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Abstract

We construct rapidly oscillating élder continuous coefficients for which the
corresponding 1-dimensional wave equation lacks the classical observability prop-
erty guaranteeing that the total energy of solutions may be bounded above by the
energy localized in an open subset of the domain where the equation holds, if the
observation time is large enough. The coefficients we build oscillate arbitrarily fast
around two accumulation points. This allows us to build quasi-eigenfunctions for
the corresponding eigenvalue problem that concentrate the energy away from the
observation region as much as we wish. This example may be extended to several
space dimensions by separation of variables and illustrates why the well-known
controllability and dispersive properties for wave equations with smooth coeffi-
cients fail in the class of blder continuous coefficients. In particular we show that
for such coefficients no Strichartz-type estimate holds.

1. Introduction and main result

Let us consider the following variable coefficient 1-dimensional wave equation

o(Xuy —uyxy =0, O<x<10<t<T,
u©,t) =u(l,t) =0, O<t<T, (1.2)
u(x,0 =uo(x), u;(x,0) =u1(x), 0 <x < 1.

We assume that is measurable and that it is bounded above and below by finite,
positive constants, i.e.,

0<po<px)Spr<ooaexe(0l). 1.2)

Under these conditions system (1.1) is well posed in the sense that for any pair of
initial data(uo, u1) € H}(0,1) x L2(0, 1) there exists a unique solution

ueC ([0, T1: HEO, 1)) nct ([0, T1: L2(0, 1)). (1.3)
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Moreover, the energy of solutions

1
E() = %/O [ st 1) g1y ] din (1.4)

is constant in time. Whep € BV (0, 1), the following observability properties are
known to hold:

1. Boundary observability: If T > ,/p1, there exist< (T') > 0 such that

T
EO ¢ [ [l @0l + et ] as (L5)
0

for every solution of (1.1).

2. Internal observability: For any subintervala, ) C (0,1),if T > 2./p1
max(«a, 1 — B), there exist€ > 0 such that

T p
E(0) < c/ f [p(x)u,z + uf] dxdt (1.6)
0 o

for every solution of (1.1).

These results may be proved easily using sidewise energy estimates for the wave
equation in which the role of space and time are interchanged. We refer to [6] for
the details of the proof. These observability estimates are relevant in the context of
controllability. In fact they are equivalent to the controllability of the system with
controls acting on the boundary or in the interior of the domain respectively (see
[10]).

For a long time the problem of whether these estimates do hold for less regular
coefficients (say € L*°(0, 1) or p € C([0, 1])) has been open. In [1] the problem
of homogenization was considered. It was shown that, for a suitgllee to con-
centration effects of high-frequency solutions, the constaon the observability
inequalities (1.5), (1.6) blows up whernis replaced by, (x) = p(x/¢) ande — 0.
This result shows that the constantin (1.5), (1.6) does not only depend on the
lower and upper boundsy and p1 of p. The results in [1] were evidence of the
possible lack of observability for highly oscillatory density functigndVe refer
to [4] for an in-depth spectral analysis of the low frequencies. But, up to now, there
has been no proof of this negative result in the literature. In this paper we definitely
answer the question by the negative. More precisely, we prove that the following
holds:

Theorem 1. There exist ldlder continuous density functiopse €% ([0, 1]) for
all 0 < s < 1, forwhich(1.5)and(1.6)fail for all T > 0and for every subinterval
(a, ) C (0, D) ((er, B) # (0, 1)).

Remark 1. 1. The density functions we build are in fact of clas¥ everywhere
in (0, 1) except at the extremas= 0 andx = 1 of the interval.

2. Obviously, the density functions we obtain are not of finite total variation. The
total variation blows up on the two extremes= 0, 1.
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3. A similar construction may be done by means of piecewise constant density
functions (see Remark 3).

4. In fact, given any smooth densijtyin [0, 1], we can perturb it in a subinterval of
arbitrarily small length so that inequalities (1.5) and (1.6) fail for the new density
p. More precisely, given a smooghand a subintervdlxp, x1] of [0, 1] we can
find a Holder continuous functiom with support in(xg, x1) and L°°-norm of
arbitrarily small size, and such that the inequalities (1.5) and (1.6) fail for the
new densityp = p + €.

The proof of Theorem 1 is based on an argument introduce@daymBINI &
SpaGNoLo in [5] in a different context that allows us to construct a dengitypr
which there exists a sequence of pdirs(x), 1) satisfying

ol +22p(x)pr =0, 1.7

and such thapy is exponentially concentrated on any given point of the closed
interval[0, 1]. Infactwe construct a double sequence so that part of itis concentrated
onx = 0, while the other one is concentrated.or= 1. Let us explain the main
idea behind this argument. We consider density functio(9 which oscillate
more and more as approaches the extremes of the intefi@all]. The sequence

of pairs(¢x(x), Ax) is constituted by functiong, (x) which oscillate at the same
order asp in a small region insidg0, 1] close tox = 0 orx = 1. In this region a
resonance-type phenomenum occursgyid) becomes exponentially larger than

in the rest of the intervdDl, 1]. Note that (1.7) together with

o(0) = (1) =0 (1.8)

constitute the eigenvalue problem associated with (1.1). There is no reason for
the functionsyp; above, exponentially concentrated near the boundary, to satisfy

(1.8). However, by choosing in an appropriate way the point where the energy
concentrates, close to one of the extremes: 0, 1, the values ofy; andg; at

x = 0,1 may be guaranteed to be exponentially small. For this reason, these
functionsgy are referred to as quasi-eigenfunctions. These quasi-eigenfunctions
allow us to construct a sequence of solutiep®f (1.1) of the form

ug(x, 1) = ™ g (x) + B (x, 1)

wherevy (x, t) isacorrection introduced to makg satisfy the boundary conditions.
The solutions; concentrate in the interior @D, 1) along the time and therefore
constitute an obstacle to the boundary observability. Recall that we are dealing with
a double sequence of quasi-eigenfunctions and therefore with a double family

of solutions of (1.1), one of them being concentrated near O while the other

one is concentrated near= 1. In this way we can guarantee that neither (1.5) nor
(1.6) hold, whatever the intervak, 8)  (0,1) ((«, B) # (0, 1)) happens to be.

The rest of the paper is organized as follows: in Section 2 we state two ordinary-
differential-equation lemmas introduced in [5] that we use to construct the density
p. In section 3 we build the pathological densjtyand the sequence of quasi-
eigenfunctions associated wjthin Sections 4 and 5 we prove the lack of boundary
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and interior observability respectively for this choicepofin Section 6 we extend
these results to the multi-dimensional case. In Section 7 we state the results on the
lack of controllability that can be derived from Theorem 1. Finally, in Section 8 we
comment on some related results. In particular we generalize our result to the case
where the variable coefficient is in the principal part of the operator in the wave
equation, and to the corresponding Stinger model.

2. Preliminary lemmas

In this section we recall the following two lemmas proved in [5].

Lemma 1. There existg > 0 such that, for alk € (0, €), it is possible to find two
even real functionsy, (x) andw, (x), of classC® on R, satisfying

w! + ae(x)we =0,

we(0) =1, w.(0) =0, 2.1)
in such a way that
ae(x) is 1-periodic onx < 0and onx > O, (2.2)
ae(x) = 472 in a neighborhood of = 0, (2.3)
e (x) — 4% < Me, |l (x)] £ Me, (2.4)
we(x) = pe(x)e 2.5)
for somep, (x) 1-periodic onx < 0 and onx > O, '
lwel + lwg| + w;| < C, (2.6)
1
| wearzye, =0, (2.7)
0
1
lwel?dx =y, (2.8)

0
whereM, C andy are constants independentef

Remark 2. As a consequence of (2.5), (2.1) and (2.7), we have in particular for all
integers: = 0,

we(x) =e F w(x)=0, w/(x)= —Ax2e=l forx = +n. (2.9)

Remark 3. The parameter in (2.1) allows us to introduce a family of coefficients

o approaching a constant (see (2.4)), and for which we know explicitly the decay
rate of the solution of (2.1, as|x| — oo (see (2.5)). As we will see, this is
important in order to guarantee theoldér continuity of the density that we
construct in the next section.

