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Abstract

Let M be a planar embedded graph whose arcs meet transversally at the vertices.
Let O(e) be a strip-shaped domain aroubd of width ¢ except in a neighborhood
of the singular points. Assume that the boundarygt) is smooth. We define
comparison operators between functiongd@) and onM, and we derive energy
estimates for the compared functions. We define a Laplace operaténamich is
in a certain sense the limit of the Laplace operato®gs) with Neumann boundary
conditions. In particular, we show that theth eigenvalue of the Laplacian d(¢)
converges to the-th eigenvalue of the Laplacian o ase tends to 0. A similar
result holds for the magnetic Sduihger operator.

1. Introduction

Modern techniques enable the manufacture of complex networks of mesoscopic
strips, pipes and rings. Systems of this kind are of growing importance in several
physical and technological areas, such as superconductivity [16], optics [11], semi-
conductors manufacturing [10], etc. Their domains are characterized by a small
lateral dimension. Therefore we shall develop an asymptotic theory for a variety of
variational problems there. In this paper we define the basic geometrical structures
and derive a series of fundamental estimates. As an application we characterize the
asymptotic limit of the Laplacian of such domains. In our next paper, [18], we study
the asymptotic limit of the Ginzburg-Landau functional in such networks. Our work
generalizes the results of [21] and [19] where single rings were considered.

Let M be an embedded oriented graptRify and suppose that its arcs intersect
transversally. Assume that all the arcsMfare C? manifolds. ThenM is a very
singular manifold, which is however the limit of a sequence of €4t obtained
by fatteningM: assume that these fattened sets are of wid#@ept in the neigh-
borhood of the singular points &, where it is admitted thaP(¢) lies at a distance
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atmost 2 from M. Then, the operatod® = —A onO(¢g) with Neumann boundary
conditions is well defined:; it is a self-adjoint operatolifA(O(¢)) defined via the
energy quadratic form

E*(u, u) = / | gradu? dy,
O(e)

and its domain is the space of functions in the Sobolev sp}a%(@(s)) whose
normal derivative vanishes at(e).

The setO(¢) is homotopically equivalent td7; hence, all the topological in-
variants of M can be obtained by a calculation d¢) which is a reasonably
nice manifold with boundary. We show here that it is also possible to define a
Laplace-Beltrami operatod on M, starting from the energy form ol

E(f, f) =/ |df|? dvoly,
M

wheredvoly, is the volume form orM. Of course, this makes sense if we define
the differential of a functiory on M: this is done by taking the differential of
restricted to the interior of the arcs. We find that the domainl afonsists of all
the functions which are continuous, whose restriction to the arcsHg jmnd such
that the sum of all the outgoing derivatives with respect to the arc-length at the
singular point vanishes: this is a Kirchhoff-type condition. We prove that the above
definitions make sense because the spectrusi @bnverges to the spectrum.df
The graphM and appropriate function spaces over it are introduced in Section 2.
The “lace”O(¢) is defined in Section 3. The convergence of the spectrum is proved
in Section 8.

The idea of the proof is to construct a mappiagfrom H1(M) to H(O(e)),
and a mapping?¢ from Hl(O(a)) to H1(M), and to compare the relevant Ray-
leigh quotients. Away from singular point®? f is extended as a constant along
the normal, andP?u is the normal average af. All the difficulty is concentrated
at the singular points: for instancepiis a singular point oM, Q¢ f will be taken
equal tof(v) in a neighborhood of of size O(e) in O(e). Before we define a
normal extension, we have first to transfoyhinto an f which is constant around
the singular points o/, and whosd.2 and H® norm are very close to those ¢f
this can be done by a piecewise affine transformation of the coordinates; then the
idea of constant normal extension works. The definitioR dfises different scales:
we takef to be the normal average ofat a finite distance from the singular points
of M; at a distance at moste of the junctions, we tak&®u to be the average of the
normal averages along the arms of the junction; in between, we correct the normal
average by a linear interpolation.

The comparison of the Rayleigh quotient fBfu to the Rayleigh quotient
for u relies on a careful estimate for the difference between normal averages on
different branches close to a singular point. In order to prove such an estimate, we
construct bounded differential forms on subpipes joining two particular branches,
while remaining inside)(¢). Because of the particular geometry involved in our
problem, we term those estimates “plumber shop estimates”. We also show a precise
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Poincag inequality on junctions where the right-hand side contains the square of
the average of the boundary values instead ofthaorm of the boundary values.
This result illustrates the fact that the details of the smoothing of th®eet at

the junction are unimportant. It relies on the construction of a Lipschitz continuous
bijection, whose inverse is Lipschitz continuous and which sends a junction into a
fixed set. These results are derived in Sections 5, 6 andhéfe the main results

are summarized in Theorem 1 and Theorem 2.

The comparison of the eigenvalues (performed in Section 8) relies on the inf-sup
principle.

In Section 9, we generalize the comparison techniques and results to the case of
the Schodinger operator with a magnetic potential. The results are analogous, and
the relevant estimates are obtained through simple modifications of the techniques
of Sections 5 to 8.

In [18] we prove the convergence (in a suitable sense) of the Ginzburg-Landau
functional onO(¢) to a Ginzburg-Landau functional defined owér The result is
useful for a large class of problems in superconductivity and quantum mechanics.
In Section 4 of [18] we summarize the results of the current paper and [18].

The limiting process we carry outis reminiscent of work€of.IN DE VERDIERE
[7]andCoLBois & ANNE [1]. CarLsoN [3] has recently studied the spectrum of the
Laplacian on an integer lattice graph as a limit of the associated networks. There
is also an extensive literature on approximating thin elastic structures by lower
dimensional related structures, e.g., [6] and the references therein.

Several authors developed theories concerning the Laplacian and more gener-
ally linear differential operators on a graph, as for instafeeLson in articles [5]
and [4] andKosTRYKIN & SCHRADER in [14] and [15]; beyond describing all the
transmission conditions that lead to a self-adjoint extension of the Laplace operator,
they have also studied the scattering matrix, with a view towards the applications
to quantum computing. They also mention that it would be useful to justify math-
ematically the passages to the limit on thin domains.

Evans & Sarto have treated a closely related problem in [9], &hxdTo in
[20]. Their limiting process is different from ours; it introduces a singularity in the
approximation process that disappears in the limit. More comments on that question
are given in Remark 1.

Finally, it should be observed that the planar character of the graph is wholly
irrelevant; we could have taken a graph embeddel’inand a fattening iR”;
then the results would have been completely identical, and the proofs would need
only very slight modifications.

2. Thesingular manifold M

We start with a definition of the class of singular manifolds on which we work.
Intuitively, M can be drawn as an electric circuit with a finite number of nodes
and twice continuously differentiable branches. The nodes constitute a singular set,
while the branches intersect transversally at the nodes. The gfagdn also be
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seen as the embedding of a finite planar graph, with smooth arcs, and transversal
intersections at the nodes.

The graphV is an embedded finite planar graph; it has a set of eflggentified
with curvesinR?, and a set of verticés. Each edge isnumbered hye {1, ..., ||}
and is parametrized by an injective mappipgof classC? and of rank one from
an interval(a;, b;) to RZ; we assume tha;, w and w” can be extended as
continuous bounded functions ovet;, b;1, and thatw is bounded away from O
over[a;, b;]1. Thus, without loss ofgenerallty, the parameterlsthe arc length. Loops
are not forbldden It is convenient to denote My = v;((a;, b;)) the arc ofM
indexed byj. We will abuse notation and identifyf with the union of the closed
edgesV;, £ with the union of the edgel; and)’ with the union of the boundaries
M; \ M;. We require that for all pairs of distinct indicgsandk, M; andM; have
an empty intersection.

We need to describe all the arcs leaving or entering any verte¥ afith
enough information to write Kirchhoff-like transmission conditions. This is done
by introducing for eaclv € V the set/(v) defined as follows:

J) ={(, a;, +1) : ¥j(a;) = v} UL, by, =1) : ¥ (b)) = v}. @

If ¢ belongs toJ (v), its components are denoted &y[1], ¢[2], £[3]). There are
|J (v)| curves which start or end at any vertex V; an arc might start and end at
v ifitis a loop.

We define the outgoing tangent vectersat v ase, = /<[3]1p;[1] (x[2]). The
transversality condition we impose dd can be formulated precisely now: for
everyv € V, and for every distinct elementsanda of J (v),

e £ ep. 2

Atx = (), the unittangent vectors ate)(¢); the tangent space 1§ M; =
IRl//]f(e). If ¢ is any function from a neighborhood of Oto M \ V which maps
0 to x, theng’(0) is a tangent vector atto M.

