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Abstract

LetM be a planar embedded graph whose arcs meet transversally at the vertices.
Let O(ε) be a strip-shaped domain aroundM, of widthε except in a neighborhood
of the singular points. Assume that the boundary ofO(ε) is smooth. We define
comparison operators between functions onO(ε) and onM, and we derive energy
estimates for the compared functions. We define a Laplace operator onM which is
in a certain sense the limit of the Laplace operator onO(ε)with Neumann boundary
conditions. In particular, we show that thep-th eigenvalue of the Laplacian onO(ε)

converges to thep-th eigenvalue of the Laplacian onM asε tends to 0. A similar
result holds for the magnetic Schr¨odinger operator.

1. Introduction

Modern techniques enable the manufacture of complex networks of mesoscopic
strips, pipes and rings. Systems of this kind are of growing importance in several
physical and technological areas, such as superconductivity [16], optics [11], semi-
conductors manufacturing [10], etc. Their domains are characterized by a small
lateral dimension. Therefore we shall develop an asymptotic theory for a variety of
variational problems there. In this paper we define the basic geometrical structures
and derive a series of fundamental estimates. As an application we characterize the
asymptotic limit of the Laplacian of such domains. In our next paper, [18], we study
the asymptotic limit of the Ginzburg-Landau functional in such networks. Our work
generalizes the results of [21] and [19] where single rings were considered.

LetM be an embedded oriented graph inR
2, and suppose that its arcs intersect

transversally. Assume that all the arcs ofM areC2 manifolds. Then,M is a very
singular manifold, which is however the limit of a sequence of setsO(ε) obtained
by fatteningM: assume that these fattened sets are of width 2ε except in the neigh-
borhood of the singular points ofM, where it is admitted thatO(ε) lies at a distance
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at most 2ε fromM. Then, the operatorAε = −� onO(ε)with Neumann boundary
conditions is well defined; it is a self-adjoint operator inL2(O(ε)) defined via the
energy quadratic form

Eε(u, u) =
∫
O(ε)

|gradu|2 dy,

and its domain is the space of functions in the Sobolev spaceH 2
(O(ε)

)
whose

normal derivative vanishes at∂O(ε).

The setO(ε) is homotopically equivalent toM; hence, all the topological in-
variants ofM can be obtained by a calculation onO(ε) which is a reasonably
nice manifold with boundary. We show here that it is also possible to define a
Laplace-Beltrami operatorA onM, starting from the energy form onM

E(f, f ) =
∫
M

|df |2 dvolM,

wheredvolM is the volume form onM. Of course, this makes sense if we define
the differential of a functionf onM: this is done by taking the differential off
restricted to the interior of the arcs. We find that the domain ofA consists of all
the functions which are continuous, whose restriction to the arcs is inH 2, and such
that the sum of all the outgoing derivatives with respect to the arc-length at the
singular point vanishes: this is a Kirchhoff-type condition. We prove that the above
definitions make sense because the spectrum ofAε converges to the spectrum ofA.
The graphM and appropriate function spaces over it are introduced in Section 2.
The “lace”O(ε) is defined in Section 3. The convergence of the spectrum is proved
in Section 8.

The idea of the proof is to construct a mappingQε fromH 1(M) toH 1
(O(ε)

)
,

and a mappingP ε from H 1
(O(ε)

)
to H 1(M), and to compare the relevant Ray-

leigh quotients. Away from singular points,Qεf is extended as a constant along
the normal, andP εu is the normal average ofu. All the difficulty is concentrated
at the singular points: for instance, ifv is a singular point ofM,Qεf will be taken
equal tof (v) in a neighborhood ofv of sizeO(ε) in O(ε). Before we define a
normal extension, we have first to transformf into anf̂ which is constant around
the singular points ofM, and whoseL2 andH 1 norm are very close to those off ;
this can be done by a piecewise affine transformation of the coordinates; then the
idea of constant normal extension works. The definition ofP ε uses different scales:
we takef to be the normal average ofu at a finite distance from the singular points
ofM; at a distance at mostCε of the junctions, we takeP εu to be the average of the
normal averages along the arms of the junction; in between, we correct the normal
average by a linear interpolation.

The comparison of the Rayleigh quotient forP εu to the Rayleigh quotient
for u relies on a careful estimate for the difference between normal averages on
different branches close to a singular point. In order to prove such an estimate, we
construct bounded differential forms on subpipes joining two particular branches,
while remaining insideO(ε). Because of the particular geometry involved in our
problem, we term those estimates “plumber shop estimates”.We also show a precise
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Poincaré inequality on junctions where the right-hand side contains the square of
the average of the boundary values instead of theL2 norm of the boundary values.
This result illustrates the fact that the details of the smoothing of the setO(ε) at
the junction are unimportant. It relies on the construction of a Lipschitz continuous
bijection, whose inverse is Lipschitz continuous and which sends a junction into a
fixed set. These results are derived in Sections 5, 6 and 7,where the main results
are summarized in Theorem 1 and Theorem 2.

The comparison of the eigenvalues (performed in Section 8) relies on the inf-sup
principle.

In Section 9, we generalize the comparison techniques and results to the case of
the Schr¨odinger operator with a magnetic potential. The results are analogous, and
the relevant estimates are obtained through simple modifications of the techniques
of Sections 5 to 8.

In [18] we prove the convergence (in a suitable sense) of the Ginzburg-Landau
functional onO(ε) to a Ginzburg-Landau functional defined overM. The result is
useful for a large class of problems in superconductivity and quantum mechanics.
In Section 4 of [18] we summarize the results of the current paper and [18].

The limiting process we carry out is reminiscent of works ofColindeVerdière
[7] andColbois &Anné [1]. Carlson [3] has recently studied the spectrum of the
Laplacian on an integer lattice graph as a limit of the associated networks. There
is also an extensive literature on approximating thin elastic structures by lower
dimensional related structures, e.g., [6] and the references therein.

Several authors developed theories concerning the Laplacian and more gener-
ally linear differential operators on a graph, as for instanceCarlson in articles [5]
and [4] andKostrykin & Schrader in [14] and [15]; beyond describing all the
transmission conditions that lead to a self-adjoint extension of the Laplace operator,
they have also studied the scattering matrix, with a view towards the applications
to quantum computing. They also mention that it would be useful to justify math-
ematically the passages to the limit on thin domains.

Evans & Saito have treated a closely related problem in [9], andSaito in
[20]. Their limiting process is different from ours; it introduces a singularity in the
approximation process that disappears in the limit. More comments on that question
are given in Remark 1.

Finally, it should be observed that the planar character of the graph is wholly
irrelevant; we could have taken a graph embedded inR

n, and a fattening inRn;
then the results would have been completely identical, and the proofs would need
only very slight modifications.

2. The singular manifold M

We start with a definition of the class of singular manifolds on which we work.
Intuitively, M can be drawn as an electric circuit with a finite number of nodes
and twice continuously differentiable branches. The nodes constitute a singular set,
while the branches intersect transversally at the nodes. The graphM can also be



274 Jacob Rubinstein & Michelle Schatzman

seen as the embedding of a finite planar graph, with smooth arcs, and transversal
intersections at the nodes.

The graphM is an embedded finite planar graph; it has a set of edgesE identified
with curves inR2, and a set of verticesV. Each edge is numbered byj ∈ {1, . . . , |E |}
and is parametrized by an injective mappingψj of classC2 and of rank one from
an interval(aj , bj ) to R

2; we assume thatψj , ψ ′
j , andψ ′′

j can be extended as
continuous bounded functions over[aj , bj ], and thatψ ′

j is bounded away from 0
over[aj , bj ]. Thus, without loss of generality, the parameter is the arc length. Loops
are not forbidden. It is convenient to denote byMj = ψj

(
(aj , bj )

)
the arc ofM

indexed byj . We will abuse notation and identifyM with the union of the closed
edgesM̄j , E with the union of the edgesMj andV with the union of the boundaries
M̄j \Mj . We require that for all pairs of distinct indicesj andk, Mj andM̄k have
an empty intersection.

We need to describe all the arcs leaving or entering any vertex ofM with
enough information to write Kirchhoff-like transmission conditions. This is done
by introducing for eachv ∈ V the setJ (v) defined as follows:

J (v) = {
(j, aj ,+1) : ψj (aj ) = v} ∪ {(j, bj ,−1) : ψj (bj ) = v

}
. (1)

If ζ belongs toJ (v), its components are denoted by(ζ [1], ζ [2], ζ [3]). There are
|J (v)| curves which start or end at any vertexv ∈ V; an arc might start and end at
v if it is a loop.

We define the outgoing tangent vectorseκ at v aseκ = κ[3]ψ ′
κ[1](κ[2]). The

transversality condition we impose onM can be formulated precisely now: for
everyv ∈ V, and for every distinct elementsκ andλ of J (v),

eκ �= eλ. (2)

At x = ψj (θ), the unit tangent vectors are±ψ ′
j (θ); the tangent space isTxMj =

Rψ ′
j (θ). If φ is any function from a neighborhood of 0 inR toM \ V which maps

0 tox, thenφ′(0) is a tangent vector atx toM.
A functionf onMj is of classCr (r � 2) if f ◦ ψj is of classCr on (aj , bj ).

We will use repeatedly the notationfj = f ◦ψj , for all functionsf defined onM.
The differential off of classC¼1 at x = ψj (θ) ∈ Mj is a linear form onTxMj

defined as follows: ifφ is as above, then

df (x)φ′(0) = (
f ◦ φ)′(0). (3)

The differential off is an example of a cotangent vector, i.e., an element of
T ∗x Mj , the dual ofTxMj .The definition of the differential of a function is completely
independent of the metric structure. If a continuous functionf from M to R is of
classC1 on all the arcsMj , then its differential is defined onM \ V by (3).

