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Abstract

Whenu is a solution to the equation−ut detD2
xu = f with f positive, contin-

uous, andft satisfying certain growth conditions, we establish estimates inL∞ for
ut and show thatD2

xu satisfies uniform interior estimates inLp for 0 < p <∞.

1. Introduction

The parabolic Monge-Amp`ere operator considered in this paper is

Mu = −ut detD2u, (1.1)

whereu = u(x, t) is convex inx and nonincreasing int , x ∈ R
n, t ∈ R, and

D2u = D2
xu denotes the Hessian ofu with respect to the variablex. This operator

is relevant in the study of deformation of surfaces by Gauss-Kronecker curvature
[Fir74,Tso85a], and in a maximum principle for parabolic equations [Tso85b].
Together with (1.1),Krylov [Kry76] introduced other parabolic versions of the el-
liptic Monge-Ampère operator, see [Lie96, pp. 406–416] for a complete description
and related results.

Our purpose in this paper is to establish that solutionsu to Mu = f with
f positive, continuous, andft satisfying certain growth conditions, have second
derivatives inLp for 0 < p < ∞. This is the main result in this paper and is
precisely stated in Section 2, Theorem 2.1. These types of interior estimates have
been recently established byCaffarelli [Caf90a] for the elliptic Monge-Amp`ere
equation detD2u = f , and therefore we extend Caffarelli’s result to the parabolic
case. The origin of these estimates goes back toPogorelov [Pog71], who proved
that convex solutions to detD2u = 1 on a bounded convex domain� with u = 0
on ∂� satisfy theL∞ estimate

C1(�
′, �) I � D2u(x) � C2(�

′, �) I, (1.2)
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for x ∈ �′, where�′ is a convex domain with closure contained in�, I is the
identity matrix, andCi are positive constants depending only on the domains.
The estimate (1.2) plays an important role in the fundamental estimates proved
by Caffarelli, and the crucial estimate that leads to (1.2) is that one can bound
the Hessian ofu by means of its gradient, [Pog71, Theorem 2]. In [GH98], the
parabolic analogue of [Pog71, Theorem 2] was used to establish a generalization
of a celebrated Theorem byCalabi [Cal58]. Such extension plays an important
role in the present paper, see Theorem 5.2 below. All these results use the recent
theory for cross-sections of solutions to the Monge-Amp`ere equation developed
in references [Caf90a,Caf91,CG97,CG96,GH00,Hua99,Gut]. One of the aims of
this paper is to extend several results of this theory to the parabolic setting and the
main difficulty for this extension is due to the presence of the time derivative in the
definition ofM. However, under some conditions on the right-hand side,f , we
prove thatut is bounded away from zero and−∞. This permit us to introduce an
appropriate notion of parabolic cross-section, defined by (4.2), that has properties
which lead to the desired result.

We mention thatC2+α,1+α/2 estimates for solutions toMu = f were obtained
in [WW92] whenf is Lipschitz continuous inx andt .

Throughout the paper we work with classical solutions but all the estimates are
independent of the smoothness and depend only on the structural constants.

Each section in the paper contains results that are interesting in themselves.
The organization is as follows. We begin in Section 2 introducing some notation,
definitions and the statement of the main result. In Section 3, we show that under
certain conditions onf , we can boundut in the interior of the domain by the
bounds for the data on the parabolic boundary. This holds, for example, ifft is
of bounded mean oscillation. Section 4 contains the proofs of the properties of
the parabolic cross-sections needed in Section 6. Section 5 contains the proof of
an approximation theorem crucial for the proof of theW2,p estimates. Section 6
contains the proof of theW2,p estimates. Finally, the appendix, Section 7, contains
the regularity properties of the parabolic convex envelope.

2. Notation, definitions and statement of the main result

If Q ⊂ R
n+1 andt ∈ R, then we define

Q(t) = {x : (x, t) ∈ Q}. (2.1)

Let Q ⊂ R
n+1 be a bounded set andt0 = inf {t : Q(t) �= ∅}. The parabolic

boundary of the bounded domainQ is defined by

∂pQ = (Q(t0)× {t0}
) ∪ ⋃

t∈R

(∂Q(t)× {t}) ,

whereQ denotes the closure ofQ and∂Q(t) denotes the boundary ofQ(t). We
say that the setQ ⊂ R

n+1 is abowl-shaped domain if Q(t) is convex for eacht
andQ(t1) ⊂ Q(t2) for t1 � t2.
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LetQ be a bowl-shaped domain inRn+1, andu ∈ C(Q). A functionu(x, t) is
parabolically convex in Q or p-convex if it is convex inx and nonincreasing int .

Givenz0 = (x0, t0) ∈ Q, �z0(x) is asupporting affine function, or supporting
hyperplane for u(·, t0) atx = x0, if �z0(x) = u(x0, t0)+p · (x−x0) andu(x, t0) �
�z0(x) for all x ∈ Q(t0). Whenu is regular we havep = Du(x0, t0).

Givenh > 0, we define

Qh(z0) = Qh(u; z0) = {(x, t) : u(x, t) � �z0(x)+ h andt � t0}, (2.2)

and

Sh(x0|t0) = Sh(u; x0|t0) = {x : u(x, t0) � �z0(x)+ h}. (2.3)

If Q ⊂ R
n+1 is an open bounded bowl-shaped domain andu : Q → R is

continuous, then theparabolic normal mapping of u is the set-valued function
Pu : Q→ {E : E ⊂ R

n+1} defined by

Pu(x0, t0) = {(p, h) : u(x, t) � u(x0, t0)+ p · (x − x0),

∀x ∈ Q(t),with t � t0, h = p · x0 − u(x0, t0)},
whereQ(t) = {x : (x, t) ∈ Q}. If E ⊂ Q, thenPu(E) = ∪(x,t)∈EPu(x, t).

Given a bounded convex domain� ⊂ R
n with non-empty interior, letE be the

ellipsoid of minimum volume containing� with center at the center of mass of�.
Then there exists an affine transformationT such thatBαn(0) ⊂ T (�) ⊂ B1(0)
with αn = n−3/2; see [Pog78, p. 90].

The main results in this paper can be summarized in the following theorem.
The proof of conclusion (A) is given in Section 3, Theorem 3.1; and the proof of
(B) is given at the end of Section 6.

Theorem 2.1. Let u be a parabolically convex solution to Mu = f in the cylinder
Q = �× (0, T ] with u = φ on ∂pQ. Suppose that

(1) Bαn(0) ⊂ � ⊂ B1(0) convex, ∂� ∈ C1,α with α > 1− 2
n

;
(2) 0< λ � f � !, f ∈ C(Q̄), ft ∈ Ln+1(Q), and exp(A(−ft )+) ∈ L1(Q) for

some A > 0; and
(3) φ ∈ C2,1(Q̄) satisfying−c2 � φt � −c1 andC1 I � D2φ � C2 I inQ, where

ci and Ci are positive constants, i = 1,2.

Then:

(A) There exist positive constants M1 and M2, depending only on the constants
above and ‖ft‖Ln+1(Q), such that

−M1 � ut � −M2, in Q.

(B) For each 0 < p <∞ and h > 0 we have∫∫
�h×(h,T ]

‖D2
xu(x, t)‖p dx dt � C,

where �h = {x ∈ � : dist(x, ∂�) > h}, and C is a constant that depends only
on p, h, T , and the parameters in (1), (2),and (3).
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3. Propagation of the bounds for ut from the boundary to the interior

Let�be a bounded convex domain inR
n,Q = �×(0, T ), andua parabolically

convex function solution to the problem:

−ut detD2u = f in Q, (3.1)

u = φ on ∂pQ. (3.2)

The main result of this section is Theorem 3.1.We first show that ifφt is bounded
on ∂pQ then the same is true forut . This implies, together with our assumptions
(3.5) and (3.6) onft , thatut is bounded away from zero and−∞ in the interior of
Q.

Lemma 3.1. Let φ be a function defined on Q̄ such that there exist negative con-
stants m1 and m2 so that

m1 � φt � m2 on ∂�× [0, T ]. (3.3)

Assume in addition that φ(x,0) is strictly convex in �, and 0 < λ � f (x, t) � !

in Q̄. Then there exist negative constants m′
1 and m′

2 depending only on m1,m2, λ

and ! such that, if u solves (3.1)and (3.2), then

m′
1 � ut � m′

2 on ∂pQ. (3.4)

Proof. We haveut = φt on ∂� × [0, T ]. Also u(x,0) = φ(x,0) on �̄ × {0}.
Hence detD2u(x,0) = detD2φ(x,0). Soλ1 � detD2u(x,0) � λ2 and, using
(3.1), we can complete the proof.

The following Theorem shows global bounds forut in Q. Notice that if, for
example,ft ∈ BMO, then conditions (3.5) and (3.6) hold.

Theorem 3.1. Assume the hypotheses of Lemma 3.1 and that there exist positive
constants A and B such that

ft ∈ Ln+1(Q) (3.5)∫∫
Q

eA(−ft )+ dx dt � B (a+ = max{a,0}). (3.6)

Then there exist negative constantsM1 andM2, depending only on the constants
above and ‖ft‖Ln+1(Q), such that

M1 � ut � M2 in Q. (3.7)

Proof. These inequalities will be proved by using auxiliary functions and the
following Aleksandrov-Bakelman-Pucci type maximum principle proved byTso
[Tso85b]: ifu is a smooth function defined on the cylinderQ, then

sup
Q

u � sup
∂pQ

u+ C

(∫∫
*(u)

|ut detD2u| dxdt
)1/(n+1)

, (3.8)



W2,p Estimates for the Parabolic Monge-Amp`ere Equation 141

whereC is a constant depending only onn, T and the diameter of�; and*(u) is
the set*(u) = {(x, t) ∈ Q : ut (x, t) � 0, andD2u(x, t) � 0}. We consider the
linearized parabolic Monge-Amp`ere operator associated withu and defined by

L(v) = − 1

ut
vt − trace

((
D2u

)−1
D2v

)
.

Differentiating (3.1) with respect tot yields

−(ut )t detD2u− ut trace
(
(D2u)−1 (detD2u)D2(ut )

)
= ft .

Consequently,L(ut ) = −ft

f
, and if we let

v(x, t) = (t +M)k ut (x, t), (3.9)

with M > 0, we then have

L(v) =
(
− k

M + t
− ft

f

)
(t +M)k. (3.10)

We first estimate the infQ ut . Applying (3.8) to−ut and noting that(ut )t � 0
andD2ut � 0 on*(−ut ), we get

inf
Q
ut − inf

∂pQ
ut

� −C
(∫∫

*(−ut )
−(ut )t detD2(ut ) dx dt

)1/(n+1)

= −C
(∫∫

*(−ut )
−(ut )t
−ut (detD2u)−1 detD2(ut ) f dx dt

)1/(n+1)

by (3.1)

� −C
(∫∫

Q

∣∣∣∣ (ut )tut
+ trace((D2u)−1D2(ut ))

∣∣∣∣
n+1

f dx dt

)1/(n+1)

by (5.11)

= −C
(∫∫

Q

|−L(ut )|n+1 f dx dt

)1/(n+1)

= −C
(∫∫

Q

∣∣∣∣ftf
∣∣∣∣
n+1

f dx dt

)1/(n+1)

� −C ‖ft‖Ln+1(Q),

and then from (3.4) the first inequality in (3.7) follows.
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We now estimate supQ ut .Applying (3.8) tov defined in (3.9), we get

sup
Q

v − sup
∂pQ

v

� C

(∫∫
*(v)

−(−v)t detD2(−v) dx dt
)1/(n+1)

= C

(∫∫
*(v)

− (−v)t
−ut

detD2(−v)
detD2u

f dx dt

)1/(n+1)

� C

(∫∫
*(v)

(
vt

−ut + trace((D2u)−1D2(−v))
)n+1

f dx dt

)1/(n+1)

� C

(∫∫
Q

(
(Lv)+

)n+1
f dx dt

)1/(n+1)

,

since*(v) ⊂ {(x, t) : L(v)(x, t) � 0}. Hence from (3.10) we obtain

sup
Q

v � sup
∂pQ

v

+ C


∫∫

Q

((
− k

M + t
− ft

f

)+)n+1

(t +M)k(n+1) f dx dt




1/(n+1)

� sup
∂pQ

v + C


∫∫

Q

((
− λ k

M + T
− ft

)+)n+1

dx dt




1/(n+1)

(T +M)k.