A function f on M; is of classC” (r < 2) if f o y; is of classC” on (a;, b;).
We will use repeatedly the notatigfy = f o y;, for all functions f defined on\/.
The differential of f of classC¥a' atx = ;(8) € M; is a linear form ori, M;
defined as follows: i is as above, then

df (x)¢'(0) = (f o ¢)(0). (3)

The differential of f is an example of a cotangent vector, i.e., an element of
T M;j,the dual off'. M;. The definition of the differential of a functionis completely
independent of the metric structure. If a continuous funcfidnom M to R is of
classC? on all the arcsV;, then its differential is defined o \ V by (3).

For all continuous functiong from M to R, the integral off overM is defined

by

bj
/fdvoIM_ > 'f,-(e)de,

1=j|€]
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Fig. 1. An example of an embedded graph; hedp,) = {(1,b1, ), (4, bg, —),
(6, ag, +)}.

where we have used the notation (2). The standard extension procedure yields a
Radon measure oM. For this measuré/ is a null set so that the spaceg(M)
are well defined.

It will be convenient from time to time to reparametrize the arcs out of a given
vertexv, so that they are all locally outgoing: thus we define, foxadl J (v),

Vi (0) = Y (k[2] + «[310), 6 € [0, b1y — axyl-

The convention is that Latin indices indicate a fixed edge numbering and that Greek
indices indicate outgoing numbering out of a given vertex. There exists a strictly
positive numbe¥ such that for alb the images ot0, ¢) by the mappings,, are
pairwise disjoint; we can take fdra number strictly inferior to the minimum of

the lengthgb; — a;)/2. The last observation is that = 1/, (0).

3. The Laplace operator on M

Let C1(M) be the space of continuous functiofi®n M whose restriction to
M; is of classC! and such thatf has limits at the endpoints 81;: this means that
f; has limits atz; andb;. For all f andg in C1(M), we define an energy bilinear
form by

E(f.g) = / df (x) dg(x)dvoly .
M\V

In local coordinates,
I€] b
E(f.9)=)Y [ flgjas. @
j=1v4
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Denote byH (M) the completion ofC1(M) with respect to the pre-Hilbertian
norm
1/2
flan = (112 + ECf. ).
The spacéd (M) can also be described as the space
[fec®M): fj e HY(a;.b).Vj e {L,... . V}}.

Now it is possible to define the Laplace operatbon M: in the spacd.2(M),
E is a closed bilinear form defined on its domait (M) x H1(M); itis clear that
H(M) is dense inL?(M), and thatE is symmetric and nonnegative so that, in
particular, it is sectorial. Therefore we define Lap as the operator derived from the
sesquilinear fornE (Theorem VI.2.1 of [13]). More precisely, the domain of Lap
is the set of elementg of H1(M) for which there exists a constafitsuch that

Vg e HY (M), |E(f 9| = Clglieum-
The value of Lapf, for f € D(A) is given by
(Lapf,g) = E(f.g) Vge HM).

Let us describe the domain of Lap;fifbelongs taD(Lap), and ifg has compact
support inM; and is of clasg'1, the inequality

b; oo 12
!’/
ffjgjde‘§C f 1g12d6
aj aj

J

implies that the distributiorf;” belongs taL?(a;, bj), and that

(Lapf) oy =—f (5)
Thus,f; isin H?(a;, b;). Letusintegrate by parts the relatidrap f, g) = E(f, g)
for all g in C1(M), with the help of the relation (5). We find that
€]

> fsill=o0.
=1

for all g in HY(M). We reorder this equality by summing dh as we can choose
arbitrarily the value of (x) for v € V, we obtain

D limdf ((®)ec =0,
keJ(v)
or equivalently
> klB81fy«I2]) = 0. (6)
keJ(v)

This condition is reminiscent of Kirchhoff’s laws for currents in electric circuits:
the sum of algebraic currents leaving any node has to vanish. It will be convenient
to write D(Lap) = H2(M) by analogy with the usual Sobolev spaces.
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Fig. 2. The setd(M, ¢).

4, Theset O(¢)

In this section we describe the fatteningMfinto an open se®(¢) with C?
boundary and width2aroundM, except close to the vertices #f, where we have
to perform an adequate smoothing.

We start by studyin@/ near the vertices. Define the offsetMfby

@(M, g) = {x eR?: d(x,M) < 8}.

The boundary of this set is not of clag$ if M is anything more complicated than
the €2 diffeomorphic image of a circle.

We need a local description 6i(M, ¢) close to the vertices dff. Let p be the
rotation of+x /2 in R?. DefineC! mapsw; and ¥, by

V(0. 5) = y;(0) + spyrj0), 0 € laj, by, seR,
Ve (0, 5) = Y (0) +5pY(0), 6 €0, b1y — aeyl, s €R.

The two notations correspond to distinct parametrizations of the arcs.

Fore small enoughy; is a diffeomorphism fronta;, a; +£) x (—¢, &) onto its
image, and frontb; — £, b;) x (—e&, &) onto its image; ifM; happens to be a loop,
¥; cannot be a diffeomorphism frofa;, b;) x (—¢, ) onto its image, unless;
is diffeomorphic to a circle.

The following result is geometrically obvious, save for the exact expression of
Ro. Thus we do not spell out the details.

Lemma 1. Let B(v) betheabsolute val ue of the minimum of the half-angle between
two distinct edges leaving v, i.e.,

sinB(v) =min{y/(L—ec-€)/2:k € J(v), A € J(v) \ {«}},
and let
Ro=min{1/sin(B(v)) : v € V}. (7)
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Fig. 3. The local shape ad(M, &) of Fig. 1 around vertexs.

Fig. 4. The setO(¢).

Then for all R > Ry, therq exists g such that for all ¢ € (0, gg) all the angular
points of the boundary of O(M, ¢) belong to the union of the balls of radius Re
centered at the vertices of M.

For future reference, we introduce some notation. Assumeethatk, # 0.
Assume further, without loss of generality, that the difference of argumentg arg
arge;, belongs to the open intervéd, ). Write

e=e., e=e, V=V, =1, (8)

We can define now)(¢), which is smooth fattening o¥/: we fix R > Rp, and
¢ as in Lemma 1. Define, fare [Re, £/2],

M;(t) = v((aj + 1, b; — 1)) ©)
and the fattened branch
Bj(l‘, g) = \Ilj((aj +t, bj — 1) X (—e, 8))
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wyt,e) ]
' wyt,e)
w(t,e)}.) F—— w(t,e)
o) wit,e)

Fig. 5. The local smoothing at the junctions.

We write henceforth
1= (R + s, (10)
and we choose no@(e) in such a way that

€] €]
UBi©.eyu B, &) cO@) c| B, e)u ] B, Re).

j=1 veV j=1 veV

These inclusions imply that outside the union of balls of radiw®ntered around
the vertices of\, O(¢) coincides withO(M, ¢). We require that the boundary of
O(¢) be of clas¥2 inside eacB (v, 11). The details of the smoothing process will
be shown to be irrelevant, provided that the boundarg &f) is well behaved.

The boundary of a junction is made out of line segments which are flat ends
of fattened branches and of arcs which join one corner of a fattened branch to the
next corner. These arcs are of cl@s% they are parametrized by arc length; their
parametrizations are indexed by even numbers, and they satisfy some scaled esti-
mates. The segments are also parametrized by arc length and their parametrizations
are indexed by odd numbers.

The description of a well-behaved boundary close to the junctions is given now
precisely. If there ar@/2 = |J (v)| arcs out ofv, there will bep/2 arcs joining the
arms ofO(e). These arcs are parametrized by the arc length as mappjngse)
of classC? from [0, aj(e)] to RR2. We require that there exist a numh@j; such
that for alle and all j

w2;(s,€) —v dan; (s, &) 9o (5. €) < Cwm, (11)
c s 352
o (&) é Cuye. (12)

We also require that a curve parametrizeddyy start at one end of a segment
W, (11, ) and end at one end of another segmeptRe, ). We will parametrize
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the segment joining; («; (¢), &) t0 w2j42(0, £) by w241, the parameter running
in (0, 2¢). Then it is geometrically obvious that there exists a constasuich that

ale) = Chy. (13)
We define a functiow (-, ¢) by

lo(e) =0,
l1(e) = 2e,
@ (s, &) = wils, &) over[lo(e), l1(e)],
l2(e) = (Cm + 2)e,
P(s, &) = w2((s — 2)1(e)/(Cume), €) over[la(e), I2(e)],
and inductively
lajy1(e) =12(e) + 2e,
(s, &) = w2j+1(s — I2j(e), &) OVerllz;(e), l2j1+1(e)],
l2j+2(¢) = I2j11(e) + 2Cpe,
P (s, ) = w2j42((s — l2j+1(8))aj+1(e) /(Cye), €) over[lzjy1(e), l2j2(€)].

