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Abstract

We consider the asymptotic behavior of solutions of systems of inviscid or vis-
cous conservation laws in one or several space variables, which are almost periodic
in the space variables in a generalized sense introduced by Stepanoff and Wiener,
which extends the original one of H. Bohr. We prove that ifu(x, t) is such a solution
whose inclusion intervals at timet , with respect toε > 0, satisfylε(t)/t → 0 as
t → ∞, and such that the scaling sequenceuT (x, t) = u(T x, T t) is pre-compact
asT → ∞ in L1

loc(R
d+1+ ), thenu(x, t) decays to its mean valuēu, which is in-

dependent oft , ast → ∞. The decay considered here is inL1
loc of the variable

ξ = x/t , which implies, as we show, thatMx(|u(x, t)− ū|) → 0 ast → ∞, where
Mx denotes taking the mean value with respect tox. In many cases we show that,
if the initial data are almost periodic in the generalized sense, then so also are the
solutions. We also show, in these cases, how to reduce the condition on the growth
of the inclusion intervalslε(t) with t , ast → ∞, for fixedε > 0, to a condition on
the growth oflε(0) with ε, asε → 0, which amounts to imposing restrictions only
on the initial data. We show with a simple example the existence of almost periodic
(non-periodic) functions whose inclusion intervals satisfy any prescribed growth
condition asε → 0. The applications given here include inviscid and viscous scalar
conservation laws in several space variables, some inviscid systems in chromatog-
raphy and isentropic gas dynamics, as well as many viscous 2× 2 systems such as
those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial
viscosity, among others. In the case of the inviscid scalar equations and chromatog-
raphy systems, the class of initial data for which decay results are proved includes,
in particular, theL∞ generalized limit periodic functions. Our procedures can be
easily adapted to provide similar results for semilinear and kinetic relaxations of
systems of conservation laws.
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1. Introduction

The study of the asymptotic behavior of the solutions of nonlinear conservation
laws goes back to the pioneering paper ofHopf [30] on the Burgers equation, which
started the modern analytical theory of conservation laws and may be seen as its
second major landmark after the foundational 1860 paper ofRiemann [39]. In the
paper referred to, Hopf introduces the vanishing-viscosity method which involves
adding an artificial viscosity to the original equation, solving the approximating
equation, and then sending the viscosity coefficient to zero. By means of a tricky
tranformation of the dependent variables, now called the Hopf-Cole transfomation,
which transforms the viscous Burgers equation into the heat equation, he was able
to obtain an explicit formula for the solutions. This was then used to prove the con-
vergence of the vanishing-viscosity solutions and also provided an explicit formula
for the solution of the inviscid equation. The work of Hopf was followed by a series
of papers ofOleinik, surveyed in [38], establishing existence and uniqueness of
solutions of scalar conservation laws in one space variable with a strictly convex
flux function, which satisfy an admissible (entropy) condition on the points of dis-
continuity introduced by her. Oleinik’s entropy condition was not only crucial for
the uniqueness of the solutions but alone can explain the asymptotic behavior of
such solutions in two important representative cases: periodic and compact sup-
ported initial data (see [42]). However, the problem of the asymptotic behavior of
the entropy solutions of scalar conservation laws with strictly convex flux function
was first solved to a large extent byLax, in his well-known paper [33]. Therein, Lax
considered the general class of initial datau0 ∈ L∞(R) satisfying the condition
that the limit

M(u0) = lim
L→∞

1

L

∫ a+L

a

u0(x) dx

exists uniformly ina ∈ R. This includes the two special cases mentioned above.
For this general class of initial data, Lax proves the decay of the solution in theL∞
norm toM(u0) ast → ∞. His analysis is heavily based in an explicit formula for
the solution found by him, motivated by Hopf’s formula. The decay property for
such a general class of initial data is still unknown for flux functions which are not
strictly convex. Also, as far as we are aware, the same general result is unavailable
for the corresponding viscous equation!

Concerning periodic initial data, important progress was achieved byGlimm&
Lax in their influencial paper [28]. Therein, they prove the global existence of an
entropy solution of the Cauchy problem for a general class of strictly hyperbolic
genuinely nonlinear 2× 2 systems of conservation laws, forL∞ initial data of
small oscillation. The solutions are constructed through the Glimm scheme and the
regularization property is also shown to be a consequence of stronger estimates for
the interaction of waves holding for 2×2 systems, proved byGlimm in his celebrated
paper [27]. For periodic initial data, they prove that the solution so obtained decays
in theL∞ norm at a rateO(t−1). More recently, the study of the asymptotic structure
of general periodicBVloc entropy solutions of systems in the same class as those
considered by Glimm and Lax, possessing the same decay property, was analyzed
in detail byDafermos [17], using his method of generalized characteristics. For
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scalar conservation laws in two space variables withBVloc periodic initial data and
a nonlinearity condition on the flux functions, the decay of the periodic entropy
solutions in theL1

loc norm was proved byEngquist & E [21].
In [8], Chen & Frid establish a connection between the decay of periodic en-

tropy solutions,u(x, t), in theL1
loc(R

d)metric ast → ∞ and the pre- compactness
in L1

loc(R
d+1+ ) of the associated scaling sequenceuT (x, t) = u(T x, T t), T > 0.

Here and in what follows we denote theLp spaces with no reference to the range
R
n. They show that the pre-compactness ofuT in L1

loc(R
d+1+ ) implies the decay in

L1
loc(R

d) of those solutions, ast → ∞. With the help of compactness results, such
as those based on the compensated-compactness theory (e.g. [19,20,6,35,36,31,
7,12,26], etc.) and the one based on the kinetic formulation for scalar conserva-
tion laws in several space variables in [34], it was possible to obtain the decay in
L1

loc ast → ∞ of largeL∞ periodic entropy solutions of many among the most
representative systems of the theory, including, in particular, the Euler equations
for isentropic gas dynamics, nonlinear elasticity and scalar conservation laws in
several space variables with flux functions satisfying a nonlinearity condition. The
result was also applied to obtain the decay of periodic solutions of systems of con-
servation laws with relaxation, in connection with results in [13,14] also based on
the compensated-compactness theory. On the other hand, forviscoussystems of
conservation laws which are endowed with a strictly convex entropy, the decay of
periodic solutions is in general easier and may be obtained by the usual energy
estimates as, for instance, those obtained in [29].

