b2

,t − (1+ δ2) (3.13)

and

Q2 = a,s(1+ a,t )+ b,sb,t + (1+ δ2)1/2d,t . (3.14)

In writing (3.10)–(3.12) we have collected the “dangerous” terms into the two
quantitiesQ1 andQ2, whereas the others are bounded by

R = a2
,s + b2

,s + 2(1+ ε∗)|d,s | + d2
,s + d2

,t . (3.15)

This separation is motivated by the fact that in our construction thet derivatives
will be larger than thes derivatives, andd will be smaller thana andb (see, e.g.,
(3.35), or the construction in Lemma 3 for more details). Then, it is easy to check
that

W2D(∇ψ) � c

{[
|ψ,s |2− (1+ ε∗)2

]2+ (ψ,s · ψ,t

)2+ [|ψ,t |2− (1+ ε∗)2
]2
}

� c
(
Q2

1+Q2
2+ R2

)
. (3.16)
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Further, we observe that

|Q1| + |Q2| + |R| � 1
4 (3.17)

implies thata, b andd are uniformly Lipschitz, and

|ψ,s ∧ ψ,t |2 = ψ2
,sψ

2
,t − (ψ,s · ψ,t )

2 � 1
4, (3.18)

hence – at least as long as (3.17) is satisfied – we can estimate|∇ν| by |∇2ψ |. We
first construct functions which satisfyQ1 = 0 and consider suitable rescalings to
obtain highly oscillatory functions with small amplitude. The main point is then
to estimate the energy in a box inside which the period of the oscillations (int)
doubles.

3.1.2. Construction of periodic solutions. We first construct small-energy func-
tions(a, b, d)which are periodic int , and do not depend ons. The main requirement
on such functions is thatQ1, as defined in (3.13), be zero. This gives a differential
relation betweena andb, which is best dealt with by collecting the two into a single
vectorial function,γ (see (3.29)). In the definition ofγ we also impose periodicity
conditions which will be helpful in the branching construction of Section 3.1.3.
Whereas in the geometrically linear case we could exhibit an explicit solution for
the periodic profile, here an implicit characterization turns out to be simpler, and it
is given by the following

Lemma 2. For everyε∗ > 0 there exists aC∞ curve γ : R → R
2 with the

properties:

|γ ′| = 1+ ε∗, (3.19)

γ ′1 � 0, (3.20)

γ (t + 1) = γ (t)+
(

1
0

)
, (3.21)

γ (−t) = −γ (t), (3.22)

γ
(

1
2

)
=
(1

2
0

)
, (3.23)

and satisfying the bound

|γ1− t | + ∣∣γ ′1− 1
∣∣+ ∣∣γ ′′1 ∣∣ � cε∗, |γ2| +

∣∣γ ′2∣∣+ ∣∣γ ′′2 ∣∣ � cε
1/2∗ , (3.24)

wherec does not depend onε∗.

Proof. We constructγ by rescaling the curves

γ̃ (τ ) =
(

τ
A
2π sin 2πτ

)
, (3.25)

which obey (3.20)–(3.23) for anyA. To achieve (3.19) we first chooseA so that the
length ofγ̃ ([0,1]) is 1+ ε∗, and then reparametrize proportionally to arc length.
More specifically, consider the rescaled length of theγ̃ ([0, τ ]) curve,

1(τ) = 1

1+ ε∗

∫ τ

0
|γ̃ ′(τ )| dτ = 1

1+ ε∗

∫ τ

0

√
1+ A2 cos2 2πτ dτ. (3.26)
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Since1(1), is a smooth monotone function ofA, there exists a uniqueA∗ such
that1(1) = 1. Fix A = A∗. Then1 is smooth and odd,1′ � 1/(1+ ε∗), and
1(τ + 1) = 1(τ) + 1. Thus the inverse function1−1 is smooth, odd and has
the property1−1(t + 1) = 1−1(t) + 1. Henceγ = γ̃ ◦ 1−1 has the properties
(3.19)–(3.23). To check (3.24) we consider the small-ε∗ limit. From (3.26) we get

(1+ ε∗)1(τ) = τ + 1

4
A2
(
τ + 1

4π
sin 4πτ

)
+O(A4), (3.27)

hence the condition1(1) = 1 givesA∗ = 2ε1/2∗ +O(ε∗). Then,

γ1(t) = t − ε∗
4π

sin 4πt +O(ε2∗), γ2(t) = ε
1/2∗
π

sin 2πt +O(ε∗), (3.28)

which proves the bounds on|γ1 − t | and |γ2| in (3.24). The remaining bounds
are easily established by computing the derivatives of both sides of the relation
γ̃ = γ ◦1, which givesγ̃ ′ = γ ′1′ andγ̃ ′′ = γ ′′1′2+ γ ′1′′.

Givenγ (t), we define odd, one-periodic functions by

â(t) = γ1(t)− t, b̂(t) = γ2(t) (3.29)

which satisfy

â
(− 1

2

) = â(0) = â
(1

2

) = 0, (3.30)

b̂
(− 1

2

) = b̂(0) = b̂
(1

2

) = 0. (3.31)

Moreover, fort ∈ [−1,1],
d̂(t) = 1

2(1+ ε∗)

[
t2(1+ ε∗)2− γ 2

1 (t)− γ 2
2 (t)

]
, (3.32)

which is even and satisfies

(1+ ε∗)d̂ ′ + (1+ â′)(â − t â′)+ b̂′(b̂ − t b̂′) = 0. (3.33)

The bounds (3.24) onγ are directly translated into

|â| + |â′| + |â′′| + |d̂| + |d̂ ′| + |d̂ ′′| � cε∗, |b̂| + |b̂′| + |b̂′′| � cε
1/2∗ .

(3.34)

To conclude this section, we display a periodic solution with periodh,

a(s, t) = hâ

(
t

h

)
, b(s, t) = hb̂

(
t

h

)
, d(s, t) = 0. (3.35)

(The use ofh here and below to denote periods should not be confused with the use
of h as film thickness in the introduction.) It is easy to check thatW2D(∇ψ) = 0
and|∇2ψ |2 � cε∗h−2, hence the energy in a given box is bounded by

I2D[ψ, (0, l)× (0, h)] � cε2∗hl
σ 2

h2 . (3.36)
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0

l 0 l 0

h/2

h

0

l

Fig. 1. Subdivision of the domainB used in the construction of Lemma 3 (left) and repre-
sentation of the constructedψ (right).

Remark 3. In the small-ε∗ limit the present construction reduces to the one used
for the geometrically linear theory in [8]. Indeed, comparing (A.6) and (3.2) of
[8] with (3.7) above, we see that to leading order inε∗ the triplet(a, b, d) used
here coincides with(2ε∗v, (2ε∗)1/2w,2ε∗z) in the notation of [8]. Then, the small-
ε∗ limit of (3.28) gives exactly (3.4) and (3.5) of [8]. Further, (3.32) and (3.33)
correspond to (3.12) and (3.13) of [8].

