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Abstract

Inthis paper we study the mathematical aspects of the stationary supersonic flow
past a non-axisymmetric curved pointed body. The flow is described by a steady
potential flow equation, which is a quasilinear hyperbolic equation of second order.
We prove the local existence of the solution to this problem with a pointed shock
attached at the tip of the pointed body, provided the pointed body is a perturbation
of a circular cone, and the vertex angle of the approximate cone of the pointed
body is less than a critical value. The solution is smooth in between the shock and
the surface of the body. Consequently, such a structure of flow near the tip of the
pointed body and its stability is verified mathematically.

1. Introduction

1.1. Background

Supersonic flow past a given body is a fundamental problem in gas dynamics,
and has been well studied both computationally and experimentally (see [2, 5, 23,
27, 28]). The goal of the present article is to study the problem analytically. Physical
observation shows that, when a projectile moves in the air with supersonic speed,
a shock front will generally appear ahead of it. Depending on the shape of the
projectile, the shock can be detached or attached. Namely, if the body has a blunt
head, the shock in front of it is detached; otherwise, if the head of the body is
sharp, then the shock will be attached to the head. In both cases the main task of
the problem is to determine the location of the shock and the flow field in between
the shock and the surface of the body.

Supersonic flow can be described mathematically by a quasilinear hyperbolic
system of conservation laws. However, in the problem of supersonic flow past a
blunt body, the flow behind the shock can be subsonic and then governed by an
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elliptic equation. Therefore, the whole problem will involve a nonlinear mixed-
type equation with free boundary, and the mathematical theory for such problems
is completely open. On the other hand, when the body placed in a supersonic flow
has a sharp head, the flow behind the shock may possibly be totally supersonic.
In this case the problem is reduced to a nonlinear boundary value problem for
a hyperbolic system. Some progress in this case has been obtained in the past
decades. Basically, two kinds of sharp bodies are considered — wings and pointed
bodies. If the body is shaped like a wing, then under the assumption that the angle
between the surface and the direction of the incoming flow is less than a critical
value, the existence of a local solution near the edge of the wing has been proved.
For instance, the conclusion is obtained in [5] for a plane wedge, in [9, 13-15, 25,
26] for wings with constant sections, and in [6] for wings with variable sections.
On the other hand, when the body is conical, the tip of the body will often causes
a strong singularity, and then the problem will be more complicated. If the body
is a circular cone, and the incoming flow is parallel to the axis of the cone, the
problem is discussed in [5]. If the body is assumed to have some symmetry, for
instance, to be axisymmetric or conical with straight generators, the problems are
discussed in [7, 8, 16, 24]. In this paper we are going to discuss the supersonic
flow past a generic curved pointed body without these restrictions. Namely, we will
verify the above-mentioned structure of flow field near the head of a pointed body
in supersonic flow; in other words, we will prove the stability of such a structure in

a local sense.

In this paper we always restrict ourselves to the case where the strength of the
shock is small. Since the increase of the entropy of the flow is a small quantity
of third order compared with the strength of the shock, it will be neglected in our
discussion. Besides, according to the assumption on the shape of the pointed body;,
the shock front attached at its tip is also expected to be a perturbed cone. There-
fore, the flow behind the shock can be assumed to be approximately isentropic and
irrotational. It turns out that we can introduce a potential to simplify the system
describing the flow. The potential flow equation is a second order quasilinear equa-
tion, which has been used and strongly recommended in many bibliography (see
[17, 22]).

It may be convenient for readers if we specify all assumptions for our main
result in advance. In the whole paper we only consider the polytropic gas with the
state equatiop = Ap?. Therefore, the only data in our problem are the equation
describing the surface of the bodyand the parameters of the incoming flow:
velocity g0, Pressures, and densityose.

Our first assumption is

1
2
(0.¢]

which means the incoming flow is supersonic.

The equation of" in the cylindrical coordinate&, R, 0) is R = B(z,60). By
introducingr = R/z, it can also be written as= b(z, 9). The tangential conE at
the origin isr = b(0, #), which is also the equation of the section of the tangential
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cone with the plane = 1. To describe the fact that the pointed bddjs a small
perturbation of a circular cone= bq (i.e., R = bpz), we assume that

15(0, 8) — boll ok <= o, (H2)
*b0,0)=0 for 1<k < ko (Ha)

Here the conditionH2) means that the perturbation is small in thelirection,
while the condition(H3) means that the tangential cone is close to the pointed body
with high order of tangency, i.e., the perturbation is small in a radial direction.

Our other assumption is on the sharpness of the pointed body. As it is known
that the problem of supersonic flow past a symmetric cone is determined by the
apple curve defined in [5] on the phase pld@ngv), which plays a similar role to
shock polar in the discussion on the reflection of oblique plane shocks. The apple
curve is symmetric with respect to theaxis and has the poilig,, 0) as its double
point. The process of determining the weak entropy solution of the problem via the
apple curve can be found in [5]. The conclusion is that if the vertex angle drgtan
is less than a critical value determined by the parameters of the incoming flow,
then the problem admits a solution with an attached shock at the tip. Otherwise, the
shock in front of the cone will be detached. Moreover, there is a constantl,
such that for the cone= bg satisfyingbg < b, the velocityu behind the shock is
also supersonic. Therefore, to ensure that the equation governing the flow behind
the shock is hyperbolic we assume that

max  b(6) < by. (Ha)

