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Abstract

We consider the asymptotic behavior of solutions of systems of inviscid or vis-
cous conservation laws in one or several space variables, which are almost periodic
in the space variables in a generalized sense introduced by Stepanoff and Wiener,
which extends the original one of H. Bohr. We prove thai(i, r) is such a solution
whose inclusion intervals at tinre with respect te > 0, satisfyl.(¢)/tr — 0 as
t — oo, and such that the scaling sequenééx, 1) = u(Tx, Tt) is pre-compact
asT — oo in Li (RE™), thenu(x, r) decays to its mean valug which is in-
dependent of, ast — oo. The decay considered here isIuﬁ)C of the variable
& = x/t,which implies, as we show, thaf, (Ju(x, t) —i|) — 0ast — oo, where
M, denotes taking the mean value with respect.tbh many cases we show that,
if the initial data are almost periodic in the generalized sense, then so also are the
solutions. We also show, in these cases, how to reduce the condition on the growth
of the inclusion intervals. (r) with ¢, asr — oo, for fixede > 0, to a condition on
the growth ofl, (0) with ¢, ase — 0, which amounts to imposing restrictions only
on the initial data. We show with a simple example the existence of almost periodic
(non-periodic) functions whose inclusion intervals satisfy any prescribed growth
conditionag — 0. The applications given here include inviscid and viscous scalar
conservation laws in several space variables, some inviscid systems in chromatog-
raphy and isentropic gas dynamics, as well as many viscou® 8ystems such as
those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial
viscosity, among others. In the case of the inviscid scalar equations and chromatog-
raphy systems, the class of initial data for which decay results are proved includes,
in particular, theL*> generalized limit periodic functions. Our procedures can be
easily adapted to provide similar results for semilinear and kinetic relaxations of
systems of conservation laws.
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1. Introduction

The study of the asymptotic behavior of the solutions of nonlinear conservation
laws goes back to the pioneering papeiofr [30] on the Burgers equation, which
started the modern analytical theory of conservation laws and may be seen as its
second major landmark after the foundational 1860 papRrmianN [39]. In the
paper referred to, Hopf introduces the vanishing-viscosity method which involves
adding an artificial viscosity to the original equation, solving the approximating
equation, and then sending the viscosity coefficient to zero. By means of a tricky
tranformation of the dependent variables, now called the Hopf-Cole transfomation,
which transforms the viscous Burgers equation into the heat equation, he was able
to obtain an explicit formula for the solutions. This was then used to prove the con-
vergence of the vanishing-viscosity solutions and also provided an explicit formula
for the solution of the inviscid equation. The work of Hopf was followed by a series
of papers ofOLEINIK, surveyed in [38], establishing existence and uniqueness of
solutions of scalar conservation laws in one space variable with a strictly convex
flux function, which satisfy an admissible (entropy) condition on the points of dis-
continuity introduced by her. Oleinik’s entropy condition was not only crucial for
the uniqueness of the solutions but alone can explain the asymptotic behavior of
such solutions in two important representative cases: periodic and compact sup-
ported initial data (see [42]). However, the problem of the asymptotic behavior of
the entropy solutions of scalar conservation laws with strictly convex flux function
was first solved to a large extentbyx, in his well-known paper [33]. Therein, Lax
considered the general class of initial datae L°°(R) satisfying the condition
that the limit

1 retl
M(ug) = lim — / ug(x)dx
L—oo L J,
exists uniformly ina € R. This includes the two special cases mentioned above.
For this general class of initial data, Lax proves the decay of the solution itfthe
norm toM (ug) ast — oo. His analysis is heavily based in an explicit formula for
the solution found by him, motivated by Hopf’s formula. The decay property for
such a general class of initial data is still unknown for flux functions which are not
strictly convex. Also, as far as we are aware, the same general result is unavailable
for the corresponding viscous equation!

Concerning periodic initial data, important progress was achievéit bym &

Lax in their influencial paper [28]. Therein, they prove the global existence of an
entropy solution of the Cauchy problem for a general class of strictly hyperbolic
genuinely nonlinear X 2 systems of conservation laws, fof° initial data of

small oscillation. The solutions are constructed through the Glimm scheme and the
regularization property is also shown to be a consequence of stronger estimates for
the interaction of waves holding fos2 systems, proved WyLivum in his celebrated

paper [27]. For periodic initial data, they prove that the solution so obtained decays
intheL> norm atarate (r1). More recently, the study of the asymptotic structure

of general periodia® Vioc entropy solutions of systems in the same class as those
considered by Glimm and Lax, possessing the same decay property, was analyzed
in detail byDarerMos [17], using his method of generalized characteristics. For
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scalar conservation laws in two space variables Wity periodic initial data and
a nonlinearity condition on the flux functions, the decay of the periodic entropy
solutions in theLﬁ)C norm was proved b¥ncQuisT & E [21].

In [8], CHEN & FriD establish a connection between the decay of periodic en-

tropy solutionsyu(x, ), in theLlloc(]R") metric ag — oo and the pre- compactness

in Llloc(Ri*l) of the associated scaling sequenddx, t) = u(Tx, Tt), T > 0.
Here and in what follows we denote tii¢ spaces with no reference to the range
R”". They show that the pre-compactness bfin L&,C(Rf’p“l) implies the decay in
L (R?) of those solutions, as— oo. With the help of compactness results, such

a\lc,mt:hose based on the compensated-compactness theory (e.g. [19, 20,6, 35, 36,31,
7,12,26], etc.) and the one based on the kinetic formulation for scalar conserva-
tion laws in several space variables in [34], it was possible to obtain the decay in
Lﬁ)c ast — oo of large L* periodic entropy solutions of many among the most
representative systems of the theory, including, in particular, the Euler equations
for isentropic gas dynamics, nonlinear elasticity and scalar conservation laws in
several space variables with flux functions satisfying a nonlinearity condition. The
result was also applied to obtain the decay of periodic solutions of systems of con-
servation laws with relaxation, in connection with results in [13,14] also based on
the compensated-compactness theory. On the other handsémussystems of
conservation laws which are endowed with a strictly convex entropy, the decay of
periodic solutions is in general easier and may be obtained by the usual energy
estimates as, for instance, those obtained in [29].