3.1.3. Fold branching. We now show how the oscillation period of the construc-
tion (3.35) can change withs. In particular, we take (3.35) with some periodh for
s = 0, the same profile with double period at some distances = l, and construct
the deformation in the intermediate region, where the width of the central fold de-
creases to zero. In order to keep the stretching energyW2D(∇ψ) small we use the
third component of the deformation, which is described by the functiond. Since a
change in the slope of order 1 in a distance less thatσ would determine high bend-
ing energy|∇ν|2, we can smoothly reduce the width of the inner fold only down to
some finite value (calledη below), and then we must decrease its amplitude instead
of its width (see (3.64)). The decreasing width of the central fold in the first part
of the construction is described by means of a functionφ : R → [0,1] such that
φ(t) = 0 for t � 0,φ(t)+ φ(1− t) = 1, with its first, second and third derivative
bounded, andφ(t) � t3 in (0,1). The bending term will be bounded using the
estimate

∫ ξ

0

dt

λ+ ζφ(t)
�
∫ ∞

0

dt

λ+ ζ t3
� c

λ2/3ζ 1/3 , (3.37)

whereξ ∈ (0,1), andλ, ζ > 0.
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Lemma 3. There exists a constantc̄ > 0 such that in any rectangleB = (0, l) ×
(0, h) with l � c̄h, h � σ , there is a deformationψ which satisfies

a = b = d = 0, a,t = â′(0), b,t = b̂′(0), d,t = 0 for t = 0 andt = h,

(3.38)

a = h

2
â

(
t

h/2

)
, b = h

2
b̂

(
t

h/2

)
, a,s = b,s = d = d,s = 0 for s = 0,

(3.39)

a = hâ

(
t

h

)
, b = hb̂

(
t

h

)
, a,s = b,s = d = d,s = 0 for s = l, (3.40)

with energy bounded by

∫
B

Q2
1+Q2

2+ R2+ ε∗σ 2|∇2(a|b|d)| � cε2∗

[
h5

l3
+ σ l

(σ
h

)1/2+ σh
(σ
h

)1/8
]
,

(3.41)

and with the pointwise bounds|Q1| + |Q2| + |R| � 1
4,

|a| + |d| � cε∗h, |∇a| + |∇d| � cε∗, σ |∇2a| + σ |∇2d| � cε∗,
(3.42)

|b| � cε
1/2∗ h, |∇b| � cε

1/2∗ , σ |∇2b| � cε
1/2∗ . (3.43)

Remark 4. Using (3.16) we can immediately transform the present result (3.41)
into a bound onI2D,

I2D[ψ,B] � cε2∗

[
h5

l3
+ σ l

(σ
h

)1
2 + σh

(σ
h

)1/8
]
. (3.44)

The statement of the lemma just presented allows for a simpler extension to the
curvilinear case (see (3.98)).

Proof. We first decompose the domain into the part of lengthl0 where the inner
fold smoothly decreases its width fromh/2 to η, and the one where it disappears
by interpolation, of lengthm = l − l0 (see Fig. 1). The values ofm andη will be
chosen below, now we merely assume the orderingη � m � h � l which leads to
many simplifications.

For s ∈ [0, l0] the width of the inner fold is given by

λ(s) = h

2

[
1− φ

(
s

l0

)]
+ ηφ

(
s

l0

)
, (3.45)

which smoothly decreases fromh/2 toη. The construction is done in three separate
pieces:	a is the region|y − h/2| � λ(s)/2 occupied by the “small” fold,	′b is
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the region 0� y � [h− λ(s)]/2 occupied by the first half of the “large” fold, and
	′′b is the one occupied by the other half (see Fig. 1).

We start the construction from the lower side of the rectangle. In	′b we set

a(s, t) = [h− λ(s)]â
(

t

h− λ(s)

)
, (3.46)

b(s, t) = [h− λ(s)]b̂
(

t

h− λ(s)

)
, (3.47)

d(s, t) = −λ(s)′[h− λ(s)]d̂
(

t

h− λ(s)

)
. (3.48)

Sinceâ and b̂ are 1-periodic,λ(0) = h/2 andλ′(0) = λ′′(0) = 0, the boundary
condition (3.39) is satisfied. It is easily checked that also (3.38) is satisfied for
t = 0. On the upper boundaryt = (h− λ)/2 we get

a = b = 0, d = −λ′(h− λ)d̂
(1

2

)
,

a,t = â′
(1

2

)
, b,t = b̂′

(1
2

)
, d,t = −λ′d̂ ′

(1
2

)
. (3.49)

Now consider the central region	a , which corresponds to|t − h/2| � λ/2 (see
Fig. 1). We set

a(s, t) = λ(s)â

(
t − h/2

λ(s)

)
, (3.50)

b(s, t) = λ(s)b̂

(
t − h/2

λ(s)

)
, (3.51)

d(s, t) = λ′(s)
[
λ(s)d̂

(
t − h/2

λ(s)

)
+ ζ(s)

]
, (3.52)

whereζ(s) will be chosen later. The boundary condition (3.39) fors = 0 is again
automatically satisfied. Sincêa andb̂ are odd and̂d is even, fort = (h− λ)/2 we
obtain again (3.49), provided that

−λ′(h− λ)d̂
(1

2

) = λ′
[
λd̂
(1

2

)+ ζ
]

(3.53)

which is satisfied if we chooseζ = −hd̂(1/2). For t = (h+ λ)/2 only the sign of
the derivative ofd changes,

a = b = 0, d = λ′λ(d̂
(1

2

)+ ζ ),

a,t = â′
(1

2

)
, b,t = b̂′

(1
2

)
, d,t = λ′d̂ ′

(1
2

)
. (3.54)

Finally in	′′b we set

a(s, t) = [h− λ(s)]â
(

t − h

h− λ(s)

)
, (3.55)

b(s, t) = [h− λ(s)]b̂
(

t − h

h− λ(s)

)
, (3.56)

d(s, t) = −λ(s)′[h− λ(s)]d̂
(

t − h

h− λ(s)

)
. (3.57)
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It is a simple check that the boundary conditions (3.39) [fors = 0], (3.54) [for
t = (h+λ)/2] and (3.38) [fort = h] are satisfied. This concludes the construction
in the regions ∈ [0, l0]. To estimate the energy of this test function, we compute
Q1,Q2 andR and use (3.16). We give details of the computation only for the region
	a , since the other ones need only minor changes. First we observe that

Q1 = (1+ a,t )
2+ b2

,t − (1+ δ2) = (1+ â′)2+ (b̂′)2− (1+ ε∗)2 = 0, (3.58)

whereâ andb̂ are evaluated atξ = (t−h/2)/λ(s). Thes-derivatives have the form
a,s = λ′(s)(â − ξ â′)(ξ). Then, we get

Q2 = a,s(1+ a,t )+ b,sb,t + (1+ ε∗)d,t (3.59)

= λ′
[
(â − ξ â′)(1+ â′)+ (b̂ − ξ b̂′)b̂′ + (1+ ε∗)d̂ ′

]
= 0 (3.60)

(from (3.33)). Finally, from (3.34) we get

R � cε∗
(
λ′2+ hλ′′

)
� cε∗

h2

l20
(3.61)

which givesW2D � cε2∗h4/l4. Since we assumedh � l/c̄, with a suitable choice
of c̄ we can enforceR � 1/8 (and use (3.18)).

Now we compute the second gradient. The most dangerous term is the∂2
t

derivative in	a , which diverges asε1/2∗ /λ. However the area is only of sizeλ, and
we get, using (3.37),∫ l0

0
ds

∫ λ/2

−λ/2
dt

ε∗
(λ(s))2

=
∫ l0

0
ds

ε∗
λ(s)

� clε∗
η2/3h1/3 . (3.62)

The other terms in|∇2a|2 + |∇2b|2 + |∇2d|2 are bounded bycε∗/h2 + cε∗/l2,
and after integration give the lower-order contributionscε∗l/h+ cε∗h/l. Hence

I2D[ψ,	a ∪	′b ∪	′′b] � cε2∗

[
h5

l3
+ σ 2 l

h1/3η2/3

]
. (3.63)

It remains to constructψ in the regions ∈ [l0, l]. This is done by using a smooth
interpolation between the values ats = l0 and ands = l,

ψ(s, t) = ψ(l0, t)
[
1− φ

( s
m

)]
+ ψ(l, t)φ

( s
m

)
, (3.64)

whereψ(l, t) is given by (3.40). This has small energy because the two values
between which we are interpolating differ significantly only in the small set	c =
[l0, l] × [(h − η)/2, (h + η)/2], whereas in the larger set	d = [l0, l] × {η/2 �
|t − h/2| � h/2} they are similar and both have small energy. More precisely, in
	c we have|∇b| � cε

