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Abstract

In this article, we are interested in the existence and uniqueness of solutions
for quasilinear parabolic equations set in the whole spaceR

N . We consider, in
particular, cases when there is no restriction on the growth or the behavior of these
solutions at infinity. Our model equation is the mean-curvature equation for graphs
for which Ecker and Huisken have shown the existence of smooth solutions for
any locally Lipschitz continuous initial data. We use a geometrical approach which
consists in seeing the evolution of the graph of a solution as a geometric motion
which is then studied by the so-called “level-set approach”. After determining the
right class of quasilinear parabolic PDEs which can be taken into account by this
approach, we show how the uniqueness for the original PDE is related to “fattening
phenomena” in the level-set approach. Existence of solutions is proved using a local
L∞ bound obtained by using in an essential way the level-set approach. Finally
we apply these results to convex initial data and prove existence and comparison
results in full generality, i.e., without restriction on their growth at infinity.

1. Introduction

In a series of works (see [7] for an introductory paper, and [8,6,9]), we are
investigating quasilinear parabolic equations set in the whole spaceR

N and, more
precisely, existence and uniqueness properties for solutions with general growth at
infinity.

This paper is the starting point, and our main motivation comes from a result
of Ecker & Huisken [16] for the so-called mean-curvature equation for graphs

∂u

∂t
−�u+ 〈D2uDu,Du〉

1+ |Du|2 = 0 in R
N × (0,∞), (1.1)
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with the initial data

u(x,0) = u0(x) in R
N, (1.2)

whereu : R
N × [0,∞)→ R is the solution,Du andD2u denote respectively the

gradient and the Hessian matrix ofuwith respect to the space variable,u0 : R
N →

R is a given function and| · | (respectively〈· , ·〉) stands for the classical Euclidean
norm (respectively inner product) inRN .

Ecker and Huisken proved the following very surprising result: for any ini-
tial datau0 ∈ W

1,∞
loc (RN), there exists a solutionu of (1.1), (1.2) inC∞(RN ×

(0,∞))∩C(RN ×[0,∞)). This result was even extended to initial data inC(RN)

byAngenent [1]. The intriguing point is that no assumption is made on the growth
of u0 at infinity and therefore the solutionu can have also an arbitrary behavior at
infinity.

This result brings up a lot of challenging questions: the first one concerns
the uniqueness of the solution they build. In general, the difficulty in obtaining a
uniqueness result for a PDE comes from the fact that a notion of weak solution is
used: this is not at all the case here since the solutions are known to be regular, even
C∞. The real difficulty lies in taking into account any behavior for the solution at
infinity.

A second question is related to the existence result itself: Ecker and Huisken
proved it by using differential geometry and the maximum principle and it would
be interesting to have a purely analytical proof of it. Again the lack of prescribed
behavior of the solutions at infinity creates an unusual difficulty. In particular, to
get a localL∞ bound onu is a priori a key point, but to obtain a localL∞ bound
onDu is also a rather difficult task.

Finally, we may wonder to which type of quasilinear parabolic equations the
result of Ecker and Huisken can be extended. For the reader, this may seem to be a
question to be investigated later but, in fact, in order to provide interesting results
for (1.1), it is necessary to understand the main underlying structure of the equation
which allows such a strange result to hold.

Our answer to this question is the geometrical interpretation of (1.1) by motion
by mean curvature for graphs. Motions of hypersurfaces with general curvature-
dependent velocities were studied recently by the so-called “level-set approach,”
a weak notion for the evolution which allows us to define these motions past the
development of singularities. The level-set approach was first introduced byOsher
& Sethian [31] for numerical computations and then studied from a theoretical
point of view byEvans & Spruck [18] in the case of motion by mean curvature
and byChen, Giga & Goto [13] for more general normal velocities. Later, more
singular cases were investigated byIshii [27], Ishii & Souganidis [28] and prop-
erties of the level-set approach were obtained byBarles, Soner & Souganidis
[10].

In the case of equation (1.1), as for any suitable quasilinear parabolic equations,
the level-set approach arises when we consider the motion in dimensionN + 1. To
do so, we have to introduce the functionv : R

N+1 × [0,+∞)→ R defined by

v(x, y, t) = y − u(x, t).
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For (1.1), the functionv is a solution of

∂v

∂t
−�v + 〈D2vDv,Dv〉

|Dv|2 = 0 in R
N+1 × (0,∞), (1.3)

which is the equation in the level-set approach corresponding to motion by mean
curvature.

In order to give a suitable sense of solution for this singular equation and related
ones in non-divergence form, we use the notion of viscosity solutions: we refer the
reader to the User’s guide ofCrandall, Ishii&Lions [15] or the books ofFleming
& Soner [20], Bardi & Capuzzo Dolcetta [2], Barles [5] or Bardi et al. [3]
for an introduction and/or a detailed presentation of this notion of solutions.

The most classical result concerning (1.3) is the well-posedness in the space of
bounded uniformly continuous functions (BUC in short), more precisely: for any
v0 ∈ BUC(RN+1), there exists a unique solutionv of (1.3) inBUC(RN+1×[0, T ])
for all T > 0 such that

w(x, y,0) = v0(x, y) in R
N+1.

At this point, it is worth remarking that boundedness is not an issue: indeed, one
of the key property of (1.3) is to be invariant by every nondecreasing change of
functions: if v is a solution of (1.3), then tanh(v), or more generally�(v) with
� ′ > 0, is a solution as well.

Therefore it can be thought that the study of (1.1), (1.2) just reduces to the study
of (1.3) through the changesv(x, y, t) = tanh(y−u(x, t))andv0(x, y) = tanh(y−
u0(x)) and that all results follow easily from an extension of the above-mentioned
well-posedness result to spaces of bounded continuous functions (denoted byCb),
v andv0 being clearly inCb but not inBUC in general. In particular, the uniqueness
of a solutionu of (1.1), (1.2) is an immediate consequence of a uniqueness result
for solutions of (1.3) inCb.

Unfortunately, we are unable to prove that the problem is well posed inCb and
even the extensions to the well-posedness inBUC are rather weak. The concrete
consequences of this geometrical approach are, on the one hand, a localL∞ bound
for a large class of quasilinear parabolic PDEs whose proof is rather simple and
natural and, on the other hand, a “generic” uniqueness result for the solutions of
(1.1), (1.2) as well as for more general equations.

It is worth pointing out that the possible non-uniqueness feature for (1.1),(1.2)
is related to the so-called “fattening phenomena” or “nonempty interior difficulty”
for (1.3); despite the fact that it seems obvious that no interior can develop because,
by the maximum principle, we have formally

∂v

∂y
(x, y,0) > 0 in R

N+1 �⇒ ∂v

∂y
(x, y, t) > 0 in R

N+1 × (0,+∞),

but we are unable to prove this property even in a weaker sense.
Now, we turn to a more precise description of the contents of the present paper.

It is devoted to the study of the geometrical approach, explained above in the special
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case of the mean-curvature equation, for more general PDEs like

∂u

∂t
− Tr
[
b(Du)D2u

] = 0 in R
N × (0,∞),

u(x,0) = u0(x) in R
N,

(1.4)

whereb is a continuous function fromRN into the space of the nonnegative sym-
metric matricesS+

N and the initial datau0 is any continuous function inRN . The
first question we address is: when is (1.4) associated with a geometric PDE in
dimensionN + 1 to which the level-set approach applies?

In Section 2, we derive formally a geometrical equation from (1.4) (see (2.1)).
We then study this equation, distinguishing two cases: the “classical” one, to which
the classical level-set approach applies, and the “very singular” one, for which the
more sophisticated arguments ofIshii [27] are necessary. For the reader’s conve-
nience, we show how the classical results apply in the “classical” case (Section 3).
In the “very singular case” (Section 4), our comparison result enters the framework
of [27]. Nevertheless, the particular singular set we deal with allows a more elemen-
tary proof. It has, in particular, the advantage of using explicit test-functions and
therefore allows the proof to be extended to the case when the functionb in (1.4)
depends on(x, t,Du). Here, to avoid to many technicalities, we restrict ourselves
to b depending only onDu and address this more general case in the forthcoming
paper [9].

Then we study the consequences of this geometrical approach for (1.4). At first,
we prove in Section 5 that the level-set approach works. A localL∞ bound for
the solutions of (1.4) follows rather easily (see Section 7) and the existence of
discontinuous viscosity solutions of (1.4) is an almost immediate consequence of it
(see Theorem 8.1 in Section 8). The existence of smooth solutions requires a local
gradient bound; we use the one ofEvans & Spruck [19] for (1.1) and the ones of
Chou & Kwong [14] for the more general equation (1.4) (see Section 9).

Uniqueness is an even more difficult issue and we were able to obtain it only
in particular cases: of course the first “generic” uniqueness result we provide in
Section 6 is not satisfactory and most of the results we obtain in this direction
are proved by working directly on (1.4). However a striking application of the
geometrical approach to uniqueness (and also existence) is the case of convex initial
data (Section 10): under suitable assumptions onb (the same as those required for
the geometrical approach to hold), we prove that there exists a unique solutionu of
(1.4), which is convex in the space variable at each time, and this for any convex
initial datau0 without any restriction on its growth at infinity. The proof relies
strongly on the convexity-preserving property ofGiga, Goto, Ishii & Sato [21],
which we extend to our more singular case. Compared to the result we previously
obtained in [7] by working directly on (1.1), we no longer assumeu0 to be coercive
and we extend the result to equations like (1.4).

For completeness, we conclude this introduction by describing the results we
obtain in the next two parts of this study. Two types of uniqueness results for the
non-convex case are proved: the first ones [8] concern the caseN = 1. We show,
not only for (1.1) but for a larger class of equations, a uniqueness result without
any growth assumptions on the solutions. Unfortunately, in general, this result is
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valid only in the class of classical solutions; however, in the case of (1.1), using
the argument of Section 9 and in particular Remark 9.1, this uniqueness result for
smooth solutions implies a comparison result between possibly discontinuous sub-
and supersolutions.

The proof relies upon examining the PDE obtained by integrating inx. For
(1.1), this PDE reads

wt − arctan(wxx) = 0 in R× (0,+∞), (1.5)

and the key point is that (1.5) enjoys uniqueness properties inC(R), essentially
because it is possible to use a “friendly giants” method, whose consequence is a
general uniqueness property for (1.1). Of course, this method can be extended to
far more general equations. We learned recently that related results were obtained
independently and by rather different methods byChou & Kwong [14].

In the second one [6], we use classical viscosity solutions arguments to prove
the uniqueness for solutions of (1.4) and even more general equations: we obtain a
comparison result for sub- and supersolutions with polynomial growth but, unfor-
tunately, with a rather restrictive assumption on the initial data which reads, in the
locally Lipschitz continuous case,

|Du0(x)| � C(1+ |x|ν) in R
N

for some constantC > 0 and 0� ν < (1+√
5)/2. A strange feature of this result

is that it can be obtained either by working directly on (1.4) or on the associated
geometrical PDE and both proofs lead to the same condition onu0.As we mentioned
it above, in a forthcoming paper, we investigate more general equations, namely

∂u

∂t
− Tr
[
b(x, t,Du)D2u

]
+H(x, t,Du) = 0 in R

N × (0,∞).

After we obtained most of the results described above, we learned that repre-
sentation formulas for the mean-curvature equation (1.3) (and even more general
geometrical equations) have been established independently bySoner & Touzi
[33,34] and byBuckdahn, Cardaliaguet & Quincampoix [12]. We tried to
prove uniqueness for (1.1) by showing that the “non-fattening phenomena” cannot
occur for (1.3) in the case of graphs, but we failed. It is an intriguing question
whether it is possible to prove such properties by using these formulas.

2. Derivation of a geometrical PDE

As explained in the introduction for the special case of equation (1.1), we
associate a geometrical equation with the quasilinear equation (1.4) which allows
us to use the level-set approach. This method has already been used byEvans [17]
for the heat equation and byGiga & Sato [22] in the case of Hamilton-Jacobi
equations.
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Whenu is a solution of (1.4) we consider, for everyt � 0, Graph(u(· , t)) as
an hypersurface inRN+1 and, to represent it, we follow the ideas of the level set
approach, taking any functionv : R

N × R× [0,+∞)→ R such that

v(x, u(x, t), t) = 0 for every(x, t) ∈ R
N× (0,+∞).