We extendp (-, ¢) as a periodic function of periai (¢) on R, and we require the
following global condition: there exisis > 0 such that

|p(s, &) — p(s, &)| = mmin(me, r]piéﬂs — 5" +kly(o)]). (14)
€

Itwill be convenient to write, for alj andk in Z, [; ;. . = I; +kl,(¢). Relations (12)
and (13)imply thap (-, ¢) is of classC? on each intervall; (¢), /;+1(¢)) and satisfies
the following estimate for alt ¢ {I;(¢), j € Z}:

324 (s, &)

ds2

ap(s, )

=Cu (15)
as

‘¢(S8, £) te

"

with possibly a differenC), from the one in (11).
Forry =t < ¢, Bj(t, ¢) is diffeomorphic to(a; + 1, bj — 1) x (—¢, ¢), and for
j # k, B;(t, ¢) does not intersedsy (¢, ¢); thus the open set

I€]
O\ | JBjt e

j=1

is a disjoint union of open sets which can be seen as the junctions between the
pipes. Each of these junctioii&(z, , v) contains exactly one pointof V; it has
|J (v)| arms of width 2 outside the circle of radiug aboutv and contains the open
ball of radiuse aboutv (see Fig. 6).
The operator Lapis defined as follows:

D(Lap’) = {u € HX(O(e)) : du/dn = 00ndO(e)}, Lapg u = —Au.
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Bi(t,e)

U<t7€7v3)

Fig. 6. Junctions and fat branches; compare with Fig. 1.

5. The plumber’sshop I: from H1(M) to H}(O(e))

In this section, we define a mappir@ from H(M) to H'(O(e)) and we
prove some precise comparison results ontRenorms and the energies. The
title of this section and the next two comes from the fact thét) looks like a
set of pipes, which are soldered at the vertices, and the soldered parts, as can be
expected, are slightly fatter than the pipes themselves. We recall that each soldered
parthagJ(x)| = 2 arms. We go front/*(M) to H(O(e)) basically by extending
a function f on M as a constant along the normals to the cuiMgsthis works
well if f is constant close t®. Thus we replace by a f which has about the
sameH (M) norm asf and which is constant close 1a

As a consequence of the study performed in Section 4, there exist® such
that for alle < e, ¥; is a diffeomorphism fronia; + 11, b; — 11) x (—¢, &) to its
image,B(11, €). Therefore, we can express the Euclidean metriSan, ¢) in the
(@, s) coordinates in terms of the metric tensor; it is given by

Goo = Y] (0) +sp¥]O)1>, Geo=Gps =0, Gy =1, (16)

and it is used to measure the length of vector fields. To comply with standard
notation, we write the volume element in these local coordingl€si6 ds; G is
simply equal toGyg.

Let us define now a mapping® from H(M) to H1(O(e)). Let f belong to
HY(M); recall thatf; = f o y;; define a piecewise affine change of variable on

laj, bj] by
aj, ifaj§9§aj + ¢R,
T;(0) = b, if b —eR =6 = bj, (17)

O—aj—s

R .
aj + bj —aj — 2¢R (bj — aj), otherwise.
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Observe that the dependenceTpfupone is understated, in order to simplify the
notation. The reciprocal function @f is ®;, which we define by
t—a;
Oj(t) =aj +1 + L(bj —aj —2n), 1€ [aj,bjl. (18)
bj —aj

With this notation, we Iegfj (0) = fj(T;(9)), and we defingd® f by

fi®) ify=w;0,s) e B;,e),

. A — (29)
f) ifyeUl(n,e,v).

W Hy) = {

Before we state the first estimate, let us give another definition: the bilinear
energy form onH(0O(e)) is

Ef(u, w) =/ gradu(x) gradw(x) dx.
O(e)

Theorem 1. There exists a constant C such that for all f in H(M) the following
inequalities hold:
2
26(1+ Cof1720y) + CE2E(S, ) Z |Q° fl 200y Z 261 = CONf 172030
(20)
26(1+ CoE(f, f) 2 ES(Q° £, Q° f). (21)

Proof. Let us calculate thé? norm of Q¢ f on B;(t1, €): we recall that the Eu-
clidean volume element i1 ands coordinates is/G d6 ds; therefore

bji—tn pe
/ |0° f1dx =/ [ | fi©0)12VG ds do,
Bj(t]_,s) aj+n —&

and with the help of the change of variable (18) this expression can be rewritten

e b 2 bi —a; — 21
/B( )|Q€f|2dx=/ / || JG(@ﬂt),s)dtds#.
i (11, —¢ Ja; J Y

We observe thal (©; (1), s) = 14 0 (e) uniformly in e, according to our regularity
assumptions ovef;. Therefore, we can see that there exists a conétanth that,
for all j and all sufficiently smalt,

bj
[ et srarzaa-ce) [ igera.
Bj(t1,€) a

j

Summing these inequalities with respecftproves the second inequality in (20).
In order to prove the first of inequalities (20), we observe that, as we are in
dimension 1,

max{|f ()| : v eV} = Clflur-
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The area ofU (11, ¢, v) is of orderO(£2); thus the contribution ot/ (11, &, v) to
|0° f12, is bounded byCe?| f| the contribution of; (11, ) to | Q¢ |2, is
estlmated from above by

Hl(M)’

bj
28(1+C8)/ | £;6)[2 do.

4aj

This proves the desired assertion, by summing over the branches and the junctions.
Let us address now the energy estimates: there is no contribution to the energy
on the junctiond/ (11, ¢, v); therefore, we are left with

E*(Q°f. 0° f) = Z/ lgradg* £ 2 dx.
(11,€)

In (8, s) coordinates, the square of the gradienQsff; becomes

Elie
00

G

3

sinceQ? f is constant in the normal direction &) (zy, €). Thus,

2 '_’1
/ |gradQ° f|“dx =/ /
Bj(t1,¢) aj+ty

After the change of variables (18), we find that

Wl
f’ fdeds

/ |gradQ® £|* dx
Bj(r1,¢)

b: —a;
=/ / (G(©;(1), ) 1/2’—"’2tl|(j3-)’(t)|2dtds.

bj—aj—

The same argument as above yields (21).

6. Theplumber’sshop II: the subpipes

Going fromHl(O(e)) to H1(M) is more complicated than the inverse opera-
tion: the essential idea is to take normal averages on the cifyédsit what should
we do at junctions? We have to compare normal averages close to them.

For each junctioi/ (¢, €, v), t 2 11 we pick a pair of arms indexed lyandx;
a subpipeW, (¢, ¢) will be made out of two curved rectangles, one in each of the
branches anda, and a circular sector. We also define a functignon W, (¢, €)
whose gradient is tangent to the boundary on the segnigsifs} x (—e, ¢)) and
W, ({t} x (—¢,¢)), and normal to it everywhere else. Moreover, the gradient of
h;. is of norm 1 almost everywhere. A Stokes formula allows us to estimate the
difference of the averages ofon the end segments in termseof and the energy
norm ofu on Wy,
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Fig. 7. A pipe in a junction.

For the detailed statement of this result and the proof, it is convenient to use the
language of differential forms, which enables us to apply exterior differentiation
in a coordinate independent fashion, and to make use of the Stokes formula under
its most convenient form; the reader is referred to classical works in differential
geometry (e.g., [2,12,8]) for a description of this language.

Lemma 2. There exists a constant C such that for all v inV, for all distinct « and
AinJ(v), for all t € [t1, £/2] and all sufficiently small ¢ > 0, there exists an open
set W,.;.(t, ) and a piecewise C! function &,;, on W,;.(r, ¢) whose differential is
also piecewise C* such that the following conditions hold:

(1) The open set W, (¢, ¢) isthe union of
W ((Oc(e), 1) x (=&, 8), Wi((Oar(e), 1) X (=&, 6)),
and the circular sector of the disk of center
Xier(e) = W (Or(e), —&) = Wi (b (e), €)

and of radius 2¢ which fills the angle between the first two pieces.

(2) The differential dh,; vanishes on the tangent vectorsto d W, (¢, &) except on
the parts ¥, ({tr} x (—¢, ¢)) and ¥, ({t} x (—¢, &)).

