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Abstract

In this article, we are interested in the existence and unigueness of solutions
for quasilinear parabolic equations set in the whole sfii‘e We consider, in
particular, cases when there is no restriction on the growth or the behavior of these
solutions at infinity. Our model equation is the mean-curvature equation for graphs
for which Ecker and Huisken have shown the existence of smooth solutions for
any locally Lipschitz continuous initial data. We use a geometrical approach which
consists in seeing the evolution of the graph of a solution as a geometric motion
which is then studied by the so-called “level-set approach”. After determining the
right class of quasilinear parabolic PDEs which can be taken into account by this
approach, we show how the uniqueness for the original PDE is related to “fattening
phenomena” in the level-set approach. Existence of solutions is proved using a local
L bound obtained by using in an essential way the level-set approach. Finally
we apply these results to convex initial data and prove existence and comparison
results in full generality, i.e., without restriction on their growth at infinity.

1. Introduction

In a series of works (see [7] for an introductory paper, and [8,6,9]), we are
investigating quasilinear parabolic equations set in the whole $p¥and, more
precisely, existence and uniqueness properties for solutions with general growth at
infinity.

This paper is the starting point, and our main motivation comes from a result
of Ecker & Huisken [16] for the so-called mean-curvature equation for graphs

du (D%uDu, Du)

o u+ 1+ |Duf? i x (0, 00) (1.2)
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with the initial data
u(x,0) = ug(x) inRY, 1.2

whereu : RV x [0, co) — R is the solutionDu and D?u denote respectively the
gradient and the Hessian matrix:oivith respect to the space variahig,: RN —

R is a given function and- | (respectively-, -)) stands for the classical Euclidean
norm (respectively inner product) RV .

Ecker and Huisken proved the following very surprising result: for any ini-
tial dataug € W= (RV), there exists a solution of (1.1), (1.2) inC® (RN x
(0, 00)) NC (RN x [0, 00)). This result was even extended to initial dat&ifR")
by ANGENENT [1]. The intriguing point is that no assumption is made on the growth
of ug at infinity and therefore the solutiancan have also an arbitrary behavior at
infinity.

This result brings up a lot of challenging questions: the first one concerns
the uniqueness of the solution they build. In general, the difficulty in obtaining a
uniqueness result for a PDE comes from the fact that a notion of weak solution is
used: this is not at all the case here since the solutions are known to be regular, even
C®. The real difficulty lies in taking into account any behavior for the solution at
infinity.

A second question is related to the existence result itself: Ecker and Huisken
proved it by using differential geometry and the maximum principle and it would
be interesting to have a purely analytical proof of it. Again the lack of prescribed
behavior of the solutions at infinity creates an unusual difficulty. In particular, to
get a localL* bound oru is a priori a key point, but to obtain a loc@l* bound
on Du is also a rather difficult task.

Finally, we may wonder to which type of quasilinear parabolic equations the
result of Ecker and Huisken can be extended. For the reader, this may seem to be a
guestion to be investigated later but, in fact, in order to provide interesting results
for (1.1), itis necessary to understand the main underlying structure of the equation
which allows such a strange result to hold.

Our answer to this question is the geometrical interpretation of (1.1) by motion
by mean curvature for graphs. Motions of hypersurfaces with general curvature-
dependent velocities were studied recently by the so-called “level-set approach,”
a weak notion for the evolution which allows us to define these motions past the
development of singularities. The level-set approach was first introduc@sHnr
& SETHIAN [31] for numerical computations and then studied from a theoretical
point of view byEvans & Spruck [18] in the case of motion by mean curvature
and byCHEN, Gica & Goto [13] for more general normal velocities. Later, more
singular cases were investigatedlbyi [27], IsHi1 & SouGaNIDIs [28] and prop-
erties of the level-set approach were obtainedBBYLES, SONER & SOUGANIDIS
[10].

In the case of equation (1.1), as for any suitable quasilinear parabolic equations,
the level-set approach arises when we consider the motion in dimeNsioh. To
do so, we have to introduce the function R¥*1 x [0, +00) — R defined by

v(x,y,t) =y —u(x,t).
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For (1.1), the function is a solution of

2

%—Av%—%:O in RV x (0, 00), (1.3)
which is the equation in the level-set approach corresponding to motion by mean
curvature.

In order to give a suitable sense of solution for this singular equation and related
ones in non-divergence form, we use the notion of viscosity solutions: we refer the
readertothe User's guide GRANDALL, IsHI1 & LioNs [15] or the books OFLEMING
& SoNER [20], BARDI & CAPUZZO DOLCETTA [2], BARLES [5] or BARDI €t al. [3]
for an introduction and/or a detailed presentation of this notion of solutions.

The most classical result concerning (1.3) is the well-posedness in the space of
bounded uniformly continuous functionB{ C in short), more precisely: for any
vo € BUC(RN*1), there exists a unique solutiomf (1.3) inBU C (RN *+1x [0, T'])
forall T > 0 such that

w(x,y,0) = vo(x,y) inRV+L

At this point, it is worth remarking that boundedness is not an issue: indeed, one
of the key property of (1.3) is to be invariant by every nondecreasing change of
functions: ifv is a solution of (1.3), then tarih), or more generally¥ (v) with

¥’ > 0, is a solution as well.

Therefore it can be thought that the study of (1.1), (1.2) just reduces to the study
of (1.3) through the changesx, y, 1) = tanh(y —u(x, t)) andvg(x, y) = tanh(y —
uo(x)) and that all results follow easily from an extension of the above-mentioned
well-posedness result to spaces of bounded continuous functions (dendigd by
v andvg being clearly inCp but notinBU C in general. In particular, the uniqgueness
of a solutionu of (1.1), (1.2) is an immediate consequence of a uniqueness result
for solutions of (1.3) inCp.

Unfortunately, we are unable to prove that the problem is well poség and
even the extensions to the well-posednesBinC are rather weak. The concrete
consequences of this geometrical approach are, on the one hand,zfobalind
for a large class of quasilinear parabolic PDEs whose proof is rather simple and
natural and, on the other hand, a “generic” uniqueness result for the solutions of
(1.1), (1.2) as well as for more general equations.

It is worth pointing out that the possible non-uniqueness feature for (1.1),(1.2)
is related to the so-called “fattening phenomena” or “nonempty interior difficulty”
for (1.3); despite the fact that it seems obvious that no interior can develop because,
by the maximum principle, we have formally

ad ) 0 .
%(x, y,0) >0 in RV — %(x, y,t) >0 in RN+L (0, +00),

but we are unable to prove this property even in a weaker sense.
Now, we turn to a more precise description of the contents of the present paper.
Itis devoted to the study of the geometrical approach, explained above in the special
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case of the mean-curvature equation, for more general PDEs like

a .
a_L; —Tr[b(Du)D%] =0 inRY x (0, 0),

u(x,0 =ug(x) inRY,

(1.4)

whereb is a continuous function fro®” into the space of the nonnegative sym-
metric matrice§; and the initial datag is any continuous function iR". The

first question we address is: when is (1.4) associated with a geometric PDE in
dimensionN + 1 to which the level-set approach applies?

In Section 2, we derive formally a geometrical equation from (1.4) (see (2.1)).
We then study this equation, distinguishing two cases: the “classical” one, to which
the classical level-set approach applies, and the “very singular” one, for which the
more sophisticated argumentslsfinr [27] are necessary. For the reader’s conve-
nience, we show how the classical results apply in the “classical” case (Section 3).
In the “very singular case” (Section 4), our comparison result enters the framework
of [27]. Nevertheless, the particular singular set we deal with allows a more elemen-
tary proof. It has, in particular, the advantage of using explicit test-functions and
therefore allows the proof to be extended to the case when the furdctin(i.4)
depends orix, 7, Du). Here, to avoid to many technicalities, we restrict ourselves
to b depending only oDu and address this more general case in the forthcoming
paper [9].

Then we study the consequences of this geometrical approach for (1.4). At first,
we prove in Section 5 that the level-set approach works. A lé€albound for
the solutions of (1.4) follows rather easily (see Section 7) and the existence of
discontinuous viscosity solutions of (1.4) is an almost immediate consequence of it
(see Theorem 8.1 in Section 8). The existence of smooth solutions requires a local
gradient bound; we use the onelbfans & Spruck [19] for (1.1) and the ones of
CHou & KwoNG [14] for the more general equation (1.4) (see Section 9).

Uniqueness is an even more difficult issue and we were able to obtain it only
in particular cases: of course the first “generic” uniqueness result we provide in
Section 6 is not satisfactory and most of the results we obtain in this direction
are proved by working directly on (1.4). However a striking application of the
geometrical approach to uniqueness (and also existence) is the case of convex initial
data (Section 10): under suitable assumptions (the same as those required for
the geometrical approach to hold), we prove that there exists a unique salation
(1.4), which is convex in the space variable at each time, and this for any convex
initial datauo without any restriction on its growth at infinity. The proof relies
strongly on the convexity-preserving propertyata, Goto, IsHi1 & SATo [21],
which we extend to our more singular case. Compared to the result we previously
obtained in [7] by working directly on (1.1), we no longer assuiméo be coercive
and we extend the result to equations like (1.4).

For completeness, we conclude this introduction by describing the results we
obtain in the next two parts of this study. Two types of uniqueness results for the
non-convex case are proved: the first ones [8] concern theMasel. We show,
not only for (1.1) but for a larger class of equations, a uniqueness result without
any growth assumptions on the solutions. Unfortunately, in general, this result is



A Geometrical Approach to the Study of Quasilinear Equations 291

valid only in the class of classical solutions; however, in the case of (1.1), using
the argument of Section 9 and in particular Remark 9.1, this uniqueness result for
smooth solutions implies a comparison result between possibly discontinuous sub-
and supersolutions.

The proof relies upon examining the PDE obtained by integrating. ifor
(1.1), this PDE reads

w; — arctanw,,) =0 inR x (0, +00), (1.5)

and the key point is that (1.5) enjoys uniqueness properti€y[R), essentially
because it is possible to use a “friendly giants” method, whose consequence is a
general uniqueness property for (1.1). Of course, this method can be extended to
far more general equations. We learned recently that related results were obtained
independently and by rather different method<imou & Kwong [14].

In the second one [6], we use classical viscosity solutions arguments to prove
the unigueness for solutions of (1.4) and even more general equations: we obtain a
comparison result for sub- and supersolutions with polynomial growth but, unfor-
tunately, with a rather restrictive assumption on the initial data which reads, in the
locally Lipschitz continuous case,

|Dug(x)| £ C(1+ |x|") inRY

for some constant > 0 and 0< v < (1+ +/5)/2. A strange feature of this result

is that it can be obtained either by working directly on (1.4) or on the associated
geometrical PDE and both proofs lead to the same conditiap.d¥s we mentioned

it above, in a forthcoming paper, we investigate more general equations, namely

9 .
8—? —Tr [b(x, ‘. Du)Dzu] + Hx.t.Du) =0 inRY x (0, 00).