We have∫∫
Q

((
− λ k

M + T
− ft

)+)n+1

dxdt

=
∞∑
j=0

∫∫
(j+1) λk

M+T �−ft<(j+2) λk
M+T

((
− λ k

M + T
− ft

)+)n+1

dxdt

�
∞∑
j=0

(
(j + 1)

λ k

M + T

)n+1 ∣∣∣∣
{
(x, t) ∈ Q : −ft (x, t) > (j + 1)

λk

M + T

}∣∣∣∣
�

∞∑
j=0

(
(j + 1)

λ k

M + T

)n+1
B

eA(j+1) λ k
M+T

by (3.6)

� C e−A
λk

M+T
(

λk

M + T

)n+1

if
Aλk

M + T
� 1 withC = α B, whereα is a universal constant. From (3.4) and (3.9)

it then follows that

sup
Q

ut � −C0

(
1+ T

M

)−k
+ C

λk

M + T
e
−k Aλ

(M+T )(n+1)
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for k � M+T
Aλ

with C0 > 0, and withC depending only onn,diam(�), λ,!,A,
andB. Now letM = 1. If T � T0 = min{1, Aλ

4(n+1) }, we then have

sup
Q

ut � −C0 (1+ T )−k
(

1− C

C0

λk

(1+ T )
e
−k Aλ

(1+T )(n+1)+k ln(1+T )
)

(3.11)

� −C0 (1+ T )−k
(

1− Cλk

C0(1+ T )
e
−k Aλ

(1+T )(n+1)+kT
)

� −C0 (1+ T )−k
(

1− Cλk

C0
e
−k Aλ

4(n+1)

)
� −C1

for k large depending only onC,C0, A, λ, n, andT0.
For generalT , we cutQ = �×(0, T ) into a stack of thin slicesQ =⋃N

i=0�×
(iT0, (i + 1)T0] with N � T/T0 � N + 1, and apply (3.11) on each slice. Indeed,
applying (3.11) tou(x, t + T0) yields sup�×(T0,2T0] ut � −C2. Continuing in this
way, sup�×((N−1)T0,NT0] ut � −CN. Therefore the estimate forut in Q follows.

To establish theLp estimates ofD2
xu from now onwards we may assume, by

Theorem 3.1, thatm1 < −ut < m2.

4. Properties of the parabolic sections

Our purpose here is to define a notion of parabolic section that is suitable for
establishing theW2,p estimates. We could attempt to take as a notion of parabolic
section ofu the one given by (2.2). But the problem with the setsQh(z0) is that
they do not satisfy the engulfing property of Lemma 4.3 and the shrinking property
given in Lemma 4.4, and therefore, the type of decomposition given by Theorem 4.1
might fail to hold in terms of those sets. This can be fixed by introducing a new
definition of parabolic section given by (4.2). These new sections are monotone in
h, and satisfy the geometric properties needed to establish a Calder´on-Zygmund
type decomposition, Theorem 4.1, that will be crucial in Section 6 when we prove
the power decay given by Proposition 6.2.

Letδ > 0 be a small number that will be chosen in a moment. Let us consider the
time t0 + δ h. Sinceu(x, t) is nonincreasing int we haveu(x, t0 + δ h) � u(x, t0)

for all x. Let us look at the set

S = {x : u(x, t0 + δ h) � �z0(x)}.
This set is non-empty becausex0 ∈ S. Consider

0 = min
x
{u(x, t0 + δ h)− �z0(x)}.

Notice that0 � 0. Let(x0)
h
min be the point where the minimum is attained, that is,

0 = u((x0)
h
min, t0 + δ h)− �z0((x0)

h
min),
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and therefore

u(x, t0 + δ h) � �z0(x)+ u((x0)
h
min, t0 + δ h)− �z0((x0)

h
min) := �∗z0

(x) (4.1)

for all x. Sinceu((x0)
h
min, t0 + δ h) = �∗z0

((x0)
h
min), it follows that �∗z0

(x) is a
supporting affine function foru(·, t0 + δ h) atx = (x0)

h
min.

We define the section

Q∗
h(z0) = {(x, t) : u(x, t) � �∗z0

(x)+ h andt � t0 + δ h}, (4.2)

and notice that

Q∗
h(z0) = Qh((x0)

h
min, t0 + δ h), (4.3)

that is, eachQ∗
h is aQh given by (2.2) at another point witht coordinate slightly

larger thant0. In the case wheret0 + δ h > T , we replacet0 + δ h by T .

Remark 4.1 (Location of (x0)
h
min). We have that((x0)

h
min, t0) ∈ Qm1 δ h(x0, t0),

actually(x0)
h
min ∈ Sm1 δ h(x0|t0), where−ut � m1.

Indeed, we write

u((x0)
h
min, t0)− �z0((x0)

h
min)

= u((x0)
h
min, t0)− u((x0)

h
min, t0 + δ h)+ u((x0)

h
min, t0 + δ h)− �z0((x0)

h
min)

� u((x0)
h
min, t0)− u((x0)

h
min, t0 + δ h)

= ut ((x0)
h
min, τ )(−δ h) � m1 δ h.

We now recall the notion of normalization of the sectionQh(x0, t0). Consider
Sh(x0|t0) given by (2.3), and letT be the affine transformation that normalizes
Sh(x0|t0), that is

Bαn(0) ⊂ T (Sh(x0|t0)) ⊂ B1(0),

and define the transformation

Tp(x, t) =
(
T x,

t − t0

h

)
,

with its corresponding inverse

T −1
p (y, s) =

(
T −1y, t0 + s h

)
.

We let
v(y, s) = u(T −1

p (y, s)) = u(T −1y, t0 + s h).

If �̄(T x0,0)(y) is a supporting affine function forv(·,0) aty = T x0, then we have

�̄(T x0,0)(y) = v(T x0,0)+Dv(T x0,0) · (y − T x0).

This follows from the fact thatDv(y, s) = (T −1)t (Du)(T −1y, t0 + s h). If we
define

Qh(u; (x0, t0)) = {(x, t) : u(x, t) � �z0(x)+ h andt � t0},
then we have the following formula:

Tp (Qh(u; (x0, t0))) = Qh(v; (T x0,0)).
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Lemma 4.1. There exists δ > 0 sufficiently small depending only on m1, the lower
bound of ut , that is ut � −m1, such that

(1) if h � H , then Q∗
h(z0) ⊂ Q∗

H (z0);
(2) Qh/2(z0) ⊂ Q∗

h(z0).

Proof. We begin with (1). Let(x, t) ∈ Q∗
h(z0). Thenu(x, t) � �∗z0

(x) + h =
�z0(x)+0+ h andt � t0 + δ h. Hence

u(x, t)− �z0(x)

= u((x0)
h
min, t0 + δ h)− �z0((x0)

h
min)+ h

� u((x0)
H
min, t0 + δ h)− �z0((x0)

H
min)+ h

= ut ((x0)
H
min, τ ) (h−H) δ + h+ u((x0)

H
min, t0 + δ H)− �z0((x0)

H
min).

Since−m1 � ut andh−H < 0, it follows that

u(x, t)− �z0(x) � −m1 (h−H) δ + h+ u((x0)
H
min, t0 + δ H)− �z0((x0)

H
min).

If m1 δ � 1, then we obtain

u(x, t)− �z0(x) � u((x0)
H
min, t0 + δ H)− �z0((x0)

H
min)+H.

Thereforeu(x, t) � �z0(x)+u((x0)
H
min, t0+δ H)−�z0((x0)

H
min)+H = �∗∗z0

(x)+H,

that is,(x, t) ∈ Q∗
H (z0).

We now prove (2). Let(x, t) ∈ Qh/2(z0). We havet � t0 and

u(x, t)− �z0(x) � h/2

= (u− �z0)((x0)
h
min, t0 + δ h)− (u− �z0)((x0)

h
min, t0 + δ h)+

(u− �z0)((x0)
h
min, t0)− (u− �z0)((x0)

h
min, t0)+

h

2
� (u− �z0)((x0)

h
min, t0 + δ h)

−
[
(u− �z0)((x0)

h
min, t0 + δ h)− (u− �z0)((x0)

h
min, t0)

]
+ h

2

� (u− �z0)((x0)
h
min, t0 + δ h)+m1 δ h+ h

2
.

If we now chooseδ so thatm1 δ <
1
2, we are done.

4.1. Engulfing property at different times

Consider S2h(x0|t0) and let T be the affine transformation normalizing
S2h(x0|t0), and

Tp(x, t) =
(
T x,

t − t0

h

)
.

Let �z0(x) = u(x0, t0)+Du(x0, t0) · (x − x0) and the function

v(y, s) = 1

h
(u− �z0)(T

−1y, t0 + s h).
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Then Tp (Q2h(u; z0)) = Q2(v; (T x0,0)) is normalized. We have minQ2 v =
v(T x0,0) = 0, v = 2 on∂pQ andC−1 � |vt | � C.

Let z1 = (x1, t1) ∈ Q1(v; (T x0,0)), then

|Dv(x1, t1)| � 2

dist((x1, t1), ∂Q2(t1))
� C

by [GH98, Theorem 2.1]. We claim that

S1(v; x1|t1) ⊂ Sθ (v; x0|t0).
Indeed, ifx ∈ S1(v; x1|t1), thenv(x, t1) � v(x1, t1)+Dv(x1, t1) · (x− x1)+ 1 �
2+ C = θ . Sincet1 < t0 andv(x, ·) is monotonic int , we havev(x, t0) � θ and
hencex ∈ Sθ (v; x0|t0) because the supporting hyperplane definingSθ (v; x0|t0)
equals zero. Conversely, we show that

S1(v; x0|t0) ⊂ Sθ (v; x1|t1).
Because, ifx ∈ S1(v; x0|t0) thenv(x, t0) < 1, and sinceC−1 � |vt | � C, we have
v(x, t1) < C. Now |�z1(x)| = |v(x1, t1) + Dv(x1, t1) · (x − x1)| � C1. Hence
(u− �z1)(x, t1) � C + C1 = θ and sox ∈ Sθ (v; x1|t1).
Lemma 4.2. Letu be such that 0 < m1 � −ut � m2 and 0 < λ � −ut detD2u �
!. Suppose that (x1, t1), (x2, t2) ∈ Qh(u; z0). Then there exists θ depending only
on the parameters such that

(1) Sh(x1|t1) ⊂ Sθh(x2|t2),
(2) Sh(x2|t2) ⊂ Sθh(x1|t1).
Proof. It is enough to prove the lemma when(x2, t2) = (x0, t0). Normalize the
sectionQ2h(u; z0) as before. We have

Tp(x, t) =
(
T x,

t − t0

h

)
= (x∗, t∗);

u∗(x∗, t∗) = 1

h
(u− �z0)(T

−1
p (x∗, t∗));

Q∗
2(z

∗
0) = TpQ2h(z0), andQ∗

1(z
∗
0) = TpQh(z0).We haveT Sh(x1|t1) = S∗1(x∗1|t∗1 ).

By the inclusions previously proved we haveS∗1(x∗1|t∗1 ) ⊂ S∗θ (x∗0|t∗0 ) and
S∗1(x∗0|t∗0 ) ⊂ S∗θ (x∗1|t∗1 ). TakingT −1 in these inclusions yields the lemma.

4.2. Engulfing property for parabolic sections

We now prove the engulfing property for the sectionsQ∗
h(z0).

Lemma 4.3 (Engulfing property). There exists a constant ϑ > 1 such that for each
z1 ∈ Q∗

h(z0), Q∗
h(z0) ⊂ Q∗

ϑ h(z1).
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Proof. Let z1 = (x1, t1) ∈ Q∗
h(z0), with z0 = (x0, t0), and recall (4.1), (4.2), and

(4.3). LetT be an invertible affine transformation to be chosen later,

Tp(x, t) =
(
T x,

t − t0

h

)
,

and

v(y, s) = 1

h
(u− �∗z0

)(T −1y, t0 + sh).

We have
Tp(Q

∗
h(z0)) = {(y, s) : v(y, s) � 1 ands � δ}.

Consider�z1(x) a supporting hyperplane foru(·, t1) atx = x1, and(x1)
ϑh
min the

point at which the minimum ofu(x, t1 + δ ϑ h)− �z1(x) is attained, whereϑ will
be chosen. We let

�∗z1
(x) = �z1(x)+ u((x1)

ϑh
min, t1 + δ ϑ h)− �z1((x1)

ϑh
min).

We have

u(x, t)− �∗z1
(x) = h v

(
T x,

t − t0

h

)
+ �∗z0

(x)− �∗z1
(x).

By definition ofQ∗
ϑh (see (4.2)) we have

Tp(Q
∗
ϑh(x1, t1)) =

{
(y, s) : v(y, s)+ 1

h
{�∗z0

(x)− �∗z1
(x)} � ϑ

ands � t1 − t0

h
+ δh

}
.

