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Abstract

Whenu is a solution to the equationu, detD?u = f with f positive, contin-
uous, andf; satisfying certain growth conditions, we establish estimatésSSrfor
u, and show thaD)fu satisfies uniform interior estimatesir? for 0 < p < oc.

1. Introduction

The parabolic Monge-Amgre operator considered in this paper is
Mu = —u; detD%u, 1.2)

whereu = u(x, ) is convex inx and nonincreasing in, x € R", r € R, and
D?%u = Dfu denotes the Hessian nfwith respect to the variable. This operator
is relevant in the study of deformation of surfaces by Gauss-Kronecker curvature
[Fir74,Tso85a], and in a maximum principle for parabolic equations [Tso85b].
Together with (1.1)Kryrov [Kry76] introduced other parabolic versions of the el-
liptic Monge-Ampere operator, see [Lie96, pp. 406—416] for a complete description
and related results.

Our purpose in this paper is to establish that solutienie Mu = f with
f positive, continuous, ang; satisfying certain growth conditions, have second
derivatives inL? for 0 < p < oo. This is the main result in this paper and is
precisely stated in Section 2, Theorem 2.1. These types of interior estimates have
been recently established By rFrarRELLI [Caf90a] for the elliptic Monge-Amgre
equation deD?u = f, and therefore we extend Caffarelli's result to the parabolic
case. The origin of these estimates goes ba&ktmreLov [Pog71], who proved
that convex solutions to dé&?u = 1 on a bounded convex domainwith u = 0
on 92 satisfy theL>° estimate

C1(, Q)1 < D%u(x) < Co(Q, Q) 1, (1.2)
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for x € @/, where€’ is a convex domain with closure containedSn I is the
identity matrix, andC; are positive constants depending only on the domains.
The estimate (1.2) plays an important role in the fundamental estimates proved
by Caffarelli, and the crucial estimate that leads to (1.2) is that one can bound
the Hessian ofi by means of its gradient, [Pog71, Theorem 2]. In [GH98], the
parabolic analogue of [Pog71, Theorem 2] was used to establish a generalization
of a celebrated Theorem lyarLaB1 [Cal58]. Such extension plays an important
role in the present paper, see Theorem 5.2 below. All these results use the recent
theory for cross-sections of solutions to the Monge-A&nepequation developed
in references [Caf90a, Caf91,CG97,CG96,GHO0,Hua99, Gut]. One of the aims of
this paper is to extend several results of this theory to the parabolic setting and the
main difficulty for this extension is due to the presence of the time derivative in the
definition of M. However, under some conditions on the right-hand sfjeye
prove thatu, is bounded away from zero anebo. This permit us to introduce an
appropriate notion of parabolic cross-section, defined by (4.2), that has properties
which lead to the desired result.

We mention that 2+ 1+2/2 estimates for solutions t81u = f were obtained
in WW92] when f is Lipschitz continuous irx andz.

Throughout the paper we work with classical solutions but all the estimates are
independent of the smoothness and depend only on the structural constants.

Each section in the paper contains results that are interesting in themselves.
The organization is as follows. We begin in Section 2 introducing some notation,
definitions and the statement of the main result. In Section 3, we show that under
certain conditions ory, we can bound; in the interior of the domain by the
bounds for the data on the parabolic boundary. This holds, for exampfgejsf
of bounded mean oscillation. Section 4 contains the proofs of the properties of
the parabolic cross-sections needed in Section 6. Section 5 contains the proof of
an approximation theorem crucial for the proof of & ? estimates. Section 6
contains the proof of th&2” estimates. Finally, the appendix, Section 7, contains
the regularity properties of the parabolic convex envelope.

2. Notation, definitions and statement of the main result

If 0 c R"*1andr € R, then we define
o) =1{x:(x,t) € 0}. (2.2)

Let 0 c R**! be a bounded set ang = inf{r : Q(t) # #}. The parabolic
boundary of the bounded domaig is defined by

3,0 = (Q(to) x {to}) U | J @0 1) x {t]),

teR

whereQ denotes the closure @ anddQ(¢) denotes the boundary @ (r). We
say that the sep ¢ R"*! is abowl-shaped domain if Q(r) is convex for each
andQ(t1) C Q(rp) forrg < 1.
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Let O be a bowl-shaped domain B'*1, andu € C(Q). A functionu(x, 1) is
parabolically convex in Q or p-convex if it is convex inx and nonincreasing in

Givenzg = (xo, f0) € Q, £;,(x) is asupporting affine function, or supporting
hyperplanefor u(-, ro) atx = xo, if £;,(x) = u(xo, to) + p - (x —xp) andu(x, r0) =
£, (x) forall x € Q(tg). Whenu is regular we havep = Du(xg, ).

Givenh > 0, we define

On(z0) = On(u; z0) = {(x, 1) tu(x, 1) < £;5(x) + h andr < 1o}, (2.2)
and
Sn(xolto) = Su(u; xolto) = {x 1 u(x, 10) < £;4(x) + h}. (2.3)

If 0 c R"*!is an open bounded bowl-shaped domain andQ — R is
continuous, then thearabolic normal mapping of « is the set-valued function
P, : Q — {E : E c R"1} defined by

Pu(xo,t0) = {(p, h) s u(x,t) 2 u(xo, t0) + p - (x — x0),
Vx € Q(r),withr < 19, h = p - xo — u(xo, 10)},

whereQ(t) = {x : (x,1) € Q}. If E C Q, thenP,(E) = U neePu(x, 1).

Given a bounded convex domanhc R” with non-empty interior, leE be the
ellipsoid of minimum volume containing@ with center at the center of mass@f
Then there exists an affine transformatiBrsuch thatB,, (0) C T(2) C B1(0)
with «,, = n=%/2; see [Pog78, p. 90].

The main results in this paper can be summarized in the following theorem.
The proof of conclusion (A) is given in Section 3, Theorem 3.1; and the proof of
(B) is given at the end of Section 6.

Theorem 2.1. Let u bea parabolically convex solutionto Mu = f inthe cylinder

0 = Q x (0, TTwithu = ¢ on 9, Q. Suppose that

(1) Bo, (0) C © C B1(0) convex, 32 € C1¢ witha > 1 — 2;

(20<r = f A, feC(Q) fi € L"HQ), andexp(A(—f)T) € L1(Q) for
some A > 0; and

(3) ¢ € C21(Q) satisfying—co < ¢ < —c1and C11 < D2¢ < Co1in Q, where
¢; and C; are positive constants, i = 1, 2.

Then:

(A) There exist positive constants M1 and M, depending only on the constants
aboveand || f; 1l n+1(¢), such that

—MySu; £ —-Mz, inQ.

(B) For each0 < p < o0 and h > O we have

// I D2u(x, )||P dx dt < C,
Qux(h,T]

where 2, = {x € Q : dist(x, 32) > h}, and C isa constant that depends only
on p, h, T, and the parametersin (1), (2),and (3).
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3. Propagation of the boundsfor u, from the boundary to theinterior

LetQ2 be abounded convex domainifi, Q0 = Q2x (0, T'), andu a parabolically
convex function solution to the problem:

—u; detD’u = f  inQ, (3.1)
u=¢ ono,0. (3.2)

The main result of this sectionis Theorem 3.1. We first show titgigfbounded
on d, Q then the same is true far;. This implies, together with our assumptions
(3.5) and (3.6) ory;, thatu, is bounded away from zero anebo in the interior of

0.

Lemma 3.1. Let ¢ be a function defined on Q such that there exist negative con-
stants m1 and m2 so that

m1 < ¢, S mop onad x [0, T. 3.3)

Assume in addition that ¢ (x, 0) isstrictly convexin ,and0 < 1 = f(x,1) = A
in Q. Then there exist negative constants m’ and m’, depending only onmy, ma, A
and A such that, if u solves (3.1)and (3.2), then

my < u, < mh ond,0. 3.4

Proof. We haveu, = ¢; on 92 x [0, T']. Also u(x,0) = ¢(x,0) on Q x {0}.
Hence deD?u(x, 0) = detD?%p(x, 0). Sory < detD?u(x,0) < Ap and, using
(3.1), we can complete the proof.

The following Theorem shows global bounds fgrin Q. Notice that if, for
example,f; € BM O, then conditions (3.5) and (3.6) hold.

Theorem 3.1. Assume the hypotheses of Lemma 3.1 and that there exist positive
constants A and B such that

fi e L"HQ) (3.5)
// A axdt <B (0t = maxa, O)). (3.6)
0

Then thereexist negative constants M1 and M», depending only onthe constants
above and | f;|l Lr+1(), Such that

Mi<u, <M, inoQ. (3.7)

Proof. These inequalities will be proved by using auxiliary functions and the
following Aleksandrov-Bakelman-Pucci type maximum principle provedky
[Tso85b]: ifu is a smooth function defined on the cylind@r then

1/(n+1)
supu < supu +C <// |lu; detD?u| dxdt) , (3.8)
0 I'(u)
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whereC is a constant depending only enT and the diameter a2; andI" («) is
the setl' (1) = {(x,1) € O : u;(x,1) = 0, andD?%u(x, r) < 0}. We consider the
linearized parabolic Monge-Anape operator associated withand defined by

Loy= 2o - trace((D2u>_l D2v>.

U

Differentiating (3.1) with respect toyields
—(uy), detD?%u — u, trace((Dzu)’l (detD%) Dz(u,)) - f.
fi ,
ConsequentlyL (u;) = —7, and if we let

vix, 1) = (t + M) u,(x, 1), (3.9)

with M > 0, we then have

L(u)z(—Mk_H J;)(t—i—M)k (3.10)

We first estimate the i u,. Applying (3.8) to—u, and noting thatu,); < 0
andD?u;, > 0 onT'(—u,), we get

|nf Uy — |nf Uy

1/(n+1)
I‘( ur)
t)t ) . 5 1/(n+1)
—-C (detD“u)™ " detD (u,)fdxdt) by (3.1)
F( ;) Ut

(Mt)t

\/
ﬁ

+ trace(D%u) "1 D?(u,))

nil 1/(n+1)
( fdx dt) by (5.11)
1/(n+1)
-C ( / |—L(u, )I”+1fdxdt>

z_c(

and then from (3.4) the first inequality in (3.7) follows.