After we obtained most of the results described above, we learned that repre-
sentation formulas for the mean-curvature equation (1.3) (and even more general
geometrical equations) have been established independenfigNBr & Touzi
[33,34] and byBuckpaHN, CARDALIAGUET & Quincampoix [12]. We tried to
prove uniqueness for (1.1) by showing that the “non-fattening phenomena” cannot
occur for (1.3) in the case of graphs, but we failed. It is an intriguing question
whether it is possible to prove such properties by using these formulas.

2. Derivation of a geometrical PDE

As explained in the introduction for the special case of equation (1.1), we
associate a geometrical equation with the quasilinear equation (1.4) which allows
us to use the level-set approach. This method has already been uSechNsy17]
for the heat equation and Wyica & Sato [22] in the case of Hamilton-Jacobi
equations.
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Whenu is a solution of (1.4) we consider, for every> 0, Graphiu(-, t)) as
an hypersurface iRV *! and, to represent it, we follow the ideas of the level set
approach, taking any functian: RY x R x [0, +00) — R such that

v(x,u(x,1),t) =0 for every(x, ) € RN x (0, +00).
Note that, foralk = 0, Graphiu(-, t)) C T';, wherel’; is the O-level set i (-, -, 7).
Differentiating formally the previous inequality, we obtain
ou Bv
Jt o ar
Dyv+ Dyv Du =0,

Dyv —

’

DZ.v+2D2 v ® Du + D3, vDu ® Du + DyvD?u =0,

and it follows thatv has to solve, at least formally

9 D, D D
2Tl (-22) (p2v—202, ‘@2 )| =0
ot Dy Dyv Y Dyv ~ Dyv

2.1)

in RVN*t1 x (0, +00).
This new equation has strong discontinuities when the gradient of the solution,
Dv = (Dyv, Dyv), lies in the subset

z{pz(pls 1pN+l) ERN+l:pN+1=0}a (22)

but (2.1) satisfies the following first properties which is a motivation to study (1.4)
via the level-set approach.

Lemma 2.1. We have

(i) Equation (2.1)is degenerate parabolic outside D.

(i) 1fu e CRN x [0, +00)) isa viscosity subsolution (a supersolution) of (1.4)
withinitial dataug € C(R"), thenthefunctionv(x, y, r) = y—u(x, t) defined
for (x,y,1) € RY x R x [0, +00) is a viscosity supersolution (respectively
subsolution) of (2.1)withinitial data vo(x, y) = y — ug(x).

(i) Equation (2.1) is invariant under every monotone change of function v —
v o v, where W € C(R) isa monotone function.

We skip the proofs of these three properties since they do not present any difficulty.
Let us mention that (ii) and (iii) are obvious in the smooth case. Property (ii) is
straightforward using the definition of viscosity solutions for the singular equation
(2.1) we recall in Section 4.1. For (iii), we even prove a discontinuous version
of it in Lemma 4.1. Finally it is worth pointing out that we choose to work with
v(x,y,t) =y —u(x,t)instead ofu(x, t) — y as usual.

Remark 2.1. Concerning (ii), we wonder whether some kind of converse property
is true: ifv is a solution of (2.1) with initial datag(x, y) = y — ug(x), does there
exist a solutioru of (1.4) such thav(x, y,t) = y — u(x, t)? The answer is not
clear and it is the main issue of our approach. We refer to Section 6 for related
discussions and results.
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We conclude this section by introducing some notation which is used throughout
the paper. Every point of R¥*1 is writtenz = (x, y) with x € RV andy € R.
In a natural way, every vectgr which has the meaning of a gradient is written
p = (px, py) With p, € RN andp, = py4+1 € R. We decompose every matrix
X € Sy+1 into blocks in the following way

whereX,, € Sy, Xxy € RN,XXT), is the transpose of ., (i.e., the row vector whose
coordinates are those af,,) and X,, € R. With this notation, the nonlinearity
involved in (2.1) can be written, for evepy € RV*1 — D andX e Sy1,

F(p,X) = —Tr[b(q) (Xux +2Xxy ® ¢ + Xyyq ® q)| = —Tr[b(p) X1, (2.3)

whereq = —p,/py and

~ b(q) b(q)q
b(p) =

b@T | (b(g)q,q)

3. The geometrical equation: the classical framework

A priori the nonlinearityF is discontinuous ofD (see (2.2)). In this section,
we provide assumptions dnensuring that we are in the “classical framework”,
which means that the (classical) level-set approach applies readily to (2.1) (see [18,
13,21,10]). In this classical framework, has to be continuous, exceptat= 0.

The typical example is the mean-curvature equation (see Example 3.1).

More precisely, we start by recalling the assumptions as they appear in [21]. In
what follows, || - || is any norm onSy andS¥—1 = {& € RN : |¢| = 1} is the unit
sphere ofR".

Those assumptions are:

(F1) F : RN —{0}) x Sy41 — Ris continuous;

(F2) F(p,X+Y) < F(p,X)forall p e RVt X ¥ € Syy1,Y 20;

(F3) —oo < F,(0,0) = F*(0,0) < +ocowhereF, andF* are the semicontinuous
envelopes of” defined byF, (p, X) = liminf , yy_ (p.x){F(p,Y) : p # 0}
andF* = —(—F)y;

(F4) for everyR > 0, sud|F(p, X)| : Ip| £ R, |X|| £ R} < +o0.

We have, the following classical result.
Theorem 3.1. Under assumptions (F1)—(F4), for anyinitial datavg € UC (RN *1),

there exists a unique solution v of (2.1)whichisin UC([RN*1 x [0, T')) for every
T > 0.
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Notice that, ifF' is continuous, then (F1)—(F4) reduce to (F2) only.
We state now the assumptions bmvhich permit us to extend thg given by
(2.3) by continuity inR¥+1 — {0}) x Sy 1 in order to ensure that (F1)—(F4) hold.

(H1) There is a positive constafy, such that|b(g)|| < K1 forall g € RV.

(H2) There is a positive constakb such thatb(q)q| < K> for everyg € RV,

(H3) Thereis a positive constakig such that(b(q)q, ¢)| < Ksforeveryg € RV .

(H4) Foreveryg € SN=1,lim;_ 1 o0 b(1Aq) andA lim b(Lg) exist and are equal.
——00

Moreoverbys, () = limy_ +o0 b(Ag) is continuous orsV 1.
(H5) For everyg € S¥=1, lim;_, 100 Ab(Aq)gq and lim,_, _, Ab(rq)q exist and
are equal. Moreoves (q) := lim;_ 100 Ab(Aq)q is continuous ors™V 1.
(H6) Foreveryy € SN=1,1im; _ 100 A2(b(Aq)q, ¢) and limy_, _oo A2(b(Aq)q, q)
existand are equal. Moreover the functiog(¢) := limy_ +00 A2(b(Aq)q, q)
is continuous orsV -1,

Proposition 3.1. Let F be defined by (2.3) with b € C(R"; S})). Then assump-
tions (H1)—(H6) are equivalent to assumptions (F1)—(F4). It follows that, under
assumptions (H1)—(H6), Theorem 3.1 hold.

Proof of Proposition 3.1. We use the notation of Section 2. We start by assuming
(H1)—(H6). For every((px, 0), X) € (D — {0}) x Sy+1, Wwe extendF by setting

F((px, 0), X)

= _Tr [boo (%) Xxx} 420l <|§—X|> Xay) + Xyylloo <|§—X|> .
X X X

From the assumed continuityks,, Z,, andas, onSY 1, the extended Hamiltonian

F is clearly continuous iRVN*+1 — {0}; thus (F1) holds. Assumption (F2) is an

immediate consequence of Lemma 2.1 (i). Finally, from the boundedness conditions

(H1), (H2) and (H3), it is obvious thdt,(0,0) = F*(0,0) = 0 and|F(p, X)| <

K1R + 2K2R + K3R for | p|, | X]|| £ R. It shows that (F3) and (F4) hold.
Conversely, suppose that (F1)—(F4) hold. Assumption (F2) implies easily that

b(€) is positive for alls € RY. Leté € S¥—1; for anya # 0, we have

. b(rq) ‘ rb(rq)q
b(g.1/3) = ( ) . (3.1)

(Ab(uqﬂ‘ 22(b(rq)q. q)

From (F4), we know thak(g, 1/1) is bounded for every € S¥~1andx > 1. It
follows that||b(&)|l, |b(&)&] and|(b(£)&, &)| are bounded for every € {Ag : A #

0,q € SN-1} = RN — B(0, 1). Since these quantities are obviously bounded in
B(0, 1), we get (H1)—(H3). From (F1), we know thiais continuous iRV 1 —{0}.

On the one hand, it follows easily thatis continuous irfRY. On the other hand,
sendingh to o0 in (3.1), we see thdiy, ¢ anda, are well defined:

B . boo(q) | $oo(q)
lim b(g. 1/3) = b(q.0) = < ) . (3.2)

oo @) | ctoo (@)
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Invoking again the continuity df, (3.2) implies thab,., o anda, are continuous
on S¥-1: thus (H4)—(H6) hold. This ends the proofa

Proposition 3.1 applies of course in the case of the mean-curvature equation.
The computations are developed in the following example.

Example 3.1. Mean curvature equation (1.1).
In this case,

q®q
1+1q12

Easy computations show that

b(g)=1— for everyq € RV, (3.3)

F(p, X) = —Tr [(1 - p|@|’2p> X} for every(p, X) € RN+ — (0}) x Sy1

V4
and then, (2.1) associated with (3.3) is the classical geometric mean-curvature
equation.

The checking of (H1)—(H6) consists of straightforward computations. We obtain
boo(q) =1 — q ® q, to(q) = 0 andao(¢) = 1 for everyg € SV-1.

4. The geometrical equation: thevery singular case

In this section, we study the case when the discontinuitigs@h D cannot be
reduced to a discontinuity at= 0. This question was addressed by many authors:
Goro [23], IsHi1 & SouGANIDIs [28], IsHil [27] or OHNUMA & SaTo [30].

Isun [27] deals with the worst set of singularities. Our approach is strongly
inspired by his work: Ishii extends the notion of viscosity by restricting the class
of test-functions. His result applies but we provide a simpler proof which relies on
the special form of our set of singularities.

We refer to the end of the section for examples of PDEs which are covered by
our framework but which do not satisfy the assumptions of Section 3.

4.1. Definitions and first properties

We recall the definition of viscosity solutions for very singular equations as it
appears ifdsui [27].

Inwhat follows, the set of the upper-semicontinuous (or lower-semicontinuous)
functions is denoted b/ SC (respectively. SC). For any locally bounded function
v, v* andv, are respectively the upper- and lower-semicontinuous envelopes of
andP?*(v*) andP?~ (v,) are its parabolic semijets (see [15] for a definition).

We define semicontinuous envelopes forwhich areadapted to the set of
discontinuityD, by, for every(p, X) € RV*1 x Sy.1,

F*(p.X)= limsup {F(p.Y):(p.Y) e R"TT —D) x Sy41},
(. Y)—(p,X)

Fu(p.X)= lminf {F(p,Y):(p.Y) e RN*! = D) x Sy41}.
(p,Y)—(p,X)
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Clearly, F* andF inherit the same properties Asthey are still degenerate elliptic
and geometric.

