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Abstract

We construct rapidly oscillating H¨older continuous coefficients for which the
corresponding 1-dimensional wave equation lacks the classical observability prop-
erty guaranteeing that the total energy of solutions may be bounded above by the
energy localized in an open subset of the domain where the equation holds, if the
observation time is large enough. The coefficients we build oscillate arbitrarily fast
around two accumulation points. This allows us to build quasi-eigenfunctions for
the corresponding eigenvalue problem that concentrate the energy away from the
observation region as much as we wish. This example may be extended to several
space dimensions by separation of variables and illustrates why the well-known
controllability and dispersive properties for wave equations with smooth coeffi-
cients fail in the class of H¨older continuous coefficients. In particular we show that
for such coefficients no Strichartz-type estimate holds.

1. Introduction and main result

Let us consider the following variable coefficient 1-dimensional wave equation

ρ(x)utt − uxx = 0, 0< x < 1, 0< t < T,
u(0, t) = u(1, t) = 0, 0< t < T,
u(x,0) = u0(x), ut (x,0) = u1(x), 0< x < 1.

(1.1)

We assume thatρ is measurable and that it is bounded above and below by finite,
positive constants, i.e.,

0< ρ0 � ρ(x) � ρ1 <∞ a.e.x ∈ (0,1). (1.2)

Under these conditions system (1.1) is well posed in the sense that for any pair of
initial data(u0, u1) ∈ H 1

0 (0,1)× L2(0,1) there exists a unique solution

u ∈ C
(
[0, T ]; H 1

0 (0,1)
)
∩ C1

(
[0, T ]; L2(0,1)

)
. (1.3)
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Moreover, the energy of solutions

E(t) = 1
2

∫ 1

0

[
ρ(x) | ut (x, t) |2 + | ux(x, t) |2

]
dx (1.4)

is constant in time. Whenρ ∈ BV (0,1), the following observability properties are
known to hold:

1. Boundary observability: If T >
√
ρ1, there existsC(T ) > 0 such that

E(0) � C
∫ T

0

[
|ux(0, t)|2 + |ux(1, t)|2

]
dt (1.5)

for every solution of (1.1).

2. Internal observability: For any subinterval(α, β) ⊂ (0,1), if T > 2
√
ρ1

max(α,1− β), there existsC > 0 such that

E(0) � C
∫ T

0

∫ β
α

[
ρ(x)u2

t + u2
x

]
dxdt (1.6)

for every solution of (1.1).

These results may be proved easily using sidewise energy estimates for the wave
equation in which the role of space and time are interchanged. We refer to [6] for
the details of the proof. These observability estimates are relevant in the context of
controllability. In fact they are equivalent to the controllability of the system with
controls acting on the boundary or in the interior of the domain respectively (see
[10]).

For a long time the problem of whether these estimates do hold for less regular
coefficients (sayρ ∈ L∞(0,1) orρ ∈ C([0,1])) has been open. In [1] the problem
of homogenization was considered. It was shown that, for a suitableρ, due to con-
centration effects of high-frequency solutions, the constantC on the observability
inequalities (1.5), (1.6) blows up whenρ is replaced byρε(x) = ρ(x/ε)andε → 0.
This result shows that the constantC in (1.5), (1.6) does not only depend on the
lower and upper boundsρ0 andρ1 of ρ. The results in [1] were evidence of the
possible lack of observability for highly oscillatory density functionsρ. We refer
to [4] for an in-depth spectral analysis of the low frequencies. But, up to now, there
has been no proof of this negative result in the literature. In this paper we definitely
answer the question by the negative. More precisely, we prove that the following
holds:

Theorem 1. There exist H¨older continuous density functionsρ ∈ C0,s([0,1]) for
all 0< s < 1, for which(1.5)and(1.6)fail for all T > 0 and for every subinterval
(α, β) ⊂ (0,1) ((α, β) �= (0,1)).
Remark 1. 1. The density functions we build are in fact of classC∞ everywhere

in (0,1) except at the extremesx = 0 andx = 1 of the interval.
2. Obviously, the density functions we obtain are not of finite total variation. The

total variation blows up on the two extremesx = 0,1.
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3. A similar construction may be done by means of piecewise constant density
functions (see Remark 3).

4. In fact, given any smooth densityρ in [0,1], we can perturb it in a subinterval of
arbitrarily small length so that inequalities (1.5) and (1.6) fail for the new density
ρ̃. More precisely, given a smoothρ and a subinterval[x0, x1] of [0,1] we can
find a Hölder continuous functionε with support in(x0, x1) andL∞-norm of
arbitrarily small size, and such that the inequalities (1.5) and (1.6) fail for the
new densityρ̃ = ρ + ε.

The proof of Theorem 1 is based on an argument introduced byColombini &
Spagnolo in [5] in a different context that allows us to construct a densityρ for
which there exists a sequence of pairs(ϕk(x), λk) satisfying

ϕ′′k + λ2
kρ(x)ϕk = 0, (1.7)

and such thatϕk is exponentially concentrated on any given point of the closed
interval[0,1]. In fact we construct a double sequence so that part of it is concentrated
on x = 0, while the other one is concentrated onx = 1. Let us explain the main
idea behind this argument. We consider density functionsρ(x) which oscillate
more and more asx approaches the extremes of the interval[0,1]. The sequence
of pairs(ϕk(x), λk) is constituted by functionsϕk(x) which oscillate at the same
order asρ in a small region inside[0,1] close tox = 0 or x = 1. In this region a
resonance-type phenomenum occurs andϕk(x) becomes exponentially larger than
in the rest of the interval[0,1]. Note that (1.7) together with

ϕk(0) = ϕk(1) = 0 (1.8)

constitute the eigenvalue problem associated with (1.1). There is no reason for
the functionsϕk above, exponentially concentrated near the boundary, to satisfy
(1.8). However, by choosing in an appropriate way the point where the energy
concentrates, close to one of the extremesx = 0,1, the values ofϕk andϕ′k at
x = 0,1 may be guaranteed to be exponentially small. For this reason, these
functionsϕk are referred to as quasi-eigenfunctions. These quasi-eigenfunctions
allow us to construct a sequence of solutionsuk of (1.1) of the form

uk(x, t) = eiλktϕk(x)+ ṽk(x, t)
whereṽk(x, t) is a correction introduced to makeuk satisfy the boundary conditions.
The solutionsuk concentrate in the interior of(0,1) along the time and therefore
constitute an obstacle to the boundary observability. Recall that we are dealing with
a double sequence of quasi-eigenfunctions and therefore with a double familyuk
of solutions of (1.1), one of them being concentrated nearx = 0 while the other
one is concentrated nearx = 1. In this way we can guarantee that neither (1.5) nor
(1.6) hold, whatever the interval(α, β) ⊂ (0,1) ((α, β) �= (0,1)) happens to be.

The rest of the paper is organized as follows: in Section 2 we state two ordinary-
differential-equation lemmas introduced in [5] that we use to construct the density
ρ. In section 3 we build the pathological densityρ and the sequence of quasi-
eigenfunctions associated withρ. In Sections 4 and 5 we prove the lack of boundary
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and interior observability respectively for this choice ofρ. In Section 6 we extend
these results to the multi-dimensional case. In Section 7 we state the results on the
lack of controllability that can be derived from Theorem 1. Finally, in Section 8 we
comment on some related results. In particular we generalize our result to the case
where the variable coefficient is in the principal part of the operator in the wave
equation, and to the corresponding Schr¨odinger model.

2. Preliminary lemmas

In this section we recall the following two lemmas proved in [5].

Lemma 1. There exists̄ε > 0 such that, for allε ∈ (0, ε̄), it is possible to find two
even real functions,αε(x) andwε(x), of classC∞ onR, satisfying

w′′ε + αε(x)wε = 0,
wε(0) = 1, w′ε(0) = 0,

(2.1)

in such a way that

αε(x) is 1-periodic onx < 0 and onx > 0, (2.2)

αε(x) ≡ 4π2 in a neighborhood ofx = 0, (2.3)

|αε(x)− 4π2| � Mε, |α′ε(x)| � Mε, (2.4){
wε(x) = pε(x)e−ε|x|
for somepε(x) 1-periodic onx < 0 and onx > 0,

(2.5)

|wε | + |w′ε | + |w′′ε | � C, (2.6)∫ 1

0
wε(x)dx � γ ε, (γ > 0), (2.7)∫ 1

0
|wε |2dx � γ, (2.8)

whereM,C andγ are constants independent ofε.

Remark 2. As a consequence of (2.5), (2.1) and (2.7), we have in particular for all
integersn � 0,

wε(x) = e−ε|x|, w′ε(x) = 0, w′′ε (x) = −4π2e−ε|x|, for x = ±n. (2.9)

Remark 3. The parameterε in (2.1) allows us to introduce a family of coefficients
αε approaching a constant (see (2.4)), and for which we know explicitly the decay
rate of the solution of (2.1)wε as |x| → ∞ (see (2.5)). As we will see, this is
important in order to guarantee the H¨older continuity of the densityρ that we
construct in the next section.

Remark 4. For a fixedε > 0, Lemma 1 establishes the existence of a coefficient
α(x) and a solutionw(x) of

w′′ + α(x)w = 0,
w(0) = 1, w′(0) = 0,

(2.10)



Observability of Waves in Heterogeneous Media 43

←  ( w  x )
↓  α x( )

Fig. 1. Construction ofα andw satisfying (2.11).

satisfying

α(x) is 1-periodic onx < 0 and onx > 0{
w(x) = p(x)e−k|x|
for somep(x) 1-periodic onx < 0 and onx > 0 andk > 0.

(2.11)

Explicit examples of piecewise-constant functionsα and solutionswwith the above
properties may be built easily (see [1]). The main idea is to consider a periodic
coefficientα1 such that the solutionw1 of (2.10) withα = α1 satisfiesw1(x) =
p(x)e−kx for some 1-periodic functionp andk > 0. Letxs ∈ R be a point where
the solution satisfiesw′1(xs) = 0. Thenα2, w2, the even reflection ofα1 andw1
with respect toxs respectively, satisfies (2.10) andw2(x) = p(x)e−k|x−xs | with
p(x) periodic forx > xs andx < xs . Finally we can translateα2 andw2 in order
to have (2.11). This construction is illustrated in Fig. 1.