The purpose of this paper is first to establish an extension of the main result in [8]
suitable for the study of the decay of generalized almost periodic solutions and then
discuss several applications. The theory of almost periodic functions was founded
by Bohr [4], in the context of continuous functions, and further extended to the
context of measurableLp

loc functions byWiener [47],Stepanoff [43],Weyl [46],
Besicovitch [1] andBesicovitch & Bohr [2] (see also [23]). For a complete
account of this theory we refer also to the books ofBohr [3], Besicovitch [1] and
Favard [22]. Here we will use a generalized concept of almost periodic functions
which was introduced independently by Wiener and Stepanoff in the papers just
referred to. For definitions and properties used in this paper, concerning generalized
almost periodic functions, see Appendix A. We consider the asymptotic behavior
of solutionsu(x, t) of systems of inviscid or viscous conservation laws in one or
several space variables, which are almost periodic in the space variablesx in the
generalized sense of Stepanoff and Wiener, locally uniformly in the time variable
t � 0. The latter means that ifτ is anε-almost period ofu(x, t), then it is also an
ε-almost period ofu(x, s) for 0 � s � t . We prove that if the inclusion intervals
of u(x, t) at timet , with respect toε > 0, satisfylε(t)/t → 0 ast → ∞, and the
scaling sequenceuT (x, t) = u(T x, T t) is pre-compact asT → ∞ in L1

loc(R
d+1+ ),

thenu(x, t) decays to its mean value

ū = lim
L→∞

1

(2L)d

∫
|x|∞�L

u(x, t) dx, (1)

which is independent oft , as t → ∞. Here we define|x|∞ = max{|xi | : i =
1, . . . , d}. The decay considered here is inL1

loc of the variableξ = x/t , which
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implies, as we show, thatMx(|u(x, t) − ū|) → 0 ast → ∞, where byMx we
denote the operation of taking an average with respect tox, that is,

Mx(ψ(x, t)) = lim
L→∞

1

(2L)d

∫
|x|∞�L

ψ(x, t) dx, (2)

which always exists ifψ(x, t) is (generalized) almost periodic inx. In many cases
we show that the solutions are almost periodic in the generalized sense if the initial
data are. We also show, in these cases, how to reduce the condition on the growth
of the inclusion intervalslε(t) with t , ast → ∞, for fixed ε > 0, to a condition
on the growth oflε(0) with ε, asε → 0, which amounts to imposing restrictions
only on the initial data. We show with a simple example the existence of almost
periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed
growth condition asε → 0.

The applications given here include inviscid and viscous scalar conservation
laws in several space variables, some inviscid systems in chromatography and
isentropic gas dynamics, as well as many viscous 2× 2 systems such as those of
nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity,
among others. In the case of inviscid scalar equations and chromatography systems,
the class of initial data for which decay results are proved includes, in particular,
theL∞ generalized limit-periodic functions.

We remark that, although we restrict our discussion to solutions uniformly
bounded inL∞ in order to keep a uniform treatment, most results presented here,
in particular Theorem 1 and Theorem 5, can be suitably modified in order to be
extended to the case of uniform bound inLp, 1 � p < ∞. The casep = 2 is
of special interest in connection with existence and compactness results obtained
in this context (see, e.g., [25]). We also remark that, following a procedure similar
to the one in [8], the discussion about existence and decay of almost periodic so-
lutions can be adapted to the relaxation approximations. This extension becomes
especially easy for the semilinear or kinetic approximations. For these relaxation
approximations, the proof of the almost periodicity of the solution is very similar to
the one for viscous approximations given in Theorem 5 of the present paper, based
on Duhamel’s principle. Also in connection with semilinear and kinetic approxi-
mations we mention the recentL∞ uniform boundedness and compactness results
of Serre [41]. See alsoTzavaras [45] for compactness based onL2 uniform
estimates concerning the rate-type relaxation system in viscoelasticity.

The remainder of this paper is organized as follows. In Section 2 we prove our
general theorem on the decay of almost periodic solutions of inviscid or viscous
multidimensional systems of conservation laws. In Section 3 we analyze the case
of the inviscid scalar conservation laws in several space variables. In Section 4 we
discuss the application to some inviscid systems in chromatography. In Section 5
we give the application to some inviscid systems in isentropic gas dynamics. In
Section 6 we establish a general result concerning multidimensional viscous sys-
tems of conservation laws. In Section 7 we comment on several applications of the
theorem of Section 6, which include well-known systems such as those of Euler
equations for isentropic gas dynamics and nonlinear elasticity with artificial vis-
cosity. In Appendix A we recall the definitions and some basic facts about almost
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periodic functions and show how to construct almost periodic (non-periodic) func-
tions whose inclusion intervals with respect toε > 0 satisfy any prescribed growth
condition withε asε → 0.

2. Decay of almost periodic solutions

We consider a multidimensional viscous or inviscid system of conservation laws

∂tu +
d∑

k=1

∂xkf
k(u) =

∑
k l

∂2
xkxl

ak l(u), x ∈ R
d , t > 0, (3)

whereu(x, t) ∈ U ⊆ R
n, for some open setU , andf k, ak l : U → R

n are smooth
functions, for which an initial condition has been prescribed:

u(x,0) = u0(x). (4)

A smooth functionη : U → R is an entropy for (3) if there are smooth
functionsqk, bk l : U → R, k, l ∈ {1, . . . , d}, called the associated entropy-fluxes
and entropy-viscosities, respectively, such that

∇qk = ∇η∇f k, ∇bk l(u) = ∇η∇ak l, k, l ∈ {1, . . . , d}. (5)

If η is strictly convex, (5) implies that the matrices∇f k are simultaneously sym-
metrizable by∇2η and, in particular,ξ1∇f 1 + · · · + ξd∇f d is diagonalizable, for
any(ξ1, . . . , ξd) ∈ R

d . The latter is the condition for the system (3) to be hyperbolic
in the case whereak l(u) ≡ 0 for all k, l = 1, . . . , d.

In this paper, we will only consider bounded measurable solutions, although the
results hold also with slight adaptations in the more general case ofL

p
loc solutions.

Definition 1. We say thatu ∈ L∞(Rd+1+ ) is an entropy solution (or simply a solu-
tion) of (3), (4) if for any non- negativeφ ∈ C1

0(R
d+1) and for any convex entropy

η, with associated entropy-fluxes and entropy-viscositiesqk, bk l , k, l = 1, . . . , d,
such that

∑
k l

v�
k ∇2η(u)∇ak l(u)vl � 0 for all (v1, . . . , vd) ∈ (Rn)d, (6)

we have
∫∫

R
d+1+

{
η(u)φt +

∑
qk(u)φxk +

∑
bk l(u)φxkxl

}
dx dt

+
∫

Rd

η(u0)φ(x,0) dx � 0.