Definition 1. A locally bounded function : R¥N*1x (0, 4+00) — R is said to be
a viscosity subsolution (or supersolution) of (2.1) if and only if for awnyr) <
RV*L % (0, +00),

a+ Fu(p,X) <0 forall (a, p, X) € P>T(w")(x,1)
(respectively
a+ F*(p,X) =0 forall (a, p, X) € P>~ (v)(x,1)).

A discontinuous functiom is a viscosity solution of (2.1) provided it is both a sub-
and a supersolution.

With this definition, all the basic properties of classical viscosity solutions extend
to this case. In particular, the classical stability result for viscosity solutions holds.
The proof is the same as those in the classical references given in the introduction.

We continue with theinvariance lemma which is a characteristic of geometric
equations (cf. Section 2).

Lemma4.l Ifv e USCRN*! x [0, +00)) (or LSC(RN* x [0, +00)) isavis-
cosity subsolution (respectively supersolution) of (2.1), then, for any nondecreasing
function ¥ € USC(R) (respectively ¥ € LSC(R)) thefunction ¥ ov isaviscosity
subsolution (respectively supersolution) of the same equation.

Proof of Lemma 4.1. We will prove the assertion in the case of a subsolution; the
proof for supersolutions is analogous. We proceed by approximatign of
We construct a non-increasing family;).-o of smooth strictly increasing

functions such that

inf U, =W,

e>0
Let ¢ be aC? function and(xo, 10) be a local maximum of¥, (v) — ¢. Without
loss of generality, we can suppose that (v) — ¢)(xo, fp) = 0. It follows that, for
everyx € R¥N*1 andr € [0, +00),

Ve (0)(x, 1) S p(x, 1) &= v(x, 1) S Py 09 (x, 1),

where we setb, = (W,)~L. Thus(xo, 10) is a local maximum of — ®, o ¢ and
sincev is a subsolution of (2.1), we get

9
o a_f(x"’ 10) + F. (0 Do (x0. 10), /D2 (x0, 10) + ¥ D¢ ® Do) < 0.

Using the fact thaF, is geometric and dividing the last inequality ' > 0, we
get

a
2 (0, 10) + Fu (D6 (x0, 10, D2 (x0.10)) < 0
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which proves thaW, o v is a subsolution of (2.1). From classical results about
viscosity solutions, we know that

limsug* ¥, (v) = inf Y,ov=You
e>0

e—0

is a subsolution of (2.1), which is the desired resultt

4.2. Comparison result

We turn now to a comparison principle for (2.1).

Theorem 4.1. Suppose that (H1)~(H4) hold and let vg € UCRN*Y). If vg €
USC@RN*L x [0, +00)) or (v2 € LSC(RN*! x [0, +00))) is a subsolution
(respectively a supersolution) of (2.1), and if v1(-, 0) < vg < va(-, 0) in RN+,
then v1 < vo iINRY*L x [0, +00).

Remark 4.1. Note that “bounded” or “unbounded” solutions is not the point in this
theorem. Since the equation is geometric, up to making a change of variable
tanh(v) together with Lemma 4.1, we can suppose that the solutions are bounded.
Another remark is that we are able to compare bounded continuous solutions with
bounded uniformly continuous solutions. Of course, it gives uniqueness only in
UC@RN*L x [0, +00)).

The difficulty in proving such a result comes obviously from the unusual set of
discontinuitiesD. We begin with some arguments giving an idea of the proof.

Setting
S(D) = {( K °> .o eSN}, (4.1)
0 |0

Lemma4.2. Assume (H1}«(H4). Then, for allp € D — {0} and X € S(D),
F*(p, X) = Fy(p, X). MoreoverF*(0,0) = 0 = F,(0, 0).

we have

This lemma is proved at the end of the section. It suggests that we may use in the
proof of the theorem test-functiopssuch thatD2¢ € S(D) whenDg € D. Doing
things this way, we do not see the discontinuitieg'dh the proof.

Prof of Theorem 4.1. Without loss of generality, we can assume thatand v

are bounded. We recall that we writdor a pointz = (x, y) € RY x R and by

1z we mean(|x|? + y2)1/2. We argue by contradiction, assuming that there exists
(zo, f0) € RN+ x [0, 400) such that(vy — v2)(zo, f0) > 0. We introduce the
function

ber —xol* | y1— 2l
$(z1,22) = a4 T g = @(z1 — z2)
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which is chosen in order to ensure tHatp(Z) € S(D) whenDg(Z) € D (for
the definitions ofD andS (D), see (2.2) and (4.1)). We then set

Meon =  SUp v1(21,t)—vz(zz,t)—¢(Z1,zz)—a(|11|2+|z2|2)—nt}.
(RN+1)2X[0,+00)

At first, it is clear thatM, o, > 0O for «,  sufficiently small sincep(zo, z0) =
0. MoreoverM; . , is achieved at some, z2, 1) by the boundedness and the
semicontinuous properties of andv,. Actually z; andz, depend ory, ¢, , but
we omit this dependence in the notation for simplicity.
Whenr = 0, we have
- - 4 = 4
0 < Moy < v0(Z2) — 10(E2) — 2% 84"2' - n = 2 a2+ 1222

which leads to a contradiction using the uniform continuity®fThus, there cannot
exist a subsequence of parameterst) going to(0, 0) such that = 0. Therefore,
we can suppose that> 0 for ¢ anda sufficiently small.

From the fundamental result of the User’s guide to viscosity solutions [15,
Theorem 8.3], for every > 0, we getay, ax € RandX, Y € Sy41 such that

(a1, D(Z1 — 72) + 2071, X + 2al) € P> F(v1)(Z1, D),
(az, Dg(Z1 — Z2) — 20z, ¥ — 2al) € P>~ (v2)(Z2, 1)
and
—(% + ||A||) (é ?) < <§ _OY> < (_?Aizzp pA:z) e fzi’ﬁz)) (4.2)
for somea; — ap = n andA = D?p(Z1 — Z»). Writing thatv; is a subsolution and
v2 a supersolution of (2.1), we have

n+ Fu(De(zZ1 — 22) + 2021, X + 2a])
— F*(Dp(z1 — 72) — 2072, Y —2a1) £ 0. (4.3)

We compute, for everg = (Z,, Z,) e RV x R,

4 (22:®Z: +1Z:’1] O
= 0 3zZ)

4
Dy(2) = 5(Z:°Z., Z3) and D?¢(2) =

SinceM, ., > 0, we get
¢ (Z1. 2.0 + a(|Z2)® + 221D £ Nvillos + V20l
(recall thatv1 andv, are assumed to be bounded). It follows that

lim «lz1], lim a|Z| = O, (4.4)
a—0t a—0t

|z1 — Z2| is bounded a& goes to 0 (4.5)
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From (4.5) and (4.2), we find thatandY are bounded whemgoes to 0. Therefore,
using (4.4), we can extract subsequences suctrthatz, — Z and

(Do(Z1 — Z2) + 2071, X + 2al) —> (D9(Z), X) ,
(Dp(Z1 — 72) — 2072, Y — 2al) —> (Do(Z).Y),

whena goes to 0. Note thaX, Y satisfy also (4.2) withh = D2¢(Z). From (4.3),
it follows that

n+ F(Do(Z), X) — F*(Dp(Z),Y) < 0. (4.6)

Now, if Dp(Z) ¢ D, then we are done since (4.2) implies tiar ¥ and since in
this caseF* = F, = F is degenerate elliptic.

But, whenDg(Z) € D, we need more information abokt ¥ in order to get
the contradiction. At firstDe(Z) € D implies Z, = 0; thus

_ 7 7 7 12
D2p(Z) = <2zx Ozt 2] ’8) e S(D). @7

At this stage, we would like to apply Lemma 4.2 but we need first to transfer to
X, Y the appropriate property dh%¢(Z), namelyD?p(Z) € S(D). To this end,
we state

Lemma4.3. If D%¢(Z) € S(D), thenthereexist X', Y’ € S(D) such that
X<X <y <vy.
Moreover, X' = Y’ = Owhen Dg(Z) = 0.
We postpone the proof and complete that of Theorem 4.1. Taking advantage of the
ellipticity of F* and F, together with Lemma 4.2, we get from (4.6)
0+ F*(De(2), X') — F*(Dg(2),Y") < 0.

SinceX’ < Y/, the ellipticity of F* leads to a contradiction. It achieves the proof
of the theorem. O

We turn to the proof of the lemmas.

Proof of Lemma 4.2. Let us considet(py, 0), X) € D x S(D). It is sufficient to
see thatF (p, X + Y) has alimit wher(p, Y) — ((px,0),0), (p,Y) € (RN+1 —
D) x Sy+1. SinceX € S(D), we have

F(p,X+Y)=F(p,X)+ F(p,Y) = —Tr [b <——) xxx]

y

—Tr [b (—p—x> <Yxx e iy, 2 e &ﬂ .
Py Py Py
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At first, from (H1), (H2) and (H3), wheiiY || < ¢, we obtain

Tr [b <—p—x> <Y” ey, X e p—")” < 0(s) — 0. (4.8)
Py Py Py Py e=0

If p, = 0, thenp = 0 and (4.8) implies that*(0,0) = 0 = F,(0,0). If p €
D — {0}, thenp, # 0 and from (H4), we get

fim e [b (_p_x) x} T [boo (L) X] .
p—(px,0) Py |Pxl
It achieves the proof of the lemman

Proof of Lemma 4.3. We setA = D?p(Z), B = A + 2pA? (see (4.2)) and
Bs = B + 81 for § > 0. Note thatB € S(D) andB = 0 as we can see with the
help of Formula (4.7). Moreover, we find from (4.2) that

(Xp,p)—(Yq,q) S(B(p—q).p—q) <(Bs(p—q), p— q). (4.9)

It shows in particular thak < Bs (and—Y < Bj); thus(X — Bs) (respectively
(Y + By)) is invertible. We then obtaiX’ using a sup-convolution. We set, for
everyp, r € RVtlandk > 1,

Fr(p) =(Xp,p) — (kBs(p —r), p —7) (4.10)
and consider sypp~ F;(p) which is well defined. For every € RV,
(DF:(p), h) = 2(X p, h) — 2(kBs(p — r), h)
which means that the supremum is achieved for
p = (kBs — X) Yk Bsr

(note that(kBs — X) is invertible sinceX < Bs < kBs). Next, an explicit but
tedious computation yields a mat € Sy 41 such that

sup F(p) = (X'r,r).

[,ERN+1

Taking successively the particular valpe= r andp = 0in (4.10), we gek’ > X
andX’ = —kBgs. Similarly, we can construdt’ by setting, fork > 1,

inf {(Yp,p)+ (kBs(p —s), p—s)} = (Y's,s).

pERN+1
We obtain a matri¥”’ satisfyingY’ < Y andY’ < kBs. From (4.9), we get

(X'r,r) = (Y's,s) < sup {(Bs(p —q), p—q)

p.qeRN+L

— (kBs(p —r), p—r) — (kBs(q — 5), q — )}
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for anyr, s € RVN*1. An explicit calculation of this supremum yields
(X'r,r) = (Y's,s) < (Bs(r —s),7 —5).