Note that, for allt � 0, Graph(u(· , t)) ⊂ �t , where�t is the 0-level set ofv(· , · , t).
Differentiating formally the previous inequality, we obtain

Dyv
∂u

∂t
+ ∂v

∂t
= 0,

Dxv +Dyv Du = 0,

D2
xxv + 2D2

xyv ⊗Du+D2
yyvDu⊗Du+DyvD

2u = 0,

and it follows thatv has to solve, at least formally

∂v

∂t
− Tr

[
b

(
−Dxv

Dyv

)(
D2
xxv − 2D2

xyv ⊗
Dxv

Dyv
+D2

yyv
Dxv

Dyv
⊗ Dxv

Dyv

)]
= 0

(2.1)

in R
N+1 × (0,+∞).
This new equation has strong discontinuities when the gradient of the solution,

Dv = (Dxv,Dyv), lies in the subset

D = {p = (p1, · · · , pN+1) ∈ R
N+1 : pN+1 = 0}, (2.2)

but (2.1) satisfies the following first properties which is a motivation to study (1.4)
via the level-set approach.

Lemma 2.1. We have

(i) Equation (2.1) is degenerate parabolic outside D.
(ii) If u ∈ C(RN × [0,+∞)) is a viscosity subsolution (a supersolution) of (1.4)

with initial datau0 ∈ C(RN), then the function v(x, y, t) = y−u(x, t) defined
for (x, y, t) ∈ R

N × R × [0,+∞) is a viscosity supersolution (respectively
subsolution) of (2.1)with initial data v0(x, y) = y − u0(x).

(iii) Equation (2.1) is invariant under every monotone change of function v →
� ◦ v, where � ∈ C(R) is a monotone function.

We skip the proofs of these three properties since they do not present any difficulty.
Let us mention that (ii) and (iii) are obvious in the smooth case. Property (ii) is
straightforward using the definition of viscosity solutions for the singular equation
(2.1) we recall in Section 4.1. For (iii), we even prove a discontinuous version
of it in Lemma 4.1. Finally it is worth pointing out that we choose to work with
v(x, y, t) = y − u(x, t) instead ofu(x, t)− y as usual.

Remark 2.1. Concerning (ii), we wonder whether some kind of converse property
is true: ifv is a solution of (2.1) with initial datav0(x, y) = y − u0(x), does there
exist a solutionu of (1.4) such thatv(x, y, t) = y − u(x, t)? The answer is not
clear and it is the main issue of our approach. We refer to Section 6 for related
discussions and results.
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We conclude this section by introducing some notation which is used throughout
the paper. Every pointz of R

N+1 is writtenz = (x, y) with x ∈ R
N andy ∈ R.

In a natural way, every vectorp which has the meaning of a gradient is written
p = (px, py) with px ∈ R

N andpy = pN+1 ∈ R. We decompose every matrix
X ∈ SN+1 into blocks in the following way

X =

 Xxx Xxy

XTxy Xyy


 ,

whereXxx ∈ SN,Xxy ∈ R
N ,XT

xy is the transpose ofXxy (i.e., the row vector whose
coordinates are those ofXxy) andXyy ∈ R. With this notation, the nonlinearity
involved in (2.1) can be written, for everyp ∈ R

N+1 −D andX ∈ SN+1,

F(p,X) = −Tr
[
b(q)
(
Xxx + 2Xxy ⊗ q +Xyyq ⊗ q

)] = −Tr[b̃(p)X],(2.3)

whereq = −px/py and

b̃(p) =




b(q) b(q)q

(b(q)q)T 〈b(q)q, q〉


 .

3. The geometrical equation: the classical framework

A priori the nonlinearityF is discontinuous onD (see (2.2)). In this section,
we provide assumptions onb ensuring that we are in the “classical framework”,
which means that the (classical) level-set approach applies readily to (2.1) (see [18,
13,21,10]). In this classical framework,F has to be continuous, except atp = 0.
The typical example is the mean-curvature equation (see Example 3.1).

More precisely, we start by recalling the assumptions as they appear in [21]. In
what follows,‖ · ‖ is any norm onSN andSN−1 = {ξ ∈ R

N : |ξ | = 1} is the unit
sphere ofRN .

Those assumptions are:

(F1) F : (RN+1 − {0})× SN+1 → R is continuous;
(F2) F(p,X + Y ) � F(p,X) for all p ∈ R

N+1,X, Y ∈ SN+1, Y � 0;
(F3) −∞ < F∗(0,0) = F ∗(0,0) < +∞whereF∗ andF ∗ are the semicontinuous

envelopes ofF defined byF∗(p,X) = lim inf (ρ,Y )→(p,X){F(ρ, Y ) : ρ �= 0}
andF ∗ = −(−F)∗;

(F4) for everyR > 0, sup{|F(p,X)| : |p| � R, ‖X‖ � R} < +∞.

We have, the following classical result.

Theorem 3.1. Under assumptions (F1)–(F4), for any initial datav0 ∈ UC(RN+1),
there exists a unique solution v of (2.1)which is in UC(RN+1 × [0, T )) for every
T > 0.
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Notice that, ifF is continuous, then (F1)–(F4) reduce to (F2) only.
We state now the assumptions onb which permit us to extend theF given by

(2.3) by continuity in(RN+1 −{0})×SN+1 in order to ensure that (F1)–(F4) hold.

(H1) There is a positive constantK1 such that‖b(q)‖ � K1 for all q ∈ R
N .

(H2) There is a positive constantK2 such that|b(q)q| � K2 for everyq ∈ R
N .

(H3) There is a positive constantK3 such that|〈b(q)q, q〉| � K3 for everyq ∈ R
N .

(H4) For everyq ∈ SN−1, limλ→+∞ b(λq) and lim
λ→−∞ b(λq) exist and are equal.

Moreoverb∞(q) := limλ→±∞ b(λq) is continuous onSN−1.
(H5) For everyq ∈ SN−1, limλ→+∞ λb(λq)q and limλ→−∞ λb(λq)q exist and

are equal. Moreoverζ∞(q) := limλ→±∞ λb(λq)q is continuous onSN−1.
(H6) For everyq ∈ SN−1, limλ→+∞ λ2〈b(λq)q, q〉 and limλ→−∞ λ2〈b(λq)q, q〉

exist and are equal. Moreover the functionα∞(q) := limλ→±∞ λ2〈b(λq)q, q〉
is continuous onSN−1.

Proposition 3.1. Let F be defined by (2.3) with b ∈ C(RN ;S+
N ). Then assump-

tions (H1)–(H6) are equivalent to assumptions (F1)–(F4). It follows that, under
assumptions (H1)–(H6), Theorem 3.1 hold.

Proof of Proposition 3.1. We use the notation of Section 2. We start by assuming
(H1)–(H6). For every((px,0),X) ∈ (D − {0})× SN+1, we extendF by setting

F((px,0),X)

= −Tr

[
b∞
(
px

|px |
)
Xxx

]
+ 2〈ζ∞

(
px

|px |
)
, Xxy〉 +Xyyα∞

(
px

|px |
)
.

From the assumed continuity ofb∞, ζ∞ andα∞ onSN−1, the extended Hamiltonian
F is clearly continuous inRN+1 − {0}; thus (F1) holds. Assumption (F2) is an
immediate consequence of Lemma 2.1 (i). Finally, from the boundedness conditions
(H1), (H2) and (H3), it is obvious thatF∗(0,0) = F ∗(0,0) = 0 and|F(p,X)| �
K1R + 2K2R +K3R for |p|, ‖X‖ � R. It shows that (F3) and (F4) hold.

Conversely, suppose that (F1)–(F4) hold. Assumption (F2) implies easily that
b(ξ) is positive for allξ ∈ R

N . Let ξ ∈ SN−1; for anyλ �= 0, we have

b̃(q,1/λ) =
(

b(λq) λb(λq)q

(λb(λ)q)T λ2〈b(λq)q, q〉

)
. (3.1)

From (F4), we know that̃b(q,1/λ) is bounded for everyq ∈ SN−1 andλ � 1. It
follows that‖b(ξ)‖, |b(ξ)ξ | and|〈b(ξ)ξ, ξ〉| are bounded for everyξ ∈ {λq : λ �=
0, q ∈ SN−1} = R

N − B(0,1). Since these quantities are obviously bounded in
B(0,1), we get (H1)–(H3). From (F1), we know thatb̃ is continuous inRN+1−{0}.
On the one hand, it follows easily thatb is continuous inRN . On the other hand,
sendingλ to±∞ in (3.1), we see thatb∞, ζ∞ andα∞ are well defined:

lim
λ→±∞ b̃(q,1/λ) = b̃(q,0) =

(
b∞(q) ζ∞(q)

(ζ∞(q))T α∞(q)〉

)
. (3.2)
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Invoking again the continuity of̃b, (3.2) implies thatb∞, ζ∞ andα∞ are continuous
onSN−1; thus (H4)–(H6) hold. This ends the proof.� 

Proposition 3.1 applies of course in the case of the mean-curvature equation.
The computations are developed in the following example.

Example 3.1. Mean curvature equation (1.1).
In this case,

b(q) = I − q ⊗ q

1+ |q|2 for everyq ∈ R
N. (3.3)

Easy computations show that

F(p,X) = −Tr

[(
I − p ⊗ p

|p|2
)
X

]
for every(p,X) ∈ (RN+1 − {0})× SN+1

and then, (2.1) associated with (3.3) is the classical geometric mean-curvature
equation.

The checking of (H1)–(H6) consists of straightforward computations.We obtain
b∞(q) = I − q ⊗ q, ζ∞(q) = 0 andα∞(q) = 1 for everyq ∈ SN−1.

4. The geometrical equation: the very singular case

In this section, we study the case when the discontinuities ofF onD cannot be
reduced to a discontinuity atp = 0. This question was addressed by many authors:
Goto [23], Ishii & Souganidis [28], Ishii [27] orOhnuma & Sato [30].

Ishii [27] deals with the worst set of singularities. Our approach is strongly
inspired by his work: Ishii extends the notion of viscosity by restricting the class
of test-functions. His result applies but we provide a simpler proof which relies on
the special form of our set of singularities.

We refer to the end of the section for examples of PDEs which are covered by
our framework but which do not satisfy the assumptions of Section 3.

4.1. Definitions and first properties

We recall the definition of viscosity solutions for very singular equations as it
appears inIshii [27].

In what follows, the set of the upper-semicontinuous (or lower-semicontinuous)
functions is denoted byUSC (respectivelyLSC). For any locally bounded function
v, v∗ andv∗ are respectively the upper- and lower-semicontinuous envelopes ofv

andP2,+(v∗) andP2,−(v∗) are its parabolic semijets (see [15] for a definition).
We define semicontinuous envelopes forF , which areadapted to the set of

discontinuityD, by, for every(p,X) ∈ R
N+1 × SN+1,

F ∗(p,X) = lim sup
(ρ,Y )→(p,X)

{F(ρ, Y ) : (ρ, Y ) ∈ (RN+1 −D)× SN+1},
F∗(p,X) = lim inf

(ρ,Y )→(p,X)
{F(ρ, Y ) : (ρ, Y ) ∈ (RN+1 −D)× SN+1}.
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Clearly,F ∗ andF∗ inherit the same properties asF : they are still degenerate elliptic
and geometric.

Definition 1. A locally bounded functionv : R
N+1× (0,+∞) !→ R is said to be

a viscosity subsolution (or supersolution) of (2.1) if and only if for any(x, t) ∈
R
N+1 × (0,+∞),

a + F∗(p,X) � 0 for all (a, p,X) ∈ P2,+(v∗)(x, t)

(respectively

a + F ∗(p,X) � 0 for all (a, p,X) ∈ P2,−(v∗)(x, t) ).

A discontinuous functionv is a viscosity solution of (2.1) provided it is both a sub-
and a supersolution.

With this definition, all the basic properties of classical viscosity solutions extend
to this case. In particular, the classical stability result for viscosity solutions holds.
The proof is the same as those in the classical references given in the introduction.

We continue with theinvariance lemma which is a characteristic of geometric
equations (cf. Section 2).

Lemma 4.1. If v ∈ USC(RN+1× [0,+∞)) (or LSC(RN+1× [0,+∞)) is a vis-
cosity subsolution (respectively supersolution) of (2.1), then, for any nondecreasing
function� ∈ USC(R) (respectively� ∈ LSC(R)) the function� ◦v is a viscosity
subsolution (respectively supersolution) of the same equation.

Proof of Lemma 4.1. We will prove the assertion in the case of a subsolution; the
proof for supersolutions is analogous. We proceed by approximation of�.