In [5] Lemma 1 is stated withαε being 2π -periodic.A straightforward change of
variables shows thatαε may be taken to be 1-periodic as well, as stated in Lemma 1.

Let us explain briefly the result in Lemma 1. If we restrict the first equation in
(2.1) toR

+ we obtain the Hill equation

w′′ + λq(x)w = 0, x ∈ R
+, λ ∈ R andq being 1-periodic.

It is well known that for any periodic functionq there exist some positive values
of λ for which this equation has a solution of the formw = p(x)e−ax wherep is
1-periodic anda > 0 (see [7]). The proof of Lemma 1 in [5] relies on a suitable
choice ofq, λ andw satisfying these properties. The values ofα andw for x < 0
are obtained by even extension. Note that the condition (2.3) assures the regularity
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of this extension. The explicit choice ofq, λ andw is as follows:

λ = 4π2,

q(x) = 1− 4εr(2πx) sin(4πx)+ 2εr ′(2πx) cos2(2πx)

− 4ε2r2(2πx) cos4(2πx),

w(x) = cos(2πx)exp

(
−2ε

∫ 2πx

0
r(s) cos2(s)ds

)
,

wherer(s) � 0 is a fixed 2π -periodic function, of classC∞, vanishing in a neigh-
borhood ofs = 0 and satisfying the conditions∫ 2π

0
r(s) cos2 s ds = 1

2,

∫ 2π

0
r(s) cos2 s sins ds > 0.

Lemma 2. Letφ(x) be a solution of the equation

φ′′ + h2a(x)φ = 0, x ∈ R,

whereh ∈ ZZ anda(x) is a strictly positive function of classC1, and let us consider
the energy functions

Eφ(x) = 4π2h2|φ(x)|2 + |φ′(x)|2,
Ẽφ(x) = h2a(x)|φ(x)|2 + |φ′(x)|2.

Then, for allt1 andt2, the following estimates hold:

Eφ(x2) � Eφ(x1)exp

∣∣∣∣h ∫ x2
x1

|4π2 − a(x)|dx
∣∣∣∣ , (2.12)

Ẽφ(x2) � Ẽφ(x1)exp

∣∣∣∣∫ x2
x1

|a′(x)|
a(x)

dx

∣∣∣∣ . (2.13)

To prove this result it is sufficient to differentiate the energy functions and to apply
Gronwall’s Lemma.

3. Construction of the density and the quasi-eigenfunctions

In this section we make the main construction of the paper. We build simul-
taneously the densityρ and the sequence of quasi-eigenfunctions that exhibit the
concentration effect we are looking for. Our construction is inspired by that in [5].
Let us consider the sequences

rj = 2−j , hj = 22Nj , εj = h−1
j (loghj )

2, (3.1)
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Fig. 2. Partition of the interval[0,1] in the subintervalsI±
j

.

whereN > 1 is a fixed, large enough integer (with respect to the constantM in
Lemma 1) so that the following inequalities hold:

εk � 1

2M
(3.2)

4M
k−1∑
j=1

εjhj rj � εkhkrk (3.3)

2M
∞∑

j=k+1

εj rj � εkrk. (3.4)

Note that such inequalities are true for largeN due to the following:{εk}k�2
is a decreasing sequence forN � 2 andε1 → 0 asN → ∞; the sequence
εjhj rj (εkhkrk)

−1 = (AN)j−k with AN converging to infinity asN → ∞ and
finally εj rj (εkrk)−1 = (δN)j−k for someδN → 0 for N → ∞. With this choice
of the sequencerk we define a partition of the interval(0,1):

(0,1/2] =
⋃
j�2

I−j , [1/2,1) =
⋃
j�2

I+j (3.5)

I−j =
(
m−j −

rj

2
,m−j +

rj

2

]
, I+j =

[
m+j −

rj

2
,m+j +

rj

2

)
, j � 2, (3.6)

m−j =
rj

2
+

∞∑
k=j+1

rk, m+j = 1−m−j , j � 2. (3.7)

We observe thatm±j is the center of the intervalI±j with lengthrj (see Fig. 1). The
super-index+ (respectively−) indicates that the interval is to the right (respectively
left) of x = 1/2. This notation conveniently distinguishes the two singularities, at
x = 0 andx = 1, of the density that we are going to construct.

Now, we define the densityρ as follows

ρ(x)=


αε2j (h2j (x −m−2j )) for x ∈ I−2j ,
αε2j+1(h2j+1(x −m+2j+1)) for x ∈ I+2j+1,

4π2 for x ∈ [0,1]\
(⋃

j�1(I
−
2j ∪ I+2j+1)

)
,

(3.8)
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whereαεj are the functions introduced in Lemma 1. The densityρ oscillates near
x = 0 andx = 1 but with different frequencies so that, in some sense, as we will
see, these two oscillations do not interact.

Note thatρ(x) ∈ C∞(0,1) becauseαε ∈ C∞(R) and

ρ(x) ≡ 4π2 in a neighborhood of the extremes ofI±j , (3.9)

since
hj rj

2 is an integer and properties (2.2) and (2.3) hold. On the other hand,
ρ(x) ∈ C0,s([0,1]) for all 0< s < 1. Indeed, by (2.2) and the bound (2.4) for|α′ε |
we have

|αεj |C0,s (R) = max
x,y∈R

|αεj (x)− αεj (y)|
|x − y|s � max

x,y∈[0,1]
|αεj (x)− αεj (y)|

|x − y|s
� Mεj max

x,y∈[0,1] |x − y|
1−s � Mεj (3.10)

for 0< s < 1. Note that here| · |C0,s (R) represents the H¨older semi-norm. Therefore

|ρ|C0,s (I±j )
� Mεjhsj for 0< s < 1. (3.11)

The term on the right is uniformly bounded inj in view of (3.1), i.e.,

sup
j

εjh
s
j <∞ for 0< s < 1. (3.12)

From (3.9)–(3.12) we conclude thatρ(x) ∈ C0,s([0,1]) for all s < 1. In fact, if we
defineIx as the interval of the family{I±j }j�2 such thatx ∈ Ix andlx, rx are the
left and right extremes ofIx respectively, then

max
x,y∈[0,1]

|ρ(x)− ρ(y)|
|x − y|s � max

0�x�y�1

|ρ(x)− ρ(rx)| + |ρ(ly)− ρ(y)|
|x − y|s

� max
x∈[0,1]

|ρ(x)− ρ(rx)|
|x − rx |s + max

y∈[0,1]
|ρ(ly)− ρ(y)|
|ly − y|s

� 2 sup
j�2

|ρ|C0,s (I±j )
.

Here we have used the fact that, in view of (3.9),ρ(rx) = ρ(ly).
Finally, we observe thatρ is bounded above and below with positive constants

in view of (2.4) and (3.2). In fact we have

2π2 � ρ(x) � 8π2. (3.13)

Let us define two sequences of quasi-eigenfunctions{ϕ−2j }j�1 and{ϕ+2j+1}j�1 as
the solutions of the following initial value problems:

(ϕ−2j )′′ + h2
2j ρ(x)ϕ

−
2j = 0, 0< x < 1,

ϕ−2j (m
−
2j ) = 1, (ϕ−2j )′(m

−
2j ) = 0

(3.14)

(ϕ+2j+1)
′′ + h2

2j+1ρ(x)ϕ
+
2j+1 = 0, 0< x < 1,

ϕ+2j+1(m
+
2j+1) = 1, (ϕ+2j+1)

′(m+2j+1) = 0.
(3.15)
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These are simply quasi-eigenfunctions since the boundary conditions atx = 0,1
are not necessarily fulfilled. For example, there is no reason forϕ−2j to vanish either

at x = 0 or atx = 1. However, we will see thatϕ−2j is mainly concentrated in

the interior ofI−2j so that the values ofϕ−2j at x = 0,1 are exponentially small.

This justifies referring toϕ−2j as quasi-eigenfunctions in the sense that the missing

boundary conditions are almost satisfied. The same argument applies toϕ+2j+1. To

see thatϕ−2j is concentrated in the interior ofI−2j we observe that it satisfies

(ϕ−2j )′′ + h2
2jαε2j (h2j (x −m−2j ))ϕ−2j = 0, x ∈ I−2j ,

ϕ−2j (m
−
2j ) = 1, (ϕ−2j )′(m

−
2j ) = 0.

(3.16)

Therefore,

ϕ−2j (x) = wε2j (h2j (x −m−2j )), (3.17)

wherewε2j is the function in Lemma 1 associated withαε2j . Combining Remark 2
and the fact thath2j r2j /2 are integers we deduce that∫

I−2j
|ϕ−2j (x)|2dx =

1

h2j
,

∫ r2j h2j

−r2j h2j

|wε2j (s)|2ds � 1

h2j

∫ 1

0
|wε2j (s)|2ds

�
γ 2ε2

2j

h2j
� C

h3
2j

, (3.18)

∣∣∣ϕ−2j (m−2j − r2j2 )
∣∣∣2 + ∣∣∣(ϕ−2j )′(m−2j − r2j2 )

∣∣∣2 = e−ε2j h2j r2j , (3.19)∣∣∣ϕ−2j (m−2j + r2j2 )
∣∣∣2 + ∣∣∣(ϕ−2j )′(m−2j + r2j2 )

∣∣∣2 = e−ε2j h2j r2j , (3.20)

i.e., theL2 norm ofϕ−2j in I−2j is of the orderh−3
2j but exponentially larger than the

values ofϕ−2j at the extremes ofI−2j in the sense thath3
2j e

−ε2j h2j r2j � Cph−p2j for
all p > 0. In fact, for anyp > 0,

h
p
j e

−εj hj rj = hpj h
−rj log(hj )
j = hp−2−j+Nj log(2)

j → 0 asj →∞. (3.21)

Roughly speaking, we have checked thatϕ−2j is concentrated in the interior ofI−2j .
Now, we might expect the energy ofϕ−2j to still be small outsideI−2j . We claim that

this is the case, i.e.,ϕ−2j is small atx = 0,1. The analyses we shall make at the
extremes (x = 0 andx = 1) will in differ in nature. Therefore, at this point we
divide our analysis into these two cases.