By takingr = s, we obtain(X'r, r) — (Y'r, r) < 0 for everyr € RN*1, It follows
that—kBs < X’ < Y’ < kBs. Now, lettings go to 0, up to extracting a subsequence,
we get two matrices, still denoted B/, Y’, such that

—kB<X <Y <kB. (4.11)

Recalling thatB € S(D), we find first thatY,, = ¥}, = 0. Then, from (4.11), for
anyr € RV*1, we have

(X'ror) = (X[ e, re) + 22Xy redry S k(Brr) < K|rg|?
for some positive constaik . Takingsr, instead ofr, for r € R, we get
12X re re) + 20(X) r)ry S K2l

which provides X, rr) = 0 dividing by and letting: go to 0" or 0~. Since this
holds for anyr, € RY we are done. The same arguments hold¥forFinally, if
Dg(Z) = 0, thenZ, = 0, Z, = 0O; itimpliesA = B = 0. From (4.11), we get
X’ =Y’ = 0, which completes the proof of the lemmaz

4.3. Existence of solutions

Our result is the

Theorem 4.2. Assume (H1)—~(H4). For everyvg € UC (RN *1), thereexistsaunique
v e UC (RV*1 x [0, +00)) solving (2.1)with initial data vo.

The proof uses the classidr ron method, introduced in the framework of viscosity
solutions bylsui in [26] (see also [2,5, 15]). The application of this method in our
case does not present any special difficulties. Nevertheless, we provide a proof for
the readers’ convenience.

Proof of Theorem 4.2. The uniqueness part comes immediately from Theorem 4.1
and, because of Lemma 4.1, we can supposaghabounded. We divide the proof
into steps.

Sep 1. We construct a solution € C(RV*1 x [0, +00)) when the initial data
is smooth. Letyg € C2(RN*+1) n w2°(RN*1) and define, for ang > 0, two
functionsv, v by setting

v(z,1) ;== —Ct +vo(z) and v(z,t) = Ct + vo(z)

for any(z, 1) € RN+1 x [0, +00). It follows from (H1)—(H3) that the nonlinearity
F appearing in (2.1) is bounded on bounded subsets. Theréfarmy be chosen
large enough in order thatandv are respectively sub- and super solution of (2.1).
Consider then the séf of subsolutions of (2.1 such thatv < w < v. Set
then for every(z, 1) € R¥*! x [0, +00), v(z, 1) = SUp,cr w(z, ). The setF
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is nonempty and is well defined. Thus, we find from the comparison result and

classical arguments of the Perron method thiata discontinuous solution of (2.1).
Now, we also have from the definition ofthatv*(-, 0) = v.(-, 0) = vg. Thus

we deduce from the comparison result that= v, = v, which is the desired

continuous solution.

Sep 2. We show that the solutionwe builtin Step 1 is actually iBU C (RN x

[0, +00)). First of all, since the constant functions are smooth solutions of (2.1), the
comparison result shows thats bounded, namely| < |vg| in RN *1 x [0, +00).

Next, from the definition ob, for all # > 0, we have

v(-,h)=v9—Ch<v(,h) <vg+Ch=71(-,h) inRVNTL, (4.12)

From Theorem 4.1, and since the nonlinearity in (2.1) depends orlpenD?u),
the functionu(-, - + h) is a solution of (2.1) with initial data(-, ») andv + Ch
are solutions of (2.1) with initial datag + Ch. Thus Theorem 4.1, together with
(4.12), yields

v—Ch<uv(-,-+h) Sv+Ch inRY* x [0, +00).

It provides a modulus of continuity in the time variable which is independent of the
space variable. Arguing in the same way with translations in spgee vo(- +§),

£ € RN*1 we obtain a modulus of continuity for the space variable which is
independent of the time variable. It proves that BUC(RN*1 x [0, +00)).

Sep 3 The general case whan € BUC(RM*1). Using a classical convolu-
tion procedure, we construct a sequegd), <y of functionsyy e C2RN*thH N

W2 (RN*1) such thafvo — vi| < 1/n in RV+1, It follows that—2/n + v <

vy < vg + 2/n for m = n. According to Steps 1 and 2, we can consider, for
everyn € N, the unique solution” € BUC(RN*1 x [0, +00)) of (2.1) with
initial datavg. Proceeding as in Step 2, we deduce from the previous inequality that
—2/n+v" <™ V" +2/nform 2 n. Thus(v"),cy converges uniformly in
RN+ % [0, +00) to some function which is still bounded uniformly continuous.
From the stability resulty is a viscosity solution of (2.1) with initial datey. It
achieves the proof of the Theoremo

4.4. Examples

We give some examples of PDEs like (1.4) which are covered by the very
singular case.
(1) In addition to the mean-curvature equation for graphs (1.1), we can deal with
the non-geometric mean-curvature equation

ou . Du

— —div————==0 (4.13)
at V14 |Dul?
or equations like
ad A
“ “ -0, a>1 (4.14)

9 (1+|DulP®
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These equations lead to a geometrical equation like (2.1) with a singularity only at
|Dv| = 0 and they satisfy the assumptions of the classical framework.
(2) Consider a generalization of the mean-curvature equation for graphs, namely

ad

a—b; ~Tr [(1 — ¢(Du)Du ® Du)Dzu] —0, (4.15)
whereg is a continuous function froR”" into R. In this caseb(q) = I — g(¢)q ®

g is symmetric nonnegative and satisfies (H1)—(H3) if and only if there exists a
positive constan€ such that

1 c 1
— (1 — —2) < g(q) £ —5 foreveryg e RV. (4.16)
lq] lq1 lq1

Using the notation of Section 3, for evayye S¥—1, we havebo(q) =1 — g ®¢q
and¢s(¢) = 0; thus (H4) and (H5) are fulfilled and this equation falls into our
study area. Concerning (H6), we have

0 =< (b(hq)Aq, Aq) = 22(L — 2%g(Aq)) £ C.

We cannot conclude from this that there is a limit for all functigng means that

the last assumption does not hold in general and this equation is not covered by
the classical framework in the whole generality. We relate in detail such a situation
below.

(3) We turn to an explicit example of a PDE like (1.4) which leads to a geometrical
equation whose set of singularities is exadyand is not removable. Consider

ou f(Du)
at (14 |Du|?)?
wheref : RY — R is any bounded, nonnegative function. In this case,
f(q)
= — g Qgq.
L+ 1qP2? =1

The assumptions (H1)-(H3) are obviously satisfied and, for eyerg R,
b(Ag) — 0 asr — =£oo; thus (H4) holds. It follows that this equation is covered
by “the very singular case” of this section. It leads to a geometrical equation like
(2.1) with

(D?uDu, Du) =0 inRY x (0, T), (4.17)

b(q)

F(p, X)

Px Px ® Px 2
=—Tr |:f <_E> m(mxm — 2pyXxy ® px + Xyypx ® Px):| ,
for everyp = (px, py) € R¥*landX € Sy

For simplicity, setV = 1andf(¢q) = 1+cosgq. Itfollows thatF*((py, 0), X) =
0 andF,((px, 0), X) = —2X,,, for everyp = (px, 0), px # 0 andX e S, such
thatX,, > 0. Therefore, in general

F*#F, onD={p:p,=0}L

This shows that we cannot remove the singularitieg afutside 0. Thus (4.17)
does not satisfy the assumptions of Section 3.
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5. The level-set approach

In this section, for the sake of completeness, we recall the basic ideas of the
level-set approach and we apply them to Equation (2.1) both in the classical and very
singular framework. We refer to [18,13,10], etc. for a more complete description
of this approach.

We are given a tripletlo, Qf{, Qo) whereQ, Q, are disjoint open subsets
of RV+1 andIy = (4 U Qa)c. In general, we have in mindy = Q3 = 98 .

Note that these sets form a partition®¥ t1 andI"g can be thought of as being an
hypersurface.

Let vg be any uniformly continuous function whose O-level set is exdcgly
namely,

o= {z e RN : 19(2) = 0}, (5.1)
and such that
{ze RV ug(z) > 0} =Qf andfz e RN 1 p(2) < 0} = Q5. (5.2)

This choice of signs defines an orientationi@fmaking it possible to distinguish
an “interior”, Qf{, and an “exterior”,Q2, . Secondly, it is always possible to find
such a functionyg by taking, for example, theigned-distance to I'g defined by

+dist(z, To) if z € QF,
d(z, Tp) := . . (5.3)
—dist(z, 'g) if z € Qg

where dist denotes the usual positive distance. Cledrlylt) is Lipschitz con-
tinuous inRN+1,

We then define thegeneralized evolution of (I'g, Qg, Qy) by the family
(Tr. @, Q;);>0, Using the

Theorem 5.1. Under the assumptions of Theorem 3.1 or 4.2, there exists a unique
solution v of (2.1) in UCRN*L x (0, +00)) with initial data vg. Moreover, if
fo € UCRN*1) satisfies

{lo=0}=To, {io>0}=Qf and {o<0} =,

andif o € UC(RN T x (0, +00)) isthe viscosity solution of (2.1)with initial data
g, then

Wi, >0 ={D(,1) >0} :=QF,

{v(-,1) <0} ={v(, 1) <0} :=Q,,

{v(-,1) =0} ={v(,1) =0} :=T,.
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This result implies that the familg,, ;" Q; );>0 exists and is uniquely defined
independently of the choice of the representatigr U C (RY*1) satisfying (5.1)
and (5.2). The setJ,>oI's x {t} is called thefront associated witiTo by (2.1)
andT; is thefront at time ¢. Note that, at least formally;; evolves with a normal
velocity equal to

Vu(z) = —F(DA(-, T1)(z), D?d(-, T)(2)),

forz e I'y.

Proof of Theorem 5.1. We give a proof inspired bysan's one (see [27]). We
only show that if{vg > 0} C {vp > 0}, then this inclusion remains true for all

t 2 0,ie.,{v(-,t) > 0} c {0(-,1) > 0}. The other inclusions are obtained
by straightforward adaptations. From Theorem 3.1 or 4,3, € UC(RN+1 x

[0, +00)) and we recall that the hyperbolic tangent function (denoted by tanh)
is a bounded uniformly continuous increasing function. Then, using Lemma 4.1,
we show that tantv) is a bounded uniformly continuous solution of (2.1) with
the bounded initial data tagty). Next, we introduce the uniformly continuous
increasing functiord™(r) := max(r, 0) and claim, thanks to Lemma 4.1 once
more, thatd™ o ¥ andé* o tanh(v) are both uniformly continuous solutions of
(2.1). Finally, we introduce the lower-semicontinuous function

+2 if r>0,
0(r) =
") :o it r<o,

and observe that o 71 o 7 is a lower semicontinuous supersolution of (2.1). In
fact, the previous changes are made in order to obtain the suitable initial condition

006 oT(-,0) =067 otanhv(-, 0)),

which follows easily from the assumpti¢ng > 0} C {19 > 0}. Sinced ™ otanh(v)
is uniformly continuous, we apply the comparison result 4.1 and get that, for all
t =0,

000 (B(-,1)) =0T otanh(u(-, 1)).