Remark 4. For a fixede > 0, Lemma 1 establishes the existence of a coefficient
a(x) and a solutionuw (x) of

w” +a(x)w =0,

w0 =1 w(0) =0, (2.10)
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Fig. 1. Construction ofxr andw satisfying (2.11).

satisfying

a(x) is 1-periodic onx < 0 and onx > 0

w(x) = pee (2.11)
for somep(x) 1-periodic onx < 0 and onx > 0 andk > 0. '

Explicitexamples of piecewise-constant functiorend solutionsv with the above
properties may be built easily (see [1]). The main idea is to consider a periodic
coefficienta such that the solutiomw; of (2.10) witha = o1 satisfieswi(x) =
p(x)e™** for some 1-periodic functiop andk > 0. Letx, € R be a point where

the solution satisfies); (x;) = 0. Thenaz, wo, the even reflection af; andw;

with respect tax, respectively, satisfies (2.10) ang(x) = p(x)e K=l with

p(x) periodic forx > x; andx < x;. Finally we can translate, andw- in order

to have (2.11). This construction is illustrated in Fig. 1.

In[5] Lemma 1 is stated with, being 2t -periodic. A straightforward change of
variables shows thai may be taken to be 1-periodic as well, as stated in Lemma 1.

Let us explain briefly the result in Lemma 1. If we restrict the first equation in
(2.1) toR™ we obtain the Hill equation

w” +rg(x)w =0, xeRT, 1 eRandg being 1-periodic

It is well known that for any periodic functioq there exist some positive values

of A for which this equation has a solution of the form= p(x)e™** wherep is
1-periodic and: > 0 (see [7]). The proof of Lemma 1 in [5] relies on a suitable
choice ofg, A andw satisfying these properties. The valuesxadndw for x < 0

are obtained by even extension. Note that the condition (2.3) assures the regularity
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of this extension. The explicit choice gf » andw is as follows:

A= 4712,
q(x) = 1 — 4er(2mx) sin(4mx) + 2er’ (2mx) cOS (27 x)
— 462r2(271x) CO§1(271x),

2w x
w(x) = cog2rx) exp(—Ze / r(s)cos’-(s)ds>,
0

wherer(s) = 0 is a fixed Zr-periodic function, of clas€*°, vanishing in a neigh-
borhood ofs = 0 and satisfying the conditions

2 2
/ r(s)coSs ds = %, / r(s) coS s sins ds > 0.
0 0

Lemma 2. Let¢ (x) be a solution of the equation
o+ hza(x)¢ =0, xeR,

whereh € Z anda(x) is a strictly positive function of clags?, and let us consider
the energy functions

Ep(x) = 4n2h21p(x) % + 19" ()2,
Ep(x) = h2a(x)|p(0)]? + |¢ (x)]2.

Then, for allz; andz,, the following estimates hold:

Eotiz) S Eptexplh [ ian? — a(lds]. (2.12)
X1
i i 2 |0/ ()]
<
Eg(x2) < Eg(x1) exp /Xl e dx‘ . (2.13)

To prove this result it is sufficient to differentiate the energy functions and to apply
Gronwall's Lemma.

3. Construction of the density and the quasi-eigenfunctions
In this section we make the main construction of the paper. We build simul-
taneously the density and the sequence of quasi-eigenfunctions that exhibit the
concentration effect we are looking for. Our construction is inspired by that in [5].

Let us consider the sequences

=27, h=22" ¢ =h7logh)> 3.1)
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Fig. 2. Partition of the intervalO0, 1] in the subintervalslji.

whereN > 1 is a fixed, large enough integer (with respect to the condtain
Lemma 1) so that the following inequalities hold:

1
< _— 3.2
&= oo (3.2)
k—1
4MZ€jhjrj < erhyrg (3.3)
j=1
o
2M Z €jrj S €. (3.4)
j=k+1

Note that such inequalities are true for laryedue to the following:{e;};>2
is a decreasing sequence fr > 2 ande; — 0 asN — oo; the sequence
ejhjrj(ekhkrk)_l = (An)/ ¥ with Ay converging to infinity asv — oo and
finally €;r; (exr) ™1 = (8n5)/* for somesy — 0 for N — oo. With this choice
of the sequence, we define a partition of the intervé, 1):

0,1/2] = U’f’ (1/2,1) = Ufrj+ (3.5)
jz2 jz2

Y P g P R AT

7= (my = 2w+ 2] 4 =[mf =L+ 7). jz2 (36)
o0

_ rj — .

m; ZEJJ“ Z ri. mi=1-m7;, j=2 (3.7
k=j+1

We observe tha’tzf is the center of the intervajf‘[ with lengthr; (see Fig. 1). The
super-index+ (respectively-) indicates that the interval is to the right (respectively
left) of x = 1/2. This notation conveniently distinguishes the two singularities, at
x = 0 andx = 1, of the density that we are going to construct.

Now, we define the density as follows

Uep; (h2j(x —my))) forx e 15,
p0) = epalhaja(x —m3; 1)) forx el g,
42 for x € [0, 1N\ (Ujza(5; U 1,0,

(3.8)
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wherec,; are the functions introduced in Lemma 1. The dengityscillates near
x = 0 andx = 1 but with different frequencies so that, in some sense, as we will
see, these two oscillations do not interact.

Note thatp(x) € C*°(0, 1) becauser, € C*°(R) and

p(x) = 472 in a neighborhood of the extremeslsi‘f, 3.9
since% is an integer and properties (2.2) and (2.3) hold. On the other hand,

p(x) € €%5([0, 1)) forall 0 < s < 1. Indeed, by (2.2) and the bound (2.4) fef|
we have

e, () — @ ()] e, (6) — atg; (V)]
lete; | cosry = MaX —————— < e —
/ x,yeR [x — y|* x,y€[0,1] |x — y|’
< Me; max |x —y|1™* < Me; 3.10
= j royer0.] | vl = Jj ( )

for0 < s < 1. Note that here | o g represents the élder semi-norm. Therefore

forO<s < 1. (3.11)
The term on the right is uniformly bounded jrin view of (3.1), i.e.,
supejh; <oo  for0<s <1 (3.12)
J
From (3.9)—(3.12) we conclude thatx) € C%([0, 1]) for all s < 1. In fact, if we

definel, as the interval of the famih{/I-i}sz such thatx € I, andl,, r, are the
left and right extremes af;, respective(y, then

lpx) —pWI max lox) — p(ro)l + lody) — oW

xyel01]  |x —yl* T osxsy<1 lx =yl
x) — p(r ly) —
< max PO el o 100 = O
xel01]  |x — ryls velo1] Iy =y

g 2 Sup|p|C0,5(1#:)~
jz2 !

Here we have used the fact that, in view of (38;,) = p(,).
Finally, we observe that is bounded above and below with positive constants
in view of (2.4) and (3.2). In fact we have

272 < p(x) < 872 (3.13)

Let us define two sequences of quasi-eigenfunct[@g?}j;l and{g03_j+l}jzl as
the solutions of the following initial value problems:
(93))" +h3;p(0)p5; =0,  0<x <1,

3.14
g3 m3) =1 (p3,)(mz) =0 (319

((/);/_Fl)” + hg,/+1p(x)‘p;j+1 =0, O0<x <1,

) (3.15)
03am3 ) =1 (93,0 (m3; 1) =0.
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These are simply quasi-eigenfunctions since the boundary conditions-a, 1
are not necessarily fulfilled. For example, there is ho reasapgjao vanish either

atx = 0 or atx = 1. However, we will see thapz‘j is mainly concentrated in
the interior oflz‘j so that the values qtz‘j atx = 0,1 are exponentially small.
This justifies referring te,; as quasi-eigenfunctions in the sense that the missing
boundary conditions are almost satisfied. The same argument appﬁggrgo To

see thatpz‘j is concentrated in the interior 055. we observe that it satisfies

(92))" + h5;0e; (hoj(x —my))py; =0,  x €Iy,
O _, (3.16)
<p2j(m2j) =1 «02]') (ij) =0.
Therefore,
00 (X) = Wep; (h2j(x —my))), (3.17)

wherew,; is the function in Lemma 1 associated with) ;. Combining Remark 2
and the fact thako;r2; /2 are integers we deduce that