1/2∗ , |∇a| � cε∗, d = 0 and hence|Q1|+ |Q2|+ |R| � cε2∗.
The second gradient is controlled by|∇2ψ | � cε

1/2∗ (η/m2+ 1/η). Thus

I2D[ψ,	c] � cε2∗[mη + σ 2m/η]. (3.65)
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In 	d , however,

|a(l0, t)− a(l, t)| � cε∗η, |a,t (l0, t)− a,t (l, t)| � cε∗
η

h
(3.66)

and

|b(l0, t)− b(l, t)| � cε
1/2∗ η, |b,t (l0, t)− b,t (l, t)| � cε

1/2∗
η

h
(3.67)

sincea(l, ·)anda(l0, ·)have been defined as different rescalings of the same smooth
function â (and similarly forb), andd = 0. It follows that

Q1+Q2 � cε∗
η

m
, R � cε∗

η2

m2 (3.68)

which give
∫
	c

W2D � cε2∗hη2/m. The bending term is bounded by|∇2ψ | �
cε

1/2∗ (1/h+ η/m2+ η/mh). Hence

I2D[ψ,	d ] � cε2∗[hη2/m+ σ 2m/h+ σ 2hη2/m3]. (3.69)

Collecting the various terms in (3.63), (3.65) and (3.69), and dropping the irrelevant
ones, we get

I2D[ψ,B] � cε2∗

[
h5

l3
+ σ 2l

η2/3h1/3 +
η2h

m
+mη + σ 2m

η
+ σ 2hη

2

m3

]
. (3.70)

We finally fixη = σ 3/4h1/4 andm = c̄(ηh)1/2 = c̄σ 3/8h5/8 and obtain (3.41). The
bound on|Q1| + |Q2| + |R| is then obtained by choosinḡc (which determinesm)
large enough with respect to all other constants entering the estimates above.

3.1.4. Global solution in a square and qualitative discussion. To better illus-
trate the role of the previous results in the global construction, we now show how
they can be used to obtain a test function to a model problem in the unit square, as
outlined at the beginning of Section 3.1. The construction is done in two steps: first
we obtain a deformation field with small energy which obeys the boundary condi-
tion ons = 0 only approximately, i.e., such that|ψ(s, t)− (0, t,0)| � cε

1/2∗ σ , and
then modify it at smalls to obtain an exact solution. The resultingψ is illustrated
in Fig. 2.

The approximate boundary condition is clearly satisfied by an oscillatory so-
lution of (3.35) with periodh = σ . We take this solution in the regions ∈ [0, σ ],
where we shall later interpolate. This function has energyε2∗ per unit area, hence we
cannot use it in a region of area larger thanσ . In the interior part of the sample we
use coarser oscillations, which are obtained through a number of period-doubling
transitions (as constructed in Section 3.1.3). Lethi = 2iσ be the period at stepi, li
be the width of thei-th period-doubling step, andLi =∑k�i lk be the cumulative
width up to thei-th step. Then, for eachi, in each of the rectangles

Rij = (Li−1, Li)× (jhi, (j + 1)hi), 0 � j � 1

hi
, (3.71)
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Fig. 2. Construction ofψ on a square with boundary conditions on one side.

we defineψ̄ as in Lemma 3 withl = li andh = hi . The energy ofψ̄ is estimated
by

I2D[ψ̄, (0,1)2] � cε2∗
∑
i

1

hi

[
h5
i

l3i
+ σ li

(
σ

hi

)1/2

+ σhi

(
σ

hi

)1/8
]
. (3.72)

We substitute in this expressionhi = σ2i andli = σ2αi , and obtain

I2D[ψ̄, (0,1)2] � cε2∗σ
∑
i

2(4−3α)i + 2

(
α− 3

2

)
i + 2−i/8 (3.73)

All geometric series converge provided that4
3 < α < 3

2, hence for all suchα we
get the desired bound. The constructedψ obeys the bounds

|∇ψ̄ − Id| � cε
1/2∗ , |∇2ψ̄ | � cε

1/2∗
σ

, (3.74)

and fors < σ also ∣∣∣∣∣∣ψ̄ −

st

0



∣∣∣∣∣∣ � cε

1/2∗ σ. (3.75)

Finally, we smoothψ̄ close to the boundary, and define

ψ(s, t) = φ
( s
σ

)
ψ̄(s, t)+

[
1− φ

( s
σ

)]st
0


, (3.76)

whereφ is a smoothed step function, as defined before (3.37). Fors � σ , ψ = ψ̄ .
For s = 0,ψ agrees with the identity map(s, t,0) up to the first derivative, hence
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the boundary condition is satisfied. In the regions � σ , the bounds (3.74) hold
also forψ . SinceW2D(Id +G) � c(ε2∗ + |G|2), we obtain the desired estimate

I2D[ψ, (0,1)2] � cε2∗σ = cε
3/2∗ h. (3.77)

This concludes the construction in the case of a square with boundary conditions
only on one side.

The simple geometry of this example enables us to discuss the qualitative aspects
of the construction. First, we observe that the (11) component of the compressive
stress is simply relaxed by the tilting of the horizontal plane to the plane described
by ψ0. Therefore the problem is essentially equivalent to a uniaxial compression
in the (22) direction, which cannot be relaxed by large-scale deformations, due to
the boundary conditions. This is the reason for the appearance of the oscillations.
Interesting analogies can be drawn with the phenomenon of twin-branching near
an austenite–martensite interface studied in [21,22,11]. In our problem, oscillation
branching arises because the boundary condition enforces short-scale oscillations
at smalls, whereas the bending term favors large-scale oscillations in the bulk. At
variance with the martensitic problem, there is no preferred slope in this problem,
and only a constraint in the total length. This explains why we have smooth oscil-
lations here, whereas there are flat regions separated by thin interfaces in the case
of martensitic twins. It is also interesting to observe the similarity of the straight-
twin constructions used in the study of martensites before the branching analysis
of Kohn & Müller [21,22] and the straight-fold construction used byOrtiz &
Gioia [32] for the present problem.

3.2. Domains with curved boundary

In this section we show how the preceding construction can be adapted to
generic smooth domains. The mapping from the straight boundary of Section 3.1
to a curved one is done by using as coordinates arc length and distance to the
boundary, see Section 3.2.1. Then, in Section 3.2.2 we show how to construct a
low-energy test functionψ in a curvilinear triangle which, via triangulation of the
original domain, suffices to prove Theorem 2. In the following we denote byc a
generic constant that depends only on the domain.

3.2.1. Neighborhood of a curved boundary. Consider aC4 curveα : (0, L)→
R

2 (which later will be part of the boundary of the domain where we perform the
construction), parametrized by arc length. Letn = (α′2,−α′1) be a unit normal of
α (later the inward normal to the boundary of	). Thenn′ = −κα′, whereκ is the
curvature ofα, and

? : (s, t)→ (x1, x2) = α(t)+ sn(t) (3.78)

defines a diffeomorphism of a rectangle(0, H) × (0, L) to a (one-sided) tubular
neighborhood of the curveα, providedH is sufficiently small (in the following, we
always assume thatH |κ| � 1

2).
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To extend our construction from rectangles to curved domains we adapt our
ansatz (3.3) as follows. We set

ψ̃(x1, x2) = ψ̃0(x1, x2)+ ψ̃1(x1, x2) (3.79)

where the plane (3.4) is replaced by

ψ̃0(x1, x2) =

 x1

x2
δ dist(x, α)


 (3.80)

and dist(x, α) = s is the distance to the curve described byα. The normal toψ̃0,
expressed in(s, t) coordinates, is

τ(t) = 1

(1+ δ2)1/2
(−δn(t)+ e3). (3.81)

The generalization of the oscillatory part (3.7) is then

ψ1(s, t) = (1− sκ(t))
[
a(s, t)α′(t)+ b(s, t)τ (t)

]+ (1− sκ(t))2d(s, t)α′(t) ∧ τ.
(3.82)

Here and below, we denote bỹψ(x1, x2) a deformation field expressed in Cartesian
coordinates, and byψ = ψ̃◦? the same deformation field expressed as a function of
the boundary-adapted coordinates(s, t). For example, the field̃ψ1(x1, x2) entering
(3.79) is obtained fromψ(s, t)defined in (3.82) bỹψ1 = ψ1◦?−1, and analogously

ψ̃0 ◦? = ψ0(s, t) = α(t)+ sn(t)+ δse3. (3.83)

To proceed, we first express the strain energy in the new coordinates. Then we
bound it in terms ofa, b andd (and their derivatives) alone. More precisely we
establish a bond solely in the quantitiesQ1,Q2 andR introduced in (3.13)–(3.15).
This will allow us to apply the estimates derived for the rectangle to a generic
domain without changes. The corresponding estimate for the second derivatives is
straightforward.