We obtain{v(-, ) > 0} C {v(-, ) > 0}, which ends the proof. O

6. Connection between geometrical and quasilinear PDEs. Application to
uniqueness

In this section, we specify the connections between (1.4) and (2.1) initiated in
Section 2, and in particular in terms of uniqueness for (1.4)ullet a continuous
viscosity solution of (1.4) with initial datag € C(R") andv be the solution of
(2.1) with initial data d- , Graphug)). The main question is whether or not

Graphu(-, 1) = {(x,y) e RV 1y —u(x, 1) = 0}
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and the front
Ty ={(x,y) e RN u(x, y, 1) = 0}

coincide for allz = 0. If the answer is yes, this obviously provides a uniqueness
result for (1.4) since thE,’s are uniquely determined because of Theorem 5.1. And
it may be thought that the answer is indeed yes — by applying Theorem 5.1 together
with Lemma 2.1 (ii) with initial datayg = tanh(y — ug(x)), which is a particular
representation of Grapiag). Unfortunatelypg is not uniformly continuous ifig is
not uniformly continuous and, as we pointed outin the introduction, we do not know
how to prove Theorem 5.1 replacingg'e UC (RN 1" by “ 5 € Co(RV*1)”; we
do not know even if such a result is true.

Nevertheless, the inclusion used in Section 2 to derive the geometrical PDE is
always true.

Theorem 6.1. Suppose that (H1)}«(H4) hold. Let u be a viscosity subsolution (or
supersolution) of (1.4)with initial data ug € C(R") and v be a viscosity solution
of (2.1)withinitial data d(-, Graphug)). For every t € [0, +00), we have

Graphu(-,t)) C {(x,y) € RV y(a, y,t) < 0}

(respectively Graptu(-, 1)) C {(x,y) € RN s v(x, y,1) 2 O}).
If u isasolution of (1.4), then
Graphu(-,1)) c Iy forallt € [0, +00),

where (T';),>o isthe generalized evolution associated with I'g = Graphuo).

Proof of Theorem 6.1. Suppose that is a subsolution. Define the nondecreasing
functiond™ (r) := max(r, 0). For allz = (x, y) € RY x R, we have,

tanh[6™ (y — uo(x))] = tanh[d(z, Graphuo))],

since, on the one hanf; — ug(x)| = dist(z, Graphug)); and, on the other hand,

if y < ug(x), then dz, Graphug)) < 0 (for the definition of d, see (5.3)). From
Lemma 2.1 (ii) and from the invariance of supersolutions of (2.1) under nondecreas-
ing changes of variables (see Lemma 4.1), we know that the functiofotagh—
u(x,1))] is a supersolution of (2.1) with initial data tgdh (y — uo(x))]. More-

over, the function tantv) is a solution (thus a subsolution) of (2.1) with initial data
tanh(vg). Applying Theorem 4.1 (see Remark 4.1), we get

tanh[6™ (y — u(x, 1))] = tanHv(z, )].

Thus,y = u(x, t) implies thatv(z, r) £ 0, which proves the first inclusion. if

is a supersolution, we repeat the same argumentsbwith) := min(r, 0). We get

the other inclusion. In order to prove the last statement of the theorem it suffices
to notice, on the one hand, thats a solution provided that is both a sub- and a
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supersolution and, on the other hand, that
I={zeR" v 0Nz e R vz, 1) 2 0).
This achieves the proof of the theorent

In fact, the uniqueness for (1.4) and the so-called “fattening phenomena” for
the front are closely related as shown by the

Theorem 6.2. Assume that (H1)-(H4) hold and let ug € C(RY). Suppose that
the front |, >o T's x {t} associated with Graph(uo) has empty interior in R¥*1 x
[0, +00). Then (1.4) has at most one continuous viscosity solution with initial data
ug.

We point out that Theorem 6.2 provides uniqueness only in the class of continuous
functions. But discontinuous solutions may also exist if the front looks like a rake
for instance. This result says nothing about the existence of solutions; it may be
possible taht the front contains no continuous graph.

In the literature, the “fattening phenomena” may have different meanings. In
Theorem 6.2, we use the standard topological meaning. We first want to remark
that assuming thaf, has empty interior irR¥*1 for all + > 0 is stronger than
assuming that J,~o I'; x {r} has empty interior iRN+1 x [0, T]. In fact, under
our assumptions it turns out to be equivalent. The proof of this equivalence comes
from the preservation of inclusion of sets under motions governed by (2.1) and the
factthat, if the front at a timecontains a ball, this ball cannot shrink instantaneously.
We skip the proof and refer to the one of Theorem 7.1 which is similar.

In BARLES & Soucanipis [11], a “no-interior condition” is considered, namely

Unxm=a|lJa <=0l e xi}]. (6.1)

120 120 120

This condition is stronger than the topological one. When it is satisfied, we have a
better result.

Theorem 6.3. Assume (H1)-(H4) and let ug € C(R"). Suppose that (6.1) holds
for the front associated with Graphug). If u and & are (possibly discontinuous)
viscosity solutions of (1.4), then uy, = i, and u* = #* inRY x [0, +00).

Contrarily to Theorem 6.2, this theorem provides a “weak” uniqueness result for
discontinuous viscosity solutions of (1.4). It is worth pointing out that stronger
results providing equalities like* = i, andu, = i* in RV x [0, +00) cannot
be obtained by such a geometrical approach since a discontinuityoofi can
appear or, on the contrary, be removed by a slight rotation of the aki& it and
therefore such discontinuities have no real geometrical meaning. We refer the reader
to BARLES, SONER & SouGaNIDIS [10], ILMANEN [24] andSonEr [32] for a more
complete discussion and results about the “fattening phenomena” or “nonempty
interior difficulty”.

We turn to the proofs.
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Proof of Theorem 6.2. Suppose that there exist two solutians u> € C(RY x

[0, +00)) of (1.4) with initial dataug and definev to be the solution of (2.1) with
initial datavp = d(-, Graphup)). From the level-set approach, we have =
{v(-,1) = 0}. We will see that, ifuy andu» are different, then the front has
nonempty interior iNRRN*1 x [0, 400). If u1 # up, we can suppose that there
exists(xo, o) € RV x [0, +00) such that

u1(xo, to) — u2(xo, o) = € > 0.

By continuity ofu; anduy, there exists some babl(xg, p), 0 > 0and some > 0
such that

ur(x, 1) — uz(x, 1) = g >0 inB(xo, p) x lt0, o + 1. (6.2)
But, from Theorem 6.1,
Graphui (-, 1)), Graphua(-, 1)) C {v(-,¢) =0} forallt > 0.
To conclude, it suffices to show that

B(xo. p) x [to, to+ 71 | J v x {1}
120

We need a lemma whose proof is postponed.

Lemma 6.1. Under Assumptions (H1){(H4), let v € UCRN T x [0, +00)) be
a solution of (2.1) with initial data vg. If y — wvo(x, y) is nondecreasing for all
x € RN, theny — v(x, y, t) isnondecreasing for all (x,7) € RN x [0, +00). In
particular, the result holds if v is the solution associated with the initial condition
vo = d(-, Graphug)) whereug € C(RV).

From this lemma, we obtain
v(x,y,t) =0 forall(x,y,t) € B(xog, p) x [uz2(x, to), ua(x, to)] x [to, to + 1.

Using (6.2), we find thaB (xg, p) x [u2(x, t0), u1(x, tg)] x [to, to+1t] has nonempty
interior NRYN*1 x [0, +o00) which ends the proof. o

Proof of Lemma®.1. By assumptionyo(x, y+h) = vo(x, y)forallx e RN*1 y e
R and. > 0. From the comparison result (see Theorem 4.1) it follows that
v(-,-+h,t) Zv(,-, ) forallt = 0, sincev(-, - + h, -) is a solution of (2.1) with
initial datavg(-, - + k). This proves the first part of the lemma.

It remains to show that the functiam, y) — d((x, y), Graphug)) is nonde-
creasing in the variable wheng is continuous. To this end, considee RY and
y2 2 y1. We suppose that, = y1 = uo(x). Indeed, the casep(x) = y2 = y1
can be treated in the same way with straightforward adaptations and the case
v2 2 ug(x) = y1 is obvious. Assume for contradiction that

0 = rp :=d((x, y2), Graphuo)) < d((x, y1), Graph(uog)) =: r1,
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and defineto‘g(x’rl) as the restriction afg to the ballB (x, r1). From the definition
of d as an infimum, the hypothesig = uo(x) and the continuity ofig, it follows
that

Graplﬁ(uO‘E(x,rl)) N E((x, )’1)7 rl) C B*B((x’ yl)v rl)v

where 0~ B((x, y1), r1) stands for the par® B((x, y1), r1) of the boundary of
B((x, y1), r1) lying in the half-spacdy < yi}. Sincey, = yi andry < r1,
we get

Grapr(’/l0|§(x’rl)) NB((x, y2),72) =0

which gives a contradiction. o

Proof of Theorem 6.3. Let us show thai, = i,. We argue by contradiction,
assuming that there exist, 7) € RV x [0, +00) such thatu, (X, 1) > i+ (x, f).
From Theorem 6.1, we have, for al&> 0, Graphi(-,t)) c Ty = {v(-, 1) = 0},
wherev is the solution of (2.1) with initial data(d, Graph(uo)). It follows from
(6.1) that

|J Graphi(-. 1) x {1} < | J @ x {1} ;

t=0 t=0

thus, there exists asequerieg, y,, 1,) € R¥+t1x[0, +00) suchthatx,, y,, t,) —
(%, ii4(x, 1), 1) whenn — +o00 andv(x,, y,, t,) > 0 for alln = 0. From the non-
decrease of in y (Lemma6.1), we have, > u(x,, t,,) sincev(x,, u(x,, ty), t,) =
0. It follows that

ue(x,t) Sliminf u(x,, t,) < liminf y, = i1,(x, t)
n—+o00 n—+00

which is a contradiction. We provg = #* in the same way. O

The last result of this section is related to the empty interior condition of The-
orem 6.2 and is inspired by the related result€eins & Spruck [19] in the
mean-curvature case.

If uop € C(RN) and ifvg = d(-, Graphug)), then the subsetsp = A}, A € R
are the graphs of functiom%J e C(R"). More precisely, fon. > 0, the function
w(x, ) = ug(x) (orw(x, A) := uak(x)) is the unique viscosity solution of

d .
ﬁ_ 1+ |Dwl2=0 inRY x (0, +00),

(respectively
S+ VI+ Dol =0 InRY x (0, +)).
We refer toBarLEs [4] for a simple proof of this claim. Our result is the

Proposition 6.1. Assume (H1)-(H4). Except for a countable subset of values of A,
thefrontsassociated with the evol ution of Grapr(ug) haveemptyinterior inRY+1x
[0, +00). In particular, there exists at most one continuous viscosity solution «* of
(1.4)withinitial data u.
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We may interpret this result by saying that non-uniqueness for (1.4) is a “rare”
event.

Noticing thatug } ugin C(RY) asa | 0*, we find that we can approach any
up € C(R") in a monotone way by a sequencesgffor which (1.4) has at most
one continuous solution. The interesting thin about this result is thatjtadave
in general the same behavioras It means that we actually have uniqueness for
a large class of initial data including functions with arbitrary growth.

