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Abstract

We establish a sharp integrability condition on the partial derivatives of a map-
ping with L?-integrable distortion for somg > n — 1 to guarantee discreteness
and openness. We also show that a mapping with exponentially integrable distortion
and integrable Jacobian determinant is either constant or both discrete and open.
We give an example demonstrating the preciseness of our criterion.

1. Introduction

This paper is a crucial part of our program to establish the fundamentals of the
theory of mappings of finite distortion [11,1,12,17] which form a natural general-
ization of the class of quasiregular mappings, also called mappings of bounded dis-
tortion. The results of this paper give sharp criteria for topological properties, such
as openness, for a mapping of finite distortion. The theory of mappings of bounded
distortion is by now well understood, see the monographRIMHETNYAK [24],
by RickmaN [25] and byIwaNIECc & MARTIN [13]. The motivation for relaxing the
boundedness of the distortion partially arises from the fundamental wobe of
[2, 3] on nonlinear elasticity. We study mappings= (f1,..., fx) : & — R"in
the Sobolev spacw-1(22, R"), whereS is a connected, bounded, open subset of
R™ with n 2 2. Thus, for almost every € 2, we can speak of the linear trans-
formationDf (x) : R* — R", called the differential off atx. Its norm is defined
by |Df(x)| = sup{|Df (x)h| : h € S"1}. We shall often identifyD f (x) with its
matrix, and denote by (x, f) = Jy(x) = detDf (x) the Jacobian determinant.

Definition 1.1. A Sobolev mappingf € W11(Q, R") is said to havéinite distor-
tion if there is a measurable functid = K (x) = 1, finite almost everywhere,
such that

IDf ()" = K(x)J(x, f)  ae. (1.1)
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We call (1.1) the distortion inequality fgf. Notice that, unless we put any extra
conditions onk, we only require that/ (x, f) = 0 a.e. and that the differential
Djf vanishes a.e. in the zero set of the Jacobian determihantf). It is worth
recalling that the smallest such functi@n referred to asuter dilatation, is then
defined by

Df ()" :
Kotw. = | sy HI0N#0 (1.2)
1 if J(x, f)=0.
Geometrically this means that, at the points whé¢e, /) > 0, the differential
takes the unit ball to an ellipsoif and we haveKy (x, f) = vol Bp /VvoOl E,
whereB is the ball circumscribed aboti.

Let us begin by recalling some of the known results on mappings of finite
distortion which are relevant for our discussion. A mapping in the Sobolev class
wln(Q, R") with finite distortionk e L>°() is called a quasiregular mapping or
a mapping of bounded distortion. This class of mappings can be traced back to the
work of RESHETNYAK [23]. Reshetnyak proves the remarkable result that a mapping
of bounded distortion is continuous and either constant or open and discrete. For an
exposition of the theory of mappings of bounded distortion we refer the reader to the
monographs bRESHETNYAK [24], by RickmaN [25] and byIwANIEC & MARTIN
[13]. Here continuity means that has a continuous representative. Openness of
a continuous mapping requires that the image of each open set be open and the
discreteness that the preimage of any poiiRirbe an isolated set of points {R.

Thus Reshetnyak’s result gives topological conclusions from analytic assumptions.

GoL’'DSTEIN & Vopopr’YyaNov showed later in [7] that even mappings of finite
distortion in the Sobolev claggl" (Q, R") are continuous. Regarding discreteness
and openness, the uniform boundedness of the distortion in the planar case was
relaxed to the (local) integrability of the distortion for Sobolev mappirfgs
Ww12(Q, R?) by IwaNIEC & SVERAK [16]. In higher dimensions, the analog of this
holds whenk o € LP(Q) for somep > n — 1 andf € Wb (Q, R). It fails if
p < n —1,[3], and it remains unknown in the critical casepof n — 1. For the
positive results see the papersiygiNoNEN & KoskELA [10] and byMANFREDI
& ViLLaMoRr [19,20]. Notice that in all these results we assume that the partial
derivatives off aren-integrable.

