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Abstract

This paper deals with the homogenization of a class of highly oscillating mono-
tonic operators which are uniformly elliptic but non-uniformly bounded. We deter-
mine an asymptotic barrier below which we obtain a classical behaviour and above
which nonlocal effects appear. We also prove that this condition is optimal in the
case of a fibre-reinforced medium.

1. Introduction

Let 2 be a bounded open set®f and letf be a function inL? (Q; R") (we
can also takef in w—LP'(Q; R") without restriction), wherey, p’ > 1 are two
conjugate numbers. In this paper we study the asymptotic behaviour of the class of
the nonlinear Dirichlet problems parametrized by a small positive number

—div (ag(x, Vue)) = fin Q,

u, =0 onog, (1)
wherea, : R x R — R s a highly oscillating monotonic operator defined
by a,(x, ») := A, (£, ). The operator, (y, ) is a Carateodory-type function,
which is Y -periodic (¢ is the unit cube oR“) with respect toy € R¢ and strictly
monotonic with respect tb € R"¢. MoreoverA; is uniformly elliptic and satisfies
the boundedness condition

foraey e RY, VA eR™, |A.(y, )] £ B:(y) X+ |2P7Y),

whereg, is a positive function inL°°(Y) such that| B¢ || Lo y) — +00.
The difficulty of the asymptotic analysis comes from the dependendgwfth
respect t& combined with the non-uniform boundednesgpf
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The first, nowadays classical result concerning the homogenization of oscillat-
ing monotonic operators is dueTartar [11]. WhenA, does not depend an he
proved that the sequenage strongly converges imvol’f’(sz; R™) to the solution:g
of the Dirichlet problem

—div (ao(Vup)) = f in Q,

(1.2
ug =0 onog,

where the (homogenized) operatay can be explicitely computed thanks to a
local problem. Then by thE-convergence theor;ARBoNE & SBORDONE [5] and
Buttazzo & DAL Maso [4] extended the Tartar result to non-uniformly bounded
(convex) operators, such that

B, is bounded in.(Y) and equi-integrable (1.3)

More recentlyMosco [9] obtained a similar result fop = 2 by using the theory
of Dirichlet forms.

However, when condition (1.3) does not hold, the limit behaviour of the Dirich-
let problem (1.1) can be different from the classical one (1.2). Indeed nonlocal
effects may appear. The first examples of such a phenomenon were obtained by
FENCHENKO & KHRUSLOV [6], KHRUSLOV [7] in the linear case. In the same frame-
workMosco [9] deduced from the Beurling-Deny representation formula[2], agen-
eral representation for tHe-limit of the quadratic forms associated with the linear
problem (1.1); this representation naturally contains a nonlocal tBAMLIEUD
& BoucHITTE [1] extended these nonlocal homogenization results to particular
nonlinear functionals.

Our aim is to determine an asymptotic barrier fqr, below which the classical
behaviour (1.2) holds true, and above which nonlocal effects may appear. The main
result of the paper is then the following.

Under the boundedness assumption

Vi e R™, / Ae(y,A) - ady = clA|P,
Y

combined with some technical assumptions, we prove that the condition

VieRM,  ¢PC(e) —6 0,
E—>

. p
B [ Asmrav) w4
Cy(e) = sup
Vewlr(v;R")\{0} /Ag(y,VV)~VV
Jy V=0 Y

implies a classical behaviour (1.2) for problem (1.1) (see Theorem 2.1). We also
prove that in contrast with condition (1.3), condition (1.4) is optimal to avoid
nonlocal effects for a particular example. The optimality is shown thanks to the
fibre-reinforced model of [1], for which we give the precise asymptotic behaviour
of Cy.(¢) (see Proposition 2.4).



Homogenization of Non-Uniformly Bounded Operators 75

In [3] we obtained an optimal result of convergence in the “opposite” case,
i.e., when the sequeneg is uniformly bounded but non-uniformly elliptic. In this
context the analysis is less intricate since condition (1.4) is replaced by a more
simple one without the weight,(y, A) - A.

2. Statement of theresults

2.1. Statement of the problem

In the following:

Q is a bounded domain @&¢;

¢ denotes a positive parametera non-negative integer and p’ > 1 are two

conjugate numbers, i.e}, + & = 1;

e - denotes the scalar product and the Euclidian norm irR” or in R*¢;

o foranya e R", x e RY, 1 is considered asmaxd matrix, A x denotes the vector
of R" defined by(x x); = Y94 Aij x;;

e foranyu € R", x € R%, u ® x denotes the xd matrix defined by ® X)ij =
Ui Xj,

e Y denotes the unit cuble-3, 3[%;

o W#’p(Y; R™) denotes the Y-periodic vector-valued functions in

1,

Wiod (RY; R™).

Let A, : R? x R" — R™ be a vector-valued function satisfying the following

conditions:

e A, is a Caratkodory function, i.e.,

foranya e R™ y—> A.(y, A) is measurable 2.1)
fora.e.y e R?, A+ A,(y,A) is continuous '

e A, is Y-periodic with respect to the first variable, and strictly monotonic with
respect to the second one, i.e.,

foraey e R, YA, u e R, A #pu, (Ac(y, ) — Ac(y, ) - — ) > 0;
2.2)

e A is uniformly elliptic, i.e., there exists a positive constarguch that

fora.ey e RY, VA eR™, A (y,A) A= alr|P; (2.3)

o A, satisfies the boundedness condition
forae.y e RY, Vi e R™, Ay, 0)] < Be(y) A+ |AP7Y), (2.4)

whereg, is a function inL* (Y), with || B[l Lo y)y — +00 ase — 0.
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We define the highly oscillating monotonic function
ag(x, M) := Ag (f k), xeQ,reR™, (2.5)
&

and we consider the nonlinear Dirichlet problem

—div (ag(x, Vue)) = fin Q,

2.6
us =0 onog. (2:6)

By the theory of monotonic operators (see, e.g., Theorem 2.1 p. 171 of [8]) there
exists a unigue solutiom, W&”’(Q; R™) of the Dirichlet problem (2.6).

Our aim is to give an optimal condition ok in order to obtain the following
asymptotic behaviour of problem (2.6): for every givgin L”' (Q2; R"), we have

ue — ug  weakly inwg? (Q; R"), (2.7)
whereug is the solution of the Dirichlet problem

—div (ao(Vug)) = f in Q,

2.8
up =0 onoQ2. (2:8)

Let us first describe in a formal way the limit operatgrof (2.8). For that we
apply the result of the classical case [11], i.e., the case whgooes not depend
one. Therefore we fixe and, for anyx € R, we defineX, (-, 1) as the solution

in Wi”’(Y; R™) with zero averaged value df of the variational cell problem

YV e W (Y R, /As(y,vyvvs(y,A))-VV(y)dy o,
Y (2.9)

where W.(y,1) :=1y — X:(v, A).

