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Abstract

We prove in this paper the asymptotic completeness of the family of solitons
in the energy space for generalized Korteweg-de Vries equations in the subcritical
case (this includes in particular the KdV equation and the modified KdV equation).
This result is obtained as a consequence of a rigidity theorem on the flow close to
a soliton up to a scaling and a translation, which has its own interest. The proofs
use some tools introduced in a previous paper to prove similar results in the case
of critical generalized KdV equation.

1. Introduction

In this paper, we consider generalized Korteweg-de Vries equations in the sub-
critical case

ur + (uyy +uf)y =0, (t,x) e R xR,
(1)

u(0, x) = up(x), x eR,

for p = 2, 3, 4andup € H(R). These models appear in the study of waves on shal-
low water (se&oRTEWEG & DE VRIES [11]), as well as in other areas of physics (see,
e.g.,.LamB [12]). These equations, together with nonlinear 8dmger equations,

are considered as universal models for Hamiltonian systems in infinite dimensions.
From the Hamiltonian structure, we have formally the following two conservation

laws in time:
f u?(t) = / uf, )
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From these conservation lawg! appears as an energy space, so that it is a natural
space in which to study the solutions.

In equation (1)p = 2, corresponding to the KdV equation, is a special case in
the theory. Indeed, from the integrability (deex [13] andMrura [17]), we have
for suitableug (1o and its derivatives with exponential decay at infinity) an infinite
number of conservation laws. In this situation, the problem can be transformed
through nonlinear estimates into a linear problem. Unfortunately, these techniques,
in order to be relevant, require very regular solutions with fast decay at infinity. The
results that we will present are new#i*(R), even forp = 2.

Recall that the well-posedness of (1) inthe energy space is now well understood:
for any p = 2, 3, 4, it follows from the results oKeNiG, PONCE & VEGA [9]
that, for allug € H1(R), there exists a unique solutieone C(R, H1(R)) of (1)
satisfying (2) and (3) for alt € R (see Corollaries 2.2, 2.5 and 2.7 in [9]). The
proof of this result involves oscillatory-integrals techniques and sharp space-time
estimates. Throughout this paper we work in this framework, though in order to
obtain compactness resultsif, we also use the fact that the Cauchy problem is
well posed inH*" for some 0< s* < 1 ([9]).

We refer toKaTo [8], GINIBRE & TsuTsuwmi [6], for previous results on thE ¢
theory ¢ > %) and toBouracalN [3] for the case of periodic initial data.

In the subcritical casg = 2, 3, 4, the global existence of all solutions At
as well as uniform bound if'L, follow from the Gagliardo-Nirenberg inequality,

p+3 p—1

Vv e HYR), /Ivl”+1§C(p) (/v2>4 </U§>4

and relations (2), (3), which implyr € R, [u?(t) = [uZ and [ |u,(1)|? <
C(Juol 1)

This is in contrast with the critical and supercritical cases (rgsps 5 and
p > 5, p integer), where local well-posednessAft is known from [9], but the
existence of singularity in finite or infinite time for some solutions of (1) (i.e.,
lu(t)| g1 — +oo ast + T, for someT > 0) is conjectured. Note however that it is
still an open problem.

In fact, few results on the qualitative properties of the solutions are known for
these equations, for any > 1.

Equation (1) has traveling-wave solutions (called solitons), of the form

u(t,x) = Re(x —ct),
wherec > 0 andR, > 0 satisfies the equation
R. € Hl(R)s Rexx + Rf = cR.,

or equivalently, by integration,

‘ -
o

=
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ch+—p 1R§’ =cR: and R.(x) =

c(p+1

ot (tpvery)
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The study of the flow around these solitons is crucial for the understanding of the
generic behavior of solutions of (1). Indeed, these Hamiltonian systems in infinite
dimension are known to have complicated dynamics even for short time (involving
time oscillations). Therefore, any result of classification of solutions is relevant.
Thanks to the structure of the equation near the solitons, a geometrical approach
related to a refined control on the dispersion will reduce the complexity of the
equation and allows us to look for an asymptotic regime for large time.

The notions of stability and asymptotic stability of the solitons are crucial. We
say that fore > 0 the solitonR.(x — cr) is stable inH1 if

V80 >0, 3ag >0/ |uo— Relpg1 S ap =
Vi 20, 3x@) / |u@) — Re(. —x(@)| g1 = So.  (5)

We say that the family of solito®. (x —xo—ct), ¢ > 0, xg € R}isasymptotically
stable if

Jag >0/ luo— Rl S 2o =
Vi20, 3e(r), x(t) /ult, .+ x(1)) — Reqry =0 inH. (6)

We recall previously known results concerning the stability of the solitons and
the asymptotic stability of the family of solitons, respectively in the subcritical,
supercritical and critical cases:

— In the subcritical casey = 2, 3, 4, it follows from energetic arguments that the
solitons areH ! stable (Se€AZENAVE & L10Ns [5], WEINSTEIN [22], andBoNA,
SouGANIDIS & STRAUSS [2]). Moreover,PEGo & WEINSTEIN [19] proved that
the family of solitons is asymptotically stable in the case 2 (KdV equation)
and p = 3 (modified KdV equation), for initial data with exponential decay as
x — +o0. In [19], the case of initial data in the energy space is not treated, for
any value ofp.

— In the supercritical case > 5, numerical simulations (seé@on~a et al. [1] and
references therein) suggest that blow-up in finite time occurs for some initial data.
However, no rigorous proof of existence of such singular solutions exists. For
p > 5,BONA, SOUGANIDIS & STRAUSS [2] proved, USINGGRILLAKIS, SHATAH &
STRrAUSS [7] type arguments, th&/ ! instability of solitons. Their proof does not
apply to the casg = 5. For example, the proof uses the veotos % + xR1y,
which satisfiesL.y, y) = 0 for p = 5 (see top of page 406 in [2]). In fact, the
existence of a suitable in their proof is based on the conditiaff (¢) < 0 or
equivalentlyp > 5, see Theorem 3.1 in [2].

— Inthe critical casep = 5,

wy + (y +u®, =0, (t,x) e Rt xR,

(7)
u(0, x) = ug(x), x €R,

the problem becomes degenerated. Indeed, while in the subcritical and super-
critical cases, for a givei.2 norm, there is one and only one soliton (up to
translation), in the critical case, we have > 0O, |R.|;2 = |R1|;2 and moreover
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E(R.) = 0. In particular, all the solitons lie on the same level set of these two
quantities. This property will have a consequent effect on the structure of the
linearized operator around the solitons (see Section 4).

Note that the variational structure of the critical generalized KdV equation
presents a lot of similarities with the one of the critical nonlinear &dimger
equation in one space dimension. Indeed, on the one hand, it follows from the
invariants (2) and (3) and a sharp Gagliardo-Nirenberg inequality that, for initial
data satisfyinguo|;2 < |R1|;2, the solution of (7) is global and bounded##t.

On the other hand, it is conjectured that there exist blow-up solutions of (7)
such thatug|;2 = |R1|;2 (See numerical simulations Bona et al. [1]), though
no rigorous proof of existence of a blow-up solution is available at this moment.

Afirstresultinthe direction of blow-up for the critical generalized KdV equation
is established iMARTEL & MERLE [14], by showing that:(¢, x) = R1(x —t) IS
unstable i (by scaling argument, all solitons are unstable). This result is proved
in a qualitative way, finding the interior of a parabola as the instability region.

Next, InMARTEL & MERLE [15], we established some crucial properties in the
direction of understanding the structure of the equation clogg 1t a neighbor-
hood of

R o, = {Rey(x —x0) , co € (c1,¢2), x0 €R}, (0 <c1<c2).

In particular, we proved a rigidity theorem on (7) closeRfp) ., in the energy space
(i.e., a characterization of the soliton) related to the notion of dispersion. In some
sense, this Liouville theorem says that if a solution defined far alR is close at
some point to a soliton and does not disperse, then it is exactly a soliton.

This Liouville theorem and the monotonicity in time of a quantity related to the
dispersive effect of the linear Airy equation imply the asymptotic completeness of
the solitons. Nevertheless, the proof is based on some specific algebraic properties
due to the special structure of the critical case, and on an extensive use of the local
well-posedness of the Cauchy problentify which is not valid in the subcritical
case. See [15] for precise statements in the critical paseb.

In this paper, we prove similar results in the subcritical case. First, we state the
result of asymptotic completeness of the family of solitons in the energy space.

Theorem 1 (Asymptotic stability forp = 2, 3, 4).Let p = 2, 30r 4,andletcg > 0.
Letug € HY(R), and let u(r) bethesolution of (1) on Rt x R. Thereexistsag > 0
such that if |ug — Reql g1 < o, thenthere exist 1o, > 0 and a function x(¢) such
that

u(t,. +x(t)) = Re,, in HY(R) ast — +oo.

