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Abstract

In this paper we study the mathematical aspects of the stationary supersonic flow
past a non-axisymmetric curved pointed body. The flow is described by a steady
potential flow equation, which is a quasilinear hyperbolic equation of second order.
We prove the local existence of the solution to this problem with a pointed shock
attached at the tip of the pointed body, provided the pointed body is a perturbation
of a circular cone, and the vertex angle of the approximate cone of the pointed
body is less than a critical value. The solution is smooth in between the shock and
the surface of the body. Consequently, such a structure of flow near the tip of the
pointed body and its stability is verified mathematically.

1. Introduction

1.1. Background

Supersonic flow past a given body is a fundamental problem in gas dynamics,
and has been well studied both computationally and experimentally (see [2, 5, 23,
27, 28]). The goal of the present article is to study the problem analytically. Physical
observation shows that, when a projectile moves in the air with supersonic speed,
a shock front will generally appear ahead of it. Depending on the shape of the
projectile, the shock can be detached or attached. Namely, if the body has a blunt
head, the shock in front of it is detached; otherwise, if the head of the body is
sharp, then the shock will be attached to the head. In both cases the main task of
the problem is to determine the location of the shock and the flow field in between
the shock and the surface of the body.

Supersonic flow can be described mathematically by a quasilinear hyperbolic
system of conservation laws. However, in the problem of supersonic flow past a
blunt body, the flow behind the shock can be subsonic and then governed by an
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elliptic equation. Therefore, the whole problem will involve a nonlinear mixed-
type equation with free boundary, and the mathematical theory for such problems
is completely open. On the other hand, when the body placed in a supersonic flow
has a sharp head, the flow behind the shock may possibly be totally supersonic.
In this case the problem is reduced to a nonlinear boundary value problem for
a hyperbolic system. Some progress in this case has been obtained in the past
decades. Basically, two kinds of sharp bodies are considered – wings and pointed
bodies. If the body is shaped like a wing, then under the assumption that the angle
between the surface and the direction of the incoming flow is less than a critical
value, the existence of a local solution near the edge of the wing has been proved.
For instance, the conclusion is obtained in [5] for a plane wedge, in [9, 13–15, 25,
26] for wings with constant sections, and in [6] for wings with variable sections.
On the other hand, when the body is conical, the tip of the body will often causes
a strong singularity, and then the problem will be more complicated. If the body
is a circular cone, and the incoming flow is parallel to the axis of the cone, the
problem is discussed in [5]. If the body is assumed to have some symmetry, for
instance, to be axisymmetric or conical with straight generators, the problems are
discussed in [7, 8, 16, 24]. In this paper we are going to discuss the supersonic
flow past a generic curved pointed body without these restrictions. Namely, we will
verify the above-mentioned structure of flow field near the head of a pointed body
in supersonic flow; in other words, we will prove the stability of such a structure in
a local sense.

In this paper we always restrict ourselves to the case where the strength of the
shock is small. Since the increase of the entropy of the flow is a small quantity
of third order compared with the strength of the shock, it will be neglected in our
discussion. Besides, according to the assumption on the shape of the pointed body,
the shock front attached at its tip is also expected to be a perturbed cone. There-
fore, the flow behind the shock can be assumed to be approximately isentropic and
irrotational. It turns out that we can introduce a potential to simplify the system
describing the flow. The potential flow equation is a second order quasilinear equa-
tion, which has been used and strongly recommended in many bibliography (see
[17, 22]).

It may be convenient for readers if we specify all assumptions for our main
result in advance. In the whole paper we only consider the polytropic gas with the
state equationp = Aργ . Therefore, the only data in our problem are the equation
describing the surface of the body� and the parameters of the incoming flow:
velocityq∞, pressurep∞ and densityρ∞.

Our first assumption is

q∞ >

(
γp∞
ρ∞

) 1
2

, (H1)

which means the incoming flow is supersonic.
The equation of� in the cylindrical coordinates(z, R, θ) is R = B(z, θ). By

introducingr = R/z, it can also be written asr = b(z, θ). The tangential cone� at
the origin isr = b(0, θ), which is also the equation of the section of the tangential
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cone with the planez = 1. To describe the fact that the pointed body� is a small
perturbation of a circular coner = b0 (i.e.,R = b0z), we assume that

‖b(0, θ)− b0‖Ck1 � ε0, (H2)

∂kz b(0, θ) = 0 for 1 � k � k2. (H3)

Here the condition(H2) means that the perturbation is small in theθ direction,
while the condition(H3)means that the tangential cone is close to the pointed body
with high order of tangency, i.e., the perturbation is small in a radial direction.

Our other assumption is on the sharpness of the pointed body. As it is known
that the problem of supersonic flow past a symmetric cone is determined by the
apple curve defined in [5] on the phase plane(u, v), which plays a similar role to
shock polar in the discussion on the reflection of oblique plane shocks. The apple
curve is symmetric with respect to theu axis and has the point(q∞,0) as its double
point. The process of determining the weak entropy solution of the problem via the
apple curve can be found in [5]. The conclusion is that if the vertex angle arctanb0
is less than a critical value determined by the parameters of the incoming flow,
then the problem admits a solution with an attached shock at the tip. Otherwise, the
shock in front of the cone will be detached. Moreover, there is a constantb∗ < 1,
such that for the coner = b0 satisfyingb0 < b∗, the velocityu behind the shock is
also supersonic. Therefore, to ensure that the equation governing the flow behind
the shock is hyperbolic we assume that

max
z<z0,0�θ�2π

b(θ) < b∗. (H4)

In the next subsection we will give a precise mathematical formulation of our
problem. To prove the existence of the solution of the corresponding boundary value
problem, we introduce several approximate solutions at different level. Assuming
that the pointed body is a perturbation of the circular cone�, we call the solution of
the incoming uniform supersonic flow past� a background solution, or approximate
solution of level zero. In Section 2 we use a finite power expansion ofz to look for
an approximate solution which satisfies the equation and all boundary conditions
with errorO(zN). The first term of the finite power series is called an approximate
solution of level one, and is nothing but the solution of the same uniform supersonic
flow past the tangential cone of�. The determination of this term itself is also an
independent problem, which we will discuss in Section 3 especially.All other terms
in the finite expansion satisfy linear boundary value problems of elliptic equations
with the same principal part. Under the assumption(H3)we can determine all terms
of the expansion up toN -th order. HereN can be as large as we want. The whole
expansion is called an approximate solution of level two. Since this approximate
solution satisfies the equation and the boundary conditions with errorO(zN) for z
near to zero, it is then possible to modify once more the approximate solution in
Sobolev space with weightz−N . Therefore, we can introduce Newton’s iterative
procedure in Section 4 to improve the approximation, and set up a new sequence
of approximate solutions, which finally convergence to the precise solutions of the
original problem.
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Since the shock front is a free boundary to be determined with the unknown func-
tions, then the boundary of the domain will be moving in the standard approximation
procedure. To avoid this trouble we employ the partial hodograph transformation
now and again in this paper. Here the main idea is to introduce a transformation
which replaces an unknown function by one of the independent variables. Then a
moving boundary will become fixed because the potential is given on this moving
boundary. A disadvantage of the classical partial hodograph transformation is that
the transformation may let a fixed boundary become a new moving boundary. To
overcome this difficulty we combine it with the method of domain decomposition
in Section 3. Meanwhile, in the last section the partial hodograph transformation is
combined with two transformations of unknown functions to avoid the appearance
of any new moving boundary. The detailed analysis will be given in Sections 3
and 4.

1.2. Formulation and result

The compressible Euler system describing conservation laws of mass, momen-
tum, and total energy in the multidimensional case is given by

∂ρ

∂t
+ div(m) = 0,

∂m

∂t
+ div

(
m ⊗ m

ρ

)
+ ∇p(ρ, S) = 0,

∂E

∂t
+ div

(
m

(
E

ρ
+ p

ρ

))
= 0,

(1.2.1)

whereρ is density,m = ρv is momentum,p is pressure,S is entropy,E is total
energy; andp = p(ρ, S), E = E(ρ, S) are given functions. The last equation in
(1.2.1) can also be replaced by

∂S

∂t
+ v · ∇S = 0. (1.2.2)

When the flow is isentropic and irrotational, (1.2.2) is satisfied automatically. More-
over, we can introduce a potentialφ such that

v = ∇φ. (1.2.3)

Meanwhile, the momentum equation yields

vt + 1
2∇(q2)+ ∇h = 0, (1.2.4)

whereq = |v|, h(ρ) is the specific enthalpy determined within a constant by the
thermodynamic equation of state and satisfies

h′(ρ) = 1

ρ

dp

dρ
(ρ, S0).
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For a polytropic gas,

p = Aργ , h = γp

(γ − 1)ρ
= Aγ

γ − 1
ργ−1.

For stationary flow, all parameters of flow are independent oft . Then (1.2.4)
leads to the Bernoulli’s relation

1
2q

2 + h(ρ) = C0, (1.2.5)

whereC0 is a constant determined by the uniform incoming flow. Therefore, defin-
ing

H(∇φ) = h−1(C0 − 1
2|∇φ|2), (1.2.6)

we obtain a steady potential flow equation∑
∂xi (φxiH(∇φ)) = 0. (1.2.7)

Notice thatH/H ′ = a2 with a being sonic speed, (1.2.7) is equivalent to

(
v2

1

a2 − 1

)
φx1x1 +

(
v2

2

a2 − 1

)
φx2x2 +

(
v2

3

a2 − 1

)
φx3x3

+ 2v1v2

a2 φx1x2 + 2v1v3

a2 φx1x3 + 2v2v3

a2 φx2x3 = 0 (1.2.8)

wherevi = φxi , (i = 1,2,3). The characteristic form of the right-hand side of
(1.2.8) is

(
v2

1

a2 − 1

)
ξ2

1 +
(
v2

2

a2 − 1

)
ξ2

2 +
(
v2

3

a2 − 1

)
ξ2

3

+ 2v1v2

a2 ξ1ξ2 + 2v1v3

a2 ξ1ξ2 + 2v2v3

a2 ξ2ξ3.

If v3 > a, the quadratic form has two real rootsξ3 for anyξ1, ξ2. Namely, (1.2.8)
is strictly hyperbolic with respect tox3. For the uniform supersonic incoming flow
with v1 = v2 = 0, v3 = q∞, the corresponding potential of the flow ahead of the
possible shock isφ0 = q∞x3.

Consider the problem of supersonic flow past a pointed body. As we mentioned
above, ahead of the pointed body there will appear a shock front attached at the tip of
the pointed body, provided the head is sharp in some sense which we will describe
precisely later. Let the surface of the pointed body be given bym(x1, x2, x3) = 0,
and the corresponding shock front be given byµ(x1, x2, x3) = 0. Then on the
surfacem(x1, x2, x3) = 0, the velocity of the fluid is tangent to the surface. Namely,
we have

mx1φx1 +mx2φx2 +mx3φx3 = 0. (1.2.9)

On the shock frontµ(x1, x2, x3) = 0 the potentialφ is continuous across the shock
front, i.e.,

φ = φ−(= q∞x3); (1.2.10)
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and the derivatives ofφ must satisfy the Rankine-Hugoniot condition

(µx1φx1 + µx2φx2 + µx3φx3)H = µx3q∞ρ∞. (1.2.11)

The purpose of this paper is to prove the existence of the solution to the boundary
value problem (1.2.8)–(1.2.11) in a neighbourhood of the origin. Here the function
µ(x1, x2, x3) is also unknown; it should be determined together withφ.

Since the directional derivative ofφ normal to the shock front equals the nor-
mal component of velocity, which is never zero behind the shock, we can use
φ(x1, x2, x3) = q∞x3 to describe the shock front. Then we can omit an unknown
functionµ(x1, x2, x3), and the Rankine-Hugoniot condition (1.2.11) can also be
written as(

φ2
x1

+ φ2
x2

+ φx3(φx3 − q∞)
)
H = (φx3 − q∞)q∞ρ∞. (1.2.12)

It is often convenient to discuss the problem (1.2.8)–(1.2.11) in a cylindrical
coordinate system. Defining

R =
√
x2

1 + x2
2, θ = arctan

x2

x1
, z = x3,

r = R/z, the components of velocity can be expressed as

v1 = φx1 = cosθ

z
φr − sinθ

zr
φθ ,

v2 = φx2 = sinθ

z
φr + cosθ

zr
φθ ,

v3 = φx3 = φz − r

z
φr ,

vr = v1 cosθ + v2 sinθ = φr

z
,

vθ = v2 cosθ − v1 sinθ = φθ

zr
.