Analysis at x = 0: We estimate, forx � m−2j − r2j /2, the energy function

Eϕ−2j
(x) = 4π2h2

2j

∣∣∣ϕ−2j (x)∣∣∣2 + ∣∣∣(ϕ−2j )′(x)∣∣∣2 . (3.22)
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In view of (3.19) we have

Eϕ−2j

(
m−2j −

r2j

2

)
� 4π2h2

2j e
−ε2j h2j r2j . (3.23)

On the other hand, taking (2.12) into account, the definition ofρ in (3.8) and the
estimate forαε in (2.4), we have

Eϕ−2j
(x) � Eϕ−2j

(
m−2j −

r2j

2

)
exp

(
4π2h2

2j

∫ m2j−r2j /2

x

|4π2 − ρ|
)

� Eϕ−2j
(
m−2j −

r2j

2

)
exp

4π2Mh2j

∞∑
k=j+1

ε2kr2k

.
This last term can be estimated with the aid of (3.4) and (3.23) and therefore

Eϕ−2j
(x) � Eϕ−2j

(
m−2j −

r2j

2

)
exp

4π2Mh2j

∞∑
k=j+1

ε2kr2k


� 4π2h2

2j exp

(
−h2j ε2j r2j + h2j ε2j r2j

2

)
� 4π2h2

2j exp

(
−h2j ε2j r2j

2

)
� 4π2h2

2j exp
(
−2−2j−1(logh2j )

2
)

for all x � m−2j − r2j . Hence∣∣∣ϕ−2j (x)∣∣∣2 + ∣∣∣(ϕ−2j )′(x)∣∣∣2 � Cph−p2j ∀p > 0, ∀x � m−2j − r2j /2. (3.24)

In particular (3.24) holds forx = 0.

Analysis atx = 1: Here we first estimate, form−2j+r2j /2 � x � m+2j+1−r2j+1/2,
the energy function

Ẽϕ−2j
(x) = h2

2j ρ(x)

∣∣∣ϕ−2j (x)∣∣∣2 + ∣∣∣(ϕ−2j )′(x)∣∣∣2 . (3.25)

In view of (3.19) we have

Ẽϕ−2j

(
m−2j +

r2j

2

)
� 4π2h2

2j e
−ε2j h2j r2j . (3.26)

On the other hand, we get, by the aid of Lemma 2 (estimate (2.13)), the definition
of ρ in (3.8), the estimate forα′ε in (2.4) and the fact thatρ(x) � 2π2:

Ẽϕ−2j
(x) � Ẽϕ−2j

(
m−2j +

r2j

2

)
exp

(∫ x
m−2j+r2j /2

|ρ′(s)|
|ρ(s)| ds

)

� Ẽϕ−2j
(
m−2j +

r2j

2

)
exp

M 2j−1∑
k=1

εkrkhk

.
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This last term can be estimated with (3.26) and (3.19) and therefore

Ẽϕ−2j
(x) � h2

2j exp
(−h2j ε2j r2j + 1

4h2j ε2j r2j
) = h2

2j exp
(−3

4h2j ε2j r2j
)

for all x ∈ [m−2j−r2j /2,m+2j+1−r2j+1/2]. In particular, taking (3.13) into account,
we have

Eϕ−2j
(m+2j+1 − 1

2r2j+1) � 2Ẽϕ−2j
(m+2j+1 − 1

2r2j+1)

� 2h2
2j exp

(−3
4h2j ε2j r2j

)
.

Forx � m+2j+1 − r2j+1/2 we use the energy function (3.22),

Eϕ−2j
(x) � Eϕ−2j (m

+
2j+1 − 1

2r2j+1)exp

4π2Mh2j

∞∑
k=j
ε2k+1r2k+1


� 2h2

2j exp
(−3

4h2j ε2j r2j + 1
2h2j ε2j r2j

)
� 2h2

2j exp
(−1

4h2j ε2j r2j
)

� 2h2
2j exp

(
−2−2j−2(logh2j )

2
)

for all x � m+2j+1 − r2j+1/2. Therefore∣∣∣ϕ−2j (x)∣∣∣2 + ∣∣∣(ϕ−2j )′(x)∣∣∣2 � Cph−p2j ∀p > 0, ∀x � m+2j+1 − 1
2r2j+1, (3.27)

which holds in particular forx = 1.
We have proved the existence of a sequence of quasi-eigenfunctionsϕ−2j con-

centrated in the interior ofI−2j , i.e., a sequence of solutions of (3.16) which satisfy∫
I−2j
|ϕ−2j (x)|2dx � C

h3
2j

, (3.28)

∣∣∣ϕ−2j (0)∣∣∣2 + ∣∣∣(ϕ−2j )′(0)∣∣∣2 � Cph−p2j ∀p > 0, (3.29)∣∣∣ϕ−2j (1)∣∣∣2 + ∣∣∣(ϕ−2j )′(1)∣∣∣2 � Cph−p2j ∀p > 0, (3.30)∫ β
α

[
|(ϕ−2j )′(x)|2 + h2

2j |ϕ−2j (x)|2
]
dx � Cph−p2j ∀p > 0, (3.31)

for all (α, β) ⊂ (0,1)with α �= 0 andj � J large enough to haveI−2j ∩ (α, β) = ∅
for all j � J . A similar result can be obtained forϕ+2j+1. More precisely,∫

I+2j+1

|ϕ+2j+1(x)|2dx � C

h3
2j+1

, (3.32)

∣∣∣ϕ+2j+1(0)
∣∣∣2 + ∣∣∣(ϕ+2j+1)

′(0)
∣∣∣2 � Cph−p2j+1 ∀p > 0, (3.33)∣∣∣ϕ+2j+1(1)

∣∣∣2 + ∣∣∣(ϕ+2j+1)
′(1)

∣∣∣2 � Cph−p2j+1 ∀p > 0, (3.34)∫ β
α

[
|(ϕ+2j+1)

′(x)|2 + h2
2j |ϕ+2j+1(x)|2

]
dx � Cph−p2j ∀p > 0, (3.35)
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for all (α, β) ⊂ (0,1)with β �= 1 andj � J large enough to haveI+2j+1∩(α, β) =
∅ for all j � J .

Remark 5. Let us describe how the claim of point 4 in Remark 1 may be proved.
First of all, note that the construction above (in this section) may be done with a
Hölder continuous densityε of arbitrarily small support[l1, l2], with an arbitrary
value ofε(l1) = ε(l2) and with‖ε(x) − ε(l2)‖L∞(l1,l2) arbitrarily small. On the
other hand, for a given smooth density functionρ and any subinterval[x0, x1] of
[0,1] we can find a smooth function̂ρ such that

ρ̂ =
{
ρc constant, in a compact set[l1, l2] ⊂⊂ (x0, x1),

ρ(x) in [0, x0] ∪ [x1,1].
We now chooseε as above withε(l2) = ρc and define

ρ̃ =
{
ε(x) in [l1, l2] ⊂⊂ (x0, x1),

ρ̂(x) in [0, l0) ∪ (l1,1].
In this way we obtain a H¨older continuous density functioñρ with localized quasi-
eigenfunctions within the interval[l1, l2] and such thatρ = ρ̃ outside[x0, x1], and
‖ρ − ρ̃‖L∞(0,1) is arbitrarily small.

4. Lack of boundary observability

In this section we prove that (1.5) fails for allT > 0 for the density functionρ
we have built in Section 3. Consider the sequence of quasi-eigenfunctions{ϕ−2j }j�1.
We can construct the following sequence of solutions of the first equation in (1.1)

vj (x, t) = eih2j tϕ−2j (x). (4.1)

Note thatvj does not satisfy the boundary conditions in (1.1) due to the fact that
ϕ−2j are not true eigenfunctions, i.e., they do not vanish atx = 0,1. However, we
can correctvj with a functioñvj in such a way that

uj = vj + ṽj (4.2)

satisfies all the equations in system (1.1). To this end we defineṽj as the unique
solution of

ρ(x)̃vtt − ṽxx = 0, 0< x < 1, 0< t < T,
ṽ(0, t) = −vj (0, t) = −eih2j tϕ−2j (0), 0< t < T,
ṽ(1, t) = −vj (1, t) = −eih2j tϕ−2j (1), 0< t < T,
ṽ(x,0) = ṽt (x,0) = 0, 0< x < 1.