We construct a non-increasing family(�ε)ε>0 of smooth strictly increasing
functions such that

inf
ε>0

�ε = �.

Let φ be aC2 function and(x0, t0) be a local maximum of�ε(v) − φ. Without
loss of generality, we can suppose that(�ε(v)−φ)(x0, t0) = 0. It follows that, for
everyx ∈ R

N+1 andt ∈ [0,+∞),

�ε(v)(x, t) � φ(x, t)⇐⇒ v(x, t) � /ε ◦ φ(x, t),
where we set/ε = (�ε)

−1. Thus(x0, t0) is a local maximum ofv − /ε ◦ φ and
sincev is a subsolution of (2.1), we get

/ε
′ ∂φ
∂t
(x0, t0)+ F∗

(
/ε

′Dφ(x0, t0),/ε
′D2φ(x0, t0)+/ε

′′Dφ ⊗Dφ
)

� 0.

Using the fact thatF∗ is geometric and dividing the last inequality by/ε
′ > 0, we

get

∂φ

∂t
(x0, t0)+ F∗

(
Dφ(x0, t0),D

2φ(x0, t0)
)

� 0
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which proves that�ε ◦ v is a subsolution of (2.1). From classical results about
viscosity solutions, we know that

lim sup∗
ε→0

�ε(v) = inf
ε>0

�ε ◦ v = � ◦ v

is a subsolution of (2.1), which is the desired result.� 

4.2. Comparison result

We turn now to a comparison principle for (2.1).

Theorem 4.1. Suppose that (H1)–(H4) hold and let v0 ∈ UC(RN+1). If v1 ∈
USC(RN+1 × [0,+∞)) or (v2 ∈ LSC(RN+1 × [0,+∞))) is a subsolution
(respectively a supersolution) of (2.1), and if v1(· ,0) � v0 � v2(· ,0) in R

N+1,
then v1 � v2 in R

N+1 × [0,+∞).

Remark 4.1. Note that “bounded” or “unbounded” solutions is not the point in this
theorem. Since the equation is geometric, up to making a change of variablev !→
tanh(v) together with Lemma 4.1, we can suppose that the solutions are bounded.
Another remark is that we are able to compare bounded continuous solutions with
bounded uniformly continuous solutions. Of course, it gives uniqueness only in
UC(RN+1 × [0,+∞)).

The difficulty in proving such a result comes obviously from the unusual set of
discontinuitiesD. We begin with some arguments giving an idea of the proof.

Setting

S(D) =
{(

Xxx 0

0 0

)
: Xxx ∈ SN

}
, (4.1)

we have

Lemma 4.2. Assume (H1)–(H4). Then, for allp ∈ D − {0} andX ∈ S(D),
F ∗(p,X) = F∗(p,X). MoreoverF ∗(0,0) = 0 = F∗(0,0).

This lemma is proved at the end of the section. It suggests that we may use in the
proof of the theorem test-functionsϕ such thatD2ϕ ∈ S(D)whenDϕ ∈ D. Doing
things this way, we do not see the discontinuities ofF in the proof.

Prof of Theorem 4.1. Without loss of generality, we can assume thatv1 andv2
are bounded. We recall that we writez for a pointz = (x, y) ∈ R

N × R and by
|z| we mean(|x|2 + y2)1/2. We argue by contradiction, assuming that there exists
(z0, t0) ∈ R

N+1 × [0,+∞) such that(v1 − v2)(z0, t0) > 0. We introduce the
function

φ(z1, z2) = |x1 − x2|4
ε4 + |y1 − y2|4

ε4 = ϕ(z1 − z2)
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which is chosen in order to ensure thatD2ϕ(Z) ∈ S(D) whenDϕ(Z) ∈ D (for
the definitions ofD andS(D), see (2.2) and (4.1)). We then set

Mε,α,η = sup
(RN+1)2×[0,+∞)

{
v1(z1, t)−v2(z2, t)−φ(z1, z2)−α(|z1|2+|z2|2)−ηt

}
.

At first, it is clear thatMε,α,η > 0 for α, η sufficiently small sinceφ(z0, z0) =
0. MoreoverMε,α,η is achieved at some(z̄1, z̄2, t̄) by the boundedness and the
semicontinuous properties ofv1 andv2. Actually z̄1 andz̄2 depend onα, ε, η, but
we omit this dependence in the notation for simplicity.

Whent̄ = 0, we have

0 < Mε,α,η � v0(z̄1)− v0(z̄2)− |x̄1 − x̄2|4
ε4 − |ȳ1 − ȳ2|4

ε4 − α(|z̄1|2 + |z̄2|2)
which leads to a contradiction using the uniform continuity ofv0. Thus, there cannot
exist a subsequence of parameters(ε, α) going to(0,0) such that̄t = 0. Therefore,
we can suppose thatt̄ > 0 for ε andα sufficiently small.

From the fundamental result of the User’s guide to viscosity solutions [15,
Theorem 8.3], for everyρ > 0, we geta1, a2 ∈ R andX, Y ∈ SN+1 such that

(a1,Dϕ(z̄1 − z̄2)+ 2αz̄1, X + 2αI) ∈ P̄2,+(v1)(z̄1, t̄),

(a2,Dϕ(z̄1 − z̄2)− 2αz̄2, Y − 2αI) ∈ P̄2,−(v2)(z̄2, t̄)

and

−
(

1

ρ
+ ‖A‖

)(
I 0
0 I

)
�
(
X 0
0 −Y

)
�
(

A+ 2ρA2 −(A+ 2ρA2)

−(A+ 2ρA2) A+ 2ρA2

)
(4.2)

for somea1− a2 = η andA = D2ϕ(z̄1− z̄2). Writing thatv1 is a subsolution and
v2 a supersolution of (2.1), we have

η + F∗(Dϕ(z̄1 − z̄2)+ 2αz̄1, X + 2αI)

− F ∗(Dϕ(z̄1 − z̄2)− 2αz̄2, Y − 2αI) � 0. (4.3)

We compute, for everyZ = (Zx, Zy) ∈ R
N × R,

Dϕ(Z) = 4

ε4 (|Zx |2Zx,Z3
y) and D2ϕ(Z) = 4

ε4

(
2Zx ⊗ Zx + |Zx |2I 0

0 3Z2
y

)
.

SinceMε,α,η > 0, we get

φ(z̄1, z̄2, t̄)+ α(|z̄1|2 + |z̄2|2) � ‖v1‖∞ + ‖v2‖∞
(recall thatv1 andv2 are assumed to be bounded). It follows that

lim
α→0+

α|z̄1|, lim
α→0+

α|z̄2| = 0, (4.4)

|z̄1 − z̄2| is bounded asα goes to 0. (4.5)
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From (4.5) and (4.2), we find thatX andY are bounded whenα goes to 0. Therefore,
using (4.4), we can extract subsequences such thatz̄1 − z̄2 → Z̄ and

(Dϕ(z̄1 − z̄2)+ 2αz̄1, X + 2αI) −→ (Dϕ(Z̄), X̄) ,
(Dϕ(z̄1 − z̄2)− 2αz̄2, Y − 2αI) −→ (Dϕ(Z̄), Ȳ ) ,

whenα goes to 0. Note that̄X, Ȳ satisfy also (4.2) withA = D2ϕ(Z̄). From (4.3),
it follows that

η + F∗(Dϕ(Z̄), X̄)− F ∗(Dϕ(Z̄), Ȳ ) � 0. (4.6)

Now, if Dϕ(Z̄) /∈ D, then we are done since (4.2) implies thatX̄ � Ȳ and since in
this caseF ∗ = F∗ = F is degenerate elliptic.

But, whenDϕ(Z̄) ∈ D, we need more information aboutX̄, Ȳ in order to get
the contradiction. At first,Dϕ(Z̄) ∈ D impliesZ̄y = 0; thus

D2ϕ(Z̄) =
(

2Z̄x ⊗ Z̄x + |Z̄x |2I 0
0 0

)
∈ S(D). (4.7)

At this stage, we would like to apply Lemma 4.2 but we need first to transfer to
X̄, Ȳ the appropriate property ofD2ϕ(Z̄), namelyD2ϕ(Z̄) ∈ S(D). To this end,
we state

Lemma 4.3. If D2ϕ(Z̄) ∈ S(D), then there exist X′, Y ′ ∈ S(D) such that

X̄ � X′ � Y ′ � Ȳ .

Moreover, X′ = Y ′ = 0 when Dϕ(Z̄) = 0.

We postpone the proof and complete that of Theorem 4.1. Taking advantage of the
ellipticity of F ∗ andF∗ together with Lemma 4.2, we get from (4.6)

η + F ∗(Dϕ(Z̄),X′)− F ∗(Dϕ(Z̄), Y ′) � 0.

SinceX′ � Y ′, the ellipticity ofF ∗ leads to a contradiction. It achieves the proof
of the theorem. � 

We turn to the proof of the lemmas.

Proof of Lemma 4.2. Let us consider((px,0),X) ∈ D × S(D). It is sufficient to
see thatF(ρ,X + Y ) has a limit when(ρ, Y )→ ((px,0),0), (ρ, Y ) ∈ (RN+1 −
D)× SN+1. SinceX ∈ S(D), we have

F(ρ,X + Y ) = F(ρ,X)+ F(ρ, Y ) = −Tr

[
b

(
−ρx
ρy

)
Xxx

]

− Tr

[
b

(
−ρx
ρy

)(
Yxx − 2Yxy ⊗ ρx

ρy
+ Yyy

ρx

ρy
⊗ ρx

ρy

)]
.
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At first, from (H1), (H2) and (H3), when‖Y‖ � ε, we obtain∣∣∣∣T r
[
b

(
−ρx
ρy

)(
Yxx − 2Yxy ⊗ ρx

ρy
+ Yyy

ρx

ρy
⊗ ρx

ρy

)]∣∣∣∣ � O(ε) →
ε→0

0. (4.8)

If px = 0, thenp = 0 and (4.8) implies thatF ∗(0,0) = 0 = F∗(0,0). If p ∈
D − {0}, thenpx �= 0 and from (H4), we get

lim
ρ→(px,0)

Tr

[
b

(
−ρx
ρy

)
Xxx

]
= Tr

[
b∞
(
px

|px |
)
Xxx

]
.

It achieves the proof of the lemma.� 

Proof of Lemma 4.3. We setA = D2ϕ(Z̄), B = A + 2ρA2 (see (4.2)) and
Bδ = B + δI for δ > 0. Note thatB ∈ S(D) andB � 0 as we can see with the
help of Formula (4.7). Moreover, we find from (4.2) that

〈X̄p, p〉 − 〈Ȳ q, q〉 � 〈B(p − q), p − q〉 < 〈Bδ(p − q), p − q〉. (4.9)

It shows in particular that̄X < Bδ (and−Ȳ < Bδ); thus(X̄ − Bδ) (respectively
(Ȳ + Bδ)) is invertible. We then obtainX′ using a sup-convolution. We set, for
everyp, r ∈ R

N+1 andk > 1,

Fr(p) = 〈X̄p, p〉 − 〈kBδ(p − r), p − r〉 (4.10)

and consider supp∈RN Fr(p) which is well defined. For everyh ∈ R
N ,

〈DFr(p), h〉 = 2〈X̄p, h〉 − 2〈kBδ(p − r), h〉
which means that the supremum is achieved for

p = (kBδ − X̄)−1kBδr

(note that(kBδ − X̄) is invertible sinceX̄ < Bδ < kBδ). Next, an explicit but
tedious computation yields a matrixX′ ∈ SN+1 such that

sup
p∈RN+1

Fr(p) = 〈X′r, r〉.

Taking successively the particular valuep = r andp = 0 in (4.10), we getX′ � X̄

andX′ � −kBδ. Similarly, we can constructY ′ by setting, fork > 1,

inf
p∈RN+1

{〈Ȳ p, p〉 + 〈kBδ(p − s), p − s〉} = 〈Y ′s, s〉.