The inclusion in the lemma is equivalent to

Tp(Q
∗
h(z0)) ⊂ Tp(Q

∗
ϑh(z1)), (4.4)

with Tp(z1) ∈ Tp(Q
∗
h(z0)). To show (4.4), let(y, s) ∈ Tp(Q

∗
h(z0)). We have

v(y, s)+ 1

h
{�∗z0

(T −1y)− �∗z1
(T −1y)} � 1+ 1

h
{�∗z0

(T −1y)− �∗z1
(T −1y)},

and we shall prove that the right-hand side of the last inequality is less thanϑ .
We write

�∗z0
(T −1y)− �∗z1

(T −1y)

= �z0(T
−1y)− �z1(T

−1y)+ u((x0)
h
min, t0 + δ h)− �z0((x0)

h
min)

− {u((x1)
ϑh
min, t1 + δ ϑ h)− �z1((x1)

ϑh
min)}.

Sinceut � −m1, we obtain

u((x1)
ϑh
min, t1+ δ ϑ h)− �z1((x1)

ϑh
min) � −m1 δ ϑ h+u((x1)

ϑh
min, t1)− �z1((x1)

ϑh
min).
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Therefore

�∗z0
(T −1y)− �∗z1

(T −1y)

� �z0(T
−1y)− �z1(T

−1y)+ u((x0)
h
min, t0 + δ h)− �z0((x0)

h
min)

+m1 δ ϑ h− u((x1)
ϑh
min, t1)+ �z1((x1)

ϑh
min)

= �z0(T
−1y)− �z0((x0)

h
min)+ �z1((x1)

ϑh
min)− �z1(T

−1y)

+ u((x0)
h
min, t0 + δ h)− u((x1)

ϑh
min, t1)+m1 δ ϑ h

� �z0(T
−1y)− �z0((x0)

h
min)+ �z1((x1)

ϑh
min)− �z1(T

−1y)

+ u((x0)
h
min, t1)− u((x1)

ϑh
min, t1)+m1 δ ϑ h

= A+ B + C +m1 δ ϑ h,

sinceu((x0)
h
min, t0 + δ h) � u((x0)

h
min, t1) becauset1 � t0 + δ h.

Now

A = �z0(T
−1y)− �z0((x0)

h
min) = Du(x0, t0) · (T −1y − (x0)

h
min),

B = �z1((x1)
ϑh
min)− �z1(T

−1y) = Du(x1, t1) · ((x1)
ϑh
min − T −1y),

C = u((x0)
h
min, t1)− u((x1)

ϑh
min, t1) = Du(ξ, t1) · ((x0)

h
min − (x1)

ϑh
min).

If at the beginning of the proof we subtract fromu the supporting hyperplane�z0(x),
then we may assume thatDu(x0, t0) = 0. By definition ofv it follows that

Du(x, t) = h T tDv
(
T x,

t − t0

h

)
.

We have

A = 0,

B = (T −1)tDu(x1, t1) · (T ((x1)
ϑh
min)− y)

= hDv(T x1,
t1 − t0

h
) · (T ((x1)

ϑh
min)− y),

C = hDv(T ξ,
t1 − t0

h
) · (T ((x0)

h
min)− T ((x1)

ϑh
min)).

Let xt1 be the point where the minimum ofu(·, t1) is attained. Then applying
repeatedly Lemma 4.2 we get

SMh(x0|t0) ⊂ SθMh(xt1|t1) ⊂ S(θ)2Mh(x0|t0)
for M � 1, (θ is the constant in Lemma 4.2). Now choosingM = C ϑ andT an
affine transformation normalizingSMh(x0|t0) we can boundDv, and we find that
B � Lh andC � Lh. Therefore we get

�∗z0
(T −1y)− �∗z1

(T −1y) � 2Lh+m1 δ ϑ h.

If we chooseδ so thatm1 δ � 1/2 and thenϑ such that 1+ 2L + 1
2ϑ � ϑ , we

obtain (4.4) and the proof of the engulfing property is complete.
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4.3. Shrinking property of parabolic sections

Proposition 4.1. Let Q be a normalized bowl-shaped domain in R
n+1, and u a

parabolically convex function inQ satisfying: λ � −ut detD2u � ! inQ, u � 0,
minQ u = 0, −m1 � ut � −m2 in Q, and u = 1 on ∂pQ. Then

(1) If u(z0) < 1−ε, then dist(z0, ∂pQ) � C εn+1, whereC is a constant depending
only on n,m1 and !.

(2) If dist(z0, ∂pQ) � ε, then u(z0) � 1−m2 ε.

Proof. We begin with the proof of (1). Letv(x, t) = u(x, t) − 1. We haveλ �
−vt detD2v � !, minQ v = −1 andv = 0 on∂pQ. By application of [GH98,
Theorem 2.1] to the functionv we get

|v(x0, t0)|n+1 � C(n,!)dist(x0, ∂(Q(t0))),

and sincev(x0, t0) � −ε, we obtain dist(x0, ∂(Q(t0))) � C(n,!) εn+1. SinceQ
is bowl-shaped, we haveQ(t0) ⊂ Q(t) for t � t0, and consequently

dist(x0, ∂(Q(t))) � C(n,!) εn+1 for t � t0.

For 0� t0 − t � c1 ε, we get

u(x0, t) � u(x0, t0)+m1 c1 ε � 1− ε +m1 c1 ε = 1− ε

2
,

by choosingc1 = 1/(2m1). Again from [GH98, Theorem 2.1] we obtain

dist(x0, ∂(Q(t))) � C(n,!) εn+1 for t0 − c1 ε � t � t0.

Now letz1 = (x1, t1) ∈ ∂pQbe such that dist(z0, ∂pQ) = |z0−z1|. If t1 > t0−c1 ε,
then

|x0 − x1| � dist(x0, ∂(Q(t1))) � C εn+1.

If t1 < t0 − c1 ε, then dist(z0, ∂pQ) � t0 − t1 � c1 ε. Therefore in either case we
obtain the inequality dist(z0, ∂pQ) � C(n,m1,!) ε

n+1.
We now prove (2). Lettbdy be the time such that(x0, tbdy) ∈ ∂pQ. We have

t0 − tbdy � dist(z0, ∂pQ). Hence

u(x0, t0) � u(x0, tbdy)−m2 dist(z0, ∂pQ) = 1−m2 dist(z0, ∂pQ) � 1−m2 ε.

Lemma 4.4. Let z /∈ Q∗
h(z0), and let Tp be a parabolically affine transformation

normalizing Q∗
h(z0). Then there exist structural positive constants C and ν such

that

Tp(Q
∗
(1−ε)h(z0)) ∩K(Tp(z), C εν) = ∅

for 0 < ε < 1, where K(z,R) is the standard parabolic cylinder given by
K(z,R) = BR(x)× (t − R2, t + R2]; z = (x, t).
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Proof. With the notation of Lemma 4.3 and similarly to the proof of Lemma 4.1
we have

(u− �z0)((x0)
(1−ε)h
min , t0 + δ(1− ε)h)+ (1− ε)h

� (u− �z0)((x0)
h
min, t0 + δ(1− ε)h)+ (1− ε)h

� (u− �z0)((x0)
h
min, t0 + δh)+ sup|ut | δεh+ (1− ε)h

� (u− �z0)((x0)
h
min, t0 + δh)+

(
1− ε

2

)
h.

Hence

Q∗
(1−ε)h(z0) ⊂ Q(1− ε

2 )h
((x0)

h
min, t0 + δh) ∩ {t � t0 + δ(1− ε)h}.

Let

Tp(x, t) =
(
T x,

t − (t0 + δh)

h

)

normalizingQh(zh) with zh = ((x0)
h
min, t0 + δh). Set

Tp(Qh(zh)) = Q̂1(0); Tp(Q(1− ε
2 )h

(zh)) = Q̂1− ε
2
(0);

and

û(x̂, t̂ ) = 1

h
{u(T −1

p (x̂, t̂)− �zh(T
−1x̂)}.

To complete the proof of the lemma it is sufficient to show that

dist(∂Q̂1(0), Q̂1− ε
2
(0) ∩ {t � −ε δ}) � Cδ ε

ν.

This follows from Proposition 4.1, item (1), because

dist(∂pQ̂1(0), Q̂1− ε
2
(0)) � C εn+1, and dist({t = 0}, {t � −ε δ}) = ε δ.

4.4. Size of parabolic sections

Lemma 4.5. Let Q∗
h0
(z0) be a section and Tp a transformation that normalizes it.

If h � h0 and Q∗
h(z

′) ∩Q∗
h0
(z0) �= ∅, then |Tp(z′)| � M and

K

(
Tp(z

′), C1

(
h

h0

)ε1
)
⊂ Tp(Q

∗
h(z

′)) ⊂ K

(
Tp(z

′), C2

(
h

h0

)ε2
)
,

with M,C1, C2, ε1 and ε2 positive constants depending only on the structure; and
K(z,R) denotes the parabolic cylinder defined in Lemma 4.4.
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Proof. We can assumeh0 = 1, Q∗
1(z0) is already normalized andTp =identity.

Applying Lemma 4.3 three times we getQ∗
1(z

′) ⊂ Q∗
ϑ2(z0). SinceQ∗

1(z0) is
normalized, it follows from Lemma 4.2 thatQ∗

2ϑ2(z0) is also normalized. We have
|z′| � M and

Q∗
h(z

′) = Qh((x
′)hmin, t

′ + δh) ⊂ Sh((x
′)hmin|t ′ + δh)× (t ′ − ch, t ′ + δh]

⊂ B((x′)hmin, C2,ϑ h
ε2)× (t ′ − ch, t ′ + δh] by [GH00, Theorem 2.3]

⊂ B(x′,2C hε2)× (t ′ − ch, t ′ + δh].
On the other hand,

Sch(x̂|t ′ − δh)× (t ′ − δh, t ′ + δh) ⊂ Q∗
h(z

′),

wherex̂ is the minimum point ofu(·, t ′−δh). (Assume�((x′)hmin,t
′+δh) = 0;c � 3/4

andδ small.) Sincex′ is minimum point ofu(·, t ′), we have

u(x′, t ′ − δh) � u(x′, t ′)+ ĉδh � u(x̂, t ′)+ ĉδh � u(x̂, t ′ − δh)+ ĉδh.

Hencex′ ∈ Sch/2(x̂|t ′−δh). From [GH00,Theorem 2.4(i)] we getSηh(x′|t ′−δh) ⊂
Sch(x̂|t ′ − δh). Therefore from [GH00, Theorem 2.3] we obtain

B(x′, Chε1)× (t ′ − δh, t ′ + δh] ⊂ Sηh(x
′|t ′ − δh)× (t ′ − δh, t ′ + δh]

⊂ Q∗
h(z

′).

Remark 4.2. More precisely, the first inclusion in Lemma 4.5 can be written as

K

(
Tp(z

′), C1

(
h

h0

)ε1
)
∩ {t � T } ⊂ Tp(Q

∗
h(z

′)).

4.5. Second size property of sections

Lemma 4.6. Let Q1(z0) be a normalized section. There exist positive constants C
and p such that, if 0 < r < s < 1 and z′ ∈ Qr(z0), then Qh(z

′) ⊂ Qs(z0) for
h � C (s − r)p.

Proof. By Lemma 4.1(2), and Lemma 4.5 we get

Qh(z
′) ⊂ Q∗

2h(z
′) ⊂ K(z′, C hε1).

From [GH98, Theorem 2.1] we have

|Du(z′)| � C

(1− r)n+1 .

If z ∈ Qh(z
′) then

u(z) � u(z′)+Du(z′) · (x − x′)+ h

� r + C

(1− r)n+1 C hε1 + h � s (assume�z0 = 0),

whenh � 1
2(s − r) andhε1 � η (s − r)n+2. That is,Qh(z

′) ⊂ Qs(z0).
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4.6. Besicovitch type covering lemma

Lemma 4.7. Let Q be a parabolic section and O ⊂ Q. Suppose that for each
z ∈ O a section Q∗

r (z) is given so that r � M . Assume that the engulfing and
size properties hold (Lemmas 4.3, 4.4 and 4.5). Then we can choose a countable
subfamily {Q∗

rk
(zk)}∞k=1 with the following properties:

(1) O ⊂ ∪∞k=1Q
∗
rk
(zk);

(2) zk /∈ ∪j<kQ∗
rj
(zj ) for k � 2;

(3)
∑∞

k=1χQ∗
(1−ε)rk (zk)

(z) � C0 log
1

ε
;

where χE denotes the characteristic function of the set E.