The purpose of this paper is first to establish an extension of the main resultin [8]
suitable for the study of the decay of generalized almost periodic solutions and then
discuss several applications. The theory of almost periodic functions was founded
by Bonr [4], in the context of continuous functions, and further extended to the
context of measurablef, . functions byWieNER [47], STEPANOFF [43], WEYL [46],
BEsicoviTcH [1] and BesicoviTcH & BoHR [2] (see also [23]). For a complete
account of this theory we refer also to the bookBofir [3], BEsicoviTcH [1] and
Favarp [22]. Here we will use a generalized concept of almost periodic functions
which was introduced independently by Wiener and Stepanoff in the papers just
referred to. For definitions and properties used in this paper, concerning generalized
almost periodic functions, see Appendix A. We consider the asymptotic behavior
of solutionsu (x, ¢) of systems of inviscid or viscous conservation laws in one or
several space variables, which are almost periodic in the space variaipleise
generalized sense of Stepanoff and Wiener, locally uniformly in the time variable
t 2 0. The latter means thatifis ane-almost period ofi(x, 1), then it is also an
g-almost period of(x, s) for 0 < s < r. We prove that if the inclusion intervals
of u(x, r) at timet, with respect te¢ > 0, satisfyl.(t)/t — 0 ast — oo, and the
scaling sequenc€’ (x, 1) = u(Tx, Tt) is pre-compact ag — oo in L} (R4,
thenu(x, t) decays to its mean value

U= Lll_r)‘noo 20 /ImeLu(x,t)dx, D
which is independent of, ast — oo. Here we defingx|o = maX{|x;| : i =
1,...,d}. The decay considered here islu,;i)C of the variablet = x/¢, which
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implies, as we show, tha¥Z, (|u(x, t) — u|) — 0 ast — oo, where byM, we
denote the operation of taking an average with respect tioat is,

. 1
My (x,0) = lim_ @ e ¥ (x, 1) dx, (2)
which always exists ify (x, t) is (generalized) almost periodic.in In many cases

we show that the solutions are almost periodic in the generalized sense if the initial
data are. We also show, in these cases, how to reduce the condition on the growth
of the inclusion interval$, (r) with 7, ast — oo, for fixede > 0, to a condition

on the growth of, (0) with ¢, ase — 0, which amounts to imposing restrictions

only on the initial data. We show with a simple example the existence of almost
periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed
growth condition ag — 0.

The applications given here include inviscid and viscous scalar conservation
laws in several space variables, some inviscid systems in chromatography and
isentropic gas dynamics, as well as many viscous2systems such as those of
nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity,
among others. In the case of inviscid scalar equations and chromatography systems,
the class of initial data for which decay results are proved includes, in particular,
the L generalized limit-periodic functions.

We remark that, although we restrict our discussion to solutions uniformly
bounded inL*° in order to keep a uniform treatment, most results presented here,
in particular Theorem 1 and Theorem 5, can be suitably modified in order to be
extended to the case of uniform boundZif, 1 £ p < co. The casep = 2 is
of special interest in connection with existence and compactness results obtained
in this context (see, e.g., [25]). We also remark that, following a procedure similar
to the one in [8], the discussion about existence and decay of almost periodic so-
lutions can be adapted to the relaxation approximations. This extension becomes
especially easy for the semilinear or kinetic approximations. For these relaxation
approximations, the proof of the almost periodicity of the solution is very similar to
the one for viscous approximations given in Theorem 5 of the present paper, based
on Duhamel’s principle. Also in connection with semilinear and kinetic approxi-
mations we mention the receht® uniform boundedness and compactness results
of SERRE [41]. See alsol'zavaras [45] for compactness based dif uniform
estimates concerning the rate-type relaxation system in viscoelasticity.

The remainder of this paper is organized as follows. In Section 2 we prove our
general theorem on the decay of almost periodic solutions of inviscid or viscous
multidimensional systems of conservation laws. In Section 3 we analyze the case
of the inviscid scalar conservation laws in several space variables. In Section 4 we
discuss the application to some inviscid systems in chromatography. In Section 5
we give the application to some inviscid systems in isentropic gas dynamics. In
Section 6 we establish a general result concerning multidimensional viscous sys-
tems of conservation laws. In Section 7 we comment on several applications of the
theorem of Section 6, which include well-known systems such as those of Euler
equations for isentropic gas dynamics and nonlinear elasticity with artificial vis-
cosity. In Appendix A we recall the definitions and some basic facts about almost
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periodic functions and show how to construct almost periodic (non-periodic) func-
tions whose inclusion intervals with respectte- 0 satisfy any prescribed growth
condition withe ase — 0.

2. Decay of almost periodic solutions

We consider a multidimensional viscous or inviscid system of conservation laws

d
du+ Y Ay fra) =Y % auw. xeR! t>0, (3)
k=1 kl

whereu(x, t) € U € R", for some open sét, and f*, ay; : U — R" are smooth
functions, for which an initial condition has been prescribed:

u(x,0) = ug(x). 4)

A smooth functionn : &4 — R is an entropy for (3) if there are smooth
functionsgy, by : U — R, k,1 € {1, ..., d}, called the associated entropy-fluxes
and entropy-viscosities, respectively, such that

Vae =V 5 Vb)) = VoVay, klefl,... d}. (5)

If  is strictly convex, (5) implies that the matric&sf* are simultaneously sym-
metrizable byv2y and, in particularg;V /1 + - - - + £,V f¢ is diagonalizable, for
any(€1, ..., &) € R?. The latter is the condition for the system (3) to be hyperbolic
in the case wherey;(u) =0forallk,/ =1,...,d.

In this paper, we will only consider bounded measurable solutions, although the
results hold also with slight adaptations in the more general caséccﬁolutions.