P nal 1/(n+1)
i fdx dt) 2 —Cllfillrg),
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We now estimate sypu,. Applying (3.8) tov defined in (3.9), we get

supv — supv
0 0
1/(n+1)
<cC (// —(—v); detD?(—v) dx dt)
I'(v)
1/(n+1)
(—v); detD?(—v)
=C — dxdt
(/fr(v) —u; detD?u fdx
. ntl Y(nt1)
<cC (// <—’ —i—trace((Dzu)lDz(—v))) fdx dt)
Cw) \ Ut
<

1 1/(n+1)
c (/ ((Lv)™)"* fdxdt) ,
0

sincel’ (v) C {(x, t) : L(v)(x,t) = 0}. Hence from (3.10) we obtain

supv < supv
0 (1Y
L\l 1/(n+1)
k
e ({0 —%) ) o saca
NS 1/(n+1)
< supv + C ( ,) ) dxdt) (T + M)~
»Q
We have

+ n+1
I >>
M +
Wk + n+1
S0 (o)) o
G+ ks < fi<(j4+2) 327 M+T
< >n+1

it yﬁ%s u M8

Ak
{(x,l)e Qi—fx(x,l)>(j+1)M+TH

k n+1 B
< +1 by (3.6
=Y (6+9557) o Y (36)
n+1
<Ce” Agtir rk
- M+T
ALk

if
it then follows that

T\ * Ak m
supu; < —Co |1+ — C e Ko arD
qut = 0 ( + M) + MET

> 1with C = a B, wherex is a universal constant. From (3.4) and (3.9)
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for k > XL with Cp > 0, and withC depending only om, diam(Q), A, A, A,
andB. Now letM = 1. If T < Tp = min{1, ﬁ}, we then have

_ C Mk kAL kIn(1+T)
supu; £ —Co(14+T)F(1—- = D 3.11
quz_ 0o(1+1) ( G arD (3.11)
_ Cik kA kT
< —Co(l+T)7* (1— —— ¢ @D
- o ) Co(1+T)

[IA

~Co(@+ 1)+ (1 . e‘k«f?il)> <-C
Co
for k large depending only o€, Co, A, A, n, andTyp.

For general’, we cutQ = 2 x (0, T) into a stack of thin slice® = U,]-V:o Q x
(iTo, ( + DTolwith N < T/To £ N + 1, and apply (3.11) on each slice. Indeed,
applying (3.11) tau(x, t + To) Yields sup,, gz, 21, #r = —C2. Continuing in this
way, SURy (v—1)7p. N Ty 4 = —Cn. Therefore the estimate fag in Q follows.

To establish the.? estimates oﬂ)fu from now onwards we may assume, by
Theorem 3.1, thati1 < —u; < mo.

4. Properties of the parabolic sections

Our purpose here is to define a notion of parabolic section that is suitable for
establishing thév2? estimates. We could attempt to take as a notion of parabolic
section ofu the one given by (2.2). But the problem with the s@ts(zo) is that
they do not satisfy the engulfing property of Lemma 4.3 and the shrinking property
givenin Lemma 4.4, and therefore, the type of decomposition given by Theorem 4.1
might fail to hold in terms of those sets. This can be fixed by introducing a new
definition of parabolic section given by (4.2). These new sections are monotone in
h, and satisfy the geometric properties needed to establish a Galdggmund
type decomposition, Theorem 4.1, that will be crucial in Section 6 when we prove
the power decay given by Proposition 6.2.

Lets > 0beasmall numberthatwill be choseninamoment. Let us consider the
timerg + 8 h. Sinceu(x, t) is nonincreasing imwe haveu(x, o + 8 h) < u(x, to)
for all x. Let us look at the set

S={x:ulx,t0+8h) < £;(x)}
This set is non-empty becausge S. Consider

A =min{u(x, to+ 8 h) — £;,(x)}.
X
Notice thatA < 0. Let(xp)”,; - be the point where the minimum is attained, that is,

min

A = u((x0)in 0 + 8 1) — £10((x0) i),
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and therefore
u(x,to+8h) = L(x) + u((xo)ﬁqin, to+d8h) — Zzo((xo)fnin) = EE‘O(X) (4.1)
for all x. Sinceu((xo)kin. to + 8h) = €% ((xo);), it follows that £7 (x) is a
supporting affine function fai (-, 1o + § h) atx = (xp)
We define the section

05 (zo) = {(x, 1) 1u(x, 1) < €5 (x) +handt < 10+ 5 h}, (4.2)
and notice that

h
min*

05 (z0) = Qn((x0)iny 10 + 8 1), (4.3)

that is, eachp; is a Q) given by (2.2) at another point withcoordinate slightly
larger tharrg. In the case wherg + 8 h > T, we replaceg + 3 h by T.

Remark 4.1 (Location of (xp)”.. ). We have tha((xo)”, .. 10) € Qm,s1(x0, o),

min min®
actually (xo)!',., € Smy s 1 (xolt0), where—u, < m.

Indeed, we write
u((x0) i 10) — Lzo((x0)ir)
= u((x0)in» 0) — U((X0)min: 10+ 8 h) + u((X0)in, 10 + 8 1) — L2 ((x0)hin)
< u((X0) in- 0) — u((x0) i f0 + 8 )
= u, (x0)"i, T (=8 h) < my8h.

We now recall the notion of normalization of the secti@p(xo, tp). Consider
Sh(xolt0) given by (2.3), and lef" be the affine transformation that normalizes
S (x0lt0), that is

By, (0) C T (Sh(xolt0)) C B1(0),
and define the transformation

t—1
Ty(x, 1) = <Tx, T) ,

with its corresponding inverse

T, 0, 8) = (T*ly, fo + s h) .
We let
v(y,5) = u(T, (v, $) = (T y, 1o+ s h).
If £(7x0.0)() is @ supporting affine function far(-, 0) aty = Txg, then we have
£(7x0,0(¥) = v(Tx0,0) + Dv(Tx0,0) - (y — Txp).

This follows from the fact thaDv(y, s) = (T~Y (Du)(T 1y, 10 + s h). If we
define

On(u; (x0,10)) = {(x, 1) 1 u(x, 1) < L, (x) + h andt < 1o},
then we have the following formula:
T, (On(u; (x0, t0))) = On(v; (T'xo, 0)).
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Lemma4.1. Thereexists§ > 0 sufficiently small depending only on m1, the lower
bound of u;, that isu; = —m1, such that

(1) if h < H, then Q7 (z0) C Q% (z0);
(2) On/2(z0) C Qj(z0)-

Proof. We begin with (1). Let(x, 7) € Qj(z0). Thenu(x,?) = €} (x) +h =
£,,(x) + A+ handr <19+ 5 h. Hence

u(x, 1) —£(x)

= u((x0) i 10 + 8 1) — Lo ((x0) i) + 1

< u(@o)in to+8h) — Loy (X)) +

= Uy ((X0)in. T) (h = H) § + h + u((x0) i t0 + 8 H) — £2((x0) fhin)-
Since—m1 < u, andh — H < 0, it follows that

u(x, 1) — Lyg(x) £ —my (h — H) 8 + h + u((xo) i, 1o + 8 H) — €55 ((x0) i)
If m18 < 1, then we obtain
u(x, 1) — Ly(x) < u((xo)in, 1o+ 8 H) — Lo((x0) ) + H.

Thereforeu(x, 1) < £2o(x)+u((x0) i t0+8 H)— Lo ((xo) i) +H = €5 (x)+H,
thatis,(x, 1) € 0%, (z0).
We now prove (2). Letx, 1) € Qn/2(z0). We haver < rg and
u(x, 1) — Ly (x) < h/2
= (1 — Lz0) (X0 in 10 + 8 1) — (u — L20) (XO)hins 0 + 8 1) +
(U — L20) (X0 in: 10) — (1t — £20) (X0)in- 10) + g
< (U — L) (X0 i f0 + 8 )
[ o) O 1081 — (4~ L) (Vi 0] +
< 4 L) (O 0+ 3H) Fmadh+

If we now choosé so thatm 8 < % we are done.

4.1. Engulfing property at different times

Consider Sy, (xolto) and let T be the affine transformation normalizing

San (x0lt0), and
r—1o
T,(x, 1) = (Tx, T) .

Let£;,(x) = u(xo, to) + Du(xo, to) - (x — xo) and the function

1
vy, ) = = (T Yy, 10+ s h).
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Then T, (Q2,(u; 20)) = Q2(v; (Txg, 0)) is normalized. We have mipv =
v(Tx0,0) =0,v=20nd,Q0 andC~1 < |y, | < C.
Letz1 = (x1,11) € Q1(v; (Txg, 0)), then
2

b ’ <_ <C
|[Dv(x1, f1)| = dist((x1, 11), 802(t1)) —

by [GH98, Theorem 2.1]. We claim that

S1(v; x1|t1) C Sg(v; xolt0).

Indeed, ifx € S1(v; x1|r1), thenv(x, r1) < v(x1, 1) + Dv(x1,11) - (x —x1) +1 <
2+ C = 0. Sincer; < fg andv(x, -) is monotonic irr, we havev(x, tg) < 6 and
hencex e Sy(v; xo|to) because the supporting hyperplane definfagv; xol70)
equals zero. Conversely, we show that

S1(v; xoltg) C Se(v; x1/t1).

Because, if € S1(v; xolfo) thenv(x, 1g) < 1, and sinc& 1 < |v;| < C, we have
v(x,t1) < C. Now £, (x)| = |v(x1,t1) + Dv(x1,11) - (x — x1)| < C1. Hence
(u—2;)(x,11) £C+C1=0andsax € Sy(v; x1)t1).

Lemma4.2. Letu besuchthatO < m1 < —u; < mpand0 < A < —u, detD?y <
A. Suppose that (x1, 1), (x2, t2) € Qp(u; zo). Then there exists 6 depending only
on the parameters such that

(1) Sn(x1lr) C Son(x2lr2),
(2) Sn(x2lt2) C Son(x1ltr).

Proof. It is enough to prove the lemma whé, t2) = (xo, 70). Normalize the
sectionQo;, (u; zo) as before. We have

Ty(x,t) = <Tx, ! ;t(’) = (", 1)
koo ko ok 1 =1, % _x
us(x, 1 )ZZ(M—EZO)(T,, (x", 17));
035(z8) = Ty Q21 (20), andQ7(z5) = T, On(z0). We havel' Sy (x1]t1) = S7(x7[t]).

By the inclusions previously proved we hawf(xi[t;) C S;(x§leg) and
SE(xg1tg) C Sy(xfley). TakingT 1 in these inclusions yields the lemma.

4.2. Engulfing property for parabolic sections
We now prove the engulfing property for the secti@jgzo).

Lemma 4.3 (Engulfing property. There existsa constant ¢+ > 1 such that for each
71 € 05(20), 0} (z0) C 0% ,(z1)-
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Proof. Letzy = (x1,11) € Q}(z0), With zo = (xo, f0), and recall (4.1), (4.2), and
(4.3). LetT be an invertible affine transformation to be chosen later,

t— 1
TP(X,I)=(Txy h 0>7

_ 1 * -1
v(y,s) = E(u — )T "y, 1o+ sh).

and

We have
T,(Q;(z0) = {(y,5) : v(y,s) < 1ands < 8}.