Lemma 4. Letψ be of the form(3.79)–(3.82), wherea, b andd satisfy

|a| + |d| � cε∗q, |∇a| + |∇d| � cε∗, |b| � cε
1/2∗ q, |∇b| � cε

1/2∗
(3.84)

for someq > 0. Then, at any point(x1, x2) = ?(s, t),

W2D(∇xψ̃) = W2D

(
ψ,s

∣∣∣∣ ψ,t

1− sκ(t)

)
� c

(
Q2

1+Q2
2+ R2+ ε2∗q2

)
(3.85)

whereQ1, Q2 andR have been defined in(3.13)–(3.15), and

|∇2
x ψ̃ |2 � c

[
ε∗ + q2ε∗ + |∇2

s,t (a, b, d)|2
]
. (3.86)
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Proof. To prove the first equality, we compute the gradient of the diffeomorphism
?,

∂(x1, x2)

∂(s, t)
= ∇φ = n⊗ n+ (1− sκ)α′ ⊗ α′, (3.87)

and observe thatW2D is invariant under rotations. Hence the change from(e1, e2)

components to(n, α′) components leavesW2D unchanged, and only the factor
(1− sκ) needs to be taken explicitly into account.

To prove the upper bound in (3.85), we first compute

ψ0,s = n(t)+ δes = (1+ ε∗)α′ ∧ τ (3.88)

and

ψ0,t = α′(t)+ sn′(t) = (1− sκ)α′. (3.89)

In computing the derivatives of the oscillatory partψ1 we can avoid explicit consid-
eration of all terms bounded byε∗q, i.e., all terms where eithera ord is not differen-
tiated.Terms whereb is not differentiated can be ignored only if there is an additional
factor of ε1/2∗ , which is the case, e.g., for the terms where∂t τ = −δn′/(1+ ε∗)
enters as a factor. The result is

ψ,s = (1− sκ)

[
a,sα

′ +
(
b,s − κ

1− sκ
b

)
τ

]

+
[
(1+ ε∗)+ (1− sκ)2d,s

]
α′ ∧ τ +O(ε∗q) (3.90)

and

ψ,t

1− sκ
= (1+ a,t )α

′ +
(
b,t − sκ ′

1− sκ
b

)
τ + (1− sκ)d,tα

′ ∧ τ +O(ε∗q),

(3.91)

whereO(ε∗q) represents terms which can be bounded in absolute value bycε∗q.
Then, we compute, analogously to (3.10)–(3.12),

|ψ,s |2− (1+ ε∗)2 = (1− sκ)2
(
a2
,s + b2

,s

)
+ (1− sκ)4d2

,s

+2(1+ ε∗)(1− sκ)2d,s +O(ε∗q), (3.92)
ψ,s · ψ,t

1− sκ
= (1− sκ)Q2+ (1− sκ)2d,sd,t +O(ε∗q), (3.93)

|ψ,t |2
(1− sκ)2

− (1+ ε∗)2 = Q1+ (1− sκ)d2
,t +O(ε∗q). (3.94)

The two terms containingbτ have become also of orderε∗q since they are squared or
multiplied by derivatives ofb in computing the scalar products.All factors 1−sκ are
uniformly bounded since we assumeds|κ| � 1

2. This concludes the proof of (3.85).
To prove (3.86) we observe thatψ̃ differs from the identityψ̃id(x1, x2) = (x1, x2,0)
only by quantities which are bounded by|(a, b, d)| + δ � cε

1/2∗ . Since we are
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considering second derivatives, we can replaceψ̃ with ψ̃ − ψ̃id. From the previous
definitions we have

ψ̃ − ψ̃id = (δse3+ ψ1) ◦?−1. (3.95)

In computing the second gradient of (3.95), we differentiate botha, b andd (which
enterψ1) and theα-dependent quantities [n(t), α′(t), κ(t), etc.]. The latter have
at least two bounded derivatives. The only term which does not contain any of the
three functions,δse3, is proportional toδ. Hence

|∇2
x ψ̃ | � c

(
δ + |(a, b, d)| + |∇s,t (a, b, d)| + |∇2

s,t (a, b, d)|
)2

, (3.96)

and the thesis follows.

We observe that, since the Jacobian 1− sκ of the transformation? is bounded, the
same estimates hold for the integrated quantities.

We now show how the estimates we had obtained for the half-plane problem
are extended to the case of curved boundaries. First, fix a periodh and consider
the periodic solution of (3.35) in some rectangleA = (0, l) × (0, h). ThenQ1 =
Q2 = R = 0, (3.84) is satisfied withq = h, and|∇2(a|b|d)| � cε

1/2∗ /h. Hence
from the two previous Lemmas we get

I2D[ψ̃,?(A)] � cε2∗hl
(
h2+ σ 2

h2

)
. (3.97)

Remark 5. Comparing (3.97) with the analogous estimate (3.36) holding for the
case of a straight boundary, we notice that the first term proportional toh3 is new
(and it is simple to check, from the proof of Lemma 4, that its coefficient vanishes
whenκ, κ ′ tend to zero).While in the case of a straight boundary the energy bound is
decreasing with increasingh (and the only reason for using smallh is the boundary
condition), (3.97) shows that, for a curved boundary, the optimalh is of orderσ 1/2.
This implies that, for curved boundaries, period-doubling of the folding pattern will
stop when the period has reached a value of orderσ 1/2, which gives the optimal
energy per unit area, of orderε2∗σ .

We now extend to curved boundaries the result of Lemma 3 on the period-
doubling box. From (3.42) and (3.43) we see that we can takeq = h, and from
(3.41) and the two previous Lemmas we obtain

I2D[ψ̃,?(B)] � cε2∗

[
h5

l3
+ σ l

(σ
h

) 1
2 + σh

(σ
h

)1/8+ h3l + σ 2hl

]
. (3.98)

This is the direct extension of (3.44) to the curvilinear case. The last two terms in
(3.98) are however new, and they have the same origin and role as the new term in
(3.97).
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3.2.2. Construction in piecewise smooth domains, via triangulation. We now
put together the various pieces of analysis presented above, following a strategy
similar to the one illustrated in Section 3.1.4, to obtain a construction on curvilinear
triangles. We start by showing how to handle a region close to one of the edges.

Lemma 5. Let	 ⊂ R
2 andα ⊂ ∂	 be such thatU = ?−1(	) has the form

{(s, t) : t ∈ [0, L],0 � s � f (t)} (3.99)

wheref is uniformly Lipschitz, and

sup
(s,t)∈U

s|κ(t)| � 1
2 (3.100)

whereκ is the curvature ofα. Then, there is a constantc such that for any (ε∗, h)
there isψ : 	→ R

3 such that

I2D[ψ,	] � cε2∗σ, (3.101)

with ∣∣∣∣∣∣ψ̃(x)−

 x1

x2
δ dist(x, α)



∣∣∣∣∣∣ � cε

1/2∗ σ on ∂	, (3.102)

and with|∇ψ̃ − Id2| � cε
1/2∗ , σ |∇2ψ̃ | � cε

1/2∗ in 	.