We obtain a matrixY ′ satisfyingY ′ � Ȳ andY ′ � kBδ. From (4.9), we get

〈X′r, r〉 − 〈Y ′s, s〉 � sup
p,q∈RN+1

{〈Bδ(p − q), p − q〉

− 〈kBδ(p − r), p − r〉 − 〈kBδ(q − s), q − s〉}
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for anyr, s ∈ R
N+1. An explicit calculation of this supremum yields

〈X′r, r〉 − 〈Y ′s, s〉 � 〈Bδ(r − s), r − s〉.
By takingr = s, we obtain〈X′r, r〉 − 〈Y ′r, r〉 � 0 for everyr ∈ R

N+1. It follows
that−kBδ � X′ � Y ′ � kBδ.Now, lettingδ go to 0, up to extracting a subsequence,
we get two matrices, still denoted byX′, Y ′, such that

−kB � X′ � Y ′ � kB. (4.11)

Recalling thatB ∈ S(D), we find first thatX′
yy = Y ′yy = 0. Then, from (4.11), for

anyr ∈ R
N+1, we have

〈X′r, r〉 = 〈X′
xxrx, rx〉 + 2〈X′

xy, rx〉ry � k〈Br, r〉 � K|rx |2

for some positive constantK. Takingtrx instead ofrx for t ∈ R, we get

t2〈X′
xxrx, rx〉 + 2t〈X′

xy, rx〉ry � Kt2|rx |2

which provides〈Xxy, rx〉 = 0 dividing byt and lettingt go to 0+ or 0−. Since this
holds for anyrx ∈ R

N we are done. The same arguments hold forY ′. Finally, if
Dϕ(Z̄) = 0, thenZ̄x = 0, Z̄y = 0; it impliesA = B = 0. From (4.11), we get
X′ = Y ′ = 0, which completes the proof of the lemma.� 

4.3. Existence of solutions

Our result is the

Theorem 4.2. Assume (H1)–(H4). For every v0 ∈ UC(RN+1), there exists a unique
v ∈ UC (RN+1 × [0,+∞)

)
solving (2.1)with initial data v0.

The proof uses the classicalPerron method, introduced in the framework of viscosity
solutions byIshii in [26] (see also [2,5,15]). The application of this method in our
case does not present any special difficulties. Nevertheless, we provide a proof for
the readers’ convenience.

Proof of Theorem 4.2. The uniqueness part comes immediately from Theorem 4.1
and, because of Lemma 4.1, we can suppose thatv0 is bounded. We divide the proof
into steps.

Step 1. We construct a solutionv ∈ C(RN+1 × [0,+∞)) when the initial data
is smooth. Letv0 ∈ C2(RN+1) ∩ W2,∞(RN+1) and define, for anyC > 0, two
functionsv, v by setting

v(z, t) := −Ct + v0(z) and v(z, t) = Ct + v0(z)

for any(z, t) ∈ R
N+1 × [0,+∞). It follows from (H1)–(H3) that the nonlinearity

F appearing in (2.1) is bounded on bounded subsets. Therefore,C may be chosen
large enough in order thatv andv are respectively sub- and super solution of (2.1).

Consider then the setF of subsolutions of (2.1)w such thatv � w � v. Set
then for every(z, t) ∈ R

N+1 × [0,+∞), v(z, t) = supw∈F w(z, t). The setF
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is nonempty andv is well defined. Thus, we find from the comparison result and
classical arguments of the Perron method thatv is a discontinuous solution of (2.1).

Now, we also have from the definition ofv thatv∗(· ,0) = v∗(· ,0) = v0. Thus
we deduce from the comparison result thatv∗ = v∗ = v, which is the desired
continuous solution.

Step 2. We show that the solutionv we built in Step 1 is actually inBUC(RN+1×
[0,+∞)). First of all, since the constant functions are smooth solutions of (2.1), the
comparison result shows thatv is bounded, namely|v| � |v0| in R

N+1×[0,+∞).
Next, from the definition ofv, for all h > 0, we have

v(· , h) = v0 − Ch � v(· , h) � v0 + Ch = v(· , h) in R
N+1. (4.12)

From Theorem 4.1, and since the nonlinearity in (2.1) depends only on(Du,D2u),
the functionv(· , · + h) is a solution of (2.1) with initial datav(· , h) andv ± Ch

are solutions of (2.1) with initial datav0 ± Ch. Thus Theorem 4.1, together with
(4.12), yields

v − Ch � v(· , · + h) � v + Ch in R
N+1 × [0,+∞).

It provides a modulus of continuity in the time variable which is independent of the
space variable. Arguing in the same way with translations in spacev0 !→ v0(·+ ξ),
ξ ∈ R

N+1, we obtain a modulus of continuity for the space variable which is
independent of the time variable. It proves thatv ∈ BUC(RN+1 × [0,+∞)).

Step 3 The general case whenv0 ∈ BUC(RN+1). Using a classical convolu-
tion procedure, we construct a sequence(vn0)n∈N of functionsvn0 ∈ C2(RN+1) ∩
W2,∞(RN+1) such that|v0 − vn0| � 1/n in R

N+1. It follows that−2/n + vn0 �
vm0 � vn0 + 2/n for m � n. According to Steps 1 and 2, we can consider, for
everyn ∈ N, the unique solutionvn ∈ BUC(RN+1 × [0,+∞)) of (2.1) with
initial datavn0. Proceeding as in Step 2, we deduce from the previous inequality that
−2/n + vn � vm � vn + 2/n for m � n. Thus(vn)n∈N converges uniformly in
R
N+1× [0,+∞) to some functionv which is still bounded uniformly continuous.

From the stability result,v is a viscosity solution of (2.1) with initial datav0. It
achieves the proof of the Theorem.� 

4.4. Examples

We give some examples of PDEs like (1.4) which are covered by the very
singular case.
(1) In addition to the mean-curvature equation for graphs (1.1), we can deal with
the non-geometric mean-curvature equation

∂u

∂t
− div

Du√
1+ |Du|2 = 0, (4.13)

or equations like

∂u

∂t
− �u

(1+ |Du|2)α = 0, α � 1. (4.14)
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These equations lead to a geometrical equation like (2.1) with a singularity only at
|Dv| = 0 and they satisfy the assumptions of the classical framework.
(2) Consider a generalization of the mean-curvature equation for graphs, namely

∂u

∂t
− Tr
[
(I − g(Du)Du⊗Du)D2u

]
= 0, (4.15)

whereg is a continuous function fromRN into R. In this case,b(q) = I −g(q)q⊗
q is symmetric nonnegative and satisfies (H1)–(H3) if and only if there exists a
positive constantC such that

1

|q|2
(

1− C

|q|2
)

� g(q) � 1

|q|2 for everyq ∈ R
N. (4.16)

Using the notation of Section 3, for everyq ∈ SN−1, we haveb∞(q) = I − q ⊗ q

andζ∞(q) = 0; thus (H4) and (H5) are fulfilled and this equation falls into our
study area. Concerning (H6), we have

0 � 〈b(λq)λq, λq〉 = λ2(1− λ2g(λq)) � C.

We cannot conclude from this that there is a limit for all functionsg; it means that
the last assumption does not hold in general and this equation is not covered by
the classical framework in the whole generality. We relate in detail such a situation
below.
(3) We turn to an explicit example of a PDE like (1.4) which leads to a geometrical
equation whose set of singularities is exactlyD and is not removable. Consider

∂u

∂t
− f (Du)

(1+ |Du|2)2 〈D
2uDu,Du〉 = 0 in R

N × (0, T ), (4.17)

wheref : R
N → R is any bounded, nonnegative function. In this case,

b(q) = f (q)

(1+ |q|2)2q ⊗ q.

The assumptions (H1)–(H3) are obviously satisfied and, for everyq ∈ R
N ,

b(λq)→ 0 asλ→±∞; thus (H4) holds. It follows that this equation is covered
by “the very singular case” of this section. It leads to a geometrical equation like
(2.1) with

F(p,X)

= −Tr

[
f

(
−px
py

)
px ⊗ px

(|px |2 + p2
y)

2 (p
2
yXxx − 2pyXxy ⊗ px +Xyypx ⊗ px)

]
,

for everyp = (px, py) ∈ R
N+1 andX ∈ SN+1.

For simplicity, setN = 1 andf (q) = 1+cosq. It follows thatF ∗((px,0),X) =
0 andF∗((px,0),X) = −2Xyy , for everyp = (px,0), px �= 0 andX ∈ S2 such
thatXyy > 0. Therefore, in general

F ∗ �= F∗ onD = {p : py = 0}.
This shows that we cannot remove the singularities ofF outside 0. Thus (4.17)
does not satisfy the assumptions of Section 3.
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5. The level-set approach

In this section, for the sake of completeness, we recall the basic ideas of the
level-set approach and we apply them to Equation (2.1) both in the classical and very
singular framework. We refer to [18,13,10], etc. for a more complete description
of this approach.

We are given a triplet(�0, ?
+
0 , ?

−
0 ), where?+

0 , ?
−
0 are disjoint open subsets

of R
N+1 and�0 =

(
?+

0 ∪?−
0

)C
. In general, we have in mind�0 = ∂?+

0 = ∂?−
0 .

Note that these sets form a partition ofR
N+1 and�0 can be thought of as being an

hypersurface.
Let v0 be any uniformly continuous function whose 0-level set is exactly�0,

namely,

�0 = {z ∈ R
N+1 : v0(z) = 0}, (5.1)

and such that

{z ∈ R
N+1 : v0(z) > 0} = ?+

0 and{z ∈ R
N+1 : v0(z) < 0} = ?−

0 . (5.2)

This choice of signs defines an orientation of�0 making it possible to distinguish
an “interior”, ?+

0 , and an “exterior”,?−
0 . Secondly, it is always possible to find

such a functionv0 by taking, for example, thesigned-distance to �0 defined by

d(z, �0) :=
{+dist(z, �0) if z ∈ ?+

0 ,

−dist(z, �0) if z ∈ ?−
0 ,

(5.3)

where dist denotes the usual positive distance. Clearly d(· , �0) is Lipschitz con-
tinuous inR

N+1.
We then define thegeneralized evolution of (�0, ?

+
0 , ?

−
0 ) by the family

(�t ,?
+
t , ?

−
t )t�0, using the

Theorem 5.1. Under the assumptions of Theorem 3.1 or 4.2, there exists a unique
solution v of (2.1) in UC(RN+1 × (0,+∞)) with initial data v0. Moreover, if
ṽ0 ∈ UC(RN+1) satisfies

{ṽ0 = 0} = �0, {ṽ0 > 0} = ?+
0 and {ṽ0 < 0} = ?−

0 ,

and if ṽ ∈ UC(RN+1× (0,+∞)) is the viscosity solution of (2.1)with initial data
ṽ0, then

{v(· , t) > 0} = {ṽ(·, t) > 0} := ?+
t ,

{v(· , t) < 0} = {ṽ(·, t) < 0} := ?−
t ,

{v(· , t) = 0} = {ṽ(·, t) = 0} := �t .
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This result implies that the family(�t ,?
+
t , ?

−
t )t�0 exists and is uniquely defined

independently of the choice of the representationv0 ∈ UC(RN+1) satisfying (5.1)
and (5.2). The set

⋃
t�0�t × {t} is called thefront associated with�0 by (2.1)

and�t is thefront at time t. Note that, at least formally,�t evolves with a normal
velocity equal to

Vn(z) = −F(Dd(· , �t )(z),D2d(· , �t )(z)),
for z ∈ �t .
Proof of Theorem 5.1. We give a proof inspired byIshii’s one (see [27]). We
only show that if{v0 > 0} ⊂ {ṽ0 > 0}, then this inclusion remains true for all
t � 0, i.e., {v(· , t) > 0} ⊂ {ṽ(· , t) > 0}. The other inclusions are obtained
by straightforward adaptations. From Theorem 3.1 or 4.2,v, ṽ ∈ UC(RN+1 ×
[0,+∞)) and we recall that the hyperbolic tangent function (denoted by tanh)
is a bounded uniformly continuous increasing function. Then, using Lemma 4.1,
we show that tanh(v) is a bounded uniformly continuous solution of (2.1) with
the bounded initial data tanh(v0). Next, we introduce the uniformly continuous
increasing functionθ+(r) := max(r,0) and claim, thanks to Lemma 4.1 once
more, thatθ+ ◦ ṽ andθ+ ◦ tanh(v) are both uniformly continuous solutions of
(2.1). Finally, we introduce the lower-semicontinuous function

θ(r) =
{
+2 if r > 0,

0 if r � 0,

and observe thatθ ◦ θ+ ◦ ṽ is a lower semicontinuous supersolution of (2.1). In
fact, the previous changes are made in order to obtain the suitable initial condition

θ ◦ θ+ ◦ ṽ(· ,0) � θ+ ◦ tanh(v(· ,0)),
which follows easily from the assumption{v0 > 0} ⊂ {ṽ0 > 0}.Sinceθ+◦ tanh(v)
is uniformly continuous, we apply the comparison result 4.1 and get that, for all
t � 0,

θ ◦ θ+(ṽ(· , t)) � θ+ ◦ tanh(v(· , t)).
We obtain{v(· , t) > 0} ⊂ {ṽ(· , t) > 0}, which ends the proof. � 

6. Connection between geometrical and quasilinear PDEs. Application to
uniqueness

In this section, we specify the connections between (1.4) and (2.1) initiated in
Section 2, and in particular in terms of uniqueness for (1.4). Letu be a continuous
viscosity solution of (1.4) with initial datau0 ∈ C(RN) andv be the solution of
(2.1) with initial data d(· ,Graph(u0)). The main question is whether or not

Graph(u(· , t)) = {(x, y) ∈ R
N+1 : y − u(x, t) = 0}
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and the front

�t = {(x, y) ∈ R
N+1 : v(x, y, t) = 0}

coincide for allt � 0. If the answer is yes, this obviously provides a uniqueness
result for (1.4) since the�t ’s are uniquely determined because of Theorem 5.1.And
it may be thought that the answer is indeed yes – by applying Theorem 5.1 together
with Lemma 2.1 (ii) with initial datãv0 = tanh(y − u0(x)), which is a particular
representation of Graph(u0). Unfortunately,̃v0 is not uniformly continuous ifu0 is
not uniformly continuous and, as we pointed out in the introduction, we do not know
how to prove Theorem 5.1 replacing “ṽ0 ∈ UC(RN+1)” by “ ṽ0 ∈ Cb(R

N+1)”; we
do not know even if such a result is true.