7<20,020<2r

In the next subsection we will give a precise mathematical formulation of our
problem. To prove the existence of the solution of the corresponding boundary value
problem, we introduce several approximate solutions at different level. Assuming
that the pointed body is a perturbation of the circular cBnee call the solution of
the incoming uniform supersonic flow pasa background solution, or approximate
solution of level zero. In Section 2 we use a finite power expansiari@fook for
an approximate solution which satisfies the equation and all boundary conditions
with error O (zV). The first term of the finite power series is called an approximate
solution of level one, and is nothing but the solution of the same uniform supersonic
flow past the tangential cone bf The determination of this term itself is also an
independent problem, which we will discuss in Section 3 especially. All other terms
in the finite expansion satisfy linear boundary value problems of elliptic equations
with the same principal part. Under the assumptidg) we can determine all terms
of the expansion up t&/-th order. HereV can be as large as we want. The whole
expansion is called an approximate solution of level two. Since this approximate
solution satisfies the equation and the boundary conditions with éredY) for z
near to zero, it is then possible to modify once more the approximate solution in
Sobolev space with weight V. Therefore, we can introduce Newton’s iterative
procedure in Section 4 to improve the approximation, and set up a new sequence
of approximate solutions, which finally convergence to the precise solutions of the
original problem.
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Since the shock frontis afree boundary to be determined with the unknown func-
tions, then the boundary of the domain will be moving in the standard approximation
procedure. To avoid this trouble we employ the partial hodograph transformation
now and again in this paper. Here the main idea is to introduce a transformation
which replaces an unknown function by one of the independent variables. Then a
moving boundary will become fixed because the potential is given on this moving
boundary. A disadvantage of the classical partial hodograph transformation is that
the transformation may let a fixed boundary become a hew moving boundary. To
overcome this difficulty we combine it with the method of domain decomposition
in Section 3. Meanwhile, in the last section the partial hodograph transformation is
combined with two transformations of unknown functions to avoid the appearance

of any new moving boundary. The detailed analysis will be given in Sections 3
and 4.

1.2. Formulation and result

The compressible Euler system describing conservation laws of mass, momen-
tum, and total energy in the multidimensional case is given by

ap .
— +div =0,
2 + div(m)

om L (mQ@m
T div ( ) +Vp(p,S) =0, (1.2.1)
t o

OE E
— +div (m(— + B)) =0,
ot PP

wherep is densityyn = pv is momentumyp is pressures is entropy,E is total

energy; angp = p(p, S), E = E(p, S) are given functions. The last equation in
(1.2.1) can also be replaced by

N
T +v-VS=0. (1.2.2)

When the flow is isentropic and irrotational, (1.2.2) is satisfied automatically. More-
over, we can introduce a potentigalsuch that

v=Ve. (1.2.3)
Meanwhile, the momentum equation yields
v +3V(@H) +Vh =0, (1.2.4)

whereq = |v|, h(p) is the specific enthalpy determined within a constant by the
thermodynamic equation of state and satisfies

1d
K (p) = ;ﬁ(p, So).
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For a polytropic gas,

yp_ _ Ay pr-1
r—=Dp y-1

For stationary flow, all parameters of flow are independent dhen (1.2.4)
leads to the Bernoulli's relation

p=Ap", h=

39% + h(p) = Co, (1.2.5)
whereCy is a constant determined by the uniform incoming flow. Therefore, defin-
ing

H(V¢) = h™H(Co— 5V, (1.2.6)

we obtain a steady potential flow equation
D 04 (¢ H(V) = 0. (1.2.7)
Notice thatH /H' = a? with a being sonic speed, (1.2.7) is equivalent to
(”—%—1)% +(”—5—1)¢” +(”—§—1>¢H
al X1 a? 2X2 2 3x3
Zvlzv2 Prixp + 2012v3¢x1x3 2v22v3 b =0 (1.2.8)

wherev; = ¢y, (i = 1,2, 3). The characteristic form of the right-hand side of
(12.2.8)is

U% 2 % 2
(-2)e+ (G-1)e+ (-

2u1v2 2v1v3 2v2v3
+ 2 Sl€2+ 2 5152

&263.

If v3 > a, the quadratic form has two real rodtsfor any &1, &». Namely, (1.2.8)

is strictly hyperbolic with respect tes. For the uniform supersonic incoming flow
with v1 = v2 = 0, v3 = ¢, the corresponding potential of the flow ahead of the
possible shock i®g = goox3.

Consider the problem of supersonic flow past a pointed body. As we mentioned
above, ahead of the pointed body there will appear a shock front attached at the tip of
the pointed body, provided the head is sharp in some sense which we will describe
precisely later. Let the surface of the pointed body be givem by, x2, x3) = 0,
and the corresponding shock front be given/oft1, x2, x3) = 0. Then on the
surfacen(x1, x2, x3) = 0, the velocity of the fluid is tangent to the surface. Namely,
we have

My Pxy + Myyry + mx3¢x3 =0. (1.2.9)

On the shock fronk (x1, x2, x3) = 0 the potentiaf is continuous across the shock
front, i.e.,
¢ = ¢—(= goox3); (1.2.10



146 SHUXING CHEN

and the derivatives af must satisfy the Rankine-Hugoniot condition

(Hx1¢x1 + szd)xz + /va3¢x3)H = MUx3qooPoo- (1.2.11)

The purpose of this paperis to prove the existence of the solution to the boundary
value problem (1.2.8)—(1.2.11) in a neighbourhood of the origin. Here the function
n(x1, x2, x3) is also unknown; it should be determined together with

Since the directional derivative @f normal to the shock front equals the nor-
mal component of velocity, which is never zero behind the shock, we can use
¢ (x1, X2, X3) = goox3 to describe the shock front. Then we can omit an unknown
function u(x1, x2, x3), and the Rankine-Hugoniot condition (1.2.11) can also be
written as

(82, + 62 + dua(dra = 900)) H = (s — 4oc)doooc. (12.12)

It is often convenient to discuss the problem (1.2.8)—(1.2.11) in a cylindrical
coordinate system. Defining

2 2 X2
R =,/xf+ x5, 6 =arctan—, z=x3,
1 2 *1

r = R/z, the components of velocity can be expressed as

cosd sing

V1 = ¢x1 = T(pr - r 9o,
sing cosf

V2 =y, = 7¢r + Z—r%,

r
v3 = ¢X3 = ¢z - zd)rs

v, = v1C0S0 + v2Sing = ¢—r
Z

. o
vg = v2C0SH — v1SINO = —.
zr

The equation (1.2.8) can be reduced to the form

22aoop; + a11¢rr + azapes + 2za01¢2r + 22002020 + 2a126r0
+ a1, +axpp =0, (1.2.13)

where
2 2
v3\2 (v, — ruv3g) P 1 /v
aoo=<—) -1 all=—2—(1+i’), a2 =— —2—1,
a a r<\a
U3V, v% v3Vy Uy Vg Vg3
aglr = 2 —-r ;_ ) ap2 = o a2 = a2r _79

2 2
1 2 2
ap= 8 _ 4 2r<:—3 - > LB g = :gr”j. (1.2.14)
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Correspondingly, if we describe the surface of the pointed body byb(z, 9),
then in the cylindrical coordinate system the boundary condition on it takes the
form

(b +zby)p, + f—g (i—e) — A+ b+ zby)) (%) =0. (1.2.15)

Meanwhile, the boundary condition (1.2.12) becomes

(2 -2 2)s

Obviously, when we solve the functignfrom the above boundary value problem,
all parameters of the flow including velocity, pressure and density can be obtained
immediately.