(3) Snce p istherotation of angle /2, it follows that

dhie (pyY (1)) = —1on W, (1 x (—¢, 8)),

22
dh (pY (D) =1 onW,(t x (—¢,¢)). (22)
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(4) For almost every y in W, (t, €),

ldhir| = 1. (23)

(5) The differential dh,; is piecewise C* and its differential vanishes in the sense
of distributions.
(6) The area of W, (¢, ) isbounded as follows:

|Wer(t, )| < 4te + Ce?t. (24)

Proof. We use the notation of Lemma 1: without loss of generality, we assume that
v = 0, and we use the notation (8). Here, arg 8 belongs to(0, /2] and we
consider separately the cages: 7/2 andg < 7 /2. We assume henceforth that
is at most equal teg defined in Lemma 1.

Assume first thag = 7 /2, and define the function

- U, s) if (8,5) €[0,£] x [—e, €],
v(,s) = .
W(—0,—s) if(@,s)e[—£ 0] x[—s ¢l
This definition mqkes sense, sind€0, s) and W (0, —s) coinci~de fors € [—e¢, €l
Moreover, W and W are of clas<C. It is convenient to writel (6, s) = ¥ (0) +
spy’ (0). Therefore, we let

W, e) = U((—t,1) x (—¢, €))

andi(y) = sif y = U(0,s) € W(t, ¢). We calculate immediatelyh: in (s, 6)
coordinatesgh = ds, and therefore it is easy to see thatvanishes on the tangent
vectors toif((—t, 1) x {:l:e}); the identities (22) are clear. We can see immediately
that|dh| = 1 everywhere. Finally, the fact that is piecewiseC! is obvious; the
vanishing of its differential in the sense of distributions is due to the factsthat
does not jump across the segmélr(I{O} x (—e, s)). Finally the area oV (z, ¢) is

equal to
t &
[.1.

Consider now the casg € (0, 7 /2); we let

7 (6) +s(v o 1//)/(9)‘ dsdo < dte(1+ Ce).

Wit e) = \Il((Q(s), 1) x (—¢, 8)),

W(t, &) =W(@(e), 1) x (—&, ),

Wo(t, &) = {y : |y — X(e)| <2cand(y — X(¢)) - ¥'(6(¢)) £ 0
and(y — X(e)) - ¥'((e)) <0},

W(t, &) = W(t,e) UWo(r, &) UW(, e).
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Then,# is defined as follows:

£—5 if y=w(0,s) e W(t,e¢),
h(y) ={—-ly—X(e)| ifye Wo(,e),
s—¢ if y=>P(0,s)e W, e).

The verification of properties (1) to (3) of Lemma 2 is is left to the reader. The
calculation of|dh| on W(z, ¢) and onW(z, ) is performed as in the previous
situation; on the circular sector, the calculationd’| is immediate, and it is clear
that there is no jump afi across the common boundariesifz, ¢) andWo(z, ¢)

or of W(t, ) andWo(z, ). The area oW (z, ¢) is equal to

t £
/0( )/ [/ (0) + s o) (©)| dsdo

t &
o |

O(e) J—¢
+ 2c2arccosy’ (0(¢)) - ' (B(e)).

< 2e(r—60())(L+ Ce) +2¢(r — 0(e)) (L + Ce) + 2me?.
The conclusion is now clear.

W'(0) + s o 1&)/(9)‘ dsdo

The following immediate consequence of Lemma 2 will be used in the proof
of Theorem 2:

Corollary 1. There exists a constant C such that, for all u in HX(Wy (e, 1)),

‘i /8 u(W(t,s))ds — i /6 u(Wy(t,s))ds
28 J_, 2¢ J_¢

A\ 12 1/2
<cC <—> (/ |gradu|2dy) . (25)
€ Wkk(sv[)

Proof. Itis enough to observe thatifis of classC on Wy, (¢, 1), we apply Stokes’
theorem as follows

/ udh,), = / d(udh,d) = /Eu(\l—’k(t, s))ds — /gu(\ll,((t, s)).
3 WI(

Wi (e,t) 2 (&,0) —& —&

But d(udh,;) = du A dh,. Thanks to estimates (23) and (24), the conclusion
follows immediately.

7. The plumber’sshop I11: from HY(O(e)) to HY(M)

Recall thatt; = (R + 1)s. Fore < g, for all edge indiceg € {1, ..., j}, for
allz e Hl(O(a)), and for alld € [a; + 11, b; — t1] we define a normal average of
z atx = y;(0) as follows:

&

1
(N;2)(0) = 5/ (Y (0, 5)) ds. (26)

—&
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This normal average is well defined, since traces of functions belonging to
H1(O(e)) over smooth curve§ are well defined, and belong #/%(C), which

is a space of locally integrable functions. Provided that 0 < ¢, we define for

allv € V and allz in H1(O(e)), the normal average withaindexation

Nez(0) = (Nen) (k[2] + #[316),
and the average of normal averages around

1
Tl Z Nez(0).

keJ(v)

c@,v,2) =

We use henceforth the following notation:

t7 is an element, to be defined later,[of, £],
ul = U(t]_, 8’ U)’ UZ = U(IZ, 87 U), OK = \IIK ((tlv t2) X (_8’ 8))7

m:/ Igradu|? dx, 172:/ Igradu/|? dx, (27)
Z//l Z/{Z

C1=/ uzdx, §2=f uzdx,
U U

Givenu in H1(O(e)), we defineP¢u as follows:

(Nju)(©)  if x =4;(0) € M;(12),

(12 — 0)(c(t1, v, u) — (Neu)(11))

h—n (28)
If X = ¢K(9)7t1 g 0 g t21

c(tr,v,u)  ifx=9(0),0=0=1.

(Peu)(x) _ (N,u)(0) +

The value of:; is not yet determined,; it will be given in (51). The definition of
P¢u is motivated as follows: we approximate the restriction td /2 by a function

w onlf2 which is constant ot¥; and depends only ahonif, \ U;. A natural way
of doing that is to minimize

lgradu — w)[72.,,,

-> [ ]e

kel (v)

o(u —w) o W, 2

a0

o(u —w) oYy
as

2
+‘ ]Jﬁdsde;

however, the term&—1/2 andG1/? are equal to % 0(¢) and we will make only a
small error if we minimize instead the simpler expression

Z /[2/6 Ha(u—w)o\IJK
Ak —& a0

kelJ(v)

2 )a(u—w)o\ll,(
_l’_
as

2
] ds do. (29)
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We impose the boundary conditiov, w(t2) = N, u(t2) for all k € J(v). We find
by standard arguments that
w o Yy (0) = Neu(0) + o (2 — 0).
We substitute this relation into (29), which becomes

Z /’2/5 ['a(MO\IJK—NKM)
n J—e 00

kel (v)

ou o W,

2
+ as

2
+a3} ds do,

since the integral
/8 O(u oW, — Neu)
—————— " ds
e 20
vanishes i, r2]. Denote byc the value ofw overif;. By continuity, we must
have, for allc € J(v),
o (t2 — 11) + Neu(ty) = ¢.
Therefore, if we express, in terms of¢, we find that we have to minimize
R 2
> (6= Neu(rn)”,
kedJ(v)

and therefore
1

Tl Niu(t1),

kelJ(v)

¢ =

which is exactly equal to(t1, v, u); «, is equal to(¢ — N, u(t1))/(t2 — t1).
Our purpose now is to prove the following theorem:

Theorem 2. Thereexistsa constant C suchthat for all u in H 1((’)(3)) thefollowing
estimates hold:
1+C
TOVE e,
£

E(Pfu, Pfu) < — u), (30)

2 1
|P8“|L2(M) z Z ((1 - C\/E) |u|§2(0(8)) - C\/EES(M, I/l)) . (31)

Lemma 3, Theorem 4 and Corollary 3 are the technical results which enable us
to ignore the details of the smoothing at the junctions. In particular, they enable us
to estimater; in terms ofy2 andn, — ¢1 (see (32)). This is necessary for inequality
(31), sincePfu does not contain any explicit information @n. Estimate (32)
would be obtained simply by a scaling argument if the opeilsét, ¢, v) —v) /¢
were equal to a constant set. However, this relation can hold only if all the edges
of the graph are straight lines, at least in a neighborhood of the vertices, and if we
choose a special smoothing which scales withince we want to be unencumbered
by the details of the smoothing and of the shape of the edges, we prove estimates
which enable us to forget about them. The main idea of the proof is to construct
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a sequence of Lipschitz-continuous bijections whose inverse is also a bijection,
which mape (R, ¢,,) into a fixed closed curve, while mapping the region enclosed
by ¢ (R, ¢,) into a fixed region.

