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Abstract

This paper deals with the homogenization of a class of highly oscillating mono-
tonic operators which are uniformly elliptic but non-uniformly bounded. We deter-
mine an asymptotic barrier below which we obtain a classical behaviour and above
which nonlocal effects appear. We also prove that this condition is optimal in the
case of a fibre-reinforced medium.

1. Introduction

Let� be a bounded open set ofR
d and letf be a function inLp

′
(�; R

n) (we
can also takef in W−1,p′

(�; R
n) without restriction), wherep, p′ > 1 are two

conjugate numbers. In this paper we study the asymptotic behaviour of the class of
the nonlinear Dirichlet problems parametrized by a small positive numberε:

− div (aε(x,∇uε)) = f in �,

uε = 0 on∂�,
(1.1)

whereaε : R
d × R

nd −→ R
nd is a highly oscillating monotonic operator defined

by aε(x, λ) := Aε
(
x
ε
, λ
)
. The operatorAε(y, λ) is a Carath´eodory-type function,

which isY -periodic (Y is the unit cube ofRd ) with respect toy ∈ R
d and strictly

monotonic with respect toλ ∈ R
nd . MoreoverAε is uniformly elliptic and satisfies

the boundedness condition

for a.e.y ∈ R
d , ∀ λ ∈ R

nd, |Aε(y, λ)| � βε(y) (1 + |λ|p−1),

whereβε is a positive function inL∞(Y ) such that‖βε‖L∞(Y ) → +∞.
The difficulty of the asymptotic analysis comes from the dependence ofAε with

respect toε combined with the non-uniform boundedness ofβε.
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The first, nowadays classical result concerning the homogenization of oscillat-
ing monotonic operators is due toTartar [11]. WhenAε does not depend onε, he
proved that the sequenceuε strongly converges inW1,p

0 (�; R
n) to the solutionu0

of the Dirichlet problem

− div (a0(∇u0)) = f in �,

u0 = 0 on∂�,
(1.2)

where the (homogenized) operatora0 can be explicitely computed thanks to a
local problem. Then by the�-convergence theory,Carbone & Sbordone [5] and
Buttazzo & Dal Maso [4] extended the Tartar result to non-uniformly bounded
(convex) operatorsaε such that

βε is bounded inL1(Y ) and equi-integrable. (1.3)

More recentlyMosco [9] obtained a similar result forp = 2 by using the theory
of Dirichlet forms.

However, when condition (1.3) does not hold, the limit behaviour of the Dirich-
let problem (1.1) can be different from the classical one (1.2). Indeed nonlocal
effects may appear. The first examples of such a phenomenon were obtained by
Fenchenko&Khruslov [6], Khruslov [7] in the linear case. In the same frame-
workMosco [9] deduced from the Beurling-Deny representation formula [2], a gen-
eral representation for the�-limit of the quadratic forms associated with the linear
problem (1.1); this representation naturally contains a nonlocal term.Bellieud
& Bouchitté [1] extended these nonlocal homogenization results to particular
nonlinear functionals.

Our aim is to determine an asymptotic barrier forAε, below which the classical
behaviour (1.2) holds true, and above which nonlocal effects may appear. The main
result of the paper is then the following.

Under the boundedness assumption

∀λ ∈ R
nd,

∫
Y

Aε(y, λ) · λ dy � c|λ|p,

combined with some technical assumptions, we prove that the condition

∀ λ ∈ R
nd, εp Cλ(ε) −→

ε→0
0,

Cλ(ε) := sup
V∈W1,p(Y ;Rn)\{0}∫

Y V=0

∫
Y

Aε(y, λ) · λ |V |p∫
Y

Aε(y,∇V ) · ∇V
(1.4)

implies a classical behaviour (1.2) for problem (1.1) (see Theorem 2.1). We also
prove that in contrast with condition (1.3), condition (1.4) is optimal to avoid
nonlocal effects for a particular example. The optimality is shown thanks to the
fibre-reinforced model of [1], for which we give the precise asymptotic behaviour
of Cλ(ε) (see Proposition 2.4).
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In [3] we obtained an optimal result of convergence in the “opposite” case,
i.e., when the sequenceAε is uniformly bounded but non-uniformly elliptic. In this
context the analysis is less intricate since condition (1.4) is replaced by a more
simple one without the weightAε(y, λ) · λ.

2. Statement of the results

2.1. Statement of the problem

In the following:

• � is a bounded domain ofRd ;
• ε denotes a positive parameter,n a non-negative integer andp, p′ > 1 are two

conjugate numbers, i.e.,1
p

+ 1
p′ = 1;

• · denotes the scalar product and| · | the Euclidian norm inRn or in R
nd ;

• for anyλ ∈ R
nd , x ∈ R

d , λ is considered as an×d matrix,λ x denotes the vector
of R

n defined by(λ x)i = ∑d
j=1 λij xj ;

• for anyu ∈ R
n, x ∈ R

d , u⊗ x denotes then×d matrix defined by(u⊗ x)ij :=
ui xj ;

• Y denotes the unit cube[−1
2,

1
2[d ;

• W1,p
# (Y ; R

n) denotes the Y -periodic vector-valued functions in

W
1,p
loc (R

d; R
n).

LetAε : R
d × R

nd −→ R
nd be a vector-valued function satisfying the following

conditions:

• Aε is a Carath´eodory function, i.e.,

for anyλ ∈ R
nd, y �−→ Aε(y, λ) is measurable,

for a.e.y ∈ R
d , λ �−→ Aε(y, λ) is continuous; (2.1)

• Aε is Y -periodic with respect to the first variable, and strictly monotonic with
respect to the second one, i.e.,

for a.e.y ∈ R
d , ∀ λ,µ ∈ R

nd, λ �= µ, (Aε(y, λ)− Aε(y, µ)) · (λ− µ) > 0;
(2.2)

• Aε is uniformly elliptic, i.e., there exists a positive constantα such that

for a.e.y ∈ R
d , ∀ λ ∈ R

nd, Aε(y, λ) · λ � α |λ|p; (2.3)

• Aε satisfies the boundedness condition

for a.e.y ∈ R
d , ∀ λ ∈ R

nd, |Aε(y, λ)| � βε(y) (1 + |λ|p−1), (2.4)

whereβε is a function inL∞(Y ), with ‖βε‖L∞(Y ) → +∞ asε → 0.
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We define the highly oscillating monotonic function

aε(x, λ) := Aε

(x
ε
, λ
)
, x ∈ �, λ ∈ R

nd, (2.5)

and we consider the nonlinear Dirichlet problem

− div (aε(x,∇uε)) = f in �,

uε = 0 on∂�.
(2.6)

By the theory of monotonic operators (see, e.g., Theorem 2.1 p. 171 of [8]) there
exists a unique solutionuε ∈ W1,p

0 (�; R
n) of the Dirichlet problem (2.6).

Our aim is to give an optimal condition onAε in order to obtain the following
asymptotic behaviour of problem (2.6): for every givenf in Lp

′
(�; R

n), we have

uε ⇀ u0 weakly inW1,p
0 (�; R

n), (2.7)

whereu0 is the solution of the Dirichlet problem

− div (a0(∇u0)) = f in �,

u0 = 0 on∂�.
(2.8)

Let us first describe in a formal way the limit operatora0 of (2.8). For that we
apply the result of the classical case [11], i.e., the case whereAε does not depend
on ε. Therefore we fixε and, for anyλ ∈ R

nd , we defineXε(·, λ) as the solution
inW1,p

# (Y ; R
n) with zero averaged value onY , of the variational cell problem

∀V ∈ W1,p
# (Y ; R

n),

∫
Y

Aε(y,∇yWε(y, λ)) · ∇V (y) dy = 0,

where Wε(y, λ) := λ y −Xε(y, λ).
(2.9)

Then by [11] the homogenized operator of the oscillating operatorAε(
x
δ
, λ) as

δ → 0 andε is fixed, is defined by

A0
ε(λ) :=

∫
Y

Aε(y,∇yWε(y, λ)) dy. (2.10)

It is thus natural to think that the functiona0 of (2.8) is obtained as the limit

∀ λ ∈ R
nd, A0

ε(λ) −→
ε→0

a0(λ). (2.11)

Of course limit (2.11) is a “natural” idea for obtaining the homogenized prob-
lem (2.8) but is far from being sufficient. Indeed nonlocal effects may appear in
the limit behaviour as shown in [7], [6] and [1]. These are due to non-uniform
boundedness of the sequenceβε of (2.4), when‖βε‖L∞(Y ) → +∞. In fact these
nonlocal effects naturally enter into the homogenization process when the operators
are not uniformly bounded. Indeed in the linear caseMosco [9] established the link
between homogenization and the Beurling-Deny [2] representation of the Dirichlet
forms, which contains a nonlocal term.
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The problem is to determine a critical barrier above which nonlocal effects
appear and below which the homogenization of problem (2.6) leads to the clas-
sical problem (2.8). The condition (1.3) onβε is sufficient to have the classical
behaviour (2.8) but this condition is far from being optimal (see Section 2.3). In
the next subsection we will give an optimal condition which separates the classical
case from the case where nonlocal effects appear.