Then by [11] the homogenized operator of the oscillating operatd, 1) as
8 — 0 ande is fixed, is defined by

A%0) = /YAg(y, VyWe(y, ) dy. (2.10)

It is thus natural to think that the functiar of (2.8) is obtained as the limit

vieRM, A% — o). (2.11)

Of course limit (2.11) is a “natural” idea for obtaining the homogenized prob-
lem (2.8) but is far from being sufficient. Indeed nonlocal effects may appear in
the limit behaviour as shown in [7], [6] and [1]. These are due to non-uniform
boundedness of the sequergeof (2.4), when|| B¢ || L~yy — +oo. In fact these
nonlocal effects naturally enter into the homogenization process when the operators
are not uniformly bounded. Indeed in the linear ds&sco [9] established the link
between homogenization and the Beurling-Deny [2] representation of the Dirichlet
forms, which contains a nonlocal term.
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The problem is to determine a critical barrier above which nonlocal effects
appear and below which the homogenization of problem (2.6) leads to the clas-
sical problem (2.8). The condition (1.3) ¢gh is sufficient to have the classical
behaviour (2.8) but this condition is far from being optimal (see Section 2.3). In
the next subsection we will give an optimal condition which separates the classical
case from the case where nonlocal effects appear.

2.2. Statement of the result

For technical reasons we only consider the class of monotonic operators which
satisfy both restrictive conditions:

e A, is (p—1)-homogeneous with respect to the second variable

fora.eye, VieR, VA e R™, A (y,tA) = |t|]P "%t As(y, A);  (2.12)

e A, satisfies a Ildlder-type inequality

fora.eyeY, Vi, ueR"Y,
. (213)

1
|[Ae(y, M) - | = C(Ae(y, A) - V)7 (Ag(y, ) - p)?

whereC is a positive constant. These conditions are not so restrictive since they
are satisfied in the linear cade(y, A) := B.(y) A, whereB, is a matrix-valued
function, and in the-Laplacian casel,(y, 1) := B:(y) |A|P "2 A.

The main result of the paper is the following.

Theorem 2.1. Let A, be a sequence of operators satisfying properti24)—(2.4),
(2.12), (2.13) and theL!-boundedness condition

VaeRY, / Ac(y, M) - hdy S c|AlP, (2.14)
Y
wherec is a positive constant. We also assume that

/Ag<y,x>~x|vv’
Y

VAR, o sup —6 0. (2.15)
Vewkr(y;R"M\{0} / A (y,VV)-VV o
fy V=0 Y

Finally we assume that there exists a continuous funetionR™¢ —s R"¢ which
is strictly monotonic and such that limi2.11) holds, i.e.AS(A) defined by2.10)
converges tap(A) for anya.

Then the solutiom, of problem(2.6) weakly converges iWé”’(Q; R") to the
solutionug of the classical Dirichlet problen®.8).
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Remark 2.2.

e By the boundedness condition (2.4) and the ellipticity condition (2.3) combined
with the Poincag-Wirtinger inequality inw1?(Y; R"), there exists, for any
A € R™ and anys > 0, an optimal constar@; (¢) > 0 such that

vV e whP(y;RY),

(2.16)
[ A av = fvrsae [ oo .
Y Y
Inequality (2.16) is a weighted Poinea¥Virtinger inequality with the weight
A¢(-, A) - A. Then condition (2.15) is equivalent to

Vi eR™, g7 C(e) " 0. (2.17)

In the particular case wherk (y, 1) := B+ (y) |A|?~2x condition (2.15) reduces
to

/ Be IVIP
g? sup — 0. (2.18)

VewlfP(YR”)\{O} fﬁs|VV|p =0

Y

¢ Onthe one hand the'-boundedness condition (2.14) prevents the appearance of
a zero order term in the limit problem (see [7] and [1]). In the linear case this term
corresponds to the so callkilling measuren the Beurling-Deny representation
formula of the Dirichlet forms (see [9]).
On the other hand condition (2.15) prevents the appearance of nonlocal effects.
In the linear case these nonlocal effects are associated with the sojealf@dg
measuren the Beurling-Deny formula (see [9]).

Remark 2.3. At the end of the subsection, we will prove that the functiéf
satisfies the estimates

VieRM, 1 4% -1 and 14200 S et (2.19)

wherec > 1 is a constant. Therefore the assumption (2.11) on the convergence
of the homogenized functiong (2.10) to the functiong, is partly justified (for a
dense subset @&¢ and for a subsequence of by the previous estimates and by

a diagonal extraction. However, we have to assume the continuity & well as

its strict monotonicity. Thanks to (2.19) the limig of AS also satisfies the same
estimates

viaeR™, ¢ LAP <agh) A and |ag(h)| < c AP, (2.20)

which combined with the strict monotonicity af ensure the existence and the
uniqueness of the limit Dirichlet problem (2.8).
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Let us prove estimates (2.19). These estimates will be useful in the proof of
Theorem 2.1.

Proof of (2.19). By the definition of the local problem (2.9) we have

fyA8<y, vyws<y,x>)-vyws<y,x>=/yAa(y, Vy We(y, 1)) - .

By applying (2.13) to the right-hand side, theldér inequality and the bounded-
ness (2.14) we obtain

1 1
/As(y, VyWe) - Vy W, = / C(Ac(y, VyWe) - VyWe) 7' (Ae(y, 2) - )7
Y Y

<C (/ Ae(y, VyWe) - VyWs>
Y

1
x(/Ag(y,X)~A>p
Y

< 'l </ Ae(y, Vy W) - vng> ,
Y

2 =

P

‘ -

whence the estimate
/ Ae(y, Vy We (3 1)) - Vy We (3 1) < ¢ 217, (2.21)
Y

From now on, we denote by any positive constant whose exact value does not
matter.