Definition 1. We say that € L“(Ri*l) is an entropy solution (or simply a solu-
tion) of (3), (4) if for any non- negativg € C3(R?*1) and for any convex entropy

n, with associated entropy-fluxes and entropy-viscositfe$;;, k,l = 1, ..., d,
such that
> vl V) Vag (wyy =0 forall vy, ..., vg) € R, (6)
ki
we have

/ / R [1war + 3 a* @ + Y b1 | dx ar
+

()
+/ n(uo)¢ (x,0)dx = 0.
R4
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As usual, since the coordinate functions and their oppositesu) = +u;,
i = 1,...,n, are obviously convex entropies with associated entropy-fluxes and
entropy-viscosities /¥, +ay;, respectively, which trivially satisfy (6), the inequal-
ity (7) with n(u) = m;+(u),i =1, ..., n, implies thatu is a weak solution of (3),
(4), i.e., the equation

/fRd+l[u¢t + Z i )¢y, + Zakl(u)(f)xkx, ] dx dt

(8)
—i—/ uo(x)¢(x,0)dx =0,
R4
holds for anyp € C3(RI*L). Whena;(u) = 0,k,1 = 1, ..., d, entropy solutions
are in general non-smooth, which is a basic fact in the theory of conservation laws
(see, e.g., [18,40,42)).

We are interested in the asymptotic behavior of solutio6s ¢) of (3), (4)
which are generalized almost periodic (a.p.) functions, in the sense of Stepanoff-
Wiener, which we abridge by saying thatx, ¢) is S-a.p., in thex variable, locally
uniformly in ¢+ = 0. For definitions and basic properties of generalized almost
periodic functions see Appendix A. By locally uniformly iz 0 we mean that if
T is ang-almost period ofi(x, t), then it is also ar-almost period of:(x, s), for
0<s <.

As in [8], we denote by:” (x, 1), T > 0, the scaling sequence associated with
u(x, t) defined by

ul (x,1) = u(Tx, Tt). 9)
Set

up(x)dx. (10)

= lim ——
L—oo (ZL)d [*loo<L

We may now state our general decay result for almost periodic solutions of (3),

(4).

Theorem 1. Letu(x, r) be a solution of3), (4) which isS-a.p. inx, locally uni-
formly int = 0. Let/,(z) denote an inclusion interval af(x, r) with respect to
& > 0. Assume the following:

@) I,()/t — 0ast — oo;
(i) u”(x,1)is pre-compactirL} (RT™) asT — oo,

Thenu” — i@ asT — ooin LE (R4™1) and

1T i
Tll—r>noo?/0 M, (lu(x,t) —ul)dt =0. (12)

Moreover, in the inviscid case whetg; (1) = 0, for all &, I, if (3) is endowed with

a strictly convex entropy, then&r, 1) — u in L&)C(Rd), ast — oo. In particular,

M,(lu(x,t) —u]) > 0 ast — oo. (12)
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The latter holds also in the viscous cagg,(1) # 0, for somek, I, provided tha(3)
is endowed with a strictly convex entropy satisfy{@pgand V,u (x, t) is uniformly
bounded ifR? x [tg, co) for somerg > 0.

Proof. The method of the proof is similar to the one in [8]. Consider an increasing
sequencéT;} € (0, oo), with Ty — oo ask — oo, such thai’* (x, 1) converges

in LﬁJC(Ri“) to a certainL® functioni(x, ). We will show thati(x, 1) = u, a.e.

in R4, whereii is given by (10). We first show that, for almost atk 0, ii(x, 1)

is independent of. For that, givere > 0 andrg > 0, we consider the set

T . .
Qetog = {F : T is ane- almost period ofi(-, Tkto)}.
k

We notice thatQ, ,, is dense inR<. This is clear from the fact that, since
le(Txto)/ T — 0 asTy — oo, given any cube with edge of length > O, if
I(Txto)/ T < 8, we can find a vectot/T; € Q. inside this cube. We will
show that, for any € R?, we haveii(x + y, 1) = i(x, 7) for a.e.(x, ) € RE™
Now, let¢(x, ) be any continuous function with compact support contained in
[—Lo, Lol? x [0, 0], and lety € R? be given. By passing to a subsequence if
necessary, we can fingk € Q. such thaty, — y ask — oo, andy; is an
e-almost period of 7k (x, 1) for 0 < ¢t < 9. We then have,

/M s+ 3,08, drdr = im /M WM x4y, D (x, 1) dx di
R+ - R+

= Iim/ ul®(x, )¢ (x — y, t) dx dt
i+1

k—oo JR

— i Ty _
= lim /‘flu (x,)p(x — yg, t)dx dt

k—oo JR

k— 00

= lim / ul* (x + Yk, )P (x, t) dxdt
Ri‘Fl

< lim /d luT"(x,t)qb(x,t)dxdt
+

~ k—oo Jpd+
+ C(Lo, 10)¢llct

= [ i D drdi + C(Lo. )6
R++l
and similarly we get
/ u(x + y. (e 1) dxdi 2 / (e 1) (x, 1) dx di — C(Lo, 1) loot.
Ri‘Hl Ri+l

whereC (Lo, 1) is a positive constant depending only fg, 7. Sincee > 0 is
arbitrary, we get

f ulx +y,)p(x,t)dxdt _—/ ulx,t)p(x,t)dxdt
Rcl+l RdJrl
+ +
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The functiong being also arbitrary, we finally gat(x + y, t) = u(x, t), provided
that (x, r) and (x + y, r) are Lebesgue points @f. In particular, sincey € R?
is arbitrary, we gefi(x1, t) = u(xz, t) whenever(x1, t) and(xp, t) are Lebesgue
points ofit(x, ) and sqi(x, 1) = i(t),fora.e.(x,t) Ri*l, for a certain bounded
measurable functioi(z) depending only om.