For all continuous functionsf fromM toR, the integral off overM is defined
by ∫

M

f dvolM =
∑

1�j�|E |

∫ bj

aj

fj (θ) dθ,
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Fig. 1. An example of an embedded graph; here,J (v1) = {(1, b1,−), (4, b4,−),
(6, a6,+)}.

where we have used the notation (2). The standard extension procedure yields a
Radon measure onM. For this measure,V is a null set so that the spacesLp(M)

are well defined.
It will be convenient from time to time to reparametrize the arcs out of a given

vertexv, so that they are all locally outgoing: thus we define, for allκ ∈ J (v),

ψκ(θ) = ψκ[1](κ[2] + κ[3]θ), θ ∈ [0, bκ[1] − aκ[1]].
The convention is that Latin indices indicate a fixed edge numbering and that Greek
indices indicate outgoing numbering out of a given vertex. There exists a strictly
positive number& such that for allv the images of(0, &) by the mappingsψκ are
pairwise disjoint; we can take for& a number strictly inferior to the minimum of
the lengths(bj − aj )/2. The last observation is thateκ = ψ ′

κ(0).

3. The Laplace operator on M
Let C1(M) be the space of continuous functionsf onM whose restriction to

Mj is of classC1 and such thatdf has limits at the endpoints ofMj : this means that
f ′j has limits ataj andbj . For allf andg in C1(M), we define an energy bilinear
form by

E(f, g) =
∫
M\V

df (x) dg(x)dvolM .

In local coordinates,

E(f, g) =
|E |∑
j=1

∫ bj

aj

f ′j g′j dθ. (4)



276 Jacob Rubinstein & Michelle Schatzman

Denote byH 1(M) the completion ofC1(M) with respect to the pre-Hilbertian
norm

|f |H1 = (|f |2
L2 + E(f, f )

)1/2
.

The spaceH 1(M) can also be described as the space{
f ∈ C0(M) : fj ∈ H 1(aj , bj ),∀ j ∈ {1, . . . ,V}

}
.

Now it is possible to define the Laplace operatorA onM: in the spaceL2(M),
E is a closed bilinear form defined on its domainH 1(M)×H 1(M); it is clear that
H 1(M) is dense inL2(M), and thatE is symmetric and nonnegative so that, in
particular, it is sectorial. Therefore we define Lap as the operator derived from the
sesquilinear formE (Theorem VI.2.1 of [13]). More precisely, the domain of Lap
is the set of elementsf of H 1(M) for which there exists a constantC such that

∀ g ∈ H 1(M), |E(f, g)| � C|g|L2(M).

The value of Lapf , for f ∈ D(A) is given by

(Lapf, g) = E(f, g) ∀ g ∈ H 1(M).

Let us describe the domain of Lap: iff belongs toD(Lap), and ifg has compact
support inMj and is of classC1, the inequality

∣∣∣∣
∫ bj

aj

f ′j g′j dθ
∣∣∣∣ � C

(∫ bj

aj

|gj |2 dθ
)1/2

implies that the distributionf ′′j belongs toL2(aj , bj ), and that(
Lapf

) ◦ ψj = −f ′′j . (5)

Thus,fj is inH 2(aj , bj ). Let us integrate by parts the relation(Lapf, g) = E(f, g)

for all g in C1(M), with the help of the relation (5). We find that

|E |∑
j=1

f ′j gj
∣∣bj
aj
= 0,

for all g in H 1(M). We reorder this equality by summing onV; as we can choose
arbitrarily the value ofg(x) for v ∈ V, we obtain∑

κ∈J (v)
lim
θ↓0

df (ψκ(θ))eκ = 0,

or equivalently ∑
κ∈J (v)

κ[3]f ′κ[1](κ[2]) = 0. (6)

This condition is reminiscent of Kirchhoff’s laws for currents in electric circuits:
the sum of algebraic currents leaving any node has to vanish. It will be convenient
to writeD(Lap) = H 2(M) by analogy with the usual Sobolev spaces.
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Fig. 2. The setÔ(M, ε).

4. The set O(ε)

In this section we describe the fattening ofM into an open setO(ε) with C2

boundary and width 2ε aroundM, except close to the vertices ofM, where we have
to perform an adequate smoothing.

We start by studyingM near the vertices. Define the offset ofM by

Ô(M, ε) = {
x ∈ R

2 : d(x,M) < ε
}
.

The boundary of this set is not of classC2 if M is anything more complicated than
theC2 diffeomorphic image of a circle.

We need a local description of̂O(M, ε) close to the vertices ofM. Letρ be the
rotation of+π/2 in R

2. DefineC1 maps-j and-κ by

-j(θ, s) = ψj (θ)+ sρψ ′
j (θ), θ ∈ [aj , bj ], s ∈ R,

-κ(θ, s) = ψκ(θ)+ sρψ ′
κ(θ), θ ∈ [0, bκ[1] − aκ[1]], s ∈ R.

The two notations correspond to distinct parametrizations of the arcs.
Forε small enough,-j is a diffeomorphism from(aj , aj +&)× (−ε, ε) onto its

image, and from(bj − &, bj )× (−ε, ε) onto its image; ifMj happens to be a loop,
-j cannot be a diffeomorphism from(aj , bj )× (−ε, ε) onto its image, unlessMj

is diffeomorphic to a circle.
The following result is geometrically obvious, save for the exact expression of

R0. Thus we do not spell out the details.

Lemma 1. Let β̄(v) be the absolute value of the minimum of the half-angle between
two distinct edges leaving v, i.e.,

sinβ̄(v) = min
{√

(1− eκ · eλ)/2 : κ ∈ J (v), λ ∈ J (v) \ {κ}},
and let

R0 = min
{
1/ sin(β̄(v)) : v ∈ V}. (7)
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Fig. 3. The local shape of̂O(M, ε) of Fig. 1 around vertexv3.

Fig. 4. The setO(ε).

Then for all R > R0, there exists ε0 such that for all ε ∈ (0, ε0) all the angular
points of the boundary of Ô(M, ε) belong to the union of the balls of radius Rε
centered at the vertices of M .

For future reference, we introduce some notation. Assume thateκ+eλ �= 0.
Assume further, without loss of generality, that the difference of arguments argeκ−
argeλ belongs to the open interval(0, π). Write

e = eκ, ê = eλ, - = -κ, -̂ = -λ. (8)

We can define nowO(ε), which is smooth fattening ofM: we fixR > R0, and
ε as in Lemma 1. Define, fort ∈ [Rε, &/2],

Mj(t) = ψj
(
(aj + t, bj − t)

)
(9)

and the fattened branch

Bj (t, ε) = -j

(
(aj + t, bj − t)× (−ε, ε)).
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Fig. 5. The local smoothing at the junctions.

We write henceforth

t1 = (R + 1)ε, (10)

and we choose nowO(ε) in such a way that

|E |⋃
j=1

Bj (0, ε) ∪
⋃
v∈V

B(v, ε) ⊂ O(ε) ⊂
|E |⋃
j=1

Bj (0, ε) ∪
⋃
v∈V

B(v,Rε).

These inclusions imply that outside the union of balls of radiust1 centered around
the vertices ofM, O(ε) coincides withÔ(M, ε). We require that the boundary of
O(ε) be of classC2 inside eachB(v, t1). The details of the smoothing process will
be shown to be irrelevant, provided that the boundary ofO(ε) is well behaved.

The boundary of a junction is made out of line segments which are flat ends
of fattened branches and of arcs which join one corner of a fattened branch to the
next corner. These arcs are of classC2, they are parametrized by arc length; their
parametrizations are indexed by even numbers, and they satisfy some scaled esti-
mates. The segments are also parametrized by arc length and their parametrizations
are indexed by odd numbers.

The description of a well-behaved boundary close to the junctions is given now
precisely. If there arep/2= |J (v)| arcs out ofv, there will bep/2 arcs joining the
arms ofO(ε). These arcs are parametrized by the arc length as mappingsω2j (·, ε)
of classC2 from [0, αj (ε)] to R

2. We require that there exist a numberCM such
that for allε and allj∣∣∣∣ω2j (s, ε)− v

ε

∣∣∣∣ +
∣∣∣∣∂ω2j (s, ε)

∂s

∣∣∣∣ + ε

∣∣∣∣∂2ω2j (s, ε)

∂s2

∣∣∣∣ � CM, (11)

αj (ε) � CMε. (12)

We also require that a curve parametrized byω2j start at one end of a segment
-κ(t1, ε) and end at one end of another segment-λ(Rε, ε). We will parametrize
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the segment joiningω2j (αj (ε), ε) toω2j+2(0, ε) byω2j+1, the parameter running
in (0,2ε). Then it is geometrically obvious that there exists a constantC such that

α(ε) � Ct1. (13)

We define a functionφ(·, ε) by

l0(ε) = 0,

l1(ε) = 2ε,

φ(s, ε) = ω1(s, ε) over[l0(ε), l1(ε)],
l2(ε) = (CM + 2)ε,

φ(s, ε) = ω2
(
(s − 2ε)α1(ε)/(CMε), ε) over[l1(ε), l2(ε)],

and inductively

l2j+1(ε) = l2j (ε)+ 2ε,

φ(s, ε) = ω2j+1(s − l2j (ε), ε) over[l2j (ε), l2j+1(ε)],
l2j+2(ε) = l2j+1(ε)+ 2CMε,

φ(s, ε) = ω2j+2
(
(s − l2j+1(ε))αj+1(ε)/(CMε), ε

)
over[l2j+1(ε), l2j+2(ε)].

We extendφ(·, ε) as a periodic function of periodlp(ε) on R, and we require the
following global condition: there existsm > 0 such that∣∣φ(s, ε)− φ(s′, ε)

∣∣ � mmin
(
mε,min

k∈Z

|s − s′ + klp(ε)|
)
. (14)

It will be convenient to write, for allj andk in Z, lj+pk = lj+klp(ε). Relations (12)
and (13) imply thatφ(·, ε) is of classC2 on each interval(lj (ε), lj+1(ε))and satisfies
the following estimate for alls /∈ {lj (ε), j ∈ Z}:

∣∣∣∣φ(s, ε)ε

∣∣∣∣ +
∣∣∣∣∂φ(s, ε)∂s

∣∣∣∣ + ε

∣∣∣∣∂2φ(s, ε)

∂s2

∣∣∣∣ � CM (15)

with possibly a differentCM from the one in (11).
For t1 � t � &, Bj (t, ε) is diffeomorphic to(aj + t, bj − t)× (−ε, ε), and for

j �= k, Bj (t, ε) does not intersectBk(t, ε); thus the open set

O(ε) \
|E |⋃
j=1

Bj (t, ε)

is a disjoint union of open sets which can be seen as the junctions between the
pipes. Each of these junctionsU(t, ε, v) contains exactly one pointv of V; it has
|J (v)| arms of width 2ε outside the circle of radiust1 aboutv and contains the open
ball of radiusε aboutv (see Fig. 6).