Consider,, (x) a supporting hyperplane fax., t1) atx = x1, and(xl)ﬁq’i’n the

point at which the minimum aof (x, t1 + 8 9 h) — £,,(x) is attained, where will
be chosen. We let

() = Lo (0) + u((D) i, 11+ 89 h) — £ ((x)).

We have
t—t
ux, ) — €,(x) = h v(Tx, TO) + 05, (0 — £, (%)
By definition of 0%, (see (4.2)) we have

1
Ty (@3 et 1) = {(.5) 00y 5) + 1€, (1) = £,(0) £ 0

nh—t
ands < %+8h}.

The inclusion in the lemma is equivalent to

Tp(Q;(z0) C Tp(Q(z1)), (4.4)

with T}, (z1) € T,(Qj} (z0)). To show (4.4), lety, s) € T,(Q} (z0)). We have

1 1
V(3. 9) + ST ™) — G, (T} S 1+ e (T = (T 7))

and we shall prove that the right-hand side of the last inequality is lesgithan
We write

e (T hy) — € (T7y)
= Lo (T7Yy) — £, (T7Yy) + u((x0) i 10 + 8 B) — €45 ((x0) i)
— ()P 1+ 89 h) — Ly ((x1)Ph ).

Sinceu; = —m1, we obtain

u((x)I 11+ 80 h) — Ly (k)20 2 —m1 80 h+u((x)I, 11) — £y ((x1)I0).
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Therefore
e (T hy)y — 25 (T71y)

< Loo(T7hy) — € (T7y) + u((x0) i, to + 8 1) — Lo ((X0)in)
+m189 h — u((xy) i, 11) + Ly (kDI

= Lo (T7hy) — Log ((x0)min) + Loy (D) — €2, (T 1y)
+ u((xo)min, to+68h) — u((xl)min, 1) +mi18dh

< Loo(T71y) — Lo (o)) + Co (kDO ) — €, (T 1y)
+ u((xo)min, 1) — u((Xl)min, ) +midvh

=A+B+C+mdh,

smceu((xo)mm, to+68h) < u((xo)mm, 1) because; < 19 + § h.
Now

= U (T Yy) — £, ((x0)i) = Du(xo, 10) - (T Ly — (x0)in),
=l ()21 ) — €, (T7Yy) = Du(x1, 1) - ((x)8 — T71y),
C = u((XO)min’ l) - M((.Xl)%]?n, tl) = DM(E, tl) . ((xo)mm (-xl)mm .

If at the beginning of the proof we subtract franthe supporting hyperplarfg, (x),
then we may assume thBiu (xg, 7o) = 0. By definition ofv it follows that

_ ¢ t—1o
Du(x,t)=hT Dv(Tx, —= )
We have
A=0,
B=TY DM(Xl, fl) (T((Xl)m.n -y

=h DU(TX]_, ) (T((xl)mm y)v

— T((x1)pmin))-

Let x,, be the point where the minimum af(-, 1) is attained. Then applying
repeatedly Lemma 4.2 we get

Smn(x0l10) C Somn(x1,1t1) C S(gy2prn (Xolt0)

for M = 1, (9 is the constant in Lemma 4.2). Now choosilg= C © andT an
affine transformation normalizingy,;, (xolto) we can boundv, and we find that
B £ LhandC £ L h. Therefore we get

-1 -1
e Ty — e (T7Yy) S2Lh +my 89 h.

If we chooses so thatmy 8 < 1/2 and theny such that 1+ 2L + %19 < ¢, we
obtain (4.4) and the proof of the engulfing property is complete.
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4.3. Shrinking property of parabolic sections

Proposition 4.1. Let Q be a normalized bowl-shaped domain in R"*1, and u a
parabolically convex functionin Q satisfying: » < —u, detD?y < AinQ,u >0,
mingu =0, —m1 S u; £ —mzin Q,andu = 10ond, Q. Then

(1) Hu(zo) < 1—e,thendist(zo, 3,0) = C ¢"t1, where C isaconstant depending
onlyonn,mgand A.
(2) If dist(zo, 9, Q) 2 ¢, thenu(zo) < 1 —moe.

Proof. We begin with the proof of (1). Let(x, r) = u(x,t) — 1. We haver <
—v, detD?v < A, ming v = —1 andv = 0 ond, Q. By application of [GH98,
Theorem 2.1] to the function we get

[v(xo, 10)|" T £ C(n, A) dist(xo, 3(Q(10))),

and sincev(xg, 1) < —e, we obtain distxo, 9(Q(10))) = C(n, A) "1, SinceQ
is bowl-shaped, we hav@(rg) C Q(¢) for r 2 g, and consequently

dist(xo, 3(Q(1))) = C(n, A) "t for t > 1.

ForO0<i1 —1t < cpe, we get

&
u(xo, 1) = u(xo,to) + micr1e < 1l—e+mpcre=1— >

by choosing:1 = 1/(2m1). Again from [GH98, Theorem 2.1] we obtain
dist(xo, d(Q(1))) = C(n, A) "™ fortg—cr1e <t <1o.

Nowletzy = (x1, 11) € 3, Q be suchthatdisto, 3,0) = |z0—z1|. If 11 > tg—c1 ¢,
then

lxo — x1| = dist(xo, 8(Q(t1))) = C &"*1.

If 11 < 10 — c1 &, then distzo, 3,Q) = 1o — 11 2 c1 €. Therefore in either case we
obtain the inequality disto, 3,Q0) = C(n, m1, A) e"+1,

We now prove (2). Letyqgy be the time such thato, thay) € 9, 0. We have
1o — thdy = dist(zo, 3, Q). Hence

u(xo, to) = u(xo, tody) — m2dist(zo, 3, Q) = 1 —mo dist(zp, 3,Q) < 1 —mye.

Lemma4.4. Letz ¢ Q7 (zo), and let T, be a parabolically affine transformation
normalizing O} (zo). Then there exist structural positive constants C and v such
that

Ty(Qf_ (@) N K (Ty(2), Ce”) = @

for 0 < ¢ < 1, where K(z, R) is the standard parabolic cylinder given by
K(z, R) = Br(x) x (t — R%,1 + R%]; z = (x, 1).
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Proof. With the notation of Lemma 4.3 and similarly to the proof of Lemma 4.1
we have

(U — o) (X EM 19 4+ 8(1— £)h) + (1 — e)h
< — L) ((xo) o 1o+ 81— )h) + (1 — e)h
< (u — L) ((x0)™i, 10+ 8h) 4 suplu,| Seh 4+ (1 — &)h

&
< (U = o) (x0)mins T0 + 8h) + (1 a E)h'
Hence
Q164 (20) C Qa—)n (X0)iyin: fo+ 81) N {r < 10+ 5(1 = e)h).

Let

fe.n = (s, =000

h

normalizingQy (z;) with z, = ((xo)"., to + 8h). Set

A

T,(Qn(n) = 010 Tp(Qa-gun) = 01-5(0);

and

o n 1 1A 1a
a6 = —u(T, Y&, 1) — €, (T710)).
To complete the proof of the lemma it is sufficient to show that
dist(901(0), 01-5(0) N {r < —£8)) = Cye”.
This follows from Proposition 4.1, item (1), because

dist(3, 01(0), Ql,%(O)) > Ce"t, and dist{t =0}, {t < —8}) = ¢5.

4.4, Sze of parabolic sections

Lemma4.b. Let Q;O(ZO) be a section and 7, a transformation that normalizesit.
If h < hoand Q7 (z") N Q}, (z0) # ¥, then | T}, ()| < M and

h\* B\ &2
K (Tp(Z’L €1 (h_o) ) CT,(Q;()) C K (Tp(z’), C2 <h_0) )

with M, C1, C2, &1 and & positive constants depending only on the structure; and
K (z, R) denotes the parabolic cylinder defined in Lemma 4.4.
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Proof. We can assumio = 1, Q7(z0) is already normalized anti, =identity.
Applying Lemma 4.3 three times we gélj(z') C Q;Z(zo)- Since Q7 (zo) is
normalized, it follows from Lemma 4.2 thgzﬁz(zo) is also normalized. We have
Iz/| £ M and
05(Z) = QN 1/ 4+ 8h) C Sy((hinlt’ + 8h) x (¢ — ch, t' + 8h]

C B C2.0 h2) x (t' — ch,t' +8h] by [GHOO, Theorem 2.3]

C B(x',2C h*2) x (t' — ch,t’ + 8h].

On the other hand,
Sen(X)t" — 8h) x (t' — 8h,t' + 8h) C Q}(2),

wheret is the minimum point ofi (-, t' —h). (ASSUMEL .y =0;c = 3/4

andé small.) Sincex” is minimum point ofu (-, t'), we have

oot/ +8h)

u(x',t' = 8h) Sux', 1)+ é8h S u(x,t') + ¢Sh < u(x,t' — 8h) + ¢8h.

Hencex' € Scy/2(X|t'—8h). From [GHOO, Theorem 2.4(i)] we g8, (x'|t'—8h) C
Sen (x]t’ — 8h). Therefore from [GHOO, Theorem 2.3] we obtain

B(x', Ch®Y) x (' — 8h, 1" + 8h] C Spn(x|t" — 8h) x (t' — 8h,t’ + 8h]
C 05(@).

Remark 4.2. More precisely, the first inclusion in Lemma 4.5 can be written as

h\*
K (Tp(z/), C1 (h_o> > N{t =T} C Tp(Q4()).

4.5. Second size property of sections

Lemma 4.6. Let Q1(zo) be a normalized section. There exist positive constants C
and p such that, if 0 < r < s < landz’ € Q,(z0), then 0, (z') C Qs(zo) for
h<C(s—r)P.

Proof. By Lemma 4.1(2), and Lemma 4.5 we get
On(@) C 03,(z)) C K(Z, Ch®™).
From [GH98, Theorem 2.1] we have

N —
|DM(Z)| = (l_r)n+l'

If z € Qn(z') then
u@ S uE@)+Du@) - (x—xY+h

<r+ Ch*+h<s (assumé_, = 0),

(1 _ r)"+l

wheni < (s — r) andh®t < (s — r)"*2. Thatis, 0 (z') C Qy(z0).
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4.6. Besicovitch type covering lemma

Lemma4.7. Let Q be a parabolic section and O c Q. Suppose that for each
z € O asection Q¥(z) isgiven so that r < M. Assume that the engulfing and
size properties hold (Lemmas 4.3, 4.4 and 4.5). Then we can choose a countable
subfamily {Q7, (zx)}7=, With the following properties:

(1) O C U2, 07, (zp);
(2) z ¢ Uj<kQ:/(Zj) for k = 2;

1
(3) 221 X0 oy, (@ = Co log E;
where x g denotes the characteristic function of the set E.