Now, sincei is a weak solution of the inviscid correspondent of (3), ¢4) («)
= 0,k,[ = 1,...,d) with initial dataug(x) = i, x € R?, we easily see that
i(r) = it for a.e.r = 0. Hence, we arrive at” — @ in LE (RT™) asT — oo.
As usual, this implies

1T _
Tlinoo7/0 f|s|oo<c|u($t’t)_u|d§dt=0 (13)

for anyc > 0. So, (11) will follow from (18) below, letting — O.
Now let us prove the last part of the statement. We take the Dafermos quadratic
entropya (1, ) associated with a strictly convex entropgu), given by

o(u, u) =nu) —n() — V@) (u —u),
with associated entropy-fluxe$ («, ir) and entropy- viscositieg; (u, i) given by
B, i) = ¢" ) — ¢ @) — V@ (f* @) - f* @),
Yei(u, i) = bi(u) — bri(u) — V() (ax(u) — ax1()).
Clearly, we have
Orer(u, i8) + Y D B, i) £ D02 yki(u, i), (14)

in the sense of distributions. From (14), as in [9] pp. 317-319, for the inviscid case,
and pp. 352-353, for the viscous case (see also [10], pp. 38—41), using also the
boundedness of ,u, fort = 19 > 0, in the latter case, it follows that, for any fixed

¢ > 0, the function

Y () =/ a(u(ér, 1), u)d§
&loc=c

is in BVjoc(0, 00) and satisfies

in the sense of measures, for sothe- 0. The above inequality, together with (13),
which we may write in the form

1 T
lim —/ Y(t)dt =0,
T—oo T Jo

leads, as in the proof of Theorem 2.3 of [9], to the conclusion that

t—00

ess Iim/ lu(gt, 1) —u|dé =0 (15)
|ElooSc

foranyc > 0.
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To prove the decay in terms of mean values, let us partifitin a net ofd-
dimensional cubes with edges of length(3) parallel to the axes. Denote ISy the
set of such cubes contained{ine R : |x| < cr} for certain fixed: > 0. Clearly,
for eachl € S, there is are- almost periodr; such thatl — t; > [0, 2/, (r)]%. Let
N(t) be the number of elements 6f. Since,l.(r)/t — 0 ast — oo, we have
N() > 0and(2c)?/2 < 3N @)1 (1)?/t? < (2¢)? for ¢ sufficiently large. Hence,
we have

f lu(§t, 1) — ul d§
lgI<e

1 ) 1 )
=3 e lu(x,t) —u|dx = a le% /I lu(x,t) —i|dx
>1 Z/m(x—r, t)—mdx—i Z/|u(x 1) —u(x — 17, 1) dx
= td I 9 l’d 1 9 b
IeS; IeS;
[BL)IN®)  @L@)IN@® 1 _
> _
="F rd + 4 (3l (1))? /[o,zzg(z)]d leCx, £) = & dx
d
> _peyl 4+ 231 u(x, 1) — ii| dx. (16)

2 L Joa.mp

Now, we partitionR? in a net of cubes with edges of lengfthr) parallel to the
axes. For each such cubkthere exists an-almost period;s such thatl’ — z;» €
[0, 21,1¢. Hence, we get

M (Ju(x,t) — ul)

im —— lu(x,t) —uldx
s=00 (251 () st 1)1 (1))

1 §
cm L / lu(x — 7y, 1) —uldx
= M @) / |
s—o00 (2sl.(1)) I'C—sle(1),sl: ()14 !

. 1
+sll>moom Z /I,|M(.x,[)_u(x_f[’,t)|d.x

I/E[*Sls([)aSls(t)]d
1

= L Ji0.2,0)1

lu(x, 1) — it dx + 2%. (17)

So, from (16) and (17) we obtain

(2¢/3)4 3(2¢)4
2

/ lu(gt, 1) —i|ds 2 ———M,(lu(x, 1) —il) — g, (18)
lEI<c 2

which, together with (15), gives

esslim supM, (|lu(x, 1) — i) < 3*2e,

t—>0o0
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and, sinces can be taken arbitrarily small, we conclude
ess limM,(Ju(x,t) —u]) =0,
—>00
as desired.

Remark 1. The first part of the statement of Theorem 1 holds also for almost
periodic solutions (in a suitable sense) of the more general class of viscous systems
of the form

e+ Y O fHw) = 0y, (Bri(w)ogu) (19)
k k.l

as is clear from the proof. The second part also holds provided that we define the
notion of a strictly convex entropyfor (19) to mean now that is strictly convex,
there exist functiong* such that

Vg w) = V)V f* ),

and
Z V25 (u)(Br (v, vp) = 0 forall (vy, ..., vg) € (RN,
k,l

3. Scalar conservation lawsin several space variables

In this section we consider the initial value problem for a scalar conservation
law in several space variables:

d
du+ Y Oy frw) =0, (20)

k=1
u(x, 0) = uo(x), (21)

where thef* (1) are smooth functions and is a bounded-a.p. function defined

in RY. We are going to apply Theorem 1 to obtain the decay of the entropy solution
of (20), (21) provided thatg satisfies a suitable condition on the growth of its
inclusion intervalg, (0) ase — 0. Existence andlloc stability of entropy solutions

of (20), (21), withug € L>®(R%), was proved b]Xruzxkov [32]. We now establish

the following theorem.
Theorem 2. Let f(u) = (fY(u), ..., f¢(u)) satisfy the nonlinearity condition

measlu €eR : t+k- f'(u)=0}=0 V¥(r,k) e R 24 2=1
Assumery € L®(R?) is S-a.p. and there exists a sequencesed.p. functPs
uop, v € N, belonging toL>(R¢) such thatM, (Juo(x) — ug,(x)]) — 0, as
v — o0, and so that, for each € N, the inclusion intervals afg , with respect
to &, 17 (0), satisfye/1’(0) — 0, ase — 0. Letu(x, ) be the unique entropy
solution of(20), (21). Theru(&t, t) — i ast — ooin L&JC(R"), and, in particular,
M, (lu(x,t) —ul) > 0ast — oo.
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Proof. Let us first consider the case in which the inclusion intervalsgofvith
respect te > 0, ,(0), themselves satisfy the growth conditioH“l, (0) — 0, as
& — 0. To apply Theorem 1 we need first to show theat, ¢) is S-a.p. inx locally
uniformly in¢, andl,(r)/t — 0 ast — oo. Forx € R? andK > 0, let us denote
by IxK thed-dimensional cubgxy, x1 + K] x -+ - x [x4, x4 + K], and seTI;L =1I,.
Let