Proof. It is the same as the one given in [CG96] and [Hua99].

4.7. A Calderón-Zygmund type decomposition

We now give a proposition needed in the proof of the Calder´on-Zygmund de-
composition.

Proposition 4.2. There exists a positive constantC depending only on the structure
such that

|Q∗
h(z0) \Q∗

(1−ε)h(z0)| � C
√
ε |Q∗

h(z0)|,
with 0 < ε < 1.

Proof. The inequality is affine invariant.We assumeh = 1 andQ∗
1(z0) normalized.

Let us also assume thatz0 = 0, �((x0)
1
min,δ)

= 0 and lettmin denote the minimum

t in Q∗
1(0) and(x̂, tmin) ∈ ∂Q∗

1(0). Also letm(t) = minx u(x, t) andxtmin be the
point where the minimum ofu(·, t) is attained. We write

|Q∗
1(0) \Q∗

1−ε(0)| �
∫ δ

δ(1−ε)
|S1−m(t)(xtmin|t)| dt

+
∫ δ(1−ε)

tmin+√ε

|S1−m(t)(xtmin|t) \ S1−ε−m(t)+α(xtmin|t)| dt

+
∫ tmin+√ε

tmin

|S1−m(t)(xtmin|t)| dt = I + II + III ,

where

α = u(x1−ε
min , (1− ε)δ) � u(x1

min, (1− ε)δ) � sup|ut | εδ � ε

2
.

We have
I � δ ε|S1(x

1
min|1)| � C ε � ε |Q∗

1(0)|.
Also

III �
√
ε |S1−m(t ′)(xt

′
min|t ′)| � C

√
ε,
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with t ′ = tmin + √
ε. For t � tmin + √

ε we havem(t) � u(x̂, t) � u(x̂, tmin) +
ut (t − tmin) � 1− C

√
ε. Hence by [CG97, Lemma 5.20] we get

II �
∫ δ(1−ε)

tmin+√ε

|S1−m(t)(xtmin|t) \ S
(1− ε − α

1−m(t)
)(1−m(t))

(xtmin|t)| dt

�
∫ δ(1−ε)

tmin+√ε

n
ε − α

1−m(t)
|S1−m(t)(xtmin|t)| dt

� C
ε

c
√
ε
= C

√
ε � C

√
ε |Q∗

1(0)|.
We conclude this section with the decomposition needed in the proof of the

W2,p estimates.

Theorem 4.1. Let O be an open subset of a sectionQ, 0 < δ < 1 small, and γ > 0.
Suppose that for each z ∈ O a section Q∗

hz
(z) is given with hz � γ , and

|Q∗
hz
(z) ∩O|

|Q∗
hz
(z)| = δ.

Then there exists a family of parabolic sections {Q∗
hk
(zk)}∞k=1 with the following

properties:

(1) zk ∈ O and hk � γ for all k ∈ N;
(2) O ⊂ ∪∞k=1Q

∗
hk
(zk);

(3)
|Q∗

hk
(zk) ∩O|

|Q∗
hk
(zk)| = δ;

(4) |O| � √
δ | ∪∞k=1 Q

∗
hk
(zk)|.

Proof. The theorem can be proved by combining Lemma 4.7 with Proposition 4.2
and using the technique in [CG96], see [Gut].

5. Approximation Theorem

Let (x0, t0) ∈ Q, σ > 0, and

Pσ (x, t) = σ(|x − x0|2 − (t − t0))+ p · (x − x0)+ u(x0, t0).

If (x0, t0) ∈ S ⊂ Q, then we say thatu is touched from below byPσ in S

if u(x, t) � Pσ (x, t) for all (x, t) ∈ S. Notice that ifS = Q ∩ {t = t0}, then
p = Dxu(x0, t0).

Let us define the following sets:

Aσ (u) = {(x0, t0) : u is touched from below byPσ in Q ∩ {t � t0}},
and

A∗
σ (u) = {(x0, t0) : u(x, t0) is touched from below byPσ (x, t0)

in Q ∩ {t = t0}}. (5.1)

Notice thatAσ ⊂ A∗
σ , and ifut � −σ in Q, then we also haveA∗

σ ⊂ Aσ .
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Theorem 5.1 (Approximation Theorem). Let Q be a bowl-shaped domain in R
n+1

such that
Bδ(0)× (−δ2,0] ⊂ Q ⊂ B1(0)× (−1,0],

where Q = {(x, t) : B(x, t) < 0, t � 0} with B parabolically convex.1 Suppose
that 0 < ε < 1/2, and u is a parabolically convex function in Q, a classical
solution of

(1− ε)n+1 � Mu � (1+ ε)n+1 in Q, (5.2)

u = 0 on ∂pQ, (5.3)

and

−m1 � ut � −m2 in Q, (5.4)

where m1 and m2 are positive constants.
Let 0 < α < 1 and set

Qα =
{
(x, t) ∈ Q : u(x, t) < (1− α) min

Q
u
}
. (5.5)

Then there exist positive constants σ > 0 and Cn depending only on the dimension
n and α, and both independent of Q (depending only on the bounds for the time
derivatives of the function B defining Q), u and ε such that

|Qα \ Aσ | � Cn ε |Qα|.
Proof. By [GH98, Lemma 2.1] we haveC1 � −minQ u � C2. Let w be a
parabolically convex solution of

−wt detD2w = 1 inQ, (5.6)

w = 0 on∂pQ.

We havew ∈ C(Q) ∩ C∞(Q). We use the following Comparison Principle: if
Mv � Mu in Q, then

u(x, t)− v(x, t) � min
∂pQ

{u(x, t)− v(x, t)} for all (x, t) ∈ Q,

see [WW93, Proposition 2.3]. In our case,M((1+ε)w) � Mu � M((1−ε)w)),
and so

(1+ ε)w � u � (1− ε)w in Q. (5.7)

Thus (
1

2
+ ε

)
w � u− w

2
�
(

1

2
− ε

)
w in Q. (5.8)

1 It is assumed here thatBt is bounded away from 0 and−∞; see [WW92, Definition
3.1, p. 428 and Lemma 3.1]
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We havew < 0 inQ, so(
1

2
+ ε

)
(−w) �

∣∣∣u− w

2

∣∣∣ � (1

2
− ε

)
(−w) in Q.

SinceQ is normalized, it follows again by [GH98, Lemma 2.1] thatC1 �
|minQ w| � C2 and consequentlyC′

1 � maxQ |u− 1
2w| � C′

2.

Let *(x, t) be the parabolic convex envelope ofu − 1
2w in Q, see definition

(7.1).

Claim 1. For all (x, t) ∈ Q we have the inequality

∣∣∣w(x, t)
2

− *(x, t)

∣∣∣ � Cnε.

Indeed, by (5.8) and sincew is parabolically convex, we have(
1

2
+ ε

)
w(x, t) � *(x, t) �

(
1

2
− ε

)
w(x, t) in Q,

and the claim follows.

Claim 2. LetD be a bowl-shaped open and bounded domain,u, v ∈ C(D̄)parabol-
ically convex,u = v on ∂pD, andv � u in D. Then

Pu(D) ⊂ Pv(D) a.e.,

that is,Pu(D) \ E ⊂ Pv(D) for some|E| = 0. Indeed, let(p, h) ∈ Pu(D).
Then�(x) = u(x0, t0) + p · (x − x0) � u(x, t) for all t � t0 andx ∈ D(t),
with (x0, t0) ∈ D. Slide� in a parallel fashion in the direction oft negative until
it touches for the last time the graph ofv. Say� touchesv at (x1, t1), t1 � t0.
Then�(x1) = v(x1, t1) = u(x0, t0) + p · (x1 − x0) and sop · x1 − v(x1, t1) =
p · x0 − u(x0, t0) = h. If (x1, t1) ∈ ∂pD, thenv(x1, t1) = u(x1, t1) = p · x1 − h.
Sinceu(x, t) � u(x1, t1) + p · (x − x1) for all t � t0 andx ∈ D(t), it follows
that(p, h) ∈ Pu(x1, t1). That is(p, h) ∈ Pu(x1, t1) ∩ Pu(x0, t0), but if (x0, t0) �=
(x1, t1), then this set of(p, h) has measure zero and the claim follows.

Sincew = 0 on∂pQ, it follows that

P( 1
2−ε)w(Q) ⊂ P*(Q) ⊂ P( 1

2+ε)w(Q) a.e.

By the results in Section 7, Corollary 7.1,

M* � M
(
u− w

2

)
χC, (5.9)

where

C =
{
(x, t) ∈ Q : *(x, t) = u(x, t)− w(x, t)

2

}
.



156 Cristian E. Gutiérrez & Qingbo Huang

If (x0, t0) ∈ C, thenu− 1
2w−* attains its minimum 0 at the point(x0, t0) and

hence

D2
x

(
u− w

2

)
(x0, t0) � 0, and

(
u− w

2

)
t
(x0, t0) � 0. (5.10)

On the other hand, ifa � 0 andA � 0 is ann× n symmetric matrix then

(a detA)1/(n+1) (5.11)

= 1

n+ 1
inf {trace(B A)+ b a : b > 0,B > 0 symmetric withb detB = 1}.

Thus

((a1 + a2)det(A1 + A2))
1/(n+1) � (a1 detA1)

1/(n+1) + (a2 detA2)
1/(n+1)

for ai � 0 andAi � 0 symmetric,i = 1,2. Since1
2w is parabolically convex, it

follows using the previous inequality and (5.10) that

{Mu(x, t)}1/(n+1) �
{
M
(
u− w

2

)
(x, t)

}1/(n+1) +
{
M
(w

2

)
(x, t)

}1/(n+1)

for (x, t) ∈ C. Consequently

{
M
(
u− w

2

)
(x0, t0)

}1/(n+1)
� {Mu(x0, t0)}1/(n+1)−

{
M
(w

2

)
(x0, t0)

}1/(n+1)

� (1+ ε)− 1

2
= 1

2
+ ε, (5.12)

an inequality valid for a.e. point inC. By Claim 2,|P( 1
2−ε)w(Q)| � |P*(Q)|, and

from (5.9) and (5.12) we get

(
1

2
− ε

)n+1 ∫
Q

Mw(x, t) dx dt �
∫
C

M*(x, t) dx dt �
(

1

2
+ ε

)n+1

|C|.

This yields the estimate

|C| �
(

1
2 − ε

1
2 + ε

)n
|Q| � (1− Cnε)|Q|,

which implies

|Q \ C| � Cn ε |Q|. (5.13)

We now prove that there exists a universal constantσ > 0 so that

Qα ∩ C ⊂ Aσ .

We recall the following variant of a theorem due to Pogorelov, see [GH98,
Theorem 2.2].
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Theorem 5.2. Let D ⊂ R
n+1 be a bounded open bowl-shaped domain and v ∈

C(D) such that v is parabolically convex in D. Suppose that v is a smooth solution
of

−vt detD2v = 1 in D \ ∂pD, (5.14)

v(x, t) = 0 for (x, t) ∈ ∂pD. (5.15)

Let α ∈ R
n, |α| = 1,

w(x, t) = |v(x, t)|Dααv(x, t)e
1
2 (Dαv(x,t))

2
,

and M = maxD̄ w(x, t). Then there exists P ∈ D \ ∂pD where the maximum M is
attained and the following inequality holds:

M � Cn (1+ |Dαv(P )|) e 1
2 (Dαv(P ))

2
,

with Cn a positive constant depending only on the dimension n.

We apply this theorem tow. Let δ > 0 and

Qδ(w) = {(x, t) ∈ Q : w(x, t) < −δ}.
Notice that since 0< ε < 1

2, it follows from (5.7) that3
2 w � u � 1

2 w and
consequently

Qδ(u) ⊂ Q2δ/3(w) and Qδ(w) ⊂ Qδ/2(u). (5.16)

Arguing as in the proof of (3-7) and (3-8) of [GH98], we obtain

|Dxw(x, t)| � C(δ) for (x, t) ∈ Qδ(w),

which implies that
|Dααw(x, t)| � C′(δ)

on the same set and for all|α| = 1. Thus

D2
xw(x, t) � MδI ∀ (x, t) ∈ Qδ(w). (5.17)

This estimate used together with the equation yields the following upper bound for
the time derivative ofw:

wt(x, t) � −C(δ) (5.18)

for (x, t) ∈ Qδ(w), with C(δ) > 0. To obtain the lower estimate ofwt we invoke
[WW92, Lemma 3.3]. (Notice that this estimate depends on the time derivative of
the defining functionB.) Thus from (5.17) and (5.6) we obtain

D2
xw(x, t) � M ′

δI ∀ (x, t) ∈ Qδ(w). (5.19)

Consequently, if(x0, t0) ∈ Qδ(w) by the convexity ofw, we then obtain the
estimate

w(x, t0) � w(x0, t0)+Dxw(x0, t0) · (x − x0)+ m |x − x0|2
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for all (x, t0) ∈ Q with m a positive constant depending only onn andδ. (Here we
use the Taylor polynomial of second order ofw(·, t0) with the remainder written
in integral form and the convexity ofw(., t0) together with (5.19) to obtain the
inequality valid in allQ(t0).)