If the pointed body placed in the supersonic flow is a circular cone with its
axis parallel to the direction of the velocity of the flow, then the function 0)
becomes a constahp. Correspondingly, all parameters of the flow also depend
only onr, and are independent 6fandz. Therefore, the potentid is a function
independent o and homogeneous of degree one with respeet tbwe write
¢ = zyr, ¥ is also independent &f andz, andv, = ¥, v3 = ¥ — r(dy/3r). In
this case the boundary value problem (1.2.8)—(1.2.11) becomes

(@4 P+ 40) = (@ 0~y =0 (1.2.17)
(14 b3)y, —boy =0 on r = by, (1.2.18)
¥ =Goo, ((L+5)Vr —50Y)H +50gocpoc =0 0N r=s0, (1.2.19)

wheresg is to be determined together with.

The boundary problem (1.2.17)—(1.2.19) is essentially the same as the prob-
lem discussed in [5]. It can be solved by using the apple curve as mentioned in
Section 1.1. The weak entropy solution of the problem (1.2.17)—(1.2.19) is called
the background solution and is denotediyoy(r). Correspondinglyg (z, r, 8) =
2y (r) is called the background solution of the problem (1.2.13), (1.2.15), (1.2.16)
or, in this case, the approximate solution of level zero.

Now let us indicate some properties of the solutiprof (1.2.17)—(1.2.19).
These facts will be used in the discussion afterwards. If we dgfirearctarr,
and

Y — (14 2y,
V1412 '

then v, is the component of velocity along the normal direction of the shock,
satisfyingu, < a. Besides, in the whole region we hawe> 0 behind the shock.

v, = —v, COSB + v3Sing =
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Moreover,

a? 2 2 2 21
lﬁrr=71ﬁr(((1+r)¢r—“ﬁ) —a*(1+r ))

a? 2v(..2 2
= 7%(1+r )(vy, —a®) <0,

sov, is monotonically decreasing with respectto
Our main result in this paper is

Theorem 1. Assume that the conditions (H1)—(H4) are satisfied for sufficiently
small sg, then we can find a number zg > 0, such that there is a €2 function
¢ (z,r,0) defined in 0 < z < 7, satisfying the following conditions:

1) ¢(©0,r,0) = 0, ¢ > 0for z > 0, and then the equation ¢ (z,r, 0) = qooz
definesa surfacer = s(z, 0);

(2) ¢(z, r, 0) satisfies (1.2.13)inb(z,0) <r < s(z,0),0 <z < 20,06 < 27
(2.2.15)onr = b(z, 0); (1.2.16)onr = s(z, 0);

@%) + 5 () (0= ) (0-")
onr =s(z,0).

In a word, the problem (1.2.13), (1.2.15), (1.2.1&)dmits a weak entropy solution
with a pointed shock front attached at the origin, provided &g is small enough.

e — rér
Z

<

—{qoo|qoo

Remark 1. Sinceb(z, ) is a C*> smooth function, for any integep the local
solution¢(z, r, 8) can be inC”. But the constantsy, k1, k2 andzg will depend
onp.

Remark 2. The theorem indicates that the attached shock front and the flow behind
the shock is stable under perturbation of the surface of the pointed body.

In the end of this section we would like to indicate that there have been many
works on multidimensional conservation laws (see [1, 3, 4, 12, 17, 18, 20-22)).
Among them, let us particularly mention two elegant works closely related to this
paper. The first one is the study of the unsteady potential flow equation [22], which
has the form in self-similar coordinatés, n)

(@2 — (W —£)2) Wz —2(e —&) (Y — M Ven +(@®— (Y= D yy = 0. (1.2.22)

The second one is on the study of the unsteady transonic small disturbance (UTSD)
equation [3]

u+uuy +v, =0

1.2.23
uy — vy =0, ( )
which leads to an equation in self-similar coordinates
— — +v,=0
(1= 8)utg = ity vy (1.2.24)

uy —ve =0.
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The authors in [4, 22] employed (1.2.22) and (1.2.24) to study the problem “re-
flection of shock by a ramp”, which is a most important prototype problem in
multidimensional hyperbolic conservation laws. Since on(¢he) plane (1.2.22)

or (1.2.24) may change type behind the shock, it turns out that a discussion of a
boundary value problem for a mixed type equation or a degenerate elliptic equation
is necessary. Returning to the problem of a steady potential equation in this paper,
if the generators of the cone are straight lines, then the equation behind the shock
in self-similar coordinates is elliptic due to the fact that the normal component
of velocity behind the shock is subsonic. That is why the method in our paper is
quite different from that in [4, 22]. Besides, another essential difference is that in
our paper we have also to deal with the perturbation of the flow field in a radial
direction.