Proof. We constructψ onU , and then obtain the estimate forψ̃ = ψ ◦?−1 using
the two preceding lemmas. We divide the domainU into stripst ∈ [iγ, (i + 1)γ ]
whereγ is the maximum oscillation period which, as discussed after (3.97), will
be of orderσ 1/2. The precise value ofγ will be given below. On the linest = iγ

we impose as boundary conditions

a = b = d = 0, a,t = â′(0), b,t = b̂′(0), d,t = 0 (3.103)

as in Lemma 3. On the vertical boundaries we impose

a = hâ

(
t

h

)
, b = hb̂

(
t

h

)
, a,s = b,s = d = d,s = 0, (3.104)

whereh is the local period. In each strip, fors = 0 the functionsa andb oscillate
with periodσ . Then, there is a sequence of period-doubling steps, up to period
γ , and finally the period decreases again down toσ while approachings = f (t).
The construction is hence done composing branching pieces, similar to those con-
structed in Lemma 3, and flat pieces, where the oscillations do not depend ons (see
Fig. 3).

More specifically, we take the same sequences of widthsli = σ2αi and heights
hi = σ2i for the branching boxes as in Section 3.1.4. Since we want to stop at
hi of orderσ 1/2, we fix a maximum number of branching stepsN as the integer
part of the solution of 2x = σ−1/2, and defineγ = hN = σ2N . The construction
is done iteratively, starting fromi = 1 up to i = N (possibly stopping earlier
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for small domains, see below). At stepi, the strip is divided into 2N−i intervals
Tij = (jhi, (j + 1)hi), j = 0, . . . ,2N−i − 1, and eachj is considered separately.
The appropriate width for a branching construction which reaches periodhi in the
j -th substrip is

Sij = inf
t∈Tij

f (t). (3.105)

If

Sij � 2Li, (3.106)

whereLi =∑k�i lk is the cumulative width of all boxes up to thei-th one, we can
use the construction of Lemma 3 in the box

Bij = (Li−1, Li)× Tij . (3.107)

This gives the increase in period at smalls, while the symmetric one (withs →−s)
in the box

B̄ij = (Sij − Li, Sij − Li−1)× Tij , (3.108)

gives the decrease in period at larges. We observe thatSij is defined as the largest
value ofs for which B̄ij can be placed insideU without overlapping withB̄ boxes
at smalleri, and that the condition (3.106) ensures that allB̄ andB boxes used so far
are disjoint. It is also clear that the next step (i.e.,i′ = i+1) will influence only the
regionLi � s � Sij −Li , t ∈ Tij , which is nonempty only if (3.106) is satisfied. In
the regions which have not yet been defined, and which will not be touched by the
next step, we take the periodic solution (3.104) with periodh = hi/2. This means
that we take the periodic solution both in the pointss � Sij −Li−1, t ∈ Tij where
ψ has never been defined before, and in the entireLi−1 � s � Sij −Li−1, f ∈ Tij
region if (3.106) was not satisfied. This concludes stepi of the construction, which
is then iterated up toi = N .

If, after reachingi = N , there is still a central region whereψ has not been
defined (i.e.,SN0 � 2LN ), we use the periodic solution (3.104) with periodγ = hN .
This completes the construction in the entire domainU . To check smoothness, we
observe that only boundaries parallel to the coordinate axis have been introduced;
all horizontal ones satisfy (3.103), all vertical ones satisfy (3.104), with periodhi
at stepi. The construction is displayed in Fig. 3.

We now estimate the energy of the constructedψ . At stepi, we have 2N−i+1

branching boxes, each with energy bounded by (3.98). The additional periodic
pieces have width bounded byhi times the Lipschitz constant off , and the energy
is there bounded by (3.97). The central region with periodhN has possibly area of
order 1. The total energy is then controlled by

I2D[ψ̃,	] � cε2∗
N∑
i=1

[
h4
i

l3i
+ li

(
σ

hi

)3/2

+ σ

(
σ

hi

)1/8

+ h2
i li

+ hi Lip f

(
h2
i +

σ 2

h2
i

)]
+ cε2∗ sup|f |

(
h2
N +

σ 2

h2
N

)
(3.109)
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Fig. 3. Construction in Lemma 5.

(the last term in the series corresponds to the small periodic pieces, the term outside
the series corresponds to the central region). By takingli = σ2αi , as in Section 3.1.4,
andhN = σ 1/2 we get

I2D[ψ̃,	] � cε2∗σ
N∑
i=1

[
2(4−3α)i + 2

(
α− 3

2

)
i + 2−i/8+ σ 22(2+α)i + 2−i

]

+ cε2∗σ, (3.110)

where the dependence onf has been included in the constantc. All geometric
series except the fourth one converge provided that4

3 < α < 3
2. The fourth one

gives, after summation,σ 22(2+α)N � σ 2−(2+α)/2 � σ 1/4, hence we get (3.101).
The bounds on∇ψ and |∇2ψ | follow directly from (3.42) and (3.43). Also

(3.102) follows from the same equations and from the fact that all the rectangles
which touch the boundary haveh = σ . This concludes the proof.

We turn now to curvilinear triangles, which can be handled by applying Lemma 5
three times, and by smoothly matching the three resulting constructions.

Lemma 6. Let	 be a bounded domain such that its boundary is the union of three
C4 curves which join at angles less thanπ/2, and whose radius of curvature is
always larger than twice the diameter of	. Then, there is a constantc	 such that,
for sufficiently smallε∗ andσ , there isψ̃ : 	→ R

3 such that

I2D[ψ̃,	] � cε2∗σ, (3.111)

with ψ̃(x1, x2) = (x1, x2,0),∇ψ̃(x1, x2) = ∇(x1, x2,0) on∂	. Further,ψ̃ obeys
the bound

|∇ψ̃ | + σ |∇2ψ̃ | � cε
1/2∗ . (3.112)
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Proof. The construction is based on using Lemma 5 around each of the three sides.
A smooth matching between the different pieces is obtained by using a smoothed
distance function as skeleton of the construction. More specifically, letηbe a smooth
mollifier with support in the ball of radius12, and letησ (x) = σ−2η(x/σ). Define

Wd(x) = dist(x, ∂	)φ

(
dist(x, ∂	)

σ
− 1

)
, (3.113)

and

wd = ησ ∗Wd, (3.114)

whereφ : R→ [0,1] is a smooth function withφ(t) = 0 for t � 0, φ(t) = 1 for
t � 1. It is easy to verify that|∇wd | � c, |∇2wd | � c/σ , |wd−dist(x, ∂	)| � cσ ,
andwd = ∇wd = 0 on ∂	. Henceψ̃d(x) = (x1, x2, δwd) has bounded energy
density, and fulfills the prescribed boundary conditions.

We now use Lemma 5 to reduce the energy in the three parts of	 where the
distance function is smooth. Letγi , i = 1,2,3, be the three smooth curves which
form ∂	, and letωi be the set of points of	 which are closer toγi than to the other
two. Each setωi obeys the hypothesis of Lemma 5, withα = γi , hence there is
ψ̃i(x) with energy of orderε2∗σ which differs fromψ̃d at most bycε1/2∗ σ on ∂ωi .
The boundary ofωi is in turn composed by three smooth parts, which we callγ

(k)
i ,

one of which coincides withγi . We use the function

φi(x) =
3∏

k=1

φ

(
dist(x, γ (k)

i )

σ

)
, (3.115)

to interpolate betweeñψi andψ̃d . More precisely, we set

ψ̃(x) = ψ̃i(x)φi(x)+ ψ̃d(x) [1− φi(x)] (3.116)

for all x ∈ ωi . It is clear thatψ̃ �= ψ̃i only in a region of measurecσ , where it has
energy density bounded bycε2∗, as in (3.76), which implies that̃ψ still has energy
bounded bycσε2∗. Further,ψ̃ agrees withψ̃d up to the first gradient along∂ωi ,
hence it satisfies the given boundary conditions and joins smoothly along internal
boundaries. This concludes the proof.