The operator Lapε is defined as follows:

D(Lapε) = {
u ∈ H 2(O(ε)) : ∂u/∂n = 0 on∂O(ε)

}
, Lapε u = −�u.
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B (  ,  )t ε1

Fig. 6. Junctions and fat branches; compare with Fig. 1.

5. The plumber’s shop I: from H 1(M) to H 1
(O(ε)

)
In this section, we define a mappingQε from H 1(M) to H 1

(O(ε)
)

and we
prove some precise comparison results on theL2 norms and the energies. The
title of this section and the next two comes from the fact thatO(ε) looks like a
set of pipes, which are soldered at the vertices, and the soldered parts, as can be
expected, are slightly fatter than the pipes themselves. We recall that each soldered
part has|J (x)| � 2 arms. We go fromH 1(M) toH 1

(O(ε)
)

basically by extending
a functionf onM as a constant along the normals to the curvesMj ; this works
well if f is constant close toV. Thus we replacef by a f̃ which has about the
sameH 1(M) norm asf and which is constant close toV.

As a consequence of the study performed in Section 4, there existsε0 > 0 such
that for allε � ε0, -j is a diffeomorphism from(aj + t1, bj − t1)× (−ε, ε) to its
image,B(t1, ε). Therefore, we can express the Euclidean metric onBj (t, ε) in the
(θ, s) coordinates in terms of the metric tensor; it is given by

Gθθ = |ψ ′
j (θ)+ sρψ ′′

j (θ)|2, Gsθ = Gθs = 0, Gss = 1, (16)

and it is used to measure the length of vector fields. To comply with standard
notation, we write the volume element in these local coordinates

√
Gdθ ds; G is

simply equal toGθθ .
Let us define now a mappingQε from H 1(M) to H 1

(O(ε)
)
. Let f belong to

H 1(M); recall thatfj = f ◦ ψj ; define a piecewise affine change of variable on
[aj , bj ] by

Tj (θ) =



aj , if aj � θ � aj + εR,

bj , if bj − εR � θ � bj ,

aj + θ − aj − εR
bj − aj − 2εR (bj − aj ), otherwise.

(17)
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Observe that the dependence ofTj uponε is understated, in order to simplify the
notation. The reciprocal function ofTj is:j , which we define by

:j(t) = aj + t1 + t − aj

bj − aj
(bj − aj − 2t1), t ∈ [aj , bj ]. (18)

With this notation, we letf̃j (θ) = fj (Tj (θ)), and we defineQεf by

(Qεf )(y) =
{
f̃j (θ) if y = -j(θ, s) ∈ Bj (t1, ε),
f (v) if y ∈ U(t1, ε, v).

(19)

Before we state the first estimate, let us give another definition: the bilinear
energy form onH 1

(O(ε)
)

is

Eε(u,w) =
∫
O(ε)

gradu(x)gradw(x) dx.

Theorem 1. There exists a constant C such that for all f in H 1(M) the following
inequalities hold:

2ε(1+ Cε)|f |2
L2(M)

+ Cε2E(f, f ) �
∣∣Qεf

∣∣2
L2(O(ε))

� 2ε(1− Cε)|f |2
L2(M)

,

(20)

2ε(1+ Cε)E(f, f ) � Eε(Qεf,Qεf ). (21)

Proof. Let us calculate theL2 norm ofQεf on Bj (t1, ε): we recall that the Eu-
clidean volume element inθ ands coordinates is

√
Gdθ ds; therefore∫

Bj (t1,ε)

|Qεf |2 dx =
∫ bj−t1

aj+t1

∫ ε

−ε
|f̃j (θ)|2

√
Gds dθ,

and with the help of the change of variable (18) this expression can be rewritten∫
Bj (t1,ε)

|Qεf |2 dx =
∫ ε

−ε

∫ bj

aj

∣∣fj (t)∣∣2√G(:j (t), s) dtds
bj − aj − 2t1

bj − aj
.

We observe thatG(:j (t), s) = 1+O(ε) uniformly inε, according to our regularity
assumptions overψj . Therefore, we can see that there exists a constantC such that,
for all j and all sufficiently smallε,∫

Bj (t1,ε)

|Qεf |2 dx � 2ε
(
1− Cε

) ∫ bj

aj

|fj (θ)|2 dθ.

Summing these inequalities with respect toj proves the second inequality in (20).
In order to prove the first of inequalities (20), we observe that, as we are in

dimension 1,

max{|f (v)| : v ∈ V} � C|f |H1(M).
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The area ofU(t1, ε, v) is of orderO(ε2); thus the contribution ofU(t1, ε, v) to
|Qεf |2

L2 is bounded byCε2|f |2
H1(M)

; the contribution ofBj (t1, ε) to |Qεf |2
L2 is

estimated from above by

2ε
(
1+ Cε

) ∫ bj

aj

|fj (θ)|2 dθ.

This proves the desired assertion, by summing over the branches and the junctions.
Let us address now the energy estimates: there is no contribution to the energy

on the junctionsU(t1, ε, v); therefore, we are left with

Eε(Qεf,Qεf ) =
∑
j

∫
Bj (t1,ε)

∣∣gradQεf
∣∣2 dx.

In (θ, s) coordinates, the square of the gradient ofQεfj becomes

G−1
∣∣∣∣∂Qεfj

∂θ

∣∣∣∣
2

,

sinceQεf is constant in the normal direction onBj (t1, ε). Thus,

∫
Bj (t1,ε)

∣∣gradQεf
∣∣2 dx = ∫ ε

−ε

∫ bj−t1

aj+t1
G−1

∣∣∣∣df̃jdθ

∣∣∣∣
2√

Gdθ ds.

After the change of variables (18), we find that∫
Bj (t1,ε)

∣∣gradQεf
∣∣2 dx

=
∫ ε

−ε

∫ bj

aj

(
G(:j (t), s)

)−1/2 bj − aj

bj − aj − 2t1
|(fj )′(t)|2 dt ds.

The same argument as above yields (21).

6. The plumber’s shop II: the subpipes

Going fromH 1
(O(ε)

)
toH 1(M) is more complicated than the inverse opera-

tion: the essential idea is to take normal averages on the curvesMj ; but what should
we do at junctions? We have to compare normal averages close to them.

For each junctionU(t, ε, v), t � t1 we pick a pair of arms indexed byκ andλ;
a subpipeWκλ(t, ε) will be made out of two curved rectangles, one in each of the
branchesκ andλ, and a circular sector. We also define a functionhκλ onWκλ(t, ε)

whose gradient is tangent to the boundary on the segments-κ({t} × (−ε, ε)) and
-λ({t} × (−ε, ε)), and normal to it everywhere else. Moreover, the gradient of
hκλ is of norm 1 almost everywhere. A Stokes formula allows us to estimate the
difference of the averages ofu on the end segments in terms ofε, t and the energy
norm ofu onWκλ.



284 Jacob Rubinstein & Michelle Schatzman

κλW (  ,  )εt

λW (  ,  )εt

κW (  ,  )εt

X(  )ε

Fig. 7. A pipe in a junction.

For the detailed statement of this result and the proof, it is convenient to use the
language of differential forms, which enables us to apply exterior differentiation
in a coordinate independent fashion, and to make use of the Stokes formula under
its most convenient form; the reader is referred to classical works in differential
geometry (e.g., [2,12,8]) for a description of this language.

Lemma 2. There exists a constant C such that for all v in V , for all distinct κ and
λ in J (v), for all t ∈ [t1, &/2] and all sufficiently small ε > 0, there exists an open
set Wκλ(t, ε) and a piecewise C1 function hκλ on Wκλ(t, ε) whose differential is
also piecewise C1 such that the following conditions hold:

(1) The open set Wκλ(t, ε) is the union of

-κ

(
(θκ(ε), t)× (−ε, ε)), -λ

(
(θλ(ε), t)× (−ε, ε)),

and the circular sector of the disk of center

Xκλ(ε) = -λ(θλ(ε),−ε) = -κ(θκ(ε), ε)

and of radius 2ε which fills the angle between the first two pieces.
(2) The differential dhκλ vanishes on the tangent vectors to ∂Wκλ(t, ε) except on

the parts -κ({t} × (−ε, ε)) and -λ({t} × (−ε, ε)).
(3) Since ρ is the rotation of angle π/2, it follows that

dhκλ
(
ρψ ′

κ(t)
) = −1 on -κ

(
t × (−ε, ε)),

dhκλ
(
ρψ ′

λ(t)
) = 1 on -λ

(
t × (−ε, ε)). (22)
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(4) For almost every y in Wκλ(t, ε),

|dhκλ| = 1. (23)

(5) The differential dhκλ is piecewise C1 and its differential vanishes in the sense
of distributions.

(6) The area of Wκλ(t, ε) is bounded as follows:

|Wκλ(t, ε)| � 4tε + Cε2t. (24)

Proof. We use the notation of Lemma 1: without loss of generality, we assume that
v = 0, and we use the notation (8). Here, argê = β belongs to(0, π/2] and we
consider separately the casesβ = π/2 andβ < π/2. We assume henceforth thatε

is at most equal toε0 defined in Lemma 1.
Assume first thatβ = π/2, and define the function

-̃(θ, s) =
{
-̂(θ, s) if (θ, s) ∈ [0, &] × [−ε, ε],
-(−θ,−s) if (θ, s) ∈ [−&,0] × [−ε, ε].

This definition makes sense, since-̂(0, s) and-(0,−s) coincide fors ∈ [−ε, ε].
Moreover,- and-̂ are of classC1. It is convenient to write-̃(θ, s) = ψ̃(θ) +
sρψ̃ ′(θ). Therefore, we let

W̃ (t, ε) = -̃((−t, t)× (−ε, ε))

andh(y) = s if y = -̃(θ, s) ∈ W(t, ε). We calculate immediatelydh: in (s, θ)

coordinates,dh = ds, and therefore it is easy to see thatdh vanishes on the tangent
vectors to-̃

(
(−t, t)×{±ε}); the identities (22) are clear. We can see immediately

that|dh| = 1 everywhere. Finally, the fact thatdh is piecewiseC1 is obvious; the
vanishing of its differential in the sense of distributions is due to the fact thatdh

does not jump across the segment-
({0} × (−ε, ε)). Finally the area ofW(t, ε) is

equal to

∫ t

−t

∫ ε

−ε

∣∣∣ψ̃ ′(θ)+ s(ν ◦ ψ)′(θ)
∣∣∣ ds dθ � 4tε(1+ Cε).