Nevertheless, the inclusion used in Section 2 to derive the geometrical PDE is
always true.

Theorem 6.1. Suppose that (H1)–(H4) hold. Let u be a viscosity subsolution (or
supersolution) of (1.4)with initial data u0 ∈ C(RN) and v be a viscosity solution
of (2.1)with initial data d(· ,Graph(u0)). For every t ∈ [0,+∞), we have

Graph(u(· , t)) ⊂ {(x, y) ∈ R
N+1 : v(x, y, t) � 0}

(respectively Graph(u(· , t)) ⊂ {(x, y) ∈ R
N+1 : v(x, y, t) � 0}).

If u is a solution of (1.4), then

Graph(u(· , t)) ⊂ �t f or all t ∈ [0,+∞),

where (�t )t�0 is the generalized evolution associated with �0 = Graph(u0).

Proof of Theorem 6.1. Suppose thatu is a subsolution. Define the nondecreasing
functionθ+(r) := max(r,0). For allz = (x, y) ∈ R

N × R, we have,

tanh
[
θ+(y − u0(x))

]
� tanh

[
d(z,Graph(u0))

]
,

since, on the one hand,|y − u0(x)| � dist(z,Graph(u0)); and, on the other hand,
if y � u0(x), then d(z,Graph(u0)) � 0 (for the definition of d, see (5.3)). From
Lemma 2.1 (ii) and from the invariance of supersolutions of (2.1) under nondecreas-
ing changes of variables (see Lemma 4.1), we know that the function tanh[θ+(y −
u(x, t))] is a supersolution of (2.1) with initial data tanh[θ+(y − u0(x))]. More-
over, the function tanh(v) is a solution (thus a subsolution) of (2.1) with initial data
tanh(v0). Applying Theorem 4.1 (see Remark 4.1), we get

tanh
[
θ+
(
y − u(x, t)

)]
� tanh[v(z, t)].

Thus,y = u(x, t) implies thatv(z, t) � 0, which proves the first inclusion. Ifu
is a supersolution, we repeat the same arguments withθ−(r) := min(r,0). We get
the other inclusion. In order to prove the last statement of the theorem it suffices
to notice, on the one hand, thatu is a solution provided thatu is both a sub- and a
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supersolution and, on the other hand, that

�t = {z ∈ R
N+1 : v(z, t) � 0} ∩ {z ∈ R

N+1 : v(z, t) � 0}.
This achieves the proof of the theorem.� 

In fact, the uniqueness for (1.4) and the so-called “fattening phenomena” for
the front are closely related as shown by the

Theorem 6.2. Assume that (H1)–(H4) hold and let u0 ∈ C(RN). Suppose that
the front

⋃
t�0�t × {t} associated with Graph(u0) has empty interior in R

N+1 ×
[0,+∞). Then (1.4)has at most one continuous viscosity solution with initial data
u0.

We point out that Theorem 6.2 provides uniqueness only in the class of continuous
functions. But discontinuous solutions may also exist if the front looks like a rake
for instance. This result says nothing about the existence of solutions; it may be
possible taht the front contains no continuous graph.

In the literature, the “fattening phenomena” may have different meanings. In
Theorem 6.2, we use the standard topological meaning. We first want to remark
that assuming that�t has empty interior inRN+1 for all t � 0 is stronger than
assuming that

⋃
t�0�t × {t} has empty interior inRN+1 × [0, T ]. In fact, under

our assumptions it turns out to be equivalent. The proof of this equivalence comes
from the preservation of inclusion of sets under motions governed by (2.1) and the
fact that, if the front at a timet contains a ball, this ball cannot shrink instantaneously.
We skip the proof and refer to the one of Theorem 7.1 which is similar.

In Barles & Souganidis [11], a “no-interior condition” is considered, namely

⋃
t�0

�t × {t} = ∂


⋃
t�0

?+
t × {t}


 = ∂


⋃
t�0

?−
t × {t}


 . (6.1)

This condition is stronger than the topological one. When it is satisfied, we have a
better result.

Theorem 6.3. Assume (H1)–(H4) and let u0 ∈ C(RN). Suppose that (6.1) holds
for the front associated with Graph(u0). If u and ũ are (possibly discontinuous)
viscosity solutions of (1.4), then u∗ = ũ∗ and u∗ = ũ∗ in R

N × [0,+∞).

Contrarily to Theorem 6.2, this theorem provides a “weak” uniqueness result for
discontinuous viscosity solutions of (1.4). It is worth pointing out that stronger
results providing equalities likeu∗ = ũ∗ andu∗ = ũ∗ in R

N × [0,+∞) cannot
be obtained by such a geometrical approach since a discontinuity ofu or ũ can
appear or, on the contrary, be removed by a slight rotation of the axis inR

N+1 and
therefore such discontinuities have no real geometrical meaning.We refer the reader
toBarles, Soner & Souganidis [10], Ilmanen [24] andSoner [32] for a more
complete discussion and results about the “fattening phenomena” or “nonempty
interior difficulty”.

We turn to the proofs.
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Proof of Theorem 6.2. Suppose that there exist two solutionsu1, u2 ∈ C(RN ×
[0,+∞)) of (1.4) with initial datau0 and definev to be the solution of (2.1) with
initial data v0 = d(· ,Graph(u0)). From the level-set approach, we have�t =
{v(· , t) = 0}. We will see that, ifu1 and u2 are different, then the front has
nonempty interior inRN+1 × [0,+∞). If u1 �= u2, we can suppose that there
exists(x0, t0) ∈ R

N × [0,+∞) such that

u1(x0, t0)− u2(x0, t0) = ε > 0.

By continuity ofu1 andu2, there exists some ballB(x0, ρ), ρ > 0 and someτ > 0
such that

u1(x, t)− u2(x, t) � ε

2
> 0 in B(x0, ρ)× [t0, t0 + τ ]. (6.2)

But, from Theorem 6.1,

Graph(u1(· , t)),Graph(u2(· , t)) ⊂ {v(· , t) = 0} for all t � 0.

To conclude, it suffices to show that

B(x0, ρ)× [t0, t0 + τ ] ⊂
⋃
t�0

�t × {t}.

We need a lemma whose proof is postponed.

Lemma 6.1. Under Assumptions (H1)–(H4), let v ∈ UC(RN+1 × [0,+∞)) be
a solution of (2.1) with initial data v0. If y !→ v0(x, y) is nondecreasing for all
x ∈ R

N , then y !→ v(x, y, t) is nondecreasing for all (x, t) ∈ R
N × [0,+∞). In

particular, the result holds if v is the solution associated with the initial condition
v0 = d(· ,Graph(u0)) where u0 ∈ C(RN).

From this lemma, we obtain

v(x, y, t) = 0 for all (x, y, t) ∈ B(x0, ρ)× [u2(x, t0), u1(x, t0)] × [t0, t0 + τ ].
Using (6.2), we find thatB(x0, ρ)×[u2(x, t0), u1(x, t0)]×[t0, t0+τ ]has nonempty
interior inR

N+1 × [0,+∞) which ends the proof. � 

Proof of Lemma 6.1. By assumption,v0(x, y+h) � v0(x, y) for allx ∈ R
N+1, y ∈

R and h > 0. From the comparison result (see Theorem 4.1) it follows that
v(· , ·+h, t) � v(· , · , t) for all t � 0, sincev(· , ·+h, ·) is a solution of (2.1) with
initial datav0(· , · + h). This proves the first part of the lemma.

It remains to show that the function(x, y) !→ d((x, y),Graph(u0)) is nonde-
creasing in they variable whenu0 is continuous. To this end, considerx ∈ R

N and
y2 � y1. We suppose thaty2 � y1 � u0(x). Indeed, the caseu0(x) � y2 � y1
can be treated in the same way with straightforward adaptations and the case
y2 � u0(x) � y1 is obvious. Assume for contradiction that

0 � r2 := d((x, y2),Graph(u0)) < d((x, y1),Graph(u0)) =: r1,
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and defineu0|B(x,r1) as the restriction ofu0 to the ballB(x, r1). From the definition
of d as an infimum, the hypothesisy1 � u0(x) and the continuity ofu0, it follows
that

Graph(u0|B(x,r1)) ∩ B((x, y1), r1) ⊂ ∂−B((x, y1), r1),

where ∂−B((x, y1), r1) stands for the part∂B((x, y1), r1) of the boundary of
B((x, y1), r1) lying in the half-space{y � y1}. Sincey2 � y1 and r2 < r1,
we get

Graph(u0|B(x,r1)) ∩ B((x, y2), r2) = ∅
which gives a contradiction.� 

Proof of Theorem 6.3. Let us show thatu∗ = ũ∗. We argue by contradiction,
assuming that there exists(x̄, t̄) ∈ R

N × [0,+∞) such thatu∗(x̄, t̄) > ũ∗(x̄, t̄).
From Theorem 6.1, we have, for allt � 0, Graph(ũ(· , t)) ⊂ �t = {v(·, t) = 0},
wherev is the solution of (2.1) with initial data d(· ,Graph(u0)). It follows from
(6.1) that ⋃

t�0

Graph(ũ(· , t))× {t} ⊂
⋃
t�0

?+
t × {t} ;

thus, there exists a sequence(xn, yn, tn) ∈ R
N+1×[0,+∞)such that(xn, yn, tn)→

(x̄, ũ∗(x̄, t̄), t̄) whenn→+∞ andv(xn, yn, tn) > 0 for all n � 0. From the non-
decrease ofv in y (Lemma 6.1), we haveyn > u(xn, tn) sincev(xn, u(xn, tn), tn) =
0. It follows that

u∗(x, t) � lim inf
n→+∞ u(xn, tn) � lim inf

n→+∞ yn = ũ∗(x, t)

which is a contradiction. We proveu∗ = ũ∗ in the same way. � 
The last result of this section is related to the empty interior condition of The-

orem 6.2 and is inspired by the related results ofEvans & Spruck [19] in the
mean-curvature case.

If u0 ∈ C(RN) and if v0 = d(·,Graph(u0)), then the subsets{v0 = λ}, λ ∈ R

are the graphs of functionsuλ0 ∈ C(RN). More precisely, forλ � 0, the function
ω(x, λ) := uλ0(x) (orω(x, λ) := u−λ0 (x)) is the unique viscosity solution of

∂ω

∂λ
−
√

1+ |Dω|2 = 0 in R
N × (0,+∞),

(respectively

∂ω

∂λ
+
√

1+ |Dω|2 = 0 in R
N × (0,+∞) ).

We refer toBarles [4] for a simple proof of this claim. Our result is the

Proposition 6.1. Assume (H1)–(H4). Except for a countable subset of values of λ,
the fronts associated with the evolution of Graph(uλ0) have empty interior in R

N+1×
[0,+∞). In particular, there exists at most one continuous viscosity solution uλ of
(1.4)with initial data uλ0.
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We may interpret this result by saying that non-uniqueness for (1.4) is a “rare”
event.