3 1 r2jh2j 1 1
/1 ooy = [ g s 2 fo ey, (5)12ds
2j —r2jhzj
2.2
Vo€ C
> 2> (3.18)
h2j h3;
— — r2j 2 I A r2j 2_ —€2jh2jr2;j
(ﬂzj(mzj - 7) + ((ﬂgj) (m2j - 7) =e A, (3.19)
_ i ? I ) NG S
)z + 71)‘ + | + 7j)‘ = e @t (3.20)

i.e., theL? norm ofng in Iy is of the ordemgﬁ but exponentially larger than the

values ofp, . at the extremes o, in the sense that3;e =222 < Cph,/ for
all p > 0. In fact, for anyp > 0, '

—e:hir —rjlog(h;) _2—Ji+Nj|og(2 .
he= it = plp O = bt °9@ .0 asj—oo. (3.21)
Roughly speaking, we have checked tbgt is concentrated in the interior asgj.

Now, we might expect the enerquj to still be small outsidéz‘j. We claim that

this is the case, i.eng_j is small atx = 0, 1. The analyses we shall make at the
extremes X = 0 andx = 1) will in differ in nature. Therefore, at this point we
divide our analysis into these two cases.

Analysisat x = 0: We estimate, fox < my; — r2;/2, the energy function

E, (x) = An°h3,; ‘¢£j(x)‘2 + ‘(q)gj)’(x)‘z. (3.22)
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In view of (3.19) we have
- 2 2,2 —exihyjry;
E, (mzj _ 7) < 4n 2 e w2, (3.23)

On the other hand, taking (2.12) into account, the definitiop of (3.8) and the
estimate fow, in (2.4), we have

Y 2,0 [T,
E, () SE, (mzj _ 7) exp<4yr hzj/x 1472 — p|

00
_ r2j
<E _ A 2 .
= szj (m2] 5 )exp 4 “Mhy; Zlezerk
k=j+

This last term can be estimated with the aid of (3.4) and (3.23) and therefore

00
_ r2j 2
_ < _ . .
E‘sz x) = szj (ij 5 )exp 47 Mhy; sz:r:LEZerk
=J
hoi€aira;
§ 47'[2/’1%; exp<—h2j62jr2j + %

2
< 4n%h3; exp<—2_2j‘l(logh2j)2)

é 47-[2}1%], exp<_w>

forallx < mz_] —rp;. Hence

2 2 _ B
’goz—j(x)( n ’((pz_j)/(x)‘ < Cphy! ¥p>0, ¥x<my —ry/2. (3.24)
In particular (3.24) holds far = 0.

Analysisat x = 1 Herewefirstestimate,f(mgj+r2j/2 <x< m§j+1—r2j+l/2,
the energy function

~ 2 B 2
E,, () =300 |oz; (0| + (w5 (3.25)
In view of (3.19) we have
; - 2 212 —exihajra;
E,, (mz/ + 7’) S 4nhyje At (3.26)

On the other hand, we get, by the aid of Lemma 2 (estimate (2.13)), the definition
of p in (3.8), the estimate faz. in (2.4) and the fact thai(x) = 272

~ ~ _ r2j . [o" ()]
E-(x)SE,-(m, +—=)exp / ds
#2j 902]( 2j 2 ) ( m2_j+r2_,'/2 |10(S)|
2j—-1

~ _ }"2]
E‘PZf (m2j + 7) exp| M Z €xrihy
k=1

A

A
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This last term can be estimated with (3.26) and (3.19) and therefore
E,; () < h3; exp(=hajeajraj + ghajezjra;) = h3; exp(=Fhajeajra;)

forallx € [my;—r2;/2, m§j+l—r2j+l/2]. In particular, taking (3.13) into account,
we have

+ 1. 5 + 1.
E‘ﬂEj (m2j+1 — 572j+1) < 2E¢’§j (m2j+1 5r2j+1)
2 3
= 2h3; exp(—3haj€2jr2))

Forx = my; 1 — r2j+1/2 we use the energy function (3.22),

o0
_ <E _(mt .—1p. 2 .
E,; () = E, (mgj g — 572j+1) €Xp| 4w “Mho; D enaratt
k=j

< 2h§j exp(—%thEerZj + 3hajezjra))
< 2h§j exp(—3hajezjra;j)
< 203, exp<—2_2j_2(|ogh2j)2>

+
forall x = Myj1— r2j+1/2. Therefore

2 2 _
| + @ @[ S cohyf ¥p =00 Ve zmE - (B27)

which holds in particular fox = 1.
We have proved the existence of a sequence of quasi-eigenfungagjonsn-

centrated in the interior dfz‘j, i.e., a sequence of solutions of (3.16) which satisfy

_ C
/ g (0Pdx = o5, (3.28)
2j 2j

2 2 _
lv;0[ + @@ <yl vp=0.  (329)

2 2 _
o5 + @@ <yl vp=0.  (330)

b —\/ 2 2 — 2 4
| [y @r+ i 0t]ax < ezl vp=0. @31

forall («, B) C (0, 1) witha # 0andj = J large enough to havlgj N(x, B) =0
forall j > J. A similar result can be obtained f(pgjﬂ. More precisely,

c
[ Whatiix =
2j+1 2j+1

, (3.32)
+ 2 + / 2 N4

63,20 +| @300 < cmyfiy vp =0, (339
+ 2 + / 2 4

65| + |6k @ Scmyfy vp=0 (3:39)

B
| 680 @R 4 105 a0 dx < oy ¥p =0, (339
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forall (o, B) C (0, 1) with 8 # 1andj = J large enough to hav%.ﬂﬂ(a, B) =
@forall j = J.

Remark 5. Let us describe how the claim of point 4 in Remark 1 may be proved.
First of all, note that the construction above (in this section) may be done with a
Holder continuous density of arbitrarily small supportis, I2], with an arbitrary
value ofe(l1) = e(l2) and with|le(x) — €(2) |l (y,1,) arbitrarily small. On the
other hand, for a given smooth density functipmnd any subintervdlg, x1] of

[0, 1] we can find a smooth functigh such that

. pc constant, in a compact s, 2] CC (xo, x1),
o= .
p(x)in [0, xo] U [x1, 1].

We now choose as above withk (I2) = p. and define

. Je&)in[ly, I2] CC (xo0, x1),
| p(x)in [0, o) U (i1, 1].

In this way we obtain a Blider continuous density functighwith localized quasi-
eigenfunctions within the intervéds, /2] and such thad = p outside[xo, x1], and
lo — pllL>(o.1) is arbitrarily small.