Recall that*(x, t) � u(x, t) − 1
2w(x, t) for all (x, t) ∈ Q. Since*(x, t0) is

convex, let�x0 be a supporting hyperplane for*(x, t0) atx = x0. Then

u(x, t0) � �x0(x)+
w(x, t0)

2

� �x0(x)+
1

2

(
w(x0, t0)+Dxw(x0, t0) · (x − x0)+ m |x − x0|2

)
= Pm/2(x, t0)

for all x ∈ Q(t0). For(x0, t0) ∈ C, we know thatPm/2(x, t0) touchesu(x, t0) from
below inQ(t0). Sinceut � −m2 inQ, if we takeσ = min{m2,

1
2m} thenut � −σ .

Hence(x0, t0) ∈ A∗
σ ⊂ Aσ , that is,Qδ(w) ∩ C ⊂ Aσ .

Now taking into account (5.16) and choosingδ so that3
2δ is close to−(1−

α) minQ u we obtain
Qα \ Aσ ⊂ Q \ C.

Then by (5.13), and since|Qα| and|Q| are comparable, we obtain the theorem.

6. W2,p estimates

We prove hereLp estimates of the second derivatives inx of is solutions to
Mu = f . This done in several steps. We first establish a strict convexity result,
Lemma 6.1. Second, we prove a density result, Proposition 6.1, for which the
approximation Theorem 5.1 is used. This density result, combined with the de-
composition Theorem 4.1 and once more the approximation Theorem 5.1, yields
the power decay, Proposition 6.2. Once this is done, we obtainW2,p estimates on
parabolic sections, Theorem 6.1, that is with zero boundary data. Next, we use a
strict convexity result due to Caffarelli, Theorem 6.2, which coupled with Theo-
rem 3.1 yields a the strict convexity result in the parabolic case, Theorem 6.3. This
last result and Theorem 6.1 yield by means of a covering argument the main result
in the paper, Theorem 2.1.

Let u(x, t) be a parabolically convex function in the bowl-shaped domainQ

with u = 0 on ∂pQ. Given 0 < α � 1, recall the definition (5.5). We have
Qα ⊂ Qβ for 0 < α � β � 1. Givenz0 = (x0, t0) ∈ Q, let us keep in mind
definitions (2.1)–(2.3), (4.2), and (5.1).

We have the following strict convexity result which states that sections with
base points inQα are contained inQ for sufficiently small values of the parameter
h and independently of the base point.

Lemma 6.1. Let Q be a normalized bowl-shaped domain and u a solution to λ �
Mu � ! in Q with u = 0 on ∂pQ and 0 < m2 � −ut � m1 in Q. Given
0 < α � α0 < 1 there exists ηα > 0 such that, if h � ηα and (x0, t0) ∈ Qα , then

Qh(x0, t0) ⊂ Q(α0+1)/2.
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Proof. It is by contradiction. Suppose there existzj = (xj , tj ), uj , Qj such that

zj ∈ Q
j
α, Q1/j (zj ) �⊂ Q

j
α0, Qj is normalized,λ � Muj � ! in Qj , 0 < m2 �

−(uj )t � m1 in Qj , anduj = 0 on∂pQj . Let (yj , sj ) ∈ Q1/j (zj ) \Qj
α0. Then

(1− α) min
Qj

uj � uj (yj , sj ) � �j (yj )+ 1

j
,

where�j is a supporting hyperplane foruj at zj . Lettingj →∞ by compactness
we obtain a functionu∞ and a normalized convex domainQ∞ such thatλ �
Mu∞ � ! in Q∞, 0 < m2 � −(u∞)t � m1 in Q∞, andu∞ = 0 on ∂pQ∞.
Moreover,

(1− α) min
Q∞ u∞ � u∞(y∞, s∞) = �∞(y∞),

where�∞ is a supporting hyperplane foru∞ andz∞ = (x∞, s∞) ∈ Q∞
α . Therefore

(y∞, s∞), z∞ ∈ {u∞ = �∞}. If s∞ �= t∞, i.e.,s∞ < t∞, then sinceu is decreasing
in t we haveu∞(y∞, t) = �∞(y∞), for s∞ � t � t∞. This contradicts the fact
thatm1 � −ut � m2. Sincec−1 � detD2

xu∞(·, t∞) � c in Q∞ ∩ {t = t∞}, it
follows from Caffarelli’s result, [Caf90b, Theorem 1], that no extremal points
of {u∞ = �∞} can be inside the interior of the domain and therefore all must be
outsideQ∞

α0
∩ {t = t∞}. The pointx∞ must be a convex combination of extremal

points, i.e.,x∞ = ∑k
i=1 λi Pi with λi � 0 and

∑k
i=1 λi = 1, andu∞(Pi) �

(1− α0) minQ∞ u∞. Thus

(1− α) min
Q∞ u∞ � u∞(x∞) = �∞(x∞) =

k∑
i=1

λi u∞(Pi) � (1− α0) min
Q∞ u∞,

a contradiction.

Forλ > 0 and 0< α � α0 < 1, we define the set

Dα
λ = {(x0, t0) ∈ Qα : Sh(x0|t0) ⊂ Bλ

√
h(x0), for all h � η0},

whereη0 = ηα0 is the number in Lemma 6.1 corresponding toα = α0.

Lemma 6.2. Let u be a parabolically convex function on a bounded bowl-shaped
domain Q and 0 < α0 < 1. There exists a constant C1 > 0 depending only on α0
and maxt {diam(Q(t))} such that

Dα
λ = Qα ∩ A∗

1/λ2(u)

for all λ � C1 and 0 < α � α0 < 1.

Proof. Supposez0 = (x0, t0) ∈ Dα
λ . Let �z0(x) be a supporting hyperplane to

u(·, t0) at x = x0, i.e.,u(x, t0) � �z0(x) for all x ∈ Q(t0). Let x ∈ Q(t0) and
µ = u(x, t0) − �z0(x), sox ∈ Sµ(x0|t0). If µ < η0, thenSµ(x0|t0) ⊂ Bλ

√
µ(x0)

and
1

λ2 |x − x0|2 + �z0(x) � u(x, t0).
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On the other hand, ifµ � η0, then

u(x, t0)− �z0(x) = µ � η0

diam(Q(t0))2
|x − x0|2.

If
1

λ2 � η0

maxt {diam(Q(t))2} ,
then

u(x, t0)− �z0(x) � 1

λ2 |x − x0|2

and the inclusion follows, taking

C1 = maxt {diam(Q(t))}√
η0

.

If (x0, t0) ∈ Qα ∩ A∗
1/λ2(u), then

u(x, t0) � 1

λ2 |x − x0|2 + �z0(x)

for all x ∈ Q(t0). Let x ∈ Sh(x0|t0) andh < η0, thenSh(x0|t0) ⊂ Q(t0) and

1

λ2 |x − x0|2 + �z0(x) � u(x, t0) < �z0(x)+ h

and sox ∈ Bλ
√
h(x0).

Proposition 6.1. Let 0 < ε < 1/2, and u be a solution of (5.2) in the normalized
bowl-shaped domain Q satisfying (5.4). There exists a constant c0 > 0 depending
only on n and σ in Theorem 5.1 such that, if z0 = (x0, t0) ∈ Qα0 and h � η0/2,
then

|Qh(z0) \ A∗
c0 h

(u)|
|Qh(z0)| � Cn ε.

Moreover, if λ � 2

c0 η0
, then

|Qh(z0) \ A∗
1/λ(u)|

|Qh(z0)| � Cn ε

for h � 1

c0 λ
; (Cn is the constant in the approximation Theorem 5.1).

Proof. The idea of the proof is to normalizeuand then applyTheorem 5.1. Consider
the elliptic sectionSh(x0|t0), h < η0, and letT be the affine transformation that
normalizesSh(x0|t0). That is,Bαn(0) ⊂ T (Sh(x0|t0)) ⊂ B1(0). We define

Tp(x, t) =
(
T x,

t − t0

h

)
= (y, s).
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Then from the estimates forut , see [GH98, Lemma 3.1], we have

(−ε1,0] × Bαn(0) ⊂ Tp (Qh(z0)) ⊂ (−ε2,0] × B1(0),

whereε1 andε2 are constants. Set

Q∗
h(z0) = Tp (Qh(z0)) .

We haveT −1
p (y, s) = (T −1y, t0 + h s

)
. Let �z0(x) be the affine function defining

Qh(z0). We define

v(x, t) = C

h

(
u(x, t)− �z0(x)− h

)
,

whereC is a constant that will be determined in a moment. Let

u∗(y, s) = v(T −1
p (y, s)) = v(T −1y, t0 + h s).

We haveu∗s (y, s) =
C

h
hut (T

−1
p (y, s)), and

D2u∗(y, s) = C

h
(T −1)t (D2u)(T −1

p (y, s))(T −1).

Hence

detD2u∗(y, s) =
(
C

h

)n
|detT −1|2 detD2u(T −1

p (y, s)).

Consequently,

− u∗s (y, s) detD2u∗(y, s)

= Cn+1

hn
|detT −1|2

(
−ut (T −1

p (y, s)) detD2u(T −1
p (y, s))

)
.

We now chooseC such that

Cn+1

hn
|detT −1|2 = 1. (6.1)

Sinceu satisfies (5.2), it follows thatu∗ satisfies

(1− ε)n+1 � −u∗t detD2u∗ � (1+ ε)n+1 in Q∗
h(z0) (6.2)

u∗ = 0 on∂Q∗
h(z0). (6.3)

By the definition ofu∗, we have minQ∗
h(z0) u

∗ = −C. By properties of the elliptic

sections, see [GH00, Proposition 1.1], we havec−1hn/2 � |Sh(x0|t0)| � chn/2,
and hencec−1h−n/2 � |detT | � ch−n/2. ThereforeC in (6.1) depends only onn.
Applying Theorem 5.1 withQ→ Q∗

h(z0), α → β, andu→ u∗, we obtain

|Q∗
β h(z0) \ A∗

σ |
|Q∗

β h(z0)| � Cn ε, with Tp(Qβ h(z0)) = Q∗
β h(z0),
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whereA∗
σ = A∗

σ (u
∗) (notice that(Q∗

h(z0))β = Tp(Qβ h(z0)) = Q∗
β h(z0) and

Aσ (u
∗) ⊂ A∗

σ (u
∗)). We now show that there exist universal constants 0< β < 1

andc0 > 0 such that

T −1
p

(
Q∗

β h(z0) ∩ A∗
σ

)
⊂ Qβ h(z0) ∩ A∗

c0h
(u). (6.4)

Let z∗1 = (x∗1, t∗1 ) ∈ Q∗
β h(z0) ∩ A∗

σ andz1 = (x1, t1) = T −1
p z∗1 ∈ Qβ h(z0). Since

z∗1 ∈ A∗
σ , we have

u∗(x∗, t∗1 )− �∗(x∗) � σ |x∗ − x∗1|2
for all x∗ ∈ Q∗

h ∩ {t∗1 } with �∗(x∗) = �z1(T
−1x∗) where�z1 is a supporting

hyperplane foru(·, t1) atx = x1. Hence

C(u(x, t1)− �z0(x)− h)

h
− C(�z1(x)− �z0(x)− h)

h
� σ |T x − T x1|2,

for x ∈ Qh(z0) ∩ {t1}. Therefore

u(x, t1)− �z1(x) � 1

C
σ h |T x − T x1|2 in Qh(z0) ∩ {t1}.

