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Abstract

We prove in this paper the asymptotic completeness of the family of solitons
in the energy space for generalized Korteweg-de Vries equations in the subcritical
case (this includes in particular the KdV equation and the modified KdV equation).
This result is obtained as a consequence of a rigidity theorem on the flow close to
a soliton up to a scaling and a translation, which has its own interest. The proofs
use some tools introduced in a previous paper to prove similar results in the case
of critical generalized KdV equation.

1. Introduction

In this paper, we consider generalized Korteweg-de Vries equations in the sub-
critical case

ut + (uxx + up)x = 0, (t, x) ∈ R × R,

u(0, x) = u0(x), x ∈ R,
(1)

forp = 2,3,4 andu0 ∈ H 1(R). These models appear in the study of waves on shal-
low water (seeKorteweg&deVries [11]), as well as in other areas of physics (see,
e.g.,Lamb [12]). These equations, together with nonlinear Schr¨odinger equations,
are considered as universal models for Hamiltonian systems in infinite dimensions.
From the Hamiltonian structure, we have formally the following two conservation
laws in time: ∫

u2(t) =
∫
u2

0, (2)

and

1

2

∫
u2
x(t)− 1

p + 1

∫
up+1(t) = 1

2

∫
u2

0x − 1

p + 1

∫
u
p+1
0 . (3)
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From these conservation laws,H 1 appears as an energy space, so that it is a natural
space in which to study the solutions.

In equation (1),p = 2, corresponding to the KdV equation, is a special case in
the theory. Indeed, from the integrability (seeLax [13] andMiura [17]), we have
for suitableu0 (u0 and its derivatives with exponential decay at infinity) an infinite
number of conservation laws. In this situation, the problem can be transformed
through nonlinear estimates into a linear problem. Unfortunately, these techniques,
in order to be relevant, require very regular solutions with fast decay at infinity. The
results that we will present are new inH 1(R), even forp = 2.

Recall that the well-posedness of (1) in the energy space is now well understood:
for any p = 2,3,4, it follows from the results ofKenig, Ponce & Vega [9]
that, for allu0 ∈ H 1(R), there exists a unique solutionu ∈ C(R, H 1(R)) of (1)
satisfying (2) and (3) for allt ∈ R (see Corollaries 2.2, 2.5 and 2.7 in [9]). The
proof of this result involves oscillatory-integrals techniques and sharp space-time
estimates. Throughout this paper we work in this framework, though in order to
obtain compactness results inH 1, we also use the fact that the Cauchy problem is
well posed inHs∗ for some 0< s∗ < 1 ([9]).

We refer toKato [8], Ginibre & Tsutsumi [6], for previous results on theHs

theory (s > 3
2) and toBourgain [3] for the case of periodic initial data.

In the subcritical casep = 2,3,4, the global existence of all solutions inH 1,
as well as uniform bound inH 1, follow from the Gagliardo-Nirenberg inequality,

∀ v ∈ H 1(R),
∫

|v|p+1 � C(p)

(∫
v2

) p+3
4

(∫
v2
x

) p−1
4

,

and relations (2), (3), which imply∀ t ∈ R,
∫
u2(t) = ∫

u2
0 and

∫ |ux(t)|2 �
C(|u0|H1).

This is in contrast with the critical and supercritical cases (resp.,p = 5 and
p > 5, p integer), where local well-posedness inH 1 is known from [9], but the
existence of singularity in finite or infinite time for some solutions of (1) (i.e.,
|u(t)|H1 → +∞ ast ↑ T , for someT > 0) is conjectured. Note however that it is
still an open problem.

In fact, few results on the qualitative properties of the solutions are known for
these equations, for anyp > 1.

Equation (1) has traveling-wave solutions (called solitons), of the form

u(t, x) = Rc(x − ct),

wherec > 0 andRc > 0 satisfies the equation

Rc ∈ H 1(R), Rcxx + R
p
c = cRc,

or equivalently, by integration,

R2
cx + 2

p + 1
R
p+1
c = cR2

c and Rc(x) =
 c(p + 1)

2ch2
(
p−1

2

√
c x

)


1
p−1

. (4)
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The study of the flow around these solitons is crucial for the understanding of the
generic behavior of solutions of (1). Indeed, these Hamiltonian systems in infinite
dimension are known to have complicated dynamics even for short time (involving
time oscillations). Therefore, any result of classification of solutions is relevant.
Thanks to the structure of the equation near the solitons, a geometrical approach
related to a refined control on the dispersion will reduce the complexity of the
equation and allows us to look for an asymptotic regime for large time.

The notions of stability and asymptotic stability of the solitons are crucial. We
say that forc > 0 the solitonRc(x − ct) is stable inH 1 if

∀ δ0 > 0, ∃α0 > 0 / |u0 − Rc|H1 � α0 ⇒
∀ t � 0, ∃ x(t) / |u(t)− Rc(.− x(t))|H1 � δ0. (5)

We say that the family of solitons{Rc(x−x0−ct), c > 0, x0 ∈ R} is asymptotically
stable if

∃α0 > 0 / |u0 − Rc|H1 � α0 ⇒
∀ t � 0, ∃ c(t), x(t) / u(t, .+ x(t))− Rc(t) ⇀

t→+∞ 0 inH 1. (6)

We recall previously known results concerning the stability of the solitons and
the asymptotic stability of the family of solitons, respectively in the subcritical,
supercritical and critical cases:

– In the subcritical case,p = 2,3,4, it follows from energetic arguments that the
solitons areH 1 stable (seeCazenave & Lions [5], Weinstein [22], andBona,
Souganidis & Strauss [2]). Moreover,Pego & Weinstein [19] proved that
the family of solitons is asymptotically stable in the casep = 2 (KdV equation)
andp = 3 (modified KdV equation), for initial data with exponential decay as
x → +∞. In [19], the case of initial data in the energy space is not treated, for
any value ofp.

– In the supercritical casep > 5, numerical simulations (seeBona et al. [1] and
references therein) suggest that blow-up in finite time occurs for some initial data.
However, no rigorous proof of existence of such singular solutions exists. For
p > 5,Bona, Souganidis & Strauss [2] proved, usingGrillakis, Shatah &
Strauss [7] type arguments, theH 1 instability of solitons. Their proof does not
apply to the casep = 5. For example, the proof uses the vectory = R1

2 + xR1x ,
which satisfies(Lcy, y) = 0 for p = 5 (see top of page 406 in [2]). In fact, the
existence of a suitabley in their proof is based on the conditiond ′′(c) < 0 or
equivalentlyp > 5, see Theorem 3.1 in [2].

– In the critical case,p = 5,

ut + (uxx + u5)x = 0, (t, x) ∈ R+ × R,

u(0, x) = u0(x), x ∈ R,
(7)

the problem becomes degenerated. Indeed, while in the subcritical and super-
critical cases, for a givenL2 norm, there is one and only one soliton (up to
translation), in the critical case, we have∀ c > 0, |Rc|L2 = |R1|L2 and moreover
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E(Rc) = 0. In particular, all the solitons lie on the same level set of these two
quantities. This property will have a consequent effect on the structure of the
linearized operator around the solitons (see Section 4).

Note that the variational structure of the critical generalized KdV equation
presents a lot of similarities with the one of the critical nonlinear Schr¨odinger
equation in one space dimension. Indeed, on the one hand, it follows from the
invariants (2) and (3) and a sharp Gagliardo-Nirenberg inequality that, for initial
data satisfying|u0|L2 < |R1|L2, the solution of (7) is global and bounded inH 1.

On the other hand, it is conjectured that there exist blow-up solutions of (7)
such that|u0|L2 � |R1|L2 (see numerical simulations inBona et al. [1]), though
no rigorous proof of existence of a blow-up solution is available at this moment.

A first result in the direction of blow-up for the critical generalized KdV equation
is established inMartel & Merle [14], by showing thatu(t, x) = R1(x − t) is
unstable inH 1 (by scaling argument, all solitons are unstable). This result is proved
in a qualitative way, finding the interior of a parabola as the instability region.

Next, inMartel & Merle [15], we established some crucial properties in the
direction of understanding the structure of the equation close toR1: in a neighbor-
hood of

R∗
c1,c2

= {Rc0(x − x0) , c0 ∈ (c1, c2), x0 ∈ R}, (0< c1 < c2).

In particular, we proved a rigidity theorem on (7) close toR∗
c1,c2

in the energy space
(i.e., a characterization of the soliton) related to the notion of dispersion. In some
sense, this Liouville theorem says that if a solution defined for allt ∈ R is close at
some point to a soliton and does not disperse, then it is exactly a soliton.

This Liouville theorem and the monotonicity in time of a quantity related to the
dispersive effect of the linear Airy equation imply the asymptotic completeness of
the solitons. Nevertheless, the proof is based on some specific algebraic properties
due to the special structure of the critical case, and on an extensive use of the local
well-posedness of the Cauchy problem inL2, which is not valid in the subcritical
case. See [15] for precise statements in the critical casep = 5.

In this paper, we prove similar results in the subcritical case. First, we state the
result of asymptotic completeness of the family of solitons in the energy space.

Theorem 1 (Asymptotic stability forp = 2,3,4). Letp = 2,3or 4, and let c0 > 0.
Let u0 ∈ H 1(R), and let u(t) be the solution of (1) on R+ ×R. There exists α0 > 0
such that if |u0 −Rc0|H1 < α0, then there exist c+∞ > 0 and a function x(t) such
that

u(t, .+ x(t)) ⇀ Rc+∞ in H 1(R) as t → +∞.

Remark 1. The conclusion of Theorem 1 is also true for somec−∞ ast → −∞,
by changingx → −x, t → −t .

Note that the result implies convergence inL2(R, e−|x|dx) andL∞
loc(R). A

result of strong convergence inL2(R) is false. For example, forp = 2, using
integrability, we can construct a solution such that for a smallε > 0,

|u(t, .+ x(t))− R1 − Rε(.− xε(t))|L∞ →
t→+∞ 0, wherexε(t) → −∞.
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Moreover, forp = 2,3,4, convergence inL2 strong ast → +∞ in Theorem 1
implies that the solution is exactly a soliton by using the characterization of the
soliton given in Theorem 2, see below (indeed, in this case, the solution isL2

compact).
Note that, from the proof of Theorem 1, theL2 dispersion occurs only at the

left of the soliton.