The equation (1.2.8) can be reduced to the form

z2a00φzz + a11φrr + a22φθθ + 2za01φzr + 2za02φzθ + 2a12φrθ

+ a1φr + a2φθ = 0, (1.2.13)

where

a00 =
(v3

a

)2 − 1, a11 = (vr − rv3)
2

a2 − (1 + r2), a22 = 1

r2

(
v2
θ

a2 − 1

)
,

a01 = v3vr

a2 − r

(
v2

3

a2 − 1

)
, a02 = v3vθ

a2r
, a12 = vrvθ

a2r
− vθv3

a2 ,

a1 = v2
θ

a2r
− 1

r
+ 2r

(
v2

3

a2 − 1

)
− 2v3vr

a2 , a2 = 2vrvθ
a2r2 . (1.2.14)
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Correspondingly, if we describe the surface of the pointed body byr = b(z, θ),
then in the cylindrical coordinate system the boundary condition on it takes the
form

(b + zbz)φz + bθ

r2

(
φθ

z

)
− (1 + b(b + zbz))

(
φr

z

)
= 0. (1.2.15)

Meanwhile, the boundary condition (1.2.12) becomes

((
φr

z

)2

+ 1

r2

(
φθ

z

)2

+
(
φz − rφr

z
− q∞

)(
φz − rφr

z

))
H

−
(
φz − rφr

z
− q∞

)
q∞ρ∞ = 0. (1.2.16)

Obviously, when we solve the functionφ from the above boundary value problem,
all parameters of the flow including velocity, pressure and density can be obtained
immediately.

If the pointed body placed in the supersonic flow is a circular cone with its
axis parallel to the direction of the velocity of the flow, then the functionb(z, θ)

becomes a constantb0. Correspondingly, all parameters of the flow also depend
only onr, and are independent ofθ andz. Therefore, the potentialφ is a function
independent ofθ and homogeneous of degree one with respect toz. If we write
φ = zψ , ψ is also independent ofθ andz, andvr = ψr, v3 = ψ − r(∂ψ/∂r). In
this case the boundary value problem (1.2.8)–(1.2.11) becomes

a2
(
(1 + r2)ψrr + 1

r
ψr

)
− ((1 + r2)ψr − rψ)2ψrr = 0, (1.2.17)

(1 + b2
0)ψr − b0ψ = 0 on r = b0, (1.2.18)

ψ = q∞, ((1 + s2
0)ψr − s0ψ)H + s0q∞ρ∞ = 0 on r = s0, (1.2.19)

wheres0 is to be determined together withψ .
The boundary problem (1.2.17)–(1.2.19) is essentially the same as the prob-

lem discussed in [5]. It can be solved by using the apple curve as mentioned in
Section 1.1. The weak entropy solution of the problem (1.2.17)–(1.2.19) is called
the background solution and is denoted byψB(r). Correspondingly,φ(z, r, θ) =
zψB(r) is called the background solution of the problem (1.2.13), (1.2.15), (1.2.16)
or, in this case, the approximate solution of level zero.

Now let us indicate some properties of the solutionψ of (1.2.17)–(1.2.19).
These facts will be used in the discussion afterwards. If we defineβ = arctanr,
and

vn = −vr cosβ + v3 sinβ = rψ − (1 + r2)ψr√
1 + r2

,

then vn is the component of velocity along the normal direction of the shock,
satisfyingvn < a. Besides, in the whole region we havevr > 0 behind the shock.
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Moreover,

ψrr = a2

r
ψr

((
(1 + r2)ψr − rψ

)2 − a2(1 + r2)
)−1

= a2

r
ψr(1 + r2)(v2

n − a2) < 0,

sovr is monotonically decreasing with respect tor.
Our main result in this paper is

Theorem 1. Assume that the conditions (H1)–(H4) are satisfied for sufficiently
small ε0, then we can find a number z0 > 0, such that there is a C2 function
φ(z, r, θ) defined in 0 � z � z0, satisfying the following conditions:

(1) φ(0, r, θ) = 0, φr > 0 for z > 0, and then the equation φ(z, r, θ) = q∞z

defines a surface r = s(z, θ);
(2) φ(z, r, θ) satisfies (1.2.13)in b(z, θ) < r < s(z, θ), 0 < z < z0, 0 � θ � 2π ;

(1.2.15)on r = b(z, θ); (1.2.16)on r = s(z, θ);

(3)
∣∣∣(φr

z

)2 + 1

r2

(φθ
z

)2 +
(
φz − rφr

z
− q∞

)(
φz − rφr

z

)∣∣∣ < ∣∣∣φz − rφr

z
− q∞

∣∣∣q∞
on r = s(z, θ).

In a word, the problem (1.2.13), (1.2.15), (1.2.16)admits a weak entropy solution
with a pointed shock front attached at the origin, provided ε0 is small enough.

Remark 1. Sinceb(z, θ) is a C∞ smooth function, for any integerp the local
solutionφ(z, r, θ) can be inCp. But the constantsε0, k1, k2 andz0 will depend
onp.

Remark 2. The theorem indicates that the attached shock front and the flow behind
the shock is stable under perturbation of the surface of the pointed body.

In the end of this section we would like to indicate that there have been many
works on multidimensional conservation laws (see [1, 3, 4, 12, 17, 18, 20–22]).
Among them, let us particularly mention two elegant works closely related to this
paper. The first one is the study of the unsteady potential flow equation [22], which
has the form in self-similar coordinates(ξ, η)

(a2−(ψξ−ξ)2)ψξξ−2(ψξ−ξ)(ψη−η)ψξη+(a2−(ψη−η)2)ψηη = 0. (1.2.22)

The second one is on the study of the unsteady transonic small disturbance (UTSD)
equation [3]

ut + uux + vy = 0

uy − vx = 0,
(1.2.23)

which leads to an equation in self-similar coordinates

(u− ξ)uξ − ηuη + vη = 0

uη − vξ = 0.
(1.2.24)
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The authors in [4, 22] employed (1.2.22) and (1.2.24) to study the problem “re-
flection of shock by a ramp”, which is a most important prototype problem in
multidimensional hyperbolic conservation laws. Since on the(ξ, η) plane (1.2.22)
or (1.2.24) may change type behind the shock, it turns out that a discussion of a
boundary value problem for a mixed type equation or a degenerate elliptic equation
is necessary. Returning to the problem of a steady potential equation in this paper,
if the generators of the cone are straight lines, then the equation behind the shock
in self-similar coordinates is elliptic due to the fact that the normal component
of velocity behind the shock is subsonic. That is why the method in our paper is
quite different from that in [4, 22]. Besides, another essential difference is that in
our paper we have also to deal with the perturbation of the flow field in a radial
direction.

2. Approximation of level one

2.1. Sub-boundary value problems

As the first step towards finding the approximate solution of the problem (1.2.8)–
(1.2.11), we assume that the potentialφ has a form of finite power expansion as

φ(z, r, θ) =
N∑
n=0

zn+1φn(r, θ)+O(zN+2). (2.1.1)

By a suitable choice ofφn, the equation and boundary conditions can be satisfied
with errorO(zN). Therefore, in a neighbourhood of the origin the form of the
asymptotic series (2.1.1) offers a good approximation for largeN .

According to (2.1.1),

vr = 1

z
φr =

N∑
n=0

znφnr +O(zN+1),

vθ = φθ

zr
=

N∑
n=0

zn

r
φnθ +O(zN+1),

vz = φz − r

z
φr =

N∑
n=0

zn((n+ 1)φn − rφnr)+O(zN+1).

For any smooth functionf of vz, vr , vθ we have the following expansion:

f (vz, vr , vθ ) = f
(
φ0 − rφ0r , φ0r ,

1

r
φ0θ

)
+ f1(∗)(2φ1 − rφ1r )z + f2(∗)φ1rz + f3(∗)φ1θ

z

r
+ · · ·

+ f1(∗)((n+ 1)φn − rφnr)z
n + f2(∗)φnrzn

+ f3(∗)φnθ z
n

r
+ Fnz

n, (2.1.2)
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wherefi(∗) stands for the value of the derivative off with respect to itsi-th
variables at(φ0 − rφ0r , φ0r ,

1
r
φ0θ ), andFn stands for a function depending on

φ2, φ2r , φ2θ with 2 < n. More precisely,Fn can be written as

∑
i11+···+i3k3=n,ist<n

gi11+···i3k3
k1∏
s=1

φi1s

k2∏
s=1

(φi2s )r

k3∏
s=1

(φi3s )θ .

Substituting the expressions ofvz, vr , vθ into (1.2.13) leads to

N∑
n=2

n(n+ 1)a00φnz
n+1 +

N∑
n=1

(n+ 1)(2a01φnr + 2a02φnθ )z
n+1

+
N∑
n=0

(a11φnrr + a22φnθθ + 2a12φnrθ + a1φnr + a2φnθ )z
n+1 = O(zN+2).

(2.1.3)

Expandingaij by means of (2.1.2) and comparing the terms with same power ofz,
we obtain

a11(∗)φ0rr + a22(∗)φ0θθ + 2a12(∗)φ0rθ + A(φ0, φ0r , φ0θ ) = 0, (2.1.4)

and

a11(∗)φnrr + a12(∗)φnθθ + 2a12(∗)φnrθ + Brφnr + Bθφnθ + Cφn

= Gn(φ2,∇φ2,∇2φ2)2<n, n � 1, (2.1.5)

where

A(φ0, φ0r , φ0θ ) = −1

r
φ0r + a2

r2φ
2
0rφ

2
0θ − 2a2

r3 (φ0r (1 + r2)− rφ0)φ
2
0θ ,

Gn are given functions depending onφ2 and its derivatives of first and second
order,Gn = 0 if φ2 = 0 for all 2 < n; aij (∗) stands for the value ofaij at
(φ0 − rφ0r , φ0r ,

1
r
φ0θ ), whileBr, Bθ , C are also functions ofφ0 and its derivatives

of first and second order.
We notice that the equation (2.1.4) and all equations in (2.1.5) have same prin-

cipal symbol

Q(ξ, η) =
(
(rvz−vr)

2

a2 − (1 + r2)

)
ξ2 + 2

(vrvθ
a2r

− vθvz

a2

)
ξη + 1

r2

(
v2
θ

a2 −1

)
η2.

For the background solutionφθ = 0, vω = (rvz − vr)/
√

1 + r2 < a, the symbol
Q(ξ, η) equals

(1 + r2)

(
v2
ω

a2 − 1

)
ξ2 − 1

r2η
2,

which is definitely negative, hence all these equations are elliptic.
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The solvability of boundary value problems of (2.1.5) relies on the maximum
principle, whose validity inside a domain depends on the sign of the coefficientC.
From the expansion of each term in (2.1.3) the coefficientC is

n(n+ 1)a00(∗)+O(n)+O(φ0θ , φ0θθ , φ0rθ ).

According to (1.2.14) we knowa00(∗) > 0 anda11(∗) < 0, because the background
solution is supersonic in thex3 direction and the componentvω of the velocity
is subsonic. Therefore, we can find a constantk2, which is determined by the
parameters of the supersonic flow and the pointed body, such that the sign of
coefficientC satisfies the requirement of the maximum principle forn > k2.

Turn to the boundary condition (1.2.15) on the surface;b(z, θ) can also be
written as a form of finite expansion

b(z, θ) =
N∑
n=0

bn(θ)z
n +O

(
zN+1). (2.1.6)

Denote byφ
n

the expressionφn(b0(θ), θ) and bygn(φ, b) any expression depend-
ing on φ

2
, φ

2r
, φ

2θ
, b2, b2θ with 2 < n, wheregn may be different in different

equalities. Substituting (2.1.6) into (2.1.1), we have

φ =
N∑
n=0

zn+1φn

(
N∑
2=0

b2(θ)z
2, θ

)
+O(zN+2)

= φ
0
z +

N∑
n=1

(φ
n

+ φ
0r
bn + gn(φ, b))z

n+1 +O(zN+2).

Correspondingly,

φr = φ
0r
z +

N∑
n=1

(φ
nr

+ φ
0rr
bn + gn(φ, b))z

n+1 +O(zN+2),

φθ = φ
0θ
z +

N∑
n=1

(φ
nθ

+ φ
0rθ

bn + gn(φ, b))z
n+1 +O(zN+2),

φz = φ
0
+

N∑
n=1

(n+ 1)(φ
n

+ φ
0r
bn + gn(φ, b))z

n +O(zN+1).