4. Lack of boundary observability

In this section we prove that (1.5) fails for dll > 0 for the density functiop
we have builtin Section 3. Consider the sequence of quasi- elgenfun{zppr}l§>1
We can construct the following sequence of solutions of the first equat|on in(1.1)

vj(x, 1) = e’hzf’(pz_j(x). (4.1)

Note thatv; does not satisfy the boundary conditions in (1.1) due to the fact that
¢,; are not true eigenfunctions, i.e., they do not vanish at 0, 1. However, we
can correcb; with a functionv; in such a way that

uj = vj —i—ﬁlj (4.2)

satisfies all the equations in system (1.1). To this end we défiae the unique
solution of

p(x)’ﬁtt_axx—o O<x<10<t<T,
U(0,1) = —vj(0,1) = —e"2i'p;,(0), 0 <t < T,
(1, 1) = —vj(1,1) = —elh2il g, (D, 0<1<T,
U(x,0) =7;(x,00 =0, O<x <1

(4.3)

In the rest of the section we prove that (1.5) fails for the sequepdee.,

o [0 OF + plu s, 0P dx

| (4.4)
JHOO fo [|“1x(0 t)|2+ |u/x(1 3] ]dt
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We first estimate the numerator in (4.4):

1
| [l 0 + 0115, 0]
! 2 2
=f0 (1000, O + p (@) v (x, O dx
! 2 2 2
=/0 [ 1021+ B30l | dx
1
> 12, p /O 97,2 = 13,00 /1 97 2dx. (45)
2j

Concerning the denominator in (4.4) we have

T
[ [ 0.0 4 by 2]
T
<2 / (19002 + 0y, L 0P de
0
T
42 [ [B20.0F + Fa 0]
0
=27 [1(¢3) O + I(93) D]
T
+2 [ [0 + s 0] dr. (4.6)
0

The last term can be estimated applying the following result:

Proposition 1. Consider the following system:

p(X)vy — vy =0, O<x<10<t<T,
v(0,7) = fi(t), v(L,1)= fo(t),0<t <T, (4.7)
v(x,0) =v(x,0) =0, O0<x <1,

wherep € L*(0,1),0 < pg £ p(x) £ p1 < oo. GivenT > 0, there exists
C(T) > Osuch that

T 1
/ f (1022 + pCo)lur[?] dxar
0 0

< D liplioe (112 1) + 112l o) ) (4.8)
T
| {100 + ]
0

< CDllple (1113 an oz + 1 2l35xqr) - (4.9)
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We prove this proposition at the end of the section.
When applying Proposition 1 tdin (4.6) we obtain

T
/0 (17,0, 0 + (1, 1) 2]
< 20(TKS; [163) @ + lpz; O + (g7 D2 + o3 (W] . (4.10)

Finally, combining (4.5), (4.10) and the estimateszpfgrofthe previous section
we easily obtain

-1
Jo [l G, O 4+ p (0 (x, OP]dx g omC
Jo [4jx @012+ |uj (L 0)[2]dr -~ 2T+ h§)Cphy )

which converges to infinity foj — oo andp > 7.

Remark 6. The lack of boundary observability that we have proved above relies on
the existence of a unique sequence of quasragenfunt{t:y@};}.zr Therefore, the
double sequence of eigenfuncticfys; | c'zlnd{<p;j71}jzl constructed in Section 3
is not necessary here. It will be used later to prove the lack of interior observability.

Proof of Proposition 1. We introduce

h(x,t) = (1 —x) fa(t) + xf2(2). (4.11)
Then,
w(x,t) =v(x, 1) —hx, 1) (4.12)
satisfies
pXWy — wyy = —p(x) [(1 —x) f{ (@) —i—xfz”(t)] ,0<x<1,0<t<T,
w0, 1) =w(l, 1) =0, O<t<T,
w(x,0) = —[(1—x) f1(0) + xf2(0)], O<x<1,
wi(x,0) = — [(1—x) f{(0) + xf5(0)], O<x <1
(4.13)

Classical estimates on nhon-homogeneous wave equations show that

T pr1
| [ [rwet+ o] axdr < carmolios (171 + 11
0 Jo
(4.14)

On the other hand,

T rl 5 )
[ e+ oo ?] aza
0 Jo
< 2Tl (11ANZ + A1 + 11315 + 11 f21%) . (4.15)

This last estimate and (4.14) allow us to obtain easily the first inequality (4.8).



Observability of Waves in Heterogeneous Media 53

For the boundary inequality (4.9), we first obtain a corresponding boundary
estimate for system (4.13). The classical procedure for such estimates is to multiply
the first equation in (4.13) by the multiplierw, and integrate:

T 1 T 1
0:/ / p(x)wnxwxdxdt—/ / Wy XWydxdt
0 0

/ / p () [ =) f(0) + £ O] xws. (4.16)

Now we integrate by parts in the second term of the right hand side,

/ /wxxxwxdxdt / / ——|u)x| dxdt

1 2 T 2
1t
—/ / x| dxdt+/ @ O ) 417
o Jo 2 0

2
Combining (4.16) and (4.17) we easily find the following estimate:

T
/ s (L, D)2 dt
0

< CTlpllo (w20, + 101230 ) + A1 +11/3115) - (4.18)

Here we have to remove the? norm of w;; from the right-hand side. To do
this we observe thab = w;, satisfies the system

PO Wy — Wex = —p(0) [1 =) f1"(0) + x15" ()], O<x<l
w(0,1) = w(l, 1) =0, O<t<T,
w(x,0) = w,l(x,O) = — [ —x) f{0) + xf30)], O<x<1,
w(x,0) = 00 [wir (x,0) = p(x) (X = x) f{'(0) + x5 (0))]
—((1—x)f1”(0)+xf2”(0)) O<x <1
(4.19)

Once again the energy estimate for the non-homogeneous problem provides

T 1 ) )
/ / [y —i—p(x)lzbll]dxdt
0 0
< Clplloe (1112 owr + 12 2angr) (420

This inequality allows us to estimate the term withy = w;, in (4.18). Then we
have

T
/ wa (L (2 dr
0

< CTlplloo (w1250 3y + 1 alGss o) + 1f2lamio py): (422)

for some constanf > 0.
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A similar estimate can be obtained for thé norm ofw, (0, 7). Therefore

T
/0 L1072 @, 02 + (2, DI dt

< CTlpllo (10150 1) + 11150y + 1f2lamo ) - (4:22)

On the other hand,

T
[ [+ inew o] £ 7 (1702 + 11202
0

Combining this last estimate with (4.22) we easily obtain the inequality (4.9) for
v=h4+w. O

Remark 7. We recall that whep € W1> we may proceed differently in the proof
of Proposition 1. Indeed, the term

T 1
1 :/ / p(X)wyxwy dxdt
0 0

can be bounded as follows. Integrating by parts with respect to time we obtain

T 1 1 T
I= —/ / p()wixwys dxdt + / p (X)W xwy dx
o Jo 0

0
The first integral in this identity may be rewritten as

T 1 T 1
/ / pPX)Wixwy dxdt = %/ / p(x) (|wt|2> dxdt
0 0 0 0 x

and, after integrating by parts,

T pr1 T p1
/ / (X)W xwydxdt = —%/ / px|w,|2dxdt.
0 0 0 0

Obviously this argument cannot be applied in our case sipde not bounded.

5. Lack of internal observability

This section is devoted to proving the lack of observability from any subinterval
(a, B) of (0, 1), provided(«, B) # (0O, 1). We first assume that > 0 and consider
the sequence of quasi-eigenfunctidgs; };>1 from which we can construct the
following sequence of solutions of the first equation in (1.1):

v (x) = "' g5 (x). (5.1)

Note thatv; does not satisfy the boundary conditions in (1.1) due to the fact that
@,; are nottrue eigenfunctions.
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As in the previous case, we corregtwith a functionv; in such a way that

uj =v; ~|—F17j (5.2)

satisfies all the equations in system (1.1). To this end we défiae the unique

solution of (4.3).
Now we prove that for the sequeneg (1.6) fails, i.e.,

1 . 2 . 2
Ji f%[lz,,x(x,o)l + Py, O] dx 63
1700 fo S [lujx e 012 + |uji (x, 0)]2] dxdt

The numerator in (5.3) can be estimated by (4.5).
Concerning the denominator in (5.3) we have

Tk 2 2
[ [ [0+ by 5.0 e
0 o
T rB
<2 [ [t 0 + e 0] s
0 Ja
T rB
42 [ [ [ 0P+ s, v
0 o
p -/ 2 2 — 2
<21 [ [l 00 + 1o, 0]
T 1
+2/ f [|U,,x(x,t)|2+|5j,,(x,z)|2]dxdz.
0 0

Then, by Proposition 1 applied io

T rB
L [0 5,0 v
o

B
<2r / (1607 1 + 1 Iz (0 2] dx
+ i (103,01 + Iz 1)
Finally we obtain

S Dujx (e, O + p (o), (x, 0)]2] dx
ISP Dy e, 012 4 Juj o (x, 1)[2] dxdt
h%jpm flz; |<p2_j|2dx

27 [£ {1663 @) + 3,105, () 2] dx + (T, [l O + o, (VP

1\

hgjlme
2T + C(T)h‘z‘j)c,,h;;’

which converges to infinity foj — oo whenp > 5.

v
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Whena = 0 we haveg # 1 and we can argue in a similar way with the
sequence of quasi-eigenfuncticxpg‘;j 41Which concentrates near= 1 instead of
x =0.