Proof of Proposition 6.1. Let v be the unique solution of (2.1) with initial data
vo = d(-, Graphup)). Since, for everyA € R, v — A is the unique uniformly
continuous solution of (2.1) with initial dat& — A, at each time, the frontI'}
associated with Gramhg) coincides withv (-, ) = A}. In particular, the fronts are
disjoint for different values of and it follows, from there, that the family of values
of A such that J,>¢ I'} x {t} has nonempty interior is countable. To conclude, it
is sufficient to apply Theorem 6.2.0

7. A'local L* apriori bound

In this section, we use the relations between (1.4) and (2.1) to provide a local
L*° bound for the solutions of (1.4).

In order to state the main result of this section, we introduce, for any function
ug € C(RY),

Myo(x, R) = max uo(y) and my,(x, R) = min uo(y).
YEB(x,R) y€B(x,R)

We have the following

Theorem 7.1. Under assumptions (H1)—(H4), if u € C(RY x [0, +00)) isa solu-
tion of (1.4)with initial data ug € C(R"), then there exists a positive constant C
such that, for all x e RV, r > 0,

Myo (X, v 2Ct) — V2Ct S u(x, 1) < Myo(x, vV2Ct) + ~/2Ct.

Remark 7.1. This localL* bound is a direct consequence of the level-set approach
and it justifies the fact that we need at least some kind of degeneragynotie
gradient variable, as implied by (H1)—(H4); indeed, clearly, such a bound does not
hold for the heat equation and therefore we cannot hope that such an approach
applies for this equation.

Proof of Theorem 7.1. The basic idea is that the geometrical evolution governed
by (2.1) preserves the inclusion of sets. Thus we can expect that the evolution of
balls initially put “under” (or “over”) the graph of a solution of (1.4) will provide
some control on the growth. This fact is illustrated in Fig. 7.1 in the case of the
mean-curvature equation.

We takevg(z) = d(z, Graphuo)) € UC(RN*Y) (where d is defined by (5.3))
and letv be the unique uniformly continuous solution of (2.1) with initial daga
In order to prove the result, we aim at comparingvith subsolutions like those
which appear in the following Lemma, whose proof is postponed.
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v(-,to+h) >0
Yol - Yof-—- v(tg+h) =0
o(-1t0) > 0 \M/
1 v(-to+h) <0
A e
I &

|
|
|
|
|
|
1
X x
0 V(i te) < 0 !

time t = ¢ time t = to + h

Fig. 7.1. Evolution of a graph with a ball which is put above it

Lemma 7.1. We suppose that (H1), (H2)and (H3) hold. Fix Rg > 0, xo € R and
yo € R. Let ¥ : R — R be any smooth nondecreasing function. Then the function
@, defined for every (x, vy, 1) € RY x R x [0, +00), by

o(x,y,1) = W(R§ — 2Ct — |x — xol* — (v — y0)?),
whereC = N(K1+ K2 + K3) + 1, isa (classical) strict subsolution of (2.1).

Letxo € RY, 19 € (0, +00) andyp = M, (x0, v/2C10) + +/2Cto, WhereC is
taken as in Lemma 7.1. It follows that

B((x0, y0), v2C10) C {(x,y) e RN "Ly > ug(x)),

which implies
d (-, B(x0. 30), v2Ci0)) £ d(-, Graphuo)) = vo. (7.1)
Let us define
o(x,y. 1) = W(2Cto — 2Ct — |x — x0* — (v — y0)?),

with W (z) = z/2./2C1g for all z € R. The function¥ satisfies the assumptions of
Lemma 7.1. For clarity, we set= (|x — xo|% + (y — y0)®)¥/2. From (7.1), we get

2Cto+r <
o0 = O ot 1) < oG

<~ , B((x0, y0), \/ﬂ)) < vo.

Now, sinceg is a function with quadratic growth at infinity andis uniformly
continuous, we know that
min  {v—
RNHx[o,T]{ ¢}
is achieved for every” > 0 if we assume that it is positive. Using Lemma 71,
is a strict smooth subsolution of (2.1); thus the minimum is necessarily achieved at



312 GuUY BARLES, SAMUEL BITON & OLIVIER LEY

t = Owhich is a contradiction. Since the previous arguments hold for évery0,
we get finally

¢ <v inRV! x [0, +00). (7.2)
By Lemma 6.1, we have
Graphu(-, 1)) c I';(v) for everyr > 0. (7.3)

From (7.2) and (7.3), it follows that, for all= 0,
{pC.0) 20} C{u(-, 1) 20} C{(x,y) e RN 1y = u(x,n).
But
@(x,y,1) 2 0= (x,) € B((x0, Y0), V2C (1o — 1)).
By lettingr — 9 and by using the assumed continuityuofwve obtain
u(xo, 10) < yo = My, (xo, v/2C10) + v/2C1o.

The opposite inequality is obtained with straightforward adaptations.
We end the section with the proof of the lemma and an example.

Proof of Lemma 7.1. Without loss of generality, we can suppose thgt= 0 and
yo = 0. Moreover, from Lemma 4.1, we can suppose @) = z for every
z € R. From (H1), (H2) and (H3), we get

|Fo(Dg, D%p)| < N(K1+ K2 + K3)|D?¢| £ 2(C — 1)
where we se€ = N (K1 + K2 + K3) + 1. It follows that

9
a—‘f + F.(Dg, D) < —2C +2(C —1) < -2 < 0,

which achieves the proof.0

Example 7.1. Evolution of balls in the case of the mean-curvature equation (1.1).
We recall that, in the case of (1.3)js given by (3.3). Following the computations
of Lemma 7.1, we have

a D D D D
2 mr|p (-2 (p2p 2029 @ F 4 D2 oY g XY
ot Dyg Dyo " Dyp  Dyp
= —-2(C — N).

By takingC = N, we find thaty is in fact a classical solution of (2.1). Thus, by
the level-set approach, it follows that the O-level sepavolves according to its
mean curvature. An easy computation shows that

Q4 = {¢(-,0) > 0} = B((x0, y0), Ro), T'o = dB((x0, Y0), Ro),
and, for every > 0,
Q" ={p(-,1) > 0} = B((x0, y0), R()), T, = dB((x0, y0), R(1)),

whereR(t) = (R — 2N1)Y/2. We recover by this method the well-known result
of Evans & Spruck [18, Section 7.1]: balls remain balls for the mean-curvature
motion and they shrink into a point fot = RS/ZN.
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8. The boundary of thefront. Existence of discontinuous solutions

Theorem 6.1 provides the first connections between the front and the graphs of
the solutions of (1.4) when they exist. In this section, we describe more precisely
the structure of the front and obtain the existence of discontinuous solutions to
(1.4).

For any continuous functiomy, we consider the generalized evolutidhn),>q
of Graphug) and the uniformly continuous solutianof (2.1) with initial data
vo = d(-, Graphug)). For every(x, t) € RN x [0, +00), we define

ut(x,1) :=suply e R:v(x,y, 1) £0}
and
u (x,t):=inf{y e R:v(x,y, 1) = 0}.

Note that the functions™ (-, r) andu~ (-, t) are defined such that their graphs are
the “upper-boundary” and the “lower-boundary” of the fréhtat each time: see
Fig. 8.1. We have the first properties

Lemma 8.1. Under assumptions (H1)~(H4), the functions «™ and »~ are locally
bounded in RY x [0, +00)). Moreover u™ € USC@RY x [0, +00)) and u~ €
LSC@RN x [0, +00)).

Proof of Lemma 8.1. We give the proof fou™, the one for:~ being similar. We
start by proving that* is well defined and locally bounded. Looking at the proof

Fig. 8.1. Front which fattens attime> 0
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of Theorem 7.1, we see that inequality (7.2) implies that, for evesyyo, 7o) €
RY x R x [0, +00), there exists a constamt > 0 such that

v >0 inB((xo, y0), M) x [0, 10/2].

Note thatM does not depend o in the sense that > 0 in everyB((xo, y), M) x
[0, 70/2] with y = yg, by non-decrease of — v(x, y, ) for every (x,t) (see
Lemma 6.1). It proves thatt < yg in a neighborhood ofxg, 19/2). The same
reasoning holds with straightforward adaptations to provethét locally bounded
from below.

We turn to the proof of the upper-semicontinuity.df. Consider any sequence
of pPoints ((Xu, Yn, fn))nen Such that(x,, yn, 1,) € H = {(x,y,1) € RVt x
[0, +00) : y S ut(x,t)} and(xy,, yn, t,) — (x,y,t) asn — +oo. For everyn,
we havev(x,, v, t;) < 0. Sincev is continuous, by sendingto infinity, we get
v(x, y,t) < 0 which proves thatx, y, ) € H; thusH is closed. This ends the
proof. O

Theorem 8.1. Supposethat (H1)(H4) hold. Letug € C(RY) and v bethe solution
of (2.1)associated with theinitial datavg = d(-, Graphug)). Thenu™ andu™ are
(possibly discontinuous) viscosity solutions of (1.4)with initial data ug. Moreover,
ut and u~ arerespectively the maximal subsolution and the minimal supersolution
of (1.4)with initial data ug.

We refer to Fig. 8.1 for an illustration of this theorem. Let us point out that this
result provides only the existence of a discontinuous viscosity solution to (1.4) for
any continuous initial data. We refer to Section 9 for optimal results of regularity
of u™ andu~. We give a geometrical proof of the theorem using the fact that
characteristic functions of sets which evolve are discontinuous solutions of (2.1).

We first introduce some notation. For any subséet R¥*1 int(A) denotes
the interior ofA in RVN*+1 and 1, is the characteristic function of defined, for
any(x, y) € RVt by 14(x, y) = 1if (x, y) € A and 0 otherwise. For the sake
of simplicity of notation, when the set = A, depends on, we will denote by1l,
the function(x, y, ) > 14, (x, y). We need the following lemma due BarLEs,
SONER & SouGaNiIDpis [10].

Lemma 8.2. Define ug and v asin Theorem 8.1 and consider
Q" ={v(-,1) >0} and Y, =int({v(-,1) = 0}).
Then the functions 1, and 1y, are (discontinuous) viscosity solutions of (2.1).

Proof of Theorem 8.1. We give the proof for*, calling itu for clarity of notation.
The same reasoning holds with easy adaptationa for_et us start by showing
thatu is a subsolution. Remembering thais an upper-semicontinuous function
by Lemma 8.1, we consider a smooth functipx, t) such that: — ¢ achieves
a global maximum of 0 atx,7) € RN x (0, +00). It follows thatu < ¢ and
u(x, ) = ¢(x,1). Setyr(x, y, t) = tanh(y — ¢ (x, 1)).

We claim that(1lg,). — ¢ achieves a global minimum O &k, u(x,7), 7).
By continuity of v, we havev(x, u(x, 1), r) = 0; thus(lg,).(x, u(x,7),f) = 0.
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This implies((1g, )« — ¥) (X, u(x,1),t) = 0. It remains to check tha(lg, ). —
¥)(x, y, 1) = 0forevery(x, y, 1). If (1g,)«(x, y, t) = 0,then(x, y,t) € {v < 0};
thus, fromLemma6.1, we have< u(x, 1) < ¢ (x, y, t). We obtainy—¢ (x, 1) <0
and((1Lg,)« — ¥)(x, y,t) = 0inthis case. Now, iflg, )« (x, y,t) = 1, then the
same inequality holds since tarthl. This proves the claim.