(7)
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As usual, since the coordinate functions and their oppositesπi±(u) = ±ui ,
i = 1, . . . , n, are obviously convex entropies with associated entropy-fluxes and
entropy-viscosities±f k,±ak l , respectively, which trivially satisfy (6), the inequal-
ity (7) with η(u) = πi±(u), i = 1, . . . , n, implies thatu is a weak solution of (3),
(4), i.e., the equation∫∫

R
d+1+

{
uφt +

∑
f k(u)φxk +

∑
ak l(u)φxkxl

}
dx dt

+
∫

Rd

u0(x)φ(x,0) dx = 0,

(8)

holds for anyφ ∈ C1
0(R

d+1). Whenak l(u) ≡ 0,k, l = 1, . . . , d, entropy solutions
are in general non-smooth, which is a basic fact in the theory of conservation laws
(see, e.g., [18,40,42]).

We are interested in the asymptotic behavior of solutionsu(x, t) of (3), (4)
which are generalized almost periodic (a.p.) functions, in the sense of Stepanoff-
Wiener, which we abridge by saying thatu(x, t) is S-a.p., in thex variable, locally
uniformly in t � 0. For definitions and basic properties of generalized almost
periodic functions see Appendix A. By locally uniformly int � 0 we mean that if
τ is anε-almost period ofu(x, t), then it is also anε-almost period ofu(x, s), for
0 � s � t .

As in [8], we denote byuT (x, t), T > 0, the scaling sequence associated with
u(x, t) defined by

uT (x, t) = u(T x, T t). (9)

Set

ū = lim
L→∞

1

(2L)d

∫
|x|∞�L

u0(x) dx. (10)

We may now state our general decay result for almost periodic solutions of (3),
(4).

Theorem 1. Let u(x, t) be a solution of(3), (4) which isS-a.p. inx, locally uni-
formly in t � 0. Let lε(t) denote an inclusion interval ofu(x, t) with respect to
ε > 0. Assume the following:

(i) lε(t)/t → 0 ast → ∞;
(ii) uT (x, t) is pre-compact inL1

loc(R
d+1+ ) asT → ∞.

ThenuT → ū asT → ∞ in L1
loc(R

d+1+ ) and

lim
T→∞

1

T

∫ T

0
Mx(|u(x, t) − ū|) dt = 0. (11)

Moreover, in the inviscid case whereak l(u) ≡ 0, for all k, l, if (3) is endowed with
a strictly convex entropy, thenu(ξ t, t) → ū in L1

loc(R
d), ast → ∞. In particular,

Mx(|u(x, t) − ū|) → 0 ast → ∞. (12)
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The latter holds also in the viscous case,ak l(u) �= 0, for somek, l, provided that(3)
is endowed with a strictly convex entropy satisfying(6) and∇xu(x, t) is uniformly
bounded inRd × [t0,∞) for somet0 > 0.

Proof. The method of the proof is similar to the one in [8]. Consider an increasing
sequence{Tk} ⊆ (0,∞), with Tk → ∞ ask → ∞, such thatuTk (x, t) converges
in L1

loc(R
d+1+ ) to a certainL∞ functionū(x, t). We will show thatū(x, t) = ū, a.e.

in R
d+1+ , whereū is given by (10). We first show that, for almost allt > 0, ū(x, t)

is independent ofx. For that, givenε > 0 andt0 > 0, we consider the set

Qε,t0 =
{ τ

Tk
: τ is anε- almost period ofu(·, Tkt0)

}
.

We notice thatQε,t0 is dense inR
d . This is clear from the fact that, since

lε(Tkt0)/Tk → 0 asTk → ∞, given any cube with edge of lengthδ > 0, if
lε(Tkt0)/Tk < δ, we can find a vectorτ/Tk ∈ Qε,t0 inside this cube. We will
show that, for anyy ∈ R

d , we haveū(x + y, t) = ū(x, t) for a.e.(x, t) ∈ R
d+1+ .

Now, let φ(x, t) be any continuous function with compact support contained in
[−L0, L0]d × [0, t0], and lety ∈ R

d be given. By passing to a subsequence if
necessary, we can findyk ∈ Qε,t0 such thatyk → y ask → ∞, andyk is an
ε-almost period ofuTk (x, t) for 0 � t � t0. We then have,
∫

R
d+1+

ū(x + y, t)φ(x, t) dx dt = lim
k→∞

∫
R
d+1+

uTk (x + y, t)φ(x, t) dx dt

= lim
k→∞

∫
R
d+1+

uTk (x, t)φ(x − y, t) dx dt

= lim
k→∞

∫
R
d+1+

uTk (x, t)φ(x − yk, t) dx dt

= lim
k→∞

∫
R
d+1+

uTk (x + yk, t)φ(x, t) dxdt

� lim
k→∞

∫
R
d+1+

uTk (x, t)φ(x, t) dx dt

+ C(L0, t0)‖φ‖∞ε

=
∫

R
d+1+

ū(x, t)φ(x, t) dx dt + C(L0, t0)‖φ‖∞ε,

and similarly we get∫
R
d+1+

u(x + y, t)φ(x, t) dx dt �
∫

R
d+1+

ū(x, t)φ(x, t) dx dt − C(L0, t0)‖φ‖∞ε,

whereC(L0, t0) is a positive constant depending only onL0, t0. Sinceε > 0 is
arbitrary, we get∫

R
d+1+

ū(x + y, t)φ(x, t) dx dt =
∫

R
d+1+

ū(x, t)φ(x, t) dx dt
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The functionφ being also arbitrary, we finally getū(x + y, t) = ū(x, t), provided
that (x, t) and (x + y, t) are Lebesgue points of̄u. In particular, sincey ∈ R

d

is arbitrary, we get̄u(x1, t) = ū(x2, t) whenever(x1, t) and(x2, t) are Lebesgue
points ofū(x, t) and soū(x, t) = ū(t), for a.e.(x, t) ∈ R

d+1+ , for a certain bounded
measurable function̄u(t) depending only ont .

Now, sinceū is a weak solution of the inviscid correspondent of (3), (4) (ak l(u)

≡ 0, k, l = 1, . . . , d) with initial datau0(x) ≡ ū, x ∈ R
d , we easily see that

ū(t) = ū for a.e.t � 0. Hence, we arrive atuT → ū in L1
loc(R

d+1+ ) asT → ∞.
As usual, this implies

lim
T→∞

1

T

∫ T

0

∫
|ξ |∞�c

|u(ξ t, t) − ū| dξ dt = 0 (13)

for anyc > 0. So, (11) will follow from (18) below, lettingε → 0.
Now let us prove the last part of the statement. We take the Dafermos quadratic

entropyα(u, ū) associated with a strictly convex entropyη(u), given by

α(u, ū) = η(u) − η(ū) − ∇η(ū)(u − ū),

with associated entropy-fluxesβk(u, ū) and entropy- viscositiesγk l(u, ū) given by

βk(u, ū) = qk(u) − qk(ū) − ∇η(ū)(f k(u) − f k(ū)),

γk l(u, ū) = bk l(u) − bk l(ū) − ∇η(ū)(ak l(u) − ak l(ū)).