The natural Sobolev setting for mappings of finite distortion is the space
wln(Q, R"): we then can integrate the Jacobian determinant by parts. However,
matters are quite complicated if it is not knoapriori that the Jacobian is locally
integrable or, even if it is so, whether it coincides with the so-called distributional
Jacobian. The first regularity results below the natural setting were recently es-
tablished bylwaNIEc, KOSKELA & MARTIN [11]. Assuming that/; L1(Q) and
K e L1(Q) for some sufficiently large = A (n) they proved, among other things,
that in factf € W17(Q2, R"). It then follows thatf is continuous and either con-
stant or open and discrete. Also see [1] for further developments. The standing
conjecture is that it is possible to take= 1(n) = 1 as the critical exponent for the
regularity conclusions; it is known that ti¢ integrability of the differential fails
for any» < 1. The relevant examples are homeomorphic mapd i (22, R")
and, therefore, have locally integrable Jacobian determinants.
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Very recentlylwaniec, KoskeLA & ONNINEN (cf. [12]) verified that mappings
with exponentially integrable distortion and integrable Jacobian determinant are
always continuous.

Theorem 1.2. Let f € WL1(Q, R") satisfy the distortion inequality
IDf()|" = K(x)J(x, f) ae

in Q, where K > 1 and exp(AK) is integrable for some A > 0. If the Jacobian
determinant of f isintegrable, then f iscontinuous.

One consequence of our current work is that we also have discreteness and
openness for non-constant mappings as above.

Theorem 1.3. Let f € WL1(Q2, R") satisfy the distortion inequality
IDf ()" = K(x)J(x, f) ae

in @, where K = 1 and exp(AK) is integrable for some . > O. If the Jaco-
bian determinant of f isintegrable, then f is continuous and either constant or
both discrete and open. Conversely, there is a non-constant, continuous mapping
f e whi(Q, R") with integrable Jacobian determinant and of distortion K with
exp(AK /log?(1+ K)) integrable for some A that is neither open nor discrete.

We will obtain Theorem 1.3 as a corollary to our more general results. Theorem
1.3 is new even in the plane; see the worlbaf/1p [4] for existence questions. For
notational simplicity we do not formulate our results here in the ultimate generality.
See Sections 2 and 3 for even sharper results. Theorem 1.3 follows from our next
result because (1.3) holds for each mapping W1(Q2, R") with exponentially
integrable distortion and integrable Jacobian.

Theorem 1.4. Let f € WL1(Q, R") satisfy
lim s/ IDf(x)|"¢dx = 0. (1.3)
e—>0+ Q

If f hasfinite distortion K € L?(Q2) for some p > n — 1, then f is continuous
and either constant or both discrete and open. Conversely, there is a continuous,
non-constant f € W11(Q, R") with integrable Jacobian, of finite distortion K
with exp(L K / log?(1 + K)) integrable for some 1, with the Sobolev regularity

lim Supe/ IDf(x)|"¢dx < o0
e—0+ Q

and so that f isneither open nor discrete.

Above, the assumptions in the first part of Theorem 1.4 guarantee that the
Jacobian determinant ¢f is (locally) integrable and that, in fact, the point-wise
Jacobian coincides with the so-called distributional Jacobian, see the discussion at
the beginning of Section 2. This fact plays a fundamental role in the proof. The
continuity of f in Theorem 1.4 is from [12].
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A reader familiar with discrete and open mappings recognizes by Theorem 1.4
that a mapping’ satisfying our assumptions has to be sense-preserving, that is, the
topological degree is always strictly positive. This is indeed part of our argument
in the proof of Theorem 1.4.

Theorem 1.5. Let f € W1(Q, R") satisfy

lim 8/ IDf(x)|"®dx =0.
e—0+ Q

If f hasfinite distortion, then f is continuous and sense-preserving. Conversely,
thereisacontinuous f € W1(Q2, R") withintegrable Jacobian, with J (x, f) > 0
a.e,, of finite distortion K with exp(A K / log?(1 + K)) integrable for some 1, with

lim SUps/ IDf(x)|" ¢ dx < oo,
e—0+ Q

which is not sense-preserving.