2.2. Statement of the result

For technical reasons we only consider the class of monotonic operators which
satisfy both restrictive conditions:

• Aε is (p−1)-homogeneous with respect to the second variable

for a.e.y ∈ Y, ∀ t ∈ R, ∀λ ∈ R
nd, Aε(y, tλ) = |t |p−2t Aε(y, λ); (2.12)

• Aε satisfies a H¨older-type inequality

for a.e.y ∈ Y, ∀ λ,µ ∈ R
nd,

|Aε(y, λ) · µ| � C (Aε(y, λ) · λ)
1
p′ (Aε(y, µ) · µ)

1
p

(2.13)

whereC is a positive constant. These conditions are not so restrictive since they
are satisfied in the linear caseAε(y, λ) := Bε(y) λ, whereBε is a matrix-valued
function, and in thep-Laplacian caseAε(y, λ) := βε(y) |λ|p−2 λ.

The main result of the paper is the following.

Theorem 2.1. LetAε be a sequence of operators satisfying properties(2.1)–(2.4),
(2.12), (2.13) and theL1-boundedness condition

∀ λ ∈ R
nd,

∫
Y

Aε(y, λ) · λ dy � c |λ|p, (2.14)

wherec is a positive constant. We also assume that

∀ λ ∈ R
nd, εp sup

V∈W1,p(Y ;Rn)\{0}∫
Y V=0

∫
Y

Aε(y, λ) · λ |V |p∫
Y

Aε(y,∇V ) · ∇V
−→
ε→0

0. (2.15)

Finally we assume that there exists a continuous functiona0 : R
nd −→ R

nd which
is strictly monotonic and such that limit(2.11) holds, i.e.,A0

ε(λ) defined by(2.10)
converges toa0(λ) for anyλ.

Then the solutionuε of problem(2.6) weakly converges inW1,p
0 (�; R

n) to the
solutionu0 of the classical Dirichlet problem(2.8).
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Remark 2.2.

• By the boundedness condition (2.4) and the ellipticity condition (2.3) combined
with the Poincar´e-Wirtinger inequality inW1,p(Y ; R

n), there exists, for any
λ ∈ R

nd and anyε > 0, an optimal constantCλ(ε) > 0 such that

∀V ∈ W1,p(Y ; R
n),∫

Y

Aε(y, λ) · λ |V − ∫
Y
V |p � Cλ(ε)

∫
Y

Aε(y,∇V ) · ∇V. (2.16)

Inequality (2.16) is a weighted Poincar´e-Wirtinger inequality with the weight
Aε(·, λ) · λ. Then condition (2.15) is equivalent to

∀ λ ∈ R
nd, εp Cλ(ε) −→

ε→0
0. (2.17)

In the particular case whereAε(y, λ) := βε(y) |λ|p−2λ condition (2.15) reduces
to

εp sup
V∈W1,p(Y ;Rn)\{0}∫

Y V=0

∫
Y

βε |V |p∫
Y

βε |∇V |p
−→
ε→0

0. (2.18)

• On the one hand theL1-boundedness condition (2.14) prevents the appearance of
a zero order term in the limit problem (see [7] and [1]). In the linear case this term
corresponds to the so calledkilling measurein the Beurling-Deny representation
formula of the Dirichlet forms (see [9]).
On the other hand condition (2.15) prevents the appearance of nonlocal effects.
In the linear case these nonlocal effects are associated with the so-calledjumping
measurein the Beurling-Deny formula (see [9]).

Remark 2.3. At the end of the subsection, we will prove that the functionA0
ε

satisfies the estimates

∀ λ ∈ R
nd, c−1 |λ|p � A0

ε(λ) · λ and |A0
ε(λ)| � c |λ|p−1, (2.19)

wherec � 1 is a constant. Therefore the assumption (2.11) on the convergence
of the homogenized functionA0

ε (2.10) to the functiona0, is partly justified (for a
dense subset ofRd and for a subsequence ofε) by the previous estimates and by
a diagonal extraction. However, we have to assume the continuity ofa0 as well as
its strict monotonicity. Thanks to (2.19) the limita0 of A0

ε also satisfies the same
estimates

∀ λ ∈ R
nd, c−1 |λ|p � a0(λ) · λ and |a0(λ)| � c |λ|p−1, (2.20)

which combined with the strict monotonicity ofa0 ensure the existence and the
uniqueness of the limit Dirichlet problem (2.8).
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Let us prove estimates (2.19). These estimates will be useful in the proof of
Theorem 2.1.

Proof of (2.19). By the definition of the local problem (2.9) we have∫
Y

Aε(y,∇yWε(y, λ)) · ∇yWε(y, λ) =
∫
Y

Aε(y,∇yWε(y, λ)) · λ.

By applying (2.13) to the right-hand side, the H¨older inequality and the bounded-
ness (2.14) we obtain∫

Y

Aε(y,∇yWε) · ∇yWε �
∫
Y

C
(
Aε(y,∇yWε) · ∇yWε

) 1
p′ (Aε(y, λ) · λ)

1
p

� C

(∫
Y

Aε(y,∇yWε) · ∇yWε
) 1
p′

×
(∫

Y

Aε(y, λ) · λ
) 1
p

� C′ |λ|
(∫

Y

Aε(y,∇yWε) · ∇yWε
) 1
p′
,

whence the estimate∫
Y

Aε(y,∇yWε(y, λ)) · ∇yWε(y, λ) � c |λ|p. (2.21)

From now on, we denote byc any positive constant whose exact value does not
matter.

By applying again inequality (2.13), the H¨older inequality and estimate (2.21)
we have, for anyµ ∈ R

nd ,∣∣∣∣
∫
Y

Aε(y,∇yWε(y, λ)) · µ
∣∣∣∣ � c |λ|p−1|µ|

which implies the second estimate of (2.19).
On the other hand the ellipticity (2.3) ofAε and the definition (2.10) ofA0

ε

imply that, for anyλ ∈ R
d ,

‖∇yWε(·, λ)‖Lp(Y ) � c

(∫
Y

Aε(y,∇yWε(y, λ)) · ∇yWε(y, λ)
) 1
p

= c
(
A0
ε(λ) · λ

) 1
p
.

(2.22)

Then estimate (2.22) combined with the second estimate of (2.19) yield

‖∇yWε(·, λ)‖Lp(Y ) � c |λ|,
and thanks to the Poincar´e-Wirtinger inequality we obtain

‖Wε(·, λ)‖W1,p(Y ) � c |λ|. (2.23)
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Assume now that the uniform ellipticity ofA0
ε does not hold. Then there exists a

sequenceλε of R
nd with |λε| = 1, which converges toλ with |λ| = 1, and such

thatA0
ε(λε) · λε → 0. Whence by estimate (2.22) we have

‖∇yWε(·, λε)‖Lp(Y ) � c
(
A0
ε(λε) · λε

) 1
p −→

ε→0
0.

By (2.23) we can also assume thatXε(·, λε) weakly converges inW1,p
# (Y ; R

n) to
a functionX0. Then by the semi-lower continuity of theLp norm we have

‖λ− ∇X0‖Lp(Y ) � lim inf
ε→0

‖∇yWε(·, λε)‖Lp(Y ) = 0,

whence∇X0 = λ with |λ| = 1, which contradicts theY -periodicity ofX0. The
first estimate of (2.19) is thus proved.��

2.3. Optimality of the condition onAε

Let us now show the optimality of the asymptotic condition (2.15). We will give
an example in which nonlocal effects appear as soon as condition (2.15) is violated.
For that we consider the case of a fibre-reinforced medium, studied byBellieud
& Bouchitté [1]. In [1] the functionAε is defined as follows forn = 1 andd = 3:

LetQε be the cylinder inY := [−1
2,

1
2[3 of axisy3 and radiusrε → 0, and let

Aε be the function defined by

Aε(y, λ) := βε(y) |λ|p−2λ, where βε := 1Y\Qε + γε 1Qε, γε → +∞.
(2.24)

In this case the weighted Poincar´e-Wirtinger inequality (2.16) can be written

∀V ∈ W1,p(Y ; R),

∫
Y

βε |V − ∫
Y
V |p � C(ε)

∫
Y

βε |∇V |p, (2.25)

whereC(ε) is the optimal constant. Then condition (2.15) is equivalent to (2.18)
and hence toεp C(ε) → 0 asε → 0.