Remark 2. For other results of this type for subcritical generalized KdV equations,
we refer toPego & Weinstein [19] (see alsoMizumachi [18]). Their approach
is based on linear theory aroundR1 which allows only initial data with fast decay
at +∞ (exponential or polynomial decay). Therefore, the results are obtained in
spaces different from the energy space of the nonlinear problemH 1. Moreover, this
approach requires in some sense that the interaction between the linear dynamics
and the nonlinear dynamics is decoupled enough. See also the result ofBourgain
& Wang [4] for the critical nonlinear Schr¨odinger equation where decoupling is
essential and requires the introduction of weighted spaces for the function and some
of its derivatives as well as some additional orthogonality conditions on the initial
data. Our approach does not rely on decoupling and thus we do not need this kind
of assumption.

Note that due to the lack of control on the size of the tail of the solution in
Theorem 1, we do not have precise control of the convergence rate to the soliton as
in [19].

Remark 3. From the proof of Theorem 1, we also havext (t) → c+∞ ast → +∞.
In the critical case, the result of asymptotic stability is stated as follows:

∃ c(t), x(t) such that

u(t, .+ x(t))− Rc(t) ⇀ 0 inH 1(R) ast → +∞.

(see Theorem 2 in [15]). This can be explained as follows. In both the critical and
subcritical cases, theL2

loc norm of the solution is monotone in time in some sense.
In the subcritical case, the limit ast → +∞ of the L2

loc norm of u(t) selects
the asymptotic soliton since, for a givenL2 norm, there is only one soliton up to
translation; this is crucial for obtaining the limit ofc(t). In the critical case, the
monotonicity of theL2

loc norm does not prevent oscillations ofc(t) ast → +∞
since all solitons have sameL2 norm; this is an illustration of degeneracy. From the
possible existence of blow-up solutions close toRc(t) for c(t) → +∞, we think
that, in the critical case, there do exist solutions for whichc(t) oscillates between
two values.

The proof of Theorem 1 is based on the following Liouville Theorem.

Theorem 2 (Liouville property close toRc0 for p = 2,3,4). Let p = 2,3 or 4,
and let c0 > 0. Let u0 ∈ H 1(R), and let u(t) be the solution of (1) for all time
t ∈ R. There exists α0 > 0 such that if |u0 − Rc0|H1 < α0, and if there exists x(t)
such that v(t, x) = u(t, x + x(t)) satisfies

∀ δ0 > 0, ∃A0 > 0,∀ t ∈ R,
∫

|x|>A0

v2(t, x)dx � δ0, (L2 compactness),

(8)
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then there exists c1 > 0, x1 ∈ R such that

∀ t ∈ R,∀ x ∈ R, u(t, x) = Rc1(x − x1 − c1t).

Remark 4. From [22], we know thatRc0 is stable, in the sense that (5) is true
for Rc0. In the above theorems,u(t) is defined for allt ∈ R since we consider
subcriticalp’s, whereas the further property

∀ t ∈ R, C1 � |u(t)|H1 � C2 (9)

is implied by theH 1 stability ofRc0 and the assumption that|u0 −Rc0|H1 is small.
In the critical case, (9) is not necessarily true under the same assumptions

because of the possible existence of blow-up solutions close to the family of solitons.
This is the reason why it is given as an additional assumption in the results of [15].

Remark 5. For a class of nonlinear parabolic equation

ut = �u+ |u|p−1u,

whereu : RN → RM , and 1< p < N+2
N−2, a Liouville theorem related to blow-up

solutions has been established byMerle & Zaag [16]. Of course, the structure of
the problem and the proof for the KdV equations are completely different.

Remark 6. It might be expected that the Liouville property would still true without
the smallness of|u0 −Rc0|H1. However, at least forp = 3, a counter example (see
references inLamb [12] andKenig, Ponce&Vega [10]) proves that the smallness
condition is necessary.This question for other values ofp is open. Indeed, forp = 3,
the following solutions of (1) (called breather solutions)

− 2
√

6ω

ch(ωx + γ t)

(
cos(Nx + δt)− (ω/N)sin(Nx + δt)tanh(ωx + γ t)

1 + (ω/N)2sin2(Nx + δt)/ch(ωx + γ t)

)
,

whereδ = N(N2 − 3ω2) andγ = ω(3N2 − ω2), are example of global in time
solutions, without dispersion, which are not of the typeRc(x − ct).

Remark 7. Note that apart from being a crucial result for proving the asymptotic
completeness of the family of solitons, the Liouville property has its own interest.
Indeed, it gives a characterization of the solitons: it says that, locally in the space
H 1, the solitons are the only solutions which do not disperse. Extension of this
classification result to allH 1 would give the generic behavior of the solutions of
(1). Recall that in the casep = 3 there is another family of nondispersive solutions
(see preceding remark).

In the proof of Theorem 1, theL2 localization condition (8) is satisfied by an
asymptotic object ast → +∞, and therefore it is a natural assumption in this
problem. Moreover, from the proof of Theorem 2, we will see that the condition
of L2 localization uniform in time around the center of mass implies, surprisingly,
a far more precise result of uniform pointwise exponential decay (see Section 3).
In conclusion, an asymptotic object such as the one constructed in the proof of
Theorem 1 has uniform exponential decay in space.
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Now, we give some notation and an outline of the methods used in the proofs.
The method used in the proof will be close to the one used in the critical case
(see [15]); however various technical differences will be pointed out. We consider
p = 2, 3, 4.

By scaling, in Theorems 1 and 2, we can restrict ourselves to the case where

c0 = 1 (if u(t, x) is solution then forλ0 > 0, λ
2

p−1
0 u(λ3

0t, λ0x) is also a solution).
We note that

Q(x) = R1(x) =
 p + 1

2ch2
(
p−1

2 x
)


1
p−1

,

so thatQ satisfiesQxx = Q−Qp.
Throughout this paper, we consider a solutionu(t) of (1) with |u0−Q|H1 � α0,

whereα0, to be chosen later, is small. By the stability ofQ in H 1, we have, for
somey(t),

∀ t, |u(t)−Q(x − y(t))|H1 � ε(α0) (10)

whereε(α0) → 0 asα0 → 0. From modulation theory and the invariances of the

equation (ifu(t, x) is a solution then forλ0 > 0 andx0 ∈ R, λ
2

p−1
0 u(λ3

0t, λ0x+x0)

is also a solution), it is natural to set

v(t, y) = λ
2

p−1 (t)u(t, λ(t)y + x(t)) and ε(t, y) = v(t, y)−Q(y),

where the geometrical parametersλ(t), x(t) are chosen so that

∀ t ∈ R, (ε(t),Q) = (ε(t),Qy) = 0

(see [14], [15]). Recall that the orthogonality with respect toQy is related to a
choice of center of massx(t), whileλ(t), the scaling of the approximate soliton, is
chosen through orthogonality with respect toQ. There are many other possibilities
(small perturbations of the functions above for example).

Note that in the subcritical case, such a choice is possible since(
d

dλ

∫
λ

2
p−1Q(λx)Q(x) dx

)
λ=1

=
∫ (

2Q

p − 1
+ xQx

)
Q

= 5 − p

2(p − 1)

∫
Q2 �= 0

(11)

and (
d

dx′

∫
Q(x + x′)Qx(x) dx

)
x′=0

=
∫
Q2
x �= 0. (12)

(See Proposition 1 in [14].) In this paper the orthogonality with respect toQ is
strongly used. The choice of the orthogonality condition(ε(t),Q) = 0 was not
possible in the critical case since

((1
2Q+ xQx

)
,Q

) = 0 in this case. However,
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from an algebraic property of the linearized operator in the critical case, this con-
dition was automatically recovered for the asymptotic linear problem considered
in Section 5 (see [15], Part B).

If we change the time variable as follows,

s =
∫ t ′

0

dt

λ3(t ′)
or equivalently

ds

dt
= 1

λ3 ,

thenε satisfies, by direct calculations, fors ∈ R, y ∈ R,

εs = (Lε)y + λs

λ

(
2Q

p − 1
+ yQy

)
+

(xs
λ

− 1
)
Qy + λs

λ

(
2ε

p − 1
+ yεy

)
+

(xs
λ

− 1
)
εy − ((Q+ ε)p − (Qp + pQp−1ε))y,

(13)

where

Lε = Lpε = −εxx + ε − pQp−1ε. (14)

Note that|(Q+ ε)p − (Qp +pQp−1ε)| � Cε2. By (10), there existsε1(α0) → 0
asα0 → 0 such that we have

∀ s, |ε(s)|H1 + |λ(s)− 1| � Cε1(α0). (15)

Finally, note that with the above choice of orthogonality conditions onε, using (11),
the propertiesLQy = 0, LQyy = p(p − 1)Qp−2Q2

y , and parity properties (see
Lemma 4 in [14] for similar calculations), we have the following relations between
λs
λ

and xs
λ

− 1:

λs

λ

(
5 − p

2(p − 1)

∫
Q2 −

∫
yQyε

)
+

∫
QyR(ε) = 0, (16)

−λs
λ

∫
yQyyε +

(xs
λ

− 1
)(

1

2

∫
Q2 −

∫
Qyyε

)
−p(p − 1)

∫
Qp−2Q2

yε +
∫
QyyR(ε) = 0. (17)

In particular, this gives smallness ofλs
λ

and xs
λ

− 1.
As in the critical case, Theorem 2 is equivalent to the following proposition in

terms ofε.

Proposition 1 (Liouville Theorem forε). There exists a1 > 0 such that if ε ∈
C(R, H 1(R))∩L∞(R, H 1(R)) is a solution of (13)on R×R satisfying |ε(0)|H1 �
a1 and

(H1) Orthogonality conditions:

∀ s ∈ R, (ε(s),Q) = (ε(s),Qy) = 0,
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(H3) L2 compactness: ∀ δ0 > 0, ∃A0(δ0) > 0, such that

∀ s ∈ R, |ε(s)|L2(|y|>A0)
� δ0,

then ε ≡ 0 on R × R.

Theorem 1 will be a consequence of the following proposition.

Proposition 2 (Asymptotic behavior ofε). Let

ε ∈ C(R+, H 1(R)) ∩ L∞(R+, H 1(R))

be a solution of (13) on R+ × R. There exists a2 > 0 such that if |ε(0)|H1 � a2,
then ε(s) ⇀ 0 in H 1(R) as s → +∞.

Remark 8. Recall that, from the stability ofQ in the subcritical case and the de-
composition, we have under the assumptions of Propositions 1, 2:

(H2) H 1 bounds: there existsλ1, λ2 > 0 such that∀ s ∈ R, λ1 � λ(s) � λ2.

In the critical case [15], (H2) is an additional assumption, which is necessary
due to the possible existence of blow-up solutions.