The result that we will use for our estimates is the following:

Theorem 3. There exists a constant C such that for all small enough ¢ and all
z € HY(Uy) the following inequality holds:

1z]2dx < c52</ \gradz|?dx +
7

(L mew)). G2

th kel ()

The proof of this result relies on several technical lemmas and theorems. The
main idea is the following: if the junctions could be blown up to a fixed set by
an appropriate linear transformation, relation (32) would be immediate. Therefore,
we look for an approximate blow-up, and we have to impose conditions on the
boundary of the junction which will ensure enough compactness; the conditions
we chose to impose are precisely conditions (15). While they may not be necessary,
they are reasonable, and one can construct examples of nasty behavior when they
are not satisfied.

We define the approximate blow-ups in a slightly more general setting than the
one described by (11)—(14) and (37), and this slightly more general formulation
simplifies the proof somewhat.

If we start from a family of functiong (-, ¢) as in (15), we define

Q(sep, en) — v

Pn(s) = ——— (33)
&n
for any sequence, decreasing to 0. More generally, suppose we are given a se-
quence of functions, from R to R? which have the following properties: there
exists a numbet. such that

foralln € N, ¢, is continuous and periodic of peridd (34)
We are giverp real numbers,, ..., [, belonging to(0, L], and we define, for all
k eZ,
livkp =1; + pL. (35)

We assume that the sequerigés of classC? over each intervall;, /;+1) and that
there exists a numbed such that

supsup sup (Ignl + |on| + |¢)]) < M. (36)

noj oxeljliv)

Assumption (36) implies that at each poiate, (x) has limits on the left and on
the right. We suppose that there exists a number 0 such that

VneN,Vx,x' €R,|¢p(x) — ¢a(x)| Z mmin(m, min |x —x"—kLl|). (37)
€
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This condition implies that for each ¢ {I;, j € Z}, |¢,(x)| = m. Moreover, at
each/;, the right and left limits of,, satisfy the same inequality. Finally the image
of ¢,, is homeomorphic to a circle. Thanks to Jordan’s theoﬂﬁ?n\ ¢, (R) has
two connected components; the bounded component is denoteg Bynally, we
assume that for all € Z,

e Bl =0 GG +0)
ni oy i — 0| |¢L; +0)|

Under these assumptions, it is possible to find a subsequence, still denaigd by
and a functionps, such thatp, converges t@, in CO(R), and such that on every
interval [;, 1111, ¢, converges tap in Cl’“([lj, I;+11). The derivative o is
Lipschitz continuous, aneg., satisfies estimates analogous to (36) and (37). In
particular, the image o, is a closed curve; we denote 19, the connected
component oR? \ ¢ (R).

14+m. (38)

Lemma 3. Under assumptions (34) and (36)-(38) there existsfor all large enough
n a Lipschitz continuous mapping ®,, from R? to itself which maps 2, to Q4 and
such that

Dy 0 Poo = Pp. (39)

Moreover, @, and &, converge uniformly to the identity mapping as » tends to
infinity, D®, and D®;, 1 converge uniformly to the constant mapping taking the
value identity as» tendsto infinity.

Proof. We construct the mapping,, in two steps. The first step amounts to fixing
the angular points, (/;). Denote byB, (x) the open Euclidean ball of radius
aboutx. Letr be a strictly positive number such that the intersection of the balls
Ba (¢o0 (1)) and B, (¢oo (1)) is empty for 1< i < j < p.

Let x be a function of clas€? overR? takings its values ifi0, 1], identically
equal to 1 onB,/2(0) and identically equal to 0 outsidg; (0). Write

Xj(xX) = x(x = ¢oo(lj)),

and define a mappin@, by
. p p
B (x) = (1 -y x,(x))x + 3 0@ (x + 8l — $oo).
=1 =1

The function®,, is of classC? and mapp«.(/;) to ¢, (/;) by construction. Let us
prove that fom large enough, it has an inverse of class There exists:, such
that for alln = n, and for all j, |¢,(I;) — ¢oo(l;)| < r. Then the closure of the

ball Bz, (¢oo (1)) is invariant byd,: if |x — ¢oo(1)| < r, then

B0 () = oo lp)| £ | = dolp)] + [1500)] [0 1) = 81| < 27,
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if n > n,. Ifr < |x — ¢o(lj)| £ 2r, thend, (x) = x, and thus we have proved
the invariance with respect tb,, of the ball of radius 2 aboutgs, (1;). Therefore,
in order to solve the equation

&)n (x)=y (40)

we have to consider two different situations: either;ﬁu}n— ¢oo(lj)| is strictly
larger than 2 and thenx = y solves equation (40), or there existsuch that
|y — ¢ ()| is at most equal to2and we seek a solutiop under the form
x =y — z. Thus, we have to solve the problem

2= xi(y = 2) (@) — Poo(l))). (41)

If we choosen, so large that for alk = n,,
|bn (1)) — doo(l)| Max|Dx (x)| < 1/2,

then (41) possesses a unique solution whose dependence @/ef classC?2.
Therefore, we have proved that the inversagfexists and is of class?.
For the next step of the construction®f, we define

‘511 = &);1°¢n-

The reader will check thap, has properties (34) and (36)—(38), possibly with
different constants, and only ferlarger tham,.

The idea of the proof now is to define a bijection which will i@pL) x (—t, 1)
to a tube around the boundary@f,. If Q. were a smooth curve, this would be
a standard tube construction. We modify this construction so as to retain its main
properties; however, the bijection that we shall define is only Lipschitz continuous,
as well as its inverse.

Without loss of generality, assume thad, is parametrized so thaQ.. is
positively oriented, and denote by, (s) the exterior normal t€2, at¢o(s). For
all s ¢ {l;, jeZ}, voo(s) is obtained fromp.(s) by a normalization and a rotation
of —m/2. Atl;, the left and right limits ob are defined, and (38) implies that

Voo (lj — 0) - Voo (lj + 0 # -1 (42)

It is possible to find a strictly positive numbery and anL-periodicC2 function
w from R to R? such that, for alk ¢ {I;, j € Z},

(S) - Voo(s) = 2mo.

Denote byv, the exterior normal t&,, at ¢, (s). There existsig such that for all
n 2 no,andalls ¢ {l;, j € Z}

p(s) - vu(s) = 3mo/2. (43)
Consider now the transformations

B (5, T) = Pu(s) + Tia(s), n e NU{oo}.
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Relations (42) and (43) imply that there exists a strictly positive nurapsuch

that for alls ¢ {I;, j € Z} and allt € [—10, 0] the mappingsDcf),, forn = ng

andD &, are invertible, and that their inverses are uniformly bounded. Moreover,
the standard argument on tubular neighborhoods of a submanifold extends here
and we can choose) so small thatd, is a Lipschitz-continuous bijection with
Lipschitz-continuous inverse frof/L7Z x [—to, 0] for all n = no, ..., 00. It

will be convenient henceforth to denote

S@t) = d(R x [-7, ]).

Let xo be aC? function fromR to [0, 1] such thatyo vanishes outsidg—2to/3,
21p9/3] and is equal to 1 ofi-1p/3, 70/3]. Define

xo(r) if x € S(r) andx = doo (s, 1),

) = :o if x ¢ S(t0).

If we perform a convolution ofy; with an adequate smoothing kernel we can
obtain aC?2 function x» which is equal to 1 015 (zo/4) and which vanishes outside
S(3t0/4). Define a mapping,, by

&, (x) = x2(x) @y 0 DL (x) + (1 — x2(x)) x  if x € S(70),
' X otherwise.

We observe that by continuity, there existsrgn> 0 such that any ball of radius
ro about a point ofS(3tp/4) is included inS(tg). There existsi; such that for

alln = n1, sup ‘q?,,(s) — ¢>oo(s)‘ < rp. This implies that fon = n1, ci>;1 maps

S(to) into itself: if x belongs taS(zo) \ S(310/4), ®, o D1 (x) is equal tox. If
x = & (s, 7) belongs taS(3tp/4), then

Op(x) — x = x2(2) (Pn(5) — Poo(s)).

Therefore, fon > ny, @, (x) belongs taS(tp). For large enough, ®,, is invertible
overR?: the resolution of the equation

®u(x) =y
is equivalent to one of the two problems
y € R?\ S(w0), x=y, (44)
y € S(w), 2By 0 D) + (1= xa(0))x = y. (45)

Problem (44) is trivial. Problem (45) can be solved thanks to the strict contraction
principle: we seek a solution of (45) of the fonm= y — z, so that it is equivalent
to solving

2= x2(y — 2) (P — Poo) 0 Py — 2).