Theorem 1.5 gives very sharp criteria which enable one to conclude from an-
alytic assumptions that a mapping is sense-preserving. Observe, for example, that
the sign of the Jacobian determinant need not have any global topological meaning,
even for mappings with partial derivatives in wegk (see the construction of the
example in Section 4).

Our proofs are based on the following ingredients. First of all, our assumptions
guarantee that the Jacobian ffis (locally) integrable and that the point-wise
Jacobian coincides with the distributional Jacobian. This does not only hold for
f but also for certain modifications tf. Using this we show thaf preserves
the divergence of smooth vector fields in a certain distributional sense. This then
results in a (weak) change-of-variables formula that allows us to conclude that
f is sense-preserving. Here we wish to acknowledge the important contributions
of IWANIEC & SBORDONE [15], SVERAK [26], and of MULLER, TANG & YAN [22]
towards the crucial ideas contained in our work. The rest of the proof of discreteness
and openness follows ideasMANFREDI & VILLAMOR [19, 20] that are arefinement
of the original argument ARESHETNYAK [23]. Also see the work o¥opop’yaNov
[28]. The example to show sharpness is based on ideas in a construchiamyc
& MARTIN [14] and in the modification of this construction MaLy [18]. We need,
however, to substantially improve on these previous examples.

In the next part, [17], of our program on mappings of finite distortion, we will
study the distortion of sets of measure zero under these mappings.

The paper is organized as follows: theorems giving sufficient conditions for a
mapping to be sense-preserving are proved in Section 2 and the results concerning
discreteness and openness in Section 3. In Section 4 we construct a mapping that
shows that our results are sharp in the above-mentioned sense.
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2. Sense-preserving mappings

We consider a function space(2) such that ifg, 2 : @ — [0, co] are mea-
surable,h € X(2) andg < ch for some O< ¢ < oo, then alsog € X ().
Furthermore, we assume thatfife Wt1(Q, R"), |Df| € X(Q) andJ; = 0 a.e.,
thenJ; e L&)C(Q) and the distributional Jacobian DRY equals/y in Q. This
means that

/Qfl(X)J(x, (@, f2,.... f))dx = —/ng(x)J(x, f)dx

for all ¢ € C2°(€2). For the proofs of theorems listed in the Introduction we use a
result byGreco [8, Corollary 4.1] according to whick (£2) can be chosen so that
it consists of all measurable functionson 2 for which (compare (1.3))

Note that therL” log™* L(2) € X(2) C Ny-_1L" log® L (see, e.g., [12, Section
2]). The simple examplg (x) = x/|x| shows that, even though Greco’s condition
is not absolutely necessary, there are no allowable spég@sthat are much larger
thanL" (2).

We call f : @ — R”" sense-preserving if deg(f, &, yo) > 0 for all domains
Q' cc Qandallyg € f()\ f(0'), where degf, ', yo) is the topological
degree off at yg with respect ta2’. For the definition of the topological degree
see, e.g., [6].

If Aisarealn x n matrix, we denote the cofactor matrix afby cof A. Then
the entries of coft area;; = (—1)'*/ detA;;, whereA;; is theijth minor of A,
and cofA is the transpose of the adjugate ddpf A.

Theorem 2.1. Suppose that f € W1(Q2, R") is continuous, |Df| € X () and
Jr =2 0ae,andlet V e CY(R", R"). Then

div((V o f)cof Df) = ((divV) o f)Jy (2.1)

holds in the sense of distributionsin €2, i.e.,

/Q(V(f(X))COf Df(x), Vo(x))dx = —/Q(div VI N Ir(0ex)dx (2.2)

for all ¢ € C°(Q).

Proof. It suffices to show that (2.1) holds for a®/ ccC .