Ko = supll f'()loo : u € [—lluolloo, luollool},

andxp = (1, ..., 1) € RY. Kruzkov’s stability theorem [32] gives, for a.e> 0,

[ ot rn—uinidy < [, o+ - uoldy
I, -°0

x—tKogxg
< (Kot + D)7 sup | uo(y + 1) — uo(y)| dy.
XERd ]x
(23)

So, for anye > 0, if  is an almost period afg associated witls /(2Kot + 1)¢,
then it is ans-almost period of:(x, t), and we may také (1) = le 2K 0t+1)7 (0)
as inclusion intervals ofi(x, r) with respect tas. Hence, from the assumption
on the growth of/,(0), ase — 0, we conclude that.(r)/t — 0 ast — oo.
Now, the other hypothesis in Theorem 1, namely, the compactness of the scaling
sequence” (x, 1) = u(Tx, Tt) follows from (22) by the compactness result of
Lions, PERTHAME & TADMOR in [34]. Hence, we can apply Theorem 1 to obtain
the desired conclusion.

Now, let us consider the general case in Whi€(|ug—ug,,|) — 0,asv — oo,
for a sequenceg, of S-a.p. functions belonging t&.> (R?), whose inclusion
intervals with respect te > 0, 1”(0), satisfy the growth conditioa“[”(0) — 0
ase — 0. LetK be any compact ilR%". Hence, again by Kruzkova! stability
theorem [32], we obtain positive constatélC), L (K) depending only o such
that, for eachy € N,

/|uT(x,t)—12|dxdt§ / lul (x,0) —u’T(x, )| dx dt
K K

+/ lu’ T (x,t) — u”|dx dt + measK)|i — u’
K

< CcK)

luo(y) — uo,v(y)ldy
T JiysLaor ’

+ / T (x,t) — u”|dx dt + meask)|i — u”|.
K
Now, since Theorem 1 applies to each as was shown above, we get

limsup | |ul (x,1)—it|dxdt < C(K)M,(luo(x)—ug,,(x)])+meask)|i —u”|,
T—oo JIK
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and so, lettingy — oo, since by assumptioM, (Jug(x) — ug,(x)[) — O, as
v — oo, and,a fortiori, alsolii — u¥| — 0, asv — 0, we get

lim /|uT(x,t)—IZ|dxdt:0.
T—o00 K

Sincek is arbitrary we hava” — i in Lﬁ)c

then follows as in the proof of Theorem 1.

(R%Y), asT — oo. The conclusion

Remark 2. Clearly, the hypothesis of Theorem 2 concerning the initial data)
is satisfied by any generalized limit periodic function belonging t(R?), that
is, anyS-a.p. function inL>(R%) which is a limit of L> purely periodic functions
in the sense of the noriny||w = M, (|¥]), for ¥ € S-a.p.

4. Applicationsto someinviscid systemsin chromatography

In this section we analyze the application of Theorem 1 to some special inviscid
systems of conservation laws for which the compactness of the solution operator
and theL! stability with respect to initial data have been proved in recent works.
Namely, we are going to consider the initial value problem

o + 9y f(u) =0, (24)
u(x,0) = ug(x), (25)

where (24) is ther x n chromatography system. The analysis here is very similar
to the case of scalar conservation laws analyzed in Section 3. For this system we
have

k,-u,-

i = 5 ‘:1,...,, 26
fi) = g n (26)

wherek; are given numbers with
O<ki<ky<---<ky.

These systems belong to the so-called Temple class which is characterized by
the following two properties: (1) There exists a complete set of Riemann invari-
ants defined everywhere in the domain f/ < R”, that is, a set of func-
tions {w1 (), ..., w,(u)} satisfyingVw; (u) = I;(u), where thel;(u) aren lin-

early independent left eigenvectors Bff (u), i = 1,...,n; (2) the level sets

{u e U : w;i(u) = constangt are hyperplanes (cf. [40]). RecentRessaN &
GoATIN [5] constructed a continuous semigroup of solutions on a domalrof
functions, for systems (24) in the Temple class, which are strictly hyperbolic and
genuinely nonlinegrwhere the trajectories depend Lipschitz continuously on the
initial data in theL! metric. In [5], the initial data are supposed to take values in a
domainE C U of the form

E={ueld : ww)ela,bil, i=1,...,n},
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in which the following strong hyperbolicity condition holds:

Given anyn vectorsu?,...,u" € E, the eigenvalues

Au), ..., A (u) of Vf(u) at these points are such that

M@ < rw?) < --- < A, (u™). Moreover, the right (SH)
eigenvectorsy (ul), ro(u?), ..., ry(u™) are linearly inde-

pendent.

As remarked in [5] the above assumption is automatically satisfied if the system
is strictly hyperbolic ancE is contained in a small neighborhood of a given point.

As in the case of scalar equations analyzed in Section 3, (23) is also valid in the
present situation, witd = 1, as long as takes its values in a regiak as above
satisfying the condition (SH).

Concerning compactness of the solution operator of (24)—(26), we recall that
this has been proved BymEs, PENG & PERTHAME [31], where the compactness is
achieved through compensated compactness [44,37,19] and a kinetic formulation
for the chromatography system. So, combiningtAestability theorem in [5], the
compactness theorem in [31], and our Theorem 1 we arrive at the following result.

Theorem 3. Consider the problert24)(26). Assumg24), (26) are strictly hyper-
bolic and genuinely nonlinear and thag € L>°(R) is S-a.p. . Suppose that there
exists a sequence §fa.p. functionss,, v € N, belonging toL*°(R) such that
M, (luo(x) —ug,»(x)]) > 0asv — oo, and so that, for each € N, the inclusion
intervals ofug,, with respect tee, I (0), satisfysl? (0) — 0ase — 0. Suppose
also thatug and allug,, take their values in a regioR where(SH)is satisfied. Let
u(x, t) be the unique entropy solution ¢20), (21). Thenu(&t,t) — u ast — oo

in LE.(R), and, in particular,M, (ju(x, t) — i|) — 0ast — oo.