For large enough, the right-hand side is Lipschitz continuous with respect to
with Lipschitz ratio at most 22. The same argument shows thgttends uniformly



Multiply Connected Thin Strips | 293

to the identity mapping and th&t®,, converges uniformly to the constant mapping
taking the value identity as tends to infinity.

Thus, we have constructed a Lipschitz-continuous funcligrwhose inverse
is Lipschitz continuous, such thay, = ®,, 0 Poo.

Forn large enough, we can defidg, = @, o @,; itis invertible. The previous
study shows thatb,, and d);l converge uniformly to the identity mapping and
that D®, and D®; ! converge uniformly to the constant mapping taking the value
identity asz tends to infinity. By constructiond, mapsQ to 2,, and (39) holds.

We are now able to prove a Poinedsjpe estimate with a constant independent
of n on Q,: let I be a subset of positive measure(6f L]; for all n, let C,, be
defined by

_ lu|? dx
Cn = 1|nf fQ” 5-
H(£2:)\{0}
v fo lgradul?dix + ([, udT)

The existence of, is an exercise.
We prove the following theorem, which is essential in our estimates:

Theorem 4. Under assumptions (34) and (36)38), the sequence C,, is bounded.
Proof. AssumeC,, unbounded; possibly extracting a subsequence, we may assume

thatC,, goesto infinity ag goes to infinity. Itis not difficult to see that, is attained
for a certainu,,. We can normaliza,, so that

/ lun)? dx = 1.
Q)l

Then, thanks to the definition @f,,

2
Iimf |gradu,,|2dx+</ undF) =0.
=00 Jq, dn ()

w, = u, o P,.

Define now

The functionw, belongs toH(Q4); we can see that

/ |y |2 dx:/ |un|2‘det<b;l
Qoo Q

Therefore, the limit of theL.? norm of w, asn tends to infinity is equal to 1.
Similarly,

dy.

2 1
’detd); dy,

/ V|2 dx = f ‘Dun D®, 0
% o,
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andVw, tends to 0inL?(Q). Therefore, after possibly multiplying some terms
of the sequence, by —1, we can see thab, converges strongly it 1(Q2) to
the constant functions, = |Qeo| /2.

On the other hand,

/ undrzfuno¢n|¢,;| ds=/wno¢oo|¢,;|ds.
dn (1) 1 1

Therefore, the limit as tends to infinity off 1y Undl’ is equal to the measure of
¢oo (1) multiplied byuo, which leads to a contradlctlon

We can prove now the almost scaled Poieegype inequality stated previously:

Proof of Theorem 3. This is just a scaled version of Theorem 4, under the scaling
defined by (33).

We also need the following easy lemma:

Lemma 4. There exists a constant C such that, for all small enough ¢ and all
z € HY(0O,), thefollowing inequality holds:

INez(tD)| < C((r2/0)Y? |gradz| 20, ) + (t26) Y2 |2l 20,)).  (46)

Proof. Let Q0 = (0, 1)2. There exists a constagt such that for alw € H1(Q)
we have the inequality

1
‘ fo w(O, y2) dyz

For allz € HY(O,) define

w(y) = z(We (11 + y1(12 — 11), £(2y2 — 1))).

We observe that

/|w|2d ft2f8| W (0, 52 — 2045
y= Zo s T
0 n J-e ‘ 2e3/G(t2 — 1)

_ 1+0(s)/ 22 dx.
T 2e(tr — 1)

(48)

Similarly,

/ \gradw|? dy
Qo

& 12
[ (@_mz
—& Jt

If we assume that is small enough, we can see that

(t2 —11)(1+ O(e))
2¢

d(zoWy)
as

? 2
_— 4g
a6 +

2\ aods
2e(tp — 1)

/ |gradz|? dx. (49)
Ok

/ igradw|? dy <
0
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Finally,

1
/0 w(0, y2) dy2 = N, z(t1).

Then

to — 11\ 1/ 1
[N z(11)] < C(( ) |g|’adZ|L2((9K) + W |Z|L2(OK)>'

This immediately implies relation (46), fersmall enough.

End of theproof of Theorem 2. Let us prove firstinequality (30). A straightforward
calculation shows that
712
P /
2 aj+t —&

/'bjtz
aj+i2
14 Ce

20
< / Igradu|? dx.
28 JBi2.e)

The contribution of\c ) ¥« (O, £2) to the energy oP®u is

> [

keJ(v)

dd@

(50)

ANeu & — Neu(ty) |?

a0 th—1n

do.

We observe that
3 (€ = Neu(1))?
el (v) o—n
can be estimated b§n1 /1, according to (25). Henceforth,
t2 is any finite strictly positive number at most equalj@, (51)
ande must be no larger than misy, r2/R). Therefore,

> [

kedJ(v)

<(1+f)2/

kedJ(v)
1
< +\/_/ |gradu| dx + —

INu ¢ — Neu(ty) |?
20 th—1n

ON,u Nl(u(tl))

h—n

‘d9+(1+1/\/_) Z

kelJ(v)

Igradu/|? dx.
«/_ N
This relation, together with (50), implies (30).
Let us turn now to the proof of (31). Consider first the contributiodfz,)
to [ Pful 2.y itis easy to see that
2 1/2
ds) .

oW, (0, 5) — Neu(®)| < 28(/8

—&

as
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Therefore we have the inequality

12 &
/ / luoWe(8,s) — Neu(®)|? ds do < 2e(1+ Ce) lgradu|? dx.
21 — Bj(tz,e)

We apply the inequalitya + )2 > (1 — /g)a? — b%//e Witha = u o W, (0, 5)
andb = N.u(@) —u o W, (0, s), and we can see that

bj—t2
/ IN u(0)|? do
aj+t2

1 2 )
2 Z[(l - C“/E)W'LZ(B,-(Q,E)) - Cx/Elgradu|L2(Bj(t2’8))]. (52)

The contribution ofJ,c () ¥ ([0, £2]) to |P8u|%2(M) is

12
t1|J(v)|52 + Z / (NKM(O) + (t2 — 0)(¢ — Neu(t))/(t2 — tl))2d9~
ke () 1

The same type of argument as above yields

173
/ [Ncu(0) + (12 — 0)(E — Nieu(tr)) /(12 — t1)]2d0
t

1
1
2 g[(l - C\/E)(nz —n1) — C\/EU2]~ (53)

It remains for us to show thap — ¢1 can be conveniently estimated from below.
We infer from Theorem 3 that

a2 Ce?(m+ Y Neu(tn)?). (54)

We substitute estimate (46) into (54) and we can see that
¢1 < Cenz+ Ce(nz — &1).
Therefore,
n2 —¢12 (1= Ce)nz — Cena. (55)

Therefore, if we put together (52), (53) and (55), we have obtained inequality (31).

Remark 1. We may now compare our the approximation process to that developed
byEvans & Sarto [9] andSarro [20]. We take for simplicity a cross-shaped domain
O(e) of width 2¢ defined by

O(e) = {(x1, x2) : max(x1, x2) =1, min(xy, x2) < €},
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and calculate explicitly the operatéf = (Q°)* Lap® Q¢; also for simplicity, we
require Dirichlet conditions at the end-points of the cross. We obtain

D@%:{fey%m:ﬁeH%Qu

4
Y A-e)fO+ef(O =0, f(1)= 0}

j=1
(L°f)j = — L—e)?f]"
Evans and Saito construct a mappi@i§ given by
(O f)(x1. x2) = f(x1), if0 <x1 <1;
with analogous expressions on the three other branches. Then a direct calculation
gives forLf = (Q%)* Lapf Q°:
D(L*) = {f = (fj)1=j<4 : Min(x;, &) f] € L*(0, 1),

(min(x;, &) 1))’
min(x;, )
1

Ns.__—i'. :
(L1 = Immwﬁﬁhgmmﬁﬁﬁ»

eL%Qn}

Therefore, the approximation of Lap lay is smoother than the approximation by
L¢. An explicit calculation in this particular case shows that, in genéfdl) g
does not belong th2(T"), even with very smooth datg reflecting thus the singular
character of the approximation.

8. Comparison of the eigenvalues

We start this section by deriving a Hilbertian lemma on the comparison of
the eigenvalues of two self-adjoint operators which are bounded from below and
which operate in different Hilbert spaces. This result will enable us to relate the
eigenvalues of the Laplace operator@re) and the eigenvalues of Lap ad.