Proof. Itisthe same as the one given in [CG96] and [Hua99].

4.7. A Calderbn-Zygmund type decomposition

We now give a proposition needed in the proof of the Caldezygmund de-
composition.

Proposition 4.2. Thereexistsa positive constant C depending only on the structure
such that

104(20) \ Q(1-¢),(z0)| = C Ve Q] (201,

with0 < ¢ < 1.

Proof. Theinequality is affine invariant. We assume- 1 andQ7 (zo) normalized.
Let us also assume tha = O, 6((xo)1_ 5 = 0 and letsmin denote the minimum
min’

tin Q3(0) and(x, fmin) € 3Q;(0). Also letm(r) = min, u(x, 1) andx/;, be the
point where the minimum af (-, 7) is attained. We write

)
1050)\ 0}, (0)] < /8 o ISt Gl s

§(1—¢)
+/ 1S1—m () Xinlt) \ S1—e—m(t)+a Ximinl?) | dt
tmint++/€

min++/€
+/ |S1m(ey (il de =1+ 11+ 111,
1

min

where
o = Uiy (1= £)8) < ulxhin, (1= £)8) < supluy| 8 < .
We have
| < 8elSirbnlDI < Ce < 61050,
Also

NS Ve 1St (hinl )] < C Ve,
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with 1" = tmin 4+ /e. FOrt 2 tmin + /& we havem () < u(x,1) < u(x, tmin) +
ur (t — tmin) < 1 — C /e. Hence by [CG97, Lemma 5.20] we get

§(1—¢) . ,
< [ ISl \S e —a (clynl)] d
tmin+~/€ (1—1_—m(t))(1—rn(f))

/6(1—8) c—a ,
s N ———|S1—m() pinl D | dt
it vE | L—m(0) m(t) Amin

gc%:cﬁgcmgi(ml.

A

We conclude this section with the decomposition needed in the proof of the
W2? estimates.

Theorem 4.1. Let O bean open subset of asection 0,0 < § < 1small,andy > 0.
Suppose that for each z € O asection O} (z) isgivenwith 7, < y, and

10;.(2)NO|
0; @

Thenthereexistsafamily of parabolicsections{QZk (zx)}724 with thefollowing
properties:
QD zreOandh; < yforalk eN;
(2) O c U, 05, (z0);
3) 105,z N O| _

105, @0l

4) 101 = V51 U2, 0F, @)l

Proof. The theorem can be proved by combining Lemma 4.7 with Proposition 4.2
and using the technique in [CG96], see [Gut].

5. Approximation Theorem

Let (xg,10) € Q,0 > 0, and
Py (x,1) = o (|x — x0|? = (t = 10)) + p - (x — x0) + u(xo, 10).

If (xo0,20) € S C Q, then we say thai is touched from below by, in §
if u(x,t) 2 Ps(x,t) forall (x,1) € S. Notice that ifS = Q N {r = g}, then

p = Dxu(xo, 10).
Let us define the following sets:

Ay (1) = {(x0, to) : u is touched from below by, in 0 N {r < 10}},
and
Al (1) = {(xo, to) : u(x, to) is touched from below by, (x, rg)
in QN {t=1to}}. (5.2)
Notice thatd, C A%, and ifu; < —o in Q, then we also havd’ C A,.
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Theorem 5.1 (Approximation Theorem Let Q be a bowl-shaped domain in R*+1
such that

B5(0) x (=6%,0] C Q C B1(0) x (—1,0],
where Q = {(x,1) : ®(x,1) < 0,¢ < 0} with & parabolically convex.! Suppose

that 0 < ¢ < 1/2, and u is a parabolically convex function in Q, a classical
solution of

Q- < Mu<A4+e"  ing, (5.2)
u=0 0onod,0, (5.3)

and
—my S u; = —mp inQ, (5.4)

where m and m2 are positive constants.
LetO < o < 1 and set

Qaz{(x,t)eQ:u(x,t)<(l—a) innu}. (5.5)

Then there exist positive constantso > 0 and C,, depending only on the dimension
n and «, and both independent of Q (depending only on the bounds for the time
derivatives of the function ® defining Q), u and ¢ such that

Qo \ Ag | < ChelQal

Proof. By [GH98, Lemma 2.1] we hav€; < —mingu < Co. Let w be a
parabolically convex solution of

—w;detD’w =1 inQ, (5.6)
w=0 ono, 0.

We havew € C(Q) N C*®(Q). We use the following Comparison Principle: if
Mv 2 Muin Q, then

u(x,t) —v(x, 1) = ranigr;{u(x, 1) —v(x, 1)} forall (x,1) € Q,

see [WW93, Proposition 2.3]. In our casel((1+&)w) = Mu = M((1—e¢e)w)),
and so

QA+a)wsusA-9ow in Q0. (5.7)

Thus

1 w 1 .
(§+s>w§u—§§<§—8)w in Q. (5.8)

1 itis assumed here that, is bounded away from 0 andoo; see [WW92, Definition
3.1, p. 428 and Lemma 3.1]
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We havew < 0in Q, so
w

(%—ka)(—w)z u—E‘z(;—8>(—w) in Q.

Since Q is normalized, it follows again by [GH98, Lemma 2.1] thai <
|ming w| < C2 and consequentlg] < maxg |u — %w| < C.

Let I'(x, t) be the parabolic convex envelopeof- %w in O, see definition
(7.2).

Claim 1. For all (x, t) € Q we have the inequality

‘w(x,t)
2

—T(x, z)‘ < Cpe.

Indeed, by (5.8) and sinae is parabolically convex, we have

(% + 8) w(x,1) STx,t) < (% — 8) w(x,t) in Q,

and the claim follows.

Claim 2. Let D be abowl-shaped open and bounded domain,e C (D) parabol-
ically convex,u = v ond,D, andv < u in D. Then

that is, P, (D) \ E C P,(D) for some|E| = 0. Indeed, let(p, h) € P,(D).
Thent(x) = u(xo,t0) + p- (x — x0) < u(x,t) forall ¢t < g andx € D(1),
with (xo, 70) € D. Slide¢ in a parallel fashion in the direction efnegative until
it touches for the last time the graph of Say ¢ touchesv at (x1, 1), 11 < 1o.
Thent(xy) = v(x1, t1) = u(xo, f0) + p - (x1 — x0) and sop - x1 — v(x1, 1) =
p - xo —u(xg, to) = h. If (x1,11) € 3,D, thenv(xy, t1) = u(x1,11) = p-x1 — h.
Sinceu(x,t) 2 u(x1,t1) + p- (x —xp) forall t £ rgandx € D(r), it follows
that(p, h) € P,(x1,11). Thatis(p, h) € P,(x1, 1) N P,(xo, to), but if (xo, 10) #
(x1, 11), then this set of p, 1) has measure zero and the claim follows.

Sincew = 0 0ond, Q, it follows that

,P(%fs)w(Q) CPr(Q) C P(%+€)w(Q) ae.

By the results in Section 7, Corollary 7.1,
w
< et

MT < M(u 2)XC’ (5.9)

where

w(x,t) }

C=[(x,t)eQ:F(x,t):u(x,t)— :
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If (xo0, 70) € C, thenu — %w — I" attains its minimum O at the poifito, 70) and
hence

D? (u _ %) (x0.70) =0,  and (u _ %)I (x0.10) <0.  (5.10)
On the other hand, & = 0 andA = 0 is ann x n symmetric matrix then
(a detA)Y/ "+ (5.11)
= n_~|1-1 inf {tracg B A) +ba : b > 0, B > 0 symmetric withb detB = 1}.
Thus
((a1 + ap) det(A1 + A) YD > (a1 detAn)Y " + (ap detAy) /D

fora; =2 0 andA; = 0 symmetric; = 1, 2. Since%w is parabolically convex, it
follows using the previous inequality and (5.10) that

e 9 2 [ D) [ ()

for (x, t) € C. Consequently

[M(u = 2) o0 " < (utro, 01— M (2 (x0.10))
5(1+5)—%=%+87 (5.12)

an inequality valid for a.e. point i@. By Claim 2,|73(%_8)w(Q)| < |Pr(Q)|, and
from (5.9) and (5.12) we get

<— - 8) / Muw(x,t)dxdt < / MI(x,t)dxdr < (— + 8) IC].
2 0 c 2

This yields the estimate

|C|z<1 8) 1012 (1— C,e)lQl,
5+¢

NI

2
which implies
|0\ C| = CyelQl (5.13)
We now prove that there exists a universal constast O so that
0,NC C A,

We recall the following variant of a theorem due to Pogorelov, see [GH98,
Theorem 2.2].
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Theorem5.2. Let D C R™*1 be a bounded open bowl-shaped domain and v €
C (D) suchthat v isparabolically convexin D. Supposethat v isa smooth solution
of

—vy,detD>v =1 inD\ d,D, (5.14)
v(x,1) =0  for (x,1) € 9,D. (5.15)

Leta € R", |a| = 1,
1 2
w(x, 1) = [v(x, 1)| Daqv(x, t)e2 Pav@D)",

and M = maxg w(x, t). Thenthereexists P € D \ 3, D where the maximum M is
attained and the following inequality holds:

M < Cy (14| Dav(P)]) €2 PP,
with C,, a positive constant depending only on the dimension .
We apply this theorem to. Let$ > 0 and
Os(w) ={(x,1t) € Q : w(x,t) < —48}.

Notice that since O< & < 3, it follows from (5.7) that3 w < u < w and
consequently

Qs() C Qzs3(w)  and  Qs(w) C Qs/2(u). (5.16)
Arguing as in the proof of (3-7) and (3-8) of [GH98], we obtain
|IDxw(x, )| = C©)  for(x,1) € Os(w),

which implies that
| D w (x, 1)| < C'(8)

on the same set and for &dl| = 1. Thus
D?w(x,t) < MsI YV (x,1) € Qs(w). (5.17)

This estimate used together with the equation yields the following upper bound for
the time derivative ofv:

we(x, 1) = —C(8) (5.18)

for (x, 1) € Qs(w), with C(8) > 0. To obtain the lower estimate af; we invoke
[WW92, Lemma 3.3]. (Notice that this estimate depends on the time derivative of
the defining functiond.) Thus from (5.17) and (5.6) we obtain

D?w(x,1) = MjI  V(x,1) € Qs(w). (5.19)

Consequently, if(xg, 10) € Qs(w) by the convexity ofw, we then obtain the
estimate

w(x, 10) = w(xo, 0) + Dyw(xo, o) - (x — x0) + m |x — xo|?
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for all (x, 1p) € Q with m a positive constant depending only@ands. (Here we
use the Taylor polynomial of second orderwof-, zp) with the remainder written
in integral form and the convexity ab(., #p) together with (5.19) to obtain the
inequality valid in allQ(#9).)