The following result yields the precise asymptotic behaviour ofC(ε).

Proposition 2.4. Assume that

γε |Qε| −→
ε→0

k ∈ ]0,+∞[. (2.26)

Then the optimal constantC(ε) of (2.25) satisfies the following asymptotic be-
haviours:

• if 1< p < 2, C(ε) → +∞ and

C(ε) ∼
ε→0

1

2π

(
p − 1

2 − p
)p−1

k rp−2
ε ; (2.27)
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• if p = 2, C(ε) → +∞ and

C(ε) ∼
ε→0

1

2π
k | ln rε|; (2.28)

• if p > 2, C(ε) is bounded.

Moreover we have, for anyλ ∈ R
3,

A0
ε(λ) −→

ε→0
a0(λ) := |λ|p−2λ+ k |λ3|p−2λ3 ν3, (2.29)

wherek is given by(2.26) and(ν1, ν2, ν3) denotes the canonic basis ofR
3.

On the other hand,Bellieud & Bouchitté [1] obtain the limit behaviour of
the Dirichlet problem (2.6) whenAε is defined by (2.24), and prove that, under
assumption (2.26), the homogenized problem contains a nonlocal term if and only
if

lim inf
ε→0

εp rp−2
ε > 0 for 1< p < 2,

lim inf
ε→0

ε2 | ln rε| > 0 for p = 2.

Then by the results of Proposition 2.4 these conditions are equivalent to

lim inf
ε→0

εp C(ε) > 0.

Therefore, for this particular example, the quantityεp C(ε) is the desired critical
barrier, below which the homogenization is classical, and above which the ho-
mogenization is nonlocal. For this example, boundedness assumption (2.14) is an
immediate consequence of (2.26) and the value of the homogenized operatora0 is
given by (2.29) and thus satisfies the conditions of Theorem 2.1.

We can also note that the equi-integrability condition (1.3) is equivalent to

γε |Qε| −→
ε→0

0. (2.30)

Indeed condition (2.30) ensures the boundedness of the sequenceβε in L1(�).
Moreover (2.30) implies that the integral ofβε over any measurable setE tends
to 0 as|E| → 0 uniformly with respect toε, since the “bad” sets are the subsets
ofQε, whence the equi-integrability of the sequenceβε.

We know (see Introduction) that (1.3), or equivalently (2.30), is sufficient to
obtain the classical homogenization result (2.8) of problem (2.6). However Theo-
rem 2.1 and Proposition 2.4 show that this condition is far from recovering all the
cases of classical behaviour. In particular in the casep > 2, the limit is always
classical without extra assumption.
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3. Proof of the homogenization theorem

The proof of Theorem 2.1 follows the so-called method of oscillating test func-
tions due toTartar [11]. In order to obtain the limit of the flowξε := aε(·,∇uε)we
consider the family of periodic test functionsWε(·, λ), λ ∈ R

nd , from the auxiliary
cell problem (2.9).

In a first step (Section 3.1), we obtain somea priori estimates satisfied byuε
andξε.

In a second step (Section 3.2), by using the monotonicity ofaε with uε and
the rescaled test functionεWε(xε , λ) as well as the homogeneity ofaε, we obtain
the inequality (3.8) satisfied byξε and the functionηε( xε , λ), whereηε(y, λ) :=
Aε(y,∇yWε(y, λ)). To pass to the limit in this inequality we essentially need the
following limits

ξε · ∇yWε(xε , λ) ⇀ ξ0 · λ x weakly inD′(�),
ηε(

x
ε
, λ) · ∇uε ⇀ a0(λ) · ∇u0 weakly inD′(�),

(3.1)

whereξ0 is the weak limit ofξε in the weak sense of the Radon measures. In
the classical framework, namely whenAε is uniformly bounded, limits (3.1) are
a simple consequence of the div-curl Lemma of Murat,Tartar [11]. In our con-
text the situation is more delicate sinceξ0 is only a Radon measure at this point.
Then assumption (2.15) is the key-ingredient used to compensate for the lack of
compactness in these products of weakly converging sequences.

For the first limit of (3.1) condition (2.15) naturally appears after integrating
by parts and using H¨older-type inequalities. The case of the second limit is more
complicated and it exploits the oscillations due to the periodicity (see Lemma 3.1).
Sinceηε( xε , λ) has a zero divergence by definition (2.9), an integration by parts
leads us to study the productηε( xε , λ) uε. At this level the idea (see the proof of
Lemma 3.1 in Section 3.4) is to replace the oscillating sequenceηε(

x
ε
, λ) by its

averaged value
∫
Y
ηε(y, λ), which is equal toA0

ε(λ) by definition (2.10). For that
we show the existence of an oscillating functionhε which satisfies

ηε(
x
ε
, λ)− A0

ε(λ) = − ε div (aε(x,∇hε))

and whoseLp norm of the gradient is controlled by the constantCλ(ε) defined
in (2.16). We then obtain the second limit of (3.1) thanks to several integrations by
parts combined with assumption (2.15).

In a third step (Section 3.3), we determine the value of the limit flowξ0. From
the inequality (3.6) obtained in the previous step (Section 3.2) and a technical result
(Lemma 3.2) we deduce thatξ0 belongs in fact toLp

′
(�). Then by using similar

monoticity inequalities of type (3.20) and homogeneity arguments, we prove the
equalityξ0 = a0(∇u0) which concludes the proof of Theorem 2.1.
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3.1. A priori estimates

Let uε ∈ W1,p
0 (�; R

n) be the solution of the Dirichlet problem (2.6). By the
uniform ellipticity (2.3) ofAε we have

α ‖∇uε‖pLp(�) �
∫
�

aε(x,∇uε) · ∇uε

=
∫
�

f · uε
� ‖f ‖

Lp
′
(�)

‖uε‖Lp(�)
� cf ‖∇uε‖Lp(�).

Then the sequenceuε is bounded inW1,p
0 (�; R

n) and convergence (2.7) holds up
to a subsequence. We also have

aε(·,∇uε) · ∇uε is bounded inL1(�). (3.2)

On the other side inequality (2.13) combined with the H¨older inequality implies
that, for anyµ ∈ R

nd ,

∫
�

|aε(x,∇uε) · µ| � C

(∫
�

aε(x,∇uε) · ∇uε
) 1
p′ (∫

�

aε(x, µ) · µ
)1
p

,

whence by estimates (2.14) and (3.2)aε(·,∇uε) is bounded inL1(�; R
nd) and

thus satisfies, up to a subsequence still denoted byε, the weak convergence in the
Radon measures sense

ξε := aε(·,∇uε) ⇀ ξ0 weakly inM(�; R
nd) ∗, (3.3)

i.e., for any continuous function/ ∈ Cc(�; R
nd) with compact support in�,∫

�

aε(x,∇uε) ·/ −→
ε→0

∫
�

ξ0 ·/. (3.4)

Since by definition− div (ξε) = f , the vector-valued measureξ0 satisfies the
equality in the distributions sense

− div (ξ0) = f in D′(�,Rn). (3.5)

Therefore the proof of Theorem 2.1 consists in proving the equalityξ0 =
a0(∇u0) whereξ0 is the limit defined by (3.3) anda0 is the limit of the homoge-
nized operatorA0

ε defined by (2.10). The main difficulty of the proof comes from
the weakness of convergence (3.3).

We proceed in two steps, which are shown in the following two subsections. In
the first step we prove a variational inequality satisfied by the measureξ0. In the
second step we deduce from this inequality thatξ0 is a function inLp

′
(�; R

nd);
then we show the desired equality.
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3.2. An inequality satisfied byξ0

We will prove that for anyλ ∈ R
nd and anyϕ ∈ Cc(�) (continuous with

compact support in�) the following inequality holds:∫
�

f · u0 −
∫
�

ξ0 · λ ϕ −
∫
�

a0(λ) · ∇u0 |ϕ|p−2ϕ +
∫
�

a0(λ) · λ |ϕ|p � 0.

(3.6)

The starting point of the proof is an inequality of monotonicity as in the classical
framework [11]. Let us define

ηε(y, λ) := Aε
(
y,∇yWε(y, λ)

)
, y ∈ Y, λ ∈ R

nd, (3.7)

whereWε is defined by (2.9), and letξε be defined by (3.3). The monotonicity (2.2)
of Aε implies that∫

�

(
ξε − ηε( xε , λ ϕ)

) · (∇uε − ∇yWε(xε , λ ϕ)
)

� 0.