Finally, we generalize this construction to generic piecewiseC4 domains.

Proof of Theorem 2. Any piecewiseC4 domain can be divided into finitely many
curvilinear triangles satisfying the hypothesis of Lemma 6. The result follows by
applying Lemma 6 to each of those triangles, and observing that the imposed
boundary conditions guarantee smooth matching at all interfaces.
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4. Three-dimensional elasticity

In this section we extend the previous results to the full three-dimensional
elasticity theory, i.e., to the functionalI3D defined in (1.1). The elastic potential
W3D(F ) : M3×3 → R is nonnegative, vanishes on(1+ ε∗)SO(3), and obeys the
bounds

c1dist2(F, (1+ ε∗)SO(3)) � W3D(F ) � c2dist2(F, (1+ ε∗)SO(3)), (4.1)

wherec1 andc2 are numerical constants. Since in all our constructions dist(F, (1+
ε∗)SO(3)) is bounded by a constant timesε∗, the upper bound in (4.1) is needed
only in a neighborhood ofSO(3).

4.1. Lower bound

Theorem 3 (Lower bound, 3D). Let	 ⊂ R
2 be a bounded Lipschitz domain. Then,

there are constantsc	, c′	 such that for sufficiently smallh andε∗ > 0 and any
φ : 	× (0, h)→ R

3 such that

|φ(x)− x| � min
(

1
4hε

1/2∗ , c′	ε∗
)

for x ∈ (∂	)× (0, h) (4.2)

the lower bound on the energy is given by

1

h

∫
	×(0,h)

W3D(∇φ)d3x � c	 min
(
ε

3/2∗ h, ε2∗
)
. (4.3)

For simplicity of exposition we first consider the case ofε∗ finite, where we just
have to show that for any	 andε∗ there is a constantc	,ε∗ such that (4.3) holds for
anyh. Here, we further assume that the boundary of	 contains a straight part and
thatW(F) � c|F |3 for large|F |. As in the two-dimensional case, we need only
consider cubes of size(0, h)3, with one face on the boundary of	. The argument
for one cube is based on the well-known fact that a gradient vector field which
is a rotation almost everywhere is a constant rotation (in a connected set). More
precisely,

Lemma 7. Let fj be equibounded inW1,n(	,Rn), with 	 an open, bounded,
Lipschitz subset ofRn, and satisfy

∫
	

dist(∇fj , SO(n))→ 0. (4.4)

Then, there is one matrixR ∈ SO(n) such that, for a subsequence,

∫
	

∣∣∇fj − R
∣∣n→ 0. (4.5)
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Proof. We follow closely the proof of Theorem 2.4 of [31] (see also [20]). Since
fj is equibounded inW1,n, there is a subsequence weakly converging tof ∈ W1,n.
The polyconvex function

g(F ) = |F |n − nn/2 detF (4.6)

is nonnegative and vanishes only on matrices which are scalar multiples of matrices
in SO(n) (by isotropy it is enough to consider diagonal matrices, the result follows
from the arithmetic-geometric mean inequality). Sinceg(∇fj ) → 0 in L1, by
weak lower semicontinuityg(∇f ) = 0 a.e. Since

∫
det∇fj is continuous, we get

|∇fj | → |∇f | in Ln, hence convergence is strong, and∇f ∈ SO(n) a.e. Now we
show that∇f ∈ SO(n) a.e. implies that∇f is constant. For any gradient field,
div cof∇f = 0. But cof∇f = ∇f , hence div∇f = Ff = 0, i.e.,f is harmonic
and smooth. Moreover,

F|∇f |2 = (fk,j fk,j ),ii = 2fk,iij fk,j + 2fk,ij fk,ij . (4.7)

But the left-hand side is zero because|∇f |2 = n, and the first term in the right-
hand side is zero becausef is harmonic. It follows that the last term, 2|∇2f |2, also
vanishes, hencef is affine.

With this result, we can now prove the following

Lemma 8. LetQh = (0, h)3, ε∗ > 0, and assume thatW(F) � c|F |3 for large
|F |. Then, there is a positive constantcε∗ such that ifφ : Qh→ R

3 obeysφ1 = 0,
φ2 = x2 on {0} × (0, h)2, then∫

Qh

W3D (∇φ) � cε∗h
3. (4.8)

Proof. The statement is invariant under rescaling inh. Hence we takeh = 1,
and proceed by contradiction. If the thesis is false, there is a sequenceφj which
obeys the boundary conditions such thatW3D(∇φj )→ 0 in L1(Q1). Then,φj is
equibounded inW1,3, and dist(∇φj , (1+ ε∗)O(3))→ 0. By Lemma 7 there is a
subsequence such that

∇φj → (1+ ε∗)R in L3(Q1), (4.9)

withR ∈ SO(3)a fixed rotation. By the trace theorem the boundary condition holds
also for the limit. This impliesR12 = R13 = R23 = 0, andR22 = 1/(1+ ε∗).
But this is a contradiction, since the only triangular matrix inSO(3) is the identity
(modulo sign changes of the diagonal elements).

From the previous lemma it follows immediately that, if∂	 has a straight part
γ ⊂ ∂	, then for small enoughh anyφ which obeys the boundary condition (4.2)
has

1

h

∫
	×(0,h)

W3D(∇φ)d3x � cε∗ |γ |h, (4.10)
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where the constantcε∗ depends only onε∗. This concludes the proof in the simplified
case.

In order to include the dependence onε∗, we use the quantitative version of
Lemma 7 proved in [13,14]. We state here their result in the case of Lipschitz
domains of the special form we need.

Proposition 1 ([13,14]). Letf : Rn−1→ R be a Lipschitz function with Lipschitz
constantL, and let

Uf,h =
{
(x1, x̄) ∈ R

n : f (x̄) < x1 < f (x̄)+ h, x̄ ∈ (0, h)n−1
}
. (4.11)

Then, there is a constantcL, depending only on the Lipschitz constantL of f and
on the dimensionalityn, such that for anyu : Uf,h→ R

n,

inf
Q∈SO(n)

∫
Uf,h

|∇u−Q|2 � cL

∫
Uf,h

dist2(∇u, SO(n)). (4.12)

In order to keep the dependence onε∗ explicit, we shall need to partitionUf,h,
which has dimensionsσ × σ × h, into subsets which have characteristic size of
orderh in all directions, and then apply the Proposition above to each of them.
Given a real functionf with Lipschitz constantL, we consider domains of the
form?f [(0, σ )2] × (0, h), where

?f (z) = (z1+ f (z2), z2). (4.13)

Lemma 9. Letφ : ?[(0, σ )2] × (0, h)→ R
3 obey the boundary condition

|φ(x)− x| � 1
4hε

1/2∗ for x ∈ ?[{0} × (0, σ )] × (0, h). (4.14)

Then ∫
?[(0,σ )2]×(0,h)

W
ε∗
3D(∇φ) � cLσ

2ε
5/2∗ , (4.15)

wherecL depends only on the Lipschitz constantL of f .