Recall thatl'(x, 1) < u(x,t) — %w(x, t) for all (x,7) € Q. Sincel'(x, 1p) is
convex, let¢,, be a supporting hyperplane fbi(x, r9) atx = xp. Then

w(x, fo)
2

1 2
2 £y(0) + 5 (w(x0.10) + Dyw(x0. 10) - (x = x0) + m [x = xo)

u(x, to) Z Lyo(x) +

= Ppns2(x, t0)

forall x € Q(tp). For (xo, to) € C, we know thatP,, »(x, 10) touches:(x, fo) from
belowinQ(t). Sinceu; < —moin Q, if we takes = min{mo, %m}thenu, < —0.
Hence(xo, tp) € A% C Ay, thatis,Qs(w) NC C Ag.
Now taking into account (5.16) and choosifigo that%& is close to—(1 —
o) ming u we obtain
Ou\As C O\C.
Then by (5.13), and sind®, | and| Q| are comparable, we obtain the theorem.

6. W2P estimates

We prove herel? estimates of the second derivativesxirof is solutions to
Mu = f. This done in several steps. We first establish a strict convexity result,
Lemma 6.1. Second, we prove a density result, Proposition 6.1, for which the
approximation Theorem 5.1 is used. This density result, combined with the de-
composition Theorem 4.1 and once more the approximation Theorem 5.1, yields
the power decay, Proposition 6.2. Once this is done, we obit&ifi estimates on
parabolic sections, Theorem 6.1, that is with zero boundary data. Next, we use a
strict convexity result due to Caffarelli, Theorem 6.2, which coupled with Theo-
rem 3.1 yields a the strict convexity result in the parabolic case, Theorem 6.3. This
last result and Theorem 6.1 yield by means of a covering argument the main result
in the paper, Theorem 2.1.

Let u(x, t) be a parabolically convex function in the bowl-shaped dongain
with u = 0 ond,Q. Given 0 < « = 1, recall the definition (5.5). We have
Oy C Qpfor0 <o = B < 1. Givenzg = (xo,%0) € Q, let us keep in mind
definitions (2.1)—(2.3), (4.2), and (5.1).

We have the following strict convexity result which states that sections with
base points irQ,, are contained irQ for sufficiently small values of the parameter
h and independently of the base point.

Lemma 6.1. Let QO be a normalized bowl-shaped domain and «# a solutionto A <
Mu = AinQwithu =00nd,Q and0 < mp < —u; < mqin Q. Given
0 < a £ ag < 1thereexistsn, > O suchthat, if # < 5, and (xo, o) € O, then

On(x0, 10) C Q(ag+1)/2-
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Proof. It is by contradiction. Suppose there exist= (x;, ), u;, Q/ such that
zj € Qi 01/j(z)) & Qlo, Q7 is normalizedj. < Mu; < Ain 07,0 < mp <
—(uj), Smyin Q/,andu; = 00nd,Q’. Let(y;, s;) € Q1/;(zj) \ Quo- Then

. 1
1-w) ngljnuj = uj(yj,s5) = 4i(y) + 7

where(; is a supporting hyperplane faf atz;. Letting j — oo by compactness
we obtain a function:o, and a normalized convex doma@®> such thath <
Mitgo = AN 0%, 0 < mp £ —(ueo);r < myin 0%, andu = 0 0nd, 0.
Moreover,

1-a rglp Uoo = Uoo(Yoos So0) = Loo(Voo)s

wherel, is a supporting hyperplane fag, andzo, = (X0, S0) € Q5. Therefore
(Yoos $00)s Zoo € {Uoo = Loo}- If Soo # 1o, 1-€.,800 < txo, then since is decreasing

in t we haveu s (Yoo, 1) = Loo(Voo), TOr soo < t < too. This contradicts the fact
thatmy < —u, < mp. Sincec™ < detD%uno (-, 1) < ¢iN Q® N {1 = 150}, it
follows from CarrareLLI'S result, [Caf90b, Theorem 1], that no extremal points
of {use = £} can be inside the interior of the domain and therefore all must be
outsideQge N {f = 1o }. The pointr, Must be a convex combination of extremal
points, i.e.,.xoo = Zﬁ.‘zlki P withA; 20 ande.‘:l)Li =1, anduc(P;) =

(1 — ag) Minge us. Thus

k

(1= @) MiNtoo 2 too(¥oo) = loo(¥oo) = D Aittoo(Pi) Z (1~ er0) MiNutos,
o> P 0>

a contradiction.
Fori > 0 and O< a < og < 1, we define the set
D} = {(x0, t0) € Qu : Su(xolto) C B, s;(x0), forallh = no,
whereng = 1y, is the number in Lemma 6.1 correspondingrte- ag.

Lemma 6.2. Let u be a parabolically convex function on a bounded bowl-shaped
domain Q and O < ap < 1. There exists a constant C; > 0 depending only on «o
and max {diam(Q(¢))} such that

D = Qq ﬂAI/Az(M)
foralA =2 Ciand0 <o S ap < 1.

Proof. Supposezo = (xo,%0) € DY. Let £,,(x) be a supporting hyperplane to
u(-,to) atx = xg, i.e.,u(x,19) = £,(x) forallx € Q(ro). Letx € Q(r) and
w = u(x, 1) — £z(x), sOx € Sy (xolto). If © < no, thenS, (xolt0) C By sz(x0)
and

1
= x0l2 + L(x) < ulx, 10).
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On the other hand, ift = 5o, then

_ _,>__ M 2
u(x, fo) Ezo(x) "= dian‘(Q(to))2 |x — xol”.
If
1. 0
A2 = max{diam(Q(t))2}’
then

1
u(x, 10) = zo(x) 2 —5 | — xol*
and the inclusion follows, taking

_ max {diam(Q (1))}

C1
VAT

If (x0,10) € Qo N A’{/Az(u), then

1
u(x, 10) Z = |x = xol + €z (x)
forall x € Q(1o). Letx € S;,(xolto) andh < ng, thensSy, (xoltg) C Q(tp) and
1 2
F |x — xol +£zo(x) é u(x, o) < 2zo(x) +h

and sax € B, /i (x0).

Proposition 6.1. Let 0 < ¢ < 1/2, and u be a solution of (5.2)in the normalized
bowl -shaped domain Q satisfying (5.4). There exists a constant ¢ > 0 depending
only on n and o in Theorem 5.1 such that, if zo = (xo, f0) € Qu, and & < 1o/2,

then
[On(z0) \ Afoh(u)l
| O (z0)l

S Cye.

. 2
Moreover, if A = ——, then
co o

[On(z0) \ AT/A(MN <
|01 (z0)] -

né&

1
for h > —)\; (C,, isthe constant in the approximation Theorem 5.1).
o

Proof. Theidea ofthe proofistonormalizeandthen apply Theorem5.1. Consider
the elliptic sectionS, (xol|t0), h < no, and letT be the affine transformation that
normalizesSy, (xolto). That is,Bqy, (0) C T (Sp(xolt0)) C B1(0). We define

t—1p
Tp(x, 1) = (Tx, T) = (y,s).
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Then from the estimates fa;, see [GH98, Lemma 3.1], we have
(—&1, 0] x Bq, (0) C T (Qr(z0)) C (—&2,0] x B1(0),

whereeg1 andes are constants. Set

0} (z0) = T (Qn(20)) -

We haveT, (y,s) = (T~1y. 10+ h's). Let £, (x) be the affine function defining
01 (z0). We define

C
v, ) = o (106, 1) = b () = ),
whereC is a constant that will be determined in a moment. Let

W (y,8) = (T, My, ) =v(Ty, lo+hs).

We haveu?(y,s) = %h uz(Tp’l(y, s)), and

C
D2 (y,5) = o= (T™H' D) (T, v, )T,

Hence ;
c
detD?u*(y, s) = (;> |det7 Y2 detD%u(T, (v, 5)).

Consequently,

—ui(y,s) detDzu*(y, s)

ntl 1,2 1 2 1
= | detr (—ut(Tp_ (v.s)) detD?u(T; (y,s))).
We now choos& such that
n+1
o |detT 1% = 1. (6.1)

Sinceu satisfies (5.2), it follows that* satisfies

1—e)"t < —ur detD?u* < 1+ in Q0 (z0) (6.2)
w =0 ondQ;(zo). (6.3)

By the definition ofu*, we have mi@z(m) u* = —C. By properties of the elliptic
sections, see [GHOO, Proposition 1.1], we havéhr™/2 < |8, (xolto)| < ch™/?,
and hence 11="/2 < | detT| < ch~"/2. ThereforeC in (6.1) depends only om.
Applying Theorem 5.1 withQ — Q7 (z0), @« — B, andu — u*, we obtain

105,z \ AG _ _
T A% o = -ne h — OF i
1050l < Cye with 7,(Qpr(20)) = Qp(20)
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where A7 = A7 (u*) (notice that(Q}(z0))s = Tp(Qpn(z0) = Qf,(z0) and
Ay (u*) C AZ(u*)). We now show that there exist universal constants p < 1
andcg > 0 such that

7,7 (25120 N A% ) © Qpilzo) N Alyy @), (6.4)

Letz} = (1, 17) € 0%, (z0) N A} andz1 = (x1,11) = T, 'z} € Qp1(20). Since
73 € A}, we have
W (X, 1) — £ (x*) 2 o |x*F — xf)?

for all x* e Qj N {tf} with £*(x*) = ézl(T‘lx*) where{,, is a supporting
hyperplane fou (-, t1) atx = x3. Hence

Clulx, 1) —€5(x) —h)  Cly(x) — £y (x) — h) >

h h -

for x € Qy(z0) N {r1}. Therefore

|Tx — Tx1|?,

1 .
u(x, 1) = £ (¥) 2 o h|Tx — Tx1>  in Qu(z0) N {r).

By rotating the coordinates, we may assume that the ellipsoid of minimum volume
containingsSy, (xo|fo0) with center aty;,, the center of mass 6f, (xo/70) has axes on
the coordinate axes. That is,

1 n
X1 —X Xn — X
Tx= (k. ),
Mni Mn
wherepu; are the axes of the ellipsoid. Sin¢eis bounded, we have; < const,
and soul.‘1 > const. Therefor¢T'x — Tx1| = C’ |x — x1|. Consequently,

u(x, 1) — L) 2C ohlx—x1>  inQuzo)Nin}.  (6.5)
We now want to show that a similarinequality holdglm{z,}. Sincez1 € Qg1 (z0),
by the engulfing property Lemma 4.3, we ha@&,(z0) C Qgpgnr(z1). Again
by the engulfing propertyQs g1 (z1) C Qg24,,(z0), SO taking8 = 1/62 yields
Onse(z1) C Qn(zo) and consequently (6.5) holds i@/6(z1) N {t1}. Now, if
x & Onso(z1) N {r1}, thenu(x, ) — €, (x) = h/6, and sinceQ is normalized,
h > hC" o|x — x1/% Therefore(x1, 11) € A% (), and lettingco = Co we
obtain (6.4) with8 = 1/62.