Remark 1. The conclusion of Theorem 1 is also true for sameg, ast — —oo,
by changinge — —x,t — —r.

Note that the result implies convergenceliA(R, e~ldx) and LX.(R). A
result of strong convergence ik?(R) is false. For example, fop = 2, using
integrability, we can construct a solution such that for a seall0,

lu(t,.+x()) — Ry — R(. — xg(t))|Loot —J>r 0, wherex.(t) - —o0.
—T00
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Moreover, forp = 2, 3, 4, convergence i strong ag — +oo in Theorem 1
implies that the solution is exactly a soliton by using the characterization of the
soliton given in Theorem 2, see below (indeed, in this case, the solutibA is
compact).

Note that, from the proof of Theorem 1, tii& dispersion occurs only at the
left of the soliton.

Remark 2. For other results of this type for subcritical generalized KdV equations,
we refer toPEGo & WEINSTEIN [19] (see alsdMizumacHi [18]). Their approach
is based on linear theory aroud which allows only initial data with fast decay
at +oo (exponential or polynomial decay). Therefore, the results are obtained in
spaces different from the energy space of the nonlinear proHl&rMoreover, this
approach requires in some sense that the interaction between the linear dynamics
and the nonlinear dynamics is decoupled enough. See also the reBattwfan
& WaNG [4] for the critical nonlinear Scladinger equation where decoupling is
essential and requires the introduction of weighted spaces for the function and some
of its derivatives as well as some additional orthogonality conditions on the initial
data. Our approach does not rely on decoupling and thus we do not need this kind
of assumption.

Note that due to the lack of control on the size of the tail of the solution in
Theorem 1, we do not have precise control of the convergence rate to the soliton as
in [19].

Remark 3. From the proof of Theorem 1, we also hayé&) — ¢4~ ast — +oo.
In the critical case, the result of asymptotic stability is stated as follows:
(1), x(r) such that

u(t, .+ x(t)) — Rey — 0 in HY(R) ast — 4o0.

(see Theorem 2 in [15]). This can be explained as follows. In both the critical and
subcritical cases, thlaﬁJC norm of the solution is monotone in time in some sense.
In the subcritical case, the limit as— +oo of the Lﬁ)c norm of u(¢) selects

the asymptotic soliton since, for a givérf norm, there is only one soliton up to
translation; this is crucial for obtaining the limit ofz). In the critical case, the
monotonicity of theLﬁ)c norm does not prevent oscillations @f) ast — +oo
since all solitons have sani€ norm; this is an illustration of degeneracy. From the
possible existence of blow-up solutions closerlg; for c¢(t) — 400, we think
that, in the critical case, there do exist solutions for whi@h oscillates between

two values.
The proof of Theorem 1 is based on the following Liouville Theorem.

Theorem 2 (Liouville property close taR., for p = 2,3,4). Let p = 2,3 or 4,
and let co > 0. Let ug € HY(R), and let u(r) be the solution of (1) for all time
t € R. Thereexistsag > O such that if |ug — Reyly1 < ao, and if there exists x (¢)
suchthat v(¢, x) = u(z, x + x(¢)) satisfies

Vo >0,340>0,Vt €R, / v2(t, x)dx < 89, (L? compactness),
|x|>Ag
(8)
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then thereexistsc1 > 0, x1 € R such that
VteR,VxeR, u(t,x)=R;(x—x1—cit).

Remark 4. From [22], we know thatR., is stable, in the sense that (5) is true
for R.,. In the above theorems,(r) is defined for allz € R since we consider
subcriticalp’s, whereas the further property

VieR, C1<|u()ly: < Ca ©)

is implied by theH ! stability of R, and the assumption thaig — R, | ;1 is small.

In the critical case, (9) is not necessarily true under the same assumptions
because ofthe possible existence of blow-up solutions close to the family of solitons.
This is the reason why it is given as an additional assumption in the results of [15].

Remark 5. For a class of nonlinear parabolic equation
_ p-1
ur = Au + |ul’"u,

whereu : RY — RM, and 1< p < ¥+2, a Liouville theorem related to blow-up
solutions has been establishedMyrLE & Zaac [16]. Of course, the structure of
the problem and the proof for the KdV equations are completely different.

Remark 6. It might be expected that the Liouville property would still true without
the smallness diig — R, |y1. However, at least fop = 3, a counter example (see
references if.amB [12] andKENIG, PONCE & VEGA [10]) proves that the smallness
condition is necessary. This question for other valugsisbpen. Indeed, fgy = 3,
the following solutions of (1) (called breather solutions)

B 2V6w (cos(Nx +81) — (w/N)Sin(Nx + 8t)tanhwx + yt))
ch(wx + y1) 1+ (w/N)2Sir?(Nx + 81) /ch(wx + y1)

wheres = N(N? — 30w?) andy = w(3N? — w?), are example of global in time
solutions, without dispersion, which are not of the typ&x — ct).

Remark 7. Note that apart from being a crucial result for proving the asymptotic
completeness of the family of solitons, the Liouville property has its own interest.
Indeed, it gives a characterization of the solitons: it says that, locally in the space
H*Y, the solitons are the only solutions which do not disperse. Extension of this
classification result to alif* would give the generic behavior of the solutions of
(1). Recall thatin the cage = 3 there is another family of nondispersive solutions
(see preceding remark).

In the proof of Theorem 1, the? localization condition (8) is satisfied by an
asymptotic object as — +o0, and therefore it is a natural assumption in this
problem. Moreover, from the proof of Theorem 2, we will see that the condition
of L2 localization uniform in time around the center of mass implies, surprisingly,
a far more precise result of uniform pointwise exponential decay (see Section 3).
In conclusion, an asymptotic object such as the one constructed in the proof of
Theorem 1 has uniform exponential decay in space.
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Now, we give some notation and an outline of the methods used in the proofs.
The method used in the proof will be close to the one used in the critical case
(see [15]); however various technical differences will be pointed out. We consider
p=2,34.

By scaling, in Theorems 1 and 2, we can restrict ourselves to the case where

co = 1 (if u(z, x) is solution then foiig > 0, AO u(k t, Aox) is also a solution).

We note that
p—1
p+1
Ox)=Rix)=| —F—— )
! (2Cl’12 (pTlx>)

so thatQ satisfiesQ,, = O — Q°”.

Throughout this paper, we consider a solutigr) of (1) with [ug— Q|1 < ag,
whereayp, to be chosen later, is small. By the stability @fin H*, we have, for
somey(t),

Vi, Ju(t) — Qx — y(®)|g = e(@o) (10)
wheree(ag) — 0 aseg — 0. From modulation theory and the invariances of the

equation (ifu(z, x) is a solution then fokg > 0 andxg € R, A u(A t, Aox + x0)
is also a solution), it is natural to set

2
-1

v(t,y) = A7 T(u, Ay +x()) and e, y) =v(t,y) — Q)

where the geometrical paramet«s), x(¢) are chosen so that

VieR, (e(t), Q) = (1), Qy) =0

(see [14], [15]). Recall that the orthogonality with respecidp is related to a
choice of center of masgr), while A(¢), the scaling of the approximate soliton, is
chosen through orthogonality with respecfQoThere are many other possibilities
(small perturbations of the functions above for example).

Note that in the subcritical case, such a choice is possible since

d Ll . 20
(ﬁ/ 00 0(x) dx)x_l_/<—p 1+xQx> 0

(11)
2(p 1)/ 0*#0

and
d 1 2
— | Q(x+x)0x(x)dx = [ 0;#0. (12)
dx x'=0

(See Proposition 1 in [14].) In this paper the orthogonality with respe@ fe

strongly used. The choice of the orthogonality condit{ietr), 0) = 0 was not
possible in the critical case sin¢¢ 0 + xQy), Q) = 0 in this case. However,
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from an algebraic property of the linearized operator in the critical case, this con-
dition was automatically recovered for the asymptotic linear problem considered
in Section 5 (see [15], Part B).

If we change the time variable as follows,

/ﬂ di or equivalentl ds !
S = — —_— =,
o A3(@) 9 y dt A3

thene satisfies, by direct calculations, fore R, y € R,

2Q Xs )"S 2¢
= (Le)y + )L (p +)’Qy> (7—1) Qy+7<m+y5y>

+(7—1) (@ +0)" = (0" +p0r ey,

(13)
where
Le =Lye=—gx+¢— pOP~Le. (14)

Note that|(Q + &)? — (Q7 + pQP~Le)| < Ce?. By (10), there exists; (ag) — 0
asag — 0 such that we have

Vs, eIyt + () — 1 = Cex(ao). (15)

Finally, note that with the above choice of orthogonality conditions,arsing (11),
the propertied 9, = 0, LQy, = p(p — 1)QP‘2Q§, and parity properties (see
Lemma 4 in [14] for similar calculations), we have the following relations between

Z andi —
)\S 2 _
2oty [ @ [vee)+ [ore =0 qo

)"S S
—Tnyny"‘ 7—1 (E/QZ_nyy'E)
—-p(p—1) / QP 20% + / 0,yR(e)=0.  (17)

In particular, this gives smallness éﬁ‘r and3t — 1.
As in the critical case, Theorem 2 is equivalent to the following proposition in
terms ofs.