6. The multi-dimensional case

In this section we show that the result of Theorem 1 can be easily extended
to higher dimensional wave equations. The main idea is that, based on the 1-
dimensional construction above, we can construct dengitieseparated variables,
which oscillate in a neighborhood of any point of the domain or of the boundary. For
these densities we also construct a sequence of quasi-eigenfunctions concentrated
inside the domain.

Let Q2 be an open set &?, 4 > 2, with boundand Q2 of classC? and consider
the wave equation

o) uy — Au =0, xeQ, O0<tr<T,
u(x,t) =0, x€dR,0<t<T, (6.1)
u(x,0) =uolx), u(x,0) =ur(x)x € Q.

The energy of the system is given by

E(r>=%/Q[p(x>|ut(x,r>|2+|w<x,t>|2]dx, (6.2)
and the boundary and internal observability properties read:

T 9u 2

E(O)§C/ / —(x,1)| dodt, (6.3)
0o Jaq|on
T

E@=C / f [Pl (e, 0P + 1 Vux, 2] dxdr, (6.4)
0 13}

respectively. Here» C Q2 is an open subset a@@ represents the normal derivative.
Whenp € C?(Q) andQis of classC3, inequalities (6.3) and (6.4) hold provided
a geometric control condition is fulfilled (see [2] and [3]). This condition requires
that every ray of geometric optics enters the set where the observation is being
made (the boundar§<2 in (6.3) and the open subsetc Q in (6.4)) in time less
thanT. Whenp e C1(Q) the existence of rays is guaranteed but uniqueness fails
in general and the analysis of inequalities (6.3) and (6.4) remains to be done in this
more general setting, except for the space dimensienl in which we know that
these inequalities hold even when the coefficient i8 In.
In this section we show how to construcbldér continuous density functions
p such that the above observability inequalities fail for a large class of subsets
w. In fact, the density functions we build are such that there exists a sequence of
solutions for which the energy can be concentrated around a given point as much
as we wish and for time intervals of arbitrary length. However, this result cannot
be easily interpreted in terms of geometric optics, since we Géamefficients in
order to build solutions of the Hamiltonian system that yields the bicharacteristic
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rays. In any case, since for the density functions we build there exists a sequence of
solutions that concentrates its energy around a point in space as much as we wish,
the only possibility of getting inequalities of the form (6.3), (6.4) is to have this
point belonging to the observed region. Thus, this is in contrast with the microlocal
results that apply for density functions that aredifs In the latter case, the total
energy of solutions along the ray is captured by measuring the energy at any point
of the ray.

To simplify things, we construct here a densityvith only one singular point
at the boundary, although we could also construct densities with a finite number of
singular points. This particular choice provides the following negative result:

Theorem 2. Given any poink; € 9, there exist ldlder continuous density func-
tionsp € C%(Q) forall 0 < s < 1, for which(6.3)and (6.4)fail for everyT > 0
and for every subset C  such thatx; does not belong to the closure ©f

Remark 8. As we mentioned in the introduction, in one space dimension, the lack
of observability may also be shown for piecewise constant coefficients oscillating
arbitrarily fast between two given values at some point (or several points). By
separation of variables, as in the proof of Theorem 2 we present below, this can be
extended to several space dimensions.

However, in dimensiong > 2, the lack of observability for piecewise constant
densities is not new. Indeed, following Snell's Law, we can show that, when the
interface between two media with different speeds of propagation has a suitable
geometry, there exist rays of geometric optics that are trapped in one of these
media. This shows that observability fails when making measurements in the other
medium. We refer to [11] for the technical details.

Nevertheless, the counterexamples we give here are more dramatic since so-
lutions are not concentrated along rays but, in some sense, at a standing point in
space.

Proof. We assume, without loss of generality, the following two conditions for the
singular pointx,:

xs =0€08,

(0,a)? c @ for a small enougl > 0. (6:5)

For the first condition to hold it is sufficient to transl&?eso that the singular point
is at the origin. The second one holds after a suitable rotation.
With the notation introduced in Section 3 we define

p(x) = p(x1) + p(x2) + - - - 4+ p(xq), (6.6)
where

(s —mT s
B(s) = iagjz(h.,(s m; )) fors e Il , Jj 22, 6.7)

4 fors e K\(Ujgzlj_),

whereK is alarge compact setwith ¢ K¢. Observe thap is defined in separated
variables from a one-dimensional functipras the one introduced in Section 3 for
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the one-dimensional case. The only difference is fhascillates around a unique
points = 0 instead of two points, which is the case for the density function in
Section 3.

Note thatp(x) € C%*(K?) and it is bounded above and below by positive
constants that we will refer to ag andp1 respectively.

We now construct the sequence of quasi-eigenfunctipas). Consider

9 (X) = 9j (x1)@; (x2) - - §; (xa) (6.8)
whereg; is the solution of

@)"() + 7)) =0, s €K,

o g 6.9
GmH =1 @)m)=0. (69)
Thereforegp; satisfies
Apj +hip(x)g; =0,  xeK4,

Vgoj(mj_, m . ,mj_) =0.

TR

We refer top; as quasi-eigenfunctions of (6.1). They are not true eigenfunctions
because their restrictions 2 do not satisfy the boundary condition

@j(x)=0 onoag2. (6.11)

However, we show thag; is mainly concentrated inlj‘)". This is a consequence

of the fact thafp; is mainly concentrated il}.‘. In fact, we can argue as in Section
3 for the one-dimensional case to obtain

| @i = cn

13
—( _ Fi\|? - _ i\ |2 T
@i(m; =) +|@ (= F)[ = e,
P A Y PPN A G
@i + ) @ (o + 3 =,

Following the ideas in Section 3 we now estim@jén any compact interval to the
left and to right oij‘ from the estimates in the extremeslgf. In particular we
have

G+ @) @FSCh? Vp>0. seK\I. (6.12)
Using these estimates fgr; we prove thatp;(x) = @;(x1)@;(x2) - - - @j(xq) is

concentrated imlj‘)d, ie.,

f lj () Pdx = Ch;
—d

(I5))
2 2 — —
o+ Vo0 = Ch; 7 Vp>0, xe KNI (6.13)
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Once we have constructed the density and a sequence of quasi-eigenfunctions we
introduce the following sequence of solutions of the first equation in (6.1):

v (x, 1) = ety (x). (6.14)

Note thatv; does not satisfy the boundary conditions in (6.1). However, we correct
v; with a new functiony; in such a way that

uj = v+ (6.15)

satisfies all the equations in (6.1). Therefore, we defjraes the unique solution of

pxX)Vyy — Av =0, xeQ, O0<t<T,
D(x, 1) = —vj(x,1) = —ei'g;(x), x€dQ, 0<t<T, (6.16)
v(x,0) =1,(x,00 =0 x € Q.

We claim that for the sequenge observability inequality (6.3) fails. Moreover,
(6.4) fails as well for those observability zoneor which x; does not belong t®.
The proofis a straightforward generalization of the one-dimensional case discussed
in Sections 4 and 5. However, for the sake of completeness we give the proof for
the boundary observability case.