2. Approximation of level one

2.1. Sub-boundary value problems

As the first step towards finding the approximate solution of the problem (1.2.8)—
(1.2.11), we assume that the poteniidias a form of finite power expansion as

N

$(z.r.0) =Y "M (r.0) + 0N, (2.1.1)
n=0

By a suitable choice ap,, the equation and boundary conditions can be satisfied
with error O(zV). Therefore, in a neighbourhood of the origin the form of the
asymptotic series (2.1.1) offers a good approximation for lafge

According to (2.1.1),

N
1
v="¢, =) I"bu+ 0",
< n=0
N on
z
vp = f—f =y —bno + oM,
n=0

N
r
v =¢— —¢r = Y "(n+ D — ropur) + OV,
< n=0
For any smooth functiorf of v,, v, vy we have the following expansion:

1
F @z vrva) = £(d0 = réor dor. g0 )

+ A @h1 — rd1)z + L)1z + fs(*)(plg; 4
+ 1) ((n 4+ Dy — rdur) 2" + f2() 2"

n

+ 360 + Fad, 2.1.2)
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where f; (%) stands for the value of the derivative ¢fwith respect to its-th
variables at(¢g — roor, ¢or, %gbo@), and F,, stands for a function depending on
e, dur, oo With £ < n. More preciselyF,, can be written as

k1 ko k3
Z 8irr+igeg l_[ Piy, 1_[(¢i25)r H(dn&)e.
s=1 s=1 s=1

i1+ Figkg=n,isr <n
Substituting the expressions of, v,, vy into (1.2.13) leads to

N

N
D n(n+ Dacodn" ™+ Y (1 + 1)(2a01¢nr + 2a0260)"
n=2 n=1
N

+ Y (@110urr + a20Pn00 + 20126079 + ar¢nr + a2du0)2" T = 0(NH2).
n=0
(2.1.3)

Expandingz;; by means of (2.1.2) and comparing the terms with same powgr of
we obtain

a11(x)¢orr + a22(¥)doss + 2a12(x)dore + Ao, dor, po) = 0, (2.1.9

and

a1106)Purr + a12(x)dpoo + 2a12(x)pro + Brdur + Bodpg + Cy
= Gu(de, Vou, V2hpr)in, n=1  (2.1.5)

where

1 a2 2 ,2 2612 2 2
A(¢o, ¢or, Pos) = _;¢Or + r—2¢0r¢og - F((bOr(l-i‘ r%) —réo)dgy,

G, are given functions depending @n and its derivatives of first and second
order,G, = 0if ¢, = O for all £ < n; a;;(x) stands for the value af;; at
(0 — roor, dor, %4;09), while B,., By, C are also functions afg and its derivatives
of first and second order.

We notice that the equation (2.1.4) and all equations in (2.1.5) have same prin-
cipal symbol

—Ur 2 r 7 1 2
0 ) = (“vza—zv) - (1+r2))52+2(” -t )+ r—ZC’l_g_l)nz_

a?r

For the background solutiapy = 0, v, = (rv, — v,)/v/ 1+ r2 < a, the symbol
Q(&, n) equals

2
v 1
1+7r?) (a—g - 1) 2_ r—znz,

which is definitely negative, hence all these equations are elliptic.
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The solvability of boundary value problems of (2.1.5) relies on the maximum
principle, whose validity inside a domain depends on the sign of the coeffi€ient
From the expansion of each term in (2.1.3) the coeffioierg

n(n + Laoo(*) + O(n) + O(pos, Poss, Pore)-

Accordingto (1.2.14) we knowpo(x) > Oandai1(*) < 0, because the background
solution is supersonic in thes direction and the componen, of the velocity
is subsonic. Therefore, we can find a constgntwhich is determined by the
parameters of the supersonic flow and the pointed body, such that the sign of
coefficientC satisfies the requirement of the maximum principlerfos k».

Turn to the boundary condition (1.2.15) on the surfdeg; 6) can also be
written as a form of finite expansion

N
b(z,0) =Y by(@)2" + 0(zN*1). (2.1.6)
n=0

Denote bygn the expressio, (bo(0), 0) and byg, (¢, b) any expression depend-
ing 0”%%"2@ , by, bgg With £ < n, whereg, may be different in different
equalities. Substituting (2.1.6) into (2.1.1), we have

N N
¢ =7 "y, (Z be(0)z", 9) +0EN?)

n=0 =0
N
=i+ D (&, +bgbn+ 8u(@ DN+ OGN,
n=1
Correspondingly,
N
br =052+ Y (@ +y butgu(g. )" + 0N,
n=1

N
P =i+ > (D ,+ Do bn + 8n(@ DT+ 0N,
n=1

N
B =g+ Y 1+ D)@, + g bn + g, b)) + OV,
n=1

Obviously, we havg1 = 0, andg,, = 0 if 9@ =0,by =0forall¢ < n.
Substituting these expressions into (1.2.15) and comparing the terms with the
same power of we obtain

1
body + 5b0sdy, — (1+ b3)g, =0 2.1.7)
0
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(1 + D (pgbu + bo($, + by, bn)
1 by,
t <b09 (@, + B,pDn) + By — 2b—ob09909)
— A+ Db3)(@, + by, bn) — 1+ 2 boby = ga(¢.b)  (n>0). (2.1.8)

Meanwhile, because all coefficientis are given,g,(¢, b) can be simply written
asgn(¢), and (2.1.8) becomes

1
(n+Dbog,, + —5bowg,, — (L+ b =gu(@) (>0 (219
0

Notice that the differential operator acting o (n > 0)in (2.1.7), (2.1.9) is

boebazag -1+ bé)a,., which is outward on the boundary= b(z, 0). Moreover,
(n + Dbo > 0 implies thaty, cannot attain its non-negative maximum or non-
positive minimun on the boundary = bg(6). Namely, the boundary condition
(2.1.8) satisfies the requirement of the maximum principle.

Finally let us turn to the shock boundary. The condition of continuity of the
potential on the shock boundary is (1.2.10). Write the equation of the boundary as

N
r=s(2.0)=>Y s:(0)"+0E""h. (2.1.10)
n=0

Then the potential on = s(z, 9) is

N
¢(z,1,0) = Zz"“ <Zsz(9)z‘,9> + 0V,

n=0 =0

Denote pyq's,, the functiong, (so(8), 0), by g, (¢, s) any expression depending on
de, Gor, Gro, Se, s9 With £ < n. Then forr = 50(0) we have

N

¢r = é()rz + Z((I_&nr + éOrrsn + gn (fl;s S))Zn+1 + O(ZN+2)’
n=1

N
P = Poaz + Z((I_ﬁna + Gorosn + gn(, )T+ 0N,
n=1
N

¢:=do+ Y _(n+ D@ + Porsn + ga(. )" + 0T,
n=1

The equality (1.2.10) implies

N

$o+ Y _(@n + Porsu(0) + 2u(@, )" + 0N = g, (2.1.1D)
n=1
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which leads to