On the other hand, by the homogeneity condition (2.12) and by the uniqueness of the
local problem (2.9), for a.e.y ∈ Y , the functionWε(y, ·) is 1-homogeneous and the
functionηε(y, ·) is (p−1)-homogeneous. Thenuε being solution of problem (2.6),
the previous inequality can be written∫

�

f · uε −
∫
�

ξε · ∇yWε(xε , λ) ϕ

−
∫
�

ηε(
x
ε
, λ) · ∇uε |ϕ|p−2ϕ

+
∫
�

ηε(
x
ε
, λ) · ∇yWε(xε , λ) |ϕ|p � 0.

(3.8)

We will determine the limit of any integral of (3.8). By the weak limit (2.7) we have∫
�

f · uε −→
ε→0

∫
�

f · u0. (3.9)

Limit of the second term of (3.8). Let us define the function

wλε (x) := εWε

(x
ε
, λ
)
, (3.10)

whereWε is defined by (2.9). Letϕ ∈ D(�) := C∞
0 (�). By integrating by parts

and by putting the functionϕ wλε in (2.6) we obtain∫
�

ξε · ∇yWε(xε , λ) ϕ =
∫
�

f · wλε ϕ −
∫
�

ξε · (wλε ⊗ ∇ϕ). (3.11)

By estimate (2.23) it is clear thatwλε (x) strongly converges toλ x in Lp(�; R
n),

whence ∫
�

f · wλε ϕ −→
ε→0

∫
�

f · (λ x) ϕ.
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For the last term of (3.11) we need assumption (2.15). Let(νi)1�i�d be the canonic
basis ofRd and(ek)1�k�n be the canonic basis ofR

n, we have

∫
�

ξε · (wλε ⊗ ∇ϕ) =
∫
�

ξε · (λ x ⊗ ∇ϕ)−
d∑
i=1

∫
�

ε ξε · (Xε( xε , λ)⊗ νi)
∂ϕ

∂xi
,

and by the weak convergence (3.3)∫
�

ξε · (λ x ⊗ ∇ϕ) −→
ε→0

∫
�

ξ0 · (λ x ⊗ ∇ϕ).

On the other hand, by inequality (2.13) combined with the H¨older inequality
we have, for anyν ∈ R

d and withXkε := Xε · ek,∫
�

∣∣ξε · (Xε( xε , λ)⊗ ν)
∣∣

�
n∑
k=1

∫
�

|ξε · (ek ⊗ ν)| |Xkε( xε , λ)|

�
n∑
k=1

C

(∫
�

ξε · ∇uε
) 1
p′(∫

�

aε(x, ek ⊗ ν) · (ek ⊗ ν) |Xkε( xε , λ)|p
)1
p

|Xkε | � |Xε|
�

n∑
k=1

c

(∫
Y

Aε(y, ek ⊗ ν) · (ek ⊗ ν) |Xε(y, λ)|p
)1
p

by (3.2).

Moreover by applying successively the Poincar´e inequality (2.16) estimates (2.14),
(2.21) and condition (2.17), we obtain for anye ∈ R

n andµ := e ⊗ ν,∫
Y

Aε(y, µ) · µ |Xε(y, λ)|p

�
∫
Y

(Aε(y, µ) · µ)2p
(|2λ|p + |Wε(y, λ)−

∫
Y
Wε|p

)
� c + Cµ(ε)

∫
Y

Aε(y,∇yWε(y, λ)) · ∇yWε(y, λ)
= o(ε−p).

We thus deduce from the previous estimates that∫
�

ε ξε · (Xε( xε , λ)⊗ ∇ϕ) −→
ε→0

0.

Passing to the limit in equality (3.11) then yields∫
�

ξε · ∇yWε(xε , λ) ϕ −→
ε→0

∫
�

f · (λ x) ϕ −
∫
�

ξ0 · (λ x ⊗ ∇ϕ).
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Finally, when we put the function(λ x) ϕ in (3.5), the previous limit becomes∫
�

ξε · ∇yWε(xε , λ) ϕ −→
ε→0

∫
�

ξ0 · λ ϕ for anyϕ ∈ D(�). (3.12)

Limit (3.12) also holds for anyϕ ∈ Cc(�). Indeed inequality (2.13) and the H¨older
inequality combined with estimates (3.2) and (2.21) imply that∫

�

|ξε · ∇yWε(xε , λ)|

� C

(∫
�

ξε · ∇uε
) 1
p′ (∫

Y

Aε(y,∇yWε(y, λ)) · ∇yWε(y, λ)
)1
p

� c |λ|
which shows that the sequenceξε · ∇yWε(xε , λ) is bounded inL1(�).

Limit of the third term of (3.8). We need the following result which is essentially
based on condition (2.15).

Lemma 3.1. Letvε be a sequence inW1,p
0 (�; R

n) such that

vε ⇀ v0 weakly inW1,p
0 (�; R

n),

aε(·,∇vε) · ∇vε is bounded inL1(�),
(3.13)

and letGε be a sequence ofY -periodic functions inLp# (Y ; R
nd) such that∫

Y

Aε(y,Gε) −→
ε→0

b0 ∈ R
nd and Aε(·,Gε) ·Gε is bounded inL1(Y ).

(3.14)

Then the following convergence holds in the distributions sense:

∀ θ ∈ D(�; R
d),∫

�

aε(x, gε) · (vε ⊗ θ) −→
ε→0

∫
�

b0 · (v0 ⊗ θ), gε(x) := Gε

(x
ε

)
.

(3.15)

Lemma 3.1 will be proved in the last subsection. Thanks to Lemma 3.1 we will
obtain the limit of the third term of (3.8).

Let ψ ∈ D(�). By definitions (3.7) and (2.9) we have divy(ηε(y, λ)) = 0 in
the distribution sense; indeed, since (2.9) holds true in the torus sense it also holds
in the distribution sense thanks to the periodicity, by using a test function of type
V (y) := ∑

κ∈Rd
ψ(y+κ). Then owing to an integration by parts we obtain∫
�

ηε(
x
ε
, λ) · ∇uε ψ = −

∫
�

ηε(
x
ε
, λ) · (uε ⊗ ∇ψ).

The sequencevε := uε satisfies the conditions (3.13) of Lemma 3.1 by (2.7), (3.2),
and the sequenceGε := ∇yWε(·, λ) satisfies the conditions (3.14) of Lemma 3.1
by (2.11), (2.21) withb0 := a0(λ). Then convergence (3.15) yields∫

�

ηε(
x
ε
, λ) · (uε ⊗ ∇ψ) −→

ε→0

∫
�

a0(λ) · (u0 ⊗ ∇ψ) = −
∫
�

a0(λ) · ∇u0ψ
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since∇(ψ u0) = u0 ⊗ ∇ψ + ∇u0ψ . We thus obtain the limit∫
�

ηε(
x
ε
, λ) · ∇uε ψ −→

ε→0

∫
�

a0(λ) · ∇u0ψ,

for any ψ ∈ D(�). This limit also holds for anyψ ∈ Cc(�) since the in-
equality (2.13) combined with estimates (3.2), (2.21) implies that the sequence
ηε(

x
ε
, λ) · ∇uε is bounded inL1(�). In particular we have for anyϕ ∈ Cc(�),∫

�

ηε(
x
ε
, λ) · ∇uε |ϕ|p−1ϕ −→

ε→0

∫
�

a0(λ) · ∇u0 |ϕ|p−1ϕ. (3.16)

Limit of the fourth term of (3.8). By the definition ofWε in (2.9) and by
estimate (2.23) the sequencevε(x) := εWε(

x
ε
, λ) weakly converges toλ x in

W1,p(�; R
n).Therefore, by proceeding as in the previous step, owing to Lemma 3.1,

we obtain the following limit:∫
�

ηε(
x
ε
, λ) · ∇yWε(xε , λ) |ϕ|p −→

ε→0

∫
�

a0(λ) · λ |ϕ|p. (3.17)

Finally, passing to the limit in inequality (3.8), thanks to limits (3.9), (3.12),
(3.16) and (3.17), yields the desired inequality (3.6).

3.3. Proof of the equalityξ0 = a0(∇u0)

We have to first prove that the vector-valued measureξ0 defined by (3.5) is a
function inLp

′
(�; R

nd). This is a consequence of inequality (3.6) and the following
result.

Lemma 3.2. Letµ be a Radon measure on� and letF be a mapping fromLp(�)
into R which is continuous at the point0. Assume that

∀ϕ ∈ Cc(�), F (ϕ)+
∫
�

ϕ µ � 0. (3.18)

Thenµ belongs toLp
′
(�).

Lemma 3.2 will be proved in the last subsection.
For anyλ ∈ R

nd , let us apply Lemma 3.2 withµ := − ξ0 · λ and

F(ϕ) :=
∫
�

(
f · u0 − a0(λ) · ∇u0 |ϕ|p−2ϕ + a0(λ) · λ |ϕ|p

)
.