Consider now the caseβ ∈ (0, π/2); we let

W(t, ε) = -
(
(θ(ε), t)× (−ε, ε)),

Ŵ (t, ε) = -̂
(
(θ̂(ε), t)× (−ε, ε)),

W0(t, ε) =
{
y : |y −X(ε)| < 2ε and(y −X(ε)) · ψ ′(θ(ε)) � 0

and(y −X(ε)) · ψ ′(θ̂(ε)) � 0
}
,

W̃ (t, ε) = W(t, ε) ∪W0(t, ε) ∪ Ŵ (t, ε).
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Then,h is defined as follows:

h(y) =



ε − s if y = -(θ, s) ∈ W(t, ε),

−|y −X(ε)| if y ∈ W0(t, ε),

s − ε if y = -̂(θ, s) ∈ Ŵ (t, ε).

The verification of properties (1) to (3) of Lemma 2 is is left to the reader. The
calculation of|dh| on W(t, ε) and onŴ (t, ε) is performed as in the previous
situation; on the circular sector, the calculation of|dh| is immediate, and it is clear
that there is no jump ofdh across the common boundaries ofW(t, ε) andW0(t, ε)

or of Ŵ (t, ε) andW0(t, ε). The area ofW̃ (t, ε) is equal to∫ t

θ(ε)

∫ ε

−ε
∣∣ψ ′(θ)+ s(ν ◦ ψ)′(θ)∣∣ ds dθ
+
∫ t

θ̂ (ε)

∫ ε

−ε

∣∣∣ψ̂ ′(θ)+ s(ν ◦ ψ̂)′(θ)
∣∣∣ ds dθ

+ 2ε2 arccosψ ′(θ(ε)) · ψ̂ ′(θ̂(ε)).
� 2ε

(
t − θ(ε)

)
(1+ Cε)+ 2ε

(
t − θ̂ (ε)

)
(1+ Cε)+ 2πε2.

The conclusion is now clear.

The following immediate consequence of Lemma 2 will be used in the proof
of Theorem 2:

Corollary 1. There exists a constant C such that, for all u in H 1(Wκλ(ε, t)),∣∣∣∣ 1

2ε

∫ ε

−ε
u(-κ(t, s)) ds − 1

2ε

∫ ε

−ε
u(-λ(t, s)) ds

∣∣∣∣
� C

(
t

ε

)1/2(∫
Wκλ(ε,t)

|gradu|2 dy
)1/2

. (25)

Proof. It is enough to observe that ifu is of classC1 onWκλ(ε, t), we apply Stokes’
theorem as follows∫

∂Wκλ(ε,t)

udhκλ =
∫
Wκλ(ε,t)

d
(
udhκλ

) = ∫ ε

−ε
u(-λ(t, s)) ds −

∫ ε

−ε
u(-κ(t, s)).

But d
(
udhκλ

) = du ∧ dhκλ. Thanks to estimates (23) and (24), the conclusion
follows immediately.

7. The plumber’s shop III: from H 1
(O(ε)

)
to H 1(M)

Recall thatt1 = (R + 1)ε. For ε � ε0, for all edge indicesj ∈ {1, . . . , j}, for
all z ∈ H 1

(O(ε)
)
, and for allθ ∈ [aj + t1, bj − t1] we define a normal average of

z atx = ψj (θ) as follows:

(Njz)(θ) = 1

2ε

∫ ε

−ε
z(-j (θ, s)) ds. (26)
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This normal average is well defined, since traces of functions belonging to
H 1

(O(ε)
)

over smooth curvesC are well defined, and belong toH 1/2(C), which
is a space of locally integrable functions. Provided thatt1 � θ � &, we define for
all v ∈ V and allz in H 1

(O(ε)
)
, the normal average with aκ indexation

Nκz(θ) =
(
Nκ[1]

)(
κ[2] + κ[3]θ),

and the average of normal averages aroundv

c(θ, v, z) = 1

|J (v)|
∑

κ∈J (v)
Nκz(θ).

We use henceforth the following notation:

t2 is an element, to be defined later, of[t1, &],
U1 = U(t1, ε, v), U2 = U(t2, ε, v), Oκ = -κ

(
(t1, t2)× (−ε, ε)),

η1 =
∫
U1

|gradu|2 dx, η2 =
∫
U2

|gradu|2 dx,

ζ1 =
∫
U1

u2 dx, ζ2 =
∫
U2

u2 dx,

(27)

Givenu in H 1
(O(ε)

)
, we defineP εu as follows:

(P εu)(x) =




(Nju)(θ) if x = ψj (θ) ∈ Mj(t2),

(Nκu)(θ)+ (t2 − θ)
(
c(t1, v, u)− (Nκu)(t1)

)
t2 − t1

if x = ψκ(θ), t1 � θ � t2,

c(t1, v, u) if x = ψκ(θ),0 � θ � t1.

(28)

The value oft2 is not yet determined; it will be given in (51). The definition of
P εu is motivated as follows: we approximate the restriction ofu toU2 by a function
w onU2 which is constant onU1 and depends only onθ onU2 \ U1. A natural way
of doing that is to minimize

|grad(u− w)|2
L2(U2)

=
∑

κ∈J (v)

∫ t2

t1

∫ ε

−ε

[
G−1

∣∣∣∣∂(u− w) ◦-κ

∂θ

∣∣∣∣
2

+
∣∣∣∣∂(u− w) ◦-κ

∂s

∣∣∣∣
2 ]√

Gds dθ;

however, the termsG−1/2 andG1/2 are equal to 1+ 0(ε) and we will make only a
small error if we minimize instead the simpler expression

∑
κ∈J (v)

∫ t2

t1

∫ ε

−ε

[ ∣∣∣∣∂(u− w) ◦-κ

∂θ

∣∣∣∣
2

+
∣∣∣∣∂(u− w) ◦-κ

∂s

∣∣∣∣
2 ]

ds dθ. (29)
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We impose the boundary conditionNκw(t2) = Nκu(t2) for all κ ∈ J (v). We find
by standard arguments that

w ◦ ψκ(θ) = Nκu(θ)+ ακ(t2 − θ).

We substitute this relation into (29), which becomes

∑
κ∈J (v)

∫ t2

t1

∫ ε

−ε

[ ∣∣∣∣∂(u ◦-κ −Nκu)

∂θ

∣∣∣∣
2

+
∣∣∣∣∂u ◦-κ

∂s

∣∣∣∣
2

+ α2
κ

]
ds dθ,

since the integral ∫ ε

−ε
∂(u ◦-κ −Nκu)

∂θ
ds

vanishes in[t1, t2]. Denote byĉ the value ofw overU1. By continuity, we must
have, for allκ ∈ J (v),

ακ(t2 − t1)+Nκu(t1) = ĉ.

Therefore, if we expressακ in terms ofĉ, we find that we have to minimize∑
κ∈J (v)

(
ĉ −Nκu(t1)

)2
,

and therefore

ĉ = 1

|J (v)|
∑

κ∈J (v)
Nκu(t1),

which is exactly equal toc(t1, v, u); ακ is equal to(ĉ −Nκu(t1))/(t2 − t1).
Our purpose now is to prove the following theorem:

Theorem 2. There exists a constantC such that for all u inH 1
(O(ε)

)
the following

estimates hold:

E(P εu, P εu) � 1+ C
√
ε

2ε
Eε(u, u), (30)

∣∣P εu
∣∣2
L2(M)

� 1

2ε

(
(1− C

√
ε) |u|2

L2(O(ε))
− C

√
εEε(u, u)

)
. (31)

Lemma 3, Theorem 4 and Corollary 3 are the technical results which enable us
to ignore the details of the smoothing at the junctions. In particular, they enable us
to estimateζ1 in terms ofη2 andη2− ζ1 (see (32)). This is necessary for inequality
(31), sinceP εu does not contain any explicit information onζ1. Estimate (32)
would be obtained simply by a scaling argument if the open set(U(t1, ε, v)− v)/ε

were equal to a constant set. However, this relation can hold only if all the edges
of the graph are straight lines, at least in a neighborhood of the vertices, and if we
choose a special smoothing which scales withε. Since we want to be unencumbered
by the details of the smoothing and of the shape of the edges, we prove estimates
which enable us to forget about them. The main idea of the proof is to construct
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a sequence of Lipschitz-continuous bijections whose inverse is also a bijection,
which mapφ(R, εn) into a fixed closed curve, while mapping the region enclosed
by φ(R, εn) into a fixed region.

The result that we will use for our estimates is the following:

Theorem 3. There exists a constant C such that for all small enough ε and all
z ∈ H 1(U1) the following inequality holds:∫

U1

|z|2 dx � Cε2
(∫

U1

|gradz|2 dx +
( ∑
κ∈J (v)

Nκz(t1)
)2
)
. (32)

The proof of this result relies on several technical lemmas and theorems. The
main idea is the following: if the junctions could be blown up to a fixed set by
an appropriate linear transformation, relation (32) would be immediate. Therefore,
we look for an approximate blow-up, and we have to impose conditions on the
boundary of the junction which will ensure enough compactness; the conditions
we chose to impose are precisely conditions (15). While they may not be necessary,
they are reasonable, and one can construct examples of nasty behavior when they
are not satisfied.

We define the approximate blow-ups in a slightly more general setting than the
one described by (11)–(14) and (37), and this slightly more general formulation
simplifies the proof somewhat.