Therefore (6.4) implies that

Qpn(20) \ Al () C T,H(QF (o) \ AY).
and consequently
10120 \ Ay ] _ 1T, (@5, o) \ ADI 105, Go) \Agl
101 (z0)] T T, Qo)) 1054 (z0)

né€

for h < no, which yields the first conclusion of the proposition.
To prove the second conclusion, notice that i u, thenA¥ C Aj,. Hence
Ajoh(u) C A“{/A(u) for 1/A < coh.
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We recall the definition oDY,
D§ = {(x0,10) € Qu : Su(x0lt0) C B, s;(x0) forall i < no};

here 0< a < ag < 1,1 > 0, andng > 0 is from Lemma 6.1 so thad, (xo, 10) C

O (ao+1)/2 fOr = no.
The following proposition gives the power decay needed for the proof of the
W?2P estimates.

Proposition 6.2 (Power decay Let 0 < ¢ < 1/2 and u be a solution satisfying
the hypotheses of Theorem 5.1. Set

(D) = Qu\ D}; (D) = 0:\ Dy, 0<7<a=ap
There exist positive constants M, pg and C2 such that
[(D}13)] £ V/Cue (D] (6.6)
forall A = Coanda — v = (MA)— 70,
Proof. By Lemma 6.2 we have

D}, = QN AT

l/(MA)Z(u) for M X 2 C1andt < ag.

SinceDj,, is closedO = (Dj,; )¢ is open and we obtain
O =Q:\Djy; =0:N (A”{/(Mk)z(u))"
for M A = C1 andt < ap. Consequently
O0n(z0) N O C Qu(zo) N Q- N (Ai/(m)z(u))” C On(zo) \ Ai/(m)z(u)-
Therefore by Proposition 6.1 we obtain

101(z0) N O] _ 1210\ A 452 ()]

|Qnr(z0)l [Qn(z0)l
for
M = maxiC 2 1 < h < no/2 €0
> , ) — 17, T <dap, >n> s .
Z 1 cono 0 M2 = =10 20 o

(6.7)

Let us now consider the sectio (xo, fo) defined by (4.2), and keep in mind
(4.3). Since the s&p is open, we have

10%(z0) N O
A 0. 6.8
10 0% z0)] “0€ ©8)

By Proposition 6.1 we have

10} (x0,10) VOl Q4 ((x0)hin: 0+ 81) N O

= <Cye,
|0} (x0, t0)| 1Qn ((x0) i, to + 8 )|
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with h satisfying (6.7), sincéxo, t0) € Q, implies that((xo),. 70 + 8h) €
O+1),2, See Remark 4.1, andl; § < no/2.
If O = Q. \ Dj,,,thenforz € O we choosé,, the largest such that

10;@ N0 _
0@~

Then by (6.7) and (6.8) we gét < 1/(M1)2. Applying Theorem 4.1 t@ with
y = 1/(M1»)?, ands = C, ¢, we obtain a family of sectiongD;; (zi)}p2y, 2k =
(Xk, 1), With g < 1/(M )2,

We shall prove that

né€.

05, (ks ) C (DY) = Qa \ Dy (6.9)
By Remark 4.1 and Lemma 4.6 we know thatif, #;) € O, then

() ine 1) € Omysn (i, k) C Oricemir C Qrymay—ro-

That is,QZk(xk, %) C Qryomay-ro- FOrt = a — (M1)~P° and since(x, t +
8hi) € Q, it follows that Qy, ((x)., 1) C Qo Wherer]! = 1 + Shy.

To complete the proof of (6.9) we proceed by contradiction. Suppose there
existszo = (xo, to) € O, ((xx)"in. 1) N DY By the engulfing property of elliptic
sections at different times, Lemma 4.2, we have

S () minlt) C Song (xolto) C By ygi (X0).

with zg € DY (6 hx = no by choosingV large). As in the proof of Proposition 6.1
we normalize the sectia$by, ((xo)™,1#8). Thatis,By, (0) C T (San, ((x)in 1)) C
B1(0), and letQ} = T}, (Qzn, ((x)™i, 1)) We set

C
u* = %(u — €= 2 (T M 1),

and we havel — &)™t < Mu* < (1 + &)1 in QF. By the approximation
Theorem 5.1 we then have

10172\ A%l < Cre (012l (6.10)
(notice that(Q})12 = T, (O, ((x)ins t1))). We now claim that
T, Y (012N A C DYy, for M large. (6.11)

Letz} = (xf,1}) € (Q)12NA} andzy = T, 2} = (x1, 11) € Oy (k)i 1))
Since (x7, 1) € A%, we haveu*(x*, 1}) — £*(x*) 2 o |x* — xI|2 and hence
SE(xf1ty) C B(xf, /h]o). Thereforel =1(S; (x5|t5)) € T~Y(B(x}, /h/o)) for
h < const, and consequently

Semn(xilty) € T7YB(}, Vh/o)) C B(x1, Ay/02hk /h[o),
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becausd dilates at leasti/02h;) 1 andT 1 contracts at least/62%;. Then
Sp(x1]t1) C B(x1, A/chjo) for h < consthy. If hy < h < 5o, then(xo, 1o),
(x1,11) € Qh((xk)’r’nin, t,?). By the engulfing property at different tim&g(x1|71) C
Son(xiltl) C Spz(xolio) C B, szz;(x0), sincezo € DY. Therefore(xy, 11) €
0. N DY, for someM large, and the proof of (6.11) is complete.

Therefore by Lemma 6.2,

Oy (i 1) N O = Oy ()i 1) N (Q7 \ D}y3)
C Oy (W) min: 1) \ Dl € T, (@172 \ AL,
and by (6.10) we obtain

10}, G 0 N O _ 1172\ A%
10), Gt = (@2l

which contradicts (3) in Theorem 4.1. This completes the proof of the power decay.

<Cye,

Theorem 6.1. Let Q beanormalized bowl-shaped bounded domainand let u satisfy
the hypothesis of Theorem 5.1. Then, given0 < p < coand0 < 7 < @ < o,
there exists e(p, ) > 0 such that

// Deeu(x, )P dxdt £ C
O

for all e] = 1and 0 < ¢ < e(p, ) with C a constant depending only on the
structure.

Proof. We iterate the inequality in Proposition 6.2. Notice that we can chabse
large so that the statement of Proposition 6.2 holds fok all M. We begin the
iteration withA = M and thereforgtr =)a; = « — (M?)~70 and we get

|Qa1\Dz,]12| é Vcnnga\Dzﬂ‘

Continuing in this way, we let = M* anday = o — Z}‘zl M~PoU+D obtaining

k
10, \ D% 0l S C (,/cne) fork=1,2,---.

We fix 7 < o and chooseM large so thaty = o — 372 M~U+Dro > 7 We

claim that if (xo, f0) € A% (u), thenu(x, t0) < C(n)o "1 |x — x0|? 4 £, (x)
for all x sufficiently close taxg. Indeed, we haves, (xolto) C B 575 (x0) and,
by properties of the elliptic sections;14"/2 < |, (xolt0)| < ch”/?. Applying
Aleksandrov’s maximum principle to the convex functiogx, 7o) — £;,(x) —h on
the setS), (xo|to) yields distxo, 3 Sk (xolto)) = o"/2 /hjo, and the claim follows.
Therefore, if(xo, tg) € A% (u), thenDe.u(xo, 10) < 2C(n) o "tLforanyle| = 1.

By Lemma 6.2, if(xo, tg) € D;“;’M, then (xo, t9) € Qg N AT/Mzaw (1) and so

Deett(x0, t0) < 2C(n) M2n—DG+D Therefore

D%y C{(x.1) € Qu; & Deett(x, 1) < 2C(n) M2 DHD Y
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Thus

||DeeM||€p(Qr)
< M20=DP 0.

o]

+ / Deou(x, )P dxdt
i—o {(x,t)eQr:MZ(”‘l)(i+1)<Dgeu(x,t)§M2(”‘1)(i+2)}

o0
SCM. na,7.p)+ Y 1Qa; \ DSy | M2 DETDP

i=0

o0
SCM.n,a,7,p)+ Cn) Y (JCpe) TEMPO—DEHIP < o0
i=0

for ¢ sufficiently small.

To complete the proof of th#2? estimates we need the following result due
to CAFFARELLI, See [Caf90b].

Theorem 6.2. Let u be a convex solution to

r<detb?sy <A ing, (6.12)
u=f on g, (6.13)

where @2  R" isaC1# normalized convexdomainand f € €1, withe > 1— 2.
Then for each 1 > O there exists § > 0 such that for xg € Q, = {x € Q :
dist(x, 9Q2) > h} we have

S(x0,8) = {x 1 u(x) < £yy(x) + 8} C Qpy2,
where § dependsonly on i, A, A, n, « and the C1 normsof f and €.
Now we are ready to prove the following result for the parabolic case.

Theorem 6.3. Letu beasolutionto Mu = f inthecylinder O = Q x (0, T'] with
u = ¢ on 3, Q. Suppose that
(1) By, (0) C 2 C B1(0), 32 € C1¥ withe > 1 — 2;

Q0<rZ fSA, feC(Q), fi e L"(Q) and exp(A(—f) ") € L1(Q) for
some A > O;
(3) ¢ € C>L(Q) satisfying —c2 S ¢ < —c1and C11 < D¢ < Co1in Q.

Then for each 1 > O there exists § > 0 such that for (xq,79) € Q5 x (h, T],
Qp = {x € Q : dist(x, Q) > h}, we have

Qs(x0,t0) ={(x,1) € Q tu(x, 1) < lyy(x)+38, =10} C Q2 x (h/2,T],

where § depends only on 2 and the parameters.
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Proof. By Theorem 3.1we getm; < u; £ —mo2in Q. Thereforaig(-) = u(-, tg)
satisfies (6.12) and by Theorem 6.2 there exéswich that, ifxg € Qy, then
Ss(xolto) = {x = u(x,t0) < £yy(x) 4+ 8} C Q2. Since—my < u; < —mpy, it
follows that Qs (xo, f0) C Ss(xolto) x (to — ¢ 8, to] C Q2 x (h/2, T].