The mappingF is clearly continuous onLp(�) and assumption (3.18) holds thanks
to inequality (3.6). Thereforeξ0 · λ ∈ Lp′

(�) for anyλ ∈ R
nd , and equivalentlyξ0

is a function inLp
′
(�; R

nd).
Let us now prove the equalityξ0 = a0(∇u0). Let (ϕk)1�k�m be a family ofm

functions inCc(�)with disjoint support, and let(λk)1�k�m be a family ofm vectors
in R

nd . We define the function

/m :=
m∑
k=1

ϕk λk ∈ Cc(�; R
nd), (3.19)



88 Marc Briane

and we consider the monotonicity inequality∫
�

(
ξε − ηε( xε ,/m)

) · (∇uε − ∇yWε(xε ,/m)
)

� 0,

whereξε, Wε and ηε are defined by (3.3), (2.9) and (3.7). Since the functions
ϕk have disjoint support and, for a.e.y ∈ Y , the functionsWε(y, ·), ηε(y, ·) are
homogeneous, the previous inequality can be written

∫
�

(
ξε −

m∑
k=1

ηε(
x
ε
, λk) |ϕk|p−2ϕk

)
·
(

∇uε −
m∑
k=1

∇yWε(xε , λk) ϕk
)

� 0.

Now we proceed as in the previous subsection in which we deduced inequality (3.6)
from inequality (3.8). Passing to the limit in the previous inequality then yields∫

�

f · u0 −
∫
�

ξ0 ·/m −
∫
�

m∑
k=1

a0(λk) · ∇u0 |ϕk|p−2ϕk

+
∫
�

m∑
k=1

a0(λk) · λk |ϕk|p � 0,

whence again by the homogeneity ofa0 and the disjointness of the supports ofϕk
we deduce the inequality∫

�

f · u0 −
∫
�

ξ0 ·/m −
∫
�

a0(/m) · ∇u0 +
∫
�

a0(/m) ·/m � 0. (3.20)

On the other hand, by the density ofCc(�; R
nd) inLp(�; R

nd), there exists, for any
/ ∈ Lp(�; R

nd), a sequence(/m)m�0 of functions of type (3.19) such that/m
strongly converges to/ inLp(�; R

nd). Moreover sincea0 is continuous onRnd and
satisfies the boundedness condition (2.20),a0 also defines a continuous mapping
fromLp(�; R

nd) intoLp
′
(�; R

nd). Therefore passing to the limit/m → / in the
last inequality implies that∫

�

f · u0 −
∫
�

ξ0 ·/−
∫
�

a0(/) · ∇u0 +
∫
�

a0(/) ·/ � 0. (3.21)

Finally by puttingu0 in equality (3.5) we obtain∫
�

ξ0 · ∇u0 =
∫
�

f · u0

and inequality (3.21) becomes∫
�

(ξ0 − a0(/)) · (∇u0 −/) � 0.

Let= ∈ Lp(�; R
nd) and/t := ∇u0 − t =, t > 0. We thus have∫

�

(ξ0 − a0(/t )) ·= � 0.
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Then, by passing to the limitt → 0 and by using the continuity ofa0 onLp(�; R
nd),

we obtain ∫
�

(ξ0 − a0(∇u0)) ·= � 0, for any= ∈ Lp(�; R
nd),

which implies the equalityξ0 = a0(∇u0) and concludes the proof of Theorem 2.1.

3.4. Proof of the lemmas

Proof of Lemma 3.1. To prove convergence (3.15) we will first introduce an auxi-
liary functionHνε . Let us defineBε := Aε(·,Gε)andBε its averaged value onY . Let
ν ∈ R

d , thanks to the strict monotonicity ofAε combined with the continuity of the
mapping

(
V �−→ ∫

Y
(Bε − Bε) ν · V ) in the quotient spaceW1,p

# (Y ; R
n)/R pro-

vided with the norm‖∇V ‖Lp(Y ) (consequence of the Poincar´e-Wirtinger inequality

in Y ), there exists a unique solutionHνε inW1,p
# (Y ; R

n) with zero averaged value
onY , of the variational cell problem

∀V ∈ W1,p
# (Y ; R

n),∫
Y

Aε(y,∇Hνε (y)) · ∇V (y) dy =
∫
Y

(Bε(y)− Bε) ν · V (y) dy. (3.22)

Putting the functionHνε in (3.22) yields∫
Y

Aε(y,∇Hνε ) · ∇Hνε =
∫
Y

Bε · (Hνε ⊗ ν)

sinceHνε has a zero averaged value. Moreover by using successively inequal-
ity (2.13), the Hölder inequality, the weighted Poincar´e-Wirtinger inequality (2.16)
and the estimate of (3.14), we have∣∣∣∣
∫
Y

Bε · (Hνε ⊗ ν)
∣∣∣∣

�
n∑
k=1

∫
Y

|Bε · (ek ⊗ ν)Hν,kε |

�
n∑
k=1

∫
Y

C (Aε(y,Gε) ·Gε)
1
p′ (Aε(y, ek ⊗ ν) · (ek ⊗ ν) |Hνε |p) 1

p

�
n∑
k=1

C

(∫
Y

Aε(y,Gε) ·Gε
) 1
p′ (∫

Y

Aε(y, ek ⊗ ν) · (ek ⊗ ν) |Hνε |p
)1
p

�
n∑
k=1

c

(
Cek⊗ν(ε)

∫
Y

Aε(y,∇Hνε ) · ∇Hνε
)1
p

.

We thus deduce from the previous inequality and condition (2.17) the following
estimate: ∫

Y

Aε(y,∇Hνε ) · ∇Hνε = o
(
ε−p′)

. (3.23)
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Let θ ∈ D(�; R
d). By rescaling equation (3.22) withhνε(x) := ε Hνε (

x
ε
) we

obtain∫
�

aε(x, gε) · (vε ⊗ θ) =
d∑
i=1

∫
�

(aε(x, gε) νi) · (θi vε)

=
∫
�

Bε · (vε ⊗ θ)+
d∑
i=1

∫
�

ε aε(x,∇hνiε ) · ∇(θi vε).

Furthermore, by the limits of (3.13) and (3.14) we have∫
�

Bε · (vε ⊗ θ) −→
ε→0

∫
�

b0 · (v0 ⊗ θ).

Therefore to prove convergence (3.15) we are led to prove that∫
�

ε aε(x,∇hνε) · ∇(ϕ vε) −→
ε→0

0

for anyν ∈ R
d and anyϕ ∈ D(�). To prove the latter limit it is enough to prove

that, for anyν, ν′ ∈ R
d ,∫

�

ε |aε(x,∇hνε) · ∇vε| −→
ε→0

0 and
∫
�

ε |aε(x,∇hνε) · (vε ⊗ ν′)| −→
ε→0

0.

(3.24)

By inequality (2.13), the H¨older inequality and estimates (3.23) and (3.13), we
have∫

�

ε |aε(x,∇hνε) · ∇vε|

� C ε

(∫
�

aε(x,∇hνε) · ∇hνε
) 1
p′ (∫

�

aε(x,∇vε) · ∇vε
)1
p

= o(1),

whence the first limit of (3.24). Similarly we have∫
�

ε |aε(x,∇hνε) · (vε ⊗ ν′)|

�
d∑
i=1

∫
�

ε
∣∣aε(x,∇hνε) · (ei ⊗ ν′)

∣∣ |viε|

λi := ei ⊗ ν′

�
d∑
i=1

C ε

(∫
�

aε(x,∇hνε) · ∇hνε
) 1
p′ (∫

�

aε(x, λi) · λi |vε|p
)1
p

=
d∑
i=1

o(1)

(∫
�

aε(x, λi) · λi |vε|p
)1
p

.
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Therefore the second limit of (3.24) holds true if∫
�

aε(x, λ) · λ |vε|p is bounded for anyλ ∈ R
nd . (3.25)

For proving estimate (3.25) we consider the piece-wise constant function de-
fined by

vε(x) := −
∫
εκ+εY

vε if x ∈ (εκ + εY ), κ ∈ Z
d ,

where the functionvε is extended by 0 outside�. Then by rescaling the weighted
Poincaré-Wirtinger inequality (2.16) with each functionV (y) := vε(εκ + εy) and
by the homogeneity ofAε, we obtain the inequality∫

�

aε(x, λ) · λ |vε − vε|p � εp Cλ(ε)

∫
�

aε(x,∇vε) · ∇vε,
whence by condition (2.17) combined with the estimate of (3.13)∫

�

aε(x, λ) · λ |vε − vε|p −→
ε→0

0. (3.26)