(4.3)

In the rest of the section we prove that (1.5) fails for the sequenceuj , i.e.,

lim
j→∞

∫ 1
0

[|uj,x(x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

[|uj,x(0, t)|2 + |uj,x(1, t)|2] dt = ∞. (4.4)
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We first estimate the numerator in (4.4):∫ 1

0

[
|uj,x(x,0)|2 + ρ(x)|uj,t (x,0)|2

]
dx

=
∫ 1

0

[
|vj,x(x,0)|2 + ρ(x)|vj,t (x,0)|2

]
dx

=
∫ 1

0

[
|(ϕ−2j )′|2 + h2

2j ρ(x)|ϕ−2j |2
]
dx

� h2
2j ρm

∫ 1

0
|ϕ−2j |2dx � h2

2j ρm

∫
I−2j
|ϕ−2j |2dx. (4.5)

Concerning the denominator in (4.4) we have∫ T
0

[
|uj,x(0, t)|2 + |uj,x(1, t)|2

]
dt

� 2
∫ T

0

[
|vj,x(0, t)|2 + |vj,x(1, t)|2

]
dt

+ 2
∫ T

0

[
|̃vj,x(0, t)|2 + |̃vj,x(1, t)|2

]
dt

= 2T
[
|(ϕ−2j )′(0)|2 + |(ϕ−2j )′(1)|2

]
+ 2

∫ T
0

[
|̃vj,x(0, t)|2 + |̃vj,x(1, t)|2

]
dt. (4.6)

The last term can be estimated applying the following result:

Proposition 1. Consider the following system:

ρ(x)vtt − vxx = 0, 0< x < 1, 0< t < T,
v(0, t) = f1(t), v(1, t) = f2(t), 0< t < T,
v(x,0) = vt (x,0) = 0, 0< x < 1,

(4.7)

whereρ ∈ L∞(0,1), 0 < ρ0 � ρ(x) � ρ1 < ∞. GivenT > 0, there exists
C(T ) > 0 such that∫ T

0

∫ 1

0

[
|vx |2 + ρ(x)|vt |2

]
dxdt

� C(T )||ρ||∞
(
||f1||2W2,∞(0,T ) + ||f2||2W2,∞(0,T )

)
, (4.8)∫ T

0

[
|vx(0, t)|2 + |vx(1, t)|2

]
� C(T )||ρ||∞

(
||f1||2W3,∞(0,T ) + ||f2||2W3,∞(0,T )

)
. (4.9)
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We prove this proposition at the end of the section.
When applying Proposition 1 tõv in (4.6) we obtain∫ T
0

[
|uj,x(0, t)|2 + |uj,x(1, t)|2

]
dt

� 2C(T )h6
2j

[
|(ϕ−2j )′(0)|2 + |ϕ−2j (0)|2 + |(ϕ−2j )′(1)|2 + |ϕ−2j (1)|2

]
. (4.10)

Finally, combining (4.5), (4.10) and the estimates forϕ−2j of the previous section
we easily obtain∫ 1

0

[|uj,x(x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

[|uj,x(0, t)|2 + |uj,x(1, t)|2] dt �
h−1

2j ρmC

2T (1+ h6
2j )Cph

−p
2j

which converges to infinity forj →∞ andp > 7.

Remark 6. The lack of boundary observability that we have proved above relies on
the existence of a unique sequence of quasi-eigenfunctions

{
ϕ−2j
}
j�1. Therefore, the

double sequence of eigenfunctions
{
ϕ−2j
}

and
{
ϕ+2j−1

}
j�1 constructed in Section 3

is not necessary here. It will be used later to prove the lack of interior observability.

Proof of Proposition 1. We introduce

h(x, t) = (1− x)f1(t)+ xf2(t). (4.11)

Then,

w(x, t) = v(x, t)− h(x, t) (4.12)

satisfies

ρ(x)wtt − wxx = −ρ(x) [(1− x)f ′′1 (t)+ xf ′′2 (t)] , 0< x < 1, 0< t < T,
w(0, t) = w(1, t) = 0, 0< t < T,
w(x,0) = − [(1− x)f1(0)+ xf2(0)] , 0< x < 1,
wt (x,0) = − [(1− x)f ′1(0)+ xf ′2(0)] , 0< x < 1.

(4.13)

Classical estimates on non-homogeneous wave equations show that∫ T
0

∫ 1

0

[
|wx |2 + ρ(x)|wt |2

]
dxdt � C(T )||ρ||∞

(
||f ′′1 ||2∞ + ||f ′′2 ||2∞

)
.

(4.14)

On the other hand,∫ T
0

∫ 1

0

[
|hx |2 + ρ(x)|ht |2

]
dxdt

� 2T ||ρ||∞
(
||f ′1||2∞ + ||f1||2∞ + ||f ′2||2∞ + ||f2||2∞

)
. (4.15)

This last estimate and (4.14) allow us to obtain easily the first inequality (4.8).
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For the boundary inequality (4.9), we first obtain a corresponding boundary
estimate for system (4.13). The classical procedure for such estimates is to multiply
the first equation in (4.13) by the multiplierxwx and integrate:

0 =
∫ T

0

∫ 1

0
ρ(x)wttxwxdxdt −

∫ T
0

∫ 1

0
wxxxwxdxdt

+
∫ T

0

∫ 1

0
ρ(x)

[
(1− x)f ′′1 (t)+ xf ′′2 (t)

]
xwx. (4.16)

Now we integrate by parts in the second term of the right hand side,∫ T
0

∫ 1

0
wxxxwxdxdt =

∫ T
0

∫ 1

0

x

2

d

dx
|wx |2 dxdt

= −
∫ T

0

∫ 1

0

|wx |2
2
dxdt +

∫ T
0

|wx(1, t)|2
2

dt. (4.17)

Combining (4.16) and (4.17) we easily find the following estimate:∫ T
0
|wx(1, t)|2 dt

� CT ‖ρ‖∞
(
‖wtt‖2

L2(0,1) + ‖w‖2
H1

0 (0,1)
+ ||f ′′1 ||2∞ + ||f ′′2 ||2∞

)
. (4.18)

Here we have to remove theL2 norm ofwtt from the right-hand side. To do
this we observe that̃w = wt satisfies the system

ρ(x)w̃tt − w̃xx = −ρ(x) [(1− x)f ′′′1 (t)+ xf ′′′2 (t)
]
, 0< x < 1,

w̃(0, t) = w̃(1, t) = 0, 0< t < T,
w̃(x,0) = wt(x,0) = − [(1− x)f ′1(0)+ xf ′2(0)] , 0< x < 1,

w̃t (x,0) = 1

ρ(x)

[
wxx(x,0)− ρ(x)

(
(1− x)f ′′1 (0)+ xf ′′2 (0)

)]
= − ((1− x)f ′′1 (0)+ xf ′′2 (0)) 0< x < 1.

(4.19)

Once again the energy estimate for the non-homogeneous problem provides∫ T
0

∫ 1

0

[
|w̃x |2 + ρ(x)|w̃t |2

]
dxdt

� C(T )||ρ||∞
(
||f1||2W3,∞(0,T ) + ||f2||2W3,∞(0,T )

)
. (4.20)

This inequality allows us to estimate the term withwtt = w̃t in (4.18). Then we
have∫ T

0
|wx(1, t)|2 dt

� CT ‖ρ‖∞
(
‖w‖2

H1
0 (0,1)

+ ||f1||2W3,∞(0,T ) + ||f2||2W3,∞(0,T )

)
, (4.21)

for some constantC > 0.
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A similar estimate can be obtained for theL2 norm ofwx(0, t). Therefore∫ T
0

[
|wj,x(0, t)|2 + |wj,x(1, t)|2

]
dt

� CT ‖ρ‖∞
(
‖w‖2

H1
0 (0,1)

+ ||f1||2W3,∞(0,T ) + ||f2||2W3,∞(0,T )

)
. (4.22)

On the other hand,∫ T
0

[
|hx(0, t)|2 + |hx(1, t)|2

]
� T

(
||f1||2∞ + ||f2||2∞

)
.

Combining this last estimate with (4.22) we easily obtain the inequality (4.9) for
v = h+ w. ��

Remark 7. We recall that whenρ ∈ W1,∞ we may proceed differently in the proof
of Proposition 1. Indeed, the term

I =
∫ T

0

∫ 1

0
ρ(x)wttxwx dxdt

can be bounded as follows. Integrating by parts with respect to time we obtain

I = −
∫ T

0

∫ 1

0
ρ(x)wtxwxt dxdt +

∫ 1

0
ρ(x)wtxwx dx

∣∣∣∣T
0
.

The first integral in this identity may be rewritten as∫ T
0

∫ 1

0
ρ(x)wtxwxt dxdt = 1

2

∫ T
0

∫ 1

0
ρ(x)

(
|wt |2

)
x
dxdt

and, after integrating by parts,∫ T
0

∫ 1

0
ρ(x)wtxwxtdxdt = −1

2

∫ T
0

∫ 1

0
ρx |wt |2dxdt.

Obviously this argument cannot be applied in our case sinceρx is not bounded.

5. Lack of internal observability

This section is devoted to proving the lack of observability from any subinterval
(α, β) of (0,1), provided(α, β) �= (0,1). We first assume thatα > 0 and consider
the sequence of quasi-eigenfunctions{ϕ−2j }j�1 from which we can construct the
following sequence of solutions of the first equation in (1.1):

vj (x) = eih2j tϕ−2j (x). (5.1)

Note thatvj does not satisfy the boundary conditions in (1.1) due to the fact that
ϕ−2j are not true eigenfunctions.
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As in the previous case, we correctvj with a functioñvj in such a way that

uj = vj + ṽj (5.2)

satisfies all the equations in system (1.1). To this end we defineṽj as the unique
solution of (4.3).

Now we prove that for the sequenceuj , (1.6) fails, i.e.,

lim
j→∞

∫ 1
0

[|uj,x(x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

∫ β
α

[|uj,x(x, t)|2 + |uj,t (x, t)|2] dxdt = ∞. (5.3)

The numerator in (5.3) can be estimated by (4.5).
Concerning the denominator in (5.3) we have∫ T

0

∫ β
α

[
|uj,x(x, t)|2 + |uj,t (x, t)|2

]
dxdt

� 2
∫ T

0

∫ β
α

[
|vj,x(x, t)|2 + |vj,t (x, t)|2

]
dxdt

+ 2
∫ T

0

∫ β
α

[
|̃vj,x(x, t)|2 + |̃vj,t (x, t)|2

]
dxdt

� 2T
∫ β
α

[
|(ϕ−2j )′(x)|2 + h2

2j |ϕ−2j (x)|2
]
dx

+ 2
∫ T

0

∫ 1

0

[
|̃vj,x(x, t)|2 + |̃vj,t (x, t)|2

]
dxdt.

Then, by Proposition 1 applied tõv∫ T
0

∫ β
α

[
|uj,x(x, t)|2 + |uj,t (x, t)|2

]
dxdt

� 2T
∫ β
α

[
|(ϕ−2j )′(x)|2 + h2

2j |ϕ−2j (x)|2
]
dx

+ C(T )h4
2j

[
|ϕ−2j (0)|2 + |ϕ−2j (1)|2

]
.