Obviously, we haveg1 = 0, andgn = 0 if φ
2

= 0, b2 = 0 for all 2 < n.
Substituting these expressions into (1.2.15) and comparing the terms with the

same power ofz we obtain

b0φ0
+ 1

b2
0

b0θφ0θ
− (1 + b2

0)φ0r
= 0 (2.1.7)
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(n+ 1)(φ
0
bn + b0(φn

+ φ
0r
bn))

+ 1

b2
0

(
b0θ (φnθ

+ φ
0rθ

bn)+ φ
0θ
bnθ − 2

bn

b0
b0θφ0θ

)

− (1 + b2
0)(φnr

+ φ
0rr
bn)− (n+ 2)φ

0r
b0bn = gn(φ, b) (n > 0). (2.1.8)

Meanwhile, because all coefficientsbn are given,gn(φ, b) can be simply written
asgn(φ), and (2.1.8) becomes

(n+ 1)b0φn
+ 1

b2
0

b0θφnθ
− (1 + b2

0)φnr
= gn(φ) (n > 0). (2.1.9)

Notice that the differential operator acting onφ
n
(n � 0) in (2.1.7), (2.1.9) is

b0θ b
−2
0 ∂θ − (1+ b2

0)∂r , which is outward on the boundaryr = b(z, θ). Moreover,
(n + 1)b0 > 0 implies thatφn cannot attain its non-negative maximum or non-
positive minimun on the boundaryr = b0(θ). Namely, the boundary condition
(2.1.8) satisfies the requirement of the maximum principle.

Finally let us turn to the shock boundary. The condition of continuity of the
potential on the shock boundary is (1.2.10). Write the equation of the boundary as

r = s(z, θ) =
N∑
n=0

sn(θ)z
n +O(zN+1). (2.1.10)

Then the potential onr = s(z, θ) is

φ(z, r, θ) =
N∑
n=0

zn+1φn

( N∑
2=0

s2(θ)z
2, θ

)
+O(zN+2).

Denote byφ̄n the functionφn(s0(θ), θ), by gn(φ̄, s) any expression depending on
φ̄2, φ̄2r , φ̄2θ , s2, sθ with 2 < n. Then forr = s0(θ) we have

φr = φ̄0rz +
N∑
n=1

(φ̄nr + φ̄0rr sn + gn(φ̄, s))z
n+1 +O(zN+2),

φθ = φ̄0θ z +
N∑
n=1

(φ̄nθ + φ̄0rθ sn + gn(φ̄, s))z
n+1 +O(zN+2),

φz = φ̄0 +
N∑
n=1

(n+ 1)(φ̄n + φ̄0r sn + gn(φ̄, s))z
n +O(zN+1).

The equality (1.2.10) implies

φ̄0 +
N∑
n=1

(φ̄n + φ̄0r sn(θ)+ gn(φ̄, s))z
n +O(zN+1) = q∞, (2.1.11)
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which leads to

φ̄0 = q∞, (2.2.12)

sn(θ) = − φ̄n

φ̄0r
+ gn(φ̄, s), n � 1. (2.1.13)

For the Rankine-Hugoniot condition (1.2.16), we first rewrite each term in the form
of a finite power series:

φz − rφr

z
− q∞

= (φ0 − rφ0r − q∞)+
N∑
n=1

((n+ 1)φn − rφnr + gn(φ))z
n +O(zN+1)

= (φ̄0 − rφ̄0r − q∞)+
N∑
n=1

((n+ 1)φ̄n − rφ̄nr + ((n+ 1)φ̄0r − rφ̄0rr )sn

+ gn(φ̄))z
n +O(zN+1)

= (φ̄0 − rφ̄0r − q∞)+
N∑
n=1

(−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n + gn(φ̄))z

n +O(zN+1),

(2.1.14)

(
φr

z

)2

+ 1

r2

(
φθ

z

)2

+
(
φz − rφr

z

)2

= φ̄2
0r + 1

r2 φ̄
2
0θ + (φ̄0 − rφ̄0r )

2 + 2
N∑
n=1

(φ̄0r (φ̄nr − φ̄0rr φ̄
−1
0r φ̄n)

+ 1

r2 φ̄0θ (φ̄nθ − φ̄0rθ φ̄
−1
0r φ̄n)+ (φ̄0 − rφ̄0r )

· (−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n + gn(φ̄))z

n +O(zN+1). (2.1.15)

Also,

H

(
C0 − 1

2
|∇φ|2

)

= H0 −H ′
0

N∑
n=1

(
φ̄0r (φ̄nr − φ̄0rr φ̄

−1
0r φ̄n)+ 1

r2 φ̄0θ (φ̄nθ − φ̄0rθ φ̄
−1
0r φ̄n)

+ (φ̄0 − rφ̄0r )(−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n)+ gn(φ̄)

)
zn +O(zN+1),

whereH0, H
′
0 take their value atC0− 1

2

(
φ̄2

0r+ 1
r2 φ̄

2
0θ +(φ̄0−rφ̄0r )

2
)
, andH0 = ρ0,

H0/H
′
0 = a2

0.
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Defining

D0 = φ̄2
0r + 1

r2 φ̄
2
0θ + (φ̄0 − rφ̄0r )(φ̄0 − rφ̄0r − q∞)

= φ̄2
0r + 1

r2 φ̄
2
0θ − (φ̄0 − rφ̄0r )rφ̄0r

and substituting all the above expressions into (1.2.16), we have

D0ρ0 = −rhoφ̄0rq∞ρ∞, (2.1.16)

−D0

a2
0

(
φ̄0r (φ̄nr − φ̄0rr φ̄

−1
0r φ̄n)+ 1

r2 φ̄0θ (φ̄nθ − φ̄0rθ φ̄
−1
0r φ̄n)

+ (φ̄0 − rφ̄0r )(−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n)

)
+ 2φ̄0r (φ̄nr − φ̄0rr φ̄

−1
0r φ̄n)+ 2

r2 φ̄0θ (φ̄nθ − φ̄0rθ φ̄
−1
0r φ̄n)

+ (2φ̄0 − 2rφ̄0r − q∞)(−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n)

− (−rφ̄nr + rφ̄0rr φ̄
−1
0r φ̄n)

q∞ρ∞
ρ0

= gn(φ̄, s), n � 1.

(2.1.17)

The equality can also be rewritten as

γ1φ̄nr + γ2φ̄nθ + γ3φ̄n = gn(φ̄), (2.1.18)

wheregn(φ̄, s) has been rewritten asgn(φ̄) by inductively applying (2.1.13) with
index i < n. Direct computation impliesg1 = 0, andgn = 0 if φ̄2 = 0 for all
2 < n. Moreover, the coefficients in (2.1.18) are

γ1 = −D0

a2
0

(−rφ̄0 + (1 + r2)φ̄0r ))+ 2φ̄0r (1 + r2)− 2rφ̄0 + rq∞ρ∞
ρ0

,

γ2 = −D0

a2
0

· φ̄0θ

r2 + 2

r2 φ̄0θ ,

γ3 = −γ1
φ̄0rr

φ̄0r
− γ2

φ̄0rθ

φ̄0r
.

Now let us observe the sign of the coefficients in (2.1.18).To simplify calculation
we may neglect all derivatives with respect toθ because our problem is a small
perturbation of the symmetric case, so that all these derivatives are small. Recalling
the physical meaning of relevant quantities, we have the following relations on the
boundaryr = s0(θ):

φ0r = v0r , φ0 − rφ0r = v0z,

rφ0 − (1 + r2)φ0r = rv0z − v0r =
(√

1 + r2
)
v0n,
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where the subscript 0 stands for the state behind the shock,v0n is the inner normal
component of the velocity and satisfies 0< v0n < ∞. Furthermore,

D0 = − rφ0rq∞ρ∞
ρ0

= −ρ∞q∞nv0r
√

1 + r2

ρ0
= −v0nv0r

√
1 + r2,

which leads to

γ1 = −(1 + r2)v0r
v2

0n

a2
0

+ v0r (1 + r2)−
√

1 + r2v0n + rq∞ρ∞
ρ0

= v0r (1 + r2)

(
1 − v2

0n

a2
0

)
> 0.

Besides,γ2 ∼ 0, andγ3 > 0 due toφ̄0r > 0 andφ̄0rr < 0. Hence the boundary
condition (2.1.18) also satisfies the requirement of the maximum principle.

Now (2.1.4), (2.1.7), (2.1.12), (2.1.16) form a nonlinear boundary value problem
for φ0(r, θ)with a free boundaryr = s0(θ), which is to be determined together with
the solutionφ0(r, θ). On the other hand, onces0(θ) is obtained, the boundary value
problem for (2.1.5) with boundary condition (2.1.8) onr = b0(θ) and condition
(2.1.17) onr = s0(θ) for eachn > 0 is a linear boundary value problem in a fixed
domain. In this way we have derived a set of sub-boundary value problems from
the original problem (1.2.8)–(1.2.11). When these boundary value problems are
solved, the approximate solutioñφ(z, r, θ) = ∑

zn+1φn(r, θ) satisfying (1.2.13),
(1.2.15), (1.2.16) with errorO(zN+2) is also obtained.

2.2. Existence and uniqueness for sub-boundary value problems

If b(z, θ) is independent ofz, the surface of the pointed body is a cone with
straight generators. In this case the expected attached shock is also a cone with
straight generators, and all parameters of the flow behind the shock are constant
on each ray starting from the origin. Noticing that in this caseφz = φ0, bz = 0,
we see that (1.2.13), (1.2.15), (1.2.16) is automatically reduced to (2.1.4), (2.1.7),
(2.1.16). For the latter we can establish the following theorem, which is a special
case of Theorem 1 in fact.

Theorem 2. Assume that the surface of a pointed body is given by r = b(θ), the
conditions (H1), (H2), (H4) are satisfied for a suitable integer k1, and a sufficiently
small ε0, then there is aC2 function φ0(z, r, θ), satisfying the following conditions:

(1) φ0r > 0, and then the equation φ0(r, θ) = q∞ defines a surface r = s0(θ);
(2) φ0(r, θ) satisfies (2.1.4) in b0(θ) < r < s0(θ), 0 � θ � 2π ; (2.1.7) on

r = b0(z); (2.1.16)on r = s0(θ);
(3) |φ2

0r + 1
r2φ

2
0θ − (φ0r − rφ0r )rφ0r | < rφ0r on r = s0(θ).

In a word, the problem (2.1.4), (2.1.7), (2.1.16)admits a weak entropy solution with
a pointed shock front attached at the origin, provided ε0 is small enough.
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Theorem 2 can be reduced to the solvability of a free boundary value problem of
a nonlinear elliptic equation. We leave the nonlinear problem to the next section due
to its complexity. Instead, let us first consider the problem (2.1.5), (2.1.8), (2.1.17).

Notice that the domain where (2.1.5) is defined has fixed boundaryr = b0(θ)

and r = s0(θ), and both (2.1.5) and the boundary conditions (2.1.8), (2.1.17)
are linear. Besides, for the linear boundary value problem all requirements of the
maximum principle on boundary conditions are satisfied, so thatφn(r, θ) cannot
attain its non-negative maximum and non-positive minimum on

r = b0(θ), r = s0(θ).

Moreover, as we indicated above, for a suitable integerk1, the coefficientC in the
equation (2.1.5) is negative. Therefore, the boundary value problem (2.1.5), (2.1.8),
(2.1.17) for eachn > k2 is uniquely solvable.

According to the assumption (1.2.20), all coefficientsbn(θ) in (2.1.5) vanish
for 1 � n � k2. Therefore,φn(r, θ) = 0 with 1 � n � k2 satisfies the linear
boundary value problem (2.1.5), (2.1.8), (2.1.17). Meanwhile,sn(θ) also vanishes
for 1 � n � k2. Combining this with the solvability of this boundary value problem
for n > k2, we can determine all solutionsφn(r, θ) with 1 � n � N , whereN
can be as large as we want. Therefore, according to the process of deriving all
conditions satisfied byφn(r, θ) we confirm that the finite expansioñφ(z, r, θ) =∑N

n=0 z
n+1φn(r, θ) satisfies (1.2.8)–(1.2.11) with errorO(zN). This means that a

required approximate solution with errorO(zN) for any largeN can be obtained
once Theorem 2 is proved.

3. The approximate solution of level one

3.1. Decomposition of nonlinear problems

In this section we are going to prove Theorem 2. The solution confirmed by this
theorem will be chosen as the approximate solution of level one for the problem
(1.2.13), (1.2.15), (1.2.16), and then will be employed to seekφn(r, θ) defined in
Section 2. To simplify the notation we replaceφ0, b0(θ), s0(θ) by ψ, b(θ), s(θ)
respectively, and write the problem (2.1.4), (2.1.7), (2.1.16) as

a11ψrr + a22ψθθ + 2a12ψrθ + A(ψ,ψr, ψθ ) = 0, (3.1.1)

bψ + 1

b2bθψθ − (1 + b2)ψr = 0 on r = b(θ), (3.1.2)(
ψ2
r + 1

r2ψ
2
θ + (ψ − rψr)rψr

)
ρ0 = −rψrq∞ρ∞ when ψ = q∞. (3.1.3)

whereb(θ) satisfies (2.2.1). We emphasize here that the solution of (3.1.1)–(3.1.3)
solves the problem of supersonic flow past a conical body with the surfaceb = b(θ).
Certainly, this solution is also a perturbation of the background solution of (1.3.1)–
(1.3.3).