Proof. As in the two-dimensional case, the statement is invariant under the rescal-
ing φ̃(x) = σφ(σx), hence we need only consider the caseσ = 1. We argue by
contradiction, and assume that there are sequencesεj , φj andfj such that

ε
−5/2
j

∫
?j [(0,1)2]×(0,ε1/2

j )

W
εj
3D(∇φj )→ 0, (4.16)
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Fig. 4. Domain used in the proof of Lemma 9. The crosses mark the points in the transformed
grid?f (Gj ). The two hatched areas represent two neighboring domainsCr andCr ′ , (with

(r, r ′) ∈ GNN
j

), which overlap over half of their area.

with |φj − x| � ε
1/2
j /4 on the left boundary. Fora ∈ (0,3/4)2, letCa = ?j

[
a +

(
0, ε1/2

j

)2
]
. By the quantitative Reshetnyak estimate of Proposition 1 applied to

the domainCa × (0, ε1/2
j ), for everya there is a rotationQa,j ∈ SO(3) such that∫

Ca×(0,ε1/2
j )

|∇φj − (1+ εj )Qa,j |2 � cL

∫
Ca×(0,ε1/2

j )

W
εj
3D(∇φj ). (4.17)

Let Gj be a square grid with spacing12ε
1/2
j in (0, 1

2)
2 andGNN

j be the set of all

nearest–neighbor pairs inGj × Gj , respectivelyGj = (0, 1
2)

2 ∩ 1
2ε

1/2
j Z

2 and

GNN
j = {(r, r ′) ∈ G2

j : |r − r ′| = 1
2ε

1/2
j }. Then, since if(r, r ′) ∈ GNN

j the two
domainsCr andCr ′ overlap in half of their area (see Fig. 4) and each point is
covered by at most 4 of them, we get

1

εj

∑
(r,r ′)∈GNN

j

|Qr,j −Qr ′,j |2 � cε
−5/2
j

∫
?j [(0,1)2]×(0,ε1/2

j )

W
εj
3D(∇φj )→ 0.

(4.18)

By the discrete Sobolev embedding (see Lemma 10 below for details) there is a
unique matrixQj such that

1

εj

∑
r∈Gj

|Qr,j −Qj |4 � c


 1

εj

∑
(r,r ′)∈GNN

j

|Qr,j −Qr ′,j |2



2

→ 0. (4.19)

SinceQr,j ∈ SO(3) for all r, we can further assumeWj ∈ SO(3). Now define
ψj : ?j [(0, 1

2)
2] → R

3 as the average ofφj overx3,

ψj (x1, x2) = 1

ε
1/2
j

∫ ε
1/2
j

0
φj (x1, x2, x3)dx3. (4.20)
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Then, by (4.17) in each domainCa we have

ε
1/2
j

∫
Ca

|∇ψj − (1+ εj )Qa,jP
T |2 �

∫
Ca×(0,ε1/2

j )

|∇φj − (1+ εj )Qa,j |2

� c

∫
Ca×(0,ε1/2

j )

W
εj
3D(∇φj ), (4.21)

whereP = e
(2)
1 ⊗ e

(3)
1 + e

(2)
2 ⊗ e

(3)
2 is the canonical immersion ofR3 into R

2.
We proceed as in Lemma 1, and defineψ ′j = PQT

j ψj as the projection ofψj on
the plane which better approximates the surface described byψj itself. Then, since
∇ψj is close to(1+ εj )Qa,j , ∇ψ ′j = PQT

j ∇ψj is close to(1+ εj )SO(2). More

precisely, for allr ∈ Gj and allx ∈ Cr × (0, ε1/2
j ), we get

dist(∇ψ ′j , (1+ εj )SO(2)) � |∇ψ ′j − (1+ εj )PQ
T
j Qr,jP

T | (4.22)

+ (1+ εj )dist(PQT
j Qr,jP

T , SO(2))

� |∇ψj − (1+ εj )Qr,jP
T | + (1+ εj )|Qj −Qr,j |2,

where the last term has been estimated using Lemma 11. Now we square (4.22),
integrate overx ∈ Cr×(0, ε1/2

j ) and sum overr ∈ Gj . Using (4.16), (4.19), (4.21),
we see that

1

ε2
j

∫
?j [(0,1)2]

dist2(∇ψ ′j , (1+ εj )SO(2))→ 0 (4.23)

asεj → 0. This is exactly equivalent to (2.14). It is also clear from (4.14) thatψj
obeys the same boundary conditions as in the two-dimensional case. The proof is
then concluded as in Lemma 1.

We are now ready to prove the global lower bound.

Proof of Theorem 3. The proof is almost identical to that of Theorem 1. The only
difference is in the caseh � σ0ε

1/2∗ . Then, (2.21) should be replaced by

I
h,ε∗
3D [φ,	] �

�h/σ0ε
1/2∗ �∑

i=1

I
σ0ε

1/2∗ ,ε∗
3D [φ(i), 	] � cL|∂	|σ0ε

2∗, (4.24)

whereφ(i) represents the restriction ofφ to thei-th slice of thicknessσ0ε
1/2∗ . The

boundary condition (4.2) gives then (4.14) on each slice, provided that we choose
c′	 � σ0/4.

We finally present a short proof of the discrete Sobolev embedding used to
obtain (4.19).
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Lemma 10. LetAN = [1, N ]∩Z denote the positive integers from 1 toN . For any
fr : AN × AN → R

n, there isf̄ ∈ R
n such that

∑
r∈A2

N

|fr − f̄ |4 � cN2



∑

r,r′∈A2
N

|r−r′|=1

|fr − fr ′ |2




2

, (4.25)

wherec depends only onn.

This Lemma can be obtained as a direct consequence of the usual embedding
of W1,2 into L4, using multilinear finite elements. For variety we include a self-
contained discrete proof.

Proof. We first prove the one-dimensional version of (4.25),

N∑
i=1

|fi − f̄ |4 � N3

(
N−1∑
i=1

|fi − fi+1|2
)2

. (4.26)

For anyi andk, |fi − fk| �∑N−1
j=1 |fj − fj+1|. Since the bound does not depend

onk, the same holds for|fi − f̄ |, wheref̄ is the average. We get therefore

|fi − f̄ | �
N−1∑
j=1

|fj − fj+1| �

N N−1∑

j=1

(fj − fj+1)
2




1/2

. (4.27)

Taking the fourth power and summing overi gives (4.26).
To prove (4.25) we need some notation. Letf̄i , be the average offi,j overj ,

f̄ ′j the average overi, andf̄ the average over bothi andj . Then,

|fi,j − f̄ |2 � c|fi,j − f̄i |2+ c|f̄i − f̄ |2
� cN

∑
j

|fi,j − fi,j+1|2+ cN
∑
i

|f̄i − f̄i+1|2, (4.28)

where we have used (4.27) twice. The last term is bounded by

N
∑
i

|f̄i − f̄i+1|2 = N
∑
i

∣∣∣∣∣∣
1

N

∑
j

fi,j − fi+1,j

∣∣∣∣∣∣
2

�
∑
i,j

∣∣fi,j − fi+1,j
∣∣2 = F.

(4.29)

The first term in the right-hand side of (4.28) depends only oni, and its sum over
i is alsoNF. An analogous estimate can be obtained using averages overj , and
it results in a bound which depends only onj . Multiplying the two, and summing
overi andj , we prove the thesis.
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4.2. Upper bound

In this section we prove the upper bound in the case of three-dimensional
elasticity. The proof is based on the previous two-dimensional result, which is
extended to 3D with the usual F¨oppl-von Kármán ansatz, as was done, e.g., in
Appendix B of [8] for the (in-plane) geometrically linear case.

Theorem 4 (Upper bound, 3D). Let	 ⊂ R
2 be a bounded piecewiseC4 domain.