By applying again inequality (2.13), theoltier inequality and estimate (2.21)
we have, for any, € R"?,

/YAg(y, VyWe(y, 1)) - u' < AP Hp

which implies the second estimate of (2.19).
On the other hand the ellipticity (2.3) of. and the definition (2.10) of?
imply that, for anyx € R?,

IV We (e D)oy < ¢ ( f Ac(y, Vy Wely, 1)) - Vy W (y, A)) !
v (2.22)

—c (AS(A) : x>% .
Then estimate (2.22) combined with the second estimate of (2.19) yield
IVyWe (-, MllLery S clAl,
and thanks to the PoinaiVirtinger inequality we obtain

[We G, Mllwirry = clAl (2.23)
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Assume now that the uniform ellipticity of% does not hold. Then there exists a
sequence., of R"¢ with |A.| = 1, which converges ta with || = 1, and such
thatAg(As) - 2e — 0. Whence by estimate (2.22) we have

1
IVyWe G, k) llrry < c(A200) - 1) 7 — 0.

e—0

By (2.23) we can also assume thgt(-, 1.) weakly converges irWi”’(Y; R™) to
a functionXg. Then by the semi-lower continuity of thHe” norm we have

1A — VXollLrry S |iI;TLiT8f IVyWe (- Ae)llLrry =0,

whenceV Xy = A with |A| = 1, which contradicts th& -periodicity of Xp. The
first estimate of (2.19) is thus provedno

2.3. Optimality of the condition oA,

Let us now show the optimality of the asymptotic condition (2.15). We will give
an example in which nonlocal effects appear as soon as condition (2.15) is violated.
For that we consider the case of a fibre-reinforced medium, studi®kibyeup
& BoucHITTE [1]. In [1] the functionA, is defined as follows fat = 1 andd = 3:

Let Q. be the cylinder inv := [—3, 3[° of axis y3 and radius;, — 0, and let
A, be the function defined by

Ae(y, 2) i= Be(¥) [AIP721,  where B, :=1y\g, + e lo., e — +00.
(2.24)

In this case the weighted Poineawirtinger inequality (2.16) can be written
YV eWh (¥ R), / BelV — [y VIP < Cle) / BeIVVIP,  (2.25)
Y Y

whereC (¢) is the optimal constant. Then condition (2.15) is equivalent to (2.18)
and hence te” C(¢) — 0 ase — 0.
The following result yields the precise asymptotic behaviout ¢f).

Proposition 2.4. Assume that

Ve | Qel _6 k €10, +o0l. (2.26)
Then the optimal constar@(s) of (2.25) satisfies the following asymptotic be-
haviours:

eifl<p <2 C(e) > +ooand

1 (p—1\V"' .,
ce) e—0 E <ﬂ) krg™ (2.27)
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oif p=2C(¢) > +ooand

1
~ —k|Inr,l; 2.2
C@) ~ o klinrel; (2.28)

—

o if p > 2, C(e) is bounded.

Moreover we have, for any € R3,

AN — o) = PB4k PalP P s, (2.29)

wherek is given by(2.26) and (v1, v, v3) denotes the canonic basisif.

On the other hanBEeLLIEUD & BoucHITTE [1] obtain the limit behaviour of
the Dirichlet problem (2.6) wher, is defined by (2.24), and prove that, under
assumption (2.26), the homogenized problem contains a nonlocal term if and only
if

liminf ¢? r’~2 >0forl<p <2,

e—0

liminf ¢2[Inr,| > O for p = 2.
e—0

Then by the results of Proposition 2.4 these conditions are equivalent to

liminf ¢? C(¢) > 0.
e—0

Therefore, for this particular example, the quantityC (¢) is the desired critical
barrier, below which the homogenization is classical, and above which the ho-
mogenization is nonlocal. For this example, boundedness assumption (2.14) is an
immediate consequence of (2.26) and the value of the homogenized opgriztor
given by (2.29) and thus satisfies the conditions of Theorem 2.1.

We can also note that the equi-integrability condition (1.3) is equivalent to

Ve lQel —> 0. (2.30)
e—0

Indeed condition (2.30) ensures the boundedness of the seqdemee ().
Moreover (2.30) implies that the integral gf over any measurable sé&ttends
to 0 as|E| — 0 uniformly with respect te, since the “bad” sets are the subsets
of Q., whence the equi-integrability of the sequelsce

We know (see Introduction) that (1.3), or equivalently (2.30), is sufficient to
obtain the classical homogenization result (2.8) of problem (2.6). However Theo-
rem 2.1 and Proposition 2.4 show that this condition is far from recovering all the
cases of classical behaviour. In particular in the case 2, the limit is always
classical without extra assumption.
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3. Proof of the homogenization theorem

The proof of Theorem 2.1 follows the so-called method of oscillating test func-
tions due tararTARr [11]. In order to obtain the limit of the flow, := a. (-, Vu.) we
consider the family of periodic test functiob (-, 1), » € R"?, from the auxiliary
cell problem (2.9).

In a first step (Section 3.1), we obtain someriori estimates satisfied hy;
andg,.

In a second step (Section 3.2), by using the monotonicity.ofiith u. and
the rescaled test functicmWS()s—f, 2) as well as the homogeneity of, we obtain
the inequality (3.8) satisfied b and the functiom. (3, 1), wheren.(y, 1) :=
Ag(y, Vy,We(y, 1)). To pass to the limit in this inequality we essentially need the
following limits

£ -VyWe(5,1) = Eo-Ax  weakly inD'(%),

ne(X, %) - Vug — ag(h) - Vug weakly inD'(€), @1
where&p is the weak limit ofé, in the weak sense of the Radon measures. In
the classical framework, namely whe is uniformly bounded, limits (3.1) are
a simple consequence of the div-curl Lemma of MufagTar [11]. In our con-
text the situation is more delicate singgis only a Radon measure at this point.
Then assumption (2.15) is the key-ingredient used to compensate for the lack of
compactness in these products of weakly converging sequences.

For the first limit of (3.1) condition (2.15) naturally appears after integrating
by parts and using élder-type inequalities. The case of the second limit is more
complicated and it exploits the oscillations due to the periodicity (see Lemma 3.1).
Sincen, (3, 1) has a zero divergence by definition (2.9), an integration by parts
leads us to study the produgt(;, A) u.. At this level the idea (see the proof of
Lemma 3.1 in Section 3.4) is to replace the oscillating sequence, A) by its
averaged valug, 7.(y, »), which is equal tmg(k) by definition (2.10). For that
we show the existence of an oscillating functionwhich satisfies

e (X, 1) — A2(0) = — e div (ae (x, Vh,))

and whoselL? norm of the gradient is controlled by the constants) defined
in (2.16). We then obtain the second limit of (3.1) thanks to several integrations by
parts combined with assumption (2.15).