If we start from a family of functionsφ(·, ε) as in (15), we define

φn(s) = φ(sεn, εn)− v

εn
(33)

for any sequenceεn decreasing to 0. More generally, suppose we are given a se-
quence of functionsφn from R to R

2 which have the following properties: there
exists a numberL such that

for all n ∈ N, φn is continuous and periodic of periodL. (34)

We are givenp real numbersl1, . . . , lp belonging to(0, L], and we define, for all
k ∈ Z,

lj+kp = lj + pL. (35)

We assume that the sequenceφn is of classC2 over each interval(lj , lj+1) and that
there exists a numberM such that

sup
n

sup
j

sup
x∈(lj ,lj+1)

(|φn| + ∣∣φ′n∣∣ + ∣∣φ′′n∣∣) � M. (36)

Assumption (36) implies that at each pointlj , φ′n(x) has limits on the left and on
the right. We suppose that there exists a numberm > 0 such that

∀ n ∈ N,∀ x, x′ ∈ R,
∣∣φn(x)− φn(x

′)
∣∣ � mmin

(
m,min

k∈Z

∣∣x − x′ − kL
∣∣). (37)
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This condition implies that for eachx /∈ {lj , j ∈ Z}, ∣∣φ′n(x)∣∣ � m. Moreover, at
eachlj , the right and left limits ofφ′n satisfy the same inequality. Finally the image
of φn is homeomorphic to a circle. Thanks to Jordan’s theorem,R

2 \ φn(R) has
two connected components; the bounded component is denoted byDn. Finally, we
assume that for allj ∈ Z,

inf
n,j

φ′n(lj − 0) · φ′n(lj + 0)∣∣φ′n(lj − 0)
∣∣ ∣∣φ′n(lj + 0)

∣∣ � −1+m. (38)

Under these assumptions, it is possible to find a subsequence, still denoted byφn,
and a functionφ∞ such thatφn converges toφ∞ in C0(R), and such that on every
interval [lj , lj+1], φn converges toφ in C1,α([lj , lj+1]). The derivative ofφ∞ is
Lipschitz continuous, andφ∞ satisfies estimates analogous to (36) and (37). In
particular, the image ofφ∞ is a closed curve; we denote byD∞ the connected
component ofR2 \ φ∞(R).

Lemma 3. Under assumptions (34)and (36)–(38) there exists for all large enough
n a Lipschitz continuous mapping En from R

2 to itself which maps Dn to D∞ and
such that

En ◦ φ∞ = φn. (39)

Moreover, En and E−1
n converge uniformly to the identity mapping as n tends to

infinity; DEn and DE−1
n converge uniformly to the constant mapping taking the

value identity as n tends to infinity.

Proof. We construct the mappingEn in two steps. The first step amounts to fixing
the angular pointsφn(lj ). Denote byBr(x) the open Euclidean ball of radiusr
aboutx. Let r be a strictly positive number such that the intersection of the balls
B2r (φ∞(lj )) andB2r (φ∞(li)) is empty for 1� i < j � p.

Let χ be a function of classC2 overR2 takings its values in[0,1], identically
equal to 1 onBr/2(0) and identically equal to 0 outsideBr(0). Write

χj (x) = χ(x − φ∞(lj )),

and define a mapping̃En by

Ẽn(x) =
(

1−
p∑

j=1

χj (x)

)
x +

p∑
j=1

χj (x)
(
x + φn(lj )− φ∞(lj )

)
.

The functionẼn is of classC2 and mapsφ∞(lj ) to φn(lj ) by construction. Let us
prove that forn large enough, it has an inverse of classC2. There existsnr such
that for alln � nr and for allj ,

∣∣φn(lj )− φ∞(lj )
∣∣ � r. Then the closure of the

ballB2r (φ∞(lj )) is invariant byẼn: if
∣∣x − φ∞(lj )

∣∣ � r, then∣∣∣Ẽn(x)− φ∞(lj )

∣∣∣ �
∣∣x − φ∞(lj )

∣∣ + ∣∣χj (x)∣∣ ∣∣φ∞(lj )− φn(lj )
∣∣ � 2r,
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if n � nr . If r �
∣∣x − φ∞(lj )

∣∣ � 2r, thenẼn(x) = x, and thus we have proved

the invariance with respect tõEn of the ball of radius 2r aboutφ∞(lj ). Therefore,
in order to solve the equation

Ẽn(x) = y (40)

we have to consider two different situations: either minj

∣∣y − φ∞(lj )
∣∣ is strictly

larger than 2r and thenx = y solves equation (40), or there existsj such that∣∣y − φ∞(lj )
∣∣ is at most equal to 2r and we seek a solutiony under the form

x = y − z. Thus, we have to solve the problem

z = χj
(
y − z

)(
φn(lj )− φ∞(lj )

)
. (41)

If we choosenr so large that for alln � nr ,∣∣φn(lj )− φ∞(lj )
∣∣ max|Dχ(x)| � 1/2,

then (41) possesses a unique solution whose dependence overy is of classC2.
Therefore, we have proved that the inverse ofẼn exists and is of classC2.

For the next step of the construction ofEn we define

φ̃n = Ẽ−1
n ◦ φn.

The reader will check that̃φn has properties (34) and (36)–(38), possibly with
different constants, and only forn larger thannr .

The idea of the proof now is to define a bijection which will map[0, L)×(−τ, τ )
to a tube around the boundary ofD∞. If ∂D∞ were a smooth curve, this would be
a standard tube construction. We modify this construction so as to retain its main
properties; however, the bijection that we shall define is only Lipschitz continuous,
as well as its inverse.

Without loss of generality, assume thatφ∞ is parametrized so that∂D∞ is
positively oriented, and denote byν∞(s) the exterior normal toD∞ atφ∞(s). For
all s /∈ {lj , j∈Z}, ν∞(s) is obtained fromφ′∞(s) by a normalization and a rotation
of −π/2. At lj , the left and right limits ofν are defined, and (38) implies that

ν∞(lj − 0) · ν∞(lj + 0) �= −1. (42)

It is possible to find a strictly positive numberm0 and anL-periodicC2 function
µ from R to R

2 such that, for alls /∈ {lj , j ∈ Z},
µ(s) · ν∞(s) � 2m0.

Denote byνn the exterior normal toDn at φ̃n(s). There existsn0 such that for all
n � n0, and alls /∈ {lj , j ∈ Z}

µ(s) · νn(s) � 3m0/2. (43)

Consider now the transformations

Ên(s, τ ) = φ̃n(s)+ τµ(s), n ∈ N ∪ {∞}.



292 Jacob Rubinstein & Michelle Schatzman

Relations (42) and (43) imply that there exists a strictly positive numberτ0 such
that for all s /∈ {lj , j ∈ Z} and allτ ∈ [−τ0, τ0] the mappingsDÊn for n � n0

andDÊ∞ are invertible, and that their inverses are uniformly bounded. Moreover,
the standard argument on tubular neighborhoods of a submanifold extends here
and we can chooseτ0 so small thatÊn is a Lipschitz-continuous bijection with
Lipschitz-continuous inverse fromR/LZ × [−τ0, τ0] for all n = n0, . . . ,∞. It
will be convenient henceforth to denote

S(t) = Ê
(
R× [−τ, τ ]).

Let χ0 be aC2 function fromR to [0,1] such thatχ0 vanishes outside[−2τ0/3,
2τ0/3] and is equal to 1 on[−τ0/3, τ0/3]. Define

χ1(x) =
{
χ0(τ ) if x ∈ S(τ0) andx = Ê∞(s, t),

0 if x /∈ S(τ0).

If we perform a convolution ofχ1 with an adequate smoothing kernel we can
obtain aC2 functionχ2 which is equal to 1 onS(τ0/4) and which vanishes outside
S(3τ0/4). Define a mappinḡEn by

Ēn(x) =
{
χ2(x) Ên ◦ Ê−1∞ (x)+ (1− χ2(x)) x if x ∈ S(τ0),

x otherwise.

We observe that by continuity, there exists anr0 > 0 such that any ball of radius
r0 about a point ofS(3τ0/4) is included inS(τ0). There existsn1 such that for

all n � n1, sups

∣∣∣φ̃n(s)− φ∞(s)

∣∣∣ � r0. This implies that forn � n1, Ē−1
n maps

S(τ0) into itself: if x belongs toS(τ0) \ S(3τ0/4), Ên ◦ Ê−1∞ (x) is equal tox. If
x = E∞(s, τ ) belongs toS(3τ0/4), then

Ēn(x)− x = χ2(x)
(
φ̃n(s)− φ∞(s)

)
.

Therefore, forn � n2, Ēn(x) belongs toS(τ0). For large enoughn, Ēn is invertible
overR2: the resolution of the equation

Ēn(x) = y

is equivalent to one of the two problems

y ∈ R
2 \ S(τ0), x = y, (44)

y ∈ S(τ0), χ2(x)Ên ◦ Ê−1∞ (x)+ (1− χ2(x))x = y. (45)

Problem (44) is trivial. Problem (45) can be solved thanks to the strict contraction
principle: we seek a solution of (45) of the formx = y − z, so that it is equivalent
to solving

z = χ2(y − z)
(
Ên −E∞

) ◦E−1∞ (y − z).

For large enoughn, the right-hand side is Lipschitz continuous with respect toz

with Lipschitz ratio at most 1/2. The same argument shows thatĒn tends uniformly
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to the identity mapping and thatDĒn converges uniformly to the constant mapping
taking the value identity asn tends to infinity.

Thus, we have constructed a Lipschitz-continuous functionĒn whose inverse
is Lipschitz continuous, such thatφ̃n = Ēn ◦ φ∞.

Forn large enough, we can defineEn = Ẽn ◦ Ēn; it is invertible. The previous
study shows thatEn andE−1

n converge uniformly to the identity mapping and
thatDEn andDE−1

n converge uniformly to the constant mapping taking the value
identity asn tends to infinity. By construction,En mapsD∞ toDn and (39) holds.

We are now able to prove a Poincar´e-type estimate with a constant independent
of n on Dn: let I be a subset of positive measure of(0, L]; for all n, let Cn be
defined by

Cn = inf
u∈H1(Dn)\{0}

∫
Dn
|u|2 dx∫

Dn
|gradu|2 dx +

(∫
φn(I )

u dL
)2 .

The existence ofCn is an exercise.
We prove the following theorem, which is essential in our estimates:

Theorem 4. Under assumptions (34) and (36)–(38), the sequence Cn is bounded.

Proof. AssumeCn unbounded; possibly extracting a subsequence, we may assume
thatCn goes to infinity asn goes to infinity. It is not difficult to see thatCn is attained
for a certainun. We can normalizeun so that∫

Dn

|un|2 dx = 1.

Then, thanks to the definition ofCn,

lim
n→∞

∫
Dn

|gradun|2 dx +
(∫

φn(I )

un dL

)2

= 0.