Clearly, we have

∂tα(u, ū) +
∑

∂xkβ
k(u, ū) �

∑
∂2
xkxl

γk l(u, ū), (14)

in the sense of distributions. From (14), as in [9] pp. 317–319, for the inviscid case,
and pp. 352–353, for the viscous case (see also [10], pp. 38–41), using also the
boundedness of∇xu, for t � t0 > 0, in the latter case, it follows that, for any fixed
c > 0, the function

Y (t) =
∫

|ξ |∞�c

α(u(ξ t, t), ū) dξ

is in BVloc(0,∞) and satisfies
dY

dt
(t) � C

t
,

in the sense of measures, for someC > 0. The above inequality, together with (13),
which we may write in the form

lim
T→∞

1

T

∫ T

0
Y (t) dt = 0,

leads, as in the proof of Theorem 2.3 of [9], to the conclusion that

ess lim
t→∞

∫
|ξ |∞�c

|u(ξ t, t) − ū| dξ = 0 (15)

for anyc > 0.
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To prove the decay in terms of mean values, let us partitionR
d in a net ofd-

dimensional cubes with edges of length 3lε(t) parallel to the axes. Denote bySt the
set of such cubes contained in{x ∈ R

d : |x| � ct} for certain fixedc > 0. Clearly,
for eachI ∈ St there is anε- almost periodτI such thatI − τI ⊃ [0,2lε(t)]d . Let
N(t) be the number of elements ofSt . Since,lε(t)/t → 0 ast → ∞, we have
N(t) > 0 and(2c)d/2 � 3dN(t)lε(t)

d/td � (2c)d for t sufficiently large. Hence,
we have∫

|ξ |�c

|u(ξ t, t) − ū| dξ

= 1

td

∫
|x|�ct

|u(x, t) − ū| dx � 1

td

∑
I∈St

∫
I

|u(x, t) − ū| dx

� 1

td

∑
I∈St

∫
I

|u(x − τI , t) − ū| dx − 1

td

∑
I∈St

∫
I

|u(x, t) − u(x − τI , t)| dx

� − ε
[(3lε(t))d ]N(t)

td
+ (3lε(t))dN(t)

td

1

(3lε(t))d

∫
[0,2lε(t)]d

|u(x, t) − ū| dx

� − ε(2c)d + (2c/3)d

2

1

lε(t)d

∫
[0,2lε(t)]d

|u(x, t) − ū| dx. (16)

Now, we partitionR
d in a net of cubes with edges of lengthlε(t) parallel to the

axes. For each such cubeI ′ there exists anε-almost periodτI ′ such thatI ′ − τI ′ ⊆
[0,2lε]d . Hence, we get

Mx(|u(x,t) − ū|)
= lim

s→∞
1

(2slε(t))d

∫
[−slε(t),slε(t)]d

|u(x, t) − ū| dx

� lim
s→∞

1

(2slε(t))d
∑

I ′⊆[−slε(t),slε(t)]d

∫
I ′

|u(x − τI ′ , t) − ū| dx

+ lim
s→∞

1

(2slε(t))d
∑

I ′⊆[−slε(t),slε(t)]d

∫
I ′

|u(x, t) − u(x − τI ′ , t)| dx

� 1

lε(t)d

∫
[0,2lε(t)]d

|u(x, t) − ū| dx + 2dε. (17)

So, from (16) and (17) we obtain

∫
|ξ |�c

|u(ξ t, t) − ū| dξ � (2c/3)d

2
Mx(|u(x, t) − ū|) − 3(2c)d

2
ε, (18)

which, together with (15), gives

ess lim sup
t→∞

Mx(|u(x, t) − ū|) � 3d+1ε,
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and, sinceε can be taken arbitrarily small, we conclude

ess lim
t→∞Mx(|u(x, t) − ū|) = 0,

as desired.

Remark 1. The first part of the statement of Theorem 1 holds also for almost
periodic solutions (in a suitable sense) of the more general class of viscous systems
of the form

∂tu +
∑
k

∂xkf
k(u) =

∑
k,l

∂xk
(
Bk l(u)∂xl u

)
, (19)

as is clear from the proof. The second part also holds provided that we define the
notion of a strictly convex entropyη for (19) to mean now thatη is strictly convex,
there exist functionsqk such that

∇qk(u) = ∇η(u)∇f k(u),

and ∑
k,l

∇2η(u)(Bk l(u)vk, vl) � 0 for all (v1, . . . , vd) ∈ (Rn)d .

3. Scalar conservation laws in several space variables

In this section we consider the initial value problem for a scalar conservation
law in several space variables:

∂tu +
d∑

k=1

∂xkf
k(u) = 0, (20)

u(x,0) = u0(x), (21)

where thef k(u) are smooth functions andu0 is a boundedS-a.p. function defined
in R

d . We are going to apply Theorem 1 to obtain the decay of the entropy solution
of (20), (21) provided thatu0 satisfies a suitable condition on the growth of its
inclusion intervalslε(0) asε → 0. Existence andL1

loc stability of entropy solutions
of (20), (21), withu0 ∈ L∞(Rd), was proved byKruzkov [32]. We now establish
the following theorem.

Theorem 2. Letf (u) = (f 1(u), . . . , f d(u)) satisfy the nonlinearity condition

meas
{
u ∈ R : τ + κ · f ′(u) = 0

} = 0 ∀ (τ, κ) ∈ R
d+1, τ2 + |κ|2 = 1.

(22)Assumeu0 ∈ L∞(Rd) is S-a.p. and there exists a sequence ofS-a.p. functions
u0,ν , ν ∈ N, belonging toL∞(Rd) such thatMx(|u0(x) − u0,ν(x)|) → 0, as
ν → ∞, and so that, for eachν ∈ N, the inclusion intervals ofu0,ν with respect
to ε, lνε (0), satisfyε1/d lνε (0) → 0, asε → 0. Let u(x, t) be the unique entropy
solution of(20), (21). Thenu(ξ t, t) → ū ast → ∞ inL1

loc(R
d), and, in particular,

Mx(|u(x, t) − ū|) → 0 ast → ∞.
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Proof. Let us first consider the case in which the inclusion intervals ofu0 with
respect toε > 0, lε(0), themselves satisfy the growth conditionε1/d lε(0) → 0, as
ε → 0. To apply Theorem 1 we need first to show thatu(x, t) is S-a.p. inx locally
uniformly in t , andlε(t)/t → 0 ast → ∞. Forx ∈ R

d andK > 0, let us denote
by IKx thed-dimensional cube[x1, x1 +K] × · · · × [xd, xd +K], and setI1

x = Ix .
Let

K0 = sup{|f ′(u)|∞ : u ∈ [−‖u0‖∞, ‖u0‖∞]},
andx0 = (1, . . . ,1) ∈ R

d .Kruzkov’s stability theorem [32] gives, for a.e.t > 0,

∫
Ix

|u(y + τ, t) − u(y, t)| dy �
∫
I

2K0t
x−tK0x0

|u0(y + τ) − u0(y)| dy

� (2K0t + 1)d sup
x∈Rd

∫
Ix

|u0(y + τ) − u0(y)| dy.
(23)