On the other hand, by considering the paving(εκ+εY )κ∈Zd we also have∫
�

aε(x, λ) · λ |vε|p =
∑
κ∈Zd

∫
εκ+εY

aε(x, λ) · λ
∣∣∣∣−
∫
εκ+εY

vε

∣∣∣∣
p

�
∑
κ∈Zd

εd
∫
Y

Aε(y, λ) · λ −
∫
εκ+εY

|vε|p

=
∫
Y

Aε(y, λ) · λ
∫
�

|vε|p

which is bounded thanks to estimate (2.14) and the boundedness ofvε in
W

1,p
0 (�; R

n). The previous estimate combined with limit (3.26) thus imply the
desired estimate (3.25). Lemma 3.1 is proved.��

Proof of Lemma 3.2. By the dualityLp-Lp
′
the measureµ belongs toLp

′
(�) if

and only if there exists a positive constantc > 0 such that

∀ϕ ∈ Cc(�),
∣∣∣∣
∫
�

ϕ µ

∣∣∣∣ � c ‖ϕ‖Lp(�).
Let us now proceed by contradiction. Assume that the previous estimate does not
hold. Then, for any non-zero real numberc0, there exists a sequence(ϕh)h∈N in
Cc(�) such that

∀h ∈ N,

∫
�

ϕh µ = c0 and lim
h→+∞ ‖ϕh‖Lp(�) = 0.

By passing to the limith → +∞ in inequality (3.18) withϕh, and by the continuity
of F , we deduce the inequalityF(0)+ c0 � 0. Sincec0 is arbitrary, it thus remains
to choosec0 such thatF(0)+ c0 < 0 in order to obtain the desired contradiction.
��
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4. Proof of the optimality result

Let us first present the strategy concerning the proof of the optimality result.
The best constantC(ε) in (2.25) is defined by the supremum

C(ε) = sup
V∈W1,p(Y )\{0}∫

Y V=0

∫
Y

βε |V |p∫
Y

βε |∇V |p
, (4.1)

where the maximiserVε satisfies the Euler-Lagrange equation

∀V ∈ W1,p(Y ),

∫
Y

βε |∇Vε|p−2∇Vε · ∇V =
∫
Y

βε |Vε|p−2Vε
(
V − ∫

Y
V
)
.

(4.2)

We aim at constructing an explicit “almost maximizer”V̂ Rε sufficiently close (up to
multiplicative and additive constants) toVε for smallε so that the small error could
be controlled both from above and below. The functionV̂ Rε , R > 0, is defined by
V̂ Rε := 0 inQε, V̂ Rε := 1 in Y \QR (whereQR is the ball of radiusR) andV̂ Rε
solves thep-Laplace equation in the annulusQR\Qε. By choosing the parameterR
small enough, we can ensure thatV̂ Rε is also a strong approximation of 1 inL2(Y ).

On one hand, puttinĝV Rε −∫
Y
V Rε as test function in (4.1) provides an estimate

of C(ε) from below. On the other hand, the function̂V Rε allows us to obtain an
explicit approximation of the left-hand side of (4.2) (see Lemma 4.1 below) from
which we deduce an estimate ofC(ε) from above.

Let us now prove Proposition 2.4 by following the above scheme. We consider
the functionAε defined by (2.24) and the Poincar´e-Wirtinger inequality (2.25)
defined with the weightβε.

Thanks to the compact imbeddingW1,p(Y ) ↪→ Lp(Y ) combined with the
semi-lower continuity of the mapping

(
V �−→ ∫

Y
|∇V |p) inW1,p(Y ), there exists

a maximizerVε inW1,p(Y ) related to the supremum (4.1) such that

∫
Y

Vε = 0 and
∫
Y

βε |Vε|p = 1. (4.3)

We then have

1

C(ε)
=
∫
Y

βε |∇Vε|p. (4.4)

The proof of Proposition 2.4 is based on equality (4.4) combined with the following
result.
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Lemma 4.1. LetQR be the closed cylinder inY := [−1
2,

1
2[3, of axisy3 and of

radiusR < 1
2. Let V̂ Rε be the function defined by(r2 := y2

1 + y2
2)

V̂ Rε (y) := 0 if y ∈ Qε,
V̂ Rε (y) := 1 if y ∈ Y \QR,
V̂ Rε (y) := rq − rqε

Rq − rqε
if y ∈ QR\Qε andp �= 2, q := p−2

p−1,

V̂ Rε (y) := ln r − ln rε
lnR − ln rε

if y ∈ QR\Qε andp = 2.

(4.5)

Then there exists a positive constantCR such that, for anyV ∈ W1,p(Y ),∣∣∣∣
∫
Y

βε |∇V̂ Rε |p−2∇V̂ Rε · ∇V − δ̂R(ε)
(

−
∫
Y\QR

V − −
∫
Qε

V

) ∣∣∣∣
� CR δ̂R(ε)

(
‖∇V ‖Lp(Y\QR) + r

− 2
p

ε ‖∇V ‖Lp(Qε)
)
,

(4.6)

where δ̂R(ε) :=
∫
Y

βε |∇V̂ Rε |p =
∫
QR\Qε

|∇V̂ Rε |p. (4.7)

Lemma 4.1 will be proved in the last subsection.
For obtaining the asymptotic behaviours ofC(ε) defined by (4.4), the cases

wherep < 2 andp = 2 are quite similar. So in the first subsection we will prove
the asymptotic behaviours (2.27) and (2.28); then in the second subsection we will
study the casep > 2. In the third subsection we will determine the limit operator
a0 defined by (2.11) in the particular case (2.24). The fourth subsection will be
devoted to the proof of the technical lemmas.

4.1. The case1< p � 2

Estimate of C(ε) from below. The functionV̂ Rε defined by (4.5) satisfies the
estimate

‖V̂ Rε − 1‖Lp(Y ) = 1 + oR,ε(1),
whereoR,ε(1) denotes a term which tends to 0 asR → 0 uniformly with respect
to ε. In the following we will first pass to the limit (liminf)ε → 0 then to the limit
R → 0 using the uniform convergence ofoR,ε(1) with respect toε.

Putting the functionV := V̂ Rε − ∫
Y
V̂ Rε in inequality (2.25) yields

C(ε) �

∫
Qε

βε|V |p∫
Y

βε|∇V |p
= γε |Qε|
δ̂R(ε)

(
1 + oR,ε(1)

)
. (4.8)
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Moreover we easily deduce from definitions (4.5) and (4.7) the following asymp-
totic behaviours for any fixedR < 1

2:

δ̂R(ε) ∼
ε→0

δ̂(ε) := 2π |q|p−1 r2−p
ε if 1 < p < 2,

δ̂R(ε) ∼
ε→0

δ̂(ε) := 2π | ln rε|−1 if p = 2.
(4.9)

Then estimates (4.8), (4.9) combined with limit (2.26) imply that

δ̂(ε) C(ε)

γε |Qε| � δ̂(ε)

δ̂R(ε)

(
1 + oR,ε(1)

)
,

and by passing to the liminf (for any subsequence ofε) in both sides of the inequality
for a fixed smallR, we obtain thanks to (4.9),

lim inf
ε→0

(
δ̂(ε) C(ε)

γε |Qε|

)
� 1 + oR(1), (4.10)

whereoR(1) tends to 0 asR → 0. In particular we haveC(ε) → +∞.

Estimate of C(ε) from above. By putting the functionVε defined by (4.1), (4.3)
in inequality (4.6), we have thanks to limit (2.26), the equality (4.4) and the esti-
mate (4.8) satisfied byC(ε),∣∣∣∣
∫
Y

βε |∇V̂ Rε |p−2∇V̂ Rε · ∇Vε − δ̂R(ε)
(

−
∫
Y\QR

Vε − −
∫
Qε

Vε

) ∣∣∣∣
� CR δ̂R(ε)

[(∫
Y\QR

βε |∇Vε|p
)1
p + (γε r2

ε )
− 1
p

(∫
Qε

βε |∇Vε|p
)1
p

]

� cR δ̂R(ε) C(ε)
− 1
p � cR δ̂R(ε)

(1+ 1
p
)
,

wherecR is a constant which only depends onR. Moreover sinceVε is bounded in
Lp(Y ) by (4.3), we have∫

Y\QR
Vε =

∫
Y

Vε −
∫
QR

Vε = −
∫
QR

Vε = oR,ε(1).