In a third step (Section 3.3), we determine the value of the limit §gvFrom
the inequality (3.6) obtained in the previous step (Section 3.2) and a technical result
(Lemma 3.2) we deduce thgg belongs in fact ta.” (Q). Then by using similar
monoticity inequalities of type (3.20) and homogeneity arguments, we prove the
equality&y = ag(Vuo) which concludes the proof of Theorem 2.1.
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3.1. A priori estimates

Letu, € Wol”’(Q; R™) be the solution of the Dirichlet problem (2.6). By the
uniform ellipticity (2.3) of A, we have

o ”Vus”{p(gz) = / ag(x, Vug) - Vug
Q

[

< ”f”Lp’(Q) luellLr ()
< ¢f IVugllLr ).

Then the sequenag is bounded irWOl”’(Q; R™) and convergence (2.7) holds up
to a subsequence. We also have

as (-, Vug) - Vug is bounded inLX(Q). (3.2)

On the other side inequality (2.13) combined with theld¢i inequality implies
that, for anyu € R,

1 1
/|as<x,wg>~u| §C<f ag<x,ws>~wg>” (/ as(x,m-u)”,
Q Q Q

whence by estimates (2.14) and (3&)-, Vu,) is bounded inL1(Q; R"¢) and
thus satisfies, up to a subsequence still denoted thye weak convergence in the
Radon measures sense

£ = a.(-, Vuy) — & weakly inM(Q; R™) x, (3.3)

i.e., for any continuous functio® e C.(2; R"?) with compact support i,

/as(x,Vug)-d) — /§0~<b. (3.4)
Q e—0 Q

Since by definition—div (§,) = f, the vector-valued measufg satisfies the
equality in the distributions sense

—div(g) = f inD/(Q,R"). (3.5)

Therefore the proof of Theorem 2.1 consists in proving the equédity=
ao(Vug) wheregg is the limit defined by (3.3) andj is the limit of the homoge-
nized operator? defined by (2.10). The main difficulty of the proof comes from
the weakness of convergence (3.3).

We proceed in two steps, which are shown in the following two subsections. In
the first step we prove a variational inequality satisfied by the megsute the
second step we deduce from this inequality thais a function inL?' ($2; R"9);
then we show the desired equality.
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3.2. Aninequality satisfied ki

We will prove that for anya € R and anyg € C.(2) (continuous with
compact support if) the following inequality holds:

[f-uo—/so-w—/ao(x)-wo|<p|”‘2¢+/ao(m-xwzo.
Q Q Q Q
(3.6)

The starting point of the proof is an inequality of monotonicity as in the classical
framework [11]. Let us define

775(% )") = A€ (y’ VyWé‘(ya }")) ’ y € Yv )" € Rnd’ (37)

whereW, is defined by (2.9), and lé&t be defined by (3.3). The monotonicity (2.2)
of A, implies that

/ (gs —MNe %7 )»90)) : (Vua - VyWE()ECs )Wﬂ)) = 0.

Q

Onthe other hand, by the homogeneity condition (2.12) and by the uniqueness of the
local problem (2.9), for a.e. € Y, the functionW, (y, -) is 1-homogeneous and the

functionn,(y, -) is (p—1)-homogeneous. Then being solution of problem (2.6),
the previous inequality can be written

/f’us _/ gg-vng(g,)»)(/)
Q Q
—/ ne(X, 1) - Vg |p|" % (3.8)

Q

We will determine the limit of any integral of (3.8). By the weak limit (2.7) we have

/ fu, —> f - uo. (3.9
Q =0 Jo
Limit of the second term of (3.8). Let us define the function
Agay o X
wy(x) :=¢e W, (8 , A) , (3.10)

whereW, is defined by (2.9). Lep € D(Q) := C3°(2). By integrating by parts
and by putting the functiop w? in (2.6) we obtain

/sg-vng(;—‘,w:/ f-wﬁw—f&-(wﬁ@w). (3.11)
Q Q Q

By estimate (2.23) it is clear that* (x) strongly converges ta x in L7 (Q; R"),
whence

/f~w§<p — /f-(/\x)w-
Q &~ Q
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For the last term of (3.11) we need assumption (2.15)(L;¢{<; <, be the canonic
basis ofR¢ and(ex)1<x<, be the canonic basis &", we have

d
0
[& wiovo=[ s trove -3 [ 6t nem L
Q Q = Ja Xj

1

and by the weak convergence (3.3)

/58-(Ax®V<p) — /50-(1X®V¢)-
Q e—0 Q

On the other hand, by inequality (2.13) combined with tradeéi inequality
we have, for any € R? and withX* := X, - ¢,

/ & - (Xe(£,0) @ v)|
Q

<Y [ e emlixt
k=1"%

n i/ %
ch(f a-m)”(f ag(x, ex ®v) - (ex ® ) |XE g,m")
k=1 Q Q

X5 < 1X,|

n 1
< Zc(/y Ac(y. ek ®V) - (ek®u)|xg(y,k)|f’) by (3.2).
k=1

Moreover by applying successively the Poiresréquality (2.16) estimates (2.14),
(2.21) and condition (2.17), we obtain for any: R” andu := e ® v,

/YAg(y,u)leg(y,k)l”
< [ At w2 (2317 + W52 = fy Wel?)
Y
S Cule) [ AT W) VW)
Y
=o(e™P).
We thus deduce from the previous estimates that
/Sée-(Xs(f,/\)tX)Vgo) — 0.
Q e—0

Passing to the limit in equality (3.11) then yields

/ss~vyws(§,x)w — /f~(/\X)<p—/$o-(M®V<p)-
Q e—0 Q Q
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Finally, when we put the functiott x) ¢ in (3.5), the previous limit becomes

/.§S~V},W8(§,A)¢ 8—>0 /é(yk(p foranyp € D(Q). (3.12)
Q - Q

Limit (3.12) also holds for any € C.(€2). Indeed inequality (2.13) and theokdier
inequality combined with estimates (3.2) and (2.21) imply that

/stg-vng £ )]

1 1
§C(/ ES'V’%)F </ As(yvvywa(yv)‘))'VyWs(y»)\)>p
Q Y

S clAl
which shows that the sequenge V, W, (3, A) is bounded inL1().

Limit of thethird term of (3.8). We need the following result which is essentially
based on condition (2.15).

Lemma 3.1. Letv, be a sequence iW01”’(§2; R™) such that

ve — vg weakly inWOl’p(Q; R™),

. L (3.13)
as (-, Vvg) - Vo, is bounded inL=(2),

and letG, be a sequence af-periodic functions irLﬁ(Y; R4y such that

/Ag(y, Ge) — bo € R™ and A.(-, G,)- G, isboundedinLl(Y).
Y E—>

(3.14)
Then the following convergence holds in the distributions sense:
VO € D(Q; RY),
x (3.15)
[ater-wo0 — [ w0, sw=c.().
Q e—0 Q &

Lemma 3.1 will be proved in the last subsection. Thanks to Lemma 3.1 we will
obtain the limit of the third term of (3.8).