Proposition 1 (Liouville Theorem fore). There exists a1 > 0 such that if ¢ €
C(R, HY(R))NL*®(R, H(R)) isasolutionof (13)onR x R satisfying |¢(0)| ;1 <
a1 and

(H1) Orthogonality conditions:
Vs eR, (e(s), Q) = (e(s), 0y) =0
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(H3) L2 compactness: ¥ g > 0, 3 Ag(8o) > O, such that
Vs e R, |8(s)|L2(|y|>A0) g (SO,
thene =0o0nR x R.

Theorem 1 will be a consequence of the following proposition.

Proposition 2 (Asymptotic behavior of). Let
e e C(RT, HYR)) N L®R*, H(R))

be a solution of (13)on R* x R. There exists a, > 0 such that if [¢(0)| 51 < az,
thene(s) = 0in HY(R) ass — +o0.

Remark 8. Recall that, from the stability of) in the subcritical case and the de-
composition, we have under the assumptions of Propositions 1, 2:

(H2) H! bounds: there exists.1, A» > 0 such tha¥'s € R, 21 < A(s) < Ap.

In the critical case [15], (H2) is an additional assumption, which is necessary
due to the possible existence of blow-up solutions.

The rest of this paper is organized as follows. Section 2 is devoted to basic
estimates on (1). In Section 3, we show that the proof of Theorem 1 (asymptotic
stability) can be reduced to the proof of the Liouville property, Theorem 2. This is
the analogue of Part C in [15]. The main difference comes from the spaces in which
the Cauchy problem is solved (see [9]). It introduces some technical modifications.
As in [15], we use a quantity which measures the mass of the solution at the right of
the soliton, and we control the variation in time of this quantity. The conclusion is
that as — 400, the solution has to remait? compact, which reduces the rest of
the proof to a nonlinear Liouville property (Theorem 2). To obtain the convergence
of the scaling parametén(r) asr — +oo, we use a monotony property ir? and
the subcriticality ofp (i.e., there is a uniqu&, (up to translation) of giveri?2
norm), see Remark 3.

In Section 4, we show that the nonlinear Liouville property closeDtas
equivalent to a Liouville property on a linear problem. To do this, as in Part A
of [15], we introduce a sequenae, = Z— of renormalized solutions of (13)

(an = supcr len(s)] y1). We show that the.2 compactness leads to the following
properties:

Vs eR, VyeR, |wa(s,y)| < Ce M and lwy(s)|z2 =2 ¢ >0, (18)

which implies the equivalence of all norms of,. The proof of (18) is based on

the nonlinear decomposition ef in a nonlinear part, which decays in time, and a
localized part, which decays in space on the right. The decay in time of the nonlinear
part is obtained through a monotonicity property of small solutions of (7) proved
in Section 2. Note that the same technique applies in the critical case, even if in
[15] we have shown this property in a different way.
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Finally, in Section 5, we prove the linear Liouville property. This is where the
main differences with the critical cage= 5 appear. Indeed, in the subcritical case,
the linear operator has less structure, see Remark 13. However, in the three cases
p = 2, 3,4, we can reduce the proof of the linear Liouville property to the study
of a quadratic form. As in the critical case, it is crucial that the linear operators are
classical ones, so we can do explicit calculations.

2. Preliminaries

In the critical case, we have established a monotonicity property for (1). This
property says that in some sense, the mass of the solution cannot travel to the right
of the solitons. We recall two main results in this direction.

For K > 0 to be chosen later, define

VxeR, ¢ =¢x(0)=c0 ().
v =vew = [ oo,

where

K
C= ——FF,

= —
Q(y) dy

—00

so thaty (x) - 0 asx - —oo andyr(x) — 1 asx — +o0.
Let z be a solution of (1), and define, for> 0,

Vi>0, ZI(t)=2Zs(t) = /zz(t,x)w(x —ot) dx.

Lemma 1 (Monotonicity of Z for small solutions of (3)) For anyo > 0, if K >
\/g, and

1

o\ 71
Suplz(t) |z < do = (“’g—)"> , (19)
t=>0 14

then the function Z is nonincreasing in ¢.
Proof. The proofis very similar to the proof for the critical case, see Lemma 16 in

[15]. Recall that it makes use of a Virial-type identity for (1): for evéry/function
¢, we have

d 2 200 7 / 2/ (3 2p Pl 7
— — . 2
o] ®e 3/zx(t)<p + [ 27 + b+l LA (317 (20)



Asymptotic Stability of Solitons 229

Letu(r) be a solution of (1) such that (10) is satisfied. kgk R, let

To(1) = /uz(t,x)l/f(x — x(0) — ot — x0) dx.

With the decomposition af(¢) in terms ofe (), A(¢), x(¢) (se the introduction) we
have the following corollary of the monotonicity lemma.

Corollary 1 (AlImost monotonicity for a solution close to the solijohet o > O,

K > 0 such that
0<i’ K > E
_4A2 Vo

There exists ag = ap(o) such that if sup>q [e(r)[ 51 < agp, thenfor C = C(o, K),
VxgS0,¥1 20, Ty(t) — Lyy(0) < Ce¥.

The proof of Corollary 1 is omitted since it is exactly the same as in the critical
case (see Lemma 20 in [15]).

Moreover, let us recall a Virial-type identity feKs), solution of (13). See also
[14], Lemma 5, for similar calculations.

Define

I1(s) = %/ysz(s).

Then, we have, by direct calculations:

3
1()+2T171()

=2 [ (2 eve)er (21 ([roe-3 )
—g(Ls,s)-i-/z Plp— 1)/Q”2(2Q1+yQ>

B [ern- /((Q+8)” 0" — poPle —eP)ye.  (21)

3. Asymptotic behavior of (s) and A(s) ass — +oo

First, we prove Proposition 2, and then we conclude the proof of Theorem 1 by
proving the convergence @{r) using monotonicity properties ih?.

3.1. Asymptotic property of (s)

In this subsection, we show that the Liouville theoremsfanplies the asymp-
totic behavior result oa. Proposition 1 is proved in Sections 4 and 5.

Proof of Proposition 2, assuming Proposition 1. The proof is by contradiction.
Assume that for some sequenge— +o0o, we have

e(sp) A~ 0 inH'asn — +o0.
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Note that by theH?! stability of Q (5), since|e(0)|y2 < ap, we havea =
SUR>q le(s)| y1 as small as we want provided thatis small enough.

Sincele(sy) |1 £ C andiq £ A(sy) < Ao, there exists a subsequence. s,
which we still denote bys,), g0 € H(R) andio > 0 such that

T0#0, &(sy) 0 inHY, and A(sy) — Ao asn — oo. (22)

Note that/ep| 1 < a. R
Denote bye(s) the solution of (13) for alk € R, withe(0) = gp and (%, X)
such thate satisfies(e, Q) = (€, Q,) = 0. Setv(t,y) = Q(y) + &(t,y) =

)ul’%l(t)u(t, At)y +x(@),andv = Q +%.
We have the following lemma, relatingande.

Lemma 2 (Stability of weak convergence with respect to tjnfeor all s € R,
g(sy +5) =~ 2(s) inHYR)asn — +c. (23)
We claim the following property.

Lemma 3 (L2 compactness of ). The function ¢ is L? compact, i.e.,
V&g >0, 3A0= Ap(8g) > 0, suchthatVs € R, / 22(s) < 8o. (24)
lyI>Ao

Assuming (24), the conclusion of the proof of Proposition 2 follows from Propo-
sition 1. Indeed, from Lemma 2, note théat € R, [(s)| 1 < a, ande is a solution
of (13) satisfying (H1) and (H3). Therefore, for small enough, the Liouville prop-
erty implies that
=0 on RxR.

In particular,gg = 0, which is a contradiction. This concludes the proof of Propo-
sition 2.

We can now prove Lemma 2 and Lemma 3.

Proof of Lemma 2. Arguing as in [15], Lemma 17 and Appendix D, and using the
orthogonality conditions and (16), (17), Lemma 2 is equivalent to the following
property oru.