Then, there is a constantc	 such that, for anyε∗ ∈ (0,1) and sufficiently smallh,
there isφ : 	× (0, h)→ R

3 such thatφ(x) = x on (∂	)× (0, h) and

1

h

∫
	×(0,h)

W3D(∇φ)d3x � c	ε
3/2∗ h. (4.30)

Proof. Let ψ : 	 ⊂ R
2 → R

3 be the two-dimensional deformation defined in
Theorem 2, and letν be the normal to the surface generated byψ . We constructφ
with the usual F¨oppl-von Kármán ansatz,

φ(x1, x2, x3) = ψ(x1, x2)+ z3ν(x1, x2), (4.31)

wherez3 = (1+ ε∗)(x3 − h/2) is the distance to the mid-plane in the reference
configuration, rescaled to its equilibrium value. Then,

∇φ = (∂1ψ |∂2ψ |(1+ ε∗)ν)+ z3(∂1ν|∂2ν|0), (4.32)

where(α|β|γ ) denotes the matrix whose columns areα, β andγ . Moreover,

∇φT∇φ − (1+ ε∗)Id3 = ∇ψT∇ψ − (1+ ε∗)Id2+ z3(∇ψT∇ν
+ ∇νT∇ψ)+ z2

3∇νT∇ν, (4.33)

where 2×2 matrices are extended to 3×3 by including zeroes. We note that∇ψT

is close to a projection to the plane tangent to the graph ofψ , hence it does not
change the norm of∇ν by more than a factor. More precisely, from

|∇ψT∇ν| � |∇ψT ||∇ν| (4.34)

we deduce∣∣∣∇φT∇φ − (1+ ε∗)Id3

∣∣∣2 � 2
∣∣∣∇ψT∇ψ − (1+ ε∗)Id2

∣∣∣2
+ 4z2

3|∇ψ |2|∇ν|2+ 2z4
3|∇ν|4 (4.35)

which gives

W3D(∇φ) � cW2D(∇ψ)+ cz2
3|∇ν|2+ cz4

3|∇ν|4. (4.36)

The last term can be absorbed in the last but one term, since|z3| � σε
1/2∗ and in

our constructionσ |∇ν| is bounded.
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Appendix A. Distance of projected gradients from SO(n)

For the convenience of the reader we now include a proof of two estimates
which have been used to establish the lower bounds. More precisely, Lemma 12
has been used in the two-dimensional lower bound to obtain (2.13), and Lemma 11
has been used in the three-dimensional lower bound to obtain (4.22). We start with
some notation. Let{e(n)i }i=1,...,n be the canonical basis ofR

n. The nonnegative real

numbers{λ(F)i }i=1,... ,n denote the singular values of then×nmatrixF , i.e.,
(
λ
(F)
i

)2
are the eigenvalues ofFT F . Everyn × n matrix can be written asF = QI1Q′,
whereQ, Q′ ∈ SO(n), 1 = diag(λ(F)1 , . . . , λ

(F )
n ), andI = Idn if detF � 0,

I = diag(−1,1, . . . ,1) otherwise. The distance of a matrixF from a setK is
defined by

dist2(F,K) = inf
G∈K |F −G|2, (A.1)

where| · | denotes the matrix norm,|F |2 = Tr FT F =∑F 2
ij .

The distance of a matrix from the setO(n) of the orthogonal ones can be
represented in terms of its singular values,

dist2 (F,O(n)) =
∑
i

(
λ
(F)
i − 1

)2
. (A.2)

By rotational invariance it is enough to prove (A.2) for diagonal matricesF =
diag(λ(F)1 , . . . , λ

(F )
n ). Then, for anyQ ∈ O(n), we have

|F −Q|2 = |F |2+ |Q|2− 2
∑
i

λ
(F )
i Qii . (A.3)

The first two terms do not depend on the choice ofQ, the last one is clearly
minimized byQ = Idn. This concludes the proof of (A.2). The same argument
shows that

dist(F,O(n)) = dist(F, SO(n)) for all F such that detF � 0. (A.4)

Further, we claim that

dist(F, SO(n)) � 1 for all F such that detF � 0. (A.5)

If detF = 0 at least one of the singular values vanishes, hence (A.2) is at least 1.
If detF < 0, takeQ ∈ SO(n) and consider the matricesFµ = µF + (1− µ)Q.
Clearly |Fµ − Q| = µ|F − Q|. By continuity there isµ∗ ∈ (0,1) such that
detFµ∗ = 0. But then|F −Q| = |Fµ∗ −Q|/µ∗ � 1. This concludes the proof of
(A.5).

Finally, from the definition of the singular values it is immediately seen that

|FT F − Idn|2 =
n∑

i=1

((
λ
(F)
i

)2− 1

)
(A.6)
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which implies

dist(F, SO(n)) � dist(F,O(n)) �
∣∣∣FT F − Idn

∣∣∣ � (1+ |F |)dist(F,O(n)).

(A.7)

We are now ready to state our first result, which regards the distance fromSO(2)
of the projection of matrices close toSO(3). Since the proof does not depend on
the dimensionality, we state it for generaln.

Lemma 11. LetR ∈ SO(n), andP =∑n−1
i=1 e

(n−1)
i ⊗ e

(n)
i . Then,

dist
(
PRPT , SO(n− 1)

)
�
∣∣∣(R − Idn)P

T
∣∣∣2 � |R − Idn|2. (A.8)

Proof. First observe that

dist(PRPT , SO(n− 1)) � |PRPT − Idn−1| � |(R − Idn)P
T | (A.9)

sinceP is a projection operator andP IdnP T = Idn−1. This concludes the proof of
the Lemma if the right-hand side is larger than 1. Otherwise, (A.9) and (A.5) imply
that detPRPT � 0. Then, by (A.4) we get

dist
(
PRPT , SO(n− 1)

)
= dist

(
PRPT ,O(n− 1)

)
�
∣∣∣∣(PRPT

)T (
PRPT

)
− Idn−1

∣∣∣∣. (A.10)

But PT P = Idn − e
(n)
n ⊗ e

(n)
n , andRT R = Idn. Hence(

PRPT
)T (

PRPT
)
= P IdnP

T − (PRT e(n)n )⊗ (PRT e(n)n ) (A.11)

which gives

dist
(
PRPT , SO(n− 1)

)
�
∣∣∣PRT e(n)n

∣∣∣2 = ∣∣∣P(RT − Idn)e
(n)
n

∣∣∣2
�
∣∣∣(R − Idn)P

T
∣∣∣2 (A.12)

sinceP Idne
(n)
n = 0.

We now consider the projection of the 3× 2 matrix∇ψ which arises in the
two-dimensional problem. GivenF ∈ M3×2, the normal to the plane generated by
F is

νF = F1 ∧ F2

|F1 ∧ F2| , (A.13)

whereFi = Fe
(2)
i . If the denominator vanishes, i.e.,F1 andF2 are linearly depen-

dent, we can take asνF any unit vector orthogonal to both. Then, the following
estimate holds:
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Lemma 12. There is a constantc such that, for anyF ∈ M3×2, one has

dist(PF, SO(2)) � c

[
dist(F,O(2,3))+

∣∣∣νF − e
(3)
3

∣∣∣2] , (A.14)

whereP = e
(2)
1 ⊗ e

(3)
1 + e

(2)
2 ⊗ e

(3)
2 .

Proof. Since dist(PF, SO(2)) � 2+|PF | � 4+dist(F,O(2,3)), we only need

to consider the case dist(F,O(2,3))+ ∣∣νF − e
(3)
3

∣∣2 � 1. This implies

detPF = det(F1|F2|e3) = F1 ∧ F2 · e3 = |F1 ∧ F2| νF · e3 � 1
2|F1 ∧ F2|,

(A.15)

where in the last step we usedνF · e3 = 1− 1
2|νF − e3|2 � 1

2. SincePT P =
Id3− e

(3)
3 ⊗ e

(3)
3 , in analogy to (A.10)–(A.12) and using (A.4) we get

dist(PF, SO(2)) = dist(PF,O(2)) �
∣∣∣FT P T PF − Id2

∣∣∣
�
∣∣∣FT F − Id2

∣∣∣+ ∣∣∣FT e
(3)
3

∣∣∣2 . (A.16)

But |FT e
(3)
3 | � |F ||νF − e

(3)
3 | � 3|νF − e

(3)
3 |, and the proof is concluded.
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