Lety e D(R2). By definitions (3.7) and (2.9) we have diw.(y,1)) = 0in
the distribution sense; indeed, since (2.9) holds true in the torus sense it also holds
in the distribution sense thanks to the periodicity, by using a test function of type
V(y) ==Y ,ere ¥ (y+«). Then owing to an integration by parts we obtain

/ Ne f,)»)~Vualﬂ=—/ Ne %7)")'(”8®V1//)'
Q Q
The sequence; := u, satisfies the conditions (3.13) of Lemma 3.1 by (2.7), (3.2),

and the sequena@, := V, W, (-, 1) satisfies the conditions (3.14) of Lemma 3.1
by (2.11), (2.21) withbg := ag()). Then convergence (3.15) yields

/ Ne f,)») (U @ V) —> / ao(A) - (ug® V) = _/ ao(A) - Vug
Q e—0 Q Q
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sinceV (¥ ug) = ug ® Vi + Vug . We thus obtain the limit

f N5 A) - Vug yp — / ao(2) - Vuo ¥,
Q =0 Jo

for any v € D(R). This limit also holds for any € C.(2) since the in-
equality (2.13) combined with estimates (3.2), (2.21) implies that the sequence
(%, A) - Vue is bounded inL1(€2). In particular we have for any € C.(S),

/ ne(E. ) - Vig [plP g —> / ao() - Vo lpl” Y. (3.16)
Q 8—)0 Q

Limit of the fourth term of (3.8). By the definition of W, in (2.9) and by
estimate (2.23) the sequeneg(x) := & W.(3, ) weakly converges ta x in
wlr(Q; R"). Therefore, by proceeding asin the previous step, owingto Lemma 3.1,
we obtain the following limit:

/ns )V WeE W) P — /ao@mw. (3.17)
Q 8—)0 Q

Finally, passing to the limit in inequality (3.8), thanks to limits (3.9), (3.12),
(3.16) and (3.17), yields the desired inequality (3.6).

3.3. Proof of the equalit§o = ag(Vug)

We have to first prove that the vector-valued meagyreefined by (3.5) is a
functioninL? (Q; R"). Thisis a consequence of inequality (3.6) and the following
result.

Lemma 3.2. Letu be a Radon measure @nand letF be a mapping froni.? (2)
into R which is continuous at the poifit Assume that

Yo e CQ), F(p) +/ pu=0. (3.18)
Q

Thenu belongs taL” ().

Lemma 3.2 will be proved in the last subsection.
For anyx € R, let us apply Lemma 3.2 with := — & - A and

Py = [ (£ 0= a0t uolel" g+ aoi - le).

The mappingF is clearly continuous o ” (€2) and assumption (3.18) holds thanks
to inequality (3.6). Thereforgy - A € L? (Q) for anyi € R, and equivalentlyg
is a function inL”' (Q; R"9).

Let us now prove the equaliy = ao(Vuo). Let (pr)1<k<,, be a family ofm
functions inC, () with disjoint support, and lef.x)1<; <,, be a family ofin vectors
in R™¢. We define the function

m
Dy =Y g bk € Co(Q R™), (3.19)
k=1
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and we consider the monotonicity inequality

/Q(ss— L2, D) - (Vite — Vy Wa(E, D)) = 0,

whereé&,, W, andn, are defined by (3.3), (2.9) and (3.7). Since the functions
¢ have disjoint support and, for a.e.€ Y, the functionsW,(y, -), n.(y, -) are
homogeneous, the previous inequality can be written

/(sg Zne ) lelP 2 )(w Zv We (2 kak)zo.

k=1

Now we proceed as in the previous subsection in which we deduced inequality (3.6)
from inequality (3.8). Passing to the limit in the previous inequality then yields

/f-uo—/ Eo-d)m—/ > " ao(ue) - Vuo lgk|P 2
Q Q Qi
+/ > ao(u) - Axlgrl” Z 0,

=1

whence again by the homogeneityagfand the disjointness of the supportsgpf
we deduce the inequality

f fuo— / Eo- Dy — / ao(D) - Vg + / do(B) - By = 0. (3.20)
Q Q Q Q

Onthe other hand, by the density@f(Q; R") in L?(2; R"?), there exists, for any
® e LP(Q;R™), a sequenced,,),,>q of functions of type (3.19) such that,

strongly convergest® in L? (2; R"?). Moreover sinceg is continuous ofR"? and
satisfies the boundedness condition (2.2Q)also defines a continuous mapping
from L?($2; R") into L”' ($2; R"). Therefore passing to the limit,, — @ in the
last inequality implies that

/f-uo—/Eo-CD—/ao(@)-Vuo—l—/ao(q))-CDzO. (3.21)
Q Q Q Q
Finally by puttingug in equality (3.5) we obtain

on-Vuo=/ f-uo

Q Q
and inequality (3.21) becomes
/ (0 —ao(®)) - (Vup— @) =2 0.
Q

LetW e L?(Q; R™) and®, := Vug —t ¥, t > 0. We thus have

/Q (60 —ao(®y)) - ¥ = 0.
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Then, by passing to the limit— 0 and by using the continuity af onL? ($2; R"%),
we obtain

‘/%—@WMWWEQ foranyw e LP(2: R™),
Q

which implies the equalityo = ao(Vug) and concludes the proof of Theorem 2.1.
3.4. Proof of the lemmas

Proof of Lemma 3.1. To prove convergence (3.15) we will first introduce an auxi-
liary functionH;. Letus defineB, := A.(-, G¢) andB, its averaged value on. Let

v € R?, thanks to the strict monotonicity @f, combined with the continuity of the
mapping(V +— [, (B. — B,)v - V) in the quotient spac#,”(Y; R")/R pro-
vided with the norm| VV | .»(y) (consequence of the Poinea¥Virtinger inequality

in Y), there exists a unique solutidd’ in W;”’(Y; R™) with zero averaged value
onY, of the variational cell problem
VV e WpPl(Y;RY,
) _ (3.22)
[ A V0D IV 0Idy = [ B =By v VO dy.