So, for anyε > 0, if τ is an almost period ofu0 associated withε/(2K0t + 1)d ,
then it is anε-almost period ofu(x, t), and we may takelε(t) = lε/(2K0t+1)d (0)
as inclusion intervals ofu(x, t) with respect toε. Hence, from the assumption
on the growth oflε(0), asε → 0, we conclude thatlε(t)/t → 0 as t → ∞.
Now, the other hypothesis in Theorem 1, namely, the compactness of the scaling
sequenceuT (x, t) = u(T x, T t) follows from (22) by the compactness result of
Lions, Perthame & Tadmor in [34]. Hence, we can apply Theorem 1 to obtain
the desired conclusion.

Now, let us consider the general case in whichMx(|u0−u0,ν |) → 0, asν → ∞,
for a sequenceu0,ν of S-a.p. functions belonging toL∞(Rd), whose inclusion
intervals with respect toε > 0, lνε (0), satisfy the growth conditionε1/d lνε (0) → 0
asε → 0. LetK be any compact inRd+1+ . Hence, again by Kruzkov’sL1 stability
theorem [32], we obtain positive constantsC(K), L(K) depending only onK such
that, for eachν ∈ N,

∫
K

|uT (x, t) − ū| dx dt �
∫
K

|uT (x, t) − uν T (x, t)| dx dt

+
∫
K

|uν T (x, t) − uν | dx dt + meas(K)|ū − uν |

� C(K)

T d

∫
|y|�L(K)T

|u0(y) − u0,ν(y)| dy

+
∫
K

|uν T (x, t) − uν | dx dt + meas(K)|ū − uν |.

Now, since Theorem 1 applies to eachuν , as was shown above, we get

lim sup
T→∞

∫
K

|uT (x, t)−ū| dx dt � C̃(K)Mx(|u0(x)−u0,ν(x)|)+meas(K)|ū−uν |,
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and so, lettingν → ∞, since by assumptionMx(|u0(x) − u0,ν(x)|) → 0, as
ν → ∞, and,a fortiori, also|ū − uν | → 0, asν → 0, we get

lim
T→∞

∫
K

|uT (x, t) − ū| dx dt = 0.

SinceK is arbitrary we haveuT → ū in L1
loc(R

d+1+ ), asT → ∞. The conclusion
then follows as in the proof of Theorem 1.

Remark 2. Clearly, the hypothesis of Theorem 2 concerning the initial datau0(x)

is satisfied by any generalized limit periodic function belonging toL∞(Rd), that
is, anyS-a.p. function inL∞(Rd) which is a limit ofL∞ purely periodic functions
in the sense of the norm‖ψ‖W = Mx(|ψ |), for ψ ∈ S-a.p.

4. Applications to some inviscid systems in chromatography

In this section we analyze the application of Theorem 1 to some special inviscid
systems of conservation laws for which the compactness of the solution operator
and theL1 stability with respect to initial data have been proved in recent works.
Namely, we are going to consider the initial value problem

∂tu + ∂xf (u) = 0, (24)

u(x,0) = u0(x), (25)

where (24) is then × n chromatography system. The analysis here is very similar
to the case of scalar conservation laws analyzed in Section 3. For this system we
have

fi(u) = kiui

1 + u1 + · · · + un
, i = 1, . . . , n, (26)

whereki are given numbers with

0 < k1 < k2 < · · · < kn.

These systems belong to the so-called Temple class which is characterized by
the following two properties: (1) There exists a complete set of Riemann invari-
ants defined everywhere in the domain off , U ⊆ R

n, that is, a set of func-
tions {ω1(u), . . . , ωn(u)} satisfying∇ωi(u) = li (u), where theli (u) aren lin-
early independent left eigenvectors of∇f (u), i = 1, . . . , n; (2) the level sets
{u ∈ U : ωi(u) = constant} are hyperplanes (cf. [40]). Recently,Bressan &
Goatin [5] constructed a continuous semigroup of solutions on a domain ofL∞
functions, for systems (24) in the Temple class, which are strictly hyperbolic and
genuinely nonlinear, where the trajectories depend Lipschitz continuously on the
initial data in theL1 metric. In [5], the initial data are supposed to take values in a
domainE ⊆ U of the form

E = {u ∈ U : ωi(u) ∈ [ai, bi], i = 1, . . . , n},
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in which the following strong hyperbolicity condition holds:

Given anyn vectorsu1, . . . , un ∈ E, the eigenvalues
λ1(u), . . . , λn(u) of ∇f (u) at these points are such that
λ1(u

1) < λ2(u
2) < · · · < λn(u

n). Moreover, the right
eigenvectorsr1(u1), r2(u

2), . . . , rn(u
n) are linearly inde-

pendent.

(SH)

As remarked in [5] the above assumption is automatically satisfied if the system
is strictly hyperbolic andE is contained in a small neighborhood of a given point.
As in the case of scalar equations analyzed in Section 3, (23) is also valid in the
present situation, withd = 1, as long asu takes its values in a regionE as above
satisfying the condition (SH).

Concerning compactness of the solution operator of (24)–(26), we recall that
this has been proved byJames, Peng & Perthame [31], where the compactness is
achieved through compensated compactness [44,37,19] and a kinetic formulation
for the chromatography system. So, combining theL1 stability theorem in [5], the
compactness theorem in [31], and our Theorem 1 we arrive at the following result.

Theorem 3. Consider the problem(24)–(26). Assume(24), (26)are strictly hyper-
bolic and genuinely nonlinear and thatu0 ∈ L∞(R) is S-a.p. . Suppose that there
exists a sequence ofS-a.p. functionsu0,ν , ν ∈ N, belonging toL∞(R) such that
Mx(|u0(x)− u0,ν(x)|) → 0 asν → ∞, and so that, for eachν ∈ N, the inclusion
intervals ofu0,ν with respect toε, lνε (0), satisfyεlνε (0) → 0 as ε → 0. Suppose
also thatu0 and allu0,ν take their values in a regionE where(SH) is satisfied. Let
u(x, t) be the unique entropy solution of(20), (21). Thenu(ξ t, t) → ū ast → ∞
in L1

loc(R), and, in particular,Mx(|u(x, t) − ū|) → 0 ast → ∞.