Claim. Assume that there exists a sequence> +oo andig € HY(R) such that
u(ty, x(ty) +.) — g in HX(R).
Then, ifu is the solution of (1) with initial valu&(0) = %o, we have

VieR, uty+1, x(t,)+.) —u(,.) in HYR)asn — +oo, (25)

VieR, ult,+.x@t)+.)—>u inC(—t,1], Lﬁ,c(R)) asn — +oo. (26)



Asymptotic Stability of Solitons 231

To prove this property, we have to work in the spaces introduced in [9] to solve
in a sharp way the Cauchy problem for (1). From the structure of the norms, the
proof is rather different from the one in the critical case. The keys of the proof are
a Virial identity which gives a smallness property, and the well-posedness of the
Cauchy problem irH! and inH*, fors € (3/4,1)if p=2,5 € [1/4,1)if p =3
ands € [1/12 1) if p = 4, for the generalized KdV equation. In fact, we just need
alocal Cauchy theory in song*”, 0 < s* < 1 to prove the claim. Since the cases
p = 2,3, 4 are similar (the problems are solvedhfi, for some O< s < 1), we
will concentrate on the cage= 2.

Setp = 2. Let M be such that

VieR, |lu@®)|yjr <M.

Note that it suffices to prove (25) on an interjrakg, o], with g = to(M) > 0,
then the claim is obtained by iteration in time.
Sincet, — 400, we may assume th&tz € N, 7, = 1. Forr € [—1, 1], we set,

VxeR, x,=x), u,t,x)=ul,+t x,+x).

We first decompose,, (¢) into compact and honcompact parts.
Since

/ W20 € M2, up(0,.) = ultn, x(ta) +.) — Toin LAy(R),

we can write
1, (0) = u1,(0) + uz,(0),
where

=

’

. ~ 1
u1,(0) — o in L? asn — o0, V(ul,n(o»z - / ngl < =
n

u,(0,x) =0, if |x| =2p,, withp, > 4+00asn — +o0.

Next, we set,(0) = u1,,(0) — up; we haveu, (0) = ug + z,(0) + u2,,(0), with

c
/15(0) = — luolp, lu1,n (g1, 12001, 22Oy < Ko (27)

We then consider the solutio&r), z,(¢), uz,(¢) of (1), with respective initial
valuesiig, z,(0), u2,,(0). Finally, we define the interaction terRy, (t) = u, (r) —
@(t) + zn(t) + 12,0 (1)).

We show the stability in time of the properties®fz), u2 , (¢) andu(z).

Recall that the Cauchy problem for (1) can be solveH{riR) for all s > 3/4.
Fix s € (3/4,1). The idea is to use the norms relatedHd to control the size of
the norms related té/*.

Let

oo T / 1/
e =102 flz 1z 1elgag = ([ ([ teweorar)™ax)™.

—00 -T

&l = (/_TT (/_Z |§(r,x)|1’dx>q/pdt>1/q.
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To solve the Cauchy problem i* (R), we consider, for : R x R - R, and
T >0,

M(©) = sup_1E@lrs. g (8) =16l 000 A5(0) = Dkl pp2,
te[-T, ) )

14 =A+D) N elzry. ATQ) = maX A7 ().

To solve the Cauchy problem il1(R), we consider
AT @) = max{ SUP (D)l g1, A3 (€). [uxl o2 AE(;)} :
te[-T,T]

Let S(¢) represent the convolution witr) ~Y/3Ai (x (3r) ~1/3). From [9], proof
of Theorem 2.1, fof > 0 andF, G : R x R — R, we have,

t
AT (/ S( —s)F(s)Gx(s)ds> S CIFGyly2,2 + CIDS(FGy)| 22
0 x=T x=T (28)

S CA+DHAT(F)AT(G).
By the global well-posedness resultAit (which is a consequence of (28) and
global energy bounds — see Theorem 2.2 in [9]), there eKigts- 0 such that, if

z(¢) is a solution of (1) and satisfies(0)| ;1 < Ko, thenvVz € R, A'(2) £ Kj.
In particular, we have

VieR, A'@, Ny, N(zn), N(uz,) < K1 (29)

Remark 9. To solve the Cauchy problem i#*, Kenig, PoNcE & VEGA have used
A/ZT(g) = |§|L‘}Lw instead ofxg, see page 580 in [9]. Let us remark, as regards

their proof, that the inhomogeneous term in the fixed point is estimated bigee
(4.10) just below (4.9)), and thad < CTY41J. It seems that if one uses/
one is not able to prove the claim.

We claim the following property.

Claim. There existsig € N, t1 > 0, such tha¥ n = no,

. C
M (A")* € -,

(i) Vie [l f (wan(t, ) 2dx < <,

[x]<pn n

(i) lim  sup (/|< (D;uz,n)z)Jr/
x1Z<pn t

te(—t1,1) €(—11,11)

+SUR, <, 2 (/t (D;MZ,nx)z) +/| 1/4( sup |u2,n|>2 =0.

e(—11,11) X|=pn te(—t1,11)

(sup o)’

1/4
IxI<on’
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Using properties (i)—(iii), (28) and the technique of Step 3 of the proof of
Lemma 30 in [15], it is easy to finish the proof of the claim, by a fixed point
argument using tha” norm.

Proof of (i). Since|z,(0)|ys = Clzx (03, 1|z,,(0)| < £ by interpolation,

the result follows from the proof of Theorem 2. 1 in [9] for some> 0 (local

existence inH*). Now, the value of is fixed.

Proof of (ii). Considery : [0, +00) — [0, 1] a smooth function satisfying
yr)y=1foro<r <1, y(@&)=0 forr 22

By formula (20), we have, far € [—11, 1],

i <| |)(M2n(f X))Z dx = ——/ ( )(uZn(t x))Z dx
dt P
+i3/y<3>(| |>(u2n(t )2 dx
P Pn
2p x| p+l
" (p+1)pn/y (pn)(uzn(t o

Forn large enough so that, = 1, and using the Gagliardo-Nirenberg inequal-
ity, we obtain vVt € [—11, 11],

d x|
‘E/V(Ion>(u2n(t x))%dx

C
— (19120 1u2.0)x122
On L

A

-1
1y @lusluzalZs + 1y Lol wan)s 2aluzal ;)
C
Pn’

A

Since [ y ('[f—') (u2.0(0, x))2 = 0, (ii) follows.

Proof of (iii) . The first term in (iii) is small, as can be shown by using the interpo-
lation inequality|w|gs < C|w|SHl|w|i;S forw e HY(R), andvr € (—11, 1),

s 1-s
/ (DSuzp)? < C< / (Dyuzn)? + <uz,n)2> ( / (uz,n>2> .
|x|§/0n/2 |x‘§Pn |x|§/0n

Then (ii) and the boungliz ,, (7)| ;1 £ K1 imply the result.
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For the second term, we observe that by the Sobolev inequality (Gagliardo-
Nirenberg inequality and cut-off), we have € (-1, 1), foro > 0,

SUP (U2, (1, X))?

1/4
IxI<on

3/4 1/4
<C D2%uy )2 [ us
a </IXI§ZP;}/4( szn) lx|<2p0* 2
+C / u
( Ix|<207"* 2
C
< Co, / D2y )2 +—</ us )
N ( \x|§2pn1/4( e s, is2olt 2"

/ SUp (u2,x (x))?
t

€(—11,11) mgp&/“

C
é CUn/ / 1/4(D3M2,n)2 + — 1/4 M%,n
re(—11,11) J1x|<2p, On Jie(—t1.11) J1x|<20;

n

Therefore,

xeR Jre(—t1,11) On te(—t1,11)

C
< Co,py’* sup (D?uz,)? + — sup (/ < u%)
|X\:pn

By (29) and (i), we obtain the result fef, = ,0,,_1/2.

For the third term in (iii), we sef (x) = fze(le,zl)(DﬁS“Zn)z- By the Sobolev
inequality, and (29),

/|x<2p1/2F(X) dx

2 2, C 2
é Coy / / 12 |Dxu2,n| + / f 12 |u2,n|
re(—r11,11) J|x|<4p, On Jie(—11,11) Y |x|S4p;

1/2 2 o2, C 2
§ CUnpn/ sup |Dxu2,n| + — sup |u2,n|
xeR Jre(—t,11) On te(—n,11) J |x|<4py

< CKlonp,}/z + —.
OnPn

12 F(x) dx < Cpn_l/4.

. —3/4 .
Takingo, = p, ", we obtalnflxlgzpn
Letg € N,g = 1. ThenDI*F(x) = Jreermm DY (DY uy , (x))?. There-
fore,
1Dy Fla(ri<pn < / DY (DY u2,0)? Lo x12 -
te(—t1,11)

From (A.6) in [9] (chain rule for fractional derivatives), we have

1—s 14 2 14 2
|D; (D™ u2,0)% e < Cql Dy upnl 20| Deuz 2,
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and by localization arguments
1Dy (D u2.0)% | La(1x12pu/2)
< Cgl Dy uznl 21 x12p) ('Dfuzn'm(\xépn) + |D%+S”2,n|L2q<\x|§pn>) :
Hence,
1D FlLa(x/2 )

1+s 2
< qu IDY " 2,0l 120 (1129 | D3U2,n 1 120 (112 ,)
te(—t1,t1)

1 .
< C on / (sumDi“uz,n(xn sup|D§uz,n(x)|)
te(—t1,11)

xeR xeR

1/2
1
< C o' </ sup|D}+~‘u2,,,(x)|2>
t

e(—t1,11) xeR

1/2
( / sup|D§uz,n<x>|2>
te(—t1,11) xeR

1
< Cy Klpn/q-

Similarly |F|q(x<p,) = Cqup,}/q. From the Gagliardo-Nirenberg inequality,
for somef = 6, € (0, 1), we have

0
1-6
sup |[F(x)|=C / F (lDfSFquqx\gpn)+|F|Lq<|x|§pn))
Ix|<20,/?