We compute the derivatives gf and get,

oY
- = ~tanhi - %2, D,y = —tanH - D¢, D,y = tanH,

D2y =tant’ - Dy¢ ® Dy —tanki - D24, D2y = tanHf,
DZy = —tant - D, ¢.

By Proposition 8.2(1g, ). is a supersolution of (2.1); writing the viscosity inequal-
ity at the point(x, u(x, 7), f), a calculation leads to

z—‘f ~Tr [b(Dxd))Dfx ] <o,
which shows that is a viscosity subsolution.

We continue by proving that, is a supersolution. Consider a smooth function
¢ such thatt, — ¢ achieves a global minimum of 0 &&,7) € RV x (0, +00).
We claim first thatllg, )* (%, u(x, 7), t) = 1. Otherwise(x, u.(x, 7), t) lies in the
interior of (J,>o I'; x {t}; it means that there exists> 0 such that

v(x,y,t)=0 forall (x, y,1) € B(X, &) x [us(X, 1) —¢&, ux (¥, 1)+ €] x [f —e, t +¢].

By definition ofu, it follows thatu(x, 1) = u. (%, f) + € for everyx € B(x, ) and
t € [t — e, 1+ ¢]. Itleads to a contradiction and proves the claim.

Definingy as above, we observe that the functidg, )* — v achieves a global
maximum point a{(x, u.(x, 1)), 7). Indeed, if(1o,)*(x, y, ) = 0, then(lLg,)* —
¥ < 1If (Mg,)*(x, y, 1) = 1, then(x, y, 1) € {v > 0} = {y = u.(x, 1)}, sinceu,
is lower-semicontinuous. It follows that > ¢ (x, r) and tanliy — ¢ (x,t)) = 0;
thus(llg,)* — ¢ < 1 and we are done in any case. Using the facttfigf)* is a
subsolution of (2.1) by Proposition 8.2, we conclude as above.

It remains to check that the initial condition holds. On the one hand, from
the continuity ofv, we havev(x, u(x,0),0) = 0. It impliesu(x,0) = ug(x)
sincel’g is exactly the graph of the continuous functieg On the other hand,
looking at the proof of the supersolution, we Seeu.(x,1),t) € Q, for every
(x,1) € RN x [0, +00). By continuity of v, v(x, us(x,1),t) = 0. Fort = 0,
it meansu,(x,0) = uo(x). Finally, note that from Theorem 6.1, the graphs of
all subsolutions of (2.1) lie ifv < 0} and in the same way the graphs of all
supersolutions of (2.1) lie ifv = 0}. Thereforey ~ is the minimal subsolution and
ut is the maximal supersolution of (2.1); and the proof of the theorem is complete.
O
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Remark 8.1. If the “no-interior condition” (6.1) holds, then Theorem 6.3 implies
), =u"and@ )* = uT inRY x [0, +00). But even in this case, we cannot
conclude that a continuous viscosity solution exists, since the front may look like
a Heaviside function for instance.

9. Frontswith moreregularity

As mentioned before, the extremal solutiorsandu~ have no regularity in
general. We give below some conditions under which they are smooth. It is the
case, when the front is associated with (1.4) and a locally Lipschitz initiak@ata
as soon as the solutiomsof this equation satisfy local® and gradient bounds.

On one hand, these bounds allow the construction of smooth solutions for any
continuous initial data. On the other hand, using approximation methods, we see
that this regularity holds for the extremal solutions. We start with a more precise

result in the case of the mean-curvature equation.

Theorem 9.1. Let ug € C(RY). Then the extremal solutions u* and u~ of (1.1)
with initial data ug arein C® (RN x (0, +00)) N C(RY x [0, +00)).

We recall that the smooth existence fay € Wé’c"O(RN) is proved inEcker &
HuiskeN [16] (see alsaCHou & KwonG [14]) using a gradient estimate. Here,
following ANGENENT [1], we take advantage of an interior gradient estimate of
Evans & Spruck [18] to prove the result for initial datag which are merely
continuous.

In the general case, we have

Theorem 9.2. Assume that b satisfies assumptions (H1)-(H4) and
b(q) = Allghld (9.1)

for some nonnegative continuous function A in RY. Suppose that for any ug €
Wlé’cm(]R{N ) there exists a smooth solution of (1.4) with initial data uq satisfying a
local gradient bound, namely

I Dulloc,2r 7 = K,

where Qgr 1 = B(0,R) x [0, T] and K is a positive constant which depends
onlyonR, T, |lully &, , @d ||Du0||oo’§(0,R,),with R’ = R'(R,T) > 0. Thenthe
extremal solutions ™ and »~ are smooth.

The above theorem applies to more general quasilinear equations than (1.1) (see
examples at the end of the section) but it requires the initial data to be locally
Lipschitz continuous.

Remark 9.1. Under the assumptions of Theorem 9.1 or 9.2, ifias empty interior
in RN+ for all r > 0 (or equivalently the fronU@O Iy x {t} has empty interior
in RV+1 x [0, T'], see Section 6), then the smoothness of the extremal solutions
together with Theorem 6.2 implies™ = u~ in RY x [0, +00). It follows that
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I, =9Q = 9Q; forallz > 0. In this case, we have in particular uniqueness and
comparison for the discontinuous solutions of (1.4). Moreover, the weak notion of
propagation given by the level-set approach coincides with the classical notion in
differential geometry.

Before turning to the proof of the theorems, we state a lemma concerning the
time regularity of solutions for which the space regularity is already known. We
recall that a functionn : RT — RT is said to be a modulus of continuity if
m(O") :=lim,_ o+ =0andm(s +t) < m(s) +m() foranys,t = 0.

Lemma9.l. LetR >0,0<1 < T,xo € RN andu € C(B(xo, R) x [to, T]) be
a viscosity solution of the equation

9 .
a—”t‘ +G(x,t, Du, D®u) =0 in Qg1 = B(xo, R) x (t0, T), (9.2)

where G € C(B(xg, R) x [to, T1 x RN x Sn) isdegeneraieelliptic. If m denotes
a modulus of continuity of u(-, 7o), i.e. if, for every x, y € B(xo, R),

lu(y, to) — u(x, 10)] < m(ly — x|),

thenthereexistsamodulusof continuity 7, dependingonlyon G, m and [lu |, &, or

such that, for every r € [fo, T] and x € B(xo, R/2),
lu(x,t) —u(x, to)] < m(|t — to]). (9:3)
Moreover, if m(r) = Lr for some L = 0 and if
|G(x,t,p, X)| £ M(1+]X]) on B(xo, R) x [to, T] x B(O,L) x Sy (9.4)

for some constant M > 0, then there exists L = L(L, M, |u|
that m(r) = Lr1/2.

oo,ﬁR,,o,r) > 0such

Of course, the key point in Lemma 9.1 is the fact thadepends only 067, m
and ““”oom_,o,r- As a by-product of this result, it is clear that a loéaP bound
together with a time-uniform space-local modulus of continuity for the solutions
of equations like (9.2) implies a uniform local modulus of continuity in time. In the
statement of Lemma 9.1, for the sake of simplicity of formulation, we do not make
precise the dependence with respecttoexcept in the second part of the result;
this dependence will appear clearly in the proof.

Proof of Theorem 9.1. We divide the proof into two steps.

Sep 1. We construct a smooth solution for any continuous initial datauget
C(RY) and(uf) r-0 be a sequence of uniformly continuous functions converging
to ug, uniformly on every compact subset. Thanks to classical results for viscosity
solutions (see [13] and references therein), we associate witméai:bontinuous
viscosity solution:® of (1.1) with initial datau§. But theu® satisfy theL> local
bound of Theorem 7.1, and, froBvans & Spruck [19], we learn that the® are

in fact smooth and satisfy the interior local gradient bounds proved in [19]. From
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Lemma 9.1 we get then an interior local modulus of continuity fouthgtherefore,
up to an extraction argument, we can suppose that the faaflyz-o converge
locally uniformly inRY x (0, +00) to a functionu € C(RY x (0, +00)) which
is, by a classical stability result, a viscosity solution of (1.1RM x (0 + o).

It remains to check that the initial condition is continuously satisfied. In view
of Lemma 9.1, the:® admit the same modulus of continuity at time= 0 and it
follows thatu is continuous at time = 0 with u(- , 0) = ug. Finally, from [19] we
find thatu € C*@R" x (0, +00)) since it is a continuous solution of (1.1).

Sep2. We showthat ™ is smooth; the proof far~ is the same with straightforward
adaptations. Letg € C(R"). Consider, for any. > 0, the functiomé defined by

Graphug) = {d(-, Graphuo)) = 1},

and the unique uniformly continuous solutian of (1.3) with initial data
d(-, Graphuo)) (we recall that (1.3) is the geometrical equation associated with
(1.1)). By Step 1, we associate with eack 0 a smooth solution” of (1.1) which
satisfies, from Theorem 6.1, the condition that, forat 0,

Graphu’(-, 1)) C {v(-,1) =1} C {v(-, 1) > O}. (9.5)

Now, as in Step 1, the familg*); - o satisfies the interior gradient bound of [19];
thus, using Lemma 9.1 and the same arguments as above, we can assurhe that
converges locally uniformly to a solutionof (1.1) with initial dataug. From (9.5),

we find that: > ut and thus: = u ™. It follows thatx T is continuous and therefore
smooth, thanks again to [19].0

Proof of Theorem 9.2. Since the proof is close to the previous one, we only give a
sketch of it. We use arguments of Step 2 in the proof of Theorem 9.1. The only change
is that, using the ellipticity condition (9.1), we get, in addition to the gradient bound,
local bounds for high order derivatives of thhe(seeLADYZENSKAJA, SOLONNIKOV

& UrAL’cEvA [29]). It follows that, up to an extraction, we can assume that the
family (u;);-0 converges locally uniformly to a smooth functiearwhich is also

a solution of (1.4). We conclude as in the proof of Theorem 9.1,ithatu* is
actually smooth. O

It remains to give the proof of the lemma.

Proof of Lemma 9.1. The main step in the proof consists in showing that, for any
n > 0, we can find positive constants K > 0 large enough, depending only on
n, G, m and||u||oo’§2moj such that, for any € B(xg, R/2),
u(y’ t) - M(.x, tO) g n + C|y - 'x|2 + K(t - fO) fOr every(yv t) € STZR,[Q,T?
(9.6)

and

u(y, ) —u(x,10) = —n — Cly — x|> — K(t — 1) for every(y.1) € Qr o7
(9.7)
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We only prove (9.6), the inequality (9.7) being proved in an analogous way. In what
follows, x is fixed in B(xg, R/2).
First, if we take

8llul

OoqQR.tO.T
R2
then (9.6) is clearly fulfilled o B(xo, R) x [0, T], for everyn, K > 0 and for
everyx € B(xg, R/2). It is worth noticing thatC may be taken independent of

Next, we would like to ensure that (9.6) holds foe ry. To this end, we argue
by contradiction assuming there exigts> 0 such that, for everg’ > 0, there
existsyc € B(xp, R) such that

C

v

, (9.8)

u(yc, to) — u(x, 1) > 1+ Clyc — x|?. (9.9)

2]l oo,
lye — x| < ,/%. (9.10)

Thus|yc — x| — 0 whenC — oo. Coming back to (9.9), we get

It follows that

m(lyc —x|) 2 u(yc, to) — u(x, 0) > 1+ Clyc|?> = 1.