Existence of Stationary Supersonic Flows Past a Pointed Body 157

In order to fix the free boundary we introduce a partial hodograph transformation
(see [11, 18, 19, 21]). Notice thatψr > a0 > 0 holds for background solutions; the
inequality will also be true for perturbed solutions. Therefore, we can takeψ as the
new coordinatep, and perform a partial hodograph transformationT : (r, θ) �→
(p, σ ):

σ = θ,

p = ψ(r, θ).
(3.1.4)

Its inverse transform isT −1 :
θ = σ,

r = u(p, σ ).
(3.1.5)

In the new coordinates, the shock front becomes a fixed boundaryp = ψ0, and
u(p, σ ) becomes a new unknown function, which satisfiesu(ψ0, σ ) = s(σ ) on the
shock front.

The functionu(p, σ ) satisfies a second order differential equation, which can
be deduced from (3.1.1). By the chain the rule we have

∂r = 1

up
∂p, ∂θ = ∂σ − uσ

up
∂p,

ψr = 1

up
, ψθ = −uσ

up
,

ψrr = − 1

u3
p

upp, ψrθ = uσ

u3
p

upp − 1

u2
p

upσ ,

ψθθ = − 1

up
uσσ + 2uσ

u2
p

upσ − u2
σ

u3
p

upp,

and

|∇φ|2 = 1

u2
p

(
1 + u2

σ

u2 + (pup − u)2
)
. (3.1.6)

Therefore, in the new coordinates (3.1.1) becomes

a2
(
−upp

u3
p

(1 + u2)+ 1

uup
+ 2uσ
u2u2

p

upσ − 1

u2up
uσσ − u2

σ

u2u3
p

uσσ

)

+
(1 + u2

up
− up

)2upp

u3
p

+ 2

u2

(1 + u2

up
− up

)uσ
up

(uσ
u3
p

upp − upσ

u2
p

)

− 1

u4

u2
σ

u2
p

(
−uσσ

up
+ 2uσ

u2
p

upσ − u2
σ

u3
p

upp

)
− u2

σ

u3u3
p

+ 2

u3

(1 + u2

up
−up

)u2
σ

u2
p

= 0.

(3.1.7)
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The boundary conditions will also have a new form. First, on the shock front the
variablep takes constantψ0, hence the boundary becomes fixed, and the boundary
condition is (

(1 + u2)+ u2
σ

u2 − upup

)
H + upupρ∞ = 0. (3.1.8)

However, since the potentialψ is not known on the surface of the body, then
the corresponding boundary in the(p, σ ) coordinate system becomes unknown.
Therefore, the boundary conditions on it should be described by two equations:

u = b(σ ), (3.1.9)

(1 + b2(σ ))+ b′(σ )
b2(σ )

uσ − b(σ )pup = 0. (3.1.10)

In what follows we will call the problem (3.1.1)–(3.1.3) (NL), and call the problem
(3.1.7)–(3.1.10)(NL)∗. Evidently, these two problems are equivalent. If one of
them is solved, then the solution of the other one is also obtained.

The problem(NL) has a fixed boundaryr = b(θ) and a free boundaryr = s(θ).
Conversely, the problem(NL)∗ had a fixed boundary atp = ψ0 and a free boundary
p = g(σ ). Motivated by Schwarz alternating iteration we will also use the domain
decomposition method to decompose the problems(NL) and(NL)∗ into a set of
auxiliary nonlinear boundary value problems with fixed boundaries, so that the
combination of successive solutions to these problems leads to the solutions to
(NL) and(NL)∗. Namely, for smallδ > 0 we introduce constantsr1, r2 and two
monotonically increasing sequences{α2}, {β2} with 1 � 2 � k, satisfying

b0 < r2 < r1 < b0 + δ,

α1 = ψB(r2),

α2 < β2−1 < α2+1 < β2, 1 < 2 < k

βk = ψ0.

(3.1.11)

Denoting the interior annulusb(θ) < r < r1,0 � θ � 2π on the(r, θ) plane by
>i , and the exterior annulusα2 < p < β2,0 � σ � 2π on (p, σ ) plane by>e2 ,
we can write thek + 1 auxiliary boundary value problems as follows.

(NL)(i) :




equation(3.1.1) in >i,

boundary condition(3.1.2) on r = b(θ),

ψ = d(θ) on r = r1,

(3.1.12)

(NL)(e2) :




equation(3.1.7) in >e2,

u = q12(σ ) on p = α2,

u = q22(σ ) on p = β2,

(3.1.13)

where 1� 2 � k − 1.

(NL)(ek) :



(3.1.7) in >ek ,

u = q1(σ ) on p = αk,

boundary condition(3.1.8) on p = ψ0.

(3.1.14)
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Remark 3. Here and later we assume thatδ′ = max1�2�k α2 are small, so that the
comparison principle holds for these problems, and assume that min1�2�k(β2 −
α2+1, α2+1 − β2−1) > δ′

10 without loss of generality. We also assume that the
constantε0, which dominates the perturbation, is usually much smaller thanδ, δ′.
When the notationO(ε0) is applied, the quantitiesδ, δ′ are regarded as fixed.

The solvability of problems(NL)(i), (NL)(e2) (1 � 2 � k) and corresponding
estimates of their solutions will be given in the next subsection. To emphasize
the dependence on the corresponding data given on boundaries we also denote
the solution of the problems (3.1.12), (3.1.13), (3.1.14) by(NL)(i){b(θ), d(θ)},
(NL)(e2){q12(σ ), q22(σ )} and(NL)(ek){q1k(σ )} respectively. Similarly, we will also
use(NL){b(θ)} to denote the solution of (1.2.13), (1.2.15), (1.2.16).

3.2. The problem in the interior annulus

For the problem(NL)(i), we first use the transformation

θ̃ = θ

r̃ − b0

r1 − b0
= r − b(θ)

r1 − b(θ)

(3.2.1)

to change the boundaryr = b(θ) into r̃ = b0, then(NL)(i) becomes a new boundary
problem defined onb0 � r̃ � r1,0 � θ̃ � 2π . Consider the linearization of this
at ψ = ψB(r), b(θ) = b0, d(θ) = ψ10. Since at the the background solution,
r̃r = 1, r̃θ = 0, and(ψB)θ = (ψB)rθ = (ψB)θθ = 0, we obtain the linearization
of (3.1.1) for the perturbatioṅψ :

L(i)ψ̇ = A11ψ̇rr + A22ψ̇θθ + B1ψ̇r + Cψ̇ = f, (3.2.2)

where

A11 = a2(1 + r2)− ((1 + r2)ψr − rψ)2, A22 = a2

r2 ,

B1 = a2

r
−
(
(γ − 1)

(
(1 + r2)ψrr + ψr

r

)
+ 2(1 + r2)ψrr

)
· ((1 + r2)ψr − rψ),

C = 2r((1 + r2)ψr − rψ)ψrr − ((1 + r2)ψrr + 1

r
ψr)(γ − 1)(ψ − rψr),

and r̃ , θ̃ are denoted byr, θ again. Correspondingly, the boundary conditions for
the linearized problem are

(1 + b2
0)ψ̇r − b0ψ̇ = g on r = b0, (3.2.3)

ψ̇ = h on r = r1. (3.2.4)

The linearized problem (3.2.2)–(3.2.4) is denoted by(L)(i), which is a linear elliptic
boundary value problem becauseA11 > 0 andA22 > 0.
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Lemma 1. There is δ > 0, such that the solution of (L)(i) uniquely exists, and

‖ψ̇‖C2+α[b0,r1;0,2π ]
� C1

(‖f ‖Cα[b0,r1;0,2π ] + ‖g‖C1+α(0,2π) + ‖h‖C2+α(0,2π)
)
, (3.2.5)

‖ψ̇‖C2+α[b0,r1− δ
10;0,2π ]

� C2
(‖f ‖Cα[b0,r1;0,2π ] + ‖g‖C1+α(0,2π) + ‖h‖C0(0,2π)

)
(3.2.6)

provided |r1 − b0| < δ.

Proof. First, let us show that the solutioṅψ of the linearized problem (3.2.2)–
(3.2.4) monotonically depends on its boundary value onr = r1, providedf andg
vanish. Namely,h1 � h2 on r = r1 implies ψ̇1 � ψ̇2 inside the domain. In fact,
making a transformation of an unknown functionv = eK(r−b0)

2
ψ̇ for the problem

(L)(i), then

L(i)ψ̇ = L(i)(e−K(r−b0)
2
v) = e−K(r−b0)

2
L
(i)
K v,

where

L
(i)
K v = L(i)v − 4K(r − b0)A11vr + ((4K2(r − b0)

2

− 2K)A11 − 2K(r − b0)B1)v.
(3.2.7)

Obviously,v satisfies the elliptic equation

L
(i)
K v = 0,

providedψ̇ satisfiesL(i)ψ̇ = 0. Whenδ is sufficiently small andK = δ−1, the
coefficient ofv in (3.2.7) is

(4K2(r−b0)
2−2K)A11−2K(r−b0)B1+C < (4−2δ−1)A11+2|B1|+|C| < 0.

On the other hand, the boundary condition (3.2.3) implies thatv satisfies

γ1
∂v

∂n
+ γ2v = 0

on r = b0, whereγ1, γ2 are both positive. By the maximum principle, the solution
ofL(i)K v = 0 can not take negative value onr = b0 and inside the domainb0 < r <

r1,0 � θ � 2π , if it is non-negative onr = r1. This fact implies thatv depends on
its boundary value onr = r1 monotonically. Hence it is also true for the solution
ψ̇ of the problem(L)(i).

The above argument indicates that the elliptic operatorL(i) under homogeneous
boundary conditions corresponding to (3.2.3), (3.2.4) does not have a non-negative
eigenvalue, providedδ is sufficiently small. Namely, the problem (3.2.2)–(3.2.4)
is uniquely solvable. Besides, (3.2.5), (3.2.6) are just the generalized global and
interior Schauder estimates.
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Remark 4. Returning to the original(r, θ) coordinate system, the estimates ob-
tained in the lemma can be written as

‖ψ̇‖C2+α(>i)
� C1(‖f ‖Cα(>i) + ‖g‖C1+α(0,2π) + ‖h‖C2+α(0,2π)),

‖ψ̇‖C2+α(>−
i )

� C2(‖f ‖Cα(>i) + ‖g‖C1+α(0,2π) + ‖h‖C0(0,2π)),

where>i = {(r, θ); b(θ) � r � r1,0 � θ � 2π},>−
i = {(r, θ); b(θ) � r � r1 −

δ
10,0 � θ � 2π}. Moreover, denote the coefficients of (3.2.2) byA11(ψ),A22(ψ)

etc. If ψ is replaced byψ1, satisfying‖ψ − ψ1‖C2+α � C uniformly, then the
estimates (3.2.5), (3.2.6) hold with uniform constantsC1, C2.

Lemma 2. Assume that δ1, ε are sufficiently small in the sense of Remark 3, |r1 −
b0| < δ1, ‖b(θ) − b0‖C2+α(0,2π) < ε, ‖d(θ) − ψ10‖C2+α(0,2π) < ε with ψ10 =
ψB(r1), then the problem (NL)(i){b(θ), d(θ)} has a unique solutionψ(r, θ). More-
over,

‖ψ(r, θ)− ψB(r)‖C2+α(>a)
→ 0 when ε → 0. (3.2.8)

Proof. Whenb(θ) = b0, the functionψB(r) is the solution of the nonlinear prob-
lem (NL)(i){b0, ψ10}. For |r1 − b0| < δ1, the linearization(L)(i) of the nonlinear
problem(NL)(i) atb(θ) = b0, ψ = ψ10 has estimate (3.2.5), where the constantC1
is uniform with respect tob(θ). Then the implicit function theorem implies that the
problem(NL)(i){b(θ), d(θ)} has a unique solution, which is a small perturbation of
ψ = ψB(r), provided‖b(θ)−b0‖C2+α < ε, ‖d(θ)−ψ10‖C2+α < ε for sufficiently
smallε. Furthermore, (3.2.8) follows from the conclusion of the implicit function
theorem.

Lemma 3. Assume that δ1, ε are sufficiently small, |r1 − b0| < δ1, ‖b(θ) −
b0‖C2+α(0,2π) < ε, ‖dj (θ) − ψ10‖C2+α < ε (j = 1,2), and ψj (r, θ) is the so-
lution of the problem (NL)(i){b(θ), dj (θ)}. Then the comparison principle is valid,
i.e., d2 � d1 implies ψ2 � ψ1.