1/2
IxI<on’ n

Now, observe that ag — 400, 6 — 6y € (0, 1). Therefore, forg large enough,
we obtain

—%
sup |F(x)| = Cp,® .
IxI<on/?
For the last term, we write
2
/ e SUP uz(t,0)]
Ix|Spn’ " te(—11,11)
1/4 2
<20;"" sup fuza(t, %)
te(—t1,17)
x€(—pn.pn)
1/2
1/4 2
<20)* sup fuza()ly: sup f o2
te(—t1,11) te(—11,t1) \/|xI=2p;,
—1/4
< cp, M

This concludes the proof of Lemma 2.
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Proof of Lemma 3. The proof of Lemma 3 is exactly the same as in [15] (see the
proof of Proposition 6 in [14] for more details.)
The main idea is to use the following two properties.

Lemmad4. (i) Irreversibility of the loss of mass on the lefthere existsaz > 0
such that if 0 < a < ag then, for all 3o > 0, &g € (0, 1), there exists A1 =
A1(80, €0) > O such that for all yo > Azand g = 0,

Vi1, / VA y) dy = (1— o) v2(t0, y) dy — do.
y< 2}1\[)0

y<—-)o

(i) L2 compactness af on the rightThereexistsas > O suchthatif0 < a < aa,
then we have the following property: Vo > 0, 3 R2 = R2(8p) > 0 such that

Vi>0, / v2(t, y) dy < 8. (30)
y>Rz

Proof of Lemma 4. The proof of the irreversibility (property (i)) follows as in [15],
Lemma 19, from the almost-monotonicity property given in Corollary 1. The idea
is to use the almost-monotonicity on the following quantity

Lo (1) :/uz(t,x)w(x—x(O)—at—xo).

The proof of thel.2 compactness on the right is based on two procedures: first,
a decomposition of the solution close to the soliton; second, use of a monotonicity
property of the mass on the right-hand side of the soliton.

Equation (13) can be rewritten

X A 2¢
& + Eyyy — Tsey = TS <p — + y8y> + f1+ fo, — (€P),,

with

As [ 2
fils, ) == (pTQ + yQy> ,

Xs

fols. ) = (3 1) 0= (@ +e)" = 07 = &),

We introduce ,
(s, x) = A~ 7 1(s)e(s, A 1(s)x).
We verify that

APIng + AP Ty — AP Ixene = fa(s, A x)+f2y(s,)\ x)_(gp)y- (31)

Changing the time variable— 7 by the formula

todr . ds 1
SZ/O B or equivalently, d—j =3 (32)
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we obtain
N+ Nexx — XMy = 81+ 82x — (0F)x, (33)
where
_3p-1
g1(t, x) =2~ 7T fa(t, 2 1x), (34)
_ 2 Xs _1 _ 2 -1 p
— -1 - -1
galt.x) = 1771 (T =1) 000 + (177706 ) + 1)
— (rﬁ Q(rlx))p — P (35)

We can splity into two parts:

n(t, x) =ni(t, x) +nu(t, x),

wheren, satisfies the purely nonlinear equation

M + MDxxx — @O @MDx = _(nf)x,
n1(0) =n(0),

andn satisfies

M) + M) xxx — X O M)x = g1(1) + g2 (1) — (P — )P,
n(0) =0.

Using the monotonicity property for small solutions of (1) (i.e., Lemma 1), the
guantity

1(1) = /ﬁ|(t,X)1/f(x — ot —xo) dx,

whereTj, (1, x) = n1(t, x — x (1) +x(0)), is monotone in time. Th&2 compactness
of n| then follows from this property fatg large. This is proved in the same way
as in the critical case.

We claim the following lemma, proving thaj, satisfies an.?2 compactness

property.

Lemma 5 (Exponential estimate for > 0). There exists a6 > 0and 6,02 > 0
suchthat if 0 < a < ag, then

Vi>0,¥x 20, |, x)| < Vab6ore %" (36)

Proof of Lemma 5. The proof is exactly the same as for the critical case (see
Lemma 2 in [15]). It is based on pointwise estimates, and then does not depend
on the value ofp. Let us just recall that we use an estimate of the solutions of a
shifted nonhomogeneous linear Airy equation, with exponentially decaying second
member, see Lemma 5 in [15].

This concludes the proof of Lemma 4 and Proposition 2.
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3.2. Convergence of A(s)

Here, we use the monotonicity in time of tliixﬁjC norm ofu(z), and the fact
that the problem in subcritical (there is a unique soliton of giZédmorm), so that
the limit L2 _ selects the asymptotic soliton.

Proposition 3 (Convergence of.(¢)). Let p = 2, 3, 4. Under the assumptions of
Proposition 2, there exists A1~ > 0 such that

At) > Ajoo aSt — +o00.

Remark 10. The conclusion of Theorem 1 follows easily from this result. Note that
it also gives convergence of (7). Indeed,|A2(1)x,(t) — 1| < C [ e~ |e(s)| for
someC, ¢ > 0 (by (16), (17)), and thus, (1) — 1/42 , = c4oc aSt — +00.

Recall that by Proposition 2, we have

_2_
-1

u(t, ) = AL(Out, Mt). + x(t)) = O in HY(R) ast — +oo.

The convergence of the scaling parametey as: — +oo relies on a careful
description of behavior of the local mass ofv(r) ast — +oo. Indeed, we have
in some sensﬁ)(t)|Lz ~ A 1(t)f 02, ast — +o0. Moreover, by using thé2

compactness of(r) on the right (Lemma 4(ii)), and Corollary 1 which says that
the mass ofi(z) which is at some time at the left of the soliton will never return
to the soIiton,|v(t)|L%C is almost decreasing in time. This gives monotonicity and
thus convergence of(z).

Proof. Recall that

V20, A1 A() S Ao (37)

We considery as in Section 2 anét = =, K = —. Let§ > O arbitrary and

4x2
xo < 0 be such tha€e*/K < §, whereC appears in Corollary 1. From Corollary
1, sincex(r) = x(¢') + o (t — t’) by the choice of, we havev: = ' = 0,

/uz(t, XY (x — x(t) — xg) dx < /uz(ﬂ, OV (x — x(t') — xg) dx + 8.
Therefore,
p=2 2 =8 2/, /
Ar7L() | v, MY )y —x0) dy = A7) | v, )Y (M) y—x0) dy+38.
By compactness af(z), on the right-hand side, uniform in time (Lemma 4(ii)),
weak convergence(r) — Q in HY(R) ast — +oo, and (37), there exists =

T (8) andxg = xo(8) < 0 (|xo| large enough) such thstr > T,

<.

‘ / V2, VY O1)y — x0) dy — / 0?
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(Recall thaty (y) decays exponentially to 0 gs— —oo and goesto 1 ag —
+00.) Thus,Vé§ > 0, there exist§” > Osuchthav: =2+ > T,

=5 = 2 b2
M*l(t)/Q §AP*1(I/)/Q +8+20] 6.

-5
It follows that/\%(r) and(¢) have a limit whenr — +oo.
This completes the proof of Proposition 3 and the proof of Theorem 1.

4. Passage from a nonlinear Liouville property to alinear Liouville property

This is the first step of the proof of Theorem 2 (or Proposition 1). We claim
that the nonlinear Liouville property for smallis equivalent to a linear Liouville
property.

We want to show that fole| ;2 small and satisfying the assumptions in Propo-
sition 1 (orthogonality conditiory,? localization, smallness iff 1), we necessarily
havee = 0. For the sake of contradiction we assume that there exists a sequence
en # 0 of solutions of (13) satisfyinge, (0)| ;1 — 0 asn — +o0. By the strict
convexity of the functionaE (v) + %f v2, we haves, = SURcR l€n ()1 — O
asn — oo (see the proof of the stability result in [5]). We claim the following
convergence result for a sequence of renormalizations gkthe

Proposition 4 (Convergence to a linear probl@¢nConsider a sequence ¢, €
C(R, HY(R)) N L®(R, HL(R)) of solutions of (13) satisfying (H1) and (H3)
(without any uniformity in n for (H3)). Assume that

ap = suple,(s)|gr — 0 asn — 4o0.
seR

Then:
(i) Thereexist a sequence (s,) € R and a subsequence (g,) such that

Evlow +5) sy in L2(R, LA(R)),
a
wherew € C(R, HY(R)) N L*(R, HL(R)) satisfies

w %0,

2
wy — (Lw)y = als) (p—_Ql + yQy) +B()0y, (s,y) eR?  (38)

for some continuous functions « and 8.
(i) Moreover, thereexist C > 0and 62 > 0 such that w satisfies

(H1) VseR, (w(s),0)=0, (w(s), Qy) =0,
(H2) VseR, VyeR, |w(s,y)| < Ce %2
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In Section 5, we show that the solutianbuilt in Proposition 4 does not exists,
which concludes the contradiction argument and the proof of Theorem 2.