Putting the functiond in (3.22) yields

/“WVW%WQ=/&wW®w
Y Y

since H; has a zero averaged value. Moreover by using successively inequal-
ity (2.13), the Hblder inequality, the weighted Poinea¥Virtinger inequality (2.16)
and the estimate of (3.14), we have

/&ww®w
Y n
<Y [ 1w a2
k=1"Y
" 1
§§:/WMWGJGw%&mq®w4q®WﬂWV
Y
k=1 i N
é}:c</AA%GQ-QJP(/Adxq®v%u%®WHQW)
k=1 Y Y

n 1
P
SEE(de@/AA»VQWVMQ.
k=1 Y

We thus deduce from the previous inequality and condition (2.17) the following
estimate:

A

/ Ae(y, VHY) - VH! = o(e77). (3.23)
Y
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Let9 e D(Q; RY). By rescaling equation (3.22) with! (x) := ¢ H} (%) we
obtain

d
/ag(x,ga-(vs@e) =Z/ (ac (x, ge) vi) - (6; ve)
Q PR

d
= f B, (v; ®6) + Z/ £ag(x, V') - V(6 ve).
Q PETRAY
Furthermore, by the limits of (3.13) and (3.14) we have
/Eg'(vg@)é) — / bo - (Vo ® 9).
Q e—0 Q
Therefore to prove convergence (3.15) we are led to prove that
/ eag(x, Vh)) - V(pv,) —> O
Q e—0

for anyv € R¢ and anyp € D(L2). To prove the latter limit it is enough to prove
that, for anyv, v’ € R?,

/ ¢ lag(x, VhY) - Vv,| — 0 and / elag(x, VhY) - (v ® V)] —> 0.
Q e—~0 Q e—0
(3.24)

By inequality (2.13), the HIder inequality and estimates (3.23) and (3.13), we
have

/ glag(x, VhY) - Vug|
Q

1 1
§Ce(/ ag(x,Vh:)~Vh‘s’>P (f ag(x,ng)-v%)p
Q Q

=o0(1),

whence the first limit of (3.24). Similarly we have

/ £ as(x, VAY) - (v @ V)|
Q

d
éZ/Qs}ag<x,th>-<e,-®u’>\|v:;|
i=1

A= ¢ RV

d 1
§Zc8(fgas(x,w;).wg>” </;2a5(x,)\,-)-)\i|v€|p>P
i=1
d 1
=2 o (/ as(xv)\i)')\i|vs|p>p-
i=1 Q2

|
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Therefore the second limit of (3.24) holds true if
/ ag(x, 1) - A|ve|? is bounded for any € R™. (3.25)
Q

For proving estimate (3.25) we consider the piece-wise constant function de-
fined by

Ve (x) :=][ ve ifx e (ek+eY), «kelZf
ek+eY

where the function, is extended by 0 outsid®. Then by rescaling the weighted
Poincag-Wirtinger inequality (2.16) with each functidn(y) := v.(ex + ¢y) and
by the homogeneity ofi ., we obtain the inequality

/ ag(x, 1) - Ave —Ve|? = & Cale) / ag(x, Vvg) - Vg,
Q Q
whence by condition (2.17) combined with the estimate of (3.13)

/ag(x,k)-k|vs—ig|p — 0. (3.26)
Q

e—0

On the other hand, by considering the pavipg+¢Y), .7« we also have

[awmamr =3 [ acnoalf w
Q 7 ek+eY ex+eY
<Y e [avnaf e
Y &

7 K+eY

=/mmmw/wm
Y Q

which is bounded thanks to estimate (2.14) and the boundedness wf

Wol”’(sz; R™). The previous estimate combined with limit (3.26) thus imply the
desired estimate (3.25). Lemma 3.1 is proved.

p

Proof of Lemma 3.2. By the dualityL”-L”" the measurg: belongs toL” () if
and only if there exists a positive constant 0 such that

IRZ
Q

Let us now proceed by contradiction. Assume that the previous estimate does not
hold. Then, for any non-zero real numheyx there exists a sequen¢g;)en in
C.(2) such that

S cllelliLr)-

Vh eN, / on b =co and lim flenllLr@) = 0.
Q h— 400

By passing to the limit — +-o0 in inequality (3.18) withp;,, and by the continuity
of F, we deduce the inequality(0) + co = 0. Sincecg is arbitrary, it thus remains
to choose such thatF(0) + ¢g < 0 in order to obtain the desired contradiction.
O
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4. Proof of the optimality result

Let us first present the strategy concerning the proof of the optimality result.
The best constar@(¢) in (2.25) is defined by the supremum

/ B: IVIP
C(e) = sup

(4.1)
vewro / B IVVIP

where the maximiseV, satisfies the Euler-Lagrange equation

VVewhr(y), /ﬂs IVVe|P72VV, - VV = / Be IVelP~2Ve (V = [y V).
Y Y
(4.2)

We aim at constructing an explicit “almost maximizefff sufficiently close (up to
multiplicative and additive constants) ¥ for smalle so that the small error could
be controlled both from above and below. The functigh, R > 0, is defined by
VR :=0inQ., VR :=1inY \ Qx (WhereQry is the ball of radiusk) and V.X
solves thep- Laplace equation inthe annulgs; \ Q.. By choosing the paramet&r
small enough, we can ensure th@ﬁ is also a strong approximation of 1irf(Y).

On one hand, puttlngs -y VR as test function in (4.1) provides an estimate
of C(¢) from below. On the other hand, the functi@rf allows us to obtain an
explicit approximation of the left-hand side of (4.2) (see Lemma 4.1 below) from
which we deduce an estimate Gf¢) from above.

Let us now prove Proposition 2.4 by following the above scheme. We consider
the functionA, defined by (2.24) and the Poineawirtinger inequality (2.25)
defined with the weighg,.

Thanks to the compact imbedding1?(Y) < LP(Y) combined with the
semi-lower continuity of the mappin@ +— [, [VV|?) in WL (Y), there exists
a maximizerV, in W7 (Y) related to the supremum (4.1) such that

/V5=0 and //3€|V8|”=1. 4.3)
Y Y
We then have
! = [ pvvr (4.4)
cee) Jy '

The proof of Proposition 2.4 is based on equality (4.4) combined with the following
result.
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Lemma4.1. Let O be the closed cylinder it := [—3, 3[3, of axisys and of
radiusR < 1. Let VX be the function defined ty? := y? + y32)

VR(y):=0 if y € Q,

VR(y) =1 if y € Y\ Qk.

A rd—rd _ 45
PE= s yeomoiandp £ g=2F 4O
A Inr—fnr

VR(y) = ———2 if dp=2

e () mR_InrslyeQR\Qsanp

Then there exists a positive constaht such that, for any € Wi7(Y),

‘/ﬂg|V\7€R|P—ZV\7§-vv-8R(s) <][ V—][ V)‘
Y Y\QR &

(4.6)
_2
< CRrir(e) (IIVVllLP(Y\QR) +re’ ||VV||L1’(Q5)) ,
where 3z (e) :=/55|vf/f|l’=f IVVE|P, 4.7)
Y OR\Q:

Lemma 4.1 will be proved in the last subsection.