The rest of this paper is organized as follows. Section 2 is devoted to basic
estimates on (1). In Section 3, we show that the proof of Theorem 1 (asymptotic
stability) can be reduced to the proof of the Liouville property, Theorem 2. This is
the analogue of Part C in [15]. The main difference comes from the spaces in which
the Cauchy problem is solved (see [9]). It introduces some technical modifications.
As in [15], we use a quantity which measures the mass of the solution at the right of
the soliton, and we control the variation in time of this quantity. The conclusion is
that ast → +∞, the solution has to remainL2 compact, which reduces the rest of
the proof to a nonlinear Liouville property (Theorem 2). To obtain the convergence
of the scaling parameterλ(t) ast → +∞, we use a monotony property inL2 and
the subcriticality ofp (i.e., there is a uniqueRc (up to translation) of givenL2

norm), see Remark 3.
In Section 4, we show that the nonlinear Liouville property close toQ is

equivalent to a Liouville property on a linear problem. To do this, as in Part A
of [15], we introduce a sequencewn = εn

an
of renormalized solutions of (13)

(an = sups∈R |εn(s)|H1). We show that theL2 compactness leads to the following
properties:

∀ s ∈ R, ∀ y ∈ R, |wn(s, y)| � Ce−c2|y|, and |wn(s)|L2 � c > 0, (18)

which implies the equivalence of all norms ofwn. The proof of (18) is based on
the nonlinear decomposition ofεn in a nonlinear part, which decays in time, and a
localized part, which decays in space on the right. The decay in time of the nonlinear
part is obtained through a monotonicity property of small solutions of (7) proved
in Section 2. Note that the same technique applies in the critical case, even if in
[15] we have shown this property in a different way.
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Finally, in Section 5, we prove the linear Liouville property. This is where the
main differences with the critical casep = 5 appear. Indeed, in the subcritical case,
the linear operator has less structure, see Remark 13. However, in the three cases
p = 2,3,4, we can reduce the proof of the linear Liouville property to the study
of a quadratic form. As in the critical case, it is crucial that the linear operators are
classical ones, so we can do explicit calculations.

2. Preliminaries

In the critical case, we have established a monotonicity property for (1). This
property says that in some sense, the mass of the solution cannot travel to the right
of the solitons. We recall two main results in this direction.

ForK > 0 to be chosen later, define

∀ x ∈ R, φ(x) = φK(x) = cQ
( x
K

)
,

ψ(x) = ψK(x) =
∫ x

−∞
φ(y) dy,

where

c = K∫ +∞

−∞
Q(y) dy

,

so thatψ(x) → 0 asx → −∞ andψ(x) → 1 asx → +∞.
Let z be a solution of (1), and define, forσ > 0,

∀ t � 0, I(t) = Iσ (t) =
∫
z2(t, x)ψ(x − σ t) dx.

Lemma 1 (Monotonicity ofI for small solutions of (1)). For any σ > 0, if K �√
2
σ

, and

sup
t�0

|z(t)|L∞ � d0 =
(
(p + 1)σ

8p

) 1
p−1

, (19)

then the function I is nonincreasing in t .

Proof. The proof is very similar to the proof for the critical case, see Lemma 16 in
[15]. Recall that it makes use of a Virial-type identity for (1): for everyC3 function
ϕ, we have

d

dt

∫
z2(t)ϕ = −3

∫
z2
x(t)ϕ

′ +
∫
z2(t)ϕ(3) + 2p

p + 1

∫
zp+1(t)ϕ′. (20)
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Let u(t) be a solution of (1) such that (10) is satisfied. Forx0 ∈ R, let

Ix0(t) =
∫
u2(t, x)ψ(x − x(0)− σ t − x0) dx.

With the decomposition ofu(t) in terms ofε(t), λ(t), x(t) (se the introduction) we
have the following corollary of the monotonicity lemma.

Corollary 1 (Almost monotonicity for a solution close to the soliton). Let σ > 0,
K > 0 such that

σ � 1

4λ2
2

, K �
√

2

σ
.

There exists a0 = a0(σ ) such that if supt�0 |ε(t)|H1 � a0, then for C = C(σ,K),

∀ x0 � 0,∀ t � 0, Ix0(t)− Ix0(0) � Ce
x0
K .

The proof of Corollary 1 is omitted since it is exactly the same as in the critical
case (see Lemma 20 in [15]).

Moreover, let us recall a Virial-type identity forε(s), solution of (13). See also
[14], Lemma 5, for similar calculations.

Define

I (s) = 1
2

∫
yε2(s).

Then, we have, by direct calculations:

I ′(s)+ 2
p − 3

p − 1

λs

λ
I (s)

= λs

λ

∫
y

(
2Q

p − 1
+ yQy

)
ε +

(xs
λ

− 1
)(∫

yQyε − 1

2

∫
ε2
)

− 3

2
(Lε, ε)+

∫
ε2 − p(p − 1)

2

∫
Qp−2

(
2Q

p − 1
+ yQy

)
ε2

+ p

p + 1

∫
εp+1 −

∫
((Q+ ε)p −Qp − pQp−1ε − εp)yyε. (21)

3. Asymptotic behavior of ε(s) and λ(s) as s → +∞
First, we prove Proposition 2, and then we conclude the proof of Theorem 1 by

proving the convergence ofλ(t) using monotonicity properties inL2.

3.1. Asymptotic property of ε(s)

In this subsection, we show that the Liouville theorem forε implies the asymp-
totic behavior result onε. Proposition 1 is proved in Sections 4 and 5.

Proof of Proposition 2, assuming Proposition 1. The proof is by contradiction.
Assume that for some sequencesn → +∞, we have

ε(sn) �⇀ 0 inH 1 asn → +∞.
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Note that by theH 1 stability of Q (5), since|ε(0)|H1 � a2, we havea =
sups�0 |ε(s)|H1 as small as we want provided thata2 is small enough.

Since|ε(sn)|H1 � C andλ1 � λ(sn) � λ2, there exists a subsequence of(sn),
which we still denote by(sn), ε̂0 ∈ H 1(R) and̂λ0 > 0 such that

ε̂0 �≡ 0, ε(sn) ⇀ ε̂0 in H 1, and λ(sn) → λ̂0 asn → ∞. (22)

Note that|̂ε0|H1 � a.
Denote bŷε(s) the solution of (13) for alls ∈ R, with ε̂(0) = ε̂0 and (̂λ, x̂)

such that̂ε satisfies(̂ε,Q) = (̂ε,Qy) = 0. Setv(t, y) = Q(y) + ε(t, y) =
λ

2
p−1 (t)u(t, λ(t)y + x(t)), andv̂ = Q+ ε̂.

We have the following lemma, relatingε and̂ε.

Lemma 2 (Stability of weak convergence with respect to time). For all s ∈ R,

ε(sn + s) ⇀ ε̂(s) in H 1(R) as n → +∞ . (23)

We claim the following property.

Lemma 3 (L2 compactness of̂ε ). The function ε̂ is L2 compact, i.e.,

∀ δ0 > 0, ∃A0 = A0(δ0) > 0, such that ∀ s ∈ R,
∫

|y|>A0

ε̂ 2(s) < δ0. (24)

Assuming (24), the conclusion of the proof of Proposition 2 follows from Propo-
sition 1. Indeed, from Lemma 2, note that∀ s ∈ R, |̂ε(s)|H1 � a, and̂ε is a solution
of (13) satisfying (H1) and (H3). Therefore, fora2 small enough, the Liouville prop-
erty implies that

ε̂ ≡ 0 on R × R.

In particular,̂ε0 ≡ 0, which is a contradiction. This concludes the proof of Propo-
sition 2.

We can now prove Lemma 2 and Lemma 3.

Proof of Lemma 2. Arguing as in [15], Lemma 17 and Appendix D, and using the
orthogonality conditions and (16), (17), Lemma 2 is equivalent to the following
property onu.

Claim. Assume that there exists a sequencetn → +∞ andû0 ∈ H 1(R) such that

u(tn, x(tn)+ .) ⇀ û0 in H 1(R).

Then, if û is the solution of (1) with initial valuêu(0) = û0, we have

∀ t ∈ R, u(tn + t, x(tn)+ .) ⇀ û(t, .) in H 1(R) asn → +∞, (25)

∀ t ∈ R, u(tn + ., x(tn)+ .) → û in C([−t, t], L2
loc(R)) asn → +∞. (26)
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To prove this property, we have to work in the spaces introduced in [9] to solve
in a sharp way the Cauchy problem for (1). From the structure of the norms, the
proof is rather different from the one in the critical case. The keys of the proof are
a Virial identity which gives a smallness property, and the well-posedness of the
Cauchy problem inH 1 and inHs , for s ∈ (3/4,1) if p = 2, s ∈ [1/4,1) if p = 3
ands ∈ [1/12,1) if p = 4, for the generalized KdV equation. In fact, we just need
a local Cauchy theory in someHs∗ , 0< s∗ < 1 to prove the claim. Since the cases
p = 2,3,4 are similar (the problems are solved inHs , for some 0< s < 1), we
will concentrate on the casep = 2.

Setp = 2. LetM be such that

∀ t ∈ R, |u(t)|H1 � M.

Note that it suffices to prove (25) on an interval[−t0, t0], with t0 = t0(M) > 0,
then the claim is obtained by iteration in time.

Sincetn → +∞, we may assume that∀ n ∈ N, tn � 1. Fort ∈ [−1,1], we set,

∀ x ∈ R, xn = x(tn), un(t, x) = u(tn + t, xn + x).

We first decomposeun(t) into compact and noncompact parts.
Since∫

u2
n(0) � M2, un(0, .) = u(tn, x(tn)+ .) → û0 in L2

loc(R),

we can write
un(0) = u1,n(0)+ u2,n(0),

where

u1,n(0) → û0 in L2 asn → +∞,

∣∣∣∣∫ (u1,n(0))
2 −

∫
û2

0

∣∣∣∣ � 1

n
,

u2,n(0, x) = 0, if |x| � 2ρn, with ρn → +∞ asn → +∞.

Next, we setzn(0) = u1,n(0)− û0; we haveun(0) = û0 + zn(0)+ u2,n(0), with∫
z2
n(0) � c

n
, |̂u0|H1, |u1,n(0)|H1, |zn(0)|H1, |u2,n(0)|H1 � K0. (27)

We then consider the solutionŝu(t), zn(t), u2,n(t) of (1), with respective initial
valueŝu0, zn(0), u2,n(0). Finally, we define the interaction termRn(t) = un(t)−
(̂u(t)+ zn(t)+ u2,n(t)).