Consider first the casgé = (v, 0, ..., 0), wherev € C1(R"). Since a general
¢! function can be written, on a bounded set, as a difference ofthvunctions
whose first partial derivative with respect to the first variable is nonnegative (take,
e.g.,v+(x) = v(x) + suf|d1v(x)| : x € f()}x1 andv_ = vy — v), we may,
by linearity of (2.1) with respect t&, assume thai;v > 0 on f(2'). Define
g = o f fa...,f,). Theng € WHL(Q,R"), |Dg| € X(Q) and J,(x) =
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v (f())Jr(x) = 0a.ex € @, whenceJ, € L1(Q') and DetDg = J, in .
Now, for anyp € C°(2'), we have

ey eot D, Vownds = [ a0 @ g dx
= —/ p(x)J (x, g)dx
.
—— | @ V)0t d

which means that (2.1) holds f&f = (v, 0, ...,0) in &'
A similar argument also appliesio= (0, ..., v, ..., 0), and the general case
follows by the coordinate decomposition Bf

Theorem 2.2. Let Q bebounded and supposethat V e C1(R*, R"), f € C(Q, R")
AWL—1(Q, R") and £ (3Q) NsptdivV = @. Thenthereisy e C°(2) such that
¢ = linspt((divV) o f) and

—/Q(V(f(x)) cof Df(x), Vo(x))dx = /lé’ldiv V(y)ded f, 2, y)dy. (2.3)

Proof. Tochoose, take anopensét’ c R"\ f(9%2) suchthatsptdiv c U’and
U'NfOQ) =¢¥.ThenU := f~1(U’) cc Qisopenand contains gptiv V)o f).
Now choosep € C°(2) such thaty = 1inU.

If fissmooth,thenthe classical degree theoryyields (see, e.g., [6, Exercise 1.5])

/Q(div V)(f () Jf(x) dx = /R divV(y)deq 7, 2, y) dy. (2.4)

Since (2.2) holds for smooth mappings, it remains to use the assumptignthat
on the set wherédiv V) (f(x)) # 0 to conclude that (2.3) holds for all smooth

In the general case, we find a sequehfie of smooth mollifications off that
converges tof uniformly in Q@ and inwt"—1(G), whereG cc Q is an open set
containing spb. By uniform convergence and by the choiceldf we have for
large j that f; (3Q2) NsptdivV = ¢, ¢ = 1 on the set wher&iv V)(f;(x)) # O,
and degf;, 2, y) =deq f, 2, y) for all y € sptdivV. The claim follows now by
applying (2.3) to the mapping§ and letting; tend to infinity.

Theorem 2.3. Let Q be bounded and suppose that f belongs to C(Q2, R")
Nwir=1(Q R"), Jr € L1(Q) andthat (2.1)holdsin the sense of distributions for
each V € CY(R",R"). If n € C2(R") issuchthat f(32) N spty = @, then

/Qn(f(X))Jf(x)dx = /Rn n(y)deqf, Q,y)dy. (2.5)

Proof. Let u € C?(R") be a solution of Poisson’s equatidku = 7, that is,
divVu = 5, and denotd/ = Vu. Now the claim follows from (2.1) and Theo-
rem2.2.
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Theorem 2.4. Let f € W1"~1(Q, R") be continuous. Supposethat J; € LY(Q),
Jr 2 0 ae and that (2.1) holds in the sense of distributions for each V €
CY(R",R"). If f hasfinite distortion, then f is sense-preserving.

Proof. Let Q' ccC Q and takeyg € f(2)\ f(9"). We take an open bals
centered atg such thatB N £ (9Q) = ¥ and a nonnegative smooth functipmith
support inB such that;(yg) > 0. Then by Theorem 2.3 and properties of degree
(it is constant onB)

deg f. Q/,yo)/gn(y)dy = /Q/n(f(X))Jf(X)dX- (2.6)

Define
G={xeQ: n(fx) > 0}

It follows from (2.6) that degf, &, yo) = 0. Suppose that dég, ', yo) = 0.
ThenJy = 0a.e. orG and sincef has finite dilatation, it follows thaiDf| = O a.e.
onG. Hencef andthus alsgo f are locally constant 06. Sinceno f = 00noG,
we deduce thaj o f = 0 onG. This contradiction shows that degg ', yo) > 0.