For obtaining the asymptotic behaviours @fs) defined by (4.4), the cases
wherep < 2 andp = 2 are quite similar. So in the first subsection we will prove
the asymptotic behaviours (2.27) and (2.28); then in the second subsection we will
study the case@ > 2. In the third subsection we will determine the limit operator
ap defined by (2.11) in the particular case (2.24). The fourth subsection will be
devoted to the proof of the technical lemmas.

4.1. Thecasé < p <2

Estimate of C(¢) from below. The functionVsR defined by (4.5) satisfies the
estimate

IVE = L) = 1+ or (D),

whereog (1) denotes a term which tends to 0 Rs— 0 uniformly with respect
to e. In the following we will first pass to the limit (liminfy — O then to the limit
R — 0 using the uniform convergence @ . (1) with respect tc.

Putting the functior := VX — [, VX in inequality (2.25) yields

BeIVIP
Cle) > [0 _Vs|Q8|

== (1~|—0R!€(1)) . (4.8)
/ﬂg|VV|p Sr(e)
Y
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Moreover we easily deduce from definitions (4.5) and (4.7) the following asymp-
totic behaviours for any fixe@ < 3:

Sr(e) ~ 8(e) :=2m |q|p_lr£2_p ifl<p<?2,
e—0
R A 1 . (4.9
Or(e) ~08(e) =2r |Inrg|” if p=2.
e—
Then estimates (4.8), (4.9) combined with limit (2.26) imply that

8(g) C(g) S 5(e) (
YelQel — SR(S)

1 + OR,S(]-)) )

and by passing to the liminf (for any subsequencg of both sides of the inequality
for a fixed smallR, we obtain thanks to (4.9),
imin (M

>1 1), 4.10
J/eIQeI>_ +or() (4.10)

whereog (1) tends to 0 aR — 0. In particular we hav€ (¢) — +oc.

Estimate of C(¢) from above. By putting the functiorV, defined by (4.1), (4.3)
in inequality (4.6), we have thanks to limit (2.26), the equality (4.4) and the esti-
mate (4.8) satisfied bg (¢),

fﬂs IVVRIP=2y VR . vV, —$R<s)< Ve — vs) '
Y Y\Qr

1

14

1
gcRéRw)[(/y\Q ﬂeIVVs|”> + (i) (f ﬁeIVVe|p> }
R

A~ 1 A~ 1
< crdr(e) C(e) 7 < crdr(e)H,

wherecy, is a constant which only depends BnMoreover sincé/, is bounded in
L?(Y) by (4.3), we have

/ VsZ/ Vs_/ Vez_/ Ve = og (D).
Y\Qr Y Or Or

Both previous estimates imply that

'J[QSVE

whence, by the Hider inequality combined with the values (4.7pqf¢) and (4.4)

of C(e),
fv

~ 1 ~
—crOR(E)? 4+ 0ge(1) < Sg(e)7?

/yﬂg |[VVRP=2yyR. vy,

’

1
p

—crbr@)7 +ore = (Sr©) C@) 7
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Or equivalently, by using assumption (2.26),
1
Sr(e)\” 1
(ﬂ) [(yanw][ Ve
5(e) Q.

It thus remains to obtain an estimate of the averaged \()ééuefg For that we
will use the following result.
Lemma 4.2. The following Poincag-Wirtinger inequality holds iQ:

V—][ Vv

wherec is a positive constant independent of any small enaugh

On the one hand, putting the functidh in equality (4.12) yields by (4.4)

fo vt
& QS

whence by limit (2.26) combined wit (¢) — 400

Jol v f, v

On the other hand, by using the inequality

1

3(e) C(s))”

Ve | Qel
(4.11)

—CR SR(??)% +0R.e(1)] < (

vV e wbtr(Q,), /
0.

p
§cf vV, (4.12)

p

§c(VsIQgI)‘1/Q Be IVVel? < ¢ (e 1Qel Cle)) 72,

P
— 0. (4.13)

e—0

Va,beR, [lal” —1bl"] < pla— bl (jal” ™+ b1t

.
e — |vs|"—1+‘][ Ve
Qe
ép][ (st’ 1t |Vs|f’
i{
ol o) (o

The previous inequality combined with (4.3), (2.26) and (4.13) yields

A

Moreover, by (4.4)VV, strongly converges to 0 il.”(Y; R3). The Poincae-
Wirtinger inequality inY thus implies thatV, strongly converges to O ia”(Y)
sinceV, has a zero averaged value BnThen since

l=/ﬂs|Ve|”=/ |v€|1’+yg|Qe|][ Val?,
Y Y\ Q¢ Qe

and the Hblder inequality, we have

I, <, = o, |

- |Vs|p

é

)
)

8

—f P — 0 (4.14)

F
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we deduce from the strong convergencé&/pthe asymptotic behaviour

1
][ NALEES — k>0,
0. e=0 Ye |Qe| -0

which combined with limit (4.14) yields

h

Finally, since by (4.9%z(s) — 0 ass — 0, and thanks to the asymptotic
behaviours (4.9), (4.15), passing to the liminf (for any subsequeneg iofin-
equality (4.11) for a fixed smak, implies that

~ el (4.15)

(@) ?
1+ 0p(D) < liminf [ 22540}
oRD =TS ( el )

whereog (1) tends to 0 ak — 0, or equivalently
lim sup M S A+or()7P. (4.16)
e—0 Vel Qel
From inequalities (4.10) and (4.16) we easily deduce that

Cley ~ LI

e=~0 §(e)

which combined with the definition (4.9) éfe) yields (2.27) and (2.28).

4.2. The casg > 2

By taking any non-zero test functiov in the supremum (4.1), we find that
C(e) is bounded from below by a positive constant. In order to proveGtiay is
bounded from above, we proceed by contradiction.

Assume thatC(¢) — +o0. By definition (4.7) it is easy to check that there
exists, for anyR < % a constantg = 1 such that

-1 N
¢t S dr(e) < cr.