We show the stability in time of the properties ofzn(t), u2,n(t) andû(t).
Recall that the Cauchy problem for (1) can be solved inHs(R) for all s > 3/4.

Fix s ∈ (3/4,1). The idea is to use the norms related toH 1 to control the size of
the norms related toHs .

Let

|f |Hs = |Ds
xf |L2 + |f |L2, |ζ |Lpx LqT =

( ∫ ∞

−∞

( ∫ T

−T
|ζ(t, x)|qdt

)p/q
dx

)1/p
,

|ζ |LqT Lpx =
( ∫ T

−T

( ∫ ∞

−∞
|ζ(t, x)|pdx

)q/p
dt

)1/q
.
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To solve the Cauchy problem inHs(R), we consider, forζ : R × R → R, and
T > 0,

λT1 (ζ ) = sup
t∈[−T ,T ]

|ζ(t)|Hs , λT2 (ζ ) = |ζ |L2
T L

∞
x
, λT3 (ζ ) = |Ds

xζx |L∞
x L

2
T
,

λT4 (ζ ) = (1 + T )−1|ζ |L2
xL

∞
T
, 4T (ζ ) = max

j=1,... ,4
λTj (ζ ).

To solve the Cauchy problem inH 1(R), we consider

4̃T (ζ ) = max

{
sup

t∈[−T ,T ]
|ζ(t)|H1, λT2 (ζ ), |ζxx |L∞

x L
2
T
, λT4 (ζ )

}
.

LetS(t) represent the convolution with(3t)−1/3Ai (x(3t)−1/3). From [9], proof
of Theorem 2.1, forT > 0 andF,G : R × R → R, we have,

4T

(∫ t

0
S(t − s)F (s)Gx(s)ds

)
� C|FGx |L2

xL
2
T

+ C|Ds
x(FGx)|L2

xL
2
T

� C(1 + T )4T (F )4̃T (G).

(28)

By the global well-posedness result inH 1 (which is a consequence of (28) and
global energy bounds – see Theorem 2.2 in [9]), there existsK1 > 0 such that, if
z(t) is a solution of (1) and satisfies|z(0)|H1 � K0, then∀ t ∈ R, 4̃t (z) � K1.

In particular, we have

∀ t ∈ R, 4̃t (̂u), 4̃t (un), 4̃
t (zn), 4̃

t (u2,n) � K1. (29)

Remark 9. To solve the Cauchy problem inHs ,Kenig, Ponce & Vega have used
λ

′T
2 (ζ ) = |ζ |L4

T L
∞
x

instead ofλT2 , see page 580 in [9]. Let us remark, as regards

their proof, that the inhomogeneous term in the fixed point is estimated by4T (see
(4.10) just below (4.9)), and thatλT2 � CT 1/4λ

′T
2 . It seems that if one usesλ

′T
2 ,

one is not able to prove the claim.

We claim the following property.

Claim. There existsn0 ∈ N, t1 > 0, such that∀ n � n0,

(i)
(
4t1(zn)

)2 � C

n1−s ,

(ii) ∀ t ∈ [−t1, t1],
∫

|x|<ρn
(u2,n(t, x))

2dx � C

ρn
,

(iii) lim
n→∞ sup

t∈(−t1,t1)

( ∫
|x|�ρn

(
Ds
xu2,n

)2) +
∫
t∈(−t1,t1)

(
sup

|x|�ρ1/4
n

(u2,n)x

)2

+ sup|x|�ρ1/2
n

( ∫
t∈(−t1,t1)

(Ds
xu2,nx)

2
)

+
∫

|x|�ρ1/4
n

(
sup

t∈(−t1,t1)
|u2,n|

)2 = 0.
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Using properties (i)–(iii), (28) and the technique of Step 3 of the proof of
Lemma 30 in [15], it is easy to finish the proof of the claim, by a fixed point
argument using the4T norm.

Proof of (i). Since|zn(0)|Hs � C|zn(0)|sH1|zn(0)|1−s
L2 � C

n1−s by interpolation,
the result follows from the proof of Theorem 2.1 in [9], for somet1 > 0 (local
existence inHs). Now, the value oft1 is fixed.

Proof of (ii) . Considerγ : [0,+∞) → [0,1] a smooth function satisfying

γ (r) = 1 for 0 � r � 1, γ (r) = 0 for r � 2.

By formula (20), we have, fort ∈ [−t1, t1],

d

dt

∫
γ

( |x|
ρn

)
(u2,n(t, x))

2 dx = − 3

ρn

∫
γ ′

( |x|
ρn

)
(u2,n(t, x))

2
x dx

+ 1

ρ3
n

∫
γ (3)

( |x|
ρn

)
(u2,n(t, x))

2 dx

+ 2p

(p + 1)ρn

∫
γ ′

( |x|
ρn

)
(u2,n(t, x))

p+1 dx.

Forn large enough so thatρn � 1, and using the Gagliardo-Nirenberg inequal-
ity, we obtain,∀ t ∈ [−t1, t1],

∣∣∣ d
dt

∫
γ

( |x|
ρn

)
(u2,n(t, x))

2 dx

∣∣∣
� C

ρn

(
|γ ′|L∞|(u2,n)x |2L2

+ |γ (3)|L∞|u2,n|2L2 + |γ ′|L∞|(u2,n)x |2L2|u2,n|p−1
L2

)
� C

ρn
.

Since
∫
γ
( |x|
ρn

)
(u2,n(0, x))2 = 0, (ii) follows.

Proof of (iii) . The first term in (iii) is small, as can be shown by using the interpo-
lation inequality|w|Hs � C|w|s

H1|w|1−s
L2 for w ∈ H 1(R), and∀ t ∈ (−t1, t1),

∫
|x|�ρn/2

(Ds
xu2,n)

2 � C

(∫
|x|�ρn

(Dxu2,n)
2 + (u2,n)

2
)s(∫

|x|�ρn
(u2,n)

2
)1−s

.

Then (ii) and the bound|u2,n(t)|H1 � K1 imply the result.
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For the second term, we observe that by the Sobolev inequality (Gagliardo-
Nirenberg inequality and cut-off), we have∀ t ∈ (−t1, t1), for σ > 0,

sup
|x|�ρ1/4

n

(u2,nx(t, x))
2

� C

(∫
|x|�2ρ1/4

n

(D2
xu2,n)

2

)3/4 (∫
|x|�2ρ1/4

n

u2
2,n

)1/4

+ C

(∫
|x|�2ρ1/4

n

u2
2,n

)

� Cσn

(∫
|x|�2ρ1/4

n

(D2
xu2,n)

2

)
+ C

σn

(∫
|x|�2ρ1/4

n

u2
2,n

)
.

Therefore,∫
t∈(−t1,t1)

sup
|x|�ρ1/4

n

(u2,nx(x))
2

� Cσn

∫
t∈(−t1,t1)

∫
|x|�2ρ1/4

n

(D2
xu2,n)

2 + C

σn

∫
t∈(−t1,t1)

∫
|x|�2ρ1/4

n

u2
2,n

� Cσnρ
1/4
n sup

x∈R

∫
t∈(−t1,t1)

(D2
xu2,n)

2 + C

σn
sup

t∈(−t1,t1)

(∫
|x|�ρn

u2
2,n

)
.

By (29) and (ii), we obtain the result forσn = ρ
−1/2
n .

For the third term in (iii), we setF(x) = ∫
t∈(−t1,t1)(D

1+s
x u2,n)

2. By the Sobolev
inequality, and (29),∫

|x|�2ρ1/2
n

F (x) dx

� Cσn

∫
t∈(−t1,t1)

∫
|x|�4ρ1/2

n

|D2
xu2,n|2 + C

σn

∫
t∈(−t1,t1)

∫
|x|�4ρ1/2

n

|u2,n|2

� Cσnρ
1/2
n sup

x∈R

∫
t∈(−t1,t1)

|D2
xu2,n|2 + C

σn
sup

t∈(−t1,t1)

∫
|x|�4ρn

|u2,n|2

� CK1σnρ
1/2
n + C

σnρn
.

Takingσn = ρ
−3/4
n , we obtain

∫
|x|�2ρ1/2

n
F (x) dx � Cρ

−1/4
n .

Let q ∈ N, q � 1. ThenD1−s
x F (x) = ∫

t∈(−t1,t1) D
1−s(D1+su2,n(x))

2. There-
fore,

|D1−s
x F |Lq(|x|�ρn) �

∫
t∈(−t1,t1)

|D1−s(D1+su2,n)
2|Lq(|x|�ρn).

From (A.6) in [9] (chain rule for fractional derivatives), we have

|D1−s
x (D1+s

x u2,n)
2|Lq � Cq |D1+s

x u2,n|L2q |D2
xu2,n|L2q ,
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and by localization arguments

|D1−s
x (D1+s

x u2,n)
2|Lq(|x|�ρn/2)

� Cq |D1+s
x u2,n|L2q (|x|�ρn)

(
|D2

xu2,n|L2q (|x|�ρn) + |D1+s
x u2,n|L2q (|x|�ρn)

)
,

Hence,

|D1−s
x F |Lq(|x|�ρn)

� Cq

∫
t∈(−t1,t1)

|D1+s
x u2,n|L2q (|x|�ρn)|D2

xu2,n|L2q (|x|�ρn)

� Cqρ
1/q
n

∫
t∈(−t1,t1)

(
sup
x∈R

|D1+s
x u2,n(x)| sup

x∈R
|D2

xu2,n(x)|
)

� Cqρ
1/q
n

(∫
t∈(−t1,t1)

sup
x∈R

|D1+s
x u2,n(x)|2

)1/2

(∫
t∈(−t1,t1)

sup
x∈R

|D2
xu2,n(x)|2

)1/2

� CqK1ρ
1/q
n .

Similarly |F |Lq(|x|�ρn) � CqK1ρ
1/q
n . From the Gagliardo-Nirenberg inequality,

for someθ = θq ∈ (0,1), we have

sup
|x|�ρ1/2

n

|F(x)| � C

(∫
|x|�2ρ1/2

n

F

)θ (
|D1−s

x F |Lq(|x|�ρn) + |F |Lq(|x|�ρn)
)1−θ

� Cqρ
− θ

4+ 1−θ
q

n .

Now, observe that asq → +∞, θ → θ0 ∈ (0,1). Therefore, forq large enough,
we obtain

sup
|x|�ρ1/2

n

|F(x)| � Cρ
−θ0

8
n .