Proof. We proceed in three steps.
Sep 1. We claim the following lemma.

Lemma 6 (Uniform exponential decdylLet ¢ € C(R, HY(R)) N L®(R, H(R))
be a solution of equation (13) satisfying (H1) and (H3). Let ¢ and » be defined by
a = SUpcrle(s)|yt, b =Supcrles)|2. (39)
There exists ag > 0 and two constants 01, 82 > 0, such that if a < ag, then
VseR, VyeR, le(s,y)| < 61vabe %2 (40)
Remark 11. From this result, we obtaia posteriori an explicitA (o) in the L?
compactness assumption (H3) of Propositiod (5p) ~ log(1/8o).

Proof of Lemma 6. The method used in the proof of Lemma 6 is similar to the
one used in Proposition 1 in [15]. It involves a nonlinear decompositiopn ab
in the proof of Lemma 4. However, the treatment of the purely nonlinear part of
the solution is different and relies on the monotonicity lemma for small solutions
of (1), see Lemma 1. This difference is due to the fact that no scattering result is
available forp < 5in L2 nor H*, s € (0, 1] (see [9], Introduction). Indeed, in
general, the monotonicity result can be seen as a more robust property implying
convergence to zero in a weak sense on compact sets for small solutions in the case
where there is no scattering.

Let (¢,) be a sequence such that— —oo. Forn € N, definen, by

M (t, x) =0t + 1y, x).
Thenn,, satisfies
M)s + M)xax = Xt + 12) () x = 817 + 1) + 820 (t + 12) — (7))
whereg1, g2 are defined in (34), (35), and
M (0, x) = n(ty, x),

as in the proof of Lemma 4.
As before, we splip,, into two parts: this is a “nonlinear decompositiondf
We set

nl’l(ts-x):n|,ll(t»x)+n“,n(tv-x)s (41)
wheren ,, is solution of the purely nonlinear equation

M) + M) xxx — X (@ + 15) M)y = _(nﬁn)m

42
M0, x) =nty, x), xeR, (42)
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andny , is solution of

(nll,n)t + (nll,n)xxx —x:(t + tn)(nll,n)x =g1(t + th) + gox(t + tn)

— (= )P (43)
ma0,x)=0, xeR.
We claim the following:
Claim. (a) Exponential estimate afj; ,,:
VieR, VX 20, |nuat x)| < vVabore ", (44)

(b) Asymptotic behavior of, ,. Letzg € R. For any sequenag — —oo, we have
Nn(to—t,) > 0 in L. (R) asn — +o0. (45)
Property (a) follows from Lemma 5 applied #q ,.

Proof of (b). Let A > 0 andz € R fixed. First, we want to show that
/ n|2n(to—t,,,x) dx — 0 asn — oc.
x>—A
The functionyr being defined as in Section 2, it is sufficient to show that

fnﬁn(to — 1y, )Y (x + A)dx —> 0 asn — oo.

By applying Lemma 1 tayi , (¢, x + xo), wheren,(t, x) = n1,(t, x — x(¢t +
ty) + x(t,)), for a small enough, and with = ﬁz we obtain
2

/ 0% (t0 = tw, X)W (x + x(t0) — x(tn) — 0 (to — tn) — X0)
< f 0% (0, X)¥ (x — x0). (46)

Letxg = —A — o (to — t,) + (x(t0) — x(ty)). Since[A%x, — 1| < Ca, for a small
enough, we have, > 32. Therefore~o (to — t,) + x(t0) — x(tx) = S(to — tn),
and saxg = —A + Z(to — tn).

We obtain from (46), and the fact thétis nondecreasing,

/ 07 (t0 — tn, X)Y (x + A)dx < / 10 (0, )Y (x + A — %(to — 1))
< /nzm, )Y x+A— %(lo — 1)

From the compactness Irf of 5(z, x) and the fact (fg—1,,) — +o0 asn — +0o0,
we obtain

n%n(to—tn,x)dx—>0, asn — oo.
x>—A
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Therefore,n) ,(to — 1,) — 0 in Lﬁ)c. Since supg N1, @)1 < C, we have

M.n(to — t,) — 01in Li5.. Thus (b) is proved.

Using (a) and (b), we now conclude the proof of Lemma 6. #& R and
x 2 0. Recall thatyn € N, we have

) =nia(t —ty) + 7’/II,n(t — tn).

Property (b) yields
NMapt —ty, x) = 0 asn — oo.

Therefore,
N a(t —ty,x) > nt,x) asn — oo.

It follows from (44) thatvn € N,
It — ta, )| < Vab 61,
Hence, we obtain, letting go to oo,
n(t, )| < Vab6re™"".
Thus,
VieR, Vx>0, [n(,x)| < Vab6e %, (47)

Let us now prove the result far < 0. We use the symmetry of (1) under the
following transformation: ifu(z, x) is a solution of (1) thefw (s, x) = u(—t, —x)
is also a solution of (1) satisfying (H1) and (H3).

Therefore, the same argument yields

VieR, Vx>0, |7t x)| < Vabbore %~ (48)
By (47) and (48), we obtain
VieR, VxeR, |nt x)| < Vabbe %2,
Since
£(s, ) = A2 ()n(s, 1(5)y),
by (H2) (control ofA(s), see remark after Proposition 2), we have
les, )| < Vaboge"21,

which concludes the proof of Lemma 6.

Sep 2. We claim the following lemma.

Lemma 7 (Comparison betweeh? and H* norms ofs). Under the assumptions
of Lemma 6, thereexist a1 > 0 and C > O such that, if a < a; then,

b<a<Cb,

where
a = SURcrle(s)gr, b =SUpcrle(s)| 2.
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Proof. The proof is based on a Virial-type identity (see proof of Proposition 2 in
[15] for more details). Recall that in Section 2 we set

I(s) = %/yez(s).

From (21), we claim that

p—3
p—1

d p=3 3x
TOSED(s) £ CP2 = =i e () 3. (49)

Indeed, note that in (21), by integration by parts, the last term can be written as the
sum of scalar products ef, for i > 3, with rapidly decaying functions (see [14],

Lemma 14). Thus (49) follows froriLe, &) = |¢]2, — Cle|?,, and

As

. +

ﬁ—1‘§c19,
py

which is a consequence of (16) and (17).
Next, we claim that there exists> 0 andcg > 0 such thatif: is small enough,
then

le(so) | 1 = C—; impliesVs € (so, 50 + o), [e(s)| 1 = coa. (50)

This follows from the arguments of [9] to show that the Cauchy problem for (1) is
well posed inH?! (see also Appendix B1 in [15]).
By definition ofa, there existsp € R, suchtha§ =< |e(so)|y1 < a. We deduce
from (50) that
Vs € (so,s0+0), le(s)|yr = coa,

and then
-3 -3
Vs € (50,50 +0), (PriD(so+ ) — A2 1)(so) < o(Ch? — C'a?).
-3
Now, by Lemma 6, we havEs € R, kzh (s)I(s) £ Cab. Therefore, for
someC > 0, we havei?2 < C(b? + ab) and thusCa < b.

This proves Lemma 7.

Sep 3. Conclusion of the proof of Proposition 4. We define

en(s + sp, y)
wy(s,y) = ———,
by,
wheres, is such that
b 1
len(sn)l2 Z = = = suple,(s)| 2.
2 2 seR

Using Steps 1 and 2, exactly as in the proof of Proposition 3 in [15], we have, for
a subsequence,
w, = w inLE(R, LA(R)),
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wherew € C(R, H1(R)) N L®(R, H1(R)) satisfies
w#=0

(as a consequence of Step 2), and equation (38).
This concludes the proof of Proposition 4.

5. Linear Liouville property

The objective of this section is to show that the solutioabtained in Proposi-

tion 4 does not exist, which concludes the proof of Proposition 1 (and Theorem 2).
Throughout this section, let € C(R, H1(R)) N L>(R, H1(R)) be a solution

of

20
wy — (Lw)y = a(s) (m + yQy) +B($)Qy, (s,y) eRxR, (51)

wherea andg are continuous functions of s andsatisfies

(H1') Orthogonality conditions:
VseR, (w(s), Q)= (w(s),Qy) =0.