Then by the tlder inequality, the definitions (4.7) 8 (¢) and (4.4) ofC(¢) we
have

/Y,gg IVVRIP=2y VR . vy,

A1

<$r(e)7 C(e) 7 —> O,
e—0

Moreover by equality (4.4) and limit (2.26) we have

_2 _1
I9VellLoangn + ()7 [9VellLoi = 0 (C@77) — 0.
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Therefore passing to the limitin estimate (4.6), with= V, thanks to the previous
limits, yields

][ vg—][ V., — 0. (4.17)
Y\Qr 0. e—~0

Onthe other hand, as in the previous case the assun®{®n— +oo implies that
V. strongly converges to 0 ia?(Y) as well as the asymptotic behaviour (4.15).
The strong convergence & combined with limit (4.17) then implies the limit

][ Ve. — 0
R e—0

which contradicts (4.15) because of limit (2.26). TherefGre) is bounded.

4.3. Determination ofig

We have to prove that the sequem:%defined by (2.10) simply converges to
the functionag defined by (2.29). For any € AR3, let X, (-, 1) be theY-periodic
function defined by (see the definition (4.5)%f)

R = (1= 02 0) Gari+i2y). vev,
and extended by periodicity iR3, and letW, (-, 1) be the function defined by
W;‘(y) ::A-y—)zg(y,)»), yevY. (4.18)

By the definition (4.5) oﬁA/gR and the Cauchy-Schwarz inequality

2

hiy1+r2yal S A, where r2:=y? 42,

we obtain
VWA < 131 (247 1992 0] 105,00, 00)) £ 2031 (147 [V 0)]),
whence the estimate
[VWZ] < el (4.19)

which holds for any value op > 1.
Let us prove that the functiow? defined by (4.18) is a good approximation of
the functionW, (-, 1) defined by (2.9) in the following sense:

VV e Wit ), f Bl VWA PT2YW? . VV = o(D)||VV | Lry).  (4.20)
Y

LetV e Wi’p(Y). By definitions (4.5) and (4.18) we have

y y A%
/ﬂslVW?l”‘ZVWQ-V":/ |A|p_2A~Vv+/ Ve I2alP~2hg ——
Y y\QZrE 8y3

€

+/ VW2 P2V W . vV
QZI‘E\QS
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which, combined with the equalities
v

=0
0. 9y3

/VV:O and
Y

as well as estimate (4.19), yields the desired result (4.20).
By a similar computation and thanks to limit (2.26) we also obtain

Fyi= [ B IVWEP — P Kl (@.21)
Y E—>
Moreover the definition (2.10) Q{S implies that

A% - a = min / Be L — VVIP < E.(M). (4.22)
vewyr(v)Jy

On the other hand the convexity pf|? yields
A%0) A= F.() +p / Be|VWHPT2YWE - (VW (-, 0) — VW), (4.23)
Y

From estimate (2.21) combined with the uniform ellipticity (2.3}0f we deduce
thatV W, (-, ) is bounded irL? (Y), as well asv W} by (4.19). Whence the integral

termin (4.23) tends to zero when we put the periodic functios= W, (-, ) — WQ
in estimate (4.20). Therefore inequalities (4.22), (4.23) and limit (4.21) imply that

A0 - — AP + k |Ag|P. (4.24)

Finally, again by the convexity df- |” we obtain the inequality

VieRd A%+ - +p) =A%) A+ p A2 - .
This combined with (4.24) yields the desired limit (2.29), which concludes the
proof of Proposition 2.4.

4.4, Proof of the lemmas

Proof of Lemma 4.1. The case®p < 2, p = 2 andp > 2 are quite similar. Let us

thus prove estimate (4.6) for the case< 2. LetV € C(Y). We denote by~
the averaged value df on the subsef of Y. Since|VV8R|P*2VVgR has a zero

divergence inDr\ Q. and \78R is radial, an integration by parts yields

5 R p=20 0 TNk Bk 50 4 0
/Y|VVER|” VVSR.V(V—V FYR_y (1—V€R)>
=/ VIR P2VOR (v -7 (4.25)
r

R
+ [ IVVRPRVOR o (v - V),
r.
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wherel'g, ', denote the side boundaries of the cylind@ss, Q. andv denotes the
(radial) outer unit normal td'z, I".. Therefore we have to prove that the right-hand
side of equality (4.25) is bounded by the right-hand side of inequality (4.6) since
the left-hand side of (4.25) is equal to the left-hand side of (4.6).

By the definition (4.5) 01\7£R and by the imbedding fror 17 (Y) into L?(T'g)
combined with the PoincarWirtinger inequality inY \ Q g, we have

A _ A —Y 2
‘f V0ROV o (v = V) | < errZ P19V ILronon
g

by (4.9 < cr8r(@) IVVILrrop-

Similarly for the integral ol we have

(4.26)

‘/ IVVRP=2y R .y (V —VQS)
r.

<cgr Sr(e) / ‘ V(re, 0, y3) —VQS ,
P
(4.27)

where the functiorV is expressed in polar coordinates

(r,0,y3) € Pp :=10,rs[xP with P :=10,27[x]-3, 3[.

To estimate the right-hand side of (4.27) we can assumeViat= 0. By
integrating the equality

e 9V
rV(re, 6,y3) =rV(r,9,y3)+/ r—ap (0,0, y3)dp
r

on the setP,, we obtain the inequality

1 2 rg
5" / |V (re, 0, y3)| §/ rIV(r,O,ys)lJr/ F/
P P. A r

Then the Hlder inequality implies that

2 1 re
rz‘,‘Z/ |V(rg,9»)73)|§crgp, |:(/ r|V|P)p +</ r(/
P P, P, .

and for anyr < re,
(5 )

ap
whence the estimate

dp.

1%
— (0,0, y3)
ap

avdl’%
%))

p

A

e _p N\ [T |aV
p 7 dp A
r 0 ap

re oV p
er2 [")5
0 ap

A

sincep < 2,

2
r? / V(re, 0,y S crd (IVILeoy) + 1 IVVLr(o,)) -
P
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Therefore the previous inequality combined with the inequality (4.12) of Lemma 4.2
implies that

_2
/ V(re.0.y3) < cro ” [VVILr(u),
P

for any functionV with zero averaged value ofi.. Finally, by combining esti-
mates (4.26), (4.27) and the previous one, we obtain the desired result (@.6).

Proof of Lemma4.2. Let V e C1(Y) with zero averaged value af, and letW
be the function defined by

1
2
W1, y2) I=/ V(y1, y2, y3) dys.

Nl

It follows immediately that

av
IV —=Wlrro, = H —
LP(Q¢)

ay3

On the other sidéV is defined on the dis, of centreO and radius, and has a
zero averaged value dp.. Then byr.-rescaling the PoincarWirtinger inequality
in the disk of radius 1 we obtain the inequality

IWlee ) S cre IVWlLep,) =S cre IVViLeo,),

wherec is a positive constant. Finally both previous estimates imply (4.12).
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