Finally we obtain∫ 1
0

[|uj,x(x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

∫ β
α

[|uj,x(x, t)|2 + |uj,t (x, t)|2] dxdt
�

h2
2j ρm

∫
I−2j
|ϕ−2j |2dx

2T
∫ β
α

[
|(ϕ−2j )′(x)|2 + h2

2j |ϕ−2j (x)|2
]
dx + C(T )h4

2j

[
|ϕ−2j (0)|2 + |ϕ−2j (1)|2

]
�

h−1
2j ρmC

2(T + C(T )h4
2j )Cph

−p
2j

,

which converges to infinity forj →∞ whenp > 5.
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Whenα = 0 we haveβ �= 1 and we can argue in a similar way with the
sequence of quasi-eigenfunctionsϕ+2j+1which concentrates nearx = 1 instead of
x = 0.

6. The multi-dimensional case

In this section we show that the result of Theorem 1 can be easily extended
to higher dimensional wave equations. The main idea is that, based on the 1-
dimensional construction above, we can construct densitiesρ in separated variables,
which oscillate in a neighborhood of any point of the domain or of the boundary. For
these densities we also construct a sequence of quasi-eigenfunctions concentrated
inside the domain.

Let6 be an open set ofRd , d � 2, with boundary∂6 of classC3 and consider
the wave equation

ρ(x)utt −8u = 0, x ∈ 6, 0< t < T,
u(x, t) = 0, x ∈ ∂6, 0< t < T,
u(x,0) = u0(x), ut (x,0) = u1(x) x ∈ 6.

(6.1)

The energy of the system is given by

E(t) = 1
2

∫
6

[
ρ(x)|ut (x, t)|2 + |∇u(x, t)|2

]
dx, (6.2)

and the boundary and internal observability properties read:

E(0) � C
∫ T

0

∫
∂6

∣∣∣∣∂u∂n(x, t)
∣∣∣∣2 dσdt, (6.3)

E(0) � C
∫ T

0

∫
ω

[
ρ(x)|ut (x, t)|2 + |∇u(x, t)|2

]
dxdt, (6.4)

respectively. Hereω ⊂ 6 is an open subset and∂
∂n

represents the normal derivative.
Whenρ ∈ C2(6̄)and6 is of classC3, inequalities (6.3) and (6.4) hold provided

a geometric control condition is fulfilled (see [2] and [3]). This condition requires
that every ray of geometric optics enters the set where the observation is being
made (the boundary∂6 in (6.3) and the open subsetω ⊂ 6 in (6.4)) in time less
thanT . Whenρ ∈ C1(6) the existence of rays is guaranteed but uniqueness fails
in general and the analysis of inequalities (6.3) and (6.4) remains to be done in this
more general setting, except for the space dimensionn = 1 in which we know that
these inequalities hold even when the coefficient is inBV .

In this section we show how to construct H¨older continuous density functions
ρ such that the above observability inequalities fail for a large class of subsets
ω. In fact, the density functions we build are such that there exists a sequence of
solutions for which the energy can be concentrated around a given point as much
as we wish and for time intervals of arbitrary length. However, this result cannot
be easily interpreted in terms of geometric optics, since we needC1 coefficients in
order to build solutions of the Hamiltonian system that yields the bicharacteristic
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rays. In any case, since for the density functions we build there exists a sequence of
solutions that concentrates its energy around a point in space as much as we wish,
the only possibility of getting inequalities of the form (6.3), (6.4) is to have this
point belonging to the observed region. Thus, this is in contrast with the microlocal
results that apply for density functions that are inC2. In the latter case, the total
energy of solutions along the ray is captured by measuring the energy at any point
of the ray.

To simplify things, we construct here a densityρ with only one singular point
at the boundary, although we could also construct densities with a finite number of
singular points. This particular choice provides the following negative result:

Theorem 2. Given any pointxs ∈ ∂6, there exist H¨older continuous density func-
tionsρ ∈ C0,s(6) for all 0< s < 1, for which(6.3)and (6.4)fail for everyT > 0
and for every subsetω ⊂ 6 such thatxs does not belong to the closure ofω.

Remark 8. As we mentioned in the introduction, in one space dimension, the lack
of observability may also be shown for piecewise constant coefficients oscillating
arbitrarily fast between two given values at some point (or several points). By
separation of variables, as in the proof of Theorem 2 we present below, this can be
extended to several space dimensions.

However, in dimensionsd � 2, the lack of observability for piecewise constant
densities is not new. Indeed, following Snell’s Law, we can show that, when the
interface between two media with different speeds of propagation has a suitable
geometry, there exist rays of geometric optics that are trapped in one of these
media. This shows that observability fails when making measurements in the other
medium. We refer to [11] for the technical details.

Nevertheless, the counterexamples we give here are more dramatic since so-
lutions are not concentrated along rays but, in some sense, at a standing point in
space.

Proof. We assume, without loss of generality, the following two conditions for the
singular pointxs :

xs = 0 ∈ ∂6,
(0, a)d ⊂ 6 for a small enougha > 0.

(6.5)

For the first condition to hold it is sufficient to translate6 so that the singular point
is at the origin. The second one holds after a suitable rotation.

With the notation introduced in Section 3 we define

ρ(x) = ρ̂(x1)+ ρ̂(x2)+ · · · + ρ̂(xd), (6.6)

where

ρ̂(s) =
{
αεj (hj (s −m−j )) for s ∈ I−j , j � 2,
4π2 for s ∈ K\(∪j�2I

−
j ),

(6.7)

whereK is a large compact set with6 ⊂ Kd . Observe thatρ is defined in separated
variables from a one-dimensional function̂ρ as the one introduced in Section 3 for
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the one-dimensional case. The only difference is thatρ̂ oscillates around a unique
point s = 0 instead of two points, which is the case for the density function in
Section 3.

Note thatρ(x) ∈ C0,s(Kd) and it is bounded above and below by positive
constants that we will refer to asρ0 andρ1 respectively.

We now construct the sequence of quasi-eigenfunctionsϕj (x). Consider

ϕj (x) = ϕ̂j (x1)ϕ̂j (x2) · · · ϕ̂j (xd) (6.8)

whereϕ̂j is the solution of

(ϕ̂j )
′′(s)+ h2

j ρ̂(s)ϕ̂j (s) = 0, s ∈ K,
ϕ̂j (m

−
j ) = 1, (ϕ̂)′j (m

−
j ) = 0.

(6.9)

Therefore,ϕj satisfies

8ϕj + h2
j ρ(x)ϕj = 0, x ∈ Kd,

ϕj (m
−
j , m

−
j , · · · ,m−j ) = 1,

∇ϕj (m−j , m−j , · · · ,m−j ) = 0.
(6.10)

We refer toϕj as quasi-eigenfunctions of (6.1). They are not true eigenfunctions
because their restrictions to6 do not satisfy the boundary condition

ϕj (x) = 0 on∂6. (6.11)

However, we show thatϕj is mainly concentrated in(I−j )d . This is a consequence

of the fact that̂ϕj is mainly concentrated inI−j . In fact, we can argue as in Section
3 for the one-dimensional case to obtain∫

I−2j
|ϕ̂j (s)|2ds � Ch−3

j ,∣∣∣ϕ̂j(m−j − rj2 )
∣∣∣2 + ∣∣∣(ϕ̂j )′(m−j − rj2 )

∣∣∣2 = e−εj hj rj ,∣∣∣ϕ̂j(m−j + rj2 )
∣∣∣2 + ∣∣∣(ϕ̂j )′(m−j + rj2 )

∣∣∣2 = e−εj hj rj .
Following the ideas in Section 3 we now estimateϕ̂j in any compact interval to the
left and to right ofI−j from the estimates in the extremes ofI−j . In particular we
have ∣∣ϕ̂j (s)∣∣2 + ∣∣(ϕ̂j )′(s)∣∣2 � Cph−pj ∀p > 0, s ∈ K\I−j . (6.12)

Using these estimates for̂ϕj we prove thatϕj (x) = ϕ̂j (x1)ϕ̂j (x2) · · · ϕ̂j (xd) is
concentrated in(I−j )d , i.e.,∫

(I−2j )d
|ϕj (x)|2dx � Ch−3d

j ,

∣∣ϕj (x)∣∣2 + ∣∣∇ϕj (x)∣∣2 � Cph−pj ∀p > 0, x ∈ Kd\(I−j )d . (6.13)



Observability of Waves in Heterogeneous Media 59

Once we have constructed the density and a sequence of quasi-eigenfunctions we
introduce the following sequence of solutions of the first equation in (6.1):

vj (x, t) = eihj tϕj (x). (6.14)

Note thatvj does not satisfy the boundary conditions in (6.1). However, we correct
vj with a new functionṽj in such a way that

uj = vj + ṽj (6.15)

satisfies all the equations in (6.1). Therefore, we defineṽj as the unique solution of

ρ(x)ṽtt −8ṽ = 0, x ∈ 6, 0< t < T,
ṽ(x, t) = −vj (x, t) = −eihj tϕj (x), x ∈ ∂6, 0< t < T,
ṽ(x,0) = ṽt (x,0) = 0 x ∈ 6.

(6.16)

We claim that for the sequenceuj observability inequality (6.3) fails. Moreover,
(6.4) fails as well for those observability zonesω for whichxs does not belong tōω.
The proof is a straightforward generalization of the one-dimensional case discussed
in Sections 4 and 5. However, for the sake of completeness we give the proof for
the boundary observability case.

We claim that

lim
j→∞

∫
6

[|∇uj (x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

∫
∂6
| ∂uj
∂n
(x, t)|2dσdt

= ∞. (6.17)

Indeed the numerator in (6.17) can be bounded below as in (4.5)∫
6

[
|∇uj (x,0)|2 + ρ(x)|uj,t (x,0)|2

]
dx � h2

j ρm

∫
(I−j )d

|ϕj |2dx. (6.18)

Concerning the denominator, we proceed as in (4.6) to obtain∫ T
0

∫
∂6

∣∣∣∣∂uj∂n (x, t)
∣∣∣∣2 dσdt � 2T

∫
∂6

∣∣∣∣∂ϕj∂n
∣∣∣∣2 dσ + 2

∫ T
0

∫
∂6

∣∣∣∣∂ṽj∂n (x, t)
∣∣∣∣2 dσdt.