Define now

wn = un ◦En.

The functionwn belongs toH 1(D∞); we can see that∫
D∞

|wn|2 dx =
∫
Dn

|un|2
∣∣∣detE−1

n

∣∣∣ dy.
Therefore, the limit of theL2 norm of wn as n tends to infinity is equal to 1.
Similarly, ∫

D∞
|∇wn|2 dx =

∫
Dn

∣∣∣Dun DEn ◦E−1
n

∣∣∣2 ∣∣∣detE−1
n

∣∣∣ dy,



294 Jacob Rubinstein & Michelle Schatzman

and∇wn tends to 0 inL2(D∞). Therefore, after possibly multiplying some terms
of the sequenceun by −1, we can see thatwn converges strongly inH 1(D∞) to
the constant functionu∞ = |D∞|−1/2.

On the other hand,∫
φn(I )

un dL =
∫
I

un ◦ φn
∣∣φ′n∣∣ ds =

∫
I

wn ◦ φ∞|φ′n| ds.

Therefore, the limit asn tends to infinity of
∫
φn(I )

un dL is equal to the measure of
φ∞(I ) multiplied byu∞, which leads to a contradiction.

We can prove now the almost scaled Poincar´e-type inequality stated previously:

Proof of Theorem 3. This is just a scaled version of Theorem 4, under the scaling
defined by (33).

We also need the following easy lemma:

Lemma 4. There exists a constant C such that, for all small enough ε and all
z ∈ H 1(Oκ), the following inequality holds:

|Nκz(t1)| � C
(
(t2/ε)

1/2 |gradz|L2(Oκ )
+ (t2ε)

−1/2 |z|L2(Oκ )

)
. (46)

Proof. Let Q = (0,1)2. There exists a constantC such that for allw ∈ H 1(Q)

we have the inequality∣∣∣∣
∫ 1

0
w(0, y2) dy2

∣∣∣∣ � C |w|H1(Q) . (47)

For all z ∈ H 1(Oκ) define

w(y) = z
(
-κ(t1 + y1(t2 − t1), ε(2y2 − 1))

)
.

We observe that∫
Q

|w|2 dy =
∫ t2

t1

∫ ε

−ε
|z ◦-κ(θ, s)|2 dθ ds

2ε
√
G(t2 − t1)

= 1+O(ε)

2ε(t2 − t1)

∫
Oκ

|z|2 dx.
(48)

Similarly,∫
Q

|gradw|2 dy

=
∫ ε

−ε

∫ t2

t

(
(t2 − t1)

2
∣∣∣∣∂(z ◦-κ)

∂θ

∣∣∣∣
2

+ 4ε2
∣∣∣∣∂(z ◦-κ)

∂s

∣∣∣∣
2
)

dθ ds

2ε(t2 − t1)
.

If we assume thatε is small enough, we can see that∫
Q

|gradw|2 dy � (t2 − t1)(1+O(ε))

2ε

∫
Oκ

|gradz|2 dx. (49)
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Finally, ∫ 1

0
w(0, y2) dy2 = Nκz(t1).

Then

|Nκz(t1)| � C
(( t2 − t1

2ε

)1/2 |gradz|L2(Oκ )
+ 1

(2ε(t2 − t1))1/2
|z|L2(Oκ )

)
.

This immediately implies relation (46), forε small enough.

End of the proof of Theorem 2. Let us prove first inequality (30).A straightforward
calculation shows that∫ bj−t2

aj+t2

∣∣∣∣∂Nju(θ)

∂θ

∣∣∣∣
2

dθ � 1

2ε

∫ bj−t2

aj+t2

∫ ε

−ε

∣∣∣∣∂(u ◦-j)

∂θ

∣∣∣∣
2

ds dθ

� 1+ Cε

2ε

∫
Bj (t2,ε)

|gradu|2 dx.
(50)

The contribution of∩κ∈J (v)ψκ(0, t2) to the energy ofP εu is

∑
κ∈J (v)

∫ t2

t1

∣∣∣∣∂Nκu

∂θ
− ĉ −Nκu(t1)

t2 − t1

∣∣∣∣
2

dθ.

We observe that ∑
κ∈J (v)

(ĉ −Nκu(t1))
2

t2 − t1

can be estimated byCη1/t2 according to (25). Henceforth,

t2 is any finite strictly positive number at most equal to&/2, (51)

andε must be no larger than min(ε0, t2/R). Therefore,

∑
κ∈J (v)

∫ t2

t1

∣∣∣∣∂Nκu

∂θ
− ĉ −Nκu(t1)

t2 − t1

∣∣∣∣
2

dθ

� (1+√
ε)

∑
κ∈J (v)

∫ t2

t1

∣∣∣∣∂Nκu

∂θ

∣∣∣∣ dθ + (1+ 1/
√
ε)

∑
κ∈J (v)

(ĉ −Nκu(t1))
2

t2 − t1

� 1+√
ε

2ε

∫
Oκ

|gradu|2 dx + C√
ε

∫
U1

|gradu|2 dx.

This relation, together with (50), implies (30).
Let us turn now to the proof of (31). Consider first the contribution ofMj(t2)

to |P εu|L2(M): it is easy to see that

|u ◦-κ(θ, s)−Nκu(θ)| � 2ε
(∫ ε

−ε

∣∣∣∣∂(u ◦-κ)

∂s

∣∣∣∣
2

ds
)1/2

.
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Therefore we have the inequality∫ t2

t1

∫ ε

−ε
|u ◦-κ(θ, s)−Nκu(θ)|2 ds dθ � 2ε(1+ Cε)

∫
Bj (t2,ε)

|gradu|2 dx.

We apply the inequality(a + b)2 � (1−√
ε)a2 − b2/

√
ε with a = u ◦ -κ(θ, s)

andb = Nκu(θ)− u ◦-κ(θ, s), and we can see that

∫ bj−t2

aj+t2
|Nκu(θ)|2 dθ

� 1

2ε

[
(1− C

√
ε)|u|2

L2(Bj (t2,ε))
− C

√
ε|gradu|2

L2(Bj (t2,ε))

]
. (52)

The contribution of∪κ∈J (v)ψκ([0, t2]) to |P εu|2
L2(M)

is

t1|J (v)|ĉ2 +
∑

κ∈J (v)

∫ t2

t1

(
Nκu(θ)+ (t2 − θ)(ĉ −Nκu(t1))/(t2 − t1)

)2
dθ.

The same type of argument as above yields

∫ t2

t1

[
Nκu(θ)+ (t2 − θ)(ĉ −Nκu(t1))/(t2 − t1)

]2
dθ

� 1

2ε

[
(1− C

√
ε)(η2 − η1)− C

√
εη2

]
. (53)

It remains for us to show thatη2 − ζ1 can be conveniently estimated from below.
We infer from Theorem 3 that

ζ1 � Cε2
(
η1 +

∑
κ

Nκu(t1)
2
)
. (54)

We substitute estimate (46) into (54) and we can see that

ζ1 � Cεη2 + Cε(η2 − ζ1).

Therefore,

η2 − ζ1 � (1− Cε)η2 − Cεη2. (55)

Therefore, if we put together (52), (53) and (55), we have obtained inequality (31).

Remark 1. We may now compare our the approximation process to that developed
byEvans&Saito [9] andSaito [20].We take for simplicity a cross-shaped domain
O(ε) of width 2ε defined by

O(ε) = {(x1, x2) : max(x1, x2) � 1, min(x1, x2) � ε},
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and calculate explicitly the operatorLε = (Qε)∗ Lapε Qε; also for simplicity, we
require Dirichlet conditions at the end-points of the cross. We obtain

D(Lε) =
{
f ∈ H 1(L) : fj ∈ H 2(0,1),

4∑
j=1

(1− ε)f ′j (0)+ ε2f (0) = 0, fj (1) = 0

}

(Lεf )j = − (1− ε)2f ′′j ;
Evans and Saito construct a mappingQ̃ε given by

(Q̃εf )(x1, x2) = f (x1), if 0 < x1 < 1 ;
with analogous expressions on the three other branches. Then a direct calculation
gives forL̃ε = (Q̃ε)∗ Lapε Q̃ε:

D(L̃ε) =
{
f = (fj )1�j�4 : min(xj , ε)f

′
j ∈ L2(0,1),

(min(xj , ε)f ′j ))′

min(xj , ε)
∈ L2(0,1)

}

(L̃εfj ) = − 1

min(xj , ε)

d

dx
(min(xj , ε)fj ).

Therefore, the approximation of Lap byLε is smoother than the approximation by
L̃ε. An explicit calculation in this particular case shows that, in general,(L̃ε)−1g

does not belong toL2(L), even with very smooth datag, reflecting thus the singular
character of the approximation.

8. Comparison of the eigenvalues

We start this section by deriving a Hilbertian lemma on the comparison of
the eigenvalues of two self-adjoint operators which are bounded from below and
which operate in different Hilbert spaces. This result will enable us to relate the
eigenvalues of the Laplace operator onO(ε) and the eigenvalues of Lap onM.

Let H be a Hilbert space, whose scalar product is denoted by( , ) and whose
norm is denoted by| |. Recall that ifA is a self-adjoint operator inH , the Rayleigh
quotient associated withA is the expression

R(u) = (Au, u)

|u|2 .

It is defined for allu in the domain ofA. The bilinear forma associated withA is
defineda priori on the domain ofA by

a(u, v) = (Au, v).
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This bilinear form can be classically extended as follows ifA is bounded from
below, i.e., if there exists a real numberα such that

(Au, u)+ α|u|2 � 0. (56)

The completion ofD(A) for this norm is a dense subspaceV of H which is often
called the domain of the maximal extension of the quadratic forma.

The expression

λn(A) = inf
{{supR(v) : v ∈ W },dimW = n} (57)

is a priori an element ofR ∪ {−∞} ∪ {+∞}. If A is bounded from below, i.e., if
(56) holds, the minimax theorem (see for instance [17], Theorem XIII.1) states that
for eachn,

(1) either there are at leastn eigenvalues (counting degenerate eigenvalues a num-
ber of times equal to their multiplicity) below the bottom of the essential spec-
trum andλn(A) is then-th eigenvalue ofA counting multiplicity,

(2) orλn(A) is the bottom of the essential spectrum ofA, and in that caseλn(A) =
λn+1(A) = . . . and there are at mostn−1 eigenvalues (counting multiplicity)
belown.