For the last term, we write∫
|x|�ρ1/4

n

sup
t∈(−t1,t1)

|u2,n(t, x)|2

� 2ρ1/4
n sup

t∈(−t1,t1)
x∈(−ρn,ρn)

|u2,n(t, x)|2

� 2ρ1/4
n sup

t∈(−t1,t1)
|u2,n(t)|H1 sup

t∈(−t1,t1)

(∫
|x|�2ρ1/4

n

u2
2,n

)1/2

� Cρ
−1/4
n .

This concludes the proof of Lemma 2.
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Proof of Lemma 3. The proof of Lemma 3 is exactly the same as in [15] (see the
proof of Proposition 6 in [14] for more details.)

The main idea is to use the following two properties.

Lemma 4. (i) Irreversibility of the loss of mass on the left:There exists a3 > 0
such that if 0 < a < a3 then, for all δ0 > 0, ε0 ∈ (0,1), there exists A1 =
A1(δ0, ε0) > 0 such that for all y0 > A1 and t0 � 0,

∀ t � t0,

∫
y<

−λ1y0
2λ2

v2(t, y) dy � (1 − ε0)

∫
y<−y0

v2(t0, y) dy − δ0.

(ii) L2 compactness ofv on the right:There exists a4 > 0 such that if 0< a < a4,
then we have the following property: ∀ δ0 > 0, ∃R2 = R2(δ0) > 0 such that

∀ t � 0,
∫
y>R2

v2(t, y) dy � δ0. (30)

Proof of Lemma 4. The proof of the irreversibility (property (i)) follows as in [15],
Lemma 19, from the almost-monotonicity property given in Corollary 1. The idea
is to use the almost-monotonicity on the following quantity

Ix0(t) =
∫
u2(t, x)ψ(x − x(0)− σ t − x0).

The proof of theL2 compactness on the right is based on two procedures: first,
a decomposition of the solution close to the soliton; second, use of a monotonicity
property of the mass on the right-hand side of the soliton.

Equation (13) can be rewritten

εs + εyyy − xs

λ
εy = λs

λ

(
2ε

p − 1
+ yεy

)
+ f1 + f2y − (εp)y,

with

f1(s, y) = λs

λ

(
2Q

p − 1
+ yQy

)
,

f2(s, y) =
(xs
λ

− 1
)
Q− ((Q+ ε)p −Qp − εp).

We introduce
η(s, x) = λ

− 2
p−1 (s)ε(s, λ−1(s)x).

We verify that

λ
2

p−1ηs + λ
3p−1
p−1 ηxxx − λ

2
p−1xsηx = f1(s, λ

−1x)+ f2y(s, λ
−1x)− (εp)y. (31)

Changing the time variables → t by the formula

s =
∫ t

0

dt ′

λ3(t ′)
, or equivalently,

ds

dt
= 1

λ3 , (32)
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we obtain

ηt + ηxxx − xtηx = g1 + g2x − (ηp)x, (33)

where

g1(t, x) = λ
− 3p−1

p−1 f1(t, λ
−1x), (34)

g2(t, x) = λ
− 2
p−1

(xs
λ

− 1
)
Q(λ−1x)+

(
λ

− 2
p−1Q(λ−1x)+ η

)p
−

(
λ

− 2
p−1Q(λ−1x)

)p − ηp. (35)

We can splitη into two parts:

η(t, x) = η I(t, x)+ η II (t, x),

whereη I satisfies the purely nonlinear equation

(η I)t + (η I)xxx − xt (t)(η I)x = −(ηpI )x,
η I(0) = η(0),

andη II satisfies

(η II )t + (η II )xxx − xt (t)(η II )x = g1(t)+ g2x(t)− (ηp − (η I)
p)x,

η II (0) = 0.

Using the monotonicity property for small solutions of (1) (i.e., Lemma 1), the
quantity

I (t) =
∫
η2

I (t, x)ψ(x − σ t − x0) dx,

whereη I(t, x) = η I(t, x−x(t)+x(0)), is monotone in time. TheL2 compactness
of η I then follows from this property forx0 large. This is proved in the same way
as in the critical case.

We claim the following lemma, proving thatη II satisfies anL2 compactness
property.

Lemma 5 (Exponential estimate forx > 0). There exists a′
0 > 0 and θ1, θ2 > 0

such that if 0< a < a′
0, then

∀ t � 0,∀ x � 0, |η II (t, x)| �
√
ab θ1e

−θ2x. (36)

Proof of Lemma 5. The proof is exactly the same as for the critical case (see
Lemma 2 in [15]). It is based on pointwise estimates, and then does not depend
on the value ofp. Let us just recall that we use an estimate of the solutions of a
shifted nonhomogeneous linear Airy equation, with exponentially decaying second
member, see Lemma 5 in [15].

This concludes the proof of Lemma 4 and Proposition 2.
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3.2. Convergence of λ(s)

Here, we use the monotonicity in time of theL2
loc norm ofu(t), and the fact

that the problem in subcritical (there is a unique soliton of givenL2 norm), so that
the limitL2

loc selects the asymptotic soliton.

Proposition 3 (Convergence ofλ(t)). Let p = 2,3,4. Under the assumptions of
Proposition 2, there exists λ+∞ > 0 such that

λ(t) → λ+∞ as t → +∞.

Remark 10. The conclusion of Theorem 1 follows easily from this result. Note that
it also gives convergence ofxt (t). Indeed,|λ2(t)xt (t) − 1| � C

∫
e−c|x||ε(s)| for

someC, c > 0 (by (16), (17)), and thusxt (t) → 1/λ2+∞ = c+∞ ast → +∞.

Recall that by Proposition 2, we have

v(t, .) = λ
2

p−1 (t)u(t, λ(t).+ x(t)) ⇀ Q in H 1(R) ast → +∞.

The convergence of the scaling parameterλ(t) ast → +∞ relies on a careful
description of behavior of the localL2 mass ofv(t) ast → +∞. Indeed, we have

in some sense|v(t)|L2
loc

∼ λ
p−5
p−1 (t)

∫
Q2, ast → +∞. Moreover, by using theL2

compactness ofv(t) on the right (Lemma 4(ii)), and Corollary 1 which says that
the mass ofu(t) which is at some time at the left of the soliton will never return
to the soliton,|v(t)|L2

loc
is almost decreasing in time. This gives monotonicity and

thus convergence ofλ(t).

Proof. Recall that

∀ t � 0, λ1 � λ(t) � λ2. (37)

We considerψ as in Section 2 andσ = 1
4λ2

2
, K = 2

σ
. Let δ > 0 arbitrary and

x0 < 0 be such thatCex0/K < δ, whereC appears in Corollary 1. From Corollary
1, sincex(t) � x(t ′)+ σ(t − t ′) by the choice ofσ , we have∀ t � t ′ � 0,∫

u2(t, x)ψ(x − x(t)− x0) dx �
∫
u2(t ′, x)ψ(x − x(t ′)− x0) dx + δ.

Therefore,

λ
p−5
p−1 (t)

∫
v2(t, y)ψ(λ(t)y−x0) dy � λ

p−5
p−1 (t ′)

∫
v2(t ′, y)ψ(λ(t ′)y−x0) dy+δ.

By compactness ofv(t), on the right-hand side, uniform in time (Lemma 4(ii)),
weak convergencev(t) ⇀ Q in H 1(R) ast → +∞, and (37), there existsT =
T (δ) andx0 = x0(δ) < 0 (|x0| large enough) such that∀ t > T ,∣∣∣∣∫ v2(t, y)ψ(λ(t)y − x0) dy −

∫
Q2

∣∣∣∣ � δ.
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(Recall thatψ(y) decays exponentially to 0 asy → −∞ and goes to 1 asy →
+∞.) Thus,∀ δ > 0, there existsT > 0 such that∀ t � t ′ � T ,

λ
p−5
p−1 (t)

∫
Q2 � λ

p−5
p−1 (t ′)

∫
Q2 + δ + 2λ

p−5
p−1
1 δ.

It follows thatλ
p−5
p−1 (t) andλ(t) have a limit whent → +∞.

This completes the proof of Proposition 3 and the proof of Theorem 1.

4. Passage from a nonlinear Liouville property to a linear Liouville property

This is the first step of the proof of Theorem 2 (or Proposition 1). We claim
that the nonlinear Liouville property for smallε is equivalent to a linear Liouville
property.

We want to show that for|ε|H1 small and satisfying the assumptions in Propo-
sition 1 (orthogonality condition,L2 localization, smallness inH 1), we necessarily
haveε ≡ 0. For the sake of contradiction we assume that there exists a sequence
εn �≡ 0 of solutions of (13) satisfying|εn(0)|H1 → 0 asn → +∞. By the strict
convexity of the functionalE(v) + c

2

∫
v2, we havean = sups∈R |εn(s)|H1 → 0

asn → ∞ (see the proof of the stability result in [5]). We claim the following
convergence result for a sequence of renormalizations of the(εn).

Proposition 4 (Convergence to a linear problem). Consider a sequence εn ∈
C(R, H 1(R)) ∩ L∞(R, H 1(R)) of solutions of (13) satisfying (H1) and (H3)
(without any uniformity in n for (H3)) . Assume that

an = sup
s∈R

|εn(s)|H1 → 0 as n → +∞.

Then:

(i) There exist a sequence (sn) ∈ R and a subsequence (εn′) such that

εn′(sn′ + s)

an′
→ w(s) in L∞

loc(R, L
2(R)),

where w ∈ C(R, H 1(R)) ∩ L∞(R, H 1(R)) satisfies

w �≡ 0,

ws − (Lw)y = α(s)

(
2Q

p − 1
+ yQy

)
+ β(s)Qy, (s, y) ∈ R2 (38)

for some continuous functions α and β.
(ii) Moreover, there exist C > 0 and θ2 > 0 such that w satisfies

(H1′) ∀ s ∈ R, (w(s),Q) = 0, (w(s),Qy) = 0,

(H2′) ∀ s ∈ R, ∀ y ∈ R, |w(s, y)| � Ce−θ2|x|.
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In Section 5, we show that the solutionw built in Proposition 4 does not exists,
which concludes the contradiction argument and the proof of Theorem 2.

Proof. We proceed in three steps.

Step 1. We claim the following lemma.