By rotating the coordinates, we may assume that the ellipsoid of minimum volume
containingSh(x0|t0) with center atxh, the center of mass ofsh(x0/t0) has axes on
the coordinate axes. That is,

T x =
(x1 − x1

h

µ1
, · · · , xn − xnh

µn

)
,

whereµi are the axes of the ellipsoid. SinceQ is bounded, we haveµi � const,
and soµ−1

i � const. Therefore|T x − T x1| � C′ |x − x1|. Consequently,

u(x, t1)− �z1(x) � C
′′
σ h |x − x1|2 in Qh(z0) ∩ {t1}. (6.5)

We now want to show that a similar inequality holds inQ∩{t1}. Sincez1 ∈ Qβ h(z0),
by the engulfing property Lemma 4.3, we haveQβ h(z0) ⊂ Qθ β h(z1). Again
by the engulfing property,Qθ β h(z1) ⊂ Qθ2 β h(z0), so takingβ = 1/θ2 yields
Qh/θ (z1) ⊂ Qh(z0) and consequently (6.5) holds inQh/θ (z1) ∩ {t1}. Now, if
x /∈ Qh/θ (z1) ∩ {t1}, thenu(x, t1) − �z1(x) � h/θ , and sinceQ is normalized,
h � hC

′′′
σ |x − x1|2. Therefore(x1, t1) ∈ A∗̄

Cσh
(u), and lettingc0 = C̄σ we

obtain (6.4) withβ = 1/θ2.
Therefore (6.4) implies that

Qβ h(z0) \ A∗
c0h

(u) ⊂ T −1
p (Q∗

β h(z0) \ A∗
σ ),

and consequently

|Qβ h(z0) \ A∗
c0h

(u)|
|Qβ h(z0)| �

|T −1
p (Q∗

β h(z0) \ A∗
σ )|

|T −1
p (Q∗

β h(z0))|
= |Q∗

β h(z0) \ A∗
σ |

|Q∗
β h(z0)| � Cn ε

for h < η0, which yields the first conclusion of the proposition.
To prove the second conclusion, notice that ifσ � µ, thenA∗

σ ⊂ A∗
µ. Hence

A∗
c0 h

(u) ⊂ A∗
1/λ(u) for 1/λ � c0 h.
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We recall the definition ofDα
λ ,

Dα
λ = {(x0, t0) ∈ Qα : Sh(x0|t0) ⊂ Bλ

√
h(x0) for all h � η0};

here 0< α � α0 < 1,λ > 0, andη0 > 0 is from Lemma 6.1 so thatQh(x0, t0) ⊂
Q(α0+1)/2 for h � η0.

The following proposition gives the power decay needed for the proof of the
W2,p estimates.

Proposition 6.2 (Power decay). Let 0 < ε < 1/2 and u be a solution satisfying
the hypotheses of Theorem 5.1. Set

(Dα
λ )

c = Qα \Dα
λ ; (Dτ

Mλ)
c = Qτ \Dτ

Mλ, 0 < τ < α � α0.

There exist positive constants M,p0 and C2 such that

|(Dτ
Mλ)

c| � √Cn ε |(Dα
λ )

c| (6.6)

for all λ � C2 and α − τ = (Mλ)−p0.

Proof. By Lemma 6.2 we have

Dτ
Mλ = Qτ ∩ A∗

1/(Mλ)2
(u) for M λ � C1 andτ < α0.

SinceDτ
Mλ is closed,O = (Dτ

Mλ)
c is open and we obtain

O = Qτ \Dτ
Mλ = Qτ ∩ (A∗

1/(Mλ)2
(u))c

for M λ � C1 andτ < α0. Consequently

Qh(z0) ∩O ⊂ Qh(z0) ∩Qτ ∩ (A∗
1/(Mλ)2

(u))c ⊂ Qh(z0) \ A∗
1/(Mλ)2

(u).

Therefore by Proposition 6.1 we obtain

|Qh(z0) ∩O|
|Qh(z0)| �

|Qh(z0) \ A∗
1/(Mλ)2

(u)|
|Qh(z0)| � Cn ε

for

M λ � max

{
C1,

√
2

c0η0

}
, τ < α0,

1

(λM)2
� h � η0/2, z0 ∈ Qα0.

(6.7)

Let us now consider the sectionsQ∗
h(x0, t0) defined by (4.2), and keep in mind

(4.3). Since the setO is open, we have

lim
h→0

|Q∗
h(z0) ∩O|
|Q∗

h(z0)| = 1, z0 ∈ O. (6.8)

By Proposition 6.1 we have

|Q∗
h(x0, t0) ∩O|
|Q∗

h(x0, t0)| = |Qh((x0)
h
min, t0 + δ h) ∩O|

|Qh((x0)
h
min, t0 + δ h)| � Cn ε,
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with h satisfying (6.7), since(x0, t0) ∈ Qα implies that((x0)
h
min, t0 + δ h) ∈

Q(α+1)/2, see Remark 4.1, andm1 δ < η0/2.
If O = Qτ \Dτ

Mλ, then forz ∈ O we choosehz, the largesth such that

|Q∗
h(z) ∩O|
|Q∗

h(z)|
� Cn ε.

Then by (6.7) and (6.8) we gethz � 1/(Mλ)2. Applying Theorem 4.1 toO with
γ = 1/(Mλ)2, andδ = Cn ε, we obtain a family of sections{Q∗

hk
(zk)}∞k=1, zk =

(xk, tk), with hk � 1/(Mλ)2.
We shall prove that

Q∗
hk
(xk, tk) ⊂ (Dα

λ )
c = Qα \Dα

λ . (6.9)

By Remark 4.1 and Lemma 4.6 we know that if(xk, tk) ∈ Qτ , then

((xk)
h
min, tk) ∈ Qm1 δ h(xk, tk) ⊂ Qτ+c(δh)1/p ⊂ Qτ+(Mλ)−p0 .

That is,Q∗
hk
(xk, tk) ⊂ Qτ+2(Mλ)−p0 . For τ = α − (Mλ)−p0 and since(xk, tk +

δhk) ∈ Qτ , it follows thatQhk((xk)
h
min, t

h
k ) ⊂ Qα wherethk = tk + δhk.

To complete the proof of (6.9) we proceed by contradiction. Suppose there
existsz0 = (x0, t0) ∈ Qhk((xk)

h
min, t

h
k )∩Dα

λ . By the engulfing property of elliptic
sections at different times, Lemma 4.2, we have

Shk ((xk)
h
min|thk ) ⊂ Sθhk (x0|t0) ⊂ Bλ

√
θhk

(x0),

with z0 ∈ Dα
λ (θ hk � η0 by choosingM large). As in the proof of Proposition 6.1

we normalize the sectionS2hk ((xk)
h
min|thk ). That is,Bαn(0)⊂T (S2hk ((xk)

h
min|thk ))⊂

B1(0), and letQ∗
k = Tp

(
Q2hk ((xk)

h
min, t

h
k )
)
. We set

u∗ = c

2hk
(u− �− 2hk)(T

−1
p (x∗, t∗)),

and we have(1 − ε)n+1 � Mu∗ � (1 + ε)n+1 in Q∗
k . By the approximation

Theorem 5.1 we then have

|(Q∗
k)1/2 \ A∗

σ | < Cn ε |(Q∗
k)1/2|, (6.10)

(notice that(Q∗
k)1/2 = Tp

(
Qhk((xk)

h
min, t

h
k )
)
). We now claim that

T −1
p ((Q∗

k)1/2 ∩ A∗
σ ) ⊂ Dα

Mλ for M large. (6.11)

Letz∗1 = (x∗1, t∗1 ) ∈ (Q∗
k)1/2∩A∗

σ andz1 = T −1
p z∗1 = (x1, t1) ∈ Qhk

(
(xk)

h
min, t

h
k )
)
.

Since(x∗1, t∗1 ) ∈ A∗
σ , we haveu∗(x∗, t∗1 ) − �∗(x∗) � σ |x∗ − x∗1|2 and hence

S∗h(x∗1|t∗1 ) ⊂ B(x∗1,
√
h/σ). ThereforeT −1

(
S∗h(x∗1|t∗1 )

) ⊂ T −1
(
B(x∗1,

√
h/σ)

)
for

h � const, and consequently

Sc hk h(x1|t1) ⊂ T −1(B(x∗1,√h/σ)) ⊂ B
(
x1, λ

√
θ2hk

√
h/σ

)
,
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becauseT dilates at least(λ
√
θ2hk)−1 andT −1 contracts at leastλ

√
θ2hk. Then

Sh(x1|t1) ⊂ B(x1, λ
√
ch/σ) for h � consthk. If hk � h � η0, then(x0, t0),

(x1, t1) ∈ Qh((xk)
h
min, t

h
k ). By the engulfing property at different timesSh(x1|t1) ⊂

Sθh(xk|thk ) ⊂ Sθ2h(x0|t0) ⊂ B
λ
√
θ2h

(x0), sincez0 ∈ Dα
λ . Therefore(x1, t1) ∈

Qα ∩Dα
Mλ for someM large, and the proof of (6.11) is complete.

Therefore by Lemma 6.2,

Qhk((xk)
h
min, t

h
k ) ∩O = Qhk((xk)

h
min, t

h
k ) ∩ (Qτ \Dτ

Mλ)

⊂ Qhk((xk)
h
min, t

h
k ) \Dα

Mλ ⊂ T −1
p ((Q∗

k)1/2 \ A∗
σ ),

and by (6.10) we obtain

|Q∗
hk
(xk, tk) ∩O|

|Q∗
hk
(xk, tk)| �

|(Q∗
k)1/2 \ A∗

σ |
|(Q∗

k)1/2|
< Cn ε,

which contradicts (3) in Theorem 4.1. This completes the proof of the power decay.

Theorem 6.1. LetQbe a normalized bowl-shaped bounded domain and letu satisfy
the hypothesis of Theorem 5.1. Then, given 0 < p < ∞ and 0 < τ < α � α0,
there exists ε(p, τ) > 0 such that∫∫

Qτ

Deeu(x, t)
p dx dt � C

for all |e| = 1 and 0 < ε < ε(p, τ) with C a constant depending only on the
structure.

Proof. We iterate the inequality in Proposition 6.2. Notice that we can chooseM

large so that the statement of Proposition 6.2 holds for allλ � M. We begin the
iteration withλ = M and therefore(τ =)α1 = α − (M2)−p0 and we get

|Qα1 \Dα1
M2| �

√
Cn ε |Qα \Dα

M |.
Continuing in this way, we letλ = Mk andαk = α−∑k

j=1M
−p0(j+1), obtaining

|Qαk \Dαk
Mk+1| � C

(√
Cn ε

)k
for k = 1,2, · · · .

We fix τ < α and chooseM large so thatαk � α −∑∞
j=1M

−(j+1)p0 � τ . We

claim that if (x0, t0) ∈ A∗
σ (u), thenu(x, t0) � C(n) σ−n+1 |x − x0|2 + �z0(x)

for all x sufficiently close tox0. Indeed, we haveSh(x0|t0) ⊂ B√h/σ (x0) and,
by properties of the elliptic sections,c−1hn/2 � |Sh(x0|t0)| � chn/2. Applying
Aleksandrov’s maximum principle to the convex functionu(x, t0)− �z0(x)− h on
the setSh(x0|t0) yields dist(x0, ∂Sh(x0|t0)) � σn/2√h/σ , and the claim follows.
Therefore, if(x0, t0) ∈ A∗

σ (u), thenDeeu(x0, t0) � 2C(n) σ−n+1 for any|e| = 1.
By Lemma 6.2, if(x0, t0) ∈ D

αi
Mi+1, then(x0, t0) ∈ Qα ∩ A∗

1/M2(i+1) (u) and so

Deeu(x0, t0) � 2C(n)M2(n−1)(i+1). Therefore

D
αi
Mi+1 ⊂ {(x, t) ∈ Qαi : Deeu(x, t) � 2C(n)M2(n−1)(i+1)}.
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Thus

‖Deeu‖pLp(Qτ )

� M2(n−1)p |Qτ |

+
∞∑
i=0

∫
{(x,t)∈Qτ :M2(n−1)(i+1)<Deeu(x,t)�M2(n−1)(i+2)}

Deeu(x, t)
p dxdt

� C(M, n, α, τ, p)+
∞∑
i=0

|Qαi \Dαi
Mi+1|M2(n−1)(i+2)p

� C(M, n, α, τ, p)+ C(n)

∞∑
i=0

(
√
Cnε)

i+1M2(n−1)(i+2)p <∞

for ε sufficiently small.

To complete the proof of theW2,p estimates we need the following result due
toCaffarelli, see [Caf90b].

Theorem 6.2. Let u be a convex solution to

λ � detD2u � ! in �, (6.12)

u = f on ∂�, (6.13)

where� ⊂ R
n is aC1,α normalized convex domain and f ∈ C1,α , with α > 1− 2

n
.

Then for each h > 0 there exists δ > 0 such that for x0 ∈ �h = {x ∈ � :
dist(x, ∂�) > h} we have

S(x0, δ) = {x : u(x) < �x0(x)+ δ} ⊂ �h/2,

where δ depends only on h, λ,!, n, α and the C1,α norms of f and �.