Both previous estimates imply that∣∣∣∣−
∫
Qε

Vε

∣∣∣∣− cR δ̂R(ε) 1
p + oR,ε(1) � δ̂R(ε)

−1
∣∣∣∣
∫
Y

βε |∇V̂ Rε |p−2∇V̂ Rε · ∇Vε
∣∣∣∣ ,

whence, by the H¨older inequality combined with the values (4.7) ofδ̂R(ε) and (4.4)
of C(ε), ∣∣∣∣−

∫
Qε

Vε

∣∣∣∣− cR δ̂R(ε) 1
p + oR,ε(1) �

(
δ̂R(ε) C(ε)

)− 1
p
.
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Or equivalently, by using assumption (2.26),(
δ̂R(ε)

δ̂(ε)

)1
p [
(γε |Qε|)

1
p

∣∣∣∣−
∫
Qε

Vε

∣∣∣∣− cR δ̂R(ε) 1
p + oR,ε(1)

]
�
(
δ̂(ε) C(ε)

γε |Qε|

)− 1
p

.

(4.11)

It thus remains to obtain an estimate of the averaged value−∫
Qε
Vε. For that we

will use the following result.
Lemma 4.2. The following Poincar´e-Wirtinger inequality holds inQε:

∀V ∈ W1,p(Qε),

∫
Qε

∣∣∣∣V − −
∫
Qε

V

∣∣∣∣
p

� c

∫
Qε

|∇V |p, (4.12)

wherec is a positive constant independent of any small enoughε.

On the one hand, putting the functionVε in equality (4.12) yields by (4.4)

−
∫
Qε

∣∣∣∣Vε − −
∫
Qε

Vε

∣∣∣∣
p

� c (γε |Qε|)−1
∫
Qε

βε |∇Vε|p � c (γε |Qε|C(ε))−1,

whence by limit (2.26) combined withC(ε) → +∞

−
∫
Qε

∣∣∣∣Vε − −
∫
Qε

Vε

∣∣∣∣
p

−→
ε→0

0. (4.13)

On the other hand, by using the inequality

∀ a, b ∈ R,
∣∣|a|p − |b|p∣∣ � p |a − b|

(
|a|p−1 + |b|p−1

)
and the H¨older inequality, we have∣∣∣∣

∣∣∣∣−
∫
Qε

Vε

∣∣∣∣
p

− −
∫
Qε

|Vε|p
∣∣∣∣ � p −

∫
Qε

∣∣∣∣Vε − −
∫
Qε

Vε

∣∣∣∣
(

|Vε|p−1 +
∣∣∣∣−
∫
Qε

Vε

∣∣∣∣
p−1

)

� p −
∫
Qε

∣∣∣∣Vε − −
∫
Qε

Vε

∣∣∣∣
(

|Vε|p−1 +
∣∣∣∣−
∫
Qε

|Vε|p
∣∣∣∣

1
p′
)

� cp

(
−
∫
Qε

∣∣∣∣Vε − −
∫
Qε

Vε

∣∣∣∣
p) 1

p
(

−
∫
Qε

|Vε|p
) 1
p′
.

The previous inequality combined with (4.3), (2.26) and (4.13) yields∣∣∣∣−
∫
Qε

Vε

∣∣∣∣
p

− −
∫
Qε

|Vε|p −→
ε→0

0. (4.14)

Moreover, by (4.4)∇Vε strongly converges to 0 inLp(Y ; R
3). The Poincar´e-

Wirtinger inequality inY thus implies thatVε strongly converges to 0 inLp(Y )
sinceVε has a zero averaged value onY . Then since

1 =
∫
Y

βε |Vε|p =
∫
Y\Qε

|Vε|p + γε |Qε| −
∫
Qε

|Vε|p,
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we deduce from the strong convergence ofVε the asymptotic behaviour

−
∫
Qε

|Vε|p ∼
ε→0

1

γε |Qε| −→
ε→0

k−1 > 0,

which combined with limit (4.14) yields∣∣∣∣−
∫
Qε

Vε

∣∣∣∣ ∼
ε→0

(γε |Qε|)−
1
p . (4.15)

Finally, since by (4.9)̂δR(ε) → 0 asε → 0, and thanks to the asymptotic
behaviours (4.9), (4.15), passing to the liminf (for any subsequence ofε) in in-
equality (4.11) for a fixed smallR, implies that

1 + oR(1) � lim inf
ε→0

(
δ̂(ε)C(ε)

γε|Qε|

)− 1
p

,

whereoR(1) tends to 0 asR → 0, or equivalently

lim sup
ε→0

(
δ̂(ε)C(ε)

γε|Qε|

)
� (1 + oR(1))−p . (4.16)

From inequalities (4.10) and (4.16) we easily deduce that

C(ε) ∼
ε→0

πγεr
2
ε

δ̂(ε)
,

which combined with the definition (4.9) ofδ̂(ε) yields (2.27) and (2.28).

4.2. The casep > 2

By taking any non-zero test functionV in the supremum (4.1), we find that
C(ε) is bounded from below by a positive constant. In order to prove thatC(ε) is
bounded from above, we proceed by contradiction.

Assume thatC(ε) → +∞. By definition (4.7) it is easy to check that there
exists, for anyR < 1

2, a constantcR � 1 such that

c−1
R � δ̂R(ε) � cR.

Then by the H¨older inequality, the definitions (4.7) ofδ̂R(ε) and (4.4) ofC(ε) we
have ∣∣∣∣

∫
Y

βε |∇V̂ Rε |p−2∇V̂ Rε · ∇Vε
∣∣∣∣ � δ̂R(ε)

1
p′ C(ε)−

1
p −→

ε→0
0.

Moreover by equality (4.4) and limit (2.26) we have

‖∇Vε‖Lp(Y\QR) + (rε)−
2
p ‖∇Vε‖Lp(Qε) = O

(
C(ε)

− 1
p

)
−→
ε→0

0.



Homogenization of Non-Uniformly Bounded Operators 97

Therefore passing to the limit in estimate (4.6), withV := Vε thanks to the previous
limits, yields

−
∫
Y\QR

Vε − −
∫
Qε

Vε −→
ε→0

0. (4.17)

On the other hand, as in the previous case the assumptionC(ε) → +∞ implies that
Vε strongly converges to 0 inLp(Y ) as well as the asymptotic behaviour (4.15).
The strong convergence ofVε combined with limit (4.17) then implies the limit

−
∫
Qε

Vε −→
ε→0

0

which contradicts (4.15) because of limit (2.26). ThereforeC(ε) is bounded.

4.3. Determination ofa0

We have to prove that the sequenceA0
ε defined by (2.10) simply converges to

the functiona0 defined by (2.29). For anyλ ∈ R
3, let X̂ε(·, λ) be theY -periodic

function defined by (see the definition (4.5) ofV̂ Rε )

X̂ε(y, λ) :=
(
1 − V̂ 2rε

ε (y)
)
(λ1 y1 + λ2 y2), y ∈ Y,

and extended by periodicity inR3, and letŴε(·, λ) be the function defined by

Ŵλ
ε (y) := λ · y − X̂ε(y, λ), y ∈ Y. (4.18)

By the definition (4.5) ofV̂ Rε and the Cauchy-Schwarz inequality

|λ1 y1 + λ2 y2| � |λ| r, where r2 := y2
1 + y2

2,

we obtain

|∇Ŵλ
ε | � |λ|

(
2 + r |∇V̂ 2rε

ε (y)| 1Q2rε \Qε(y)
)

� 2 |λ|
(
1 + rε |∇V̂ 2rε

ε (y)|
)
,

whence the estimate

|∇Ŵλ
ε | � c |λ| (4.19)

which holds for any value ofp > 1.
Let us prove that the function̂Wλ

ε defined by (4.18) is a good approximation of
the functionWε(·, λ) defined by (2.9) in the following sense:

∀V ∈ W1,p
# (Y ),

∫
Y

βε|∇Ŵλ
ε |p−2∇Ŵλ

ε · ∇V = o(1)‖∇V ‖Lp(Y ). (4.20)

Let V ∈ W1,p
# (Y ). By definitions (4.5) and (4.18) we have∫

Y

βε |∇Ŵλ
ε |p−2∇Ŵλ

ε · ∇V =
∫
Y\Q2rε

|λ|p−2λ · ∇V +
∫
Qε

γε |λ3|p−2λ3
∂V

∂y3

+
∫
Q2rε \Qε

|∇Ŵλ
ε |p−2∇Ŵλ

ε · ∇V
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which, combined with the equalities∫
Y

∇V = 0 and
∫
Qε

∂V

∂y3
= 0

as well as estimate (4.19), yields the desired result (4.20).
By a similar computation and thanks to limit (2.26) we also obtain

F̂ε(λ) :=
∫
Y

βε |∇Ŵλ
ε |p −→

ε→0
|λ|p + k |λ3|p. (4.21)

Moreover the definition (2.10) ofA0
ε implies that

A0
ε(λ) · λ = min

V∈W1,p
# (Y )

∫
Y

βε |λ− ∇V |p � F̂ε(λ). (4.22)

On the other hand the convexity of| · |p yields

A0
ε(λ) · λ � F̂ε(λ)+ p

∫
Y

βε|∇Ŵλ
ε |p−2∇Ŵλ

ε · (∇Wε(·, λ)− ∇Ŵλ
ε ). (4.23)

From estimate (2.21) combined with the uniform ellipticity (2.3) ofAε, we deduce
that∇Wε(·, λ) is bounded inLp(Y ), as well as∇Ŵλ

ε by (4.19). Whence the integral
term in (4.23) tends to zero when we put the periodic functionV := Wε(·, λ)−Ŵλ

ε

in estimate (4.20). Therefore inequalities (4.22), (4.23) and limit (4.21) imply that

A0
ε(λ) · λ −→

ε→0
|λ|p + k |λ3|p. (4.24)

Finally, again by the convexity of| · |p we obtain the inequality

∀µ ∈ R
3, A0

ε(λ+ µ) · (λ+ µ) � A0
ε(λ) · λ+ pA0

ε(λ) · µ.
This combined with (4.24) yields the desired limit (2.29), which concludes the
proof of Proposition 2.4.