Lemma 6 (Uniform exponential decay). Let ε ∈ C(R, H 1(R)) ∩ L∞(R, H 1(R))
be a solution of equation (13) satisfying (H1) and (H3). Let a and b be defined by

a = sups∈R|ε(s)|H1, b = sups∈R|ε(s)|L2. (39)

There exists a0 > 0 and two constants θ1, θ2 > 0, such that if a < a0, then

∀ s ∈ R, ∀ y ∈ R, |ε(s, y)| � θ1
√
ab e−θ2|y|. (40)

Remark 11. From this result, we obtaina posteriori an explicitA(δ0) in theL2

compactness assumption (H3) of Proposition 1,A(δ0) ∼ log(1/δ0).

Proof of Lemma 6. The method used in the proof of Lemma 6 is similar to the
one used in Proposition 1 in [15]. It involves a nonlinear decomposition ofη, as
in the proof of Lemma 4. However, the treatment of the purely nonlinear part of
the solution is different and relies on the monotonicity lemma for small solutions
of (1), see Lemma 1. This difference is due to the fact that no scattering result is
available forp < 5 in L2 norHs , s ∈ (0,1] (see [9], Introduction). Indeed, in
general, the monotonicity result can be seen as a more robust property implying
convergence to zero in a weak sense on compact sets for small solutions in the case
where there is no scattering.

Let (tn) be a sequence such thattn → −∞. Forn ∈ N, defineηn by

ηn(t, x) = η(t + tn, x).

Thenηn satisfies

(ηn)s + (ηn)xxx − xt (t + tn)(ηn)x = g1(t + tn)+ g2x(t + tn)− (η
p
n )x,

whereg1, g2 are defined in (34), (35), and

ηn(0, x) = η(tn, x),

as in the proof of Lemma 4.
As before, we splitηn into two parts: this is a “nonlinear decomposition ofη”.

We set

ηn(t, x) = η I,n(t, x)+ η II ,n(t, x), (41)

whereη I,n is solution of the purely nonlinear equation

(η I,n)t + (η I,n)xxx − xt (t + tn)(η I,n)x = −(ηpI,n)x,
η I,n(0, x) = η(tn, x), x ∈ R,

(42)



Asymptotic Stability of Solitons 241

andη II ,n is solution of

(η II ,n)t + (η II ,n)xxx − xt (t + tn)(η II ,n)x = g1(t + tn)+ g2x(t + tn)

− (η
p
n − (η I,n)

p)x,

η II ,n(0, x) = 0, x ∈ R.

(43)

We claim the following:

Claim. (a) Exponential estimate ofη II ,n:

∀ t ∈ R, ∀ x � 0, |η II ,n(t, x)| �
√
ab θ1e

−θ2x. (44)

(b) Asymptotic behavior ofη I,n. Let t0 ∈ R. For any sequencetn → −∞, we have

η I,n(t0 − tn) → 0 inL∞
loc(R) asn → +∞. (45)

Property (a) follows from Lemma 5 applied toη II ,n.

Proof of (b). LetA > 0 andt0 ∈ R fixed. First, we want to show that∫
x>−A

η2
I,n(t0 − tn, x) dx → 0 asn → ∞.

The functionψ being defined as in Section 2, it is sufficient to show that∫
η2

I,n(t0 − tn, x)ψ(x + A)dx → 0 asn → ∞.

By applying Lemma 1 toη I,n(t, x + x0), whereη I,n(t, x) = η I,n(t, x − x(t +
tn)+ x(tn)), for a small enough, and withσ = 1

2λ2
2
, we obtain

∫
η2

I,n(t0 − tn, x)ψ(x + x(t0)− x(tn)− σ(t0 − tn)− x0)

�
∫
η2

I,n(0, x)ψ(x − x0). (46)

Let x0 = −A− σ(t0 − tn)+ (x(t0)− x(tn)). Since
∣∣λ2xt − 1

∣∣ � Ca, for a small
enough, we havext � 3σ

2 . Therefore,−σ(t0 − tn) + x(t0) − x(tn) � σ
2 (t0 − tn),

and sox0 � −A+ σ
2 (t0 − tn).

We obtain from (46), and the fact thatψ is nondecreasing,∫
η2

I,n(t0 − tn, x)ψ(x + A)dx �
∫
η2

I,n(0, x)ψ(x + A− σ

2
(t0 − tn))

�
∫
η2(tn, x)ψ(x + A− σ

2
(t0 − tn)).

From the compactness inL2 of η(t, x) and the factσ(t0− tn) → +∞ asn → +∞,
we obtain ∫

x>−A
η2

I,n(t0 − tn, x) dx → 0, asn → ∞.
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Therefore,η I,n(t0 − tn) → 0 in L2
loc. Since supt∈R |η I,n(t)|H1 � C, we have

η I,n(t0 − tn) → 0 inL∞
loc. Thus (b) is proved.

Using (a) and (b), we now conclude the proof of Lemma 6. Fixt ∈ R and
x � 0. Recall that,∀ n ∈ N, we have

η(t) = η I,n(t − tn)+ η II ,n(t − tn).

Property (b) yields
η I,n(t − tn, x) → 0 asn → ∞.

Therefore,
η II ,n(t − tn, x) → η(t, x) asn → ∞.

It follows from (44) that∀ n ∈ N,

|η II ,n(t − tn, x)| �
√
ab θ1e

−θ2x.

Hence, we obtain, lettingn go to∞,

|η(t, x)| �
√
ab θ1e

−θ2x.

Thus,

∀ t ∈ R, ∀ x � 0, |η(t, x)| �
√
ab θ1e

−θ2x. (47)

Let us now prove the result forx � 0. We use the symmetry of (1) under the
following transformation: ifu(t, x) is a solution of (1) theñu(t, x) = u(−t,−x)
is also a solution of (1) satisfying (H1) and (H3).

Therefore, the same argument yields

∀ t ∈ R, ∀ x � 0, |̃η(t, x)| �
√
ab θ1e

−θ2x. (48)

By (47) and (48), we obtain

∀ t ∈ R, ∀ x ∈ R, |η(t, x)| �
√
ab θ1e

−θ2|x|.

Since
ε(s, y) = λ−1/2(s)η(s, λ(s)y),

by (H2) (control ofλ(s), see remark after Proposition 2), we have

|ε(s, y)| �
√
ab θ ′

1e
−θ ′

2|x|,

which concludes the proof of Lemma 6.

Step 2. We claim the following lemma.

Lemma 7 (Comparison betweenL2 andH 1 norms ofε). Under the assumptions
of Lemma 6, there exist a1 > 0 and C > 0 such that, if a < a1 then,

b � a � Cb,

where
a = sups∈R|ε(s)|H1, b = sups∈R|ε(s)|L2.
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Proof. The proof is based on a Virial-type identity (see proof of Proposition 2 in
[15] for more details). Recall that in Section 2 we set

I (s) = 1
2

∫
yε2(s).

From (21), we claim that

d

ds
(λ

2p−3
p−1 I )(s) � Cb2 − 3λ

2p−3
p−1

1

2
|ε(s)|2

H1. (49)

Indeed, note that in (21), by integration by parts, the last term can be written as the
sum of scalar products ofεi , for i � 3, with rapidly decaying functions (see [14],
Lemma 14). Thus (49) follows from(Lε, ε) � |ε|2

H1 − C|ε|2
L2, and∣∣∣∣λsλ

∣∣∣∣ +
∣∣∣xs
λ

− 1
∣∣∣ � Cb,

which is a consequence of (16) and (17).
Next, we claim that there existsσ > 0 andc0 > 0 such that ifa is small enough,

then

|ε(s0)|H1 � a

2
implies∀ s ∈ (s0, s0 + σ), |ε(s)|H1 � c0a. (50)

This follows from the arguments of [9] to show that the Cauchy problem for (1) is
well posed inH 1 (see also Appendix B1 in [15]).

By definition ofa, there existss0 ∈ R, such thata2 � |ε(s0)|H1 � a. We deduce
from (50) that

∀ s ∈ (s0, s0 + σ), |ε(s)|H1 � c0a,

and then

∀ s ∈ (s0, s0 + σ), (λ
2p−3
p−1 I )(s0 + σ)− (λ

2p−3
p−1 I )(s0) � σ(Cb2 − C′a2).

Now, by Lemma 6, we have∀ s ∈ R, λ2p−3
p−1 (s)I (s) � Cab. Therefore, for

someC > 0, we havea2 � C(b2 + ab) and thusCa � b.
This proves Lemma 7.

Step 3. Conclusion of the proof of Proposition 4. We define

wn(s, y) = εn(s + sn, y)

bn
,

wheresn is such that

|εn(sn)|L2 � bn

2
= 1

2
sup
s∈R

|εn(s)|L2.

Using Steps 1 and 2, exactly as in the proof of Proposition 3 in [15], we have, for
a subsequence,

wn → w in L∞
loc(R, L

2(R)),
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wherew ∈ C(R, H 1(R)) ∩ L∞(R, H 1(R)) satisfies

w �≡ 0

(as a consequence of Step 2), and equation (38).
This concludes the proof of Proposition 4.

5. Linear Liouville property

The objective of this section is to show that the solutionw obtained in Proposi-
tion 4 does not exist, which concludes the proof of Proposition 1 (and Theorem 2).

Throughout this section, letw ∈ C(R, H 1(R))∩L∞(R, H 1(R)) be a solution
of

ws − (Lw)y = α(s)

(
2Q

p − 1
+ yQy

)
+ β(s)Qy, (s, y) ∈ R × R, (51)

whereα andβ are continuous functions of s andw satisfies

(H1′) Orthogonality conditions:

∀ s ∈ R, (w(s),Q) = (w(s),Qy) = 0.

(H2′) Exponential decay condition:

∀ (s, y) ∈ R × R, |w(s, y)| � Ce−c|y|.

We claim the following result, which implies Theorem 1.

Proposition 5 (A linear Liouville theorem for equation (51)). Let

w ∈ C(R, H 1(R)) ∩ L∞(R, H 1(R))

be a solution of (51) satisfying (H1′) and (H2′). Then

w ≡ 0 on R × R.

Remark 12. In fact, we obtain by Proposition 5 a characterization of the stationary
solutions ofws − (Lw)y = 0. If w is a solution of this equation satisfying (H2′),
thenw ≡ δ0Qy (see [15] for details).

Remark 13. The proof of this result will differ from the one of the critical case.
The first change is the fact that in some sense the geometry aroundQ is simpler (no
degeneracy). Only considerations on the Virial identity will give monotonicity (this
is the key of the proof). The second change is that, to prove the monotonicity, we
have to use spectral estimates on some operators. It turns out that these estimates
are less accurate than in the critical case, and the calculations are more delicate,
due to the fact that we have only two orthogonality conditions onw, while in the
critical case an additional orthogonality condition onw is obtained by the structure
of the operator.
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Proof of Proposition 5. We introduce a new function using an explicit solution of
(51):

w = w + γ (s)Qy, (52)

whereγ (s) is the bounded, continuous function defined by

γ (s) = − 1∫
QyyQ

∫
yQw(s) = 2∫

Q2

∫
yQw(s).