We prove now the comparison theorem for the eigenvalues:

Lemma 5. LetH0 andH1 be Hilbert spaces equipped with scalar products denoted
by ( , )j for j = 0,1; let Aj be a self-adjoint operator in Hj , which is bounded
from below. Denote by Vj the domain of the maximal quadratic form associated
with Aj and by Rj the Rayleigh quotient associated with Aj . Suppose that there
exists a continuous operator S mapping V1 to V0 and an increasing function φ from
R to R ∪ {+∞} such that exp(−φ) is continuous over R and such that

∀ u ∈ V1 \ kerS, R0(Su) � φ(R1(u)). (58)

Assume that for a given n

µ = inf {R1(v) : v ∈ V1 ∩ kerS} > λn(A1). (59)

Then,

λn(A0) � φ(λn(A1)). (60)

In particular, if S is one-to-one, relation (60) holds for all integer n.

Proof. Assume first thatλn(A1) is an eigenvalue ofA1. Letu1, . . . un be the eigen-
vectors ofA1 relative to the eigenvaluesλ1(A), . . . λn(A), spanning the spaceW ;
condition (59) implies that the restriction ofS toW is one-to-one. Indeed, if

u =
n∑

j=1

ξjuj
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belongs to the kernel ofS, we have the relation

n∑
j=1

λj |ξj |2 �
n∑

j=1

µ|ξj |2

which implies immediately thatu vanishes. Condition (60) implies thatSuj belongs
to V0 for all j = 1, . . . , n, and the argument we just made implies that the space
spanned bySu1, . . . Sun is of dimensionn; therefore, the expression (57) implies

λn(A0) � sup
{R0(z) : z ∈ SW \ {0}}

= sup
{R0(Sw) : w ∈ W \ {0}}

� sup
{
φ(R1(w)) : w ∈ W \ {0}}

= φ(λn(A1)).

If λn(A1) is the lower bound of the essential spectrum ofA1, we useWeyl’s criterion:
there exists an orthonormal family(uj )j�1 such thatR(un) converges toλn(A). If
Wj is the space spanned byuj , . . . , uj+n−1, then forj large enough, the intersection
of Wj and kerS is reduced to 0, and the above argument shows that

λn(A0) � sup{φ(R1(w)) : w ∈ Wj };
the construction ofWj implies that

lim
k→∞ sup{R1(w) : w ∈ Wj }

is equal toλj (A1), and the theorem is proved.

As a corollary of Lemma 5, we obtain the following result on the comparison
between the eigenvalues of Lapε and Lap:

Theorem 5. There exists a constant C such that

λp(Lapε) � (1+ Cε)λp(Lap), (61)

and for all ε � ε(p),

λp(Lap) � λp(Lapε)(1+ C
√
ε)

1− C
√
ε − Cλp(Lapε)

√
ε
. (62)

Proof. Denote byR the Rayleigh quotient associated with the operator Lap, and
by Rε the Rayleigh quotient associated with the operator Lapε. The mappingQε

is clearly one-to-one; relations (20) and (21) imply the relation

Rε(Q
εf ) � (1+ Cε)R(f ),

for all f ∈ H 1(M), and for all small enoughε. Lemma 5 implies then that for all
small enoughε and allp, (61) holds.
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For the converse, we have to estimateRε(u)whenP εu vanishes. Thanks to the
definition (28) ofP ε, u belongs to the kernel ofP ε if and only if

∀ j ∈ {1, . . . , |E |}, ∀ θ ∈ Mj(t1), Nju(θ) = 0.

An elementary computation shows that for allv ∈ H 1(−ε, ε)whose mean vanishes,

∫ ε

−ε
v′2 ds � π2

4ε2

∫ ε

−ε
v2 ds.

Therefore, ifu belongs to the kernel ofP ε, we can see that∫
Bj (t1,ε)

|gradu|2 dθ ds

�
∫ bj−t1

aj+t1

∫ ε

−ε

∣∣∣∣∂u ◦-j

∂s

∣∣∣∣
2 1√

G
dθ ds

� (1− Cε)π2

4ε2

∫ bj−t1

aj+t1

∫ ε

−ε
∣∣u ◦-j

∣∣2√Gdθ ds

� (1− Cε)π2

4ε2

∫
Bj (t1,ε)

|u|2 dθ ds

On the junctions, we can use Theorem 3, which can be made uniform with respect
to the vertices of the graphM. Therefore, we have shown that there exists a constant
C such that for all small enoughε,

inf
{Rε(u) : u ∈ kerP ε

}
� C

ε2 . (63)

Define

φε(r) =
{
r
(
1+ C

√
ε
)
/
(
1− C

√
ε − rC

√
ε
)

if r � (1− C
√
ε)/
√
ε,

+∞ otherwise.

Then relations (30) and (31) imply, for allu /∈ kerP ε, the relation

R(P εu) � φ
(Rε(u)

)
.

Moreover, for allp, there existsε(p) such that, ifε � ε(p), then thanks to rela-
tions (61) and (63), we have

inf
{Rε(u) : u ∈ kerP ε

}
� λp(Lapε).

Thus, we may apply again Lemma 5, and we find that

λp(Lap) � φε(λp(Lapε)),

which is exactly (62).
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Remark 2. The convergence of Lapε to Lap has (at least) two possible interpreta-
tions. In the first one, we consider the operatorLε defined by the quadratic form
E(Qεf,Qεf )/(2ε)onH 1(L); it is then an exercise to show that for allf ∈ H 1(L),
Lεf tends to Lapε f , and to infer that for allz in the resolvant set of Lap,(z−Lε)−1

converges to(z−Lap)−1.The second one would be the symmetric statement relative
to the comparison of the operatorMε defined by the quadratic formEε(P εu, P εu)

with Lapε. This is much more subtle, because the kernel ofMε is of infinite di-
mension; thus, we see that the statement of Theorem 5 is quite strong, since it tells
us that the spectral approximation property holds, even though there is a very large
kernel. The only relevant elements in the kernel are the constant functions since
non-constant functions belonging to the kernel ofP ε are highly oscillatory and
therefore contribute only to the large eigenvalues of Lapε.

9. Asymptotics for the spectrum of the magnetic Schrödinger operator

The energy levels of a quantum mechanical system under an external magnetic
field are determined by the spectrum of the magnetic Schr¨odinger equation. In
addition, this spectrum is important in superconductivity. There the dependence of
the first eigenvalue on the magnetic field is equivalent to the curveTc(He)describing
the phase transition temperatureTc as a function of the applied magnetic fieldHe.

To define the magnetic Schr¨odinger operator we introduce the magnetic vector
potential related to the applied magnetic field. For this purpose we setA : O(ε) !→
R

2 of classC1. The magnetic energy functional associated with this field is given
by

Eε(u, u;A) =
∫
O(ε)

|(grad+iA)u|2 dx, (64)

and it is defined for allu ∈ H 1(O(ε);C), the set of complex-valued and square-
integrable functions overO(ε) whose first derivatives are also square integrable.

The Schr¨odinger operatorSε[A] associated with the quadratic form (64) is
defined by

D(Sε[A]) = {
u ∈ H 2(O(ε);C) : (∂ν + iAν)u = 0 on∂O(ε)

}
, (65)

and

Sε[A]u = (grad+iA)∗(grad+iA)u
= −�u− iA · gradu− i div(Au)+ |A|2u. (66)

In relation (65),∂ν is the normal derivative along the boundary∂O(ε) of O(ε), and
Aν = A · ν is the normal component ofA.

In order to define an analogous one-dimensional magnetic energy on the graph
M, we first identifyA with a differential form of degree 1,

A = A1dx
1 + A2dx

2,



302 Jacob Rubinstein & Michelle Schatzman

and then we express this form in local coordinates on each branchBj (Rε, ε):
A = Aj,θ dθ + Aj,s ds,

where

Aj,θ (θ, s) =
(
A ◦-j

)
(θ, s) · (ψ ′

j (θ)+ sρψ ′′
j (θ)

)
,

Aj,s(θ, s) =
(
A ◦-j

)
(θ, s) · (ρψ ′

j (θ)
)
.

With this notation, the differential formA of degree 1 onM is defined in local
coordinates onMj by

Aj = Aj,θ (θ,0),

and the magnetic energy on the graphM is given by

E(f, f ;A) =
∫
M

|df + ifA|2 dvolM =
|E |∑
j=1

∫ bj

aj

∣∣∣f ′j + iAjfj

∣∣∣2 dθ.

The associated operator isS[A] defined by

D(S[A]) =
{
f ∈ H 1(M;C) : ∀ j = 1, . . . , |E |, fj ∈ H 2((aj , bj );C),∑
κ∈J (v)

κ[3](f ′κ[1] + ifκ[1]Aκ[1]
)
(κ[2]) = 0,

}
(67)

(
S[A]f )

j
(θ) = − f ′′j − iAj f

′
j − i(Aj fj )

′ + ∣∣Aj

∣∣2 fj . (68)

In this section, we shall prove estimates analogous to those of Sections 5 and 7,
and we will apply them to compare the spectra ofSε[A] andS[A].

We replace the transformationQε which has been defined in Section 5 by a
new transformation which takes the vector potential into account. More precisely,
for all f ∈ H 1(M;C) we define

(
Q̂εf )(y) =

{
f̃j (θ)exp

(−i ∫ s0 Aj,s(θ, s
′) ds′

)
if y = -j(θ, s) ∈ Bj (t1, ε),

uv(y) if y ∈ U1.

(69)

The functionuv appearing in (69) is the minimizer of the Dirichlet integral over
U1 = U(t1, ε, v), assuming that the trace ofuv coincides with the trace of̂Qεf on
the common boundary ofU1 andBj (t1, ε).