Let H be a Hilbert space, whose scalar product is denoted, byand whose
norm is denoted by |. Recall that ifA is a self-adjoint operator i, the Rayleigh
guotient associated with is the expression

It is defined for allx in the domain ofA. The bilinear formu associated witid is
defineda priori on the domain oA by

a(u,v) = (Au, v).
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This bilinear form can be classically extended as followd ifs bounded from
below, i.e., if there exists a real numhesuch that

(Au, u) + aul® = 0. (56)

The completion oD (A) for this norm is a dense subspakeof H which is often
called the domain of the maximal extension of the quadratic form
The expression

A (A) = inf{{supR(v) : v € W}, dimW = n} (57)

isapriori an element oR U {—oo} U {+00}. If A is bounded from below, i.e., if
(56) holds, the minimax theorem (see for instance [17], Theorem XIII.1) states that
for eachn,

(1) either there are at leaseigenvalues (counting degenerate eigenvalues a num-
ber of times equal to their multiplicity) below the bottom of the essential spec-
trum andx, (A) is then-th eigenvalue oA counting multiplicity,

(2) orx,(A) is the bottom of the essential spectrumigfand in that casg, (A) =
An+1(A) = ... and there are at most— 1 eigenvalues (counting multiplicity)
belown.

We prove now the comparison theorem for the eigenvalues:

Lemma 5. Let Hy and H1 beHilbert spaces equipped with scalar productsdenoted
by (, ); for j =0,1; let A; be a self-adjoint operator in H;, which is bounded
from below. Denote by V; the domain of the maximal quadratic form associated
with A; and by R; the Rayleigh quotient associated with A;. Suppose that there
exists a continuous operator S mapping V1 to Vg and an increasing function ¢ from
R to R U {400} such that exp(—¢) is continuous over R and such that

Vu e Vi\kerS, Ro(Su) < ¢(Ri(w)). (58)
Assume that for a given n
w=inf{R1(v) : v e ViNnkerS} > A,(A1). (59)
Then,
Mn(A0) = ¢ (An(A1)). (60)
In particular, if S is one-to-one, relation (60) holds for all integer n.

Proof. Assume firstthat, (A1) is an eigenvalue od;. Letus, ... u, be the eigen-
vectors ofA; relative to the eigenvalueg (A), ... 1, (A), spanning the spad¥;
condition (59) implies that the restriction 8fto W is one-to-one. Indeed, if

n
u=D &
=1
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belongs to the kernel &f, we have the relation

n n
Y onlE P =Y ng P
j=1 j=1

which implies immediately thatvanishes. Condition (60) implies th&t; belongs
toVoforall j = 1,...,n, and the argument we just made implies that the space
spanned bysu;, ... Su, is of dimensiom; therefore, the expression (57) implies

An(Ao) < sup{Ro(z) 1z € SW\ {0}
= sup{Ro(Sw) : w € W \ {0}
< sup{¢(Ra(w)) : w € W\ {0}
= ¢(An(A1)).

If A, (A1) isthe lower bound of the essential spectrum gfwe use Weyl's criterion:
there exists an orthonormal famify;);>1 such thatR (u,,) converges ta., (A). If
W; isthe space spannedby, ..., u;,_1, thenfor; large enough, the intersection
of W; and kerS is reduced to 0, and the above argument shows that

M (Ag) = sUpg(R1(w)) : w € Wil
the construction o#V; implies that
kILmOQ supR1(w) : w € W}
is equal tar; (A1), and the theorem is proved.

As a corollary of Lemma 5, we obtain the following result on the comparison
between the eigenvalues of L‘agnd Lap:

Theorem 5. There exists a constant C such that
}\p(l—apg) é 1+ Cs))Lp(Lap)v (61)
andfor all ¢ < ¢(p),

Ap(Lap) (14 C/e)
1-Cye—Chrp(lap’)ye
Proof. Denote byR the Rayleigh quotient associated with the operator Lap, and

by R? the Rayleigh quotient associated with the operatorf Lape mappingQ,
is clearly one-to-one; relations (20) and (21) imply the relation

Ap(Lap) = (62)

Re(Q°f) = 1+ Ca)R(S),

forall f € H(M), and for all small enough. Lemma 5 implies then that for all
small enougls and allp, (61) holds.
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For the converse, we have to estim&&u) whenP¢u vanishes. Thanks to the
definition (28) of P¢, u belongs to the kernel af¢ if and only if

Vjiefl...,IEl}, V6e M), Nu@® =0

An elementary computation shows that fonalt H1(—¢, ¢) whose mean vanishes,

e 2 re
T
/ v2ds > —2/ v2ds.
e 4es | _,

Therefore, ifu belongs to the kernel af*, we can see that

/ \gradu|? do ds
(t1,8)

bj—t]_

/aj+ll /;8

1- C g

> 4= Com” 8)” // f|uolllj|2x/5d9ds
aj+t1 —&

1-cC
> #/ ul? do ds
4e Bj(t1,e)

On the junctions, we can use Theorem 3, which can be made uniform with respect
to the vertices of the grapWt . Therefore, we have shown that there exists a constant
C such that for all small enough

21
—d@ds

ou o \;

inf{R°(u) : u € ker P*} = (63)

Rl A

Define

o) = |TAFCVE)/(1=Cye—rCe) ifrsA-CYR)/VE,

|40 otherwise.
Then relations (30) and (31) imply, for all¢ ker P¢, the relation
R(Pu) < qb(Rg(u)).

Moreover, for allp, there exists(p) such that, ife < ¢(p), then thanks to rela-
tions (61) and (63), we have

inf{R°(u) : u € ker P*} = A, (Lap’).
Thus, we may apply again Lemma 5, and we find that
Ap(Lap) = ¢° (Ap(Lap’)),
which is exactly (62).
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Remark 2. The convergence of L&o Lap has (at least) two possible interpreta-
tions. In the first one, we consider the operatérdefined by the quadratic form
E(QF f, Q¢ f)/(2¢) on HL(I"); itis then an exercise to show that for gl H1(I"),

L? f tends to Lap £, and to infer that for alt in the resolvant set of Laj; — L) 1
converges téz—Lap) L. The second one would be the symmetric statement relative
to the comparison of the operaté#® defined by the quadratic for®® (P¢u, Pfu)

with Lapf. This is much more subtle, because the kerneMéfis of infinite di-
mension; thus, we see that the statement of Theorem 5 is quite strong, since it tells
us that the spectral approximation property holds, even though there is a very large
kernel. The only relevant elements in the kernel are the constant functions since
non-constant functions belonging to the kernelRsf are highly oscillatory and
therefore contribute only to the large eigenvalues of‘Lap

9. Asymptoticsfor the spectrum of the magnetic Schrodinger operator

The energy levels of a quantum mechanical system under an external magnetic
field are determined by the spectrum of the magnetic &thgéer equation. In
addition, this spectrum is important in superconductivity. There the dependence of
the first eigenvalue on the magnetic field is equivalent to the ciut/, ) describing
the phase transition temperatteas a function of the applied magnetic figiq.

To define the magnetic Satdinger operator we introduce the magnetic vector
potential related to the applied magnetic field. For this purpose wke sél(s) +—

RR? of classC!. The magnetic energy functional associated with this field is given

by

Ef(u,u;A)zfo()|(grad+iA)u|2 dx, (64)
£

and it is defined for allk € H1(O(¢); C), the set of complex-valued and square-
integrable functions ove®(¢) whose first derivatives are also square integrable.

The Schodinger operatos®[A] associated with the quadratic form (64) is
defined by

D(S*[A]) = {u € H?(O(e); ©) : (8, +iA)u =00n3d0(e)}, (65)
and
S°[Alu = (grad+iA)*(grad+iA)u
= —Au —iA - gradu — i div(Au) + |A|%u. (66)
In relation (65) 9, is the normal derivative along the boundar®(¢) of O(¢), and
A, = A . visthe normal component d&f.

In order to define an analogous one-dimensional magnetic energy on the graph
M, we first identify A with a differential form of degree 1,

A= Aldxl + Azdxz,
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and then we express this form in local coordinates on each bz, ¢):
A=Ajogdd + Aj,ds,
where
Ajp(0,5) = (Ao W;)©0,s) - (V](O) +sp¥] (),
Ajs(0.5) = (Ao W;)®.5) - (0v](©)).

With this notation, the differential forrd of degree 1 onM is defined in local
coordinates o; by

Aj = Aje(0,0),
and the magnetic energy on the graghs given by

2
£ +ia; | do.

I€] b
ECf, i A) =/ ldf +ifA|? dvoly = Z/
M =t

The associated operator§§A] defined by

D(SIA]) = {f e HY(M:C): Vj=1.....El. f € H%(a;.b);C).