(6.19)

To estimate the last term we introduce the generalization of Proposition 1 to the
d-dimensional case.��

Proposition 2. Consider the system

ρ(x)vtt −8v = 0, x ∈ 6, 0< t < T,
v(x, t) = f (x)eith, x ∈ ∂6, 0< t < T,
v(x,0) = vt (x,0) = 0, x ∈ 6,

(6.20)
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whereρ ∈ L∞(6), 0 < ρm � ρ(x) � ρM < ∞ a.e. andf is the restriction to
∂6 of a functionF(x) ∈ H 2(6). GivenT > 0, there existsC(T ) > 0 such that∫ T

0

∫
6

[
|∇v|2 + ρ(x)|vt |2

]
dxdt

� C(T )
(
‖h2ρF +8F‖2

L2(6)
+ ‖F‖2

H1(6)
+ h2‖F‖2

L2(6)

)
,∫ T

0

∫
∂6

|∇v|2 dxdt

� C(T )h
(
‖h2ρF +8F‖2

L2(6)
+ ‖F‖2

H1(6)
+ h2‖F‖2

L2(6)

)
. (6.21)

We prove this result at the end of the section.
We apply Proposition 2 to the solutioñv of (6.16). Note thatϕj

∣∣
∂6

satisfies
the hypothesis of the proposition because it is the restriction to∂6 of a function
ϕj ∈ H 2(6). However, the estimates in (6.21) depend on the extension we choose
for the boundary values to the interior of6. It would be natural to chooseϕj itself as
the extension but this is not convenient since this function exhibits a concentration
of energy inside6.

To avoid this problem we remove fromϕj its energy concentrated in(I−j )d with
a suitable cutoff function.

Let us introduce the cutoff functionsψj ∈ H 2(6)with the following conditions:

ψj (x) =
{

1 if x ∈ 6\(I−j−1 ∪ I−j ∪ I−j+1)
d ,

0 if x ∈ (I−j )d ,
|ψj (x)| � 1, |∇ψj (x)| � Chj , |8ψj(x)| � Ch2

j for all x ∈ 6,
for some constantC > 0. The sequenceψj with the above properties can be, for
example,ψj (x) = ψ(xrj +m−j ) wherexrj +m−j = (x1rj +m−j , . . . , xdrj +m−j )
andψ ∈ H 2(Rd) is a fixed function satisfying

ψ(x) =
{

1 if x ∈ R
d\(−3/4,5/2)d ,

0 if x ∈ (−1/2,1/2)d ,
|ψ(x)| � 1, for all x ∈ R

d .

We apply Proposition 2 to the solutioñv of (6.16) withψjϕj as the extension
of ϕj

∣∣
∂6

to6. Note that

‖h2
j ρψjϕj +8

(
ψjϕj

) ‖2
L2(6)

= ‖2∇ψj · ∇ϕj + ϕj8ψj‖2
L2(6\(I−j )d )

� C
(
‖∇ψj‖2

L∞(6) + ‖8ψj‖2
L∞(6)

)
‖ϕj‖2

H1(6\(I−j )d )
� Ch4

j ‖ϕj‖2
H1(6\(I−j )d )

,

‖ψjϕj‖2
H1(6)

h2
j � ‖ψj‖2

H1(6)
‖ϕj‖2

H1(6\(I−j )d )
h2
j � C‖ϕj‖2

H1(6\(I−j )d )
h4
j ,

‖ψjϕj‖2
L2(6)

� ‖ψj‖2
L2(6)

‖ϕj‖2
L2(6\(I−j )d )

� C‖ϕj‖2
H1(6\(I−j )d )

,
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for some constantC > 0. Therefore we deduce that

∫ T
0

∫
∂6

∣∣∣∣∂ṽj∂n (x, t)
∣∣∣∣2 dσdt � C(T )h4

j ‖ϕj‖2
H1(6\(I−j )d )

. (6.22)

Finally, combining (6.18) and (6.22) we have∫
6

[|∇uj (x,0)|2 + ρ(x)|uj,t (x,0)|2] dx∫ T
0

∫
∂6

∣∣∣ ∂uj∂n (x, t)∣∣∣2 dσdt
� C(ρ0, T )

∫
(I−j )d

|ϕj |2dx

h2
j

∫
∂6

∣∣∣ ∂ϕj∂n ∣∣∣2 dσ + h4
j ‖ϕj‖2

H1(6\(I−j )d )

. (6.23)

Now, taking into account the estimates (6.13) forϕj we find that the above quantity
converges to infinity asj →∞.

Proof of Proposition 2. We generalize the proof of Proposition 1. Let us introduce

g(x, t) = F(x)eiht . (6.24)

Then,

w(x, t) = v(x, t)− g(x, t) (6.25)

satisfies

ρ(x)wtt −8w = ρ(x)h2eihtF (x)+ eiht8F(x), x ∈ 6, 0< t < T,
w(x, t) = 0, x ∈ ∂6, 0< t < T,
w(x,0) = −F(x), x ∈ 6,
wt(x,0) = −ihF (x), x ∈ 6.

(6.26)

Classical estimates on non-homogeneous wave equations show that∫ T
0

∫
6

[
|∇w|2 + ρ(x)|wt |2

]
dxdt

� C(T )
(
‖h2ρF +8F‖2

L2(6)
+ ‖F‖2

H1(6)
+ h2‖F‖2

L2(6)

)
. (6.27)

On the other hand,∫ T
0

∫
6

[
|∇g|2 + ρ(x)|gt |2

]
dxdt � 2T ||ρ||∞

(
‖F‖2

H1
0 (6)

+ h2‖F‖2
L2(6)

)
.

(6.28)

This last estimate and (6.27) allow us to obtain easily the first inequality in (6.21).
For the boundary inequality in (6.21) we first obtain a boundary estimate for

system (6.26). The classical procedure for getting such estimates is to multiply the
first equation in (6.26) by the multiplierν ·∇w, whereν ∈ C1(6̄)d is a vector field
which coincides with the outward normal of6 at the boundary, i.e.,ν = n on∂6.
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The existence of such a vector field is proved in [10] (Lemma 3.1, Chapter 1). Then
we have

0 =
∫ T

0

∫
6

ρ(x)wtt ν · ∇w dxdt −
∫ T

0

∫
6

8wν · ∇w dxdt

+
∫ T

0

∫
6

ρ(x)h2Fν · ∇w dxdt. (6.29)

Now we integrate by parts in the second term of the right-hand side,∫ T
0

∫ 1

0
8wν · ∇w dxdt = −1

2

∫ T
0

∫
6

div ν |∇w|2 dxdt

+1
2

∫ T
0

∫
∂6

|∇w|2 dσdt. (6.30)

Combining (6.29) and (6) we easily find the following estimate:∫ T
0

∫
∂6

|∇w|2 dσdt � CT ‖ρ‖∞
(
‖wtt‖2

L2(0,1) + ‖w‖2
H1

0 (0,1)
+ h2||F ||2

L2(6)

)
.

(6.31)

Here the constantC > 0 only depends on‖ν‖W1,∞ , i.e., the geometry of the domain.
To remove theL2 norm ofwtt from the right-hand side we observe thatw̃ = wt

satisfies the system

ρ(x)w̃tt −8w̃ = ρ(x)ih3eihtF (x)+ iheiht8F(x), x ∈ 6, 0< t < T,
w̃(x, t) = 0, x ∈ ∂6, 0< t < T,
w̃(x,0) = wt(x,0) = −ihF (x), x ∈ 6,
w̃t (x,0) = wtt (x,0),

= 1
ρ(x)

[
8w(x,0)+ ρ(x)h2F(x)+8F ]

= h2F(x), x ∈ 6.
(6.32)

Once again the energy estimate for the non-homogeneous problem provides∫ T
0

∫
6

[
|w̃x |2 + ρ(x)|w̃t |2

]
dxdt

� C(T )h
(
‖h2ρF +8F‖2

L2(6)
+ ‖F‖2

H1(6)
+ h2‖F‖2

L2(6)

)
. (6.33)

This inequality allows us to estimate the termwtt = w̃t in (6.31). Then we have∫ T
0

∫
∂6

|∇w|2 dσdt

� C(T )h
(
‖h2ρF +8F‖2

L2(6)
+ ‖F‖2

H1(6)
+ h2‖F‖2

L2(6)

)
(6.34)

for some constantC(T ) > 0.
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On the other hand,∫ T
0

∫
∂6

|∇g|2 dσdt � T ||F ||2
H2(6)

.

Combining this last estimate with (6) we easily obtain the inequality (6.21) for
v = g + w. ��

7. On the lack of controllability of the wave equation

Consider the controlled system:

ρ(x)utt (x, t)− uxx(x, t) = f (x, t)χ(α,β), 0< x < 1, 0< t < T,
u(0, t) = g1(t), u(1, t) = g2(t), 0< t < T,
u(x,0) = u0(x), ut (x,0) = u1(x).

(7.1)

Hereχ(α,β) represents the characteristic function of the interval(α, β) ⊂ (0,1),
f is an internal control acting on(α, β) and g1, g2 are boundary controls act-
ing on the extremesx = 0,1 respectively. Whenρ ∈ BV (0,1) and 0< ρ0 �
ρ(x) � ρ1 < ∞ a.e. the following controllability result holds:GivenT > Tm =√
ρ1 max{1 − β, α} and the initial data(u0, u1) ∈ L2(0,1) × H−1(0,1) there

existsf ∈ L2(0, T ;H−1(α, β)) and g1, g2 ∈ L2(0, T ) such that the solution of
(7.1) satisfies

u(x, t) = ut (x, t) = 0 ∀t � T . (7.2)

In fact, only one among the controlsf, g1, g2 is sufficient to guarantee the
controllability if T is sufficiently large andρ is BV. The proof of this result is
a consequence of a corresponding observability inequality for the uncontrolled
equation and the well-known HUM (Hilbert Uniqueness Method) method (see
[10]).