$0 = goo> (2.2.12)
s5p(0) = —;_l’—” + 2,(9, 5), n>1 (2.1.13)
Or

For the Rankine-Hugoniot condition (1.2.16), we first rewrite each term in the form
of a finite power series:

T

Z

¢:

doo

N
= (¢0 — rdor — goo) + Y _ (1 + D — rr + ga(9))" + 0N

n=1

N
= ((130 - rQSOr —goo) + Z((n + 1)4_511 - "q;nr +((n + 1)4_50r - r‘z’Orr)Sn
n=1
+gn(@)2" + 0N

N
= (G0 — rPor — Goo) + Y _(—FGur + rd0rrBo bn + gn(@)" + OGN,
n=1

2 2 2
(2) +52(2) +(+-2)
< r Z <

B} 1 - B} B} N L
= B4, + 0% + (G0 —rd0)* +2)_(borGur — Jorr o, Pn)

(2.1.14)

n=1
1 - _ _ _ _ _ _
+ 500 (o - boredodn) + ($o — réor)
(=T Pur + 1O o bn + gn (BN 4+ OV . (2.1.15)

Also,

1.2
H (Co 5Vl )

N
_ _ _ _ _ 1 - _ _ _ _
=Ho—Hy Y (qsor (ur — Porrdg, bn) + 500 (o — bor6Por-dn)

n=1

+ (¢0 — ¢0r) (—T ur + T P0rr G) Br) + &n <q3>>z" +0@EN Y,

whereHo, H} take their value afo— 3 (3, + 563, + (¢o— o)), andHo = po,
Ho/H{ = ad.
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Defining

- 1- - - - -
Do = ¢4, + — 68 + (o — ror) (G0 — ror — goc)
~5 1, - -
= @, + 6% — (G0 —rdo)rdor
and substituting all the above expressions into (1.2.16), we have

Dopo = —rhogorGoo Poo- (2.1.16)

=28 (o G — o)+ st — e
+ (G0 — G0 ) (=1 dur + rdorr G5, 60))
+ 200, (e — oy ) + 2w s — oidid LD
+ (260 — 2rGor — qoo) (—TGur + rd0rrbg, Pn)

— (=1 + réorr&a,léw%;g’ ® —gu(@.5). n=l

The equality can also be rewritten as

Vibur + Vobno + Vadn = gn(®), (2.1.18

whereg, (¢, s) has been rewritten ag, (¢) by inductively applying (2.1.13) with
indexi < n. Direct computation implieg; = 0, andg, = 0 if ¢, = 0 for all
¢ < n. Moreover, the coefficients in (2.1.18) are

Dg - z b b ool
7= ——3(=rdo+ L+r9u) + 200 (L+r%) = 2rdo + qo;o .
0

Do ¢ 2 -
Y2=——7%' —% t+5%m,
a§ r r
Vs =71 _Orr 1 _0r0
¢0r ¢Or

Now let us observe the sign of the coefficientsin (2.1.18). To simplify calculation
we may neglect all derivatives with respectétdecause our problem is a small
perturbation of the symmetric case, so that all these derivatives are small. Recalling

the physical meaning of relevant quantities, we have the following relations on the
boundaryr = so(0):

¢or = vor, $o— roor = vog,
rgo — (L+r¥go, = rvo; — vor = (m) U0n »



Existence of Stationary Supersonic Flows Past a Pointed Body 155

where the subscript 0 stands for the state behind the shgcls the inner normal
component of the velocity and satisfies<Ovg, < co. Furthermore,

r vorv/ 1412
— PordooPoo _pooCIoon o = _UOHUOer

DO = =
£0 00

which leads to

2
v, r
y1 = —(L+r2vo % 4 vg (L4 r?) — I+ r2ug, + 2P
)
v2
— UO,(1+r2)<1— %) > 0.
)

Besidesy» ~ 0, andys > 0 due togg, > 0 andgo,, < 0. Hence the boundary
condition (2.1.18) also satisfies the requirement of the maximum principle.

Now (2.1.4),(2.1.7),(2.1.12),(2.1.16) form anonlinear boundary value problem
for ¢o(r, 6) with a free boundary = so(9), which is to be determined together with
the solutionpg(r, 6). On the other hand, oneg(0) is obtained, the boundary value
problem for (2.1.5) with boundary condition (2.1.8) sr= bo(6) and condition
(2.12.17) orr = s0(0) for eachn > 0 is a linear boundary value problem in a fixed
domain. In this way we have derived a set of sub-boundary value problems from
the original problem (1.2.8)—(1.2.11). When these boundary value problems are
solved, the approximate solutigi(z, 7, 6) = 3 z"*1¢, (r, 0) satisfying (1.2.13),
(1.2.15), (1.2.16) with erro@ (zV*2) is also obtained.

2.2. Existence and uniqueness for sub-boundary value problems

If b(z,0) is independent of, the surface of the pointed body is a cone with
straight generators. In this case the expected attached shock is also a cone with
straight generators, and all parameters of the flow behind the shock are constant
on each ray starting from the origin. Noticing that in this case= ¢o, b, = 0,
we see that (1.2.13), (1.2.15), (1.2.16) is automatically reduced to (2.1.4), (2.1.7),
(2.1.16). For the latter we can establish the following theorem, which is a special
case of Theorem 1 in fact.

Theorem 2. Assume that the surface of a pointed body is given by r = 5(6), the
conditions(H1), (H2), (Ha) aresatisfied for asuitableinteger k1, and a sufficiently
small &, thenthereisa C2 function ¢o(z, r, 8), satisfying the following conditions:

(1) ¢or > 0, and then the equation ¢o(r, 6) = g0 defines a surface r = so(6);

(2) po(r, 0) satisfies (2.1.4)in bg(8) < r < s0(0), 0 < 0 < 27; (2.1.7)on
r = bo(z); (2.1.16)onr = so(0);

(3) 163, + 58y — (Bor — réo)rdor| < réo- onr = so(0).