Proof. For the nonlinear problem(NL)(i), we assume thatψj (r, θ) is the solution
of problem (NL)(i){b(θ), dj (θ)} with d2(θ) > d1(θ). Subtracting the equation
satisfied byψ2 andψ1, we find thatψ̇ = ψ2 − ψ1 satisfies

A11(ψ1)ψ̇rr +D0ψ̇rθ + A22(ψ1)ψ̇θθ + (B1(ψ1)+D1)ψ̇r

+D2ψ̇θ + (C(ψ1)+D3)ψ̇ = 0, (3.2.9)

whereA11(ψ1), A22(ψ1), B1(ψ1), C(ψ1) are the coefficients in (3.2.2) withψ re-
placed byψ1,Dj(j = 0,1,2,3)are small quantities, dominated by

∑
|α|�2 |∂αψ̇ |+

|∂αθ ψ1,2|. Correspondingly, the boundary conditions forψ̇ are

(1 + b2)ψ̇r − b′

b2 ψ̇θ − bψ̇ = 0 on r = b(θ), (3.2.10)

ψ̇ = d2 − d1 on r = r1. (3.2.11)

In view of the estimates given in Lemma 1, the coefficients of the equation (3.2.9)
are small perturbations of the corresponding coefficients of (3.2.2), provided that



162 Shuxing Chen

‖dj (θ)−ψ10‖C2+α and‖b(θ)−b0‖C2+α are sufficiently small. Therefore,d2−d1 �
0 onr = r1 impliesψ̇ � 0 in>i .

Remark 5. Let b̃0 be a constant in(b0, b0 + ε0) and ψ̃B(r) be the solution of
problem (1.2.17)–(1.2.19) withb0 replaced byb̃0. Then we know from [3] that
ψ̃B(r) is well defined on(b̃0, s̃0) with s̃0 > s0, and ψ̃B(r) < ψB(r) holds on
b̃0 � r � s0. Furthermore, if we extend̃ψB(r) to (b0, b̃0) by using (1.2.17) and its
value inr � b̃0, the relationψ̃B(r) < ψB(r) still holds in(b0, b̃0). In what follows
the functionsψB(r) andψ̃B(r) will be applied to dominate the solution of(NL)
from above and below.

Lemma 4. Assume that b0 � b(θ) � b̃0, ‖b(θ)−b0‖C2+α(0,2π) < ε, |b0− b̃0| < ε,

ψB(r) = (NL)(b0), ψ̃B(r) = (NL)(b̃0),ψ(r, θ) = (NL)(i){b(θ), d(θ)}, ψ̃B(r1) �
d(θ) � ψB(r1)(= ψ10), then ψ̃B(r) � ψ(r, θ) � ψB(r) holds in >i . Besides,

‖ψ(r, θ)− ψB(r)‖C2+α(>−
i )

� C(‖d(θ)− ψ10‖C(0,2π) + ε), (3.2.12)

where ψ10 = ψB(r1).

Proof. The background solutionψB satisfies

rψB − (1 + r2)(ψB)r = 0 on r = b0,

hence
(ψB)r

ψB

� b0

1 + b2
0

.

If ε is small enough such thatb0 + ε < 1, the relationb0 � b(θ) implies

(ψB)r

ψB

� b(θ)

1 + b(θ)2
,

which leads to
b(θ)ψB − (1 + b2(θ))(ψB)r � 0. (3.2.13)

SetB1ψ = ψ − ψB . It satisfies

A11(ψB)(B1ψ)rr +A22(ψB)(B1ψ)θθ + D̃0(B1ψ)rθ + (B1(ψB)+ D̃1)(B1ψ)r

+ D̃2(B1ψ)θ + (C(ψB)+ D̃3)B1ψ = 0 (3.2.14)

and corresponding boundary conditions

(1 + b2)(B1ψ)r − b′

b2 (B1ψ)θ − bB1ψ � 0 on r = b(θ),

(3.2.15)

B1ψ = d(θ)− ψ10 on r = r1. (3.2.16)

Again noticing that the coefficients of (3.2.14) are small perturbation of the corre-
sponding coefficients of (3.2.2), and using an argument similar to that in Lemma 3.3,
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we may confirm thatB1ψ cannot attain its positive maximum inside the domain
and on the boundary. Namely, we haveψ(r, θ) � ψB(r).

On the other hand,̃ψB(r) satisfies

rψ̃B − (1 + r2)(ψ̃B)r = 0 on r = b̃0.

Thenb(θ) � b̃0 implies

(1 + b(θ)2)(ψ̃B)r − b(θ)ψ̃B � 0 on r = b(θ). (3.2.17)

Then we can derive an elliptic equation with the form (3.2.14) forB2ψ = ψ− ψ̃B ,
which also satisfies boundary conditions

(1 + b2)(B2ψ)r − b′

b2 (B2ψ)θ − bB2ψ � 0 on r = b(θ), (3.2.18)

B2ψ � 0 on r = r1. (3.2.19)

Henceψ � ψ̃B can be obtained as above.
To prove the estimate of theC2+α norm ofψ , we use the transformation (3.2.1).

Denote byψ∗
B the inverse image ofψB ; thenψ∗

B is defined in>i . SinceψB satisfies
(1.2.17), we have

a2((1 + r̃2)e2(ψ∗
B)rr + 1

r̃
e(ψ∗

B)r)− ((1 + r̃2)e(ψ∗
B)r − r̃ψ∗

B)
2e2(ψ∗

B)rr = 0,

(3.2.20)
where

e = ∂r

∂r̃
= r1 − b(θ)

r1 − b0
= 1 + b0 − b(θ)

r1 − b0
= 1 +O(ε).

SetBψ∗ = ψ(r, θ)− ψ∗
B . This satisfies

A11(ψB)(Bψ
∗)rr + A22(ψB)(Bψ

∗)θθ +D∗
0(Bψ

∗)rθ
+ (B1(ψB)+D∗

1)(Bψ
∗)r +D∗

2(Bψ
∗)θ + (C(ψB)+D∗

3)Bψ
∗ = f (3.2.21)

and corresponding boundary conditions

(1 + b2)(Bψ∗)r − b′

b2 (Bψ
∗)θ − bBψ∗ = g on r = b(θ), (3.2.22)

Bψ∗ = d(θ)− ψ10 on r = r1, (3.2.23)

where‖f ‖C2+α , ‖g‖C2+α are quantitiesO(ε). Therefore, we have

‖Bψ∗‖C2+α(>−
i )

� C(‖d(θ)− ψ10‖C0(0,2π) + ε),

which leads to (3.2.12) directly.
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3.3. The problems in exterior annuli

Next we consider the nonlinear problem(NL)(e2) in the exterior annulus>e2

with fixed boundaryp = α2 andp = β2. The image ofψB(r) under the inverse
partial hodograph transformationT −1 will be called the background solution for
(NL)∗, and will be denoted byuB(p). To linearize(NL)(e2), we multiply (3.2.4) by
u3
p and then linearize the background solutionu = uB(p). In view of

∂uB

∂σ
= 0, a2 = γ − 1

2
(C − u−2

p − (p − uu−1
p )2),

we obtain the linearized equation foru̇ as follows.

L(e)u̇ = (N2
1 − (1 + u2)a2)u̇pp − a2u2

p

u2 u̇σσ

+
(

2a2up

u
− 2uppN1

1 + u2

u2
p

+N2

(
1 + u2

u3
p

− up

u2
p

))
u̇p (3.3.1)

+
(

2N1upp(2u− pup)

up
− a2

u2u
2
p − 2a2uupp +N2

(
p

up
− u

u2
p

))
u̇

= f,

whereN1 = (1 + u2)/up − up,N2 = (γ − 1)(u2
p/u− (1 + u2)upp).

The boundary conditions onp = α1, · · · , αk, β1, · · · , βk−1 are taken as

u̇ = q. (3.3.2)

Meanwhile, the boundary condition ofu̇ onp = ψ0(= βk) is the linearization of
(3.1.10), that is,

2uu̇ ·H − (H − ρ∞)p(uu̇p + upu̇)

+ (1 + u2 − upup) ·H ′ ·
(
u̇p

u3
p

+ (p − u

up
)(
u̇

up
− uu̇p

u2
p

)

)
= g1.

In view ofH = ρ,H ′ = ρ/a2, the condition can be rewritten as

((
1 − ρ∞

ρ

)
pu+ 1 + u2 − upup

a2

((
p − u

up

) u

u2
p

− 1

u3
p

))
u̇p

+
(

− 2u+
(
1 − ρ∞

ρ

)
pup − 1 + u2 − upup

a2

(
p − u

up

) 1

up

)
u̇ = g,

which will be denoted by

γ3u̇p + γ4u̇ = g. (3.3.3)
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Therefore, we can establish the linearized boundary value problems

(L)(e2) :




equation(3.3.1) in >e2,

u̇ = q12 on p = α2,

u̇ = q22 on p = β2,

(3.3.4)

for 1 � 2 � k − 1, and the problem

(L)(ek) :




equation(3.3.1) in >ek ,

u̇ = q1k on p = αk,

condition(3.3.3) on p = ψ0.

(3.3.5)

Notice that all|β2 − α2| are chosen small, so that the coefficients of (3.3.1) satisfy
the requirement of the comparison principle. Then the principle is available for
solutions of (3.3.4) or (3.3.5), providedγ3, γ4 in (3.3.3) take the same sign. To
verify the last fact we notice that on the boundaryp = ψ0

p − u

up
= ψ − rψr = vz,

1 + u2 − upup = 1

ψr

((1 + r2)ψr − rψ) = −vn

vr

√
1 + r2 < 0,(

p − u

up

)
u

u2
p

− 1

u3
p

= − 1

u3
p

(1 + u2 − upup) =
√

1 + r2 · v2
r · vn > 0.

According to the Rankine-Hugoniot condition (3.1.8) we have(1 + u2)ρ =
puup(ρ − ρ∞) for the background solution. This implies

(
1 − ρ∞

ρ

)
pup = 1+u2

u
,

then

γ3 = 1 + r2

up
− 1

a2

vn

vr

√
1 + r2

√
1 + r2v2

r vn

= vr(1 + r2)

(
1 − v2

n

a2

)
> 0,

γ4 = − 2r + 1 + r2

r
− 1

a2

√
1 + r2vn

vr
vzvr

= 1

r
− r − 1

a2

√
1 + r2vzvn

� 1

r

(
1 + v2

n

a2

)
− r

(
1 − v2

n

a2

)
.

Under the assumption of weak shock the qualtity 1− v2
n

a2 is small, henceγ4 > 0.

Since ∂
∂p

points in the outward normal direction of the boundaryp = ψ0 of >ek ,
then the sign of coefficients in the linearized boundary condition (3.3.3) satisfies
the requirement of the maximum principle for elliptic boundary value problems.
Therefore, we can use a similar method to that in Lemma 1 to establish the following
proposition.
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Lemma 5. There is δ′ > 0, such that the solution u̇2 of (L)(e2) uniquely exists, and
satisfies the comparison principle, that is,

f = 0, q12 � 0, q22 � 0 �⇒ u̇2 � 0 in >e2,

f = g = 0, q1k � 0 �⇒ u̇2 � 0 in >ek .

Meanwhile, the following estimates hold:

‖u̇2‖C2+α(>e2
) � C1

(‖f ‖Cα(>e2
) + ‖q12‖C2+α(0,2π) + ‖q22‖C2+α(0,2π)

)
, (3.3.6)

‖u̇2‖C2+α(>−
e2
) � C2

(‖f ‖Cα(>e2
) + ‖q12‖C0(0,2π) + ‖q22‖C0(0,2π)

)
, (3.3.7)

for 1 � 2 � k − 1, and

‖u̇k‖C2+α(>ek
) � C1

(‖f ‖Cα(>ek
) + ‖g‖C1+α(0,2π) + ‖q1k‖C2+α(0,2π)

)
, (3.3.8)

‖u̇k‖C2+α(>−
ek
) � C2

(‖f ‖Cα(>ek
) + ‖g‖C1+α(0,2π) + ‖q1k‖C0(0,2π)

)
, (3.3.9)

where >−
e2

= [α2 + 1
10δ1, β2 − 1

10δ1; 0,2π ] for 1 � 2 � k − 1 and >−
ek

=
[αk + 1

10δ1, βk; 0,2π ].
Furthermore, similar to Lemmas 2 and 3, we can establish the solvability of

nonlinear problems(NL)(e2) for 1 � 2 � k and the corresponding comparison
principle.