5. Applications to some inviscid systems in isentropic gas dynamics

Here we consider the application of Theorem 1 to the relativistic isentropic
Euler equation, which is a 2× 2 system of the form (24) with

(u1, u2) =
(
ρ

1 + (ζ 2v2)/c4

1 − v2/c2 , ρv
1 + (ζ 2v2)/c4

1 − v2/c2

)
, (27)

and

f (u1, u2) =
(
ρv

1 + (ζ 2v2)/c4

1 − v2/c2 , ρ
v2 + ζ 2

1 − v2/c2

)
, (28)

whereζ, c are positive constants representing the sound and light speed, respec-
tively, ρ is the density andv is the velocity of the gas. We observe that in the limit
c → ∞ (27), (28) reduce to the classical Euler isentropic gas dynamics model for
a polytropic gas withγ = 1, that is,

(u1, u2) = (ρ, ρv), f (u1, u2) = (
ρv, ρ

(
v2 + ζ 2)). (29)
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In [16], Colombo & Risebro prove the existence of anL1-Lipschitz continuous
semigroupS, defined on functions of bounded variation, with total variation not
necessarily small, whose trajectories are weak entropy solutions of (24), (27), (28).
Given S-a.p. initial data inBVloc(R), we may apply the existence and stability
result in [16] to obtain the global existence of an entropy weak solution, which is
S-a.p. inx for each fixedt . The growth of the inclusion intervalslε(t), ast → ∞, is
again determined by the growth of the initial inclusion intervalslε(0) asε → 0, but
now not in an explicit way. Nevertheless, we may deduce the existence of a family
of functionsHλ : (0,∞) → (0,∞), λ > 0, satisfyingHλ(s) → ∞ ass → 0+,
such that, iflε(0)/Hλ(ε) → 0 asε → 0, for any fixedλ > 0, thenlε(t)/t → 0
as t → ∞, for each fixedε > 0. The functionsHλ are related to the growth of
T V (u0|(−s, s)) ass → ∞. So, now the restriction on the initial data appears as
a correlation between the growth rate of the inclusion intervals asε → 0 and the
growth rate of the total variation over the intervals(−s, s) ass → ∞.

So, combining theL1 stability theorem in [16], the compactness theorem in
[19], and our Theorem 1 we arrive at the following result.

Theorem 4. Consider the problem(24), (25), (27), (28). Assumeu0 ∈ BVloc(R) is
S-a.p. Then there exists a global weak entropy solution of this problem, which isS-
a.p. inx for eacht > 0. Also, there is a family of functionsHλ : (0,∞) → (0,∞),
λ > 0, satisfyingHλ(s) → ∞ ass → 0+, such that, iflε(0)/Hλ(ε) → 0asε → 0,
for any fixedλ > 0, thenlε(t)/t → 0ast → ∞, for each fixedε > 0. In particular,
if lε(0)/Hλ(ε) → 0 asε → 0, for any fixedλ > 0, thenMx(|u(x, t)− ū|) → 0 as
t → ∞.

6. Viscous systems of conservation laws in several space variables

In this section we consider viscous systems of conservation laws of the form

∂tu +
d∑

k=1

∂xkf
k(u) = <u, t > 0, x = (x1, . . . , xd) ∈ R

d , (30)

whereu(x, t) assumes values in a domainU ⊆ R
n, f k : U → R

n are smooth
functions,k = 1, . . . , d and< denotes the Laplacian operator inR

d . Let the initial
data be given as

u(x,0) = u0(x), (31)

whereu0 ∈ L∞(Rd) is S-a.p. and takes its values in a closed region=̄ ⊆ U
which is positively invariant under the flow generated by (30). Such regions were
characterized in [15] and their existence is known for many particular systems (see
examples in the next section). In the simplest case of scalar equations (d = 1)
invariant compact intervals are obtained from the well-known maximum principle.

For flux functionsf k,k = 1, . . . , d, which are smooth and Lipschitz continuous
over the positively invariant closed region=̄, the existence and uniqueness of global
smooth solutions of (30), (31) is well known and can be constructed through the
procedures in [29]. Concerning these solutions we have the following result.
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Theorem 5. Let=̄be a positively invariant closed region for(30),f k,k = 1, . . . , d,
be smooth overU ⊃ =̄ and Lipschitz continuous over̄=, andu0 ∈ L∞(Rd) be
S-a.p. assuming its values in̄=. Letu(x, t) be the classical solution of(30), (31)
which is defined and smooth inRd × (0,∞). Thenu(x, t) is S-a.p. inx, locally
uniformly in t ∈ [0,∞), and its inclusion intervals with respect toε > 0, lε(t),
satisfylε(t)/t → 0 ast → ∞, provided the inclusion intervals ofu0, lε(0), satisfy
(logε)−1lε(0) → 0 asε → 0. Moreover, if=̄ is bounded then, for anyt0 > 0, ∇xu

is uniformly bounded fort � t0.

Proof. LetK(x, t) be the heat kernel, that is,

K(x, t) = 1

(4πt)n/2
exp(−|x|2/4t).

It is well known that

‖DαK(·, t)‖1 � C(α)

t |α|/2 ,

where, as usual,α = (i1, . . . , id), Dα = ∂
i1
x1 . . . ∂

id
xd and |α| = i1 + · · · + id ,

i1, . . . , id ∈ N. Let u(x, t) be the global solution of (30), (31) which is smooth in
R
d × (0,∞) and uniformly bounded inRd ×[0, T ] for anyT > 0. For anyt0 � 0,

by Duhamel’s formula, it satisfies the representation

u(t) = K(t − t0) ∗ u(t0) −
d∑

k=1

∫ t

t0

Kxk (t − s) ∗ f k(u(s)) ds. (32)

For someτ > 0, consider the operatorL : L∞(Rd × [t0, t0 + σ ]) → L∞(Rd ×
[t0, t0 + σ ]) given by

L(v)(t) = K(t − t0) ∗ u(t0) −
d∑

k=1

∫ t

t0

Kxk (t − s) ∗ f k(v(s)) , ds. (33)