5. Applicationsto someinviscid systemsin isentropic gas dynamics

Here we consider the application of Theorem 1 to the relativistic isentropic
Euler equation, which is a 2 system of the form (24) with

1+ @202 /c* 1+ (¢2?)/ct
(u1, u2) = <p Ryl p— yy ) (27)
and
1+ (%2?) /et v2 42
Fluuz) = (pv e /cz), (28)

where¢, ¢ are positive constants representing the sound and light speed, respec-
tively, p is the density and is the velocity of the gas. We observe that in the limit

¢ — 00 (27), (28) reduce to the classical Euler isentropic gas dynamics model for
a polytropic gas withy = 1, that is,

(u1,u2) = (p, pv),  f(uz,uz) = (pv, p(v? + ¢?)). (29)
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In [16], CoLomBo & RisEBRro prove the existence of ah!-Lipschitz continuous
semigroupsS, defined on functions of bounded variation, with total variation not
necessarily small, whose trajectories are weak entropy solutions of (24), (27), (28).
Given S-a.p. initial data inBVjoc(R), we may apply the existence and stability
result in [16] to obtain the global existence of an entropy weak solution, which is
S-a.p. inx for each fixed. The growth of the inclusion intervals(t), ast — oo, is
again determined by the growth of the initial inclusion interval®) ase — 0, but
now not in an explicit way. Nevertheless, we may deduce the existence of a family
of functionsH,, : (0, co) — (0, 00), A > 0, satisfyingH, (s) — oo ass — 0+,
such that, ifl,(0)/H, (¢) — 0 ase — 0, for any fixedr > 0, thenl,(t)/t — O
ast — oo, for each fixede > 0. The functionsH,, are related to the growth of
TV (ug|(—s, s)) ass — oo. So, how the restriction on the initial data appears as
a correlation between the growth rate of the inclusion intervals-as 0 and the
growth rate of the total variation over the intervélss, s) ass — oo.

So, combining the ! stability theorem in [16], the compactness theorem in
[19], and our Theorem 1 we arrive at the following result.

Theorem 4. Consider the problert24), (25), (27), (28). Assumerg € BVipc(R) is
S-a.p. Then there exists a global weak entropy solution of this problem, whieh is
a.p. inx for eachr > 0. Also, there is a family of functionfg;, : (0, co) — (0, 00),

A > 0, satisfyingH, (s) — coass — 0+, suchthat, if.(0)/H,(¢) — 0ass — 0,
forany fixedw > 0, thenl.(¢)/t — 0ast — oo, foreachfixed > 0. In particular,

if I,(0)/H, (¢) — Oase — 0, for any fixedh > 0, thenM, (|u(x, t) —it]) - Oas

t — oo.

6. Viscous systems of conservation lawsin several space variables

In this section we consider viscous systems of conservation laws of the form

d
du+ Y 0y ffu)=Au, t>0, x=(x1,....xs) € R, (30)
k=1

whereu(x, t) assumes values in a domdinc R”, f* : ¢/ — R” are smooth
functionsk = 1, ..., d andA denotes the Laplacian operatofRA. Let the initial
data be given as

u(x, 0) = uo(x), (31)

whereug € L®(RY) is S-a.p. and takes its values in a closed regfonc U
which is positively invariant under the flow generated by (30). Such regions were
characterized in [15] and their existence is known for many particular systems (see
examples in the next section). In the simplest case of scalar equatioasi)
invariant compact intervals are obtained from the well-known maximum principle.
For flux functionsf*,k = 1, . .., d, which are smooth and Lipschitz continuous
over the positively invariant closed regién the existence and uniqueness of global
smooth solutions of (30), (31) is well known and can be constructed through the
procedures in [29]. Concerning these solutions we have the following result.



Decay of Almost Periodic Solutions of Conservation Laws 57

Theorem 5. LetQ be apositively invariant closed region f80), /X, k = 1,...,d,
be smooth ovel/ > Q and Lipschitz continuous ovée, andug € L>(R?) be
S-a.p. assuming its values . Letu(x, r) be the classical solution ¢80), (31)
which is defined and smooth Bf x (0, co). Thenu(x, 1) is S-a.p. inx, locally
uniformly inr € [0, c0), and its inclusion intervals with respect to> 0, [.(¢),
satisfyl.(1)/t — 0ast — oo, provided the inclusion intervals ab, /. (0), satisfy
(loge)~11,(0) — Oase — 0. Moreover, if2 is bounded then, for any > 0, V,u
is uniformly bounded for = 1.

Proof. Let K(x, t) be the heat kernel, that is,

K(x,1) = Wexp(—|x|2/4t).
It is well known that
ID“KC, Dl < ),
where, as usualy = (i1, ...,ig), D* = 3i1...91 and|a| = i1 + -+ + ia,

i1,...,iq € N. Letu(x, t) be the global solution of (30), (31) which is smooth in
R? x (0, oo) and uniformly bounded iiR? x [0, T'] for anyT > 0. For anyrg > 0,
by Duhamel’s formula, it satisfies the representation

d t
u(t) = K(t — tg) * u(tg) — Z/ Ky (t —s) % fk(u(s)) ds. (32)
k=1710

For somer > 0, consider the operatal : L®(R? x [to, 1o + o]) — L® (R x
[t0, To + o]) given by

d .
L)) = Kt — 1g) * u(to) — Z/ Ky (t —s)* fk(v(s)) ,ds. (33)
k=110
Let Co be a Lipschitz constant fof in Q, k = 1, ..., d. It can easily be verified
that if o is such that
dCo/o < 1, (34)

thenZ is a contraction ir.>°(R? x [1g, to + o ]). If v(-, ) is uniformly S-a.p. inx
fort € [to, 10 + o], thenL(v)(-, t) also is and there is a constatit, independent
of rp, such that if

ds(v: (1), v(1)) = Cads(uc(10), u(to)), (35)

then the same inequality holds f6v), where, forr € R? andg, & : RY — R”,
we defineg; (x) = g(x + 1), and

ds(g,h) = sup [ [g(y) —h(y)ldy.