Inaword, the problem(2.1.4), (2.1.7), (2.1.16&dmits a weak entropy solution with
a pointed shock front attached at the origin, provided &g is small enough.
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Theorem 2 can be reduced to the solvability of a free boundary value problem of
a nonlinear elliptic equation. We leave the nonlinear problem to the next section due
to its complexity. Instead, let us first consider the problem (2.1.5), (2.1.8), (2.1.17).

Notice that the domain where (2.1.5) is defined has fixed boundaryo(6)
andr = sp(f), and both (2.1.5) and the boundary conditions (2.1.8), (2.1.17)
are linear. Besides, for the linear boundary value problem all requirements of the
maximum principle on boundary conditions are satisfied, soghéat ) cannot
attain its non-negative maximum and non-positive minimum on

r =bo@), r =s0(0).

Moreover, as we indicated above, for a suitable intégethe coefficienC in the
equation (2.1.5) is negative. Therefore, the boundary value problem (2.1.5), (2.1.8),
(2.1.17) for eacln > k3 is uniquely solvable.

According to the assumption (1.2.20), all coefficiebt$9) in (2.1.5) vanish
for1 < n < kp. Thereforeg,(r,0) = 0 with 1 < n < kp satisfies the linear
boundary value problem (2.1.5), (2.1.8), (2.1.17). Meanwhjl&)) also vanishes
for 1 < n < kp. Combining this with the solvability of this boundary value problem
for n > ko, we can determine all solutios, (r, 6) with 1 < n < N, whereN
can be as large as we want. Therefore, according to the process of deriving all
conditions satisfied by, (r, §) we confirm that the finite expansiaf(z, r, 6) =
Zfl\’:o "¢, (r, 0) satisfies (1.2.8)—(1.2.11) with errer(z"). This means that a
required approximate solution with errér(z") for any largeN can be obtained
once Theorem 2 is proved.

3. The approximate solution of level one

3.1. Decomposition of nonlinear problems

In this section we are going to prove Theorem 2. The solution confirmed by this
theorem will be chosen as the approximate solution of level one for the problem
(1.2.13), (1.2.15), (1.2.16), and then will be employed to segk, 0) defined in
Section 2. To simplify the notation we replagg, bo(9), so(0) by ¥, b(0), s(0)
respectively, and write the problem (2.1.4), (2.1.7), (2.1.16) as

a11¥rr + a22¥ee + 2a12¥0 + AW, ¥, ) =0, (3.1.1)
by + b—lzbelﬁe —(A+b>)Y, =0 on r=hb@), (3.1.2)

1
<1ﬁr2 + ﬁl/fg + W — rl/ﬁ)”/’r)PO = —TYrdoPoo WhENn ¢ =ge. (3.1.3)

whereb(9) satisfies (2.2.1). We emphasize here that the solution of (3.1.1)—(3.1.3)
solves the problem of supersonic flow past a conical body with the surfack(®).
Certainly, this solution is also a perturbation of the background solution of (1.3.1)—
(1.3.3).
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Inordertofix the free boundary we introduce a partial hodograph transformation
(see[11, 18, 19, 21]). Notice thet > ag > 0 holds for background solutions; the
inequality will also be true for perturbed solutions. Therefore, we camnjakethe
new coordinate, and perform a partial hodograph transformation (r, 9) +—

(p,o):

o=20,

3.1.4
p =y 0). ( )
Its inverse transform i1 :
b=0 (3.1.5)
r=u(p,o). o

In the new coordinates, the shock front becomes a fixed boundagyy, and
u(p, o) becomes a new unknown function, which satisfiégg, o) = s(c) on the
shock front.

The functionu(p, o) satisfies a second order differential equation, which can
be deduced from (3.1.1). By the chain the rule we have

1 o
8 = —dp, B = 8 — — .
I/lp I,{p
1 u
1/fr = W@ = __U’
Up Up
u 1
Vrr = ——3Upp, Yro = —glpp — —lipo.
Up Up Up
" 1 n 2uy u(z,
00 = ———Uoo T —5 Upo — —zUpp,
up u12, ug
and
1 u?
Vo = = (1425 + (pup — ). (3.1.6)
p

Therefore, in the new coordinates (3.1.1) becomes

u 1 2u 1 u?
(=L U+ P + —— + e = ——liee — —5T5lieo )
Llp uup u Mp u Mp u Mp
1+ u? B 2upp 2 /14 u? B Uy (Uy _Ups
+ up) —3 + up )—\—zUpp =~ 5
up Mp u Mp Mp Mp
1u2 ) ugo 2us u? u? 2 /14u? u? _0
B A T e L A L R A
P P p P 14 P P



158 SHUXING CHEN

The boundary conditions will also have a new form. First, on the shock front the
variablep takes constanfg, hence the boundary becomes fixed, and the boundary

condition is 5

((1+ u2) + Z—‘; — upup> H + upuppoo = 0. (3.1.8)

However, since the potentiat is not known on the surface of the body, then
the corresponding boundary in tiig, o) coordinate system becomes unknown.
Therefore, the boundary conditions on it should be described by two equations:
u=>b(o), (3.1.9)

b' (o)

Us
b2(0)
In what follows we will call the problem (3.1.1)—(3.1.3) (NL), and call the problem
(3.1.7)—(3.1.10XNL)*. Evidently, these two problems are equivalent. If one of
them is solved, then the solution of the other one is also obtained.

The problem(NL) has a fixed boundary= b(0) and a free boundary= s (6).

Conversely, the problegNL)* had a fixed boundary at = ¢ and a free boundary
p = g(o). Motivated by Schwarz alternating iteration we will also use the domain
decomposition method to decompose the probléXis) and (NL)* into a set of
auxiliary nonlinear boundary value problems with fixed boundaries, so that the
combination of successive solutions to these problems leads to the solutions to
(NL) and(NL)*. Namely, for smals > 0 we introduce constanig, r2 and two
monotonically increasing sequendes}, {8¢} with 1 < ¢ < k, satisfying

(1+b%(0)) +

— b(o)pu, =0. (3.1.10)

bo<rp<ry<bg+§6,

1 = Va(r2), (3.1.11)
oy < Bo—1 < apt1 < Be, 1<l <k
Br = VYo.