Now we are ready to prove the following result for the parabolic case.

Theorem 6.3. Let u be a solution to Mu = f in the cylinder Q = �× (0, T ] with
u = φ on ∂pQ. Suppose that

(1) Bαn(0) ⊂ � ⊂ B1(0), ∂� ∈ C1,α with α > 1− 2
n

;
(2) 0< λ � f � !, f ∈ C(Q̄), ft ∈ Ln+1(Q) and exp(A(−ft )+) ∈ L1(Q) for

some A > 0;
(3) φ ∈ C2,1(Q̄) satisfying −c2 � φt � −c1 and C1 I � D2φ � C2 I in Q.

Then for each h > 0 there exists δ > 0 such that for (x0, t0) ∈ �h × (h, T ],
�h = {x ∈ � : dist(x, ∂�) > h}, we have

Qδ(x0, t0) = {(x, t) ∈ Q : u(x, t) < �x0(x)+ δ, t � t0} ⊂ �h/2 × (h/2, T ],

where δ depends only on h and the parameters.
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Proof. By Theorem 3.1 we get−m1 � ut � −m2 inQ. Thereforeu0(·) = u(·, t0)
satisfies (6.12) and by Theorem 6.2 there existsδ such that, ifx0 ∈ �h, then
Sδ(x0|t0) = {x : u(x, t0) < �x0(x) + δ} ⊂ �h/2. Since−m1 � ut � −m2, it
follows thatQδ(x0, t0) ⊂ Sδ(x0|t0)× (t0 − c δ, t0] ⊂ �h/2 × (h/2, T ].

We are now in a position to complete the proof of the main result in the paper.

Proof of Theorem 2.1(B). The proof will follow, combining Theorems 6.1 and
6.3. Letz0 = (x0, t0) ∈ �h × (h, T ] and suppose that we have a sectionQδ =
Qu(z0, δ) ⊂ �h/2 × (h/2, T ] such that|f (z0)− f (z)| � ε for eachz = (x, t) ∈
Qu(z0, δ). Taking δ sufficiently small, by Theorem 6.3 we may assume that
Qu(z0, δ) ⊂ �h/2× (h/2, T ]. Notice that sinceQ is normalized we have from the
size property of sections, Lemma 4.5, that

K(z0,K1 δ
ε1) ⊂ Qu(z0, δ) ⊂ K(z0,K2 δ

ε2), (6.14)

with Ki, εi being positive constants depending only onλ,! andn, andK(z,R) is
the standard parabolic cylinder defined in the statement of Lemma 4.4. LetT be
an affine transformation normalizingSδ(x0|t0),

Tp(x, t) =
(
T x,

t − t0

δ

)

as in the comment following remark (4.1), and consider the function

v(x, t) = C

δ

(
u(T −1

p (x, t))− �y(T
−1
p (x, t))− δ

)
,

where�x0 is the supporting hyperplane foru(·, t0) at x0, andC is a constant that
will be determined in a moment. We look atv on the setTp(Qu(z0, δ)), and we
havev = 0 on∂Tp(Qu(z0, δ)),

D2
xv(x, t) =

C

δ

{
(T −1)t (D2

xu)(T
−1
p (x, t)) T −1

}
, and

vt (x, t) = C ut(T
−1
p (x, t)).

Hence

Mv(x, t) = Cn+1

δn
|detT |−2 f (T −1

p (x, t)) = f (T −1
p (x, t))

f (z0)

for C = δn/(n+1) |detT |2/(n+1)

f (z0)1/(n+1)
. Nowf (z0)− ε � f (z) � f (z0)+ ε for z ∈ Qδ,

and so

1− ε

f (z0)
�

f (T −1
p z)

f (z0)
� 1+ ε

f (z0)

for z ∈ Tp(Q
δ). Sincef (z0) � λ, it follows that

1− ε

λ
�

f (T −1
p z)

f (z0)
� 1+ ε

λ
for z ∈ Tp(Q

δ).
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Then applying our result on the setTp(Q
δ) to the functionv, we get∫

(Tp(Qδ))h

Deev(x, t)
p dx dt � C(n, h, p)

for each unit vectore andε � ε(p, h).
By the definition ofv, we have

D2
xu(x, t) =

δ

C
T t (D2

xv)(Tp(x, t)) T ,

and consequently

Deeu(x, t) = 〈D2
xu(x, t) e, e〉

= δ

C
|T e|2 〈(D2

xv)(Tp(x, t)) e
′, e′〉 = δ

C
|T e|2 (De′e′v)(Tp(x, t)),

with e′ = T e

|T e| . We have(Tp(Qδ))h = Tp((Q
δ)h). Therefore

∫
(Qδ)h

Deeu(x, t)
p dx dt =

(
δ

C

)p
|T e|2p

∫
(T (Qδ))h

(De′e′v)(z)
p |detT |−1 δ dz

� f (z0)
p/(n+1)

(
δ

1
p
+ 1

n+1 |T e|2
|detT | 2

n+1+ 1
p

)p
C(h, n, p).

To estimate the term between parentheses, letE be the ellipsoid of minimum volume
containingSδ(x0|t0), and letµ1, · · · , µn be the axes ofE. If δ is small, then by
properties of elliptic sections we havec−1δn/2 � |Sδ(x0|t0)| � cδn/2, see [Gut].
The affine transformation that normalizesSδ(x0|t0) has the form

T x =
(
x1 − x0

1

µ1
, . . . ,

xn − x0
n

µn

)
,

where(x0
1, · · · , x0

n) is the center of the ellipsoidE (the center of mass ofSδ(x0|t0)).
We havec−1δ−n/2 � |detT | � cδ−n/2, and from (6.14) it follows thatµi �
K1 δ

ε1. Hence

δ
1
p
+ 1

n+1 |T e|2
|detT | 2

n+1+ 1
p

� C |T e|2 δ1+ 1
p
+ n

2p � C δ
1+ 1

p
+ n

2p−2ε1,

and consequently∫
(Qδ)h

Deeu(x, t)
p dx dt � C(λ,!, n, h, p) δp+1+ n

2−2pε1. (6.15)

We now chooseδ small depending only on the parametersλ,!, h and the modulus
of continuity off , so that|f (z0)− f (z)| � ε in K(z0,K2 δ

ε2), z0 ∈ �h× (h, T ],
and next select a finite covering of�h × (h, T ] by standard parabolic cylinders
{K(zj ,K1 δ

ε1)}Nj=1 with zj ∈ �h × (h, T ]. The desired inequality then follows by
adding (6.15) over(Q(zj , δ))h.
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7. The parabolic convex envelope on a bowl-shaped domain

Let Q be a bowl-shaped domain inRn+1, and u ∈ C(Q). We definethe
parabolic convex envelopes *u and*p

u as follows. Given(x0, t0) ∈ Q we let

*u(x0, t0) = sup{v(x0, t0) : v � u in Q with v ∈ C(Q) andp-convex inQ};
*
p
u (x0, t0) = sup{v(x0, t0) : v � u, in Q ∩ {t � t0} (7.1)

with v continuous andp-convex inQ ∩ {t � t0}}.
The setC of contact points, or contact set, is given by

C = {(x, t) ∈ Q : u(x, t) = *u(x, t)}.
Lemma 7.1. The following equality holds:

*u = *
p
u in Q. (7.2)

Proof. We obviously have*u � *
p
u in Q. Given(x0, t0) ∈ Q andε > 0, letv be

continuous andp-convex inQ ∩ {t � t0} such thatv � u in Q ∩ {t � t0} and

v(x0, t0) � *
p
u (x0, t0)− ε.

Sincev is p-convex there exists a supporting hyperplane�x0(x) such that

�x0(x) � v(x, t) in Q ∩ {t � t0}, and �x0(x0) = v(x0, t0).

By continuity of �x0 andu, there existsδ > 0 so that�x0(x) − ε � u(x, t) in
Q ∩ {t � t0 + δ}. Let 0 � α(t) � 1 be a continuous and nonincreasing function
on (0, t0 + δ) with α(t) = 1 on(0, t0) andα(t0 + δ) = 0. Set

w(x, t) = α(t)(�x0(x)− ε)+ (1− α(t))K,

whereK = min{minQ(�x0 − ε),minQ u}. It is easy to see thatw is continuous and
p-convex inQ, and satisfies

w � �x0 − ε � u in Q ∩ {t � t0 + δ},
w = K � u in Q ∩ {t > t0 + δ}.

Hencew � u in Q. Therefore

*u(x0, t0) � w(x0, t0) = �x0(x0)− ε = v(x0, t0)− ε � *
p
u (x0, t0)− 2ε,

and (7.2) follows by lettingε → 0.

Lemma 7.2. Let u ∈ C2,1(Q̄). If (x0, t0) ∈ C ∩Q, then there exist ε0 > 0, M > 0,
and p = Dxu(x0, t0), depending only on u (bounded by the C2,1 norm of u in Q̄),
such that

*u(x, t) � *u(x0, t0)+ p · (x − x0)+M
(
|x − x0|2 + t0 − t

)
(7.3)

for all (x, t) ∈ B√ε0(x0)× (t0 − ε0, t0] ∩Q.
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Proof. By the Taylor expansion,

u(x, t) � u(x0, t0)+ ut (x0, t0)(t − t0)+Du(x0, t0) · (x − x0)

+ 1
2〈D2

xu(x0, t0)(x − x0), x − x0〉 + ε(|x − x0|2 + t0 − t)

asx → x0 andt → t−0 , and forε small. Since*u(x, t) � u(x, t) and(x0, t0) ∈
C ∩Q, the lemma follows.

Lemma 7.3. Assume u ∈ C2,1(Q̄). Let (x0, t0) ∈ Q \ C and let L(x) = α + p · x
be a supporting hyperplane for *u(·, t0) at x = x0. Then there exist at most n+ 1
points (xi, ti) ∈ C such that

x0 =
n+1∑
i=1

λi xi, (7.4)

where λi � 0,
∑n+1

i=1 λi = 1, ti � t0, L(xi) = *u(xi, ti) = u(xi, ti) and p =
Dxu(xi, ti), i = 1, · · · , n+ 1.

Proof. We have*u(x0, t0) < u(x0, t0). SinceL(x) is a supporting hyperplane for
*u(x, t0) at x0, then*u(x, t0) � L(x) for all x ∈ Q ∩ {t = t0} and*u(x0, t0) =
L(x0). We have*u(x, t) � *u(x, t0) for all (x, t) ∈ Q∩ {t � t0}. Sinceu(x, t) �
*u(x, t), it follows that

u(x, t) � L(x) for all (x, t) ∈ Q ∩ {t � t0}. (7.5)

Let

H = {x : there existst such that(x, t) ∈ Q ∩ {t � t0} andu(x, t) = L(x)}.
We haveH �= ∅. Otherwise, by (7.5),u(x, t) > L(x) in Q ∩ {t � t0} and by
compactnessu(x, t)− L(x) � δ > 0 on the same set and for someδ > 0. Hence
*
p
u (x, t0) � L(x)+ δ. Using (7.2) and lettingx = x0 we get a contradiction. It is

clear that the setH is closed.
Let z ∈ H ands � t0 such thatu(z, s) = L(z). Then(z, s) ∈ C. Indeed,

u(x, t) � *u(x, t) � *u(x, t0) � L(x) for all (x, t) ∈ Q ∩ {t � t0},
and lettingx = z andt = s we obtainu(z, s) = *u(z, s).

Let Con(H) be the convex hull ofH . We claim thatx0 ∈ Con(H). Assume by
contradiction thatx0 /∈ Con(H) and letN be a neighborhood of Con(H) and�(x)
an affine function such that�(x0) > 0 and�(x) < 0 inN . We have

min{u(x, t)− L(x) : (x, t) ∈ Q ∩ {t � t0} \N × [a, t0]} � δ > 0,

with a lower bound fort when(x, t) ∈ Q. Hence, there existsε > 0 such that
u(x, t) − L(x) � ε�(x) for all x /∈ N andt � t0. Therefore, by (7.5),u(x, t) �
L(x)+ε�(x) for all (x, t) ∈ Q∩{t � t0}and consequently*u(x, t) � L(x)+ε�(x)
on the same set. Since*u(x0, t0) = L(x0), we obtain a contradiction.
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Therefore by Carath´eodory’s theorem, see [Sch93, Theorem 1.1.3, p.3]

x0 =
n+1∑
i=1

λi xi, (7.6)

whereλi � 0,
∑n+1

i=1 λi = 1, andxi ∈ H . Let ti � t0 be thet ’s corresponding to
xi ’s such that(xi, ti) ∈ Q ∩ {t � t0} andu(xi, ti) = L(xi). We haveu(xi, ti) �
*u(xi, ti) � *u(xi, t0) � L(xi) = u(xi, ti), and sou(xi, ti) = *u(xi, ti) = L(xi).
We also know thatL is a supporting hyperplane foru(·, ti) at x = xi for i =
1, · · · , n+ 1. Sinceu is regular,

L(x) � u(x, ti) = u(xi, ti)+Du(xi, ti) · (x − xi)+ o(|x − xi |2)
asx → xi . SinceL(xi) = α+p·xi = u(xi, ti), we getL(x) = u(xi, ti)+p·(x−xi)
and so

p · (x − xi) � Du(xi, ti) · (x − xi)+ o(|x − xi |2), (7.7)

and the lemma follows.