Noticing thatuλ0 ↓ u0 in C(RN) asλ ↓ 0+, we find that we can approach any
u0 ∈ C(RN) in a monotone way by a sequence ofuλ0 for which (1.4) has at most
one continuous solution. The interesting thin about this result is that theuλ0’s have
in general the same behavior asu0. It means that we actually have uniqueness for
a large class of initial data including functions with arbitrary growth.

Proof of Proposition 6.1. Let v be the unique solution of (2.1) with initial data
v0 = d(· ,Graph(u0)). Since, for everyλ ∈ R, v − λ is the unique uniformly
continuous solution of (2.1) with initial datav0 − λ, at each timet , the front�λt
associated with Graph(uλ0) coincides with{v(· , t) = λ}. In particular, the fronts are
disjoint for different values ofλ and it follows, from there, that the family of values
of λ such that

⋃
t�0 �λt × {t} has nonempty interior is countable. To conclude, it

is sufficient to apply Theorem 6.2.� 

7. A local L∞ a priori bound

In this section, we use the relations between (1.4) and (2.1) to provide a local
L∞ bound for the solutions of (1.4).

In order to state the main result of this section, we introduce, for any function
u0 ∈ C(RN),

Mu0(x, R) = max
y∈B(x,R)

u0(y) and mu0(x, R) = min
y∈B(x,R)

u0(y).

We have the following

Theorem 7.1. Under assumptions (H1)–(H4), if u ∈ C(RN × [0,+∞)) is a solu-
tion of (1.4)with initial data u0 ∈ C(RN), then there exists a positive constant C
such that, for all x ∈ R

N , t � 0,

mu0(x,
√

2Ct)−√
2Ct � u(x, t) � Mu0(x,

√
2Ct)+√

2Ct.

Remark 7.1. This localL∞ bound is a direct consequence of the level-set approach
and it justifies the fact that we need at least some kind of degeneracy onb in the
gradient variable, as implied by (H1)–(H4); indeed, clearly, such a bound does not
hold for the heat equation and therefore we cannot hope that such an approach
applies for this equation.

Proof of Theorem 7.1. The basic idea is that the geometrical evolution governed
by (2.1) preserves the inclusion of sets. Thus we can expect that the evolution of
balls initially put “under” (or “over”) the graph of a solution of (1.4) will provide
some control on the growth. This fact is illustrated in Fig. 7.1 in the case of the
mean-curvature equation.

We takev0(z) = d(z,Graph(u0)) ∈ UC(RN+1) (where d is defined by (5.3))
and letv be the unique uniformly continuous solution of (2.1) with initial datav0.
In order to prove the result, we aim at comparingv with subsolutions like those
which appear in the following Lemma, whose proof is postponed.
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v(�; t0) = 0

v(�; t0) > 0

v(�; t0) < 0

R0

x

y

x0

y0

time t = t0

v(�; t0 + h) = 0

v(�; t0 + h) > 0

v(�; t0 + h) < 0

R(h)

x

y

x0

y0

time t = t0 + h

Fig. 7.1. Evolution of a graph with a ball which is put above it

Lemma 7.1. We suppose that (H1), (H2)and (H3) hold. Fix R0 > 0, x0 ∈ R
N and

y0 ∈ R. Let � : R → R be any smooth nondecreasing function. Then the function
ϕ, defined for every (x, y, t) ∈ R

N × R× [0,+∞), by

ϕ(x, y, t) = �(R2
0 − 2Ct − |x − x0|2 − (y − y0)

2),

where C = N(K1 +K2 +K3)+ 1, is a (classical) strict subsolution of (2.1).

Let x0 ∈ R
N, t0 ∈ (0,+∞) andy0 = Mu0(x0,

√
2Ct0)+√

2Ct0, whereC is
taken as in Lemma 7.1. It follows that

B((x0, y0),
√

2Ct0) ⊂ {(x, y) ∈ R
N+1 : y > u0(x)},

which implies

d
(
· , B((x0, y0),

√
2Ct0)
)

� d(· ,Graph(u0)) = v0. (7.1)

Let us define

ϕ(x, y, t) = �(2Ct0 − 2Ct − |x − x0|2 − (y − y0)
2),

with �(z) = z/2
√

2Ct0 for all z ∈ R. The function� satisfies the assumptions of
Lemma 7.1. For clarity, we setr = (|x − x0|2+ (y − y0)

2)1/2. From (7.1), we get

ϕ(· , · ,0) =
√

2Ct0 + r

2
√

2Ct0
(
√

2Ct0 − r) �
√

2Ct0 − r

= d
(
· , B((x0, y0),

√
2Ct0)
)

� v0.

Now, sinceϕ is a function with quadratic growth at infinity andv is uniformly
continuous, we know that

min
RN+1×[0,T ]

{v − ϕ}
is achieved for everyT > 0 if we assume that it is positive. Using Lemma 7.1,ϕ

is a strict smooth subsolution of (2.1); thus the minimum is necessarily achieved at
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t = 0 which is a contradiction. Since the previous arguments hold for everyT > 0,
we get finally

ϕ � v in R
N+1 × [0,+∞). (7.2)

By Lemma 6.1, we have

Graph(u(· , t)) ⊂ �t(v) for everyt � 0. (7.3)

From (7.2) and (7.3), it follows that, for allt � 0,

{ϕ(· , t) � 0} ⊂ {v(· , t) � 0} ⊂ {(x, y) ∈ R
N+1 : y � u(x, t)}.

But

ϕ(x, y, t) � 0 ⇐⇒ (x, y) ∈ B((x0, y0),
√

2C(t0 − t)).

By letting t → t0 and by using the assumed continuity ofu, we obtain

u(x0, t0) � y0 = Mu0(x0,
√

2Ct0)+
√

2Ct0.

The opposite inequality is obtained with straightforward adaptations.� 
We end the section with the proof of the lemma and an example.

Proof of Lemma 7.1. Without loss of generality, we can suppose thatx0 = 0 and
y0 = 0. Moreover, from Lemma 4.1, we can suppose that�(z) = z for every
z ∈ R. From (H1), (H2) and (H3), we get

|F∗(Dϕ,D2ϕ)| � N(K1 +K2 +K3)|D2ϕ| � 2(C − 1)

where we setC = N(K1 +K2 +K3)+ 1. It follows that

∂ϕ

∂t
+ F∗(Dϕ,D2ϕ) � −2C + 2(C − 1) � −2< 0,

which achieves the proof.� 
Example 7.1. Evolution of balls in the case of the mean-curvature equation (1.1).
We recall that, in the case of (1.1),b is given by (3.3). Following the computations
of Lemma 7.1, we have

∂ϕ

∂t
− Tr

[
b

(
−Dxϕ

Dyϕ

)(
D2
xxϕ − 2D2

xyϕ ⊗
Dxϕ

Dyϕ
+D2

yyϕ
Dxϕ

Dyϕ
⊗ Dxϕ

Dyϕ

)]
= −2(C −N).

By takingC = N , we find thatϕ is in fact a classical solution of (2.1). Thus, by
the level-set approach, it follows that the 0-level set ofϕ evolves according to its
mean curvature. An easy computation shows that

?+
0 = {ϕ(· ,0) > 0} = B((x0, y0), R0), �0 = ∂B((x0, y0), R0),

and, for everyt � 0,

?+
t = {ϕ(· , t) > 0} = B((x0, y0), R(t)), �t = ∂B((x0, y0), R(t)),

whereR(t) = (R2
0 − 2Nt)1/2. We recover by this method the well-known result

of Evans & Spruck [18, Section 7.1]: balls remain balls for the mean-curvature
motion and they shrink into a point fort∗ = R2

0/2N .
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8. The boundary of the front. Existence of discontinuous solutions

Theorem 6.1 provides the first connections between the front and the graphs of
the solutions of (1.4) when they exist. In this section, we describe more precisely
the structure of the front and obtain the existence of discontinuous solutions to
(1.4).

For any continuous functionu0, we consider the generalized evolution(�t )t�0
of Graph(u0) and the uniformly continuous solutionv of (2.1) with initial data
v0 = d(· ,Graph(u0)). For every(x, t) ∈ R

N × [0,+∞), we define

u+(x, t) := sup{y ∈ R : v(x, y, t) � 0}
and

u−(x, t) := inf {y ∈ R : v(x, y, t) � 0}.
Note that the functionsu+(· , t) andu−(· , t) are defined such that their graphs are
the “upper-boundary” and the “lower-boundary” of the front�t at each timet : see
Fig. 8.1. We have the first properties

Lemma 8.1. Under assumptions (H1)–(H4), the functions u+ and u− are locally
bounded in R

N × [0,+∞)). Moreover u+ ∈ USC(RN × [0,+∞)) and u− ∈
LSC(RN × [0,+∞)).

Proof of Lemma 8.1. We give the proof foru+, the one foru− being similar. We
start by proving thatu+ is well defined and locally bounded. Looking at the proof

Fig. 8.1. Front which fattens at timet > 0
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of Theorem 7.1, we see that inequality (7.2) implies that, for every(x0, y0, t0) ∈
R
N × R× [0,+∞), there exists a constantM > 0 such that

v > 0 in B((x0, y0),M)× [0, t0/2].
Note thatM does not depend ony0 in the sense thatv > 0 in everyB((x0, y),M)×
[0, t0/2] with y � y0, by non-decrease ofy !→ v(x, y, t) for every (x, t) (see
Lemma 6.1). It proves thatu+ � y0 in a neighborhood of(x0, t0/2). The same
reasoning holds with straightforward adaptations to prove thatu+ is locally bounded
from below.

We turn to the proof of the upper-semicontinuity ofu+. Consider any sequence
of points ((xn, yn, tn))n∈N such that(xn, yn, tn) ∈ H := {(x, y, t) ∈ R

N+1 ×
[0,+∞) : y � u+(x, t)} and(xn, yn, tn) → (x, y, t) asn → +∞. For everyn,
we havev(xn, yn, tn) � 0. Sincev is continuous, by sendingn to infinity, we get
v(x, y, t) � 0 which proves that(x, y, t) ∈ H; thusH is closed. This ends the
proof. � 

Theorem 8.1. Suppose that (H1)–(H4)hold. Let u0 ∈ C(RN) and v be the solution
of (2.1)associated with the initial data v0 = d(· ,Graph(u0)). Then u+ and u− are
(possibly discontinuous) viscosity solutions of (1.4)with initial data u0. Moreover,
u+ and u− are respectively the maximal subsolution and the minimal supersolution
of (1.4)with initial data u0.

We refer to Fig. 8.1 for an illustration of this theorem. Let us point out that this
result provides only the existence of a discontinuous viscosity solution to (1.4) for
any continuous initial data. We refer to Section 9 for optimal results of regularity
of u+ andu−. We give a geometrical proof of the theorem using the fact that
characteristic functions of sets which evolve are discontinuous solutions of (2.1).

We first introduce some notation. For any subsetA ⊂ R
N+1, int(A) denotes

the interior ofA in R
N+1 and 11A is the characteristic function ofA defined, for

any(x, y) ∈ R
N+1, by 11A(x, y) = 1 if (x, y) ∈ A and 0 otherwise. For the sake

of simplicity of notation, when the setA = At depends ont , we will denote by 11At
the function(x, y, t) !→ 11At (x, y). We need the following lemma due toBarles,
Soner & Souganidis [10].

Lemma 8.2. Define u0 and v as in Theorem 8.1 and consider

?+
t = {v(· , t) > 0} and ϒt = int

({v(· , t) � 0}).
Then the functions 11?t and 11ϒt are (discontinuous) viscosity solutions of (2.1).

Proof of Theorem 8.1. We give the proof foru+, calling itu for clarity of notation.
The same reasoning holds with easy adaptations foru−. Let us start by showing
thatu is a subsolution. Remembering thatu is an upper-semicontinuous function
by Lemma 8.1, we consider a smooth functionφ(x, t) such thatu − φ achieves
a global maximum of 0 at(x̄, t̄) ∈ R

N × (0,+∞). It follows thatu � φ and
u(x̄, t̄) = φ(x̄, t̄). Setψ(x, y, t) = tanh(y − φ(x, t)).

We claim that(11?t )∗ − ψ achieves a global minimum 0 at(x̄, u(x̄, t̄), t̄).
By continuity ofv, we havev(x̄, u(x̄, t̄), t̄) = 0; thus(11?t )∗(x̄, u(x̄, t̄), t̄) = 0.