Denoting the interior annulus(®) < r < r1,0 < 6 < 27 on the(r, 9) plane by
Q;, and the exterior annulug < p < B;,0 < o < 27 on(p, o) plane by<,,,
we can write the + 1 auxiliary boundary value problems as follows.

equation(3.1.1) in
(NL)® : { boundary condition3.1.2) on r = b(9), (3.1.12)

Y =d(9) on r=r,
equation(3.1.7) in .,

(NL)“? : 1w = g10(0) on p=a, (3.1.13)
u=qz(o) on p=p,

where 1 ¢ < k — 1.

(3.1.7) in Q,

(NL) : 3w = g1(0) on p=o. (3.1.14)

boundary conditior{3.1.8) on p = Y.
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Remark 3. Here and later we assume tlat= max <,<; a¢ are small, so that the
comparison principle holds for these problems, and assume that mjg, —

opr1, o1 — Be—1) > % without loss of generality. We also assume that the
constantyp, which dominates the perturbation, is usually much smaller éhah
When the notatior® (gg) is applied, the quantitiel §’ are regarded as fixed.

The solvability of problemgNL)®, (NL)“ (1 < ¢ < k) and corresponding
estimates of their solutions will be given in the next subsection. To emphasize
the dependence on the corresponding data given on boundaries we also denote
the solution of the problems (3.1.12), (3.1.13), (3.1.14)Ky)D{b(9), d(H)},
(NL)€{g1¢(0), g2e (o)} and(NL) € {g1, (o)} respectively. Similarly, we will also
use(NL){b(6)} to denote the solution of (1.2.13), (1.2.15), (1.2.16).

3.2. The problemin the interior annulus
For the problem{NL)®, we first use the transformation
6=0
F—bo r—b®) (3.2.1)
ri—bo  ri—b(®)

to change the boundary= b(9) into7 = b, then(NL)") becomes a new boundary
problem defined oy < 7 < 1,0 < § < 27. Consider the linearization of this

aty = ¥p(@),b®) = bo,d(®) = Y10. Since at the the background solution,
7 =17 =0,and(¥p)g = (¥B)re = (¥B)e9g = 0, we obtain the linearization

of (3.1.1) for the perturbatiot:

LYY = A11yrer + A22Vige + Bryiy + C = f, 3.2.2
where
2
Al =d?QA+7%) — (A+ DY, —rp)?, Ap= f_z
2
Bi= L (- (@t 2w + ) w204 Py,
r r

A+ Ay =),
1
C =2r(L+ 2 — 1) — (L4 DYy + “UD = DW= i),

andr7, 6 are denoted by, # again. Correspondingly, the boundary conditions for
the linearized problem are

(14 b3, —boy =g  on r=bhg, (3.2.3)

v =nh on r=ri. (3.2.4)

The linearized problem (3.2.2)—(3.2.4) is denotedlby”, which is a linear elliptic
boundary value problem becaudg; > 0 andA2; > 0.
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Lemma 1. Thereiss > 0, such that the solution of (L)® uniquely exists, and

¥ llc2+epo,r1;0,27)
§ Cl(”f”C”[bo,rl;Oqzn] + ||g||C1+"‘(O,271) + ||h||c2+oz(0,27r))v (325)

||W||C2+“[b0,rl_%o§o’2”]
< Co(Il fllcepo.r:0.201 + 18l c+e0.20) + Bl co0.2m))  (3:2.6)

provided |r1 — bg| < 4.

Proof. First, let us show that the solutiafi of the linearized problem (3.2.2)—
(3.2.4) monotonically depends on its boundary value enr1, providedf andg
vanish. Namelyh; > hp onr = r1 impliesyr; = v, inside the domain. In fact,
making a transformation of an unknown functior= X =9y for the problem
(L)®, then

LOy = LD (e Kr=bo? ) — e—K(’—”szg?v,

where

LDy = LDy — 4K (r — bo) A11v, + (AK2(r — bo)?

(3.2.7)
— 2K)A11 — 2K (r — bg)B1)v.

Obviously,v satisfies the elliptic equation
L%)v =0,

providedy satisfiesL®+y = 0. Whens is sufficiently small andk = §~1, the
coefficient ofv in (3.2.7) is

(AK2(r —bo)°—2K)A11—2K (r —bo) B1+C < (4—25"1)A11+2|B1|+|C| < O.

On the other hand, the boundary condition (3.2.3) impliesitsatisfies

ov
Yim—+yv=0

on
onr = bg, wherey,, y» are both positive. By the maximum principle, the solution
of L%)v = 0 can not take negative value pr= bg and inside the domaiby < r <
r1,0 < 6 < 27, ifitis non-negative om = r;. This fact implies that depends on
its boundary value on = r; monotonically. Hence it is also true for the solution
v of the problem(L)®.

The above argument indicates that the elliptic operatdunder homogeneous
boundary conditions corresponding to (3.2.3), (3.2.4) does not have a hon-negative
eigenvalue, provided is sufficiently small. Namely, the problem (3.2.2)—(3.2.4)
is uniquely solvable. Besides, (3.2.5), (3.2.6) are just the generalized global and
interior Schauder estimates.



Existence of Stationary Supersonic Flows Past a Pointed Body 161

Remark 4. Returning to the originalr, ) coordinate system, the estimates ob-
tained in the lemma can be written as

IWllc2ra(ey) < C1lll fllce@ + gl et 2r) + Ml c2ra(o o))
W llc2ra oy = CoUl fllce@ + lIglictre,2n) + 1llco,2r)):

whereQ; = {(r,0); () =r =r,0=60 = 21}, Q7 =((,0);b(0) Sr =r1—
%), 0 < 0 < 27}. Moreover, denote the coefficients of (3.2.2)dy(¥), A22()
etc. If  is replaced by, satisfying||yy — ¥1llc2+« < C uniformly, then the

estimates (3.2.5), (3.2.6) hold with uniform constafitsCo.