With this notation, we can now state our first magnetic estimates:

Theorem 6. There exists a constant C, which is bounded if the C1 norm of A is
bounded, such that for all f ∈ H 1(M;C) the following estimates hold:

2ε(1− Cε)|f |2
L2(M)

� |Q̂εf |2
L2(O(ε))

� 2ε(1+ Cε)|f |2
L2(M)

+ ε2E(f, f ;A), (70)

Eε
(
Q̂εf, Q̂εf ;A) � 2ε

(
1+ Cε

)
E(f, f ;A)+ Cε2|f |2

L2(M)
. (71)
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Proof. The first step is to estimate the Dirichlet integral ofuv; we use a test function
u defined by

u(y) =



f (v) if y ∈ U(Rε, ε, v),[
(R + 1)ε − θ + (θ − Rε)exp

(−i ∫ s0 Aκ,s(θ, s
′) ds′

)]
f (v)

if y ∈ -κ((Rε, (R + 1)ε)× (−ε, ε).
Since|gradu| is bounded byCε|f (v)| whereC depends only on theC1 norm of
A and the geometry ofM, we obtain∫

U1

|graduv|2 dx � Cε4|f (v)|2. (72)

It is immediately obvious that∫
Bj (t1,ε)

∣∣∣Q̂εf

∣∣∣2 dx ∈ 2ε[1− Cε,1+ Cε]
∫ bj

aj

∣∣fj (θ)∣∣2 dθ.

According to Theorem 3 and to the definition ofQ̂εf , we can see that∫
U1

|Q̂εf |2 dx � Cε2 |f (v)|2 .

But we have the classical estimate

|f (v)|2 � C |f |2
H1(M)

,

and we can see also that

E(f, f ) � 2E(f, f ;A)+ 2‖A‖2
C0 |f |2L2(M)

. (73)

These relations imply that there existsC such that

|f (v)|2 � C
(
E(f, f ;A)+ |f |2

L2(M)

)
, (74)

and the numberC is bounded when theC0 norm ofA is bounded.All these relations
show that (70) holds.

Let us turn now to the energy estimates forQ̂εf . An immediate computation
gives the following relation, which is valid onBj (t1, ε, v):

∣∣∣gradQ̂εf

∣∣∣2 dx = G−1/2

∣∣∣∣∣∂Q̂
εf

∂θ
+ iAj,θ Q̂

εf

∣∣∣∣∣
2

dθ ds.

The expression between vertical bars on the right-hand side of the above equation
is equal to

(
f̃ ′j (θ)+ iAj,θ (Tj (θ),0)f̃j (θ)T

′
j (θ)+ iζj f̃j (θ)

)
exp

(
−i

∫ s

0
Aj,s, (θ, s

′) ds′
)
,
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where the remainderζj is defined by

ζj (θ, s) = Aj,θ (θ, s)− Aj,θ (θ,0)+ Aj,θ (θ,0)(1− T ′j (θ))
+ T ′j (θ)

[
Aj(θ,0)− Aj(Tj (θ),0)

]
.

SinceA is of classC1, we can see immediately that∣∣ζj (θ, s)∣∣ � Cε.

On the other hand,

f̃ ′j + T ′j Aj,θ (Tj ,0)f̃j = T ′j
[
f ′j + iAjfj

] ◦ Tj .
Thanks to the inequality 2|αβ| � ε |α|2 + ε−1 |β|2, we can see that

∣∣∣f̃ ′j (θ)+ iAj,θ (Tj (θ),0)f̃j (θ)T
′
j (θ)+ iζj f̃j (θ)

∣∣∣2
� (1+ ε)

∣∣∣T ′j (θ)[f ′j + iAjfj
] ◦ Tj (θ)∣∣∣2 + Cε

∣∣∣f̃j ∣∣∣2 .
Therefore, we have the estimate

∫
Bj (t1,ε)

|gradQ̂εf |2 dx

� 2ε
(
1+ Cε

) ∫ bj

aj

∣∣∣f ′j + iAjfj

∣∣∣2 dθ + Cε2
∫ bj

aj

∣∣fj ∣∣2 dθ.

Estimates (72) and (74) allow us to conclude that (71) holds.

For the estimates in the opposite direction, we do not need to redefineP ε: we
just extend the definition given in (28) to the complex case by linearity.

Theorem 7. There exists a constant C such that for all u ∈ H 1(O(ε);C) the
following estimates hold:

E(P εu, P εu;A) � 1+ C
√
ε

2ε
E(u, u;A)+ Cε−1/2 |u|2

L2(O(ε))
, (75)

∣∣P εu
∣∣2
L2(M)

� 1

2ε

((
1− C

√
ε
) |u|2

L2(O(ε))
− C

√
εEε(u, u;A)

)
. (76)

Proof. Estimate (76) is a direct consequence of estimate (31) and of (73). Let us
prove now relation (75). We observe that

∂Nju

∂θ
+ iAjNju = 1

2ε

∫ ε

−ε

[∂u ◦-j

∂θ
+ Aj,θu ◦-j

]
(θ, s) ds

+ 1

2ε

∫ ε

−ε
[
Aj,θ (θ,0)− Aj,θ (θ, s)

]
u ◦-j(θ, s) ds.
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We infer from the assumption thatA is of classC1, that∣∣∣∣∂Nju

∂θ

∣∣∣∣
2

� 1+√
ε

2ε

∫ ε

−ε

∣∣∣∣∂u ◦-j

∂θ
+ Aj,θu ◦-j

∣∣∣∣
2

dθ + C
√
ε

∫ ε

−ε
∣∣u ◦-j

∣∣2 dθ,

so that

∫ bj−t2

aj+t2

∣∣∣∣∂Nju

∂θ

∣∣∣∣
2

dθ

� 1+ C
√
ε

2ε

∫
Bj (t2,ε)

|(grad+iA)u|2 dx + C
√
ε

∫
Bj (t2,ε)

|u|2 dx.

The next terms to estimate are

∑
κ∈J (v)

∫ t2

t1

∣∣∣∂Nκu

∂θ
+ iAκNκu

− ĉ −Nκu(t1)

t2 − t1
− iAκ

(t2 − θ)
(
ĉ −Nκu(t1)

)
t2 − t1

∣∣∣2 dθ. (77)

We estimate the term∂Nκu/∂θ + iAκNκu as above, and we use the classical
inequality

|α + β + γ |2 � (1+ C
√
ε)|α|2 + C

(|β|2 + |γ |2)/√ε.
We find that the expression (77) is estimated by

∑
κ∈J (v)

1+ C
√
ε

2ε

∫ t2

t1

∫ ε

−ε

∣∣∣∣∂u ◦-κ

∂θ
+ iAκ,θu ◦-κ

∣∣∣∣
2

dθ ds

+ C
√
ε

∫
Oκ

|u|2 dx + C√
ε

∣∣ĉ −Nκu(t1)
∣∣2 .

The last term to estimate is the contribution

∑
κ∈J (v)

∫ t1

0

∣∣iAκ ĉ
∣∣2 dθ � C

∣∣ĉ∣∣2 ε.
We recall that, from (25),

∣∣ĉ −Nκu(t1)
∣∣2 � C

∫
U1

|gradu|2 dx,

and from (46),

∣∣ĉ∣∣2 � Cε−1
∫
Oκ

(|gradu|2 + |u|2) dx,
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and we find that

E(P εu,P εu;A)

� 1+ C
√
ε

2ε

|E |∑
j=1

∫
Bj (t1,ε)

|(grad+iA)u|2 dx

+ C
√
ε

|E |∑
j=1

∫
Bj (t1,ε)

|u|2 dx + Cε−1/2
∑
v∈V

∫
U(t1,ε,v)

|gradu|2 dx

+ C
∑
v∈V

∑
κ∈J (v)

∫
Oκ

(|gradu|2 + |u|2) dx.
But

|gradu|2 � 2 |(grad+iA)u|2 + 2‖A‖C0 |u|2 .
We conclude that (75) holds.

These theorems suffice to compare the spectra ofSε[A] andS[A]; we may even
replaceA by a vector potentialAε depending onε. If we define

δ(ε) = ‖Aε − A0‖C0,

we can state the following result:

Theorem 8. Assume that the norm of A
ε is bounded in C1(O(ε)) independently

of ε; then, if δ(ε) tends to 0 as ε tends to 0, the spectrum of Sε[Aε] tends to the
spectrum of S[A0] in the following sense. There exists C such that for all integer
p, the following estimate holds:

λp(S
ε[Aε]) �

(1+ Cε)
[
(1+ Cδ(ε))λp(S[A0] + Cδ(ε)

]+ Cε

1− Cε
; (78)

for all integer p, there exists εp such that for all ε � εp,

λp(S[A0]) � (1+ Cδ(ε))
(1+ C

√
ε)λp(S

ε[Aε])+ C
√
ε

1− C
√
ε − C

√
ελp(Sε[Aε]) . (79)

Proof. The proof of this statement is straightforward, We compare first the spectra
of S[Aε] andS[A0]: we have the inequality∣∣∣∣

∫
M

(∣∣df + ifAε
∣∣2 − ∣∣∣df + ifA0

∣∣∣2) dvolM

∣∣∣∣
� Cδ(ε)

∫
M

(|df |2 + |f |2) dvolM

� Cδ(ε)

(∫
M

|f |2 dvolM

+min

(∫
M

∣∣∣df + iA0f

∣∣∣2 dvolM,

∫
M

∣∣df + iAεf
∣∣2 dvolM

))
.
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In the statement of Lemma 5, the Hilbert spacesH0 andH1 are taken equal to
L2(M), andS will be the identity. We infer immediately that

λp(S[Aε]) � (1+ Cδ(ε))λp(S[A0])+ Cδ(ε), (80)

λp(S[A0]) � (1+ Cδ(ε))λp(S[Aε])+ Cδ(ε). (81)

We use now the argument of the proof of Theorem 5: we have thus the estimate

λp(S
ε[Aε]) � (1+ Cε)λp(S[Aε])+ Cε

1− Cε
,

which, with (80) implies (78).
Conversely, relation (63) still holds thanks to the second inequality of (70), and

thus we infer from Lemma 5 and relations (75) and (76) that

λp(S[Aε]) � (1+ C
√
ε)λp(S

ε[Aε])+ C
√
ε

1− C
√
ε − C

√
ελp(Sε[Aε]) ,

and the conclusion (79) follows with the help of (81).
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7. Y.C.deVerdière: Sur la multiplicité de la premi`ere valeur propre non nulle du laplacien.

Comment. Math. Helv. 61 (1986), 254–270.
8. R.W.R. Darling: Differential forms and connections. Cambridge University Press,

Cambridge, 1994.
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