Thus, we obtain

(w,Q) = (w, yQ) = 0, ∀ s ∈ R, ∀ y ∈ R, |w(s, y)| � Ce−c|y|. (53)

SinceL(Qy) = 0,w satisfies (51), forα(s) = α(s), β(s) = β(s)+ γ ′(s).
Now, from the orthogonality conditions, we claim that

α(s) = 0, β(s) = 2∫
Q2

∫
w(s)(2Q+ (p − 3)Qp). (54)

Indeed, on the one hand, multiplying equation (51) forw byQ and integrating by
parts, we have

0 = d

ds

∫
Qw = −

∫
(Lw)Qy + α(s)

∫ (
2Q
p−1 + yQy

)
Q+ β(s)

∫
QyQ.

FromLQy = 0,
∫
QQy = 0, and (11), it follows thatα(s) ≡ 0.

On the other hand, multiplying (51) byyQ, we have

0 = d

ds

∫
yQw = −

∫
(Lw)

(
Q+ yQy

) + β(s)

∫
QyyQ.

Since

L(Q+ yQy) = −Qyy − 2Qyy − yQyyy +Q+ yQy − pQp + pyQp−1Qy

= −3Qyy − y(Q−Qp)y +Q+ yQy − pQp + pyQp−1Qy

= −2Q− (p − 3)Qp,

we obtain

−
∫
w(s)(2Q+ (p − 3)Qp)+ β(s)

∫
Q2

2
= 0.

The equation ofw(s) then reduces to

ws = (Lw)y + 2Qy∫
Q2

∫
w(s)(2Q+ (p − 3)Qp). (55)

We have the following relations for (55). Let

I (s) = 1
2

∫
yw2(s, y) dy.
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Lemma 8 (Identities for equation(55)). For all s ∈ R,

(i) (Lw(s), w(s)) = (Lw(0), w(0)) = (Lw(0), w(0)),

(ii)
d

ds
I (s) = −H ∗(w(s), w(s)), where

H ∗(w,w) = H(w,w)− 2∫
Q2

(∫
wyQy

)(∫
w(2Q+ (p − 3)Qp)

)
,

H(w,w) = −((Lw)y, yw) = (L1w,w)

= 3

2
(Lw,w)− (w,w)+ p

∫
Qp−2

(
Q+ p − 1

2
yQy

)
w2,

with

L1w = −3

2
wyy + 1

2
w − p

2
Qp−1w + p(p − 1)

2
yQyQ

p−2w.

Proof. SinceL(Qy) = 0, when we take the scalar product of (51) andLw, we
obtain d

ds
(Lw,w) = 0. Moreover, sincew = w + γ (s)Qy , we have(Lw(0),

w(0)) = (Lw(0), w(0)).
Property (ii) is proved following similar calculations as for the nonlinear prob-

lem (see Section 2). Note that by (H2′), yw2 ∈ L1(R).
In order to complete the proof of Proposition 5, as in the critical case, we claim

the following properties, which will be proved later.

Proposition 6 (Positivity properties ofH ∗). Let p = 2, 3 or 4. There exists σ0 > 0
such that if w ∈ H 1(R) satisfies (w,Q) = (w, yQ) = 0, then

(i) if w �≡ 0, then (Lw,w) > 0,
(ii) H ∗(w,w) � σ0(Lw,w).

Remark 14. Several difficulties prevent us from following the same procedure for
the choice of the orthogonality conditions as in the critical case. First, we are not
able (except forp = 3) to consider orthogonality conditions such thatH ∗(w,w)
does not contain a scalar product part. Second, an orthogonality condition withQy

is not enough to guarantee the positivity in the three cases.

End of the proof of Proposition 5. Assume, for contradiction, thatw �≡ 0. We
have∀ s ∈ R,

d

ds
I (s) = −H ∗(w(s), w(s)) � −σ0(Lw(s), w(s)),

and, sincew(0) �≡ 0 and(w(0),Q) = (w(0), yQ) = 0),

(Lw(s), w(s)) = (Lw(0), w(0)) > 0.

Therefore,∀ s ∈ R, d
ds
I (s) � −σ ′

0 < 0, which contradicts the fact thatI is
uniformly bounded from (H2′):

∀ s ∈ R, |I (s)| � C

∫
|y|e−c|y|dy � C.
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Thusw(0) ≡ 0, and similarly,∀ s ∈ R, w(s) ≡ 0. From the orthogonality
conditions onw(s), we have the conclusion.

Proof of Proposition 6. Property (i) follows from Proposition 2.9 in [21].
Now, we prove (ii). Letp = 2,3 or 4. The arguments of the proof are similar

to the ones of the proof of Proposition 4 in [15], although there are technical
differences.

We give some notation. LetB be a bilinear form on a vector spaceV . Let us
define the index ofB onV by

indV (B) = max
{
k ∈ N/ there exists a sub-spaceP of codimensionk

such thatB|P is positive definite
}
.

LetH 1
e (respectively,H 1

o ) denote the sub-space of even (respectively, odd)H 1

functions. Assume thatH 1
e is B-orthogonal toH 1

o . We say thatB defined onH 1

has indexi + j if indH1
e

= i and indH1
o

= j .
First, we check that we have a result similar to Lemma 23 in [15], giving a

lower bound onH in terms of a quadratic form with explicit index 2+ 1, related
to a classical operator. All eigenelements of this operator are described in terms
of hypergeometric functions. See for exampleTitchmarsh [20] for its complete
description.

Then, by considering first the case wherew ∈ H 1
e (R) and(w,Q) = 0, and

next, the case wherew ∈ H 1
o (R) and (w, yQ) = 0, we proveH ∗(w,w) � 0.

Parity considerations imply Proposition 6.

Note that we can restrict ourselves to proving (ii) withσ0 = 0, i.e.,H ∗(w,w) �
0 wheneverw satisfies(w,Q) = (w, yQ) = 0. Indeed, calculations in this proof
being not optimal, by a continuity argument, it follows that (ii) is true for some
smallσ0 > 0.

(a) Upper bound on the index ofH . Here, we use that fact thatL1 can be compared
to an operator of the type

L̃a,bu = −uyy + au− b
u

ch2 (y)
,

wherea, b ∈ R. Note that this class of operators is well known (see, for example,
Titchmarsh [20]).

We have

L1u = − 3

2
uyy + 1

2
u− p(p + 1)

4

u

ch2
(
p−1

2 y
)

− p(p − 1)(p + 1)

4
y

sh
(
p−1

2 y
)

ch3
(
p−1

2 y
)u.
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Recall that, from (174) in [15], we have the following inequality

∀ a ∈ R, a
sh(a)

ch3(a)
� 1

50

(
1 + 92

ch2(a)

)
, (56)

and so

(L1u, u) � 3

2

∫
u2
y + 50− p(p + 1)

150

∫
u2 − 39p(p + 1)

50

∫
u2

ch2
(
p−1

2 y
)
 .
(57)

Let us separate the casesp = 2,3,4.

Case p = 2:

(L1u, u) � 3

2

[∫
u2
y + 44

150

∫
u2 − 117

25

∫
u2

ch2
( y

2

)]

� 3

2

[∫
u2
y + 44

150

∫
u2 − 5

∫
u2

ch2
( y

2

)] .
Let

L̃u = −uyy + 44

150
u− 5

u

ch2
( y

2

) .
As in the book byTitchmarsh [20], the operator̃L has three nonpositive eigenval-
ues.The first and third eigenvalues correspond to the following even eigenfunctions:

χ1(y) = ch−4
(y

2

)
, χ2(y) = 6

7
ch−2

(y
2

)
− ch−4

(y
2

)
.

Case p = 3:

(L1u, u) � 3

2

[∫
u2
y + 19

75

∫
u2 − 234

25

∫
u2

ch2 (y)

]
� 3

2

[∫
u2
y + 19

75

∫
u2 − 12

∫
u2

ch2 (y)

]
.

Let

L̃u = −uyy + 19

75
u− 12

u

ch2 (y)
.

The operator̃L has three nonpositive eigenvalues. The first and third eigenvalues
correspond to the following even eigenfunctions:

χ1(y) = ch−3 (y) , χ2(y) = 4

5
ch−1 (y)− ch−3 (y) .
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Case p = 4:

(L1u, u) � 3

2

∫
u2
y + 5

∫
u2 − 78

5

∫
u2

ch2
(

3y
2

)


� 3

2

∫
u2
y + 5

∫
u2 − 22

∫
u2

ch2
(

3y
2

)
 .

Let
L̃u = −uyy + 5u− 22

u

ch2
(

3y
2

) .
The operator̃L has three nonpositive eigenvalues. The first and third eigenvalues
correspond to the following even eigenfunctions:

χ1(y) = ch−8/3
(

3y

2

)
, χ2(y) = 10

13
ch−2/3

(
3y

2

)
− ch−8/3

(
3y

2

)
.

Let us remark that the second eigenvalue is associated with an odd eigenfunc-
tion. Note also that in the three cases, we have the helpful property

span(χ1, χ2) = span(Q,Qp). (58)

We now claim from these estimates and algebraic relations the following prop-
erties onL1.

Lemma 9. The operator L1 has the following properties:

(i) H(Q,Q) < 0, H(Qy,Qy) = 0; (60)
(ii) the kernel of L1 is {0};
(iii) ∀ψ ∈ H 1(R), there exists a unique ψ∗ ∈ H 1(R) such that L1ψ

∗ = ψ .

Proof. (i) We have

H(Q,Q) = −((LQ)y, yQ) = −((−(p − 1)Qp)y, yQ)

= p − 1

p + 1

∫
Qp+1 − (p − 1)

∫
Qp+1 < 0,

andH(Qy,Qy) = − ∫
(LQy)y(yQy) = 0, sinceLQy = 0.