> kI3I(figg + ifeAvn)«(2D) =0, | (67)
keJ(v)
(SIALY),0) = — 1 —iA; f] —iA f) + AL 1. (68)

In this section, we shall prove estimates analogous to those of Sections 5 and 7,
and we will apply them to compare the spectrestifA] and S[A].

We replace the transformatiof® which has been defined in Section 5 by a
new transformation which takes the vector potential into account. More precisely,
forall f € HY(M; C) we define

fi0)exp(—i [5 A; 50,5 ds") if y=W;(0,s) € Bj(1,e),

(@ = {uu(y) if y el

(69)

The functionu, appearing in (69) is the minimizer of the Dirichlet integral over
U1 = U(11, &, v), assuming that the trace of coincides with the trace ad® f on
the common boundary &f; andB; (11, €).

With this notation, we can now state our first magnetic estimates:

Theorem 6. There exists a constant C, which is bounded if the C1 norm of A is
bounded, such that for all f € H1(M; C) the following estimates hold:

< 261+ Colflf20y, + 2E(f. £ A, (70)
E*(Q°f, O°fi A) S 26(L+ Co)E(f, [ A) + CE2I f1To, . (T1)
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Proof. The first step isto estimate the Dirichlet integrakgfwe use a test function
u defined by

f) if yeUU(Re,e,v),
u(y) = {[(R+De—60+ (0 — Re)exp(—i [y Acs(0,s)ds")] f(v)
if y e Ue((Re, (R+ 1De) x (—¢,¢).

Since|gradu| is bounded byCe| f (v)| whereC depends only on thé! norm of
A and the geometry a7, we obtain

/ igradu, 2 dx < Ce* £ (v)) (72)
U

It is immediately obvious that

/Bj(tl,é‘)

According to Theorem 3 and to the definition@f f, we can see that

T bj
st’ ders[l—C8,1+Cs]/J | £;©)|? do.
aj

/ 10° f12dx < CE2 | f ).
U
But we have the classical estimate

[f @S Clf G

and we can see also that

E(f, ) S 2E(f, £ A) + 211120 1 /1324, (73)
These relations imply that there exigtssuch that
|f@)]? < C(E(f, [ A) + Ifle(M)) (74)

and the numbet is bounded when the€® norm ofA is bounded. All these relations
show that (70) holds.

Let us turn now to the energy estimates @frf. An immediate computation
gives the following relation, which is valid oB; (11, €, v):

2

Q f dods.

‘ doe 2 _ 12
gradQ° f| dx=G +1A19Q f

The expression between vertical bars on the right-hand side of the above equation
is equal to

(fj/(e) +iAjo(T(0), 0) f;(6)T/ (0) +i;,~f}(9)) exp(-ifo Ajs, (0,5 ds’),
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where the remaindey; is defined by

gj(0,5) = Aj00,5) — Aj00,0) + A; 0,01~ T/(©6))
+ T (0)[A;(0,0) — A;(T;(6), 0)].

SinceA is of classC?!, we can see immediately that
|20, 9)| < Ce.
On the other hand,
fI+ T/ Ajo(T, 0 f; = T/ [ f{ +i4; fi] o T;.

Thanks to the inequality @g| < ¢ |a|® + ¢~ 18], we can see that

~ ~ - 2
F6) +iA50(T;0), 0 O T/0) +it; F;0)|
2 ~12

< (1+e) Tj/(e)[fj/+iAjfj]oTj(9)‘ +Cs)f,‘

Therefore, we have the estimate
/ lgradQ® f | dx
Bj(t1,e)
bj . 2 5 bj 2
§28(1+C8)/ ‘fj-l—lAjfj‘ d9+C8/ | f|” dob.
aj aj

Estimates (72) and (74) allow us to conclude that (71) holds.

For the estimates in the opposite direction, we do not need to redefinge
just extend the definition given in (28) to the complex case by linearity.

Theorem 7. There exists a constant C such that for all u € HL(O(e); C) the
following estimates hold:

1+Cye ~1/2 12
E(Psu,Pfu;A)gTE(u,u;A)+Cs P2 1ulZ 200y - (75)

» 1
Pouf a0y 2 Z((1 — CVE) ey — CVEES (1 A)). (76)

\Y

Proof. Estimate (76) is a direct consequence of estimate (31) and of (73). Let us
prove now relation (75). We observe that
8Nju 1

YiAN /E[BMO%JFA \y](e )d
aNju oy L R~
P R AW S P ) jot 0 %y 1 348

&

1
+ o [Aj0(0,0) — Ajg(0,5)|uo W0, s)ds.
—&
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We infer from the assumption thatis of classC?, that

INjul? _ 1+ e [°|duoW; ? ’ 2
’ 30 | = 2 )| g TAwmeV| dOFCVE fuowl"do.
so that

/b/-—tz ONju 2d¢9

aj+rz | 00

1+C
< 1+Cye l(grad+i A)ul|® dx + C/e Jul? dx.
2¢ Bj(t2,€) Bj(t2,¢)

The next terms to estimate are

2 9Nu
Z +iAcNeu
.y |06
kedJ(v)
¢ — Neul(t tp —0)(¢c — Neu(t1)) |2
B p (1)—iAK(2 )( . (1))‘ 0. (77)
h—n h—n

We estimate the termN,u/00 + iA,N,u as above, and we use the classical
inequality

le + B+ yI? < A+ CVo)lal®>+ C(IBI? + 1y 12)/e.

We find that the expression (77) is estimated by

> HeEr
28 11 —&

kel (v)

2

oW
%HAKWOWK d6 ds

C .
+c¢§/ |u|2dx+—|c—NKu(t1)|2.
Ox NG

The last term to estimate is the contribution

> /tl |iAce

keJ(v)

2do < clef’e.

We recall that, from (25),
= N,(u(tl)}2 < C/ lgradu|? dx,
U1
and from (46),

|6|2 < Ce_lf (|gradu|2 + Iulz) dx,
Ok
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and we find that
E(P%u,Pfu; A)
€]

<1 C*/_ Zf |(grad+iA)u|? dx

B (11,€)
I€]

+cf2/ |u?dx + Ce~ 1/22/ |gradu|? dx

Bj(11,6) iy Jua,ew)
+ CZ Z / (Igradu|? + |ul?) dx.
veV kel (v)
But
lgradu|? < 2|(grad+i A)u|? + 2[|A co |ul?.
We conclude that (75) holds.

These theorems suffice to compare the spectfi[@f] andS[A]; we may even
replaceA by a vector potentiah® depending or. If we define

8(e) = IA° = A% co,
we can state the following result:

Theorem 8. Assume that the norm of A® is bounded in C1(O(¢)) independently
of ¢; then, if 5(¢) tends to O as ¢ tends to O, the spectrum of S¢[A?] tends to the
spectrum of S[A%] in the following sense. There exists C such that for all integer
p, the following estimate holds:

(14 Ce)[(1+ C8(£))xp(SIA®] + C8(e)] + Ce

Ap(STA®]) = 7
p(STIAT]) < e . (78)
for all integer p, there exists ¢, such that for all ¢ < ¢,,
1 Ap(SE[A®
o (SIA%) < (14 Coe) T N SIRD 2 CVE 7

1— Cfe — C\fer, (S[AS])
Proof. The proof of this statement is straightforward, We compare first the spectra
of S[A?] andS[A°]: we have the inequality
2
‘/ (|af +ifA8|2 — ‘df + ifAO‘ )dvoIM‘
M
< C5(e) [ (af +171) avoly
M
< Cb(e) (/ |£12 dvolyy
M

+min(/ ’df+iA0f‘2dvolM,f |df+iA5f|2dvolM)).
M M



Multiply Connected Thin Strips | 307

In the statement of Lemma 5, the Hilbert spaégsand H; are taken equal to
L2(M), andS will be the identity. We infer immediately that

Ap(S[A®]) < (1+ C8(s))kp(S[Ao]) + Cé(e), (80)
Xp(SIA®)) < (L4 C8(e))hp(SIAT]) + Co(e). (81)
We use now the argument of the proof of Theorem 5: we have thus the estimate

A+ Ce)r,(S[A®]D) + Ce
1-—Ce

)

Ap(STIAT] =

which, with (80) implies (78).
Conversely, relation (63) still holds thanks to the second inequality of (70), and
thus we infer from Lemma 5 and relations (75) and (76) that
1+ C/e)hp(S°[AT]) + C/E
1— Ce — C\ferp(SE[AS])

and the conclusion (79) follows with the help of (81).

Ap(SIA®]) =
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