The non-observability result stated in Theorem 1 provides H¨older continuous
density functionsρ ∈ C0,s([0,1]) for all 0 < s < 1, for which the above control-
lability property does not hold.

To simplify things we restrict ourselves to the boundary controllability case
which is the most delicate one. We prove the following

Theorem 3. There exist H¨older continuous functionsρ ∈ C0,s([0,1]) for all 0 <
s < 1 with 0< ρ0 � ρ(x) � ρ1 <∞ such that, for anyT > 0, there exists initial
data(u0, u1), in the class

(u0, ρu1) ∈ L2(0,1)×H−1(0,1), (7.3)

such that, for anyg2 ∈ L2(0, T ), the solutionu of (7.1) (with f = 0 andg1 = 0)
does not satisfy(7.2).

Remark 9. The proof ofTheorem 3 that we present here can be adapted to the higher
dimensional case, taking into account the lack of internal observability stated in
Theorem 2.
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Proof. We argue by contradiction. Assume that forT > 0 and any initial data
(u0, u1) in the class (7.3) there exists a controlg2 ∈ L2(0, T ) such thatu reaches
the equilibrium at timet = T . We are going to show that, when this controllability
property holds, the corresponding observability inequality for the adjoint system
will hold as well, which is in contradiction with the negative result of Theorem 1.

We proceed in two steps:

Step 1. We prove that the following operator is linear and continuous:

S : L2(0,1)×H−1(0,1)→ L2(0, T )

(u0, ρ(x)u1)→ g2,

whereg2 is the control with minimalL2 norm which makesu reach the equilibrium
in time t = T .

Note thatS is well defined because we are assuming that the controllability
property holds and the control of minimalL2 norm is unique due to the convexity
of the norm.

Next we prove thatS is linear. Let us introduceN ⊂ L2(0, T ), the subset
of controls of the trivial initial data(0,0). The subsetN can be characterized as
follows: g ∈ N if and only if∫ T

0
g(t)vx(1, t) = 0 ∀(v0, v1) ∈ H 2 ∩H 1

0 (0,1)×H 1
0 (0,1), (7.4)

wherev is the solution of the adjoint system with initial data(v0, v1):

ρ(x)vtt − vxx = 0, 0< x < 1, 0< t < T,
v(0, t) = v(1, t) = 0, 0< t < T,

v(x,0) = v0(x), vt (x,0) = v1(x), 0< x < 1.
(7.5)

Indeed, (7.4) is equivalent tou(T ) ≡ ut (T ) ≡ 0. To see this we multiply byv in
(7.1) and integrate by parts to obtain

〈ρut (T ), v(T )〉H1
0
−
∫ 1

0
ρ(x)u(x, T )vt (x, T )dx

−〈ρu1, v0〉H1
0
+
∫ 1

0
ρ(x)u0(x)v1(x)dx +

∫ T
0
g2(t)vx(1, t) = 0. (7.6)

Taking into account that the initial data are(0,0), we see that (7.4) is equivalent to
u(T ) ≡ ut (T ) ≡ 0.

Whenρ is regular we can consider less regular initial data(v0, v1) ∈ H 1
0 (0,1)×

L2(0,1) in (7.4), because solutions with these initial data satisfy the extra regularity
propertyvx(1, t) ∈ L2(0, T ).

It is easy to see thatN is a non-empty closed linear subset ofL2(0, T ) and
therefore we can decomposeL2(0, T ) in a direct sum as follows:

L2(0, T ) = N +N⊥.
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Then, anyL2 control ĝ2 of the initial data(u0, u1) can be uniquely decomposed
asĝ2 = g2 + n, whereg2 ∈ N⊥ is the minimalL2 norm control andn ∈ N . We
deduce thatS(u0, ρu1) is the unique controlg2 of (u0, u1) satisfyingg2 ∈ N⊥.

Now we assume thatS(u0, ρu1) = g2 andS(v0, ρv1) = h2.Theng2+h2 ∈ N⊥
and it is a control of(u0+v0, u1+v1). ThereforeS(u0+v0, ρu1+ρv1) = g2+h2
andS is linear.

Finally, to prove the continuity ofS we use the closed-graph theorem. Let us
consider a sequence of initial data(u0,j , u1,j )and a sequence of associated minimal
L2 controlsg2,j such that

(u0,j , ρ(x)u1,j )→ (u0, ρ(x)u1) in L2(0,1)×H−1(0,1), (7.7)

g2,j → g2 in L2(0, T ). (7.8)

Observe thatg2 ∈ N⊥ because{g2,j }j∈N ⊂ N⊥ andN⊥ is closed. On the other
hand, asg2,j is a control of(u0,j , u1,j ), we have

−〈ρu1,j , v(x,0)〉H1
0
+
∫ 1

0
ρ(x)u0,j (x)vt (x,0)dx +

∫ T
0
gj (t)vx(1, t) = 0

(7.9)

for all (v0, v1) ∈ H 2∩H 1
0 (0,1)×H 1

0 (0,1). Indeed, in (7.9) we are simply writing
thatu(T ) ≡ ut (T ) ≡ 0 in a weak form.

Passing to the limit in (7.9) we find thatg2 is a control for(u0, u1) and therefore
S(u0, ρu1) = g2.

We have proved thatS is a linear operator with a closed graph. By the closed
graph theorem it is continuous, i.e., there exists a constantC > 0 such that

‖g2‖L2(0,T ) � C ‖(u0, ρ(x)u1)‖L2(0,1)×H−1(0,1). (7.10)

Step 2. We prove that (7.10) is equivalent to the corresponding observability
inequality for the adjoint system, i.e.,

E(0) � C
∫ T

0
|vx(1, t)|2dt,

wherev is a solution of (7.5) with initial data(v0, v1).
From (7.6) and taking into account thatu(T ) ≡ ut (T ) ≡ 0, we have∣∣∣∣−〈ρu1, v0〉H1

0
+
∫ 1

0
ρ(x)u0(x)v1(x)dx

∣∣∣∣
� C ‖(u0, ρ(x)u1)‖L2(0,1)×H−1(0,1) ‖vx(1, t)‖L2(0,T )

for all (u0, ρ(x)u1) ∈ L2(0, T )×H−1(0, T ), and therefore

‖(v0, v1)‖H1
0 (0,1)×L2(0,1) � C‖vx(1, t)‖L2(0,T ). ��
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8. On the lack of dispersive properties and Strichartz inequalities
for the wave equation

In this section we consider the wave equation in the whole space

ρ(x)utt −8u = 0, x ∈ R
d , t > 0,

u(x,0) = u0, ut (x,0) = u1(x), x ∈ R
d .

(8.1)

Forρ constant andd � 2, the Strichartz estimates establish space-time integrability
properties of the solutions of this system due to dispersive effects. One version of
these estimates is

‖u‖L2
t (R;Lqx(Rd )) � c ‖u0‖Hr(Rd ) + ‖u1‖Hr−1(Rd ) (8.2)

provided that

q = 2d

d − 2r − 1
,

2(d + 1)

d − 1
� q <∞. (8.3)

Whenρ is smooth the above estimates (8.2) hold locally in time and they are
sharp (see [12]). For low regularity coefficients,ρ ∈ C1,s , there exist weakened
versions of estimates (8.2) (see [13] and [14]).

Note that the above estimates cannot be obtained by classical Sobolev embed-
dings. In fact, due to the conservation of energy we easily deduce that the solutions
of (8.1) belong to the classu ∈ C(0,∞;Hr(Rd)). Therefore, the Sobolev embed-
dings in space allow us to obtain:

u ∈ C(0,∞;L 2d
d−2r (Rd). (8.4)

For ρ smooth, estimates (8.2) establish, in particular, that the solutionu(·, t) ∈
Lq(Rd) with 2d

d−2r < q � 2d
d−2r−1 almost everywhere int ∈ R.

According to the constructions of the previous sections, for theC0,s density
function we have built, and due to the existence of a sequence of solutions that
concentrates its energy around a point as much as we wish, no (8.2) nor any weak-
ened version of it may hold except of course for the integrability properties that
Sobolev’s embeddings provide. Therefore, we may say that in the class ofC0,s

density functions there are no Strichartz-type estimates even locally in space-time
and for weaker integrability requirements.

More precisely, we have the following result:

Theorem 4. Given any pointxs ∈ R
d , there exist H¨older continuous density func-

tionsρ ∈ C0,s(Rd) for all 0 < s < 1, and a sequence of solutionsuj of (8.1) for
which

lim
j→∞

(∫
Id
|uj (·, t)|pdx

)1/p∥∥uj (·,0)∥∥Hr(Rd ) + ∥∥∂tuj (·,0)∥∥Hr−1(Rd )

= ∞ (8.5)

for anyp > 2d
d−2r , t ∈ R and for alld-dimensional cubesI d = [ xs, xs + δ]d with

δ > 0.
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Proof. We assume without loss of generality thatxs = 0. Consider the densityρ
introduced in (6.6) and defined by (6.6) and (6.7), that we extend toR

d\Kd by the
constant 4π2.

As we have seen, there exists a sequence(h2
j , ϕj ) of eigenpairs of (8.1) concen-

trated aroundx = 0 associated withρ, i.e., solutions of

8ϕj + h2
j ρ(x)ϕj = 0, x ∈ Kd, (8.6)

satisfying (6.13). Note that

uj (x, t) = eihj tϕj (x) (8.7)

constitute a sequence of solutions of (8.1) overKd that we can extend toRd in such
a way that(uj , ∂tuj ) is uniformly bounded inHr × Hr−1 asj → ∞. We prove
that, due to the concentration of energy ofϕj nearx = 0, the sequenceuj satisfies
(8.5).

Observe that|uj (·, t)| = |ϕj (·)| for all t andx ∈ Kd . Therefore it is sufficient
to prove that

lim
j→∞

(∫
Id
|ϕj (x)|pdx

)1/p∥∥ϕj∥∥Hr(Kd) + hj ∥∥ϕj∥∥Hr−1(Kd)

= ∞ ∀p > 2d

d − 2r
. (8.8)

Recall thatϕj (x) is defined in separated variables over eachI−j as follows:

ϕj (x) = ϕ̂j (x1) · · · ϕ̂j (xd) = wεj (hj (x1 −m−j )) · · ·wεj (hj (xd −m−j )).