xERd Iy
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To prove the second of these assertions we use (33) and obtain

ds(LW) (1), L)1) = ds(ur(10), u(t0))(1 + dCoC1+/0)
< Cads(uc(10), u(to)),

if C1 2 1/(1 — dCg+/0). The first assertion follows similarly. Assuming that
satisfies (34), we see thatifis an almost period ai (7o) with respect te, thent
is an almost period af(z), for 1o < ¢ < 19 + o, with respect taC1¢. Indeed, we
define the sequenag € L>®°RY x [fg, to + o1), v € N, such thavl(r) = u(ro)
andv’*t! = £("). Then, for allv € N, we have

ds(vy (1), v" (1)) = Cads(uz (t0), u(to)),

and, sincex is the only fixed point ofZ, v* — u in L®(R? x [tg, 1o + o ]) and the
assertion follows. We then easily obtain by induction that i$ an almost period
of ug with respect ta, thenr is an almost period af(¢) with respect tch/")“s.
Hence,

(1) = lg/cir/am(o) (36)

is an inclusion interval fos (-, r) with respect ta. Therefore, ifloge) 1/, (0) — 0
ase — 0, we see from (36) thdt(r)/t — 0 ast — oo.

Now, let us prove the uniform boundedness\a: in R? x [§, oo) for any
8 > 0 (cf. Proposition 2.1 in [24]). It suffices to take= o, with o satisfying (34).
If Qis bounded, we havifu(r) |« < r, forallt > 0, for somer > 0. Returning to
(33), we find that there exists® > 0, depending only o' (), r, Co, d, || = 1,
such that, ifv satisfies
C2
T — 1o

103, v lloc =

then so doe<(v). Hence,u(r) also satisfies the above inequality by the same
fixed-point argument used above, so

C
JE—1o

([0 u(®)lloo = o<t <to+o. (37)

Cover|o, c0) with overlapping intervals of the fornd,, = [%7, %] m =
0.1,2,....Ineach interval/,,, (37) holds withrog = %7 and, for anyr = o, there
isamg = 1 such that € J,,, N Jyo+1. SO that from (37) applied in the interval
JImo We get

V2C;
N

10 v lloo <

and the assertion follows.
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7. Applications

In this section we comment on some applications of Theorem 5 in connection
with Theorem 1 in order to obtain the decay of almost periodic solutions of viscous
systems of conservation laws. Theorem 5 is applicable to the viscous pertubation
of all hyperbolic systems of conservation laws for which the existence of compact
positively invariant regions is known. If in addition the compactness of the scaling
sequence is known, an application of Theorem 1 immediately gives the decay
of the solution of the perturbed viscous system. This includes, in particular, the
viscous perturbations of all systems for which the decay of periodic solutions was
obtained in [8]. We just mention a few examples below.

7.1. Viscous scalar conservation laws

Ifin (30) n = 1, then, as is well known, there exists a unique uniformly bounded
solution of (30), (31)u(x, t), the uniform boundedness being a consequence of
the usual maximum principle. Hence, if the initial dat®(x) is S-a.p., we find
by using Theorem 5 that(x, ¢) is S-a.p. and.(¢)/t — 0 ast — oo, provided
(loge)~Y.(0) — 0 ase — 0. Now, again using a compactness result in [34]
we obtain the compactness of the scaling sequerice, r) and so we can ap-
ply Theorem 1 to prove the decay ofx, r) to i, ast — oo, in particular that
M, (Ju(x,t) —i]) — 0 ast — oo. We observe the curious fact that the restriction
over the growth of the inclusion intervals of the initial datacas> 0 is much
stronger in this case than in the inviscid case.

7.2. Nonlinear elasticity with artificial viscosity

Consider the % 2 one-dimensional system of nonlinear elasticity with artificial
viscosity given by

o] — Oy = 35141, (38)
duz — dyo (u1) = 02up,

with ¢’/(v) > 0 andvs”(v) > 0if v # 0. As is well known (see, e.g. [40]) this
system admits a family of bounded positively invariant regions which may include
any bounded set if®2. Using the principle of invariant regions in [15] we may,

in a standard way, extend the unique local solution to a unique globally defined
uniformly bounded solution of (38), (31). Hence, Theorem 5 is applicable and we
find that the solution isS-a.p. and satisfies (r)/t — 0 ast — oo as long as
(loge)~11,(0) — 0 ase — 0. Now, DIPERNA’S compactness theorem in [19] im-
plies that the scaling sequengé is compact inLlloc(]Ri). Again, we can apply
Theorem 1 and obtain, in particula,, (|u(x, t) — i|) — 0 ast — oo. We obtain

the same result for a number of other viscous systems which are also endowed with
bounded positively invariant regions and for which compensated compactness has
been successfully applied such asithen system of chromatography with Lang-
muir coordinates [31], the quadratic systems in [12], the conjugate type systems in
[26], etc.