Since, by [12, Theorem 1.3], a mappirfige W1(22, R") of finite distortion
satisfying (1.3) is continuous (i.e., has a continuous representative), we obtain the
first part of Theorem 1.5 as a corollary to Theorems 2.1 and 2.4.

According to [11, Section 7], a mappinte Wi1(22, R") with exponentially
integrable dilatation and witlly < L1(Q) satisfies (1.3), whence we have the
following corollary to Theorem 1.5.

Corollary 2.5. Supposethat f € WH1(Q, R") hasfinite distortion K with

/ eXp(AK(x)) dx < oo
Q

for some A > 0 and assume that J; e LY(Q). Then f is continuous and sense-
preserving.

Similarly, we get the first parts of Theorems 1.3 and 1.4 as corollaries to Theo-
rem 3.1 below. The example of Section 4 gives the second parts of Theorems 1.3,
1.4,and 1.5.

3. Discreteness and openness

In this section we prove Theorem 3.1, which establishes the discreteness and
openness under our setting. The proof is modelled after and very similar to the
argument used in [20]. Thus we only recall the main steps of the proof for the
convenience of the reader.

Theorem 3.1. Let f € WL"~1(Q, R") be continuous. Supposethat J; € L1(Q),
Jr 2 0 ae and that (2.1) holds in the sense of distributions for each vV ¢
CLR",R™). If f has finite distortion K € LP(Q) for some p > n — 1, then
f iseither constant or both discrete and open.
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Proof. Suppose thaf is not constant. By Theorem 2.4,is sense-preserving. It
suffices to prove that is light (i.e., f ~1(y) is totally disconnected for all € R”,
that is, f ~1(y) does not contain an arc) since a sense-preserving light mapping is
both discrete and open (see [27]).

We will prove that for ally € R”" there iss € (n — 1, n) such that the-capacity
of f~1(y) is zero (for more information about capacity see, e.g., [5,9]). Then the
Hausdorff dimension off ~1(y) is smaller than or equal toe — s < 1, and thus
f~1(y) istotally disconnected. By considering the translationy we may assume
thaty = 0,andthat Q= f(£2). Since our argumentis local in nature, we can assume
that f € wl»—1(Q,R"), K € LP(Q) and thatf () C B(0, e~¢) = '. Suppose
that® is a positiveC2-smoothr-superharmonic function (i.e., diw ®|* 2V ®) <
0) on the ball?’ with ® > § > 0 and such that

VOV

4 dn—-1

is in the clas<"1 (', R") with bounded partial derivatives. Sindeis n-superhar-

monic, it follows that
Vo
divv £ (1- n)u.
q)n
Substituting this into (2.1) we obtain
\Y n-2y
div VO o fl Qo f
(®o f)n-t

in the sense of distributions. Using the fact that

Vo n
Voo fI"

fDf | < (11—
ot o7} < 4= i

|cof DF (0] < e[ DF I < en)(K ()5 () "

foranyn e Ccl(sz), n = 0, we derive a Caccioppoli-type estimate

(V@ o ()"
@ (®o fH)"
Here, and subsequentbyyz) denotes a constant depending onlyromhich might

differ from occurrence to occurrence. Now chooses (n — 1, n) such that
s/(n —s) < p. The Holder inequality, chain rule, and equation (3.1) yield

Jrom@)" dx < c(n) f Ky YvyoPds.  (3.1)
Q

/Q [V(log® o f)(x)|"n(x)* dx

s/n (n—s)/n
gc(n)</91<(x)"1|vn(x)|”dx) (/QK(x)W“)dx) . (3.2

Next we will employ the familyd, of smooth functions of [20] that approximate
log(1/|x]) asa — 0. Then, setting:(x) = loglog(1/|f(x)|), we observe using
(3.1) that logb, o f — g in W*(B, R") for any ballB ¢ R”. Then, referring
to [9, Theorem 4.3], we infer that is ans-quasicontinuous function oB; in
particular thes-capacity of the seB N f~1(y) = {x € B: g(x) = oo} is zero. This
concludes the proof.
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4. An example