We claim that

, 2 . 2
im Jo [IVu;(x, 001 + p(x)|uj, (x, 0)]°] dx . (6.17)

jo0 JE Lo 155 (x, 1) 2dordr

Indeed the numerator in (6.17) can be bounded below as in (4.5)
/Q [V, 0P + o) a1 (v, O 2] dx 2 1 /(I)d ¢ Pdx. (6.18)
J

Concerning the denominator, we proceed as in (4.6) to obtain

IR wovzfl L[5

To estimate the last term we introduce the generalization of Proposition 1 to the
d-dimensional case.nO

9
fazh dadt

(6.19)

J(x 1) dadt<2T/ f(x 1)

Q2

Proposition 2. Consider the system

pX)vyy — Av =0, xe, O0<rt<T,
v(x, 1) = f(x)elth, xedQ,0<t<T, (6.20)
v(x,0) =v;(x,00 =0, x € Q,



60 C. CasTrRO & E. ZUAZUA

wherep € L®(R2),0 < o < p(x) £ py < oo a.e. andf is the restriction to
9 of a functionF (x) € H2(2). GivenT > 0, there exist€ (T') > 0 such that

T
/ / [1V012 + p(o)lur[?] dxar
0

< C(T) (||h2pF + AF T2 + 1 F Il g + h2||F||i2(Q)) :

T
/ / |Vv|? dxdt
0 Q2

< C(Dh (IRPF + AF 2y + I Flng) + H2IFl22, ) - (621)

We prove this result at the end of the section.

We apply Proposition 2 to the solutidnof (6.16). Note thatgoj|3Q satisfies
the hypothesis of the proposition because it is the restrictigifa@f a function
@ € H?($2). However, the estimates in (6.21) depend on the extension we choose
for the boundary values to the interior@f It would be natural to choosg itself as
the extension but this is not convenient since this function exhibits a concentration
of energy inside.

To avoid this problem we remove frogm its energy concentrated (mj‘)d with
a suitable cutoff function.

Letusintroduce the cutoff functions e H?(Q) with the following conditions:

it ena v vy
‘”-/(x)_{onxe(l .

Wi 1 |[VY;0)] £ Chyj, Ay (x)] £ ChZ forallx € Q,

for some constant > 0. The sequencg; with the above properties can be, for
exampley;(x) = ¥ (xr; +mj_) wherexr; +m; = (x1r) +mi, . Xy +mj_)
andy € H?(R?) is a fixed function satisfying

1if x € RY\(—3/4,5/2)4,

Y(x) = {0 if x € (—1/2, 1/2) lv(x)| < 1, forall x € RY.

We apply Proposition 2 to the solutianof (6.16) withy;¢; as the extension
of ¢;|,,, to Q. Note that

1hF w0 + A (¥97) 12,
— P . . . 2
= ”2ij V(,DJ + Qj ij ”LZ(Q\(I;)(J)

2 2 2
< C (19l + 18¥5 1)) 197730y

4
< Ch ”q)j”Hl(Q\(] )d)a

2 4
||W] (p] ”Hl(Q)h < ||1/f] ”Hl(Q) “(pj ”Hl(Q\(l )d) 1 = C”(oj ”Hl(Q\(l )d)h/ )

”w] (p] ”LZ(Q) = ”wj ”LZ(Q) ”(p] ||L2(Q\(1j—)rl) = C”(pj ”Hl(Q\(I]-_)d)’
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for some constanf > 0. Therefore we deduce that

Il

Finally, combining (6.18) and (6.22) we have
Jo [1Vu; 0, 01 + p () |ujr (x, 0] dx

. 2
foT fra %(X, l‘)‘ dodt

2
dodt < C(T)h} ;| (6.22)

9
Fraa HYQ\())'

Sy lgj1Pdx
! (6.23)

= C(po, T) 3 T2 5
9 .
1 Ja || do + 1 ""’/"Hl(fz\(lf)d)

Now, taking into account the estimates (6.13)dpwe find that the above quantity
converges to infinity ag — oo.

Proof of Proposition 2. We generalize the proof of Proposition 1. Let us introduce

g(x,1) = F(x)e™. (6.24)
Then,
wx,t) =v(x, 1) —g(x, 1) (6.25)
satisfies
o wy — Aw = p(x)h2eM F(x) + " AF(x), x € Q, O0<1<T,
wenod RO oy
wi(x,0) = —ihF(x), x € Q.

Classical estimates on non-homogeneous wave equations show that

T
/ f [|Vw|2 + ,O(x)lw,|2] dxdt
0 Q

< CT) (IH2pF + AF 250 + 1 F 1300, + 21 FI2q)) . (627)

On the other hand,

T
2 2 2 2 2
/0 /Q[|Vg| + p@)lgil?| dxdt < 2T lplloo (IF 11,0 + 21 Fliz(g, ) -
(6.28)

This last estimate and (6.27) allow us to obtain easily the first inequality in (6.21).

For the boundary inequality in (6.21) we first obtain a boundary estimate for
system (6.26). The classical procedure for getting such estimates is to multiply the
first equation in (6.26) by the multiplier- Vw, wherev € C1(Q)? is a vector field
which coincides with the outward normal @fat the boundary, i.ey, = n on 9 <.
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The existence of such a vector field is proved in [10] (Lemma 3.1, Chapter 1). Then

we have
T T
0= / / p(X)wsv - Vwdxdt — / / Awv - Vw dxdt
0 Q 0 Q

T
+f / p(X)h?Fv - Vw dxdt. (6.29)
0 Q

Now we integrate by parts in the second term of the right-hand side,

T 1 T
/ / Awv - Vwdxdt = —%/ / div v |Vw|? dxdt
0 0 0 Q

T
+%/ / \Vw|?dodt. (6.30)
0 R

Combining (6.29) and (6) we easily find the following estimate:

T
/O /BQ Vwdods < CTllplo (w32 + 10123 ) +H2IFI 22 g))
(6.31)

Here the constarit > 0 only depends offw || y1.~, i.€., the geometry of the domain.
To remove the.2 norm ofw;, from the right-hand side we observe thiat w,
satisfies the system

(X)W — A = p(x)ih3e" F(x) + ihe'" AF (x), xeQ, 0<r<T,
w(x,1) =0, x€dR,0<t<T,
w(x,0) = w(x,0) = —ihF(x), x € Q,

W (x, 0) = wy(x, 0),

- p_lx> [Aw(x, 0) + p(x)h?F (x) + AF]

= h“F (x), x € Q.
(6.32)

Once again the energy estimate for the non-homogeneous problem provides
T
/ / [Id)xlz + p(x)|d),|2] dxdt
0 Ja

< C(DR (IRPF + AF 2y ) + I FI1g) + H2IF 22 ) - (633)

This inequality allows us to estimate the tewyn = w, in (6.31). Then we have

T
/ / [Vw|?dodt
0 IQ

< C(DR (IRPpF + AF 25 ) + I F Iy + H2IFI22 ) (6:34)

for some constanf'(T') > 0.



Observability of Waves in Heterogeneous Media 63

On the other hand,

T
2 < 2
[ 1veldodr < TUFIE. g,

Combining this last estimate with (6) we easily obtain the inequality (6.21) for
v=g+w. 0O

7. On thelack of controllability of the wave equation

Consider the controlled system:

PO (x, 1) —uxx(x,8) = f(X,)X@p,0<x <1l O0<t<T,
u(O,1) = g1(t), u(l, t) = ga(1), O<t<T, (7.1)
u(x,0) =ug(x), u;(x,0) =uy(x).

Here x(«,p) represents the characteristic function of the intetwalg) c (0, 1),

f is an internal control acting oftw, 8) and g1, g2 are boundary controls act-
ing on the extremes = 0, 1 respectively. Whemw ¢ BV (0,1) and 0 < pg <
p(x) < p1 < oo a.e. the following controllability result hold€ivenT > T,, =
Jpimax1l — g, «} and the initial data(uo, u1) € L?(0,1) x H1(0, 1) there
existsf € L%(0, T; H Y(a, B)) and g1, g» € L2(0, T) such that the solution of
(7.1) satisfies

u(x,t) =u;(x,t) =0 Ve > T. (7.2)

In fact, only one among the control§ g1, g2 is sufficient to guarantee the
controllability if 7 is sufficiently large and is BV. The proof of this result is
a consequence of a corresponding observability inequality for the uncontrolled
equation and the well-known HUM (Hilbert Uniqueness Method) method (see
[10]).

The non-observability result stated in Theorem 1 providekietr”"continuous
density functiong € C9s([0, 1]) forall 0 < s < 1, for which the above control-
lability property does not hold.