We are now in a position to complete the proof of the main result in the paper.

Proof of Theorem 2.1(B). The proof will follow, combining Theorems 6.1 and
6.3. Letzg = (xo,70) € Qu x (h, T] and suppose that we have a sect@h =
0.(z0,8) C Qus2 x (h/2, T]such thaf f(z0) — f(z)| < ¢ for eachz = (x,1) €
0.(z0, 8). Taking § sufficiently small, by Theorem 6.3 we may assume that
0.(20,8) C /2 x (h/2, T]. Notice that since is normalized we have from the
size property of sections, Lemma 4.5, that

K (z0, K16%%) C Qu(zo,8) C K (zo, K28°?), (6.14)

with K;, ; being positive constants depending only\gm\ andn, andK (z, R) is
the standard parabolic cylinder defined in the statement of Lemma 4.4. het
an affine transformation normalizirgy (xo|zo),

t—1o
Tp(x,1) = (Tx, T)

as in the comment following remark (4.1), and consider the function

c
v = < (w(; e 0) = (T ) = )

wheref,, is the supporting hyperplane fax-, rp) atxg, andC is a constant that
will be determined in a moment. We look aton the setl},(Q,(zo, §)), and we
havev = 0 0nd7,(Q,(zo, 8)),

D%v(x,1) = % {(T—l)’ (Dfu)(Tp—l(x,t))T—l}, and
v (x, 1) = Cu (T, H(x, ).

Hence

crtl o (T )
3 |detT|”“ f(T, (xaf))—w

5"/(”+l) | detT|2/(n+1)

for € = —— iz Now f (z0) —e < f@) £ fzo) +eforz e Q7

Mou(x,t) =

and so
e ST
fzo) = f(zo) ~— f(zo)
for z € T,(Q°%). Sincef(z0) = A, it follows that

f(T;1)

i
A f(zo)

1-—

A
A

1+ forz € T,(0%).

> ™
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Then applying our result on the sEf(Q?) to the functiorw, we get
/ Deev(x, 1) dxdt = C(n, h, p)
(Tp(Q%))n

for each unit vectoe ande < ¢(p, h).
By the definition ofv, we have

2 8 t 2
Diu(x,1) = C T (D) (Tp(x, ) T,
and consequently
Deeu(x, 1) = (DZu(x, 1)e, e)

8 2 2 ’ro ) 2
=C |Te|” ((Dyv)(Tp(x, 1)) €', e) = ol [Te|” (Derev)(Tp(x, 1)),

with ¢/ = %. We have(T,(0%)), = T,((Q%);). Therefore
e

) P
/ Deou(x, )P dx dt = (—) |Te|?P f (Dyov)(2)? |detT| 18 dz
(0% c (@)

57T | Te)?
< feo)?" | —— 5
|detT |17 7

To estimate the term between parenthesesg, ket the ellipsoid of minimum volume
containingS;s (xo|fo), and letus, - - - , u,, be the axes oF. If § is small, then by
properties of elliptic sections we have1s"/2 < |Ss(xolt0)| < ¢8"/?, see [Gut].
The affine transformation that normaliz&gxo|zp) has the form

0 0
Tx = xl_xl,...,x"_x" ,
Mn1 MUn

where(xf, cee x,?) is the center of the ellipsoifl (the center of mass & (xo|70)).
We havec—1s7"/2 < |detT| < ¢67"/2, and from (6.14) it follows thaj,; >
K1 68°t. Hence

p
) C(h,n, p).

1 1
87Tt |Te?
2 1
|detT |7 1"

and consequently

1, n 1 n
g C |T€|2 (Sl+;+ﬂ g C81+;+Tp_281’

/(QS) Deeu(x, )P dx dt < C(r, A, n, h, p) sPHi+a=2pe1, (6.15)
h

We now choosé small depending only on the parameters\, 4 and the modulus
of continuity of f, so thatl f (zo) — f(2)| < ¢in K (zo, K28%?),z0 € @ x (h, T1],
and next select a finite covering &, x (h, T] by standard parabolic cylinders
{K(zj, K1 (3‘91)}]4":1 with z; € Q; x (h, T]. The desired inequality then follows by
adding (6.15) ove(Q(z;, §)).
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7. The parabalic convex envelope on a bowl-shaped domain

Let Q0 be a bowl-shaped domain iR*t1, andu e C(Q). We definethe
parabolic convex envelopes I', andI'} as follows. Given(xo, fo) € Q we let

Iy (x0, f0) = SUv(xo, f0) : v < u in Q with v € C(Q) and p-convex inQ};
I/ (xo, t0) = sup{v(xo, t0) : v < u, in Q N {r < 1o} (7.1)
with v continuous angh-convex inQ N {r < p}}.

The selC of contact points, or contact set, is given by
C={(x,1) € Q:ulx,t) =Ty, 1)
Lemma 7.1. The following equality holds:
r,=r? ino. (7.2)

Proof. We obviously have™, < T'? in Q. Given(xo, 1) € Q ande > 0, letv be
continuous angb-convex inQ N {t < o} such that < uin Q N {r < 1o} and

v(x0, f0) Z '\ (x0, f0) — €.
Sincev is p-convex there exists a supporting hyperplédggx) such that
loo(x) Svx, 1) inQN{t =1}, and Ly (xo) = v(xo, 10).

By continuity of £,, andu, there exist$ > 0 so thatl,,(x) — & < u(x,1) in
ONn{r <o+ 8} Let 0= a(r) £ 1 be a continuous and nonincreasing function
on (0, 1o + &) with a(#) = 1 on(0, 1p) anda (g + §) = 0. Set

w(x, 1) = at)(ly(x) —&) + (1 —a@)K,

whereK = min{ming (£, — &), ming u}. Itis easy to see that is continuous and
p-convex inQ, and satisfies

wSly—eSu inQN{r <1+ 6,
w=K<u inQn{t>ty+8}.

Hencew < u in Q. Therefore
T (x0, t0) = w(x0, t0) = £xy(x0) — & = v(x0, to) — & = '} (x0, 10) — 2e,
and (7.2) follows by letting — 0.

Lemma7.2. Letu € C>1(Q).If (xo, 10) € CN Q, thenthereexist o > 0, M > 0,
and p = Du(xo, to), depending only on u (bounded by the C21 normof u in Q),
such that

Ly, 1) S Dulro, 1)+ p- (v —x0) + M (Ix —xol +10—1)  (7.3)

forall (x,1) € B z5(x0) x (fo — €0, to] N Q.
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Proof. By the Taylor expansion,

u(x, 1) < u(xg, to) + u; (xo, 10)(t — to) + Du(xo, fo) - (x — x0)

+ 2(D%u(xo, 10)(x — x0), x — x0) + &(]x — x0> + 10 — 1)

asx — xp andr — t;, and fore small. Sincel', (x, 1) < u(x, 1) and(xo, 10) €
C N Q, the lemma follows.

Lemma 7.3. Assumeu € C%1(Q). Let (xo,70) € Q\Candlet L(x) =« + p - x
be a supporting hyperplane for ', (-, #p) at x = xo. Thenthereexistat most n + 1
points (x;, t;) € C such that

n+1

X0 = Z Ai Xi, (7.4)
i=1

where A; = 0, Z:lill)\, =14 < to, L(x;) = T'y(xi, ;) = u(x;, ;) and p =
Deu(xi, ti),i=1--- , n+1.

Proof. We havel", (xo, o) < u(xo, to). SinceL(x) is a supporting hyperplane for
I, (x, to) atxo, thenl, (x, fg) = L(x) forallx € Q N {t = 1o} andl, (xg, o) =
L(xp). We havel', (x, 1) = ', (x, to) forall (x, ) € QN {r < 1o}. Sinceu(x,t) =
'y (x, 1), it follows that

u(x,t) 2 L(x) forall (x,1) € 0N {tr < 1ol (7.5)
Let
H = {x : there exists such thai(x, 1) € 0 N {r < 1o} andu(x, 1) = L(x)}.

We haveH # @. Otherwise, by (7.5)u(x,1) > L(x) in Q N {r < 1o} and by
compactness(x, t) — L(x) = § > 0 on the same set and for sohe- 0. Hence
I'?(x,10) = L(x) + 8. Using (7.2) and letting = xo we get a contradiction. It is
clear that the sef! is closed.

Letz € H ands < g such thau(z, s) = L(z). Then(z, s) € C. Indeed,

M(x, t) 2 Fu(-xv t) z Flt(-xvt0) z L()C) fOI’ a” (x’ t) € Q m {t g to}a

and lettingx = z andt = s we obtainu(z, s) = ', (z, s).

Let Con(H) be the convex hull off. We claim thatg € Con(H). Assume by
contradiction thakg ¢ Con(H) and letN be a neighborhood of C@H ) andé(x)
an affine function such thd(xg) > 0 andé¢(x) < 0 in N. We have

min{u(x,t) — L(x) : (x,t) € QN{t S} \ N x [a, 0]} =8 > 0,

with a lower bound fors when (x, t) € Q. Hence, there exists > 0 such that
u(x,t) — L(x) = el(x) forall x ¢ N andr < rg. Therefore, by (7.5 (x, 1) =
L(x)+e&t(x)forall (x,7) € ON{r < 1o} and consequently, (x, 1) = L(x)+ecl(x)
on the same set. Sindg, (xg, 7g) = L(xg), we obtain a contradiction.
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Therefore by Cara#ddory’s theorem, see [Sch93, Theorem 1.1.3, p.3]

n+1

xXo = Z)»i Xi, (7.6)
i=1

wherex; = 0, Zj‘ill A = 1,andx; € H. Lets; < g be ther’s corresponding to
x;'s such that(x;, ;) € @ N{r < 1o} andu(x;, t;) = L(x;). We haveu(x;, ;) =
Lu(xi, i) 2 Tu(xis t0) 2 L(xi) = u(x;, ;), and sau(x;, ;) = Ty (xi, ;) = L(x;).
We also know thatl. is a supporting hyperplane far(-, ;) atx = x; fori =
1,---,n+ 1. Sinceu is regular,

L(x) € ulx, ;) = u(xi, ;) + Duxi, ;) - (x — x;) + o(|x — x;|%)

asx — x;.SinceL(x;) = a+p-x; = u(x;, t;),wegetL(x) = u(x;, t;)+p-(x—x;)
and so

p-(x—x) = Duxi. ) - (x — x;) + o(lx — x;|?), (7.7)
and the lemma follows.
Lemma7.4. Ifu € C(Q),thenT, € C(Q).
Proof. We know thatl",, is p-convex inQ. We claim that

Ii¢m [y (xo0, 1) = Ty (x0, 10), (xo0, 10) € Q. (7.8)
tlto

By monotonicityl", (xo, ) < T’y (xo, o) for ¢ = r9. Hence

lim T'y (xo, 1) = T (x0, f0).
tlto

To show the opposite inequality, given> 0 there exista € C(Q), p-convex,
so thatv < u in Q andv(xg, fp) + & = Ty (xp, fo). Sincev(xg, t) is continuous
and nonincreasing in there exist$ > 0 so that 0< v(xg, fg) — v(xo, 1) < ¢ for

to £t < 1o+ 8. Hencel', (xg, o) < v(xo, t) + 2¢, forrg <t < 19 + 8, and taking
the limit ast | 1g yields

Iy (xo0, t0) S Iinlinf Iy (x0, 1) + 2e.
tlto

Lettinge — O we obtain (7.8).