We will construct a continuous mapping : Qo = [0,1]" — R", n 2 2,
which has the following properties:

(@) f e Wi(Qo, R"), f is differentiable almost everywhere, and

O<e<1

sup 5/ |IDf (x)|" "¢ dx < o0; (4.2)
Qo

(b) the Jacobian determinasit(x) is strictly negative for almost every € Qq,
and

/ [Jr(x)|dx < oo; (4.2)
Qo

(c) the dilatationk (x) = 'lDJ-’; ((’;))‘ln is finite almost everywhere and there exists
A > 0 such that '

2K (x) .
éo eXp(m) dx < Q5 (43)

(d) f does not satisfy Lusin’s condition N: there is a 8ett Qg of measure zero
so thatf (N) has positive measure;

(e) f is neither open nor discrete;

(f) f fixes the boundary Qg and thus degf, 9 Qo, y) = 1 for all y € int Qop.

Let us next describe how to obtain a mapping as referred to in Theorems 1.3,
1.4 and 1.5, using’. Let 0 c R”" be any cube with sides parallel to coordinate
axes. By scaling, shifting and changing the sign of the first coordinate function of
the mappingf, we get a continuous mappirfg : 0 — R" forwhichJ;, > Oa.e.
in 0, (4.1), (4.2) and (4.3) hold anfp (x) = (—x1, x2, ..., x,) ondQ whence
deg fo.9Q.y) = —1forally € fo(Q)\ fo(3Q).

Consider afinite collectio® of closed cubeg with pairwise disjoint interiors
and sides parallel to coordinate axes suchghat Up.o Q andQ’ C 2 for some
Q' € Q. Defineg to be fp in eachQ € Q. Theng : @ — R”" is a continuous
mapping such thal, > 0 a.e. in%, (4.1), (4.2) and (4.3) (and (d)) hold with
replaced by and dedg, 0Q’, y) = —1forally € g(Q')\ g(3Q") # #. Thusg is
not sense-preserving. Moreover, by (¢)Js neither open nor discrete.

We now move on to the construction gfafter introducing some notation and
stating a preliminary lemma. Besides the usual Euclidean hofea (xf +...+
x2)1/2 we will use the cubic nornix|| = max |x;|. Using the cubic norm, the
xo-centered closed cube with edge length>2 0 and sides parallel to coordinate
axes can be represented in the form

Q(xo,r) = {x e R" : |lx —xoll = r}.

We then callr the radius ofQ. Let us definecQ(xo,r) = Q(xg, cr) if ¢ > 0.
We will use the notatiom < b if there is a constant > 0 — not depending on
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(integration) variables or summation indices — such that c¢b, and we write
axbifa Sbandb < a.
We will be dealing with radial stretchings that map culgh®, r) onto cubes.

Lemma4.l. Let p : (0, 00) — (0, oo) be a strictly monotone, differentiable func-
tion. Then for the mapping

) =—p(lxl).  x#0,

[lx 1l

we have for a.e. x

plx 1)

llxl

IDf(0)|/c(n) = max{ , Ip/(IIXII)I} < c(n)|Df (x)]

and

< P (xDodlxly

Jr(x)/c(n) 1

< c(n)Jr(x),

where ¢(n) depends only on .

Proof. An elementary reasoning shows that for the mapping
X
g(x) = — p(x])
x|

we have
p(lx])

|x|

|Dg(x)| = max{ , Ip/(IXI)I}

and
o' (IxDp(xhnt

Jg(.x) - |x|n_1

The Lemma follows by considering the decompositjor= 2~1 o g o h, where

h(x) = M X
x|

(i.e.,h is the “natural” stretching that maps each c@@®, r) onto the ballB (0, r)).

In the following, we will construct a sequence of continuous, piecewise con-
tinuously differentiable mappingg, : Qo — R”. First we introduce a sequence
of compact sets i whose intersection is a Cantor-type set.