Lemma 6. (a) If ‖q12(σ )− uB(α2)‖C2+α(0,2π) < ε, ‖q22(σ )− uB(β2)‖C2+α(0,2π)
< ε(1 � 2 � k − 1) hold for sufficiently small ε > 0, then (NL)(e2){q12(σ ),
q22(σ )} has a unique solution. Moreover,

‖u(p, σ )− uB(p)‖C2+α(>e2
) → 0 when ε → 0. (3.3.10)

(b) If ‖q1k(σ ) − uB(α2)‖C2+α(0,2π) < ε holds for sufficiently small ε > 0, then
(NL)(ek){q1k(σ )} has a unique solution. Moreover,

‖u(p, σ )− uB(p)‖C2+α(>ek
) → 0 when ε → 0. (3.3.11)

Proof. The proof for cases (a) and (b) are similar, so we will only prove case (b).
For the problem(NL)(ek) the three equations in (3.1.14) can be regarded as a map
from C2+α(>ek ) to Cα(>ek ) × C2+α(0,2π) × C1+α(0,2π). It has been shown
that for(0, uB(αk),0) ∈ Cα ×C2+α ×C1+α, the nonlinear problem has a solution
uB(p), which is the inverse ofψB(r). Besides, the estimate (3.3.6) holds for the
linearized problem. According to the implicit function theorem, there is anε > 0
such that(NL)(ek) has a unique solution, provided‖q1k(σ ) − uB(α2)‖C2+α < ε.
Finally, (3.3.11) also follows from the implicit function theorem.
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Lemma 7. (a) If ‖q(j)12 (σ )− uB(α1)‖C2+α < ε, ‖q(j)22 (σ )− uB(β1)‖C2+α < ε and

u
(j)
2 (p, σ ) = (NL)(e2){q(j)12 (σ ), q

(j)
22 (σ )} (1 � 2 � k − 1, j = 1,2) hold for

sufficiently small ε > 0, then

q
(2)
12 (σ ) � q

(1)
12 (σ ), q

(2)
22 (σ ) � q

(1)
22 (σ ) �⇒ u

(2)
2 (p, σ ) � u

(1)
2 (p, σ ).

(3.3.12)
Besides,

‖u(j)2 (p, σ )− uB(p)‖C2+α(>−
e2
)

� C(‖q(j)12 (σ )− uB(α2)‖C0(0,2π) + ‖q(j)22 (σ )− uB(β2)‖C0(0,2π)). (3.3.13)

(b) If ‖q(j)1k (σ )−uB(αk)‖C2+α < ε holds for sufficiently small ε > 0, u(j)k (p, σ ) =
(NL)(ek){q(j)1k }, then

q
(2)
1k (σ ) � q

(1)
1k (σ ) �⇒ u

(2)
k (p, σ ) � u

(1)
k (p, σ ). (3.3.14)

Moreover,

‖u(j)k (p, σ )− uB(p)‖C2+α(>−
ek
) � C‖q(j)1k (σ )− uB(αk)‖C0(0,2π). (3.3.15)

Proof. We only prove the conclusion (b). Takeq̇12 = q
(2)
12 −q

(1)
12 , q̇22 = q

(2)
22 −q

(1)
22 ,

u̇2 = u
(2)
2 − u

(1)
2 , (1 � 2 � k), thenu̇2 satisfies

(N2
1 − (1 + u2)a2)u̇pp − a2u2

p

u2 u̇σσ +D0u̇pσ

+
(

2a2up

u
− 2uppN1

1 + u2

u2
p

+N2

(
1 + u2

u3
p

− up

u2
p

)
+D1

)
u̇p +D2u̇σ

+
(

−a2u2
p

u2 + 2N1upp(2u− pup)

up
− 2a2uupp +N2

(
p

up
− u

u2
p

)
+D3

)
u̇ = 0,

(3.3.16)
whereN1, N2 have the same expression as in (3.3.1) andu, u̇ stand foru(1)2 , u̇2
to simplify the notation. According to the assumptions of the lemma,u̇2 is non-
negative on the boundaryp = α1, β1, andu̇k is non-negative onp = αk. Moreover
u̇k satisfies((

1− ρ∞
ρ

)
pu+ 1 + u2−upup

a2

(
− 1

u3
p

+ (p − u

up
)
u

u2
p

)
+ E1

)
u̇p +E2u̇σ

+
(

−2u+
(

1 − ρ∞
ρ

)
pup − 1 + u2 − upup

a2

(
p − u

up

)
1

up
+ E3

)
u̇ = 0

(3.3.17)

on the boundaryp = ψ0. Since in (3.3.16), (3.3.17) allDj,Ej are small quantities
of orderO(ε), then the coefficients in (3.3.16), (3.3.17) are perturbations of the
corresponding coefficients in (3.3.1), (3.3.2). Using Lemma 3.5 we obtain (3.3.14)
and (3.3.15).
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3.4. Monotone alternating approximation

Based on the discussion of(NL)(i) and(NL)(e2), we are able to construct the
solution of(NL) or (NL)∗ now. Using the value of the background solution on the
boundaryr = r1 as data, we first solve(NL)(i)in >i . Then by alternatively solving
(NL)(e2) in >e2 and(NL)(i) in >i , we will establish sequences{ψ(n)} and{u(n)2 }
of solutions for(NL)(i) and (NL)(e2). It will be shown that these sequences are
convergent, the limits ofu(n)2 andu(n)2+1 coincide in>2 ∩>2+1 for 1 � 2 � k − 1,

and the limits ofu(n)1 andψ(n) are the inverse of each other in their overlapped
domain. Hence we are led to the solution of(NL).

First let us describe the method of choosingr1, α2, β2(0 � 2 � k) precisely.
Take r1 > b̃0 = maxb(θ), so that|r1 − b(θ)| < δ and the problem(NL)(i) is
uniquely solvable in the domain>i : b(θ) � r � r1. According to Lemmas
2 to 4 the solutionψ of (NL)(i)(b(θ), ψB(r1)) satisfiesψ � ψB and the value
of ψ in >i depends monotonically on the boundary value onr = r1. Applying
Lemma 6 and Lemma 7, we can find{α2}, {β2} (1 � 2 � k) satisfying (3.1.11), so
that the problem(NL)(e2) is uniquely solvable in the domain>e2 and satisfies the
comparison principle with respect to the data on boundaries.

Next, to simplify the notation, we assumek = 2 in the following discussion
without loss of generality. Besides, in what follows,r as a function ofp, θ is denoted
by ψ−1(p, θ), providedp = ψ(r, θ), while p as a function ofr, σ is denoted by
u−1(r, σ ), providedr = u(p, σ ).

The approximate sequences will be established as follows. Settingψ(0) = ψB ,
u
(0)
1 = u

(0)
1∗ = u

(0)
2 = uB , we chooseψ(1)(r, θ) to be the solution of the problem

(NL)(i){b(θ), ψB(r1)}. Forn � 1 we take

u
(n)
1 (p, σ ) = (NL)(e1){(ψ(n))−1(α1), (u

(n−1)
1∗ )−1(β1)},

u
(n)
2 (p, σ ) = (NL)(e2){u(n)1 (α2)},
u
(n)
1∗ (p, σ ) = (NL)(e1){u(n)1 (α1), u

(n)
2 (β1)},

ψ(n+1)(r, θ) = (NL)(i){b(θ), (u(n)1∗ )
−1(r1, θ)}

inductively.

Lemma 8. If ‖b(θ) − b0‖C2+α < ε with ε being sufficiently small, then the se-

quences {ψ(n)}, {u(n)1 }, {u(n)2 }, {u(n)1∗ } are well defined. The first sequence is mono-
tone, decreasing with respect to n, and other three sequences are monotone, in-
creasing with respect to n. Furthermore, we have

ψ̃B(r) � ψ(n)(r, θ) � ψB(r) in >−
i ,

‖ψ(n)(r, θ)− ψB(r)‖C2+α(>−
i )

� Cε,
(3.4.1)
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ũB(p) � u
(n)
1 (p, σ ), u

(n)
1∗ (p, σ ) � uB(p) in >−

e1
,

ũB(p) � u
(n)
2 (p, σ ) � uB(p) in >−

e2
,

‖u(n)1 (p, σ )− uB(p)‖C2+α(>−
e1)

� Cε,

‖u(n)1∗ (p, σ )− uB(p)‖C2+α(>−
e1)

� Cε,

‖u(n)2 (p, σ )− uB(p)‖C2+α(>−
e2)

� Cε,

(3.4.2)

where all constants are independent of n.

Proof. Lemma 4 indicates that the solutionψ(1)(r, θ) of the nonlinear problem
(NL)(i){b(θ), ψB(r1)} exists and satisfies̃ψB � ψ(1) � ψB , where ψ̃B =
(NL){b̃0}. In view of |b0 − b̃0| < ε, we have‖ψ̃B − ψB‖C0 < C3ε, and then

‖ψ(1) − ψB‖C0(>i)
� C3ε, (3.4.3)

‖ψ(1) − ψB‖C2+α(>−
i )

� C4ε. (3.4.4)

Becauseψ(1) is a small perturbation ofψB , thenψ(1)
r � ζ > 0, whereζ is a constant

independent ofn. Hence(ψ(1))−1 is well defined and(ψ(1))−1 � (ψB)
−1 = uB .

Moreover, from (3.4.3) andψ(1)
r > ζ > 0, we have

‖(ψ(1))−1(α1, σ )− uB(α1)‖C0(0,2π) <
C3ε

ζ
. (3.4.5)

Taking (ψ(1))−1(α1, σ ) and uB(β1) as the data for the nonlinear problem
(NL)(e1) on the boundaryp = α1 andp = β1 respectively, we obtain the so-
lution u(1)1 (p, σ ) of (NL)(e1) by Lemma 6, while Lemma 7 implies the following
estimates:

‖u(1)1 − uB‖C2+α(>−
e1)

� C2‖(ψ(1))−1(α1, σ )− uB(α1)‖C0(0,2π)

� C2C3ε

ζ
.

(3.4.6)

ũB(α1) � u
(1)
1 (α1, σ ) � uB(α1) in >e1. (3.4.7)

Hence
ũB(p) � u

(1)
1 (p, σ ) � uB(p) (3.4.8)

holds onp = α2.
Using Lemmas 6 and 7 we can solve the problem(NL)(e2){u(1)1 (α2)}. Moreover,

ũB(p) � u
(1)
1 (p, σ ) � uB(p) in >−

e2
,

‖u(1)2 (p, σ )− uB(p)‖C2+α(>−
e2)

� Cε
(3.4.9)

hold.
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Returning to the domain>e1, we solve the Dirichlet problem(NL)(e1) once
more, and obtain

u
(1)
1∗ (p, σ ) = (NL)(e1){u(1)1 (α1, σ ), u

(1)
2 (β1, σ )},

which also satisfies (3.4.6) and (3.4.7). From(u(1)1∗ )p > 0, we know(u(1)1∗ )−1 � ψB

on r = r1 and

‖(u(1)1∗ )
−1(r1, θ)− ψB(r1)‖C0(0,2π) � |ψ̃B(r1)− ψB(r1)| < ε. (3.4.10)

In addition, we can solve the problem(NL)(i){b(θ), (u(1)1∗ )−1(r1, θ)} in the interior
annulus>(i) by Lemma 2. Its solutionψ(2)(r, θ) satisfiesψ(2) � ψ(1) according
to Lemma 3 and satisfiesψ(2) � ψ̃B according to Lemma 4. Therefore, we have

‖ψ(2)(r2, θ)− ψB(r2)‖C0(0,2π) < ε, (3.4.11)

‖ψ(2)(r, θ)− ψB(r)‖C2+α(>−
i )

� C2‖(u(1))−1(r1, θ)− ψB(r1)‖C0(0,2π)

� C2ε. (3.4.12)

By the same procedure, we obtainu(2)1 (p, σ ),u(2)2 (p, σ ),u(2)1∗ (p, σ ),ψ(3)(r, θ) and
so on. Then (3.4.1) and (3.4.2) can be proved by induction.

To prove the monotonicity of the sequences{ψ(n)} and{u(n)}, we are going to
verify the following inequalities by induction

ψ(n)(r, θ) � ψ(n−1)(r, θ),

u
(n)
1 (p, σ ) � u

(n−1)
1 (p, σ ),

u
(n)
2 (p, σ ) � u

(n−1)
2 (p, σ ),

u
(n)
1∗ (p, σ ) � u

(n−1)
1∗ (p, σ ).