(H2') Exponential decay condition:
V(s,y) eRxR, |w(s,y)| < Ce P
We claim the following result, which implies Theorem 1.
Proposition 5 (A linear Liouville theorem for equation (51L)Let
we CR,HXR)HYNL®R, HYR))
be a solution of (51) satisfying (H1') and (H2'). Then
w=0 onR xR.

Remark 12. In fact, we obtain by Propositio5 a characterization of the stationary
solutions ofw; — (Lw), = 0. If w is a solution of this equation satisfying (A2
thenw = §pQ, (see [15] for details).

Remark 13. The proof of this result will differ from the one of the critical case.

The first change is the fact that in some sense the geometry a@isslmpler (no
degeneracy). Only considerations on the Virial identity will give monotonicity (this

is the key of the proof). The second change is that, to prove the monotonicity, we
have to use spectral estimates on some operators. It turns out that these estimates
are less accurate than in the critical case, and the calculations are more delicate,
due to the fact that we have only two orthogonality conditionswgmvhile in the

critical case an additional orthogonality conditionwiis obtained by the structure

of the operator.
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Proof of Proposition 5. We introduce a new function using an explicit solution of
(51):

W= w+y(s)0y. (52)

wherey (s) is the bounded, continuous function defined by

1 2
v(s) = _nyyQ /wa(s) = W/)’Qw(s)-

Thus, we obtain

W, Q)= @W,y0)=0, VseR,VyeR, [ws,y)] < Ce . (53)

SinceL(Q,) = 0, w satisfies (51), fok(s) = a(s), B(s) = B(s) + ¥/ (s).
Now, from the orthogonality conditions, we claim that

- 2
70 =0, 70 =g [w620+w-30m. (54)
Indeed, on the one hand, multiplying equation (51)doby Q and integrating by

parts, we have

d

0= dS/Qw——/(Lw)Qy +ot(s)/ +yQy)Q+ﬂ(S)/Qy

FromLQ, =0, [ 00, =0, and (11), it follows thai(s) = 0.
On the other hand, multiplying (51) byQ, we have

4 _
0= 2 /wa _ _/m) (0+y0,) +ﬁ<s>f 0,y0.
Since

L(Q+ yQy) = _ny - 2ny - Ynyy + 0+ )’Qy - pr + PYQp_le
=—-30,, —y(Q - 0", + 0+ y0, — p0” + pyQ’ 10,

=-20-(p—307,
we obtain
» J QZ
w(s)(20 + (p —3)0") + B(s)—— =0.
The equation ofv(s) then reduces to
wy = (Lw)y + fQQ’ / w(s)(20 + (p — 3 0P). (55)

We have the following relations for (55). Let

I(s) = [ y#2(s, y) dy.
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Lemma 8 (Identities for equation(5%)For all s € R,
0] (5E(S),E(S)) = (Lw(0), w(0)) = (Lw(0), w(0)),
(ii) gl(s) = —H*(w(s), w(s)), where

2
HY ) = H. W)~ </ way> (/ WO + (p — 3)Q”)) ,
H(@, W) = —((LD)y. y®) = (L1%. T)

= g(Lw, w) — (w, w) + p/ QP2 (Q + %YQy) w?,

with
—_ 3 1  p 9, pp-1

L]_U) = —Ewyy + éw — EQP lu) + T
Proof. SinceL(Q,) = 0, when we take the scalar product of (51) drd, we
obtain %(Lw, w) = 0. Moreover, sinca = w + y(s)Q,, we have(Lw(0),
w(0)) = (Lw(0), w(0)).

Property (ii) is proved following similar calculations as for the nonlinear prob-
lem (see Section 2). Note that by (i2w? € L1(R).

In order to complete the proof of Proposition 5, as in the critical case, we claim
the following properties, which will be proved later.

y0,0P %w.

Proposition 6 (Positivity properties ofi*). Let p = 2, 3or 4. Thereexistsog > 0
such that if w € HY(R) satisfies (w, Q) = (w, yQ) = 0, then

(i) ifw %0, then (Lw, W) > 0,
(i) H*w,w) = oo(Lw, W).

Remark 14. Several difficulties prevent us from following the same procedure for
the choice of the orthogonality conditions as in the critical case. First, we are not
able (except fopp = 3) to consider orthogonality conditions such tit&t(w, w)

does not contain a scalar product part. Second, an orthogonality conditio@with

is not enough to guarantee the positivity in the three cases.

End of the proof of Proposition 5. Assume, for contradiction, that # 0. We
havevs € R,

d — L
gl(S) = —H*(w(s), w(s)) < —oo(Lw(s), w(s)),
and, sincav(0) # 0 and(w(0), Q) = (w(0), yQ) = 0),

(Lw(s), w(s)) = (Lw(0), w(0)) > 0.

Therefore,Ys € R, %I(s) < —op < 0, which contradicts the fact thdt is
uniformly bounded from (H2:

VseR, |I(s) < c/ ylePldy < .
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Thusw(0) = 0, and similarly,Vs € R, w(s) = 0. From the orthogonality
conditions orw(s), we have the conclusion.

Proof of Proposition 6. Property (i) follows from Proposition 2.9 in [21].

Now, we prove (ii). Letp = 2, 3 or 4. The arguments of the proof are similar
to the ones of the proof of Proposition 4 in [15], although there are technical
differences.

We give some notation. L&k be a bilinear form on a vector spate Let us
define the index o8 on V by

indy (B) = max{k € N/ there exists a sub-spaéeof codimensiork
such thatB)  is positive definité.

Let H} (respectivelyH}) denote the sub-space of even (respectively, ¢fftl)
functions. Assume thati! is B-orthogonal toH}. We say that3 defined onH?!
hasindex + j ifind ;1 =i and indy1 = j.

First, we check that we have a result similar to Lemma 23 in [15], giving a
lower bound onH in terms of a quadratic form with explicit index-2 1, related
to a classical operator. All eigenelements of this operator are described in terms
of hypergeometric functions. See for examplecumarsu [20] for its complete
description.

Then, by considering first the case wherec Hel(R) and (w, Q) = 0, and
next, the case where < Hol(R) and(w, yQ) = 0, we proveH*(w, w) = 0.
Parity considerations imply Proposition 6.

Note that we can restrict ourselves to proving (ii) with= 0, i.e., H* (w, w) =
0 whenevemw satisfiesw, Q) = (w, yQ) = 0. Indeed, calculations in this proof
being not optimal, by a continuity argument, it follows that (ii) is true for some
smallog > 0.

(a) Upper bound ontheindex of H. Here, we use that fact that can be compared
to an operator of the type
L + h—a
U= —Uyy +aU — D—5—,
“ » o (3)
wherea, b € R. Note that this class of operators is well known (see, for example,
TircHMARSH [20]).
We have
3 1 p(p+1)

Liu = — suyy + zu —

2

SRS sn(“2y)
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Recall that, from (174) in [15], we have the following inequality

Sh(a) 92
v _vc
a€R a5 =50 (H chz(a)> ’ (56)
and so
3 50— p(p+1) 3P(p+1) u?
> = 2 M rPwT Y 2
(57)

Let us separate the cases= 2, 3, 4.

Casep =2
3 44 117 u?
L >z 24— |- | ——
( 1”’”)—2[/ "m0/ " T 25 ch2(§):|
25\t s
2|/ 7150 ch? (3)
Let
Lu= + A 5!
T T IR0 TR (3)

2

As in the book byTitcumarsH [20], the operatof has three nonpositive eigenval-
ues. The firstand third eigenvalues correspond to the following even eigenfunctions:

x1(y) =ch™ (%) , x2(y) = gch’2 (%) —ch™ (%) .

Casep =3
3 19 234 u?
L > 2 S P
(Lau,u) = 2[/” t7s 25 chz(y)j|
3 19 u?
> = + = | u?- 12/ } .
=3 U 75) " 2 ()
Let 19
~ u
Lu=— Zu-12————.
“ET R T 02 )

The operatot. has three nonpositive eigenvalues. The first and third eigenvalues
correspond to the following even eigenfunctions:

4
x() =ch30G), xO) = gch—l () —ch3 ().
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Casep =4

NI w

- I 78 u?
> 2 S
(Liu,u) = /uy+5/u 3 s (3%):|
Jui+s] 2

1Y
N w

Let

The operatod. has three nonpositive eigenvalues. The first and third eigenvalues
correspond to the following even eigenfunctions:

_ 3y i 3y 3y
—ch 83 (22 2/3 8/3
x1(y) =ch < > > . oxe(y) = 3ch < > ch ( ) )

Let us remark that the second eigenvalue is associated with an odd eigenfunc-
tion. Note also that in the three cases, we have the helpful property

sparixi, x2) = spanQ, 0”). (58)

We now claim from these estimates and algebraic relations the following prop-
erties onL1.

Lemma 9. The operator L1 has the following properties:

() H(Q,0) <0, H(Qy, Qy)=0; (60)
(i) thekernel of L1 is{0};
(i) V¢ € HY(R), thereexistsa unique v* € HY(R) such that L1iy* = 1.