Let C0 be a Lipschitz constant forf k in =̄, k = 1, . . . , d. It can easily be verified
that if σ is such that

dC0
√
σ < 1, (34)

thenL is a contraction inL∞(Rd × [t0, t0 + σ ]). If v(·, t) is uniformlyS-a.p. inx
for t ∈ [t0, t0 + σ ], thenL(v)(·, t) also is and there is a constantC1, independent
of t0, such that if

dS(vτ (t), v(t)) � C1dS(uτ (t0), u(t0)), (35)

then the same inequality holds forL(v), where, forτ ∈ R
d andg, h : R

d → R
n,

we definegτ (x) = g(x + τ), and

dS(g, h) = sup
x∈Rd

∫
Ix

|g(y) − h(y)| dy.
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To prove the second of these assertions we use (33) and obtain

dS(L(v)τ (t),L(v)(t)) � dS(uτ (t0), u(t0))(1 + dC0C1
√
σ)

� C1dS(uτ (t0), u(t0)),

if C1 � 1/(1 − dC0
√
σ). The first assertion follows similarly. Assuming thatσ

satisfies (34), we see that ifτ is an almost period ofu(t0) with respect toε, thenτ
is an almost period ofu(t), for t0 � t � t0 + σ , with respect toC1ε. Indeed, we
define the sequencevν ∈ L∞(Rd × [t0, t0 + σ ]), ν ∈ N, such thatv1(t) ≡ u(t0)

andvν+1 = L(vν). Then, for allν ∈ N, we have

dS(v
ν
τ (t), v

ν(t)) � C1dS(uτ (t0), u(t0)),

and, sinceu is the only fixed point ofL, vν → u in L∞(Rd × [t0, t0 + σ ]) and the
assertion follows. We then easily obtain by induction that ifτ is an almost period
of u0 with respect toε, thenτ is an almost period ofu(t) with respect toC(t/σ)+1

1 ε.
Hence,

lε(t) ≡ l
ε/C

(t/σ )+1
1

(0) (36)

is an inclusion interval foru(·, t)with respect toε. Therefore, if(logε)−1lε(0) → 0
asε → 0, we see from (36) thatlε(t)/t → 0 ast → ∞.

Now, let us prove the uniform boundedness of∇xu in R
d × [δ,∞) for any

δ > 0 (cf. Proposition 2.1 in [24]). It suffices to takeδ = σ , with σ satisfying (34).
If =̄ is bounded, we have‖u(t)‖∞ � r, for all t > 0, for somer > 0. Returning to
(33), we find that there exists aC2 > 0, depending only onC(α), r, C0, d, |α| = 1,
such that, ifv satisfies

‖∂xj v(t)‖∞ � C2√
t − t0

,

then so doesL(v). Hence,u(t) also satisfies the above inequality by the same
fixed-point argument used above, so

‖∂xj u(t)‖∞ � C2√
t − t0

, t0 < t � t0 + σ. (37)

Cover [σ,∞) with overlapping intervals of the formJm = [
mσ
2 ,

(m+2)σ
2

]
, m =

0,1,2, . . . . In each intervalJm, (37) holds witht0 = mσ
2 and, for anyt � σ , there

is am0 � 1 such thatt ∈ Jm0 ∩ Jm0+1, so that from (37) applied in the interval
Jm0 we get

‖∂xj v(t)‖∞ �
√

2C2√
σ

,

and the assertion follows.
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7. Applications

In this section we comment on some applications of Theorem 5 in connection
with Theorem 1 in order to obtain the decay of almost periodic solutions of viscous
systems of conservation laws. Theorem 5 is applicable to the viscous pertubation
of all hyperbolic systems of conservation laws for which the existence of compact
positively invariant regions is known. If in addition the compactness of the scaling
sequenceuT is known, an application of Theorem 1 immediately gives the decay
of the solution of the perturbed viscous system. This includes, in particular, the
viscous perturbations of all systems for which the decay of periodic solutions was
obtained in [8]. We just mention a few examples below.

7.1. Viscous scalar conservation laws

If in (30) n = 1, then, as is well known, there exists a unique uniformly bounded
solution of (30), (31),u(x, t), the uniform boundedness being a consequence of
the usual maximum principle. Hence, if the initial datau0(x) is S-a.p., we find
by using Theorem 5 thatu(x, t) is S-a.p. andlε(t)/t → 0 ast → ∞, provided
(logε)−1lε(0) → 0 asε → 0. Now, again using a compactness result in [34]
we obtain the compactness of the scaling sequenceuT (x, t) and so we can ap-
ply Theorem 1 to prove the decay ofu(x, t) to ū, as t → ∞, in particular that
Mx(|u(x, t) − ū|) → 0 ast → ∞. We observe the curious fact that the restriction
over the growth of the inclusion intervals of the initial data asε → 0 is much
stronger in this case than in the inviscid case.

7.2. Nonlinear elasticity with artificial viscosity

Consider the 2×2 one-dimensional system of nonlinear elasticity with artificial
viscosity given by

∂tu1 − ∂xu2 = ∂2
xu1,

∂tu2 − ∂xσ (u1) = ∂2
xu2,

(38)

with σ ′(v) > 0 andvσ ′′(v) > 0 if v �= 0. As is well known (see, e.g. [40]) this
system admits a family of bounded positively invariant regions which may include
any bounded set inR2. Using the principle of invariant regions in [15] we may,
in a standard way, extend the unique local solution to a unique globally defined
uniformly bounded solution of (38), (31). Hence, Theorem 5 is applicable and we
find that the solution isS-a.p. and satisfieslε(t)/t → 0 ast → ∞ as long as
(logε)−1lε(0) → 0 asε → 0. Now,DiPerna’s compactness theorem in [19] im-
plies that the scaling sequenceuT is compact inL1

loc(R
2+). Again, we can apply

Theorem 1 and obtain, in particular,Mx(|u(x, t)− ū|) → 0 ast → ∞. We obtain
the same result for a number of other viscous systems which are also endowed with
bounded positively invariant regions and for which compensated compactness has
been successfully applied such as then× n system of chromatography with Lang-
muir coordinates [31], the quadratic systems in [12], the conjugate type systems in
[26], etc.
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7.3. Isentropic gas dynamics with artificial viscosity

Let us consider the 2× 2 one-dimensional system of isentropic gas dynamics,
for ideal polytropic gases, with an artificial viscosity given by

∂tρ + ∂xm = ∂2
xρ,

∂tm + ∂x

(
m2

ρ
+ p(ρ)

)
= ∂2

xm, p(ρ) = κργ ,
(39)

with γ > 1. This system is also endowed with a family of positively invariant
regions given by−Cρ + ρ