(3.4.13)

According to the process of establishing these sequences, we haveψ(1)(r, θ) �
ψB(r) from Lemma 4. Furthermore,u(1)1 (p, σ ) � uB(p), u

(1)
1∗ (p, σ ) � uB(p),

u
(1)
2 (p, σ ) � uB(p) follow from Lemma 7. Hence (3.4.13) holds forn = 1. Now

assume that (3.4.13) with indexn is valid. Then Lemma 4 implies

ψ(n+1)(r, θ) � ψ(n)(r, θ), (3.4.14)

because their boundary value onr = r1 satisfies this inequality by the assumption of
induction. Equation (3.4.14) impliesu(n+1)

1 (α1, σ ) � u
(n)
1 (α1, σ ).Then, combining

this with the boundary conditionu(n+1)
1∗ (β1, σ ) � u

(n)
1∗ (β1, σ ), we have

u
(n+1)
1 (p, σ ) � u

(n)
1 (p, σ ) (3.4.15)

according to part (a) of Lemma 7. Finally, by using (3.4.15) on the linep = α2 and
the boundary condition onp = β2(= ψ0), the inequality

u
(n+1)
2 (p, σ ) � u

(n)
2 (p, σ ) (3.4.16)
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is also valid according to part (b) of Lemma 7. Furthermore, (3.4.16) on the line
p = β1 and (3.4.15) on the linep = α1 lead us to

u
(n+1)
1∗ (p, σ ) � u

(n)
1∗ (p, σ ). (3.4.17)

Now (3.4.17) yields

(u
(n+1)
1∗ )−1(r1, θ) � (u

(n)
1∗ )

−1(r1, θ). (3.4.18)

Therefore, we come back to (3.4.14) with indexn+ 1:

ψ(n+2)(r, θ) � ψ(n+1)(r, θ).

Hence the monotonicity as shown in (3.4.13) is proved by induction.

Finally, we prove the following lemma, which leads to the conclusion of The-
orem 2 directly.

Lemma 9. If ‖b(θ)−b0‖C2+α � εwith ε being sufficiently small, then the problems
(NL) and (NL)∗ are solvable.

Proof. As we proved in the above lemma, the sequences{u(n)1 (p, σ )}, {u(n)2 (p, σ )},
{u(n)1∗ (p, σ )} and {ψ(n)(r, θ)} are bounded and monotone with respect ton, so
these sequences are convergent. Let us denote their limits byu1(p, σ ), u2(p, σ ),
u1∗(p, σ ),ψ(r, θ) respectively. Notice that theC2+α norm ofψ(n) onr = uB(α1)

is dominated by itsC0 norm onr = r1, theC2+α norm ofu(n)1 , u
(n)
1∗ in α1 + 1

10δ �
p � β1 − 1

10δ is dominated by theirC0 norm onp = α1, p = β1, and theC2+α

norm ofu(n)2 in α2 + 1
10δ � p � ψ0 is dominated by itsC0 norm onp = α2, so

theC2+α norms ofψ(n), u
(n)
1 , u

(n)
1∗ , u

(n)
2 are uniformly bounded. This fact implies

thatψ , u1, u1∗, u2 areC2+α functions in their respective domains.
On the other hand,ψ satisfy (3.1.1), (3.1.2) andψ(r1, θ) = (u1)

−1(r1, θ);
u1, u1∗ satisfy (3.1.7) andu1 = u1∗ on the boundaryp = α1 andp = β1; u2 satis-
fies (3.1.7), (3.1.8) andu1(α2, σ ) = u2(α2, σ ). Notice that (3.1.7) is the equation for
the function whose inverse satisfies (3.1.1), and vice versa. Hence bothψ(r, θ) and
(u1)

−1(r, θ) satisfy (3.1.1) in the overlapped domain>i∩T −1(>e1). Besides, these
two functions coincide on the boundariesr = r1 andr = u(α1, θ) (equivalently
p = ψ(r1, σ ) andp = α1). Since the domain>i is chosen so small, the linearized
operatorL(i) does not have a non-negative eigenvalue in>i . Therefore, there is no
non-negative eigenvalue in its subdomain>i ∩T −1(>e1) either. By the uniqueness
of the Dirichlet problem for the nonlinear elliptic equation (3.1.1), the functions
ψ(r, θ) andu−1

1 (r, θ) coincide on the whole domain>i ∩ T (−1)(>e1). Moreover,
u1(p, σ ), u1∗(p, σ ), u2(p, σ ) coincide on the corresponding overlapped domain.
Therefore, viewing functionsu−1

1 (r, θ), u−1
2 (r, θ) as extensions ofψ(r, θ), we ob-

tain the solution of(NL) in the whole domainb(θ) < r < ψ−1(ψ0, θ). Corre-
spondingly, the problem(NL)∗ is also solved simultaneously.

It is obvious that the solution of(NL) or (NL)∗ satisfies the entropy condition
on the shock front, because the solution is a small perturbation of the background
solution, which already satisfies the entropy condition on the corresponding shock
front.
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4. Approximation on level two

4.1. Generalized hodograph transformation

We have obtained the approximate solution of level one in Section 3. Combin-
ing this with the solutionsφ1(r, θ), · · · , φN(r, θ) of the problem (2.1.5), (2.1.8),
(2.1.17), we obtaiñφ(z, r, θ) – the approximate solution satisfying the boundary
value problem with errorO(zN). Starting from this approximate solution we will
use the Newton iterative procedure to modify it and finally obtain the precise solu-
tion of our problem. Let us simply call̃φ the approximate solution of level two, and
call the iterative process starting from̃φ an approximation on level two. Writing
φ(z, r, θ) aszχ(z, r, θ), we consider the problem forχ instead. To further sim-
plify the notation and remove the formal degeneracy atz = 0, we introduce a
transformation

t = ln z, z = et , (4.1.1)

which maps the pointz = 0 to t = −∞. By using coordinates(t, θ, r) the problem
(1.2.15), (1.2.17), (1.2.18) for the new functionχ becomes

L(χ) ≡ a00(χt + χtt )+ a11χrr + a22χθθ + 2a01χtr + 2a02χtθ + 2a12χrθ

+ (a1 + 2a01)χr + (a2 + 2a02)χθ = 0, (4.1.2)

E(χ) ≡ (b + bt )(χ + χt )+ bθ

r2χθ − (1 + r(b + bt )) χr = 0 (4.1.3)

G(χ) ≡
(
χ2
r + r−2χ2

θ + (χ + χt − rχr)(χ + χt − rχr − q∞)
)
H

− (χ + χt − rχr − q∞) q∞ρ∞
= 0,

χ = q∞, (4.1.4)

where (4.1.3) is given on the fixed boundaryr = b(t, θ), while (4.1.4) is given on
the free boundaryr = s(t, θ).

The rest of this paper is devoted to proving the existence of a solution for
(4.1.2)–(4.1.4) neart = −∞, which will obviously imply Theorem 2. Since the
function (2.1.1)φ̃(z, r, θ) satisfies (1.2.13), (1.2.15), (1.2.16) with errorO(zN),
then the corresponding̃χ(t, r, θ) satisfies (4.1.2)–(4.1.4) with errorO(e−N |t |).

Since the shock front is a free boundary, we will also use a transformation like
the partial hodograph transformation in Section 3 to fix the boundary. In view of
the hyperbolicity of (4.1.2) in the domain, we prefer to make a modification to
the partial hodograph transformation so that both the boundaryr = b(t, θ) and
r = s(t, θ) are transformed into fixed boundaries. The transformation is

y0 = t, y1 = θ, y2 = r − b

r − b + q∞ − χ
, (4.1.5)

which transforms the boundaryr = b andr = s into y2 = 0 andy2 = 1 respec-
tively.

We notice that hereq∞ − χ > 0 away from the shock front, andr − b > 0
away from the surface of the pointed body. Therefore, we always haved(t, θ, r) =
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r − b(t, θ)+ u∞ − χ(t, θ, r) > 0. Besides, in view ofχr = vr , which is positive
for the background solution, we also have

∂ry2 = d−2(χr(r − b)+ (q∞ − χ)) > 0 (4.1.6)

in the whole domainb(t, θ) < r < s(t, θ); so the transformation (4.1.5) is uni-
formly nonsingular.

The differential relations of first order for (4.1.5) are

dy0 = dt, dy1 = dθ,

dy2 = −dbt − dt (r − b)

d2 dt + −dbθ − dθ (r − b)

d2 dθ + d − dr(r − b)

d2 dr,

(4.1.7)
wheredt = −bt − χt , dθ = −bθ − χθ , dr = 1 − χr . Consequently,

dr = dbt + dt (r − b)

d1
dy0 + dbθ + dθ (r − b)

d1
dy1 + d2

d1
dy2, (4.1.8)

whered1 = d − dr(r − b) = χr(r − b)+ q∞ − χ > 0. Hence we have

ry0 = dbt + dt (r − b)

d1
, ry1 = dbθ + dθ (r − b)

d1
, ry2 = d2

d1
.

To derive a terse form of nonlinear problem (4.1.2)–(4.1.4) in coordinates
(y0, y1, y2), we choose

ω(y0, y1, y2) = d(y0, y1, r(y0, y1, y2))

as the unknown function, wherer(y0, y1, y2) is the inverse function determined by
the last equality of (4.1.5). We notice that the choice of the independent variables
and the new unknown function is equivalent to the combination of the following
transformations:

(1) Transformation of unknown function

H(t, θ, r) = r − b

r − b + q∞ − χ(t, r, θ)
, (4.1.9)

(2) Partial hodograph transformation

y0 = t, y1 = θ, y2 = H(t, r, θ), (4.1.10)

(3) Transformation of unknown function

ω(y0, y1, y2) = (r − b(y0, y1))/y2. (4.1.11)
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Such a combination is called a generalized hodograph transformation.
By the chain ruleωy2 = drry2 = d2d1

−1dr . Meanwhile, fromdt = ωy0 +
ωy2y2t , dθ = ωy1 + ωy2y2θ , we have

ωy0 = dt + dbt + dt (r − b)

d1
dr , ωy1 = dθ + dbθ + dθ (r − b)

d1
dr .

Therefore, denoting
(t, θ, r) by (ξ0, ξ1, ξ2),

∂(ξ0, ξ1, ξ2)

∂(y0, y1, y2)
) by J, and

∂(ωy0, ωy1, ωy2)

∂(dξ0, dξ1, dξ2)
by J̃ ,

we have

J̃ =




d

d1
0

(dbt + dt (r − b))d

d2
1

0
d

d1

(dbθ + dθ (r − b))d

d2
1

0 0
d3

d2
1




= d

d1
J T . (4.1.12)

In view of the expression ofd, the second derivativesχij equal−dij , adding a
given function involving the second derivatives ofb(t, θ). Therefore, the principle
part of (4.1.2) is

∑
aij

∂2χ

∂ξi∂ξj
=
∑

aij
∂2d

∂ξi∂ξj
+ lower order

=
∑

aij
∂di

∂ω2

∂2ω

∂y2∂yk

∂yk

∂ξj
+ lower order

=
∑

α2k
∂2ω

∂y2∂yk
+ lower order,

where

α2k =
∑ ∂di

∂ω2
(a2k)

∂yk

∂ξj
.

Therefore,
(aij ) = dd1

−1J T (αij )J, (4.1.13)

andω satisfies a quasilinear equation

Pω ≡
∑

i,j=0,1,2

αij (ω,∇ω)ωyiyj + R(ω,∇ω) = 0 (4.1.14)

in the domain(−∞,−T )× [0,2π ] × (0,1).
Turn to the boundary conditions. On the boundaryy2 = 0 corresponding to

r = b, we haved1 = d and
 ωy0

ωy1

ωy2


 =


 1 0 bt

0 1 bθ
0 0 d




 dt

dθ
dr


 = J̃


 dt

dθ
dr


 .



Existence of Stationary Supersonic Flows Past a Pointed Body 175

Hence the boundary condition forω can be written as

Qbω ≡ M̃∇yω + Rb(ω) = 0 on y2 = 0, (4.1.15)

whereM̃ = M(JT )−1 andM is the vector formed by the coefficients of∇ξχ in
(4.1.3).

Finally, according to the relation among∇yω,∇ξ d and ∇ξχ the condition
(4.1.4) is transformed to

Qsω ≡ G̃(ω, ωy0, ωy1, ωy2) = 0 on y2 = 1. (4.1.16)

We notice here that the relation

∇qG̃ = ∇pGJ̃
−1 (4.1.17)

holds, whereq, p stand for the argument∇yω,∇ξχ in the nonlinear functions
G̃,G1 respectively.