To simplify things we restrict ourselves to the boundary controllability case
which is the most delicate one. We prove the following

Theorem 3. There exist ldlder continuous functions € C%5([0, 1) for all 0 <
s < 1with0 < pp £ p(x) £ p1 < oo such that, for any” > 0, there exists initial

data(ug, u1), in the class
(uo, pu1) € L?(0,1) x H1(0, 1), (7.3)

such that, for any, € L?(0, T), the solutioru of (7.1) (with f = 0Oandg; = 0)
does not satisf{7.2).

Remark 9. The proof of Theorem 3 thatwe presenthere can be adapted to the higher
dimensional case, taking into account the lack of internal observability stated in
Theorem 2.
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Proof. We argue by contradiction. Assume that fbr> 0 and any initial data

(uo, u1) in the class (7.3) there exists a contgele L2(0, T) such thau reaches

the equilibrium attime = 7. We are going to show that, when this controllability

property holds, the corresponding observability inequality for the adjoint system

will hold as well, which is in contradiction with the negative result of Theorem 1.
We proceed in two steps:

Step 1. We prove that the following operator is linear and continuous:

S:L%0,1) x H 10,1 — L%, T)

(o, p(x)u1) — g2,

whereg, is the control with minimaL? norm which makes reach the equilibrium
intimer =T.

Note thatS is well defined because we are assuming that the controllability
property holds and the control of minimaf norm is unique due to the convexity
of the norm.

Next we prove thafs is linear. Let us introduce&v ¢ L2(0, T), the subset
of controls of the trivial initial datg0, 0). The subsetV can be characterized as
follows: g € N if and only if

T
/ gOv (L) =0 VY(vo,v1) € H>N HXO0,1) x H}(O, 1), (7.4)
0

whereuv is the solution of the adjoint system with initial dgt&, v1):

PV — vy =0, O<x<1,0<t<T,
v(0,1) =v(1,t) =0, O<t<T, (7.5)
v(x,0) = vo(x), vi(x,0) = v1(x), 0<x < 1.

Indeed, (7.4) is equivalent t&(T) = u,(T) = 0. To see this we multiply by in
(7.1) and integrate by parts to obtain

1
(o). o) gy = [t Ty, T

1 T
—(pu1, vo) g1 +f0 p(X)uo(X)vl(X)dx+/O g2(vx(1,1) =0. (7.6)

Taking into account that the initial data ai& 0), we see that (7.4) is equivalent to
u(T)=u,(T)=0.

Whenyp is regular we can consider less regular initial data v1) € Hol(o, 1) x
L?(0, 1) in (7.4), because solutions with these initial data satisfy the extra regularity
propertyv, (1, 1) € L0, T).

It is easy to see thaV is a non-empty closed linear subsetic#(0, T') and
therefore we can decompog@é(0, T') in a direct sum as follows:

L?(0,T) =N+ N*.
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Then, anyL? control g, of the initial data(uo, 1) can be uniquely decomposed
asg» = g» + n, whereg, € N+ is the minimalZ2 norm control and: € N. We
deduce thas (ug, pu1) is the unique contrag, of (ug, u1) satisfyingg, € N-*t.

Now we assume th&t(uo, pu1) = goandS(vg, pv1) = ho. Thengo+hy € N+
and itis a control ofug+ vg, u1 + v1). ThereforeS (ug + vo, pu1+ pv1) = g2+ho
andS is linear.

Finally, to prove the continuity of we use the closed-graph theorem. Let us
consider a sequence of initial ddt& ;, #1 ;) and a sequence of associated minimal
L? controlsgy ; such that

(uo,j, p(X)u ;) — (uo, p(x)u1) in L2(0,1) x H~1(0, 1), (7.7)
g2 — g2 InL%0,T). (7.8)
Observe thag, € N+ becausdg j}jey € N1 andN< is closed. On the other
hand, ag> ; is a control of(uq ;, u1, ;), we have

1 T
p(xX)uo,j(x)v; (x, 0)dx +f0 giMvx(1,1) =0

(7.9)

_(pul,j7 U(.X, O)>H6|- +A

forall (vo, v1) € H>N HE(0, 1) x H}(0, 1). Indeed, in (7.9) we are simply writing
thatu(T) = u;(T) = 0 in a weak form.

Passing to the limitin (7.9) we find thas is a control for(ug, u1) and therefore
S(uo, pu1) = g2.

We have proved thaf is a linear operator with a closed graph. By the closed
graph theorem it is continuous, i.e., there exists a consgtantO such that

g2l L2¢0.7) = C (o, p(XDun)ll 12(0.1)x -1(0,1)- (7.10)

Step 2. We prove that (7.10) is equivalent to the corresponding observability
inequality for the adjoint system, i.e.,

T
E©) < C/ v (L, 1)|2dt,
0

whereuv is a solution of (7.5) with initial datévo, v1).
From (7.6) and taking into account thatT') = u,(T) = 0, we have

1
‘—(pul, v0) 2 +/O p()uo(x)vi(x)dx
= C |l(uo, P(x)ul)||L2(o,1)fol(o,1) llox (1, T)||L2(0,T)

for all (uo, p(x)u1) € L%(0, T) x H1(0, T), and therefore

I (vo, Ul)”H&(O,l)xLZ(O,l) < Cllux (L, t)”LZ(O,T)- o
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8. On thelack of dispersive propertiesand Strichartz inequalities
for the wave equation

In this section we consider the wave equation in the whole space

oXu; — Au =0, xeRY, >0,

u(x,0) =ug, u(x,0) =ui(x), x € R4, (8.1)

Forp constantand = 2, the Strichartz estimates establish space-time integrability
properties of the solutions of this system due to dispersive effects. One version of
these estimates is

”u”Ltz(R;LZ(R‘I)) <c ”uO”Hr(Rd) + ”ul”HV*l(]Rd) (82)
provided that

2d 2d+1)
“i-2 -1 a-1 9> (8.3)

Whenp is smooth the above estimates (8.2) hold locally in time and they are
sharp (see [12]). For low regularity coefficients,c C1*, there exist weakened
versions of estimates (8.2) (see [13] and [14]).

Note that the above estimates cannot be obtained by classical Sobolev embed-
dings. In fact, due to the conservation of energy we easily deduce that the solutions
of (8.1) belong to the classe C(0, oo; H” (RY)). Therefore, the Sobolev embed-
dings in space allow us to obtain:

q

u € C(0, 00; L7 (RY), (8.4)

For p smooth, estimates (8.2) establish, in particular, that the solutign) €
L4(R%) with 2. < ¢ < 2L almost everywhere ine R.

According to the constructions of the previous sections, for@fé density
function we have built, and due to the existence of a sequence of solutions that
concentrates its energy around a point as much as we wish, no (8.2) nor any weak-
ened version of it may hold except of course for the integrability properties that
Sobolev’'s embeddings provide. Therefore, we may say that in the clag%“of
density functions there are no Strichartz-type estimates even locally in space-time
and for weaker integrability requirements.

More precisely, we have the following result:

Theorem 4. Given any poink, € R¢, there exist lélder continuous density func-
tionsp € C%*(R?) forall 0 < s < 1, and a sequence of solutions of (8.1)for
which

(fya lu . 1)1Pdx) 7
Hr(Rd) + ||atu/(’ 0) || Hr*l(]Rd)

lim

= 8.5
2 TG 0] x (®:5)

foranyp > 24+ € R and for all d-dimensional cube#? = [ x;, x; + 8¢ with
§ > 0.
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Proof. We assume without loss of generality that= 0. Consider the density
introduced in (6.6) and defined by (6.6) and (6.7), that we exte®{ & by the
constant 42.

As we have seen, there exists a sequehﬁ:apj) of eigenpairs of (8.1) concen-
trated around = 0 associated witl, i.e., solutions of

Apj + h}p(x)w,- =0, x € K9, (8.6)
satisfying (6.13). Note that
uj(x, 1) = eih/lgaj (x) (8.7)

constitute a sequence of solutions of (8.1) akérthat we can extend & in such
a way that(u;, d;u;) is uniformly bounded inH" x H lasj — oo. We prove
that, due to the concentration of energyeihearx = 0, the sequence; satisfies
(8.5).