The unit cubeQy is first divided into 2 cubes with radius M, which are each
in turn divided into a subcube with radig$/4)/2 and a difference of two cubes
which we refer to as an annulus. The famiBy consists of these™2subcubes.
The remainder of the construction is then self-similar. The subcube is divided into
2" cubes which are each in turn divided into a subcube with radidg2and an
annulus. The family, consists of these?2 subcubes (see Fig. 1). Continuing this
way, we get the familie®y, k = 1,2,3, ..., for which the radius oD € Qy is
r(Q) = 47%/2 and the number of cubes @y is #Q; = 2.
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0od 0od

0od 0od

0od 0od

0od 0od
o Q2

Fig. 1. FamiliesQ1 and Q5.

We are now ready to define the mappinfjs Define fo = id. We will give a
mapping f1 that leaves the boundarié$2Q), Q0 € Qs fixed, turns each annulus
20\ Q inside out and stretches the cu@eso thatf; is continuous (see Fig. 2).
The Jacobian determinasit, will be negative in each annulugl?, Q and positive
in each cube). Next, f2 equalsyi in the annulae 2 \ Q, Q € 91, turns each
annulus D \ Q, O € 9o, inside out, stretches the culgeand shifts the image so
that f> is continuous. Moreovedy, is negative a.e. i \ UQEQZ 0 and positive
inUgpeo, @- We will then continue in this manner.

N

Fig. 2. The mappingf1 actingon D, Q € Q;.

To be precise, lefo = id|Qg and fork = 1, 2, 3, ... define

Si—1(x) if x ¢UQer 20,
1/ log(2k)
¥=2(0)
_ — = ({loglog——
fely = | firt GO Far— o ( 09’ IIx—z(Q)H)
if x €20\ 0, Q€ 9,
Fie1(2(0) + br(x—2(0)) ifxeQ, 0cQy

wherez(Q) is the center of the cub@ anda; andb; are chosen so thaf; is
continuous and fixes the bound&r@o:

a1 = 1/(4(loglog 4%/1°92),
b1 = 2(loglog 8/ log log 4%/ 1092,
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and, fork =2,3,4, ...,

1 \1/log(2k) “k
ay (Iog log 47/2) =b-4%/2 and (4.4)
1 \1/log(2k)
ar (Iog log F) = by_147k. (4.5)

Remark. The ratio of the outer radius and the inner radius of the image annulus
in the levelk is

1 1/log(2k)
ay (Iog log 47&)

1 1/ log(2k)
ak (Iog log 4Tk>

3

log log 2k+1\ 1/109(26)
:< log log 2 )

which has the limit 1 ag — oo, i.e., the volume of the image annulus is small
compared to the volume of the culfg(Q) for largek.

Next we will show that
ax ~ 27k, (4.6)
By (4.4)a; ~ b4~*, whence it is enough to show that
by ~ 2%, 4.7)
It follows from (4.4) and (4.5) that

log log 2¢+1 > 1/log(2k)

=2 Ggiegm

forallk =2,3,4,.... Then
1/log(2
" l_[ log log Rj+1\ 1/1092))
‘loglog 2/ '
For (4.7) it suffices to show that the product

log log 2¢+1 ) 1/log(2k)

1!:[1 < log log 22

converges. This happens if, and only if,

e log log 22+1 1/109(20)

k=1
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converges. Let us estimate the terms of this sum. Sincedog— 1 for ¢ close to
1, we have

<(Ioglog22k+l>l/ '°9<2">> 1, (IoglogZz"“)

log log 2% - log(2k) log log 2
1 loglog 21 —loglog 2
~ log(2k) log log 2%

1 log(1+ %)
~ log(2k) log(2k log 2)
N 1

~ klog?(2k)’

whence (4.8) converges.
Since

| fir1(x) — fi(x)] S ax(loglog(2 - 44))1/ 10920 ~ o=k
the sum

oo

D fiert@) = fi)l

k=1
and thus the sequencg,) converges uniformly. Hence the limft= lim;_, o fx is
continuous. Clearly is differentiable almost everywhere, its Jacobian determinant
is strictly negative almost everywhere, afids absolutely continuous on almost
all lines parallel to coordinate axes.