Therefore, the change of variablesyα = hj (xα −m−j ) in (8.8) provides(∫
Id
|ϕj (x)|pdx

)1/p∥∥ϕj∥∥Hr(Kd) + hj ∥∥ϕj∥∥Hr−1(Kd)

� h
− d
q
+ d2−r

j

(∫
Ij
|wεj (y)|pdy

)d/p
∥∥wεj ∥∥dHr (Ij ) + hj ∥∥wεj ∥∥dHr−1(Ij )

+O(h−pj )
, (8.9)

where the intervalIj = hj (I−j −m−j ), and for allp � 0.

For j sufficiently large,[0,1] ⊂ Ij and the numerator in (8.9) can be bounded
below by a constantC(d, p) which does not depend onεj , i.e.,(∫

Ij

|wεj (y)|pdy
)d/p

�
(∫ 1

0
|wεj (y)|pdy

)d/p
� C(d, p) > 0

in view of (2.8). On the other hand, the denominator in (8.9) is bounded above, by
a constant which does not depend onεj , due to the properties ofwε in Lemma 1.

It follows that the left-hand side of (8.9) cannot be uniformly bounded inj →∞
for p > 2d

d−2r . ��
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9. Comments

In this section we mention a number of applications and remarks related to the
result stated in Theorem 1.

1. Density functions.The density function that we have constructed is singular at
both extremes in the sense that it oscillates more and more as we approachx = 0
andx = 1. Similar constructions can be done to obtain densities with singularities
at one interior point or a finite number of interior and boundary points. We have
chosen to present the construction above since it is the simplest one that provides at
the same time a non-observability result for the boundary case and for the interior
one when we restrict ourselves to connected intervals(α, β) for the observation.

Note that a more general result, i.e., a density function for which any observabil-
ity inequality fails without any restriction on the observability zone, would imply a
construction of the density with infinitely many singular points localized in a dense
set of[0,1]. Whether such density functions exist is still an open problem.

2. Variable coefficients in the principal part of the operator.Theorem 1 can be
easily adapted to systems of the form

utt − (a(x)ux)x = 0, 0< x < 1, 0< t < T,

u(0, t) = u(1, t) = 0, 0< t < T,

u(x,0) = u0(x), ut (x,0) = u1(x), 0< x < 1.

(9.10)

In this case the energy of the system is given by

E(t) = 1
2

∫ 1

0

[
|ut (x, t)|2 + a(x)|ux(x, t)|2

]
dx, (9.11)

and the boundary and internal observability properties read:

E(0) � C
∫ T

0

[
|ux(0, t)|2 + |ux(1, t)|2

]
dx, (9.12)

E(0) � C
∫ T

0

∫ β
α

[
|ut (x, t)|2 + a(x)|ux(x, t)|2

]
dx, (9.13)

respectively.
Once again, whena ∈ BV (0,1) and 0< a0 � a(x) � a1 <∞ a.e.x ∈ (0,1),

both observability inequalities hold whenT is large enough.

Theorem 5. There exist continuous functionsa ∈ C0,s([0,1]) for all 0 < s < 1
with 0 < a0 � a(x) � a1 <∞ for which(9.12)and(9.13)fail for all T > 0 and
for every subinterval(α, β) ⊂ (0,1) ((α, β) �= (0,1)).
Proof. We center our attention in the interior observability inequality (9.13) since
the other one is similar. Consider the following change of variables

y(x) =
∫ x

0

dr

a(r)

/∫ 1

0

dr

a(r)
, ρ(y) =

(∫ 1

0

dr

a(r)

)2

a(x(y))

v(y, t) = u(x(y), t),
v(y,0) = u0(x(y)), vt (y,0) = u1(x(y)) (9.14)
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wherex(y) represents the inverse function ofy(x). Note thaty(x) ∈ C1(0,1) and
y(x) is invertible becausey′(x) �= 0 for all x ∈ [0,1]. Hence,x(y) ∈ C1(0,1) and
ρ(y) has the same regularity asa(x).

With the above change of variables (9.10) is transformed into

ρ(y)vtt − vyy = 0, 0< y < 1, 0< t < T,

v(0, t) = v(1, t) = 0, 0< t < T,

v(y,0) = v0(y), vt (y,0) = v1(y), 0< y < 1.

(9.15)

For this system we can apply Theorem 1 and findρ for which the internal observ-
ability fails. More precisely, there exists a sequencevj such that

lim
j→∞

∫ 1
0

[|vj,y(y,0)|2 + ρ(y)|vj,t (y,0)|2] dy∫ T
0

∫ y(β)
y(α)

[|vj,y(y, t)|2 + |vj,t (y, t)|2] dydt = ∞ (9.16)

for any 0< α < β < 1. Coming back to the original variables we easily obtain the
following

lim
j→∞

∫ 1
0

[
a2(x)|uj,x(x,0)|2 + a(x)|uj,t (x,0)|2

]
dx∫ T

0

∫ β
α

[
a2(x)|uj,x(x, t)|2 + â2|uj,t (x, t)|2

]
dxdt

= ∞, (9.17)

where â =
(∫ 1

0
1
a(x)
dx
)−1

. Note thata(x) is bounded above and below with

positive constants becauseρ(y) satisfies this property. This fact, combined with
(9.17), provides the result in Theorem 5.��

3. Schrödinger equation.The singular densities introduced for the wave equation
produce lack of observability for the linear Schr¨odinger equation

iρ(x)ut +8u = 0, x ∈ 6, 0< t < T,

u(x, t) = 0, x ∈ ∂6, 0< t < T,

u(x,0) = u0(x), x ∈ 6,
(9.18)

where6 is a bounded domain ofRd with boundary∂6 of classC3 andT > 0.
The energy of the system is given by

E(t) = 1
2

∫
6

|∇u(x, t)|2dx, (9.19)

and the boundary and internal observability properties read:

E(0) � C
∫ T

0

∫
∂6

|∂u
∂n
(x, t)|2dx, (9.20)

E(0) � C
∫ T

0

∫
ω

|∇u(x, t)|2dx, (9.21)

respectively. Here∂
∂n

represents the normal derivative.
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Whenρ ∈ C2(6) andω satisfies the geometrical control condition, the above
observability inequalities hold for anyT > 0. We refer to [9] for the proof of this
result.

Theorem 2 can be also adapted for the Schr¨odinger equation:

Theorem 6. Given any pointxs ∈ ∂6, there exist H¨older continuous density func-
tionsρ ∈ C0,s(6) for all 0< s < 1, for which(9.20)and (9.21)fail for all T > 0
and for every subsetω ⊂ 6 such thatxs does not belong to the closure ofω.

The proof of this theorem is a straightforward generalization of the proof of
Theorem 2.

In this result the densityρ has only one singular pointxs in the sense that it
oscillates very much near this point. We observe that, as in the wave equation, more
general results can be proved with densities oscillating around several different
points.

Note that the Strichartz-type estimates fail also in (9.18).

4. Heat equation.In this section we observe that the singular densities introduced
for the wave equation do not produce lack of observability for the linear heat
equation

ρ(x)ut −8u = 0, x ∈ 6, 0< t < T,

u(x, t) = 0, x ∈ ∂6, 0< t < T,

u(x,0) = u0(x), x ∈ 6,
(9.22)

where6 is a bounded domain ofRd with boundary∂6 of classC3 andT > 0.
The energy of the system is given by

E(t) = 1
2

∫
6

|u(x, t)|2dx, (9.23)

and the boundary and internal observability properties read:

E(T ) � C
∫ T

0

∫
∂6

|∂u
∂n
(x, t)|2dx, (9.24)

E(T ) � C
∫ T

0

∫
ω

|∇u(x, t)|2dx, (9.25)

respectively.
Whenρ ∈ C2(6) the above observability inequalities hold for anyT > 0 (see

[8]).
We briefly sketch why our construction, which can be perfectly adapted to the

heat equation, does not produce lack of observability.
Observe that the quasi-eigenfunctionsϕj that we constructed for the wave equa-

tion in (6.10) are also quasi-eigenfunctions of the heat equation in the sense that

vj (x, t) = e−hj t2ϕj (x)
satisfy the differential equation in (9.22) and they are exponentially concentrated
in the interior of6.
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However, due to the non-reversibility of the heat equation, in (9.24) and (9.25)
we must estimate the energy of the solution in timeT > 0. Therefore we have to
estimate a much smaller function than for the wave equation since the solution of
the heat equation at timeT is multiplied by the factore−hj T 2

.

To our knowledge, there is no example in the literature ofL∞ coefficients for
linear parabolic equations for which the observability inequalities (9.24) and (9.25)
fail. This is an interesting open problem.
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3. N. Burq, Contrôlabilité exacte des ondes dans des ouverts peu r´eguliers,Asymptot. Anal.
14 (1997), 157–191.

4. C. Castro & E. Zuazua, Low frequency asymptotic analysis of a string with rapidly
oscillating density,SIAM J. Appl. Math.60 (2000), 1205–1233.

5. F. Colombini & S. Spagnolo, Some examples of hyperbolic equations without local
solvability,Ann. Scient.́Ec. Norm. Sup.22 (1989), 109–125.

6. S. Cox & E. Zuazua, The rate at which energy decays in a string damped at one end,
Indiana Univ. Math. J.44 (1995), 545–573.

7. M.S. P. Eastham, The spectral theory of periodic differential equations, Scottish Aca-
demic Press, Edinbourgh and London, 1973.

8. A.V. Fursikov & O.Y. Imanunilov, Controllability of evolution equations, Research
Institute of Mathematics, Global Analysis Research Center, Seoul National University,
Korea, 1996.

9. G. Lebeau, Contrôle de l’équation de Schr¨odinger,Journal Math. Pures et Appl.71
(1992), 267–291.
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