Observe thalu; (-, )| = |¢;(-)| for all t andx e K?. Therefore it is sufficient
to prove that

1/
Uslooras” o a
d—2r

lim (8.8)

7= )]

arkd) T hj ||‘Pj| Hr=1(K4d)

Recall thatp; (x) is defined in separated variables over ef;}?:has follows:
i (x) = @(Xl) o @'(Xd) = wy, (hj(x1— m]_)) S W (hj(xq — mJ_))

Therefore, the change of variablgs = h; (x, — m;) in (8.8) provides

(Jyu I 0)1Pdx)
Hr(kdy T h; H%‘}

”(pl | Hr—l(Kd)

» d/p
e (flwe, 17y
=7j d d

) (8.9)
H™(I}) HY(I))

+ O(hj‘f’)’

lwe; Ve ) + i 0]
where the interval ; = hj(I; —m;), and forallp = 0.

For j sufficiently large[0, 1] C 7; and the numerator in (8.9) can be bounded
below by a constant'(d, p) which does not depend an, i.e.,

/p 1 d/p
(/Ilwsj(y)lpdy> Z(/O Iwej(y)l”dy) =Cd,p)>0

in view of (2.8). On the other hand, the denominator in (8.9) is bounded above, by
a constant which does not dependepndue to the properties af, in Lemma 1.

Itfollows that the left-hand side of (8.9) cannot be uniformly boundgdisn oo
forp> 2. O
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9. Comments

In this section we mention a number of applications and remarks related to the
result stated in Theorem 1.

1. Density functions.The density function that we have constructed is singular at
both extremes in the sense that it oscillates more and more as we appreagh
andx = 1. Similar constructions can be done to obtain densities with singularities
at one interior point or a finite number of interior and boundary points. We have
chosen to present the construction above since it is the simplest one that provides at
the same time a non-observability result for the boundary case and for the interior
one when we restrict ourselves to connected interialg) for the observation.

Note that a more general result, i.e., a density function for which any observabil-
ity inequality fails without any restriction on the observability zone, would imply a
construction of the density with infinitely many singular points localized in a dense
set of[0, 1]. Whether such density functions exist is still an open problem.

2. Variable coefficients in the principal part of the operatofheorem 1 can be
easily adapted to systems of the form

—(a(x)uy)y =0, O<x<10<t<T,
u(,t) =u(d,1) =0, O<r<T, (9.10)
u(x,0) =uoglx), wu;(x,0) =ui(x),0<x <1
In this case the energy of the system is given by

1
E() = %/ [hes e D + o)l e, )] i (9.11)
0
and the boundary and internal observability properties read:
T
EO < C [ @0+ 0] ar, (9.12)
0
T rB
ro<c [ [ [l o +awin o] ©13)
0 Ja

respectively.
Once again,whem € BV (0,1)and0< agp L a(x) £ a1 < ova.ex € (0, 1),
both observability inequalities hold whéhis large enough.

Theorem 5. There exist continuous functioase C°%([0,1]) forall0 < s < 1
with0 < ag < a(x) < a1 < oo for which(9.12)and(9.13)fail for all T > O and
for every subintervale, 8) C (0,1) ((«, B) # (O, 1)).

Proof. We center our attention in the interior observability inequality (9.13) since
the other one is similar. Consider the following change of variables
2

1 oar
y(x) = a(r)// ) p(y) = (/0 %> a(x(y))
v(y, 1) = u(x(y), 1),
v(y, 0) = uo(x(y)), v (y,0) = u1(x(y)) (9.14)
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wherex (y) represents the inverse functionyafc). Note thaty(x) € (0, 1) and
y(x) is invertible because’(x) # 0 for allx € [0, 1]. Hencex(y) € €1(0, 1) and
p(y) has the same regularity agx).
With the above change of variables (9.10) is transformed into
PV — vyy =0, 0<y<1,0<t<T,
v(0,1) =v(l,1) =0, O<t<T, (9.15)
v(y, 0 =vo(»), v(y,0=wvi(y), O<y<Ll

For this system we can apply Theorem 1 and firfdr which the internal observ-
ability fails. More precisely, there exists a sequencsuch that

Jo iy 0. O + p1vj. (3. 017 dy
i [ LX) vy (v, D12 + 0.4 (v, D)17] dyd

forany O0< a < B8 < 1. Coming back to the original variables we easily obtain the
following

(9.16)

1r 2 ) 2 ) 2
| {0 [ﬁa (O)|ujx (x, 0)|* + a(x)|uj, (x, 0)[?] dx . ©.17)
i=oo o [P [a?(0)|uj (x, D)% + @2|uj (x, 1)[2] dxdt

1
wherea = ([01 Tlx)dx) . Note thata(x) is bounded above and below with

positive constants becaug€y) satisfies this property. This fact, combined with
(9.17), provides the result in Theorem 5a

3. Schodinger equation. The singular densities introduced for the wave equation
produce lack of observability for the linear Soldifiger equation
ip(x)u; + Au =0, xeQ, O0<tr<T,
u(x,t) =0, x€dR,0<r<T, (9.18)
u(x,0) = uog(x), x € Q,

where2 is a bounded domain @t with boundaryd Q2 of classC? andT > 0.
The energy of the system is given by

E(t) = %/ |Vu(x, t)|%dx, (9.19)
Q
and the boundary and internal observability properties read:
r 8” 2
EO0 £C |— (x, 1)|%dx, (9.20)
o Joq On
T
E©) < C/ /|Vu(x,t)|2dx, (9.21)
0 1)

respectively. Herej’; represents the normal derivative.
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Whenp € C%(Q) andw satisfies the geometrical control condition, the above
observability inequalities hold for ariy > 0. We refer to [9] for the proof of this
result.

Theorem 2 can be also adapted for the 8dhrger equation:

Theorem 6. Given any poink; € 92, there exist ldlder continuous density func-
tionsp € C%5(Q) forall 0 < s < 1, for which(9.20)and (9.21)fail forall T > 0
and for every subset C 2 such thatr; does not belong to the closure of

The proof of this theorem is a straightforward generalization of the proof of
Theorem 2.

In this result the density has only one singular poin; in the sense that it
oscillates very much near this point. We observe that, as in the wave equation, more
general results can be proved with densities oscillating around several different
points.

Note that the Strichartz-type estimates fail also in (9.18).

4. Heat equation.In this section we observe that the singular densities introduced
for the wave equation do not produce lack of observability for the linear heat
equation
p(X)u; — Au =0, xeQ, O0<t<T,
u(x,t) =0, xe€ed,0<t<T, (9.22)
u(x,0) =uo(x), x € Q,

where$2 is a bounded domain @ with boundaryd 2 of classC® and7 > 0.
The energy of the system is given by

E(r):%/ lu(x, 1)[%dx, (9.23)
Q
and the boundary and internal observability properties read:
T ou 2
E(TYSC | —(x, 1)|“dx, (9.24)
o Jag on
T
E(T) < Cf /|Vu(x,t)|2dx, (9.25)
0 w

respectively.

Whenp e C?(R2) the above observability inequalities hold for ahy- 0 (see
[8]).

We briefly sketch why our construction, which can be perfectly adapted to the
heat equation, does not produce lack of observability.

Observe that the quasi-eigenfunctignshat we constructed for the wave equa-
tion in (6.10) are also quasi-eigenfunctions of the heat equation in the sense that

_7.42
vj(x, 1) = e g (x)

satisfy the differential equation in (9.22) and they are exponentially concentrated
in the interior ofQ.
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However, due to the non-reversibility of the heat equation, in (9.24) and (9.25)
we must estimate the energy of the solution in tifhe- 0. Therefore we have to
estimate a much smaller function than for the wave equation since the solution of

the heat equation at tini is multiplied by the factoe="7°.

To our knowledge, there is no example in the literaturé f coefficients for
linear parabolic equations for which the observability inequalities (9.24) and (9.25)
fail. This is an interesting open problem.
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