To finish the proof of the properties 4—4 we next use Lemma 4.1 to estimate

IDf(x)| and |Jr(x)] atx € int(20 \ Q), Q € O, k = 1,2,3,.... Define
r=lx —z(Q)|l ~ 4% andp(r) = ax(loglog(1/r))Y/1092) Since

/ 1 p(r) _ p(r)
o] = ; S
0g(2k) -log(1/r) - loglog(l/r) r r

we have

~ PO 1/10g(26)

IDf (x)] = (loglog(1/r)) 4.9)

~ 2X(log(2k)) 1/ 1092k) ~ 2k

and

n—1
()| ~ <@> 10|

,

_ (P(r)>n 1 (4.10)
r log(2k) - log(1/r) - loglog(1/r)

~ okn 1

T klog?(2k)
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Equations (4.9) and (4.10) yield

_IDf @)

K(x) = ~ k(log(2k))2. 4.11
(x) 770l (log(2k)) ( )

The measure df) .o, 20 is (2- 4=kynnk ~ 2=kn gand so for O< ¢ < 1

o0 00
8/ IDf(x)|" Cdx <& szknzk(nfe) <e szsk _ - 82_8 <c
Qo =1 pars —

whereC < oo is a constant that does not dependsoiThis proves (4.1), and it
follows that f € W11(Qg, R"). Alternatively, the fact thaf € W1(Qo, R") can

also be seen without using the absolute continuity on almost all lines from the above
calculations because they show that the sequefigeonverges i 11(Qo, R").
Similarly we prove (4.2) and (4.3):

> 2kn =1
< N o—kn < .
fgo el kZ:l k(log(2k)? ~ ,;2 k(ogky? = %

By (4.11) there is a constantn the range I< ¢ < oo such thai (x) < ck(logk)?
inint (20 \ Q), 0 € O, fork > 2, and since > t/log?(1+t) is increasing for
larget,

) gt
- 2
/Qo eXp(|092(1+ K(x))) ax 5 kZ:;% exp log?(1 + ck(logk)?)

oo o
é Z 2—]{1’! EXIZX)»Ck) — Z(ec)\—n Iog 2)/( < 00
k=3 k=3

if we choosel > 0 such thakc < nlog 2.
We prove the property 4 by showing that

o
Qo C f( N U Q).
k=1Q0eQ;
From the construction, it follows that for eakh=1, 2, 3, . ..

fk( U Q)ka< U 2Q>ka+1< U Q).

0eQx 0€Qrn1 0eQki1
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SinceQo C f1(Ugeo, Q). defining

Hk=UQ

Qe

we haveQop C fi(Hy) C fi(Hy) foralll = k = 1. Now (Hy) is a decreasing
sequence of compact sets, whence

Qo c ([ fitH) C () f(Ho) € f(ﬂ Hk).
k=1

Notice that f is not open: it follows from the construction th#it{o Qg) =

9Qp C f(int Qp) whencef(Qo) = f(int Qp). Becausef (Qp) is a honempty
compact setf (int Q) is not open. To prove non-discreteness dét

Gk=Uf< U int2Q\Q).

1zk QeQ;

Then the set<5; are dense and open, and by the Baire category theorem their
intersection is nonempty. But if € NGy, then £ ~1(y) is an infinite compact set
and thus it is not discrete.

The property 4 is clear from the construction.

Remark. Note thatdirm(ﬂ,fil UQer Q) =n/2(seee.g.,[21, Theorem 4.14]).

Note added. The arguments of this paper have very recently been refined by J.
Kauhanen, P. Koskela, J. Mall.Onninen and X. Zhong (Mappings of finite distor-
tion: Sharp Orlicz-conditions, in preparation) to show the following improvement
on Theorem 1.3. Le¥ be a strictly increasing differentiable function so thét ()
increases to infinity whentends to infinity. Then the exponential integrability of

K in Theorem 1.3 can be relaxed to the integrability of @x(K)) if the integral
f°°(\11’(s)/s) ds diverges. On the other hand, examples with(@xX )) integrable

as referred to in Theorem 1.3 exist when this integrabtfs) /s converges.
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