60 HErMANO FRID
7.3. Isentropic gas dynamics with artificial viscosity

Let us consider the 2 2 one-dimensional system of isentropic gas dynamics,
for ideal polytropic gases, with an artificial viscosity given by

dip + dm = 02p,
2

m (39)
0rm + 0y (7 + p(p)) =32m, p(p) =«p",

with y > 1. This system is also endowed with a family of positively invariant
regions given by-Cp + p [*(/p'(p)/p)dp S m < Cp — p [P (/p'(p)/p) dp,

with C > 0 (cf. [20]). If the initial data satisfiepg(x) > § > 0 andmg(x) <
Copo(x), for someCyp > 0, the existence of a unique local solution may be proved

in a standard way; this solution can then be extended as lopgvas) > 0. The

proof that the vacuump(= 0) is hot assumed in finite time is then a decisive point
for the global existence of a solution to (39), (31). The proof of this property given
in [20], which assumes square integrability(@f — p, m) for a certainp, is not
adequate here since we want to consider almost periodic initial data. Nevertheless,
the proof thato remains bounded away from vacuum given in [11] does not make
use of square integrability of the initial data and can be easily adapted to the case
of a Cauchy problem. Indeed, it is based on the factihatl/p satisfies

2 z2
9v — 05v < 9y (zv) + o
wherez = m/p, and so the maximum principle implies that< g, whereg
satisfies
2
g — 075 = d(zg) + -
andg(x, 0) = v(x, 0). Then our problem is reduced to the proof thag uniformly
bounded in(0, T) by someC(T) provided thatz is uniformly bounded, which
is the case if(o, m) belongs to one of the positively invariant regions. This is
achieved using the integral representatiory ¢hrough Duhamel’s principle, and
its contractive property for small time intervals as in the proof of Theorem 5. In
this way the global existence of a solution to (39), (31) follows. Now, since the
flux function of (39) is Lipschitz continuous over any one of the invariant regions,
we can still apply Theorem 5, so that the solution will$3a.p. if so is the initial
condition, and inclusion intervals will satisfy the growth condition with time as
long as the inclusion intervals of the initial data satisfy the corresponding growth
condition in the statement of Theorem 5. Since the compactness of the scaling
sequence can be obtained from the compactness results i [200&2/ (2m + 1),
m=23...)[6](1 <y <5/3),[35](y = 3)and [36] (53 < y < 3), we can
apply Theorem 1 to show, in particular, theft (|u(x, ) — i]) — 0, ast — oo,
with u(x, 1) = (p(x, 1), m(x, 1)).
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Appendix A. Almost periodic functions

In this section we recall the definition and some basic properties of the almost
periodic functions that are needed in the paper. This class of functions was intro-
duced byBosr [3] in the context of continuous functions defined in the real line.
According to the original definition, a functiofi : R — R (or f : R — C) is
called analmost periodidf, given ¢ > 0, there exists a numbér > 0, called an
inclusion interval with respect to, such that for alkg € R there exists a number
7, with xo £ 7 £ x0 + I, called ans-almost period or translation number with
respect te, such that

sup|f(x +7) — f(x)| S e.

xeR
The fundamental result of the theory developed by Bohr asserts that the almost
periodic functions can be uniformly approximated by trigonometric polynomials,
that is, finite linear combinations of functions of the form &in cosix, with
A € R. In particular, the limit (mean value of)

1 a+L
M = lim — dx,
=i 2 [ pe s
exists uniformly with respect to € R.

The definition and all the properties of the almost periodic functioisdan be
immediately extended to continuous functions of several variaffle®®? — R.
So,denotingf =[x1,x1+K]x...x[x4, x4+ K], K > 0, acontinuous function
f :R? — Ris said to be almost periodic if, given> 0, there exists a number
I > 0, called an inclusion interval, such that for &l € R" we can find a vector
T€ Ifcg, called are-almost period, such that

Sup|f(x+1)— f(x)| e

xeRd
A particular subclass of the almost periodic functions is that ofithi&-periodic
functionsthatis, those continuous functions which can be uniformly approximated
by continuous periodic functions.

The concept of almost periodic functions was generalizeStippanorr [43],
WIENER [47], WEYL [46] and BesicovitcH [1]. According to a definition due to
Stepanoff and Wiener, used in this paper, a funciioriR? — R (or f : R — C)
in Llloc(Rd) is ageneralized almost periodic functipor briefly S-a.p. function, if,
givene > 0, there exists a numbér > 0, still called an inclusion interval, such
that for allxg € R9, there exists a vectar € Ifgg, called are-almost period, such
that

sup [ [f(y+1)— f(Wldy =&,

xeRd J Iy
wherel, = le. The fundamental property of thea.p. functions is that they can
be approximated by trigonometrical polynomials in the metgigiven by

ds(f,8)=sup [ [f(y)—g)ldy.

XE]Rd Iy
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In particular, the limit (mean value of)
M. (f) = lim ! x)d
X f - L o0 Ld IaL f X X
exists uniformly ina € R, and so we may also write

1
x(f) BeNTTSY flxlméL Sx)dx
where|x|oo = max<;<q |x;|.

We close this summary by showing that, given any decreasing seqgied®
ask — oo, with

00
Z&‘j§8k, k=1,2,...,
j=k+1

it is possible to construct a classical (non-periodic) almost periodic function (actu-
ally, limit-periodic function) whose inclusion intervals satigfy = 2(3%). This, in
particular, shows that there exist (non-periodic) almost periodic functions whose
inclusion intervals satisfy whatever growth ratecas> 0 we may wish to pre-
scribe. The construction is trivial. We start with an interval, for instaned, 1),

take a functiongg in Co(—1, 1), and setf = ¢g in (—1,1). Then, we take

$o- € Co((—3, —1)) andgo+ € Co((1, 3)), suchthafigo(- +2) — Poxlleo < £1/2,
definegy = ¢o_ + ¢o + ¢or and setf = ¢1 in (=3, 3). Similarly, we take

$1- € Co((=9, =3)), ¢1+ € Co((3,9)), such that|1(- = 6) — ¢1+llec < £2/2,
definegr = ¢1- + ¢1 + @11 and setf = ¢2 in (=9, 9). In this way we can
define inductivelyf in the whole real line. Specifically, assuming that= ¢

in (=3¢, 3%) with ¢, € Co((—3¢, 3%)), we takegy_ € Co((—3+1, —3%)) and

Pr € Co((3F, 31, such thatgy (- £ 2(3") — drtlloo < er41/2, define
bes1 = Gk + ¢k + oy and setf = @1 in (=31, 3 It is easy to see
that the function so constructed is almost periodic (actually, limit periodic) and
satisfied,, = 2(3"). For instance, if we want to havéoge) 1/, — 0 ase — O,

it suffices to choose, say, = e *@9.
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