A Geometrical Approach to the Study of Quasilinear Equations 315

This implies((11?t )∗ − ψ)(x̄, u(x̄, t̄), t̄) = 0. It remains to check that((11?t )∗ −
ψ)(x, y, t) � 0 for every(x, y, t). If (11?t )∗(x, y, t) = 0, then(x, y, t) ∈ {v � 0};
thus, from Lemma 6.1, we havey � u(x, t) � φ(x, y, t).We obtainy−φ(x, t) � 0
and((11?t )∗ − ψ)(x, y, t) � 0 in this case. Now, if(11?t )∗(x, y, t) = 1, then the
same inequality holds since tanh� 1. This proves the claim.

We compute the derivatives ofψ and get,

∂ψ

∂t
= −tanh′ · ∂φ

∂t
, Dxψ = −tanh′ ·Dxφ, Dyψ = tanh′,

D2
xxψ = tanh′′ ·Dxφ ⊗Dxφ − tanh′ ·D2

xxφ, D2
yyψ = tanh′′,

D2
xyψ = −tanh′′ ·Dxφ.

By Proposition 8.2,(11?t )∗ is a supersolution of (2.1); writing the viscosity inequal-
ity at the point(x̄, u(x̄, t̄), t̄), a calculation leads to

∂φ

∂t
− Tr
[
b(Dxφ)D

2
xxφ
]

� 0,

which shows thatu is a viscosity subsolution.
We continue by proving thatu∗ is a supersolution. Consider a smooth function

φ such thatu∗ − φ achieves a global minimum of 0 at(x̄, t̄) ∈ R
N × (0,+∞).

We claim first that(11?t )
∗(x̄, u∗(x̄, t̄), t) = 1. Otherwise,(x̄, u∗(x̄, t̄), t) lies in the

interior of
⋃
t�0�t × {t}; it means that there existsε > 0 such that

v(x, y, t)=0 for all (x, y, t)∈B(x̄, ε)×[u∗(x̄, t̄)−ε, u∗(x̄, t̄)+ε]×[t̄−ε, t̄+ε].

By definition ofu, it follows thatu(x, t) � u∗(x̄, t̄)+ ε for everyx ∈ B(x̄, ε) and
t ∈ [t̄ − ε, t̄ + ε]. It leads to a contradiction and proves the claim.

Definingψ as above, we observe that the function(11?t )
∗−ψ achieves a global

maximum point at
(
(x̄, u∗(x̄, t̄)), t̄

)
. Indeed, if(11?t )

∗(x, y, t) = 0, then(11?t )
∗ −

ψ � 1. If (11?t )
∗(x, y, t) = 1, then(x, y, t) ∈ {v > 0} = {y � u∗(x, t)}, sinceu∗

is lower-semicontinuous. It follows thaty � φ(x, t) and tanh(y − φ(x, t)) � 0;
thus(11?t )

∗ − ψ � 1 and we are done in any case. Using the fact that(11?t )
∗ is a

subsolution of (2.1) by Proposition 8.2, we conclude as above.
It remains to check that the initial condition holds. On the one hand, from

the continuity ofv, we havev(x, u(x,0),0) = 0. It implies u(x,0) = u0(x)

since�0 is exactly the graph of the continuous functionu0. On the other hand,
looking at the proof of the supersolution, we see(x, u∗(x, t), t) ∈ ?t for every
(x, t) ∈ R

N × [0,+∞). By continuity of v, v(x, u∗(x, t), t) = 0. For t = 0,
it meansu∗(x,0) = u0(x). Finally, note that from Theorem 6.1, the graphs of
all subsolutions of (2.1) lie in{v � 0} and in the same way the graphs of all
supersolutions of (2.1) lie in{v � 0}. Therefore,u− is the minimal subsolution and
u+ is the maximal supersolution of (2.1); and the proof of the theorem is complete.
� 
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Remark 8.1. If the “no-interior condition” (6.1) holds, then Theorem 6.3 implies
(u+)∗ = u− and(u−)∗ = u+ in R

N × [0,+∞). But even in this case, we cannot
conclude that a continuous viscosity solution exists, since the front may look like
a Heaviside function for instance.

9. Fronts with more regularity

As mentioned before, the extremal solutionsu+ andu− have no regularity in
general. We give below some conditions under which they are smooth. It is the
case, when the front is associated with (1.4) and a locally Lipschitz initial datau0,
as soon as the solutionsu of this equation satisfy localL∞ and gradient bounds.
On one hand, these bounds allow the construction of smooth solutions for any
continuous initial data. On the other hand, using approximation methods, we see
that this regularity holds for the extremal solutions. We start with a more precise
result in the case of the mean-curvature equation.

Theorem 9.1. Let u0 ∈ C(RN). Then the extremal solutions u+ and u− of (1.1)
with initial data u0 are in C∞(RN × (0,+∞)) ∩ C(RN × [0,+∞)).

We recall that the smooth existence foru0 ∈ W
1,∞
loc (RN) is proved inEcker &

Huisken [16] (see alsoChou & Kwong [14]) using a gradient estimate. Here,
following Angenent [1], we take advantage of an interior gradient estimate of
Evans & Spruck [18] to prove the result for initial datau0 which are merely
continuous.

In the general case, we have

Theorem 9.2. Assume that b satisfies assumptions (H1)–(H4) and

b(q) � H(|q|)Id (9.1)

for some nonnegative continuous function H in R
N . Suppose that for any u0 ∈

W
1,∞
loc (RN) there exists a smooth solution of (1.4)with initial data u0 satisfying a

local gradient bound, namely

‖Du‖∞,?R,T � K,

where ?R,T := B(0, R) × [0, T ] and K is a positive constant which depends
only on R, T , ‖u‖∞,?̄R,T

and ‖Du0‖∞,B(0,R′), with R′ = R′(R, T ) > 0. Then the

extremal solutions u+ and u− are smooth.

The above theorem applies to more general quasilinear equations than (1.1) (see
examples at the end of the section) but it requires the initial data to be locally
Lipschitz continuous.

Remark 9.1. Under the assumptions of Theorem 9.1 or 9.2, if�t has empty interior
in R

N+1 for all t � 0 (or equivalently the front
⋃
t�0�t × {t} has empty interior

in R
N+1 × [0, T ], see Section 6), then the smoothness of the extremal solutions

together with Theorem 6.2 impliesu+ = u− in R
N × [0,+∞). It follows that
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�t = ∂?+
t = ∂?−

t for all t � 0. In this case, we have in particular uniqueness and
comparison for the discontinuous solutions of (1.4). Moreover, the weak notion of
propagation given by the level-set approach coincides with the classical notion in
differential geometry.

Before turning to the proof of the theorems, we state a lemma concerning the
time regularity of solutions for which the space regularity is already known. We
recall that a functionm : R

+ → R
+ is said to be a modulus of continuity if

m(0+) := lims→0+ = 0 andm(s + t) � m(s)+m(t) for anys, t � 0.

Lemma 9.1. Let R > 0,0 � t0 < T, x0 ∈ R
N and u ∈ C(B(x0, R)× [t0, T ]) be

a viscosity solution of the equation

∂u

∂t
+G(x, t,Du,D2u) = 0 in ?R,t0,T = B(x0, R)× (t0, T ), (9.2)

where G ∈ C(B(x0, R)× [t0, T ] ×R
N × SN) is degenerate elliptic. If m denotes

a modulus of continuity of u(· , t0), i.e. if, for every x, y ∈ B(x0, R),

|u(y, t0)− u(x, t0)| � m(|y − x|),
then there exists a modulus of continuity m̃depending only onG,mand‖u‖∞,?R,t0,T

such that, for every t ∈ [t0, T ] and x ∈ B(x0, R/2),

|u(x, t)− u(x, t0)| � m̃(|t − t0|). (9.3)

Moreover, if m(r) = Lr for some L � 0 and if

|G(x, t, p,X)| � M(1+ |X|) on B(x0, R)× [t0, T ] × B(0, L)× SN (9.4)

for some constant M � 0, then there exists L̃ = L̃(L,M, ‖u‖∞,?R,t0,T
) > 0 such

that m̃(r) = L̃r1/2.

Of course, the key point in Lemma 9.1 is the fact thatm̃ depends only onG,m
and‖u‖∞,?R,t0,T

. As a by-product of this result, it is clear that a localL∞ bound
together with a time-uniform space-local modulus of continuity for the solutions
of equations like (9.2) implies a uniform local modulus of continuity in time. In the
statement of Lemma 9.1, for the sake of simplicity of formulation, we do not make
precise the dependence with respect toG, except in the second part of the result;
this dependence will appear clearly in the proof.

Proof of Theorem 9.1. We divide the proof into two steps.

Step 1. We construct a smooth solution for any continuous initial data. Letu0 ∈
C(RN) and(uR0 )R>0 be a sequence of uniformly continuous functions converging
to u0, uniformly on every compact subset. Thanks to classical results for viscosity
solutions (see [13] and references therein), we associate with eachuR0 a continuous
viscosity solutionuR of (1.1) with initial datauR0 . But theuR satisfy theL∞ local
bound of Theorem 7.1, and, fromEvans & Spruck [19], we learn that theuR are
in fact smooth and satisfy the interior local gradient bounds proved in [19]. From
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Lemma 9.1 we get then an interior local modulus of continuity for theuR; therefore,
up to an extraction argument, we can suppose that the family(uR)R>0 converge
locally uniformly in R

N × (0,+∞) to a functionu ∈ C(RN × (0,+∞)) which
is, by a classical stability result, a viscosity solution of (1.1) inR

N × (0+∞).
It remains to check that the initial condition is continuously satisfied. In view

of Lemma 9.1, theuR admit the same modulus of continuity at timet = 0 and it
follows thatu is continuous at timet = 0 with u(· ,0) = u0. Finally, from [19] we
find thatu ∈ C∞(RN × (0,+∞)) since it is a continuous solution of (1.1).

Step 2. We show thatu+ is smooth; the proof foru− is the same with straightforward
adaptations. Letu0 ∈ C(RN). Consider, for anyλ > 0, the functionuλ0 defined by

Graph(uλ0) = {d(· ,Graph(u0)) = λ},
and the unique uniformly continuous solutionv of (1.3) with initial data
d(· ,Graph(u0)) (we recall that (1.3) is the geometrical equation associated with
(1.1)). By Step 1, we associate with eachλ > 0 a smooth solutionuλ of (1.1) which
satisfies, from Theorem 6.1, the condition that, for allt � 0,

Graph(uλ(· , t)) ⊂ {v(· , t) = λ} ⊂ {v(· , t) > 0}. (9.5)

Now, as in Step 1, the family(uλ)λ>0 satisfies the interior gradient bound of [19];
thus, using Lemma 9.1 and the same arguments as above, we can assume thatuλ

converges locally uniformly to a solutionu of (1.1) with initial datau0. From (9.5),
we find thatu � u+ and thusu = u+. It follows thatu+ is continuous and therefore
smooth, thanks again to [19].� 

Proof of Theorem 9.2. Since the proof is close to the previous one, we only give a
sketch of it.We use arguments of Step 2 in the proof ofTheorem 9.1.The only change
is that, using the ellipticity condition (9.1), we get, in addition to the gradient bound,
local bounds for high order derivatives of theuλ (seeLadyzenskaja, Solonnikov
& Ural’ceva [29]). It follows that, up to an extraction, we can assume that the
family (uλ)λ>0 converges locally uniformly to a smooth functionu which is also
a solution of (1.4). We conclude as in the proof of Theorem 9.1, thatu = u+ is
actually smooth. � 

It remains to give the proof of the lemma.

Proof of Lemma 9.1. The main step in the proof consists in showing that, for any
η > 0, we can find positive constantsC,K > 0 large enough, depending only on
η,G,m and‖u‖∞,?̄R,t0,T

such that, for anyx ∈ B(x0, R/2),

u(y, t)− u(x, t0) � η + C|y − x|2 +K(t − t0) for every(y, t) ∈ ?̄R,t0,T ,

(9.6)

and

u(y, t)− u(x, t0) � −η − C|y − x|2 −K(t − t0) for every(y, t) ∈ ?̄R,t0,T .

(9.7)
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We only prove (9.6), the inequality (9.7) being proved in an analogous way. In what
follows, x is fixed inB(x0, R/2).

First, if we take

C �
8‖u‖∞,?̄R,t0,T

R2 , (9.8)

then (9.6) is clearly fulfilled on∂B(x0, R) × [t0, T ], for everyη,K > 0 and for
everyx ∈ B(x0, R/2). It is worth noticing thatC may be taken independent ofx.