Let (xo,70) € {z € O : u(z) = I'y(z)}. We claim thatl",, is continuous at
(x0, fo). Notice that, by monotonicity, if < 1, thenT', (xo, 1) = T, (xo, o) and,
sincel’, (xo, #) IS nonincreasing, we get

lim Ty (xo, 1) 2 Ty (x0, f0). (7.9)
t1to

Sinceu € C(Q) and(xo, 1) € C, it follows that

lim Ty (x0, 1) S liminf u(xg, t) = u(xo, t0) = 'y (x0, fo).
t1to tto
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By (7.9) we then have

lim I, (xo, t) = I'y(xo, o). (7.10)
t1to

This combined with (7.8) yields

lim 'y (x0, 1) = 'y (x0, t0). (7.11)
1—1o

On the other hand, sindg, is bounded inQ and convex irx, it follows by [GHOO,
Lemma 1.1] thatT, (x1,7) — Ty(x2,1)| £ C|x1 — x2| for (x1,1), (x2,1) In a
neighborhood ofxo, 79). Therefore

ITy(x, 1) — Ty(x0, t0)| < |Tu(x, 1) — Cu(xo, )| + [Tu(x0, 1) — Ly(xo, f0)]
< C|x —xol + [Ty (xo, 1) — Ty(xo, f0)| = O

as(x,t) — (xo, to) by (7.11).

It remains to show thdf, is continuous whetixo, to) ¢ C. By subtractingL
from u we may assume thaix;, ;) = 0, and therefora (x;, t;) = ', (x;, ;) = 0.
(Notice that this implies thalf, (xo, 10) = 0.) Since (7.8) holds by reviewing the
previous argument, we notice that to prove the continuity'pfat (xo, ro) it is
enough to establish (7.10). Actually it is enough to show that

lim I, (xo, 1) £ Ty (x0, t0)-
1o

Casel. Supposéx;,t;) € Q,t; < fo. Then
lim T,(x;, 10— A1) < lim T,(x;, 1 — Ar)
At—0t At—0t

lim wu(x;, t; — At) = u(x;, t;) = 0.
At—0t

A

Case2. Supposdyx;,t;) € 9,0, 1; < to. For eache > 0 there existAx andh so
that|Ax| < ¢, |h| < eandsuchthaty; + Ax, t;+h) € Q andu(x; + Ax, t;+h) <
u(x;, t;) +& = &. Therefore

"mo+ Cu(xi +Ax,t0— At) ST, (xi + Ax, t; +h) Su(x; + Ax,t; +h) S e.
At—
Case 3. Supposdx;,t;) € 9,0, = to. For anye there exist§Ax;| < e such
that(x; + Ax;, tp) € Q andu(x; + Ax;, to) < u(x;, t;) + . Hence
lim T,(x; +Ax;, 10— Ar) £ lim u(x; + Ax;, tg — Atr)
At—0t At—0t
=u(x; + Ax;j, tg) < €.
Summing up: ifxg = Z:’:ll Mix;, then for eachx;, t;) we have

lim T, (x; + Ax;, to — At) < e,
At—0t
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with someAx; possibly equal to zero. Therefore

lim FM(Z 2t (i 4+ Axi), fo— At) <Y im P (i Axi o - An) S .
Since(xg, 1p) € Q, and allAx;, Ar are small, by convexity of, it follows from
[GHOO, Lemma 1.1] thaf", is locally Lipschitz inx with a Lipschitz constant
uniform inz. Hence

lim T, (xo.fo — At SK‘ A-Ax-(+ lim T (x 5 MAx. —At)
Al O+ u(O 0 )_ Z i i Ars O u\ X0 Z i i» 10

S(K+1De.

That is, lima;_, o+ T, (x0, 0 — At) = 0, and hencé,, is continuous atxo, o).

Proposition 7.1 (Regularity ofl',). Letu € C%1(Q), where Q is a bowl-shaped
domain, u = 0ond,Q,andu < 0in Q. Assume in addition that Q is defined by
0 ={(x,1): ®(x,t) <0, < T} where ® isp-convex, and that if ®(xg, 70) = 0,
then thereexist ¢ > 0 sothat @ (xg + Ax, 1o — At) < Ofor |Ax| < cAt.2 ThenT,
islocally in Wozél(Q) and MT, < xc Mu, where xc denotes the characteristic
function of the contact set C.

Proof. If (xg, t0) € CN Q, then the proposition follows from Lemma 7.2. Suppose
that (xg, f0) ¢ C. Let K € Q be compact such thatyg, 7p) € K, andL be a
supporting hyperplane as in Lemma 7.3 &nd ¢;) the corresponding points.

Sep 1. There exist a compadtyp € Q and a constant > 0, both depending

only onK andu, and at least oné;, 1;), say(x1, t1), such thaix1, t1) € Ko with
A1 = C. Indeed, let-6p = maxx u < 0, and takeKg € Q such that

%o in 0\ K
u>——- .
n+ 0

Since L(xg) = L(Z?jllx,-xi) = S5 Lx), we get—8o > u(xo. f0) =

L(xg) = Z;’jll A u(xi, ;). Hencedg < (n + 1) max A;|u(x;, t;)|, and assuming
the maximum is attained when= 1, we getso < (n + 1) Aq|u(x1, 11)]. If A1 £ 1
then

3o

u(xy, ) < ———,
(x1,11) = P}

that is(x1, 11) € Ko and consequently

3o

M2
1= (n 4+ 1) maxg |u|

2 This holds if for exampleb is Lipschitz in(x, ).
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Sep 2. The functionl, (x, 10) is C11in x.
Let Ax < dist(K, 3, Q). By (7.4), we write

Ax
Ly(xo+ Ax,10) =Ty | Y hixi+ A1 st =)o

i>1

Ax
= Z?»i Ly (xi, t0) + 21Ty <<X1 + A_) ,tl)

i>1

1
Ax Ax
< Z)»iL(x,’) + A1 (L <x1+ )»_1> +M‘X_1

i>1

2
) by Lemma 7.2

M o2
= L(xo+ Ax) + )»_le| .
1

Sep 3. The functionl", (xg, ¢) is Lipschitz inz, r < 1.
By assumption(x; + Ax;, to — At) € Q with |Ax| < CAt. From (7.4), we
have

r, (xo + Z)»,‘Axi, to — At) =TI, (Z Ai(x; + Axj), to — At)

l 1

< 3 h Tul(i + Ax), 10 — Ar)

1

<) M Tu((xi + Axp). 1 — Af)

1

<3k (LOy+ Ax) + M(Ax P + An)

1

<L <x0+Zx,-Axi> +C M At.

1

Onthe other hand, sin@g, is bounded irQ and convex i by [GHOO, Lemma 1.1]
we havel, (x1, 1) — Ty (x2, t)| £ C |x1— x| for (x1, 1), (x2, t) in a neighborhood
of (xo, f0). Therefore,

Fu(x0.10 = Af) S C| ) hiAxi|+ Lo+ Y | 4iAx;) + CMA:

1 1
< Lo+ Y AiAx) +2CM At < L(xo) + C' M At,
i
and Step 3 is proved.

Sep4. The functionrl', (x, fo) is affine in the simplex generated by }. In fact, let
x =) pix; with u; =2 0and)_ u; = 1. Sincel’, (x;, ;) = L(x;) and’, (x, t) =
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Iy (x, to) 2 L(x) for all x ands < g, we get

L) ST pixioto) £ ) wilu(xi i) = L(x),

and sol', (O~ wixi, to) = L(O_ nix;) which proves Step 4.
Consequently, deﬂ)fl“u (x, to) = 0 for x in the simplex generated Hy;} and
in particular forx = xg. This completes the proof of the proposition.

Remark 7.1. Let Q beasinProposition7.1,890 = {(x, t) : ®(x,t) = 0}. Then
I", is continuous up to the boundary gfandI’, = 0 ond, Q. Let (xo, o) € 9, Q.
Let At > 0 be small and(x) = D, ®(xas, fo + At) - (x — xa;)be a supporting
hyperplane forQ N {r = tg + At} with (xax, 70 + At) € 9, Q. ChooseK very
negative and > 0 small sothakK¢(x) —e < u(x, t) in QN{t < 1o+ At}. Hence
Kel(x) —e S Tu(x,1) Sulx,t)in QN{t < 1o+ At}. Fixing for a momentt
andxa;, sinced is Lipschitz we get

—K Clx —xa]l —& STy(x, 1) Sulx,t),
and now letting(x, t) — (xo, to) Yields

—KClxo—xpil—e < liminf T, (x,1) = 0.
(x,1)—> (x0,10)

Letting At — 0 we getxa; — xo and consequently

— < liminf  T,(x,t) £0,
(x,1)—(x0,10)

and sol", (xo, o) = 0.

Corollary 7.1. Let u € C(Q) N C*1(Q) withu = 0on 3,0, u < 0in Q, a
bowl -shaped domain whose defining function is Lipschitzin x. Then T, € C(Q)
andI', =00nd,Q and

MTy, < xe Mu,

where x¢ denotes the characteristic function of the contact set C.

Proof. The first part follows from the previous remark.
Let ¢ be a mollifier inR and

— e d
fox) = /ylglrb(y) ge(x = 5v) dv.

where

0 forx > —4¢/3,
4
ge(x) = 5<x+§) for —5¢/3 < x < —4¢/3,

X for x < —5¢/3.
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Then f, € C* and

0 forx > —¢,
fe(x) = 4+ for—-2¢ < x £ —s,
x forx < —2e.

Letu, = f.(u) — uin C(Q). TakeQ, 1 Q, whereQ, is a smooth bowl-shaped
domain such that, < 0 in a small neighborhood @, Q.. Thenu, € C%1(Q),
and applying Proposition 7.1 g yields

~/\/lrug,QS § Mu, X{ue=Tuz 0.1+

Sincel’y, 9, — T'u,0 andMu, = Mufor K € Q compact, we obtaiMTI, o <
Mu xu=r, o}-
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