∫ ρ
(
√
p′(ρ)/ρ) dρ � m � Cρ − ρ

∫ ρ
(
√
p′(ρ)/ρ) dρ,

with C > 0 (cf. [20]). If the initial data satisfiesρ0(x) > δ > 0 andm0(x) �
C0ρ0(x), for someC0 > 0, the existence of a unique local solution may be proved
in a standard way; this solution can then be extended as long asρ(x, t) > 0. The
proof that the vacuum (ρ = 0) is not assumed in finite time is then a decisive point
for the global existence of a solution to (39), (31). The proof of this property given
in [20], which assumes square integrability of(ρ0 − ρ̄, m) for a certainρ̄, is not
adequate here since we want to consider almost periodic initial data. Nevertheless,
the proof thatρ remains bounded away from vacuum given in [11] does not make
use of square integrability of the initial data and can be easily adapted to the case
of a Cauchy problem. Indeed, it is based on the fact thatv = 1/ρ satisfies

∂tv − ∂2
x v � ∂x(zv) + z2v

4
,

wherez = m/ρ, and so the maximum principle implies thatv � g, whereg
satisfies

∂tg − ∂2
xg = ∂x(zg) + z2g

4
,

andg(x,0) = v(x,0). Then our problem is reduced to the proof thatg is uniformly
bounded in(0, T ) by someC(T ) provided thatz is uniformly bounded, which
is the case if(ρ,m) belongs to one of the positively invariant regions. This is
achieved using the integral representation ofg through Duhamel’s principle, and
its contractive property for small time intervals as in the proof of Theorem 5. In
this way the global existence of a solution to (39), (31) follows. Now, since the
flux function of (39) is Lipschitz continuous over any one of the invariant regions,
we can still apply Theorem 5, so that the solution will beS-a.p. if so is the initial
condition, and inclusion intervals will satisfy the growth condition with time as
long as the inclusion intervals of the initial data satisfy the corresponding growth
condition in the statement of Theorem 5. Since the compactness of the scaling
sequence can be obtained from the compactness results in [20] (γ = 1+2/(2m+1),
m = 2,3, . . . ), [6] (1 < γ � 5/3), [35] (γ � 3) and [36] (5/3 < γ < 3), we can
apply Theorem 1 to show, in particular, thatMx(|u(x, t) − ū|) → 0, ast → ∞,
with u(x, t) = (ρ(x, t),m(x, t)).
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Appendix A. Almost periodic functions

In this section we recall the definition and some basic properties of the almost
periodic functions that are needed in the paper. This class of functions was intro-
duced byBohr [3] in the context of continuous functions defined in the real line.
According to the original definition, a functionf : R → R (or f : R → C) is
called analmost periodicif, given ε > 0, there exists a numberlε > 0, called an
inclusion interval with respect toε, such that for allx0 ∈ R there exists a number
τ , with x0 � τ � x0 + lε, called anε-almost period or translation number with
respect toε, such that

sup
x∈R

|f (x + τ) − f (x)| � ε.

The fundamental result of the theory developed by Bohr asserts that the almost
periodic functions can be uniformly approximated by trigonometric polynomials,
that is, finite linear combinations of functions of the form sinλx, cosλx, with
λ ∈ R. In particular, the limit (mean value off )

Mx(f ) = lim
L→∞

1

L

∫ a+L

a

f (x) dx,

exists uniformly with respect toa ∈ R.
The definition and all the properties of the almost periodic functions inR can be

immediately extended to continuous functions of several variables,f : R
d → R.

So, denotingIKx = [x1, x1+K]× . . .×[xd, xd +K],K > 0, a continuous function
f : R

d → R is said to be almost periodic if, givenε > 0, there exists a number
lε > 0, called an inclusion interval, such that for allx0 ∈ R

n we can find a vector
τ ∈ I

lε
x0, called anε-almost period, such that

sup
x∈Rd

|f (x + τ) − f (x)| � ε.

A particular subclass of the almost periodic functions is that of thelimit-periodic
functions, that is, those continuous functions which can be uniformly approximated
by continuous periodic functions.

The concept of almost periodic functions was generalized byStepanoff [43],
Wiener [47], Weyl [46] andBesicovitch [1]. According to a definition due to
Stepanoff and Wiener, used in this paper, a functionf : R

d → R (or f : R → C)
in L1

loc(R
d) is ageneralized almost periodic function, or brieflyS-a.p. function, if,

givenε > 0, there exists a numberlε > 0, still called an inclusion interval, such
that for allx0 ∈ R

d , there exists a vectorτ ∈ I
lε
x0, called anε-almost period, such

that

sup
x∈Rd

∫
Ix

|f (y + τ) − f (y)| dy � ε,

whereIx = I1
x . The fundamental property of theS-a.p. functions is that they can

be approximated by trigonometrical polynomials in the metricdS given by

dS(f, g) = sup
x∈Rd

∫
Ix

|f (y) − g(y)| dy.
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In particular, the limit (mean value off )

Mx(f ) = lim
L→∞

1

Ld

∫
ILa

f (x) dx

exists uniformly ina ∈ R
d , and so we may also write

Mx(f ) = lim
L→∞

1

(2L)d

∫
|x|∞�L

f (x) dx,

where|x|∞ = max1�j�d |xj |.
We close this summary by showing that, given any decreasing sequenceεk ↓ 0

ask → ∞, with
∞∑

j=k+1

εj � εk, k = 1,2, . . . ,

it is possible to construct a classical (non-periodic) almost periodic function (actu-
ally, limit-periodic function) whose inclusion intervals satisfylεk = 2(3k). This, in
particular, shows that there exist (non-periodic) almost periodic functions whose
inclusion intervals satisfy whatever growth rate asε → 0 we may wish to pre-
scribe. The construction is trivial. We start with an interval, for instance,(−1,1),
take a functionφ0 in C0(−1,1), and setf = φ0 in (−1,1). Then, we take
φ0− ∈ C0((−3,−1)) andφ0+ ∈ C0((1,3)), such that‖φ0(·±2)−φ0±‖∞ < ε1/2,
defineφ1 = φ0− + φ0 + φ0+ and setf = φ1 in (−3,3). Similarly, we take
φ1− ∈ C0((−9,−3)), φ1+ ∈ C0((3,9)), such that‖φ1(· ± 6) − φ1±‖∞ < ε2/2,
defineφ2 = φ1− + φ1 + φ1+ and setf = φ2 in (−9,9). In this way we can
define inductivelyf in the whole real line. Specifically, assuming thatf = φk
in (−3k,3k) with φk ∈ C0((−3k,3k)), we takeφk− ∈ C0((−3k+1,−3k)) and
φk+ ∈ C0((3k,3k+1)), such that‖φk(· ± 2(3k)) − φk±‖∞ < εk+1/2, define
φk+1 = φk− + φk + φk+ and setf = φk+1 in (−3k+1,3k+1). It is easy to see
that the function so constructed is almost periodic (actually, limit periodic) and
satisfieslεk = 2(3k). For instance, if we want to have(logε)−1lε → 0 asε → 0,

it suffices to choose, say,εk = e−k(3k).
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