(ii) Suppose that there existsχ ∈ H 1(R), such thatL1χ = 0. Writeχ = χe +
χo, whereχe ∈ H 1

e and χo ∈ H 1
o . We still haveL1χe = L1χo = 0, since

L1χe is even (respectively,L1χo is odd). We decomposeχe = aQ+ bQp + χ⊥
e ,

where(L1Q,χ
⊥
e ) = 0 and(L1Q

p, χ⊥
e ) = 0 (check directly that span(Q,Qp)

is not degenerate forH ). Next, we have 0= (L1χe, χ
⊥
e ) = H(χ⊥

e , χ
⊥
e ). Since

H(χ⊥
e , χ

⊥
e ) � 3

2(L̃χ
⊥
e , χ

⊥
e ), andχ⊥

e is orthogonal is theL2 sense toχ1 andχ2,
we have from the spectral properties ofL̃ thatχ⊥

e = 0. SinceL1Q andL1Q
p are

not colinear, we havea = b = 0, and soχe = 0.
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Observe now that we haveL1Qy �= 0. Indeed,

L1Qy = −1
2(y(L(Qy))y − LQy − L(yQyy)) = 1

2L(yQyy),

andL(yQyy) �= 0 since the spectrum ofL is exactly span(Qy) (see [14], Lemma
2). Note that since(L1Qy,Qy) = 0, andL1Qy �= 0, there exists a negative
eigenvalue ofL1 associated with an odd eigenfunction, denoted byψ (this is a
classical argument). Note thatL1 is coercive on span(ψ)⊥ by using the spectral
properties of̃L. Now, by a decomposition ofχo in aψ+χ⊥

o , we have the conclusion
as before. Thus, we have proved that the kernel ofL1 is {0}.
(iii) We prove thatL1 is surjective inH 1.

SinceH(Q,Q) < 0, there exists a first negative eigenvalueλ1, associated with
an even eigenvalueψ1. By the lower boundH(w,w) � (L̃w,w), we know that
there existsσ > 0 such that ifw is orthogonal toQ andQp in theL2 sense, then
H(w,w) � σ(w,w).

Set
λ2 = inf

(ψ1,w)|w|
L2=1

(L1w,w).

Two cases may occur.
If λ2 > 0, then it follows thatL1 is coercive on span(ψ1)

⊥.
If λ2 � 0, then it follows from standard arguments that there existsψ2 �= 0

such thatL1ψ2 = λ2ψ2 + θψ1 and(ψ1, ψ2) = 0. By taking the scalar product
with ψ1, we find θ = 0. Property (ii) implies thatλ2 < 0, and soψ2 is a even
eigenfunction associated with a negative eigenvalue. From the comparison withL̃,
L1 is coercive on span(ψ1, ψ2)

⊥.
Now, we prove the surjectivity onH 1

e . Assume for example that we are in the
second case. For anyχ ∈ H 1

e , we haveχ = χ0 + a1ψ1 + α2ψ2, whereχ0 ∈
span(ψ1, ψ2)

⊥. SinceL1 is coercive on span(ψ1, ψ2)
⊥, from the Lax-Milgram

Theorem, there existsφ0 such thatL1φ0 = χ0, and thenφ = φ0 + a1
λ1
ψ1 + a2

λ2
ψ2

is such thatL1φ = χ .
Surjectivity onH 1

o follows from similar and simpler arguments (there is one
negative eigenvalue associated withψ3 andL1 is coercive on span(ψ3)

⊥). This
concludes the proof of the lemma.

Let us introduce the following notation:∀ u ∈ H 1(R), L1u
∗ = u.

(b) Positivity property onH 1
e . We claim that ifw ∈ H 1

e (R) is such that(w,Q) = 0
thenH ∗(w,w) � 0.

Claim (Numerical results). We have

(Q,Q∗) < 0, �1 = (χ1, χ
∗
1 )− (χ∗

1 ,Q)
2

(Q,Q∗)
+ l11 > 0 (60)

and

�2 =
(
(χ1, χ

∗
1 )− (χ1,Q)

2

(Q,Q∗)
+ l11

)(
(χ3, χ

∗
3 )− (χ∗

3 ,Q)
2

(Q,Q∗)
+ l33

)

−
(
(χ1, χ

∗
3 )− (χ∗

1 ,Q)(χ
∗
3 ,Q)

(Q,Q∗)
+ l13

)2

> 0, (61)
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where

lij = −p − 3∫
Q2

[
(χ⊥
i , yQy)(χ

⊥
j ,Q

p)+ (χ⊥
j , yQy)(χ

⊥
i ,Q

p)
]
, i, j = 1,3.

Indeed, from numerical calculations, we have:

(i) For p = 2, (Q,Q∗) ∼ −5.6,�1 ∼ 0.44,�2 ∼ 0.038.
(ii) For p = 3, (Q,Q∗) ∼ −1.9,�1 ∼ 0.12,�2 ∼ 0.0029.
(iii) For p = 4, (Q,Q∗) ∼ −0.85,�1 ∼ 0.037,�2 ∼ 0.0017.

To obtain these values, we have used the software MAPLE.

Claim. If w ∈ H 1
e (R) is such that(w,Q) = 0, thenH ∗(w,w) � 0.

Proof of the claim. Let us define

H ∗(u, v) = H(u, v)− 1∫
Q2

[
(u, yQy)(v,2Q+ (p − 3)Qp)

+(v, yQy)(u,2Q+ (p − 3)Qp)
]
,

andu⊥ = u∗ −aQ∗, wherea = (u∗,Q)
(Q,Q∗) is chosen so that(u⊥,Q) = 0 ((Q,Q∗) �=

0).
The proof is divided in several steps. First, we consider the space

E = span(Q∗, (Qp)∗, (yQy)
∗)

(one additional dimension is needed compared with the casep = 5 to control
the scalar product and property (58) reduces the size ofE). We defineE⊥ the
orthogonal space ofE in H 1

e (R) for the scalar productH (but notH ∗). By a
comparison argument, we prove thatH ∗ is nonnegative onE⊥. Then we conclude
the proof from calculations in the spaceE.

We claim

H 1
e (R) ∩ {w, (w,Q) = 0} = E⊥ + span((Qp)⊥, (yQy)

⊥). (62)

Indeed,∀ u ∈ E⊥, we have(u, yQy) = H(u, (yQy)
∗) = 0, and soH ∗(u, u) =

H(u, u) = (L1u, u) � 3
2(L̃u, u). Since(u,Q) = (u,Qp) = 0, from (58) and the

spectral property of̃L,H ∗ is coercive onE⊥.
This implies thatE⊥ ∩ E = {0}, and thusE is not degenerated forH . In

particular,∀ u ∈ H 1
e (R), we have the following decompositionu = u1 + u2,

u1 ∈ E⊥, u2 ∈ E. If (u,Q) = 0, then(u1,Q) + (u2,Q) = 0. Since(u1,Q) =
H(u1,Q

∗) = 0, we deduce(u2,Q) = 0. The conclusion then follows from

E ∩ {w, (w,Q) = 0} = span((Qp)⊥, (yQy)
⊥).

Thus, claim (62) is proved, andH ∗ onE⊥ is nonnegative.

Finally, we claim thatH ∗ restricted to span((Qp)⊥, (yQy)
⊥) is nonnegative.

This is equivalent to verifying that the two following properties are satisfied:

H ∗((Qp)⊥, (Qp)⊥) > 0,
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and ∣∣∣∣∣H
∗((Qp)⊥, (Qp)⊥) H ∗((Qp)⊥, (yQy)

⊥)
H ∗((Qp)⊥, (yQy)

⊥) H ∗((yQy)
⊥, (yQy)

⊥)

∣∣∣∣∣ > 0.

Since((Qp)⊥,Q) = ((yQy)
⊥,Q) = 0, and since from the definition ofu⊥,

H(u⊥, v⊥) = (L1(u
⊥), v⊥) = (u, v∗)− (u∗,Q)(v∗,Q)

(Q,Q∗)
,

this is equivalent to the two inequalities (60) and (61). ThusH ∗ is nonnegative on
span((Qp)⊥, (yQy)

⊥).
Therefore,∀w ∈ H 1

e (R), such that(w,Q) = 0, we havew = w1 +w2, where
w1 ∈ E⊥ andw2 ∈ E, with (w2,Q) = 0, and

H ∗(w,w) = H ∗(w1, w1)+H ∗(w2, w2)+ 2H ∗(w1, w2) � 2H ∗(w1, w2).

From the definition ofE andE⊥, we have(w1, yQy) = (w1,Q) = (w1,Q
p) = 0,

and soH ∗(w1, w2) = H(w1, w2) = 0, which concludes the proof of the claim.

(c) Positivity property on H 1
o . We show that ifw ∈ H 1

o is such that(w, yQ) = 0,
thenH ∗(w,w) = H(w,w) � 0.

Claim (Numerical result).

((yQ)∗, yQ) < 0. (63)

Indeed, forp = 2, we find numerically((yQ)∗, yQ) ∼ −23.90; for p = 3,
we find numerically((yQ)∗, yQ) ∼ −8.97; for p = 4, we find numerically
((yQ)∗, yQ) ∼ −5.15.

Claim. If w ∈ H 1
o (R) satisfies(w, yQ) = 0, thenH ∗(w,w) � 0.

Proof of the claim. First, if we defineP2 = span(Qy, (yQ)
∗), thenH is not

degenerate onP2 since∣∣∣∣ H(Qy,Qy) H(Qy, (yQ)
∗)

H(Qy, (yQ)
∗) H((yQ)∗, (yQ)∗)

∣∣∣∣ = −(H(Qy, (yQ)
∗))2 = −1

4(Q,Q)
2 �≡ 0.

From (63) (orH(Qy,Qy) = 0), and the spectral property of̃L,H is nonnega-
tive onP⊥

2 , whereP⊥
2 is the orthogonal ofP2 in H 1

o , with respect to the quadratic
formH .

Finally, if w ∈ P2, w �= 0 is such that(w, yQ) = 0,

w = αQy + β(yQ)∗,

with β �= 0, and

α

β
= − (yQ, (yQ)

∗)
(Qy, yQ)

= − (yQ, (yQ)∗)
H(Qy, (yQ)∗)

.
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It follows that

H(w,w)

β2 =
(
α

β

)2

H(Qy,Qy)+ 2

(
α

β

)
H(Qy, (yQ)

∗)+H((yQ)∗, (yQ)∗)

= −H((yQ)∗, (yQ)∗) = −(yQ, (yQ)∗) > 0,

from (63) andH(Qy,Qy) = 0.
The conclusion follows from the fact that ifw ∈ H 1

o , with (w, yQ) = 0, then
w = w1 + w2, with w1 ∈ P⊥

2 , andw2 ∈ P2, (w2, yQ) = 0.

This together with parity considerations concludes the proof of Proposition 6(ii).

Acknowledgements. We wish to thank the referee for his helpful commemts.
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