4.4. Proof of the lemmas

Proof of Lemma 4.1. The casesp < 2,p = 2 andp > 2 are quite similar. Let us

thus prove estimate (4.6) for the casep < 2. LetV ∈ C1(Y ). We denote byV
Z

the averaged value ofV on the subsetZ of Y . Since|∇V̂ Rε |p−2∇V̂ Rε has a zero
divergence inQR\Qε andV̂ Rε is radial, an integration by parts yields∫

Y

|∇V̂ Rε |p−2∇V̂ Rε · ∇
(
V − V Y\QR

V̂ Rε − VQε (1 − V̂ Rε )
)

=
∫
�R

|∇V̂ Rε |p−2∇V̂ Rε · ν
(
V − V Y\QR)

+
∫
�ε

|∇V̂ Rε |p−2∇V̂ Rε · ν
(
V − VQε

)
,

(4.25)
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where�R,�ε denote the side boundaries of the cylindersQR,Qε andν denotes the
(radial) outer unit normal to�R,�ε. Therefore we have to prove that the right-hand
side of equality (4.25) is bounded by the right-hand side of inequality (4.6) since
the left-hand side of (4.25) is equal to the left-hand side of (4.6).

By the definition (4.5) ofV̂ Rε and by the imbedding fromW1,p(Y ) intoLp(�R)
combined with the Poincar´e-Wirtinger inequality inY \QR, we have∣∣∣∣

∫
�R

|∇V̂ Rε |p−2∇V̂ Rε · ν
(
V − V Y\QR) ∣∣∣∣ � cR r

2−p
ε ‖∇V ‖Lp(Y\QR)

by (4.9) � cR δ̂R(ε) ‖∇V ‖Lp(Y\QR).
(4.26)

Similarly for the integral on�ε we have∣∣∣∣
∫
�ε

|∇V̂ Rε |p−2∇V̂ Rε · ν
(
V − VQε

) ∣∣∣∣ � cR δ̂R(ε)

∫
P

∣∣∣V (rε, θ, y3)− VQε
∣∣∣ ,

(4.27)

where the functionV is expressed in polar coordinates

(r, θ, y3) ∈ Pε := ]0, rε[×P with P := ]0,2π [×]−1
2,

1
2[.

To estimate the right-hand side of (4.27) we can assume thatV
Qε = 0. By

integrating the equality

r V (rε, θ, y3) = r V (r, θ, y3)+
∫ rε

r

r
∂V

∂ρ
(ρ, θ, y3) dρ

on the setPε, we obtain the inequality

1

2
r2
ε

∫
P

|V (rε, θ, y3)| �
∫
Pε

r |V (r, θ, y3)| +
∫
Pε

r

∫ rε

r

∣∣∣∣ ∂V∂ρ (ρ, θ, y3)

∣∣∣∣ dρ.
Then the H¨older inequality implies that

r2
ε

∫
P

|V (rε, θ, y3)| � c r

2
p′
ε

[(∫
Pε

r |V |p
)1
p +

(∫
Pε

r

(∫ rε

r

∣∣∣∣ ∂V∂ρ
∣∣∣∣ dρ

)p )1
p

]

and for anyr � rε,

(∫ rε

r

∣∣∣∣ ∂V∂ρ
∣∣∣∣ dρ

)p
�
(∫ rε

r

ρ
− p′
p dρ

)p

p′ ∫ rε

0
ρ

∣∣∣∣ ∂V∂ρ
∣∣∣∣
p

� c rp−2
∫ rε

0
ρ

∣∣∣∣ ∂V∂ρ
∣∣∣∣
p

sincep < 2,

whence the estimate

r2
ε

∫
P

|V (rε, θ, y3)| � c r

2
p′
ε

(‖V ‖Lp(Qε) + rε ‖∇V ‖Lp(Qε)
)
.
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Therefore the previous inequality combined with the inequality (4.12) of Lemma 4.2
implies that ∫

P

|V (rε, θ, y3)| � c r
− 2
p

ε ‖∇V ‖Lp(Qε),

for any functionV with zero averaged value onQε. Finally, by combining esti-
mates (4.26), (4.27) and the previous one, we obtain the desired result (4.6).��

Proof of Lemma 4.2. Let V ∈ C1(Y ) with zero averaged value onQε and letW
be the function defined by

W(y1, y2) :=
∫ 1

2

− 1
2

V (y1, y2, y3) dy3.

It follows immediately that

‖V −W‖Lp(Qε) �
∥∥∥∥ ∂V∂y3

∥∥∥∥
Lp(Qε)

.

On the other sideW is defined on the diskDε of centreO and radiusrε and has a
zero averaged value onDε. Then byrε-rescaling the Poincar´e-Wirtinger inequality
in the disk of radius 1 we obtain the inequality

‖W‖Lp(Dε) � c rε ‖∇W‖Lp(Dε) � c rε ‖∇V ‖Lp(Qε),
wherec is a positive constant. Finally both previous estimates imply (4.12).��

References

1. M. Bellieud, & G. Bouchitté, Homogenization of elliptic problems in a fiber re-
inforced structure. Nonlocal effects,Ann. Scuola Norm. Sup. Pisa Cl. Sci.26 (1998),
407–436.

2. A. Beurling & J. Deny, Espaces de Dirichlet,Acta Matematica99 (1958), 203–224.
3. M. Briane, Homogenization of a class of non-uniformly elliptic monotonic operators,

Nonlinear Analysis, Theory, Methods and Applications48 (2002), 137–158.
4. G. Buttazzo & G. Dal Maso, �-limits of integral functionals,J. Analyse Math.37

(1980), 145–185.
5. L.Carbone&C. Sbordone, Some properties of�-limits of integral functionals,Annali

di Matematica Pura ed Applicata122 (1979), 1–60.
6. V.N. Fenchenko&E.Ya. Khruslov,Asymptotic of solution of differential equations

with strongly oscillating matrix of coefficients which does not satisfy the condition of
uniform boundedness,Dokl. AN Ukr. SSR4 (1981).

7. E.Ya. Khruslov, Homogenized models of composite media. In:Composite Media and
Homogenization Theory, G. Dal Maso & G. F. Dell’ Antonio editors, Progress in
Nonlinear Differential Equations andTheirApplications, Birkh¨auser 1991, pp. 159–182.

8. J. L. Lions, Quelques m´ethodes de r´esolution de probl`emes aux limites non lin´eaires,
Dunod Gauthiers-Villars, Paris, 1969.

9. U. Mosco, Composite media and asymptotic Dirichlet forms,J. of Functional Analysis
123 (1994), 368–421.



Homogenization of Non-Uniformly Bounded Operators 101

10. F. Murat, H-convergence,Séminaire d’Analyse Fonctionnelle et Num´erique, 1977–78,
Université d’Alger. English translation:F. Murat& L. Tartar, H-convergence,Topics
in the Mathematical Modelling of Composite Materials, L. Cherkaev & R.V. Kohn
ed., Progress in Nonlinear Differential Equations and their Applications, Birkh¨auser,
Boston, 1998, pp. 21–43.

11. L. Tartar, Cours Peccot, Coll`ege de France, (1977), partly written in [10].

Centre de Math´ematiques
I.N.S.A. de Rennes & I.R.M.A.R.

20, Avenue des Buttes de Co¨esmes,
CS 14315

35043 Rennes Cedex, France
e-mail: mbriane@insa-rennes.fr

(Accepted December 8, 2001)
Published online May 15, 2002– c© Springer-Verlag (2002)