Using (9.10), the inequality:(]yc — x|) = n leads to a contradiction as soon as
we chooseC large enough and this choice depends OnIWO“M”oo’QRJOI and
m. Therefore, by choosing large enough, we ensure that (9.6) is satisfied on the
parabolic boundaryd B(xo, R) x [to, T1) U (B(xo, R) x {to}). Finally, using the
continuity of G, we can takeK large enough in order that the function, r) +—
u(x, 10)+n+Cly—x|°+ K (t —10) := x(y, t) is a (smooth) strict supersolution of
(9.2). Thus, sinca is a viscosity subsolution of (9.2), by using only the definition
of viscosity subsolution, it is clear that max. {u — x} is necessarily achieved
on the parabolic boundary 6% ,, 7. And (9. 6) foIIows

The first part of the lemma follows by observing that all our constants depend
whenn is fixed, onG, m and|u/| Y but not onx € B(xg, R/2).

If we assume that(r) = Lr for some positive constaiit, the condition (9.6)
at timer = 1o reads

u(y, 10) —u(x,10) < Llx — y| < n+ Cly — x|?,

for everyy € B(xo, R). Writing that the discriminant of |y — x|+ L|y — x| + 7
is nonpositive, we find that it holds if
2
cxL
=

Using (9.4),x is a supersolution iK = M (1 + 2C). Introducing these estimates
in (9.6), we finally obtain, foy = x,

2
ux,t) —u(x,0) <n+M <1+ g—) (t —1o)
n
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forall € [r0, T]. An easy optimization with respect toof the right-hand side of
the previous inequality shows that, for al€ [z, T,

u(x,t) —u(x, 19) < L/t — 1o,

for some positive constadt depending on/ andL. This concludes the proof of
the Lemma. 0O

We conclude this section with examples of equations satisfying the assumptions
of Theorem 9.2. The following equations come from the pap€éhnfu & KwonG
[14] (see Section 4.4 for the precise statement of the equations).
(1) The non-geometric mean-curvature equation (4.13) and equation (4.14) are as-
sociated with a front with smooth boundary wheyis locally Lipschitz continuous.
(2) Consider equation (4.15) wi(g) = g(|¢|) continuous ifR". Suppose that

1

C 1
2 (1— r—2> Sgln) < 2 for everyr > 0, (9.11)

and, in addition, thag is aC* function such that

L G —
28+rg = (1+r2)3/27

for everyr = 0. ThenCHou & KwoNG [14] gives the gradient bound and the
conclusion of Theorem 9.2 holds. Note that (9.11) is nothing but (4.16) with a strict
inequality on the right-hand side. This strict inequality ensures that the condition
of ellipticity (9.1) is satisfied.

10. Application to convex solutions

In this section, we are interested in convex solutions of (1.4). We also derive
some properties for the generalized evolution of convex sets.
Our main result is

Theorem 10.1. Assume (H1)~«(H4) and let uo be a convex function in RV .

(i) Supposethatu; € USC RN x [0, +00)) (or up € LSC(RY x [0, +00))) isa
viscosity subsolution (respectively supersolution) of (1.4). If u1(-,0) < ug <
u2(,0) inRY  thenuy < uz inRY x [0, +00).

(i) There exists a unigue continuous viscosity solution « to (1.4) with initial data
uo. Moreover u(-, t) isconvex for all + = 0.

It is worth pointing out that, in the previous theorem, the existence and comparison
properties hold without any restriction on the growth at infinity of the solutions
or the initial data. Moreover, they hold both in the classical and very singular
framework. Therefore, we have a complete answer in this case.

In the particular case of the mean-curvature equation, the solution is in addition
smooth.
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Theorem 10.2. If theinitial dataug € C(R") isconvex, then there exists a unique
continuous solution u of the mean-curvature equation for graphs (1.1), moreover
u € C®MRY x (0, +00)) NCRY x [0, +00)) and u(-, t) isconvex for any r > 0.

Theorem 10.1 and 10.2 strongly justify the geometrical approach to the study
of (1.4): in the case of convex solutions, the existence of solutions follows (rather)
easily from theL.® bound of Theorem 7.1 since it implies also a gradient bound;
the existence proof can be done either using Theorem 8.1 or directly on (1.4) as in
[7]. For the comparison result, we point out that working on (2.1) as we do here,
in particular for the mean-curvature equation, provides better results: in [7], we
obtain a comparison result working directly on (1.4) by using azKawy change
(v — —exp(—u)) but with stronger assumptions érandug, which was assumed
to be coercive.

Below, we will give a proof which is simpler and essentially based on the
preservation of convexity for geometric motions governed by (2.1); more precisely,
we have

Theorem 10.3. Suppose that (H1)~(H4) hold. Let vg € UC(RY) be a convex (or
concave) function and v be the associated solution of (2.1). Then v(-, t) is convex
(respectively concave) for any r = 0.

Proof of Theorem 10.3. This result is a consequence of the one established by
GiGa, Goro, Isan & SaTo in [21] that we extend to the very singular case by using
an approximation argument.

Sep 1. We define, for any > 0 and(p, M) € RV*1 x Sy.1,

9e(1/py)F(p. M) if  py #0,

Fe(p, M) = .
e(p, M) 0 if py =0,

whereF appears in (2.1) angl. is a smooth nonnegative real-valued function with
compact support ifi—2/¢, 2/¢] and such thap, (r) = 1 forr € [—1/¢, 1/¢]. The
F's satisfy assumptions (F1)—(F4) and thus we can apply for edloh results of
GiGA, Goto, Isun & Sato [21] and get, forany” > 0, asolution, € UC(RN*+1x

(0, T)) of

0V,
ot

with initial data vg. Moreover, sinceyg is convex andF, remains linear in the
Hessian, we learn also from [21] that(- , r) is convex for any = 0.

Sep 2. Our aim is now to show that the family, ).~ o is locally bounded. To this
end, we introduce

+ F.(Dvg, D%ve) =0 in RV x (0, T) (10.1)

x(z. 1) =alz]?> + b+ Ct.

Sincevg € UC(RN*) there exist, b € R such thatg < x (-, 0), and sincey,
has at most linear growthy, is greater tham, at infinity for alle > 0.
Moreover, if follows from (H1) thaf is bounded on bounded set and so are the
F¢'suniformlyine. Then, an easy computation of the derivativeg shows that, up
to takingC sufficiently large independent efthe functiony (z, t) = a|z|?+b+Ct
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is a smooth supersolution of (10.1). It follows that< x for all ¢ > 0. Reasoning
in the same way with a subsolution, we find that the fantily)..o is locally
bounded independently of

Sep 3. From the previous step we are able to introduce the “half-relaxed-limits”
andv of the family (v, ),~0. Since(F,) tends toF locally uniformly on(R¥+1 —

D) x Sny+1, we find, from the stability result, that they are respectively sub- and
supersolution of (2.1) with initial dateg. Finally, from the comparison result of
Theorem 4.1, we learn that = v = v and therefore that the familgy,).-o
converges locally uniformly to ase tends to 0. It follows that (-, ¢) is convex for
anyt € [0, T). Since we can repeat the arguments for @ny 0, this completes
the proof. O

We continue with

Lemma 10.1. Let I'g = Graphug). If ug isconvexin RY, then the signed-distance
d(-, Tp) (see(5.3)for a definition) is concave.

Proof of Lemma 10.1. It is sufficient to show that, for any; = (x;, y;) €
RN+ i e {1, 2}, we have

% <z1 + zz) > vo(21) + vo(22) (10.2)
2 2

To this end, we set = (z1+2z2)/2 and denote b, the hyperplane which contains

7/ € Tg such thatvg(z) = £ |z — /| and is orthogonal ta — 7. At this stage, we

have to distinguish many cases depending on the positian, @b relatively to

[o. Since their studies are similar, we provide the proof of (10.2) only in the case

71 € {vo 2 0},z2 € {vp £ 0} andvp(z) = —|z — Z/|. In this case, sinceg is

assumed to be conveR, c {vo < 0}; thus we have

vo(z1) = d(z1, To) = dist(zy, P;), vo(z2) = d(z2, o) = —dist(z2, P.).
(10.3)

But, using the orthogonal projection @7, we see that

/ d(z2, P.) — d(zy, P2)
7= 5

and combining (10.3) and (10.4), we get (10.2)

lz — = —p(2) (10.4)

We are now able to give the proof of the main result.

Proof of Theorem 10.1. We begin with (i). Letug be a convex function oY
andvg = d(-, Graphug)). From Lemma 10.1y is concave. Therefore, applying
Theorem 10.3, the associated solutioof (2.1) is also concave with respect to the
space variable atany time> 0. Assume then by contradiction that= uz(x, 1) <
ui(x,t) = yp for some(x, t) € RN x [0, +-00). It follows from Theorem 6.1 that
v(x, y2,1) 2 0 andv(x, y1,t) < 0. Thus from Lemma 6.1y(x,-,r) = 0 on
[y2, ¥1]. Since it is a concave function, it implies that, -, 1) = 0 on[y;, +00)
which is a contradiction with Lemma 8.1.
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We turn to the proof of (ii). Applying the previous comparison result to the
extremal solutiong™ andu~ we find that they are equal to the same continuous
functionu, such thafv(-, t) = 0} = Graphu(-, t)) for all + = 0, which turns out
to be the unique continuous viscosity solution of (1.4). Sin¢et) is concave,
u(-, 1) is convex for any = 0. This completes the proof of (ii).0O

We conclude this section with some consequences of Theorem 10.3 for the
geometrical evolution of sets in the convex case.

Theorem 10.4. Let Q¢ be any open convex subset of RV with boundary I'p and
let (;7, @, T1),>0 be the generalized evolution of (7, @y, To) in the sense
of Section 5. Then, while ;7 # @, it remains convex and T'; is its boundary. In
particular, I'; has empty interior in RN+,

This result is known in the case of motion by mean curvature of compact convex
sets (se&vaNns & SPrRUCK [18], SONER [32], ILMANEN [24]). Here, the result holds

for possibly noncompact hypersurfaces (like graphs for instance) and for general
motions governed by (2.1). Note that we get immediate properties of regularity of
the front at each time before extinction: in the general case the front is locally a
Lipschitz continuous graph; in the case of the mean-curvature equation, the front
is even a smooth hypersurface (for the regularity issueEsess & Spruck [19]
andIMBERT [25]).

Proof of Theorem 10.4. Let v be the unique solution of (2.1) with initial data
vo = d(-, T'g) associated witl'g via the level-set approach. Le® 0 be such that
Q" # ¢. From Theorem 10.34(-, 1) is concave; thu&;" is convex. To prove that
Q" = I';, we argue by contradiction, assuming there existe I'; andr > 0
such thatB(zo, r) N 2 = @. We havev(zo, 1) = 0 andv(-,¢) < 0 on B(zo, 7).
Sincev(-, t) is concave, it follows thai(- , #) < 0inR¥*1which is a contradiction
with Q7 #@. O
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