Lemma 2. Assume that 81, ¢ are sufficiently small in the sense of Remark 3, |r1 —
bol < 81, 1b(0) — bollc2ta(o27) < & 1d(O) — V10llc2ta(02r) < € With Yr19 =
¥ (r1), thenthe problem (NL) ¥ {b(0), d(0)} hasa unique solution v (r, 6). More-
over,

1Y (r, 6) — Yl c2raiq,) — O when &— 0. (3.2.8)

Proof. Whenb () = bo, the functiomy g (r) is the solution of the nonlinear prob-
lem (NL)®{bg, ¥10}. For|r1 — bg| < 81, the linearizationL)® of the nonlinear
problem(NL)® atb () = bg, ¥ = ¥10has estimate (3.2.5), where the constnt

is uniform with respect té(6). Then the implicit function theorem implies that the
problem(NL)®{b(9), d(0)} has a unique solution, which is a small perturbation of
Y = ¢ (r), provided|b(8) — boll g2+« < &, [|d(0) — Y10l 2+« < & foOr sufficiently
smalle. Furthermore, (3.2.8) follows from the conclusion of the implicit function
theorem.

Lemma 3. Assume that 81, ¢ are sufficiently small, |r1 — bo| < 681, |b(O) —
b0||c2+ot(o’27.[) < &, |d;(®) — Y1ollcere < € (j = 1,2), and ;(r, 6) is the so-
lution of the problem (NL)®{5(6), d; (6)}. Then the comparison principleis valid,
i.e,do = dyimpliesyry 2 1.

Proof. For the nonlinear problertNL)®, we assume that; (r, 0) is the solution
of problem (NL)?{b(9), d;(6)} with d2(6) > di(6). Subtracting the equation
satisfied byy» andyrq, we find thatyy = v — 1 satisfies
A1) Vrr + Doviro + A22(Y1)Yoe + (B1(¥1) + D)y
+ Dy + (C(Y1) + D) =0,  (3.2.9)

whereA11(v¥1), A22(¥1), B1(¥1), C (1) are the coefficients in (3.2.2) Witgh_ re-
placedbwr1, D;(j =0, 1, 2, 3) are small quantities, dominated@laléz [0% Y|+
|0g ¥1,2|. Correspondingly, the boundary conditions foare
/
1+ by, — %{y@ — by =0 on r=h(0), (3.2.10)
V=do—di on r=r. (3.2.11)

In view of the estimates given in Lemma 1, the coefficients of the equation (3.2.9)
are small perturbations of the corresponding coefficients of (3.2.2), provided that
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ld; (6) — Y10l c2+e ar]d||b(9)—bo||cz+a are sufficiently small. Therefordy —d1 =
Oonr = ryimpliesy = 0in Q;.

Remark 5. Let by be a constant iribg, bo + £0) and ¥/ (r) be the solution of
problem (1.2.17)—(1.2.19) withg replaced bybo. Then we know from [3] that
Vs (r) is well defined on(bg, 50) with §o > so, andy/z(r) < ¥ (r) holds on
bo < r < so. Furthermore, if we extend z (1) to (bo, bo) by using (1.2.17) and its
value inr = bo, the relationyz(r) < ¥ (r) still holds in(bg, bo). In what follows
the functionsy 3 () and 5 (r) will be applied to dominate the solution dfL)
from above and below.

Lemma 4. Assumethat bo < b(6) < bo, |b(6) —boll c2+a(0.27) < €. Ibo—bol < &,

¥p(r) = (NL)(bo). ¥5(r) = (NL)(bo), ¥ (r, 0) = (NL)D{b(9), d(0)}, ¥ (r1) <
d(©) < Yp(r1)(= Y10), then Y (r) < ¥ (r, 0) < Yp(r) holdsin ;. Besides,

1, 0) = ¥p()llceraqr) = C(l1d©) = V1ol co.2r) + €)s (3212
where yr10 = ¥ (r1).
Proof. The background solutiottp satisfies
ryg—(A+r3@Wp), =0 on r=bhy,

hence
Wp)r ~ bo

v 1+
If ¢ is small enough such thag + ¢ < 1, the relatiorbg < b(9) implies

W)~ bO)
¥p ~ 1+b0?

which leads to
b@)Wp — (L+b%6))(¥p), = 0. (3.2.13)

SetA1y = ¥ — ¥p. It satisfies

A1 (WB)(A1Y)rr + A22(Y) (A1¥)gg + Do(A1Y)re + (B1(¥p) + D1) (A1),
+ Da(A1Y)g + (C(Y) + Da)A1y =0 (3.2.14)

and corresponding boundary conditions

/

b
L+ > (A1), — 52 (B1¥)e — A1y 20 on r = b(#),
(3.2.15)
A1y =d@®)— Y10 onr=r1. (3.2.16)

Again noticing that the coefficients of (3.2.14) are small perturbation of the corre-
sponding coefficients of (3.2.2), and using an argument similar to thatin Lemma 3.3,
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we may confirm that\1y cannot attain its positive maximum inside the domain
and on the boundary. Namely, we hayér, 8) < ¥ (r).
On the other hand} 3 () satisfies

ryg — A+ r2)Wp), =0 onr = b.
Thenb(6) < bg implies
L+ b©O)>(Fp), —b@O)Yp =0 onr=hb@). (3.2.17)

Then we can derive an elliptic equation with the form (3.2.14)¥ety = v — v/,
which also satisfies boundary conditions

/

(14 b)) (Asr), — %(Azlﬂ)g —bAy <0 onr=b@), (3.2.18)
Ay 20 onr=rg. (3.2.19)

Hencey > ¥ can be obtained as above.

To prove the estimate of th&*™* norm ofy , we use the transformation (3.2.1).
Denote byy; the inverse image of 3, theny; is defined ire2;. Sincey p satisfies
(1.2.17), we have

a?(1+ )W) + %e(wz») — (A + ey, — FUR2 Wi =0,
(3.2.20)
where
or r1— b(0) bo — b(0)

= — = =1+—— =1+ 0¢(s).
or r1 — bo + r1 — bo +0©

SetAy* =y (r, 0) — 5. This satisfies

e

A11(YB)(AY ™), + A22(Y) (AY )90 + Do(AY™),g
+ (B1(¥'B) + DI)(AY™), + D5(AY™