Whenχ is replaced by the approximate solutionχ̃ of level two, the right-hand
side of (4.1.2) should be replaced byO(eNt ). Therefore, the corresponding ap-
proximate solutioñω(y0, y1, y2) obtained fromχ̃(t, θ, r) by the above generalized
hodograph transformation satisfies (4.1.14)–(4.1.16) with errorO(eNy0), because
χ(t, θ, r) satisfies (4.1.2)–(4.1.4) with errorO(eNt ). Obviously, our main theorem
will be proved if we obtain the existence and uniqueness of the precise solution to
the boundary value problem (4.1.14)–(4.1.16). In the remaining part of this paper
we will use Newton’s iteration to prove the conclusion:

There existsT � 0, such that (4.1.14)–(4.1.16) has a unique classical solution
ω(y0, y1, y2) in (−∞,−T ).
Remark 6. The above-mentioned generalized hodograph transformation retains
the property of normal hyperbolicity of the equation with respect to an assigned
direction. This means, the new form of the equation in(y0, y1, y2) coordinates is
still normal hyperbolic with respect to the image of the assigned direction under
the transformation. Besides, for the nonlinear boundary conditions we can define
linearized boundary operators and corresponding multidimensional linear stability
conditions (see [18]), so that the property of satisfying the multidimensional linear
stability condition also remains valid under the nonlinear hodograph transforma-
tion.

The above conclusion for the usual partial hodograph transformation is proved
in [18]. The conclusion for generalized hodograph transformation introduced in this
section is still valid because our transformation is a combination of the usual partial
hodograph transformation with two transformations of the unknown function, as
shown in (4.1.9)–(4.1.11). On the other hand, the conclusion can also be verified
directly, because up to a constant factor the change of coefficients obey the same
rule as that under the normal coordinate transformation:

M = M̃J̃ ,

A = (
d1

d
)J̃ T ÃJ̃ ,

∇pG1 = ∇qG̃J̃ .

(4.1.18)
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4.2. Basic energy estimate for linearized problems

In order to obtain the precise solution of (4.1.14)–(4.1.16) by successively
modifying ω̃, we linearize them at̂ω nearω̃. The linearization is

P(ω̂)ω̇ ≡
2∑

i,j=0

αij (ω̂)∂yi ∂yj ω̇ +
2∑

j=0

αj (ω̂)∂yj ω̇ + α3(ω̂)ω̇

= f in 0 < y2 < 1,

(4.2.1)

Qb(ω̂)ω̇ ≡
2∑

j=0

β1j ∂yj ω̇ + βω̇ = g1 on y2 = 0, (4.2.2)

Qs(ω̂)ω̇ ≡
2∑

j=0

γ1j ∂yj ω̇ + γ0ω̇ = g2 on y2 = 1, (4.2.3)

whereβ0, β1j , γ0, γ1j are derivatives ofB̃, Rb, G̃ with respect toω,ωyj respec-
tively.As usual we will use theη-weighted Sobolev norm to derive energy estimates
in our hyperbolic problem. For smooth functionsω which vanish neary0 = −∞,
we define the following norms for a non-negative integers.

|ω|2s,η,y0
=

∑
τ0+|τ |=s

∫ 1

0

∫ 2π

0
e−2ηy0η2τ0|∇τ

y ω(y0, y1, y2)|2 dy1dy2, (4.2.4)

||ω||2s,η,T =
∫ T

−∞
|ω|2s,η,y0

dy0. (4.2.5)

On the boundaryy2 = 0,1, we define the boundary norms

〈ω〉2
s,η,T =

∫ T

−∞

∫ 2π

0

∑
τ0+|τ |=s,y2=0,1

e−2ηy0η2τ0|∇τ
y0,y1

ω(y0, y1, y2)|2 dy1dy0,

〈〈ω〉〉2
s,η,T =

∫ T

−∞

∫ 2π

0

∑
τ0+|τ |=s,y2=0,1

e−2ηy0η2τ0|∇τ
y ω(y0, y1, y2)|2 dy1dy0.

(4.2.6)

The latter includes the estimates of normal derivatives. Here we are able to intro-
duce the norms involving the same regularity of derivatives in the normal direction
and in the tangential direction because the boundaryy2 = 0 andy2 = 1 is not
characteristic. Finally, we define

|||ω|||2s,η,T = sup
−∞<y0<T

|ω|s,η,y0 + η||ω||2s,η,T + 〈〈ω〉〉2
s,η,T . (4.2.7)

The completion of the set of all smooth functions vanishing neary0 = −∞ with
respect to the norm (4.2.7) is a Sobolev space and denoted byHs . Since the dimen-
sion of the space of independent variables is 3, then fors > 1 + n, Hs functions
have continuous classical derivatives up to ordern.

For solutions of the linear boundary value problem (4.2.1)–(4.2.3), we have the
following energy estimate:
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Theorem 3. Assume that s > 2 is an integer, η � η0 is sufficiently large, ω̃ is the
approximate solution of level two, and ω̂ ∈ Hs+1 satisfying |||ω̂− ω̃|||s+1,η,T � δ0.
Then the solution ω̇ of (4.2.1)–(4.2.3)satisfies the energy estimate

|||ω̇|||2s+1,η,T � Cs

(
1

η
||f ||2s,η,T + 〈g1〉2

s,η,T , + 〈g2〉2
s,η,T ,

)
, (4.2.8)

where the constant Cs is independent of the choice of ω̂.

Proof. The general conclusion for boundary value problems of hyperbolic equation
of second order in given in [18]. Applying the result obtained there we only need
to verify that the boundary conditions (4.2.2), (4.2.3) satisfy the linear stability
condition (L.S.C.). Writing the linearized boundary operators on the boundary
y2 = 1 as

ν = γ10
∂

∂y0
+ γ11

∂

∂y1
+ γ12

∂

∂y2
,

the requirement of L.S.C. is that the vectorB intersects the boundary transversally,
and α22

γ12
ν + N is a timelike direction, whereN = −∑α0j ∂yj . According to the

analysis in Remark 6, we only need to verify L.S.C. for the boundary conditions on
a physical space with coordinatesx1, x2, x3. Since our problem is a perturbation of
the background solution, it is enough to verify L.S.C. for the latter.

Take a pointO1 on the shock front. Due to the symmetry of the background
solution we assumex2 = 0 atO1 without loss of generality. Introduce new local
coordinatesz1, z2, z3, such thatz2 = x2, O1z1 is tangential to the shock, and
O1z3 points in the normal direction. Thenφz2 = 0 atO1 due to the axisymmetry.
Meanwhile, in the coordinate systemO1z1z2z3, the equation of the tangential plane
of the shock is

ψ − q∞z1 cosβ − q∞z3 sinβ = 0,

and the Rankine-Hugeniot condition becomes

(φz1(φz1 − q∞ cosβ)+ φ2
z2

+ φz3(φz3 − q∞ sinβ))H

= q∞ρ∞((φz1 − q∞ cosβ) cosβ + (φz3 − q∞ sinβ) sinβ) (4.2.9)

with H = H(C − 1
2(φ

2
z1

+φ2
z2

+φ2
z3
)). Regardingφz3 as an argumentp3, we have

∂G

∂p3
= (2φz3 − q∞ sinβ)H − q∞ρ∞ sinβ + (φz1(φz1 − q∞ cosβ)

+ φz3(φz3 − q∞ sinβ))H ′(−φz3).

Recalling the physical meaning of all quantities,φz3 = vn, q∞ sinβ = vn∞,
q∞ cosβ = vt∞ = φz1, we have

∂G

∂p3
= (2vn − vn∞)ρ − ρ∞vn∞ + vn(vn − vn∞)a−2ρ(−vn)
= (vn − vn∞)ρ(1 − a−2v2

n) #= 0.
(4.2.10)

Besides, the second requirement of L.S.C. becomes trivial in view ofGp2 = 0. By
the same method we confirm that L.S.C. is satisfied on the boundary corresponding
to the surface of the body. Then (4.2.8) is valid according to [10] and [18]. Hence
the conclusion in Theorem 3 is obtained.
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4.3. Iterative scheme and convergence

Using the energy estimate (4.2.7) obtained in Theorem 3, we can employ New-
ton’s iteration to establish the existence of a precise solution for (4.1.14)–(4.1.16).
Write the precise solution as

ω = ω̃ + ω̇, (4.3.1)

and the problem is reduced to determiningω̇. Sinceω̃ is an approximate solution
of (4.1.14)–(4.1.16) with errorO(eNy0), then for anyη > 0, we can takeN � η,
so that

‖Pω̃‖2
s,η,T , 〈Qbω̃〉2

s,η,T , 〈Qsω̃〉2
s,η,T

are bounded. Therefore, for givenκ > 0, we have

Cs(‖Pω̃‖2
s,η,T + 〈Qbω̃〉2

s,η,T + 〈Qsω̃〉2
s,η,T ) < κ (4.3.2)

if T < T0 $ 0. Moreover, ifδ0 is sufficiently small and̂ω ∈ Hs+1 satisfies

|||ω̂ − ω̃|||s+1,η,T � δ0, (4.3.3)

then (4.3.2) withω̃ replaced bŷω is uniformly valid. Namely,T0 is independent of
the choice ofω̂.

After linearizing (4.1.14)–(4.1.16) we perform the iteration scheme as follows.
Takeω̇0 = 0, and letω̇k+1 be defined as the solution of the linear boundary value
problem:

P(ω̃ + ω̇k)ω̇k+1 ≡
2∑

i,j=0,

αij (ω̃ + ω̇k)∂yi ∂yj ω̇k+1 +
2∑

j=0

αj (ω̃ + ω̇k)∂yj ω̇k+1

+ α(ω̃ + ω̇k)ω̇k+1

= fk in 0 < y2 < 1, (4.3.4)

Qb(ω̃ + ω̇k)ω̇k+1 ≡
2∑

j=0

β
(k)
1j ∂yj ω̇k+1 + β

(k)
0 ω̇k+1

= g1k on y2 = 0, (4.3.5)

Qs(ω̃ + ω̇k)ω̇k+1 ≡
2∑

j=0

γ
(k)
1j ∂yj ω̇k+1 + γ

(k)
0 ω̇k+1

= g2k on y2 = 1, (4.3.6)

wherefk = −P(ω̃ + ω̇k) + P(ω̃ + ω̇k)ω̇k, g2k = −Qs(ω̃ + ω̇k) + Qs(ω̃ +
ω̇k)ω̇k, γ

(k)
1j = γ1j (ω̃+ ω̇k) etc. Next we are going to prove the boundedness in the

high norm and the contraction in the low norm of the sequence{ω̇k}.
In order to prove the boundedness in the high norm, for givenκ < δ0 we take

T sufficiently negative such that

Cs

(
1

η
‖f0‖2

s,η,T + 〈g10〉2
s,η,T + 〈g20〉2

s,η,T

)
< κ. (4.3.7)
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Then the estimate

|||ω̇k|||2s+1,η,T � κ (4.3.8)

can be proved by induction. Indeed (4.3.8) forκ = 0 is trivial. Now suppose (4.3.8)
is valid for indexk, then (4.3.3) holds, and (4.3.2) with̃ω replaced byω̃ + ω̇k.
Therefore, Theorem 3 can be applied to the problem (4.3.4)–(4.3.6). By using
energy estimate (4.2.8) we obtain

|||ω̇k+1|||2s+1,η,T � Cs

(
1

η
‖fk‖2

s,η,T + 〈g1k〉2
s,η,T + 〈g2k〉2

s,η,T

)
< κ. (4.3.9)

Hence (4.3.8) is valid for anyk by induction.
To prove the convergence of the sequence{ω̇k}, we take

Bk = ω̇k+1 − ω̇k

and obtain the following boundary value problem forBk:

P(ω̃ + ω̇k)Bk = f̃k in 0 < y2 < 1, (4.3.10)

Qb(ω̃ + ω̇k)Bk = −g̃1k on y2 = 0, (4.3.11)

Qs(ω̃ + ω̇k)Bk = −g̃2k on y2 = 1, (4.3.12)

whereg̃2k = −Qs(ω̃ + ω̇k) + Qs(ω̃ + ω̇k−1) + Qs(ω̃ + ω̇k−1)Bk−1 etc. In view
of Theorem 3,Bk satisfies

|||Bk|||2s−1,η,T � Cs−2

(
1

η
‖f̃k‖2

s−2,η,T + ‖g̃1k‖2
s−2,η,T + ‖g̃2k‖2

s−2,η,T

)
� C′Cs−2|||Bk−1|||2s−1,η,T |||ω̇k|||2s,η,T
� C′Cs−2κ

2|||Bk−1|||2s−1,η,T .

Therefore,{ω̇k} is contractive inHs−1 if κ satisfiesC′Cs−1κ
2 < 1

4. Namely, the
sequence{ω̇k} is convergent. The limit of̃ω + ω̇k solves the problem (4.1.14)–
(4.1.16).

According to the analysis in the beginning of this section we also solve the
problem (4.1.2)–(4.1.4). Correspondingly, we obtain a functionφ(z, r, θ) satisfying
(1.2.13), (1.2.15), (1.2.16). Besides, sinceφ(z, r, θ) is a small perturbation of the
background solutionφB , which satisfies the entropy condition, thenφ(z, r, θ) also
satisfies the entropy condition on the shock front. Hence Theorem 1 is proved.
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