Lemma 7.4. If u ∈ C(Q), then *u ∈ C(Q).

Proof. We know that*u is p-convex inQ. We claim that

lim
t↓t0

*u(x0, t) = *u(x0, t0), (x0, t0) ∈ Q. (7.8)

By monotonicity*u(x0, t) � *u(x0, t0) for t � t0. Hence

lim
t↓t0

*u(x0, t) � *u(x0, t0).

To show the opposite inequality, givenε > 0 there existsv ∈ C(Q), p-convex,
so thatv � u in Q andv(x0, t0) + ε � *u(x0, t0). Sincev(x0, t) is continuous
and nonincreasing int , there existsδ > 0 so that 0� v(x0, t0)− v(x0, t) < ε for
t0 � t � t0 + δ. Hence*u(x0, t0) � v(x0, t)+ 2ε, for t0 � t � t0 + δ, and taking
the limit ast ↓ t0 yields

*u(x0, t0) � lim inf
t↓t0

*u(x0, t)+ 2ε.

Letting ε → 0 we obtain (7.8).
Let (x0, t0) ∈ {z ∈ Q : u(z) = *u(z)}. We claim that*u is continuous at

(x0, t0). Notice that, by monotonicity, ift � t0, then*u(x0, t) � *u(x0, t0) and,
since*u(x0, t) is nonincreasing, we get

lim
t↑t0

*u(x0, t) � *u(x0, t0). (7.9)

Sinceu ∈ C(Q) and(x0, t0) ∈ C, it follows that

lim
t↑t0

*u(x0, t) � lim inf
t↑t0

u(x0, t) = u(x0, t0) = *u(x0, t0).
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By (7.9) we then have

lim
t↑t0

*u(x0, t) = *u(x0, t0). (7.10)

This combined with (7.8) yields

lim
t→t0

*u(x0, t) = *u(x0, t0). (7.11)

On the other hand, since*u is bounded inQ and convex inx, it follows by [GH00,
Lemma 1.1] that|*u(x1, t) − *u(x2, t)| � C |x1 − x2| for (x1, t), (x2, t) in a
neighborhood of(x0, t0). Therefore

|*u(x, t)− *u(x0, t0)| � |*u(x, t)− *u(x0, t)| + |*u(x0, t)− *u(x0, t0)|
� C |x − x0| + |*u(x0, t)− *u(x0, t0)| → 0

as(x, t)→ (x0, t0) by (7.11).
It remains to show that*u is continuous when(x0, t0) �∈ C. By subtractingL

from u we may assume thatu(xi, ti) = 0, and thereforeu(xi, ti) = *u(xi, ti) = 0.
(Notice that this implies that*u(x0, t0) = 0.) Since (7.8) holds by reviewing the
previous argument, we notice that to prove the continuity of*u at (x0, t0) it is
enough to establish (7.10). Actually it is enough to show that

lim
t↑t0

*u(x0, t) � *u(x0, t0).

Case 1. Suppose(xi, ti) ∈ Q, ti < t0. Then

lim
0t→0+

*u(xi, t0 −0t) � lim
0t→0+

*u(xi, ti −0t)

� lim
0t→0+

u(xi, ti −0t) = u(xi, ti) = 0.

Case 2. Suppose(xi, ti) ∈ ∂pQ, ti < t0. For eachε > 0 there exist0x andh so
that|0x| < ε, |h| < ε and such that(xi+0x, ti+h) ∈ Q andu(xi+0x, ti+h) <

u(xi, ti)+ ε = ε. Therefore

lim
0t→0+

*u(xi +0x, t0 −0t) � *u(xi +0x, ti + h) � u(xi +0x, ti + h) � ε.

Case 3. Suppose(xi, ti) ∈ ∂pQ, ti = t0. For anyε there exists|0xi | < ε such
that(xi +0xi, t0) ∈ Q andu(xi +0xi, t0) < u(xi, ti)+ ε. Hence

lim
0t→0+

*u(xi +0xi, t0 −0t) � lim
0t→0+

u(xi +0xi, t0 −0t)

= u(xi +0xi, t0) < ε.

Summing up: ifx0 =∑n+1
i=1 λixi , then for each(xi, ti) we have

lim
0t→0+

*u(xi +0xi, t0 −0t) � ε,
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with some0xi possibly equal to zero. Therefore

lim
0t→0+

*u

(∑
λi(xi+0xi), t0−0t

)
�
∑

λi lim
0t→0+

*u(xi+0xi, t0−0t) � ε.

Since(x0, t0) ∈ Q, and all0xi , 0t are small, by convexity of*u it follows from
[GH00, Lemma 1.1] that*u is locally Lipschitz inx with a Lipschitz constant
uniform in t . Hence

lim
0t→0+

*u(x0, t0 −0t) � K

∣∣∣∑ λi0xi

∣∣∣+ lim
0t→0+

*u

(
x0 +

∑
λi0xi, t0 −0t

)
� (K + 1) ε.

That is, lim0t→0+ *u(x0, t0 −0t) = 0, and hence*u is continuous at(x0, t0).

Proposition 7.1 (Regularity of*u). Let u ∈ C2,1
(
Q
)
, where Q is a bowl-shaped

domain, u = 0 on ∂pQ, and u < 0 in Q. Assume in addition that Q is defined by
Q = {(x, t) : B(x, t) < 0, t < T } where B is p-convex, and that if B(x0, t0) = 0,
then there exist c > 0 so that B(x0+0x, t0−0t) � 0 for |0x| � c0t .2 Then *u
is locally in W

2,1∞ (Q) and M*u � χC Mu, where χC denotes the characteristic
function of the contact set C.

Proof. If (x0, t0) ∈ C∩Q, then the proposition follows from Lemma 7.2. Suppose
that (x0, t0) /∈ C. Let K � Q be compact such that(x0, t0) ∈ K, andL be a
supporting hyperplane as in Lemma 7.3 and(xi, ti) the corresponding points.

Step 1. There exist a compactK0 � Q and a constantC > 0, both depending
only onK andu, and at least one(xi, ti), say(x1, t1), such that(x1, t1) ∈ K0 with
λ1 � C. Indeed, let−δ0 = maxK u < 0, and takeK0 � Q such that

u > − δ0

n+ 1
in Q \K0.

SinceL(x0) = L
(∑n+1

i=1 λixi

)
= ∑n+1

i=1 λi L(xi), we get−δ0 � u(x0, t0) �
L(x0) = ∑n+1

i=1 λi u(xi, ti). Henceδ0 � (n + 1) maxi λi |u(xi, ti)|, and assuming
the maximum is attained wheni = 1, we getδ0 � (n+ 1) λ1|u(x1, t1)|. If λ1 � 1
then

u(x1, t1) � − δ0

n+ 1
,

that is(x1, t1) ∈ K0 and consequently

λ1 � δ0

(n+ 1) maxQ |u| .

2 This holds if for exampleB is Lipschitz in(x, t).
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Step 2. The function*u(x, t0) isC1,1 in x.
Let0x < dist(K, ∂pQ). By (7.4), we write

*u(x0 +0x, t0) = *u

(∑
i>1

λi xi + λ1

(
x1 + 0x

λ1

)
, t0

)

�
∑
i>1

λi *u(xi, t0)+ λ1*u

((
x1 + 0x

λ1

)
, t1

)

�
∑
i>1

λi L(xi)+ λ1

(
L

(
x1 + 0x

λ1

)
+M

∣∣∣∣0xλ1

∣∣∣∣
2
)

by Lemma 7.2

= L(x0 +0x)+ M

λ1
|0x|2.

Step 3. The function*u(x0, t) is Lipschitz int , t � t0.
By assumption,(xi + 0xi, t0 − 0t) ∈ Q with |0x| < C0t . From (7.4), we

have

*u

(
x0 +

∑
i

λi0xi, t0 −0t

)
= *u

(∑
i

λi(xi +0xi), t0 −0t

)

�
∑
i

λi *u((xi +0xi), t0 −0t)

�
∑
i

λi *u((xi +0xi), ti −0t)

�
∑
i

λi

(
L(xi +0xi)+M(|0xi |2 +0t)

)

� L

(
x0 +

∑
i

λi0xi

)
+ CM 0t.

On the other hand, since*u is bounded inQ and convex inx by [GH00, Lemma 1.1]
we have|*u(x1, t)−*u(x2, t)| � C |x1−x2| for (x1, t), (x2, t) in a neighborhood
of (x0, t0). Therefore,

*u(x0, t0 −0t) � C |
∑
i

λi0xi | + L(x0 +
∑
i

λi0xi)+ CM0t

� L(x0 +
∑
i

λi0xi)+ 2CM 0t � L(x0)+ C′M0t,

and Step 3 is proved.

Step 4. The function*u(x, t0) is affine in the simplex generated by{xi}. In fact, let
x =∑µixi with µi � 0 and

∑
µi = 1. Since*u(xi, ti) = L(xi) and*u(x, t) �
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*u(x, t0) � L(x) for all x andt � t0, we get

L(x) � *u(
∑

µixi, t0) �
∑

µi*u(xi, ti) = L(x),

and so*u(
∑

µixi, t0) = L(
∑

µixi) which proves Step 4.
Consequently, detD2

x*u(x, t0) = 0 for x in the simplex generated by{xi} and
in particular forx = x0. This completes the proof of the proposition.

Remark 7.1. LetQbe as in Proposition 7.1, so∂pQ = {(x, t) : B(x, t) = 0}. Then
*u is continuous up to the boundary ofQ and*u = 0 on∂pQ. Let (x0, t0) ∈ ∂pQ.
Let 0t > 0 be small and�(x) = DxB(x0t , t0 + 0t) · (x − x0t )be a supporting
hyperplane forQ ∩ {t = t0 + 0t} with (x0x, t0 + 0t) ∈ ∂pQ. ChooseK very
negative andε > 0 small so thatK�(x)− ε � u(x, t) in Q∩{t � t0+0t}. Hence
K�(x) − ε � *u(x, t) � u(x, t) in Q ∩ {t � t0 + 0t}. Fixing for a moment0t
andx0t , sinceB is Lipschitz we get

−K C |x − x0t | − ε � *u(x, t) � u(x, t),

and now letting(x, t)→ (x0, t0) yields

−K C |x0 − x0t | − ε � lim inf
(x,t)→(x0,t0)

*u(x, t) � 0.

Letting0t → 0 we getx0t → x0 and consequently

−ε � lim inf
(x,t)→(x0,t0)

*u(x, t) � 0,

and so*u(x0, t0) = 0.

Corollary 7.1. Let u ∈ C(Q̄) ∩ C2,1(Q) with u = 0 on ∂pQ, u < 0 in Q, a
bowl-shaped domain whose defining function is Lipschitz in x. Then *u ∈ C(Q̄)

and *u = 0 on ∂pQ and

M*u � χC Mu,

where χC denotes the characteristic function of the contact set C.

Proof. The first part follows from the previous remark.
Let φ be a mollifier inR and

fε(x) =
∫
|y|�1

φ(y) gε

(
x − ε

3
y
)
dy,

where

gε(x) =




0 for x > −4ε/3,

5

(
x + 4ε

3

)
for −5ε/3 < x < −4ε/3,

x for x < −5ε/3.
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Thenfε ∈ C∞ and

fε(x) =



0 for x > −ε,
↑ for −2ε � x � −ε,
x for x < −2ε.

Let uε = fε(u) → u in C(Q̄). TakeQε ↑ Q, whereQε is a smooth bowl-shaped
domain such thatuε � 0 in a small neighborhood of∂pQε. Thenuε ∈ C2,1(Q̄),
and applying Proposition 7.1 touε yields

M*uε,Qε � Muε χ{uε=*uε,Qε }.

Since*uε,Qε → *u,Q andMuε = Mu forK � Q compact, we obtainM*u,Q �
Mu χ{u=*u,Q}.
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