Next, we would like to ensure that (9.6) holds fort = t0. To this end, we argue
by contradiction assuming there existsη > 0 such that, for everyC > 0, there
existsyC ∈ B(x0, R) such that

u(yC, t0)− u(x, t0) > η + C|yC − x|2. (9.9)

It follows that

|yC − x| �
√

2‖u‖∞,?R,t0,T

C
. (9.10)

Thus|yC − x| → 0 whenC →∞. Coming back to (9.9), we get

m(|yC − x|) � u(yC, t0)− u(x, t0) > η + C|yC |2 � η.

Using (9.10), the inequalitym(|yC − x|) � η leads to a contradiction as soon as
we chooseC large enough and this choice depends only onη, ‖u‖∞,?R,t0,T

and
m. Therefore, by choosingC large enough, we ensure that (9.6) is satisfied on the
parabolic boundary(∂B(x0, R) × [t0, T ]) ∪ (B(x0, R) × {t0}). Finally, using the
continuity ofG, we can takeK large enough in order that the function(y, t) !→
u(x, t0)+η+C|y−x|2+K(t− t0) := χ(y, t) is a (smooth) strict supersolution of
(9.2). Thus, sinceu is a viscosity subsolution of (9.2), by using only the definition
of viscosity subsolution, it is clear that max?̄R,t0,T

{u − χ} is necessarily achieved
on the parabolic boundary of?R,t0,T . And (9.6) follows.

The first part of the lemma follows by observing that all our constants depend
whenη is fixed, onG,m and‖u‖∞,?̄R,t0,T

but not onx ∈ B(x0, R/2).
If we assume thatm(r) = Lr for some positive constantL, the condition (9.6)

at timet = t0 reads

u(y, t0)− u(x, t0) � L|x − y| � η + C|y − x|2,
for everyy ∈ B(x0, R). Writing that the discriminant ofC|y− x|2+L|y− x| + η

is nonpositive, we find that it holds if

C � L2

4η
.

Using (9.4),χ is a supersolution ifK � M(1+ 2C). Introducing these estimates
in (9.6), we finally obtain, fory = x,

u(x, t)− u(x, t0) � η +M

(
1+ L2

2η

)
(t − t0)
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for all t ∈ [t0, T ]. An easy optimization with respect toη of the right-hand side of
the previous inequality shows that, for allt ∈ [t0, T ],

u(x, t)− u(x, t0) � L̃
√
t − t0,

for some positive constant̃L depending onM andL. This concludes the proof of
the Lemma. � 

We conclude this section with examples of equations satisfying the assumptions
of Theorem 9.2. The following equations come from the paper ofChou &Kwong
[14] (see Section 4.4 for the precise statement of the equations).
(1) The non-geometric mean-curvature equation (4.13) and equation (4.14) are as-
sociated with a front with smooth boundary whenu0 is locally Lipschitz continuous.
(2) Consider equation (4.15) withg(q) = g(|q|) continuous inRN . Suppose that

1

r2

(
1− C

r2

)
� g(r) <

1

r2 for everyr > 0, (9.11)

and, in addition, thatg is aC1 function such that

2g + rg′ � C

(1+ r2)3/2
,

for every r � 0. ThenChou & Kwong [14] gives the gradient bound and the
conclusion of Theorem 9.2 holds. Note that (9.11) is nothing but (4.16) with a strict
inequality on the right-hand side. This strict inequality ensures that the condition
of ellipticity (9.1) is satisfied.

10. Application to convex solutions

In this section, we are interested in convex solutions of (1.4). We also derive
some properties for the generalized evolution of convex sets.

Our main result is

Theorem 10.1. Assume (H1)–(H4) and let u0 be a convex function in R
N .

(i) Suppose that u1 ∈ USC(RN × [0,+∞)) (or u2 ∈ LSC(RN × [0,+∞))) is a
viscosity subsolution (respectively supersolution) of (1.4). If u1(· ,0) � u0 �
u2(·,0) in R

N , then u1 � u2 in R
N × [0,+∞).

(ii) There exists a unique continuous viscosity solution u to (1.4) with initial data
u0. Moreover u(· , t) is convex for all t � 0.

It is worth pointing out that, in the previous theorem, the existence and comparison
properties hold without any restriction on the growth at infinity of the solutions
or the initial data. Moreover, they hold both in the classical and very singular
framework. Therefore, we have a complete answer in this case.

In the particular case of the mean-curvature equation, the solution is in addition
smooth.
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Theorem 10.2. If the initial data u0 ∈ C(RN) is convex, then there exists a unique
continuous solution u of the mean-curvature equation for graphs (1.1); moreover
u ∈ C∞(RN × (0,+∞))∩C(RN ×[0,+∞)) and u(· , t) is convex for any t � 0.

Theorem 10.1 and 10.2 strongly justify the geometrical approach to the study
of (1.4): in the case of convex solutions, the existence of solutions follows (rather)
easily from theL∞ bound of Theorem 7.1 since it implies also a gradient bound;
the existence proof can be done either using Theorem 8.1 or directly on (1.4) as in
[7]. For the comparison result, we point out that working on (2.1) as we do here,
in particular for the mean-curvature equation, provides better results: in [7], we
obtain a comparison result working directly on (1.4) by using a Kruˇzkov change
(u !→ −exp(−u)) but with stronger assumptions onb andu0, which was assumed
to be coercive.

Below, we will give a proof which is simpler and essentially based on the
preservation of convexity for geometric motions governed by (2.1); more precisely,
we have

Theorem 10.3. Suppose that (H1)–(H4) hold. Let v0 ∈ UC(RN) be a convex (or
concave) function and v be the associated solution of (2.1). Then v(· , t) is convex
(respectively concave) for any t � 0.

Proof of Theorem 10.3. This result is a consequence of the one established by
Giga, Goto, Ishii & Sato in [21] that we extend to the very singular case by using
an approximation argument.

Step 1. We define, for anyε > 0 and(p,M) ∈ R
N+1 × SN+1,

Fε(p,M) =
{
ϕε(1/py)F (p,M) if py �= 0,

0 if py = 0,

whereF appears in (2.1) andϕε is a smooth nonnegative real-valued function with
compact support in[−2/ε,2/ε] and such thatϕε(r) = 1 for r ∈ [−1/ε,1/ε]. The
Fε ’s satisfy assumptions (F1)–(F4) and thus we can apply for eachε the results of
Giga,Goto, Ishii&Sato [21] and get, for anyT > 0, a solutionvε ∈ UC(RN+1×
(0, T )) of

∂vε

∂t
+ Fε(Dvε,D

2vε) = 0 in R
N+1 × (0, T ) (10.1)

with initial data v0. Moreover, sincev0 is convex andFε remains linear in the
Hessian, we learn also from [21] thatvε(· , t) is convex for anyt � 0.

Step 2. Our aim is now to show that the family(vε)ε>0 is locally bounded. To this
end, we introduce

χ(z, t) = a|z|2 + b + Ct.

Sincev0 ∈ UC(RN+1) there exista, b ∈ R such thatv0 � χ(· ,0), and sincevε
has at most linear growth,χ is greater thanvε at infinity for all ε > 0.

Moreover, if follows from (H1) thatF is bounded on bounded set and so are the
Fε ’s uniformly inε. Then, an easy computation of the derivatives ofχ shows that, up
to takingC sufficiently large independent ofε, the functionχ(z, t) = a|z|2+b+Ct
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is a smooth supersolution of (10.1). It follows thatvε � χ for all ε > 0. Reasoning
in the same way with a subsolution, we find that the family(vε)ε>0 is locally
bounded independently ofε.

Step 3. From the previous step we are able to introduce the “half-relaxed-limits”v

andv of the family(vε)ε>0. Since(Fε) tends toF locally uniformly on(RN+1 −
D) × SN+1, we find, from the stability result, that they are respectively sub- and
supersolution of (2.1) with initial datav0. Finally, from the comparison result of
Theorem 4.1, we learn thatv = v = v and therefore that the family(vε)ε>0
converges locally uniformly tov asε tends to 0. It follows thatv(· , t) is convex for
any t ∈ [0, T ). Since we can repeat the arguments for anyT � 0, this completes
the proof. � 

We continue with

Lemma 10.1. Let �0 = Graph(u0). If u0 is convex in R
N , then the signed-distance

d(· , �0) (see (5.3) for a definition) is concave.

Proof of Lemma 10.1. It is sufficient to show that, for anyzi = (xi, yi) ∈
R
N+1, i ∈ {1,2}, we have

v0

(
z1 + z2

2

)
� v0(z1)+ v0(z2)

2
. (10.2)

To this end, we setz = (z1+z2)/2 and denote byPz the hyperplane which contains
z′ ∈ �0 such thatv0(z) =± |z − z′| and is orthogonal toz − z′. At this stage, we
have to distinguish many cases depending on the position ofz1, z2 relatively to
�0. Since their studies are similar, we provide the proof of (10.2) only in the case
z1 ∈ {v0 � 0}, z2 ∈ {v0 � 0} andv0(z) = −|z − z′|. In this case, sinceu0 is
assumed to be convex,Pz ⊂ {v0 � 0}; thus we have

v0(z1) = d(z1, �0) � dist(z1,Pz), v0(z2) = d(z2, �0) � −dist(z2,Pz).

(10.3)

But, using the orthogonal projection onPz, we see that

|z− z′| = d(z2,Pz)− d(z1,Pz)

2
= −v0(z) (10.4)

and combining (10.3) and (10.4), we get (10.2)� 
We are now able to give the proof of the main result.

Proof of Theorem 10.1. We begin with (i). Letu0 be a convex function onRN

andv0 = d(· ,Graph(u0)). From Lemma 10.1,v0 is concave. Therefore, applying
Theorem 10.3, the associated solutionv of (2.1) is also concave with respect to the
space variable at any timet � 0.Assume then by contradiction thaty2 = u2(x, t) <

u1(x, t) = y1 for some(x, t) ∈ R
N × [0,+∞). It follows from Theorem 6.1 that

v(x, y2, t) � 0 andv(x, y1, t) � 0. Thus from Lemma 6.1,v(x, · , t) ≡ 0 on
[y2, y1]. Since it is a concave function, it implies thatv(x, · , t) ≡ 0 on [y2,+∞)

which is a contradiction with Lemma 8.1.
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We turn to the proof of (ii). Applying the previous comparison result to the
extremal solutionsu+ andu− we find that they are equal to the same continuous
functionu, such that{v(· , t) = 0} = Graph(u(· , t)) for all t � 0, which turns out
to be the unique continuous viscosity solution of (1.4). Sincev(· , t) is concave,
u(· , t) is convex for anyt � 0. This completes the proof of (ii).� 

We conclude this section with some consequences of Theorem 10.3 for the
geometrical evolution of sets in the convex case.

Theorem 10.4. Let ?+
0 be any open convex subset of R

N+1 with boundary �0 and
let (?+

t , ?
−
t , �t )t�0 be the generalized evolution of (?+

0 , ?
−
0 , �0) in the sense

of Section 5. Then, while ?+
t �= ∅, it remains convex and �t is its boundary. In

particular, �t has empty interior in R
N+1.

This result is known in the case of motion by mean curvature of compact convex
sets (seeEvans & Spruck [18], Soner [32], Ilmanen [24]). Here, the result holds
for possibly noncompact hypersurfaces (like graphs for instance) and for general
motions governed by (2.1). Note that we get immediate properties of regularity of
the front at each timet before extinction: in the general case the front is locally a
Lipschitz continuous graph; in the case of the mean-curvature equation, the front
is even a smooth hypersurface (for the regularity issue, seeEvans & Spruck [19]
andImbert [25]).

Proof of Theorem 10.4. Let v be the unique solution of (2.1) with initial data
v0 = d(· , �0) associated with�0 via the level-set approach. Lett � 0 be such that
?+
t �= ∅. From Theorem 10.3,v(· , t) is concave; thus?+

t is convex. To prove that
∂?+

t = �t , we argue by contradiction, assuming there existsz0 ∈ �t andr > 0
such thatB(z0, r) ∩ ?+

t = ∅. We havev(z0, t) = 0 andv(· , t) � 0 onB(z0, r).
Sincev(· , t) is concave, it follows thatv(· , t) � 0 inR

N+1 which is a contradiction
with ?+

t �= ∅. � 
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Université de Tours
Parc de Grandmont
37200 Tours, France

(Accepted October 29, 2001)
Published online April 22, 2002 – c© Springer-Verlag (2002)