Proof. (i) We have

H(Q,0)=—-(LQ)y.yQ) = —((—=(p— DOy, y0)

1
Z+1fQP+1 (p— 1)[Qp+1<0

andH(Qy, 0,) = — [(LOy),(y0Q,) =0, sinceLQ, = 0.

(i) Suppose that there exisjs € H1(R), such thatL1x = 0. Write x = x. +
Xo» Wherex, € H} andy, € H!. We still haveLix, = Lix, = O, since
L1yx. is even (respectivel;l,lxo is odd). We decompose, = aQ + bQP + xeL,
where(L10, x; 1) = 0 and(L107, x ) = 0 (check directly that spa@, 07)
is not degenerate foH) Next we have O= (L1ije, x35) = H(x;t, x;). Since
H(Xe , ) > 2(LXe , ) andxe is orthogonal is the.2 sense to1 and x2,
we have from the spectral propertiesfofhatxj = 0. SinceL1Q andL1Q? are
not colinear, we have = b = 0, and sgy, = 0.
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Observe now that we have, 0, # 0. Indeed,

L10y = —3(v(L(Qy))y — LOy — L(yQyy)) = 3L(yQyy),

andL(yQ,,) # 0 since the spectrum df is exactly spatQ,) (see [14], Lemma
2). Note that sinc€L,10,, @,) = 0, andL1Q, # 0, there exists a negative
eigenvalue ofL1 associated with an odd eigenfunction, denoted/bythis is a
classical argument). Note thak is coercive on spaw)* by using the spectral
properties of_. Now, by a decomposition ¢f, in ay + x;-, we have the conclusion
as before. Thus, we have proved that the kernélof {0}.

(i) We prove thatL1 is surjective inH*.

SinceH (Q, Q) < 0, there exists a first negative eigenvalyeassociated with
an even eigenvalug;. By the lower boundd (w, w) = (Lw, w), we know that
there exister > 0 such that ifw is orthogonal toQ and Q” in the L2 sense, then
H(w, w) 2 o(w, w).

Set

A= inf (Liw, w).
(g, w)
lwl; 2=1
Two cases may occur.

If 22 > 0, then it follows thatl1 is coercive on spam1)=.

If 2 < 0, then it follows from standard arguments that there exjsts~ 0
such thatL1yo = A2y + 641 and (Y1, ¥2) = 0. By taking the scalar product
with i1, we find6 = 0. Property (ii) implies thak, < 0, and soy» is a even
eigenfunction associated with a negative eigenvalue. From the comparisab,with
L1 is coercive on spam, ¥2)=".

Now, we prove the surjectivity of/}. Assume for example that we are in the
second case. For any € Hel, we havey = xo + a1¥1 + a2v2, whereyg €
span(y1, ¥2). SinceL; is coercive on span1, ¥»)*, from the Lax-Milgram
Theorem, there existsy such thatL1¢g = xo, and thenp = ¢ + %wl + ‘;—2%
is such thatL1¢ = x.

Surjectivity on H! follows from similar and simpler arguments (there is one
negative eigenvalue associated witg and L1 is coercive on spam3)*’). This
concludes the proof of the lemma.

Let us introduce the following notatiol:u € H(R), Liu* = u.
(b) Positivity property on H!. We claimthatifw € H}(R) is suchthatw, Q) =0
thenH*(w, w) = 0.

Claim (Numerical resulfs We have

, 0, A= , I o | 0 60
(0, 0% < 1= Oad) = T g Hin > (60)
and
o (X1, 02 ) . (13 07
Ap = X3 — l L X3) — 22—+
? (m =gy T <(X3 )= on T
v XL OO 0 )2

(g, gy = K1 LN ) 0, 61
<(X1 %) ©.0n 8~ (61
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where
li=~'ro7 [y 00t 00 + G5 yon et 0n)]. =13

Indeed, from numerical calculations, we have:

() Forp=2(0Q, Q0% ~ —56,A1 ~ 0.44, A ~ 0.038.
(i) For p=3,(0, 0*) ~ —1.9, A1 ~ 0.12, A» ~ 0.0029.
(i) For p =4, (Q, 0*) ~ —0.85, A1 ~ 0.037, A ~ 0.0017.

To obtain these values, we have used the software MAPLE.
Claim. If w € HX(R) is such thatw, Q) = 0, thenH* (w, w) = 0.

Proof of the claim. Let us define

H*(u,v) = H(u,v) — [, y0,)(v,20 + (p —3) Q")

sz
+(, y0,)®, 20 + (p—3)0")],
andu’ = u* —aQ*, wherea = (% 5% is chosen so thau', Q) = 0((Q, 0*) #
0).

The proof is divided in several steps. First, we consider the space

E =spanQ*, (0")*, (y0,)*)

(one additional dimension is needed compared with the pase 5 to control
the scalar product and property (58) reduces the sizé)ofNVe defineE' the
orthogonal space of in H}(R) for the scalar producH (but not H*). By a
comparison argument, we prove ttt is nonnegative ok . Then we conclude
the proof from calculations in the spage

We claim

H}R)N{w, (w, Q) =0} = E* +span(Q”)*t, b 0,)™b). (62)

IndeedYu € E+, we have(u, yQ,) = H(u, (yQy)*) = 0, and SOH*(u, u) =
H(u,u) = (Liu,u) = 3(Lu,u). Since(u, Q) = (u, Q”) = 0, from (58) and the
spectral property of, H* is coercive onE-L.

This implies thatE- N E = {0}, and thusk is not degenerated faH. In
particular,Yu € HX(R), we have the following decomposition = u3 + us,
ur € E*,up € E. If (u, Q) = 0, then(uy, Q) + (u2, Q) = 0. Since(uy, Q) =
H(u1, 0*) = 0, we deducéu,, Q) = 0. The conclusion then follows from

EN{w, (w, Q) =0} =span(@”)", (yQ,)").
Thus, claim (62) is proved, anll* on E-+ is nonnegative.

Finally, we claim that* restricted to spaitQ”)*, (yQ,)"') is nonnegative.
This is equivalent to verifying that the two following properties are satisfied:

H*((0P)*, (0"M)h) > 0,
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and
H*(0P)', (MY H* (@), (oD
* 1 1 * 1 1 >
H*((QP)~, (0™ H*((yQy)~, (yQy)™)
Since((Q”)*, 0) = (yQy)*, @) = 0, and since from the definition af*,

w*, ", 0)
(0.0

this is equivalent to the two inequalities (60) and (61). ThUsis nonnegative on
spar((@P)*, (yQ,)h).

ThereforeyY w € H}(R), such thatw, Q) = 0, we havew = w1 + w2, where
w1 € E+ andw, € E, with (w2, Q) = 0, and

H@, vh) = (Li@w™h), vh) = (u, v*) —

)

H*(w, w) = H* (w1, w1) + H* (w2, w2) + 2H" (w1, w2) = 2H* (w1, w2).

From the definition o andEL, we have(wy, y Qy) = (w1, Q) = (w1, QP) =0,
and soH * (w1, w2) = H (w1, w2) = 0, which concludes the proof of the claim.

(c) Positivity property on H. We show that ifw € H} is such thatw, yQ) =0,
thenH*(w, w) = H(w, w) = 0.

Claim (Numerical result).

(GO*, yQ) <0 (63)

Indeed, forp = 2, we find numerically (yQ)*, yQ) ~ —23.90; for p = 3,
we find numerically((yQ)*, yQ) ~ —8.97; for p = 4, we find numerically
(YO, yQ) ~ —5.15.

Claim. If w e HX(R) satisfiesw, yQ) = 0, thenH* (w, w) = 0.

Proof of the claim. First, if we defineP, = spanQ,, (y0)*), thenH is not
degenerate o, since

H(Qy’Qy) H(Qw(yQ)*) _ x2 1 2

From (63) (orH(Q,, Q,) = 0), and the spectral property of H is nonnega-
tive on le, WhereP2l is the orthogonal oP, in Hol, with respect to the quadratic
form H.

Finally, if w € P2, w # 0is such thatw, yQ) = 0,

w=aQy+ 0O,
with 8 # 0, and

o 000609 _ 060009
B (Qy, y0) H(Qy, 0"
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It follows that

H(w, w) a\? o
g = (E) H(Qy, 0)) +2 <E> H(Qy, yO)") + H((yD)", (yD)")
=-H(OO" 00 =-00, (2" >0,

from (63) andH(Q,, Q,) = 0.
The conclusion follows from the fact thatuf € Hol, with (w, yQ) = 0, then
w = w1 + w2, with w1 € PZJ‘, andwsy € Pz, (w2, yQ) = 0.

This together with parity considerations concludes the proof of Proposition 6(ii).

Acknowledgements. We wish to thank the referee for his helpful commemts.
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