Arch. Rational Mech. Anal. 162 (2002) 191 Digital Object Identifier (DOI) 10.1007/s002050200192

Correction to

"Asymptotic Stability of Solitons for the Subcritical Generalized KdV Equations"

YVAN MARTEL & FRANK MERLE

Arch. Rational Mech. Anal. **157** (2001), 219–254 Digital Object Identifier (DOI) 10.1007/s002050100138 Published online April 3, 2001

Proof of Lemma 9 in Section 5 is incorrect as written. Indeed, we cannot say directly from (60) and the fact that \tilde{L} has three nonpositive eigenvalues that the kernel of L_1 is {0}. The proof of this fact is as follows.

From the minoration of L_1 and (i), as in the proof of (iii), if we assume Ker $(L_1) \neq \{0\}$, then Ker (L_1) is generated by $\psi_2 \neq 0$ even. In this situation, we cannot claim (iii) directly. We argue as follows. Let $\varepsilon_0 > 0$ such that $\varepsilon_0 < 5 - \frac{117}{25}$, for p = 2, $\varepsilon_0 < 12 - \frac{234}{25}$, for p = 3 and $\varepsilon_0 < 22 - \frac{78}{5}$, for p = 4. Consider

$$L_{\varepsilon_0}u = L_1u - \frac{3}{2}\frac{\varepsilon_0}{\operatorname{ch}^2(\frac{p-1}{2}y)}u.$$

By the calculations of pp. 248 and 249, we have $L_{\varepsilon_0} \ge \tilde{L}$, and since $\varepsilon_0 > 0$, $\operatorname{ind}(L_{\varepsilon_0}) = 2$ on H_e^1 . However, by the numerical results (60) and (61) (see pp. 250 and 251), which are stable with respect to ε_0 , we have $\operatorname{ind}(L_{\varepsilon_0}) = 1$ on H_e^1 , which is a contradiction. Thus $\operatorname{Ker}(L_1) = \{0\}$. Then, the rest of the proof of the lemma is the same.

(Accepted January 29, 2002) Published online March 25, 2002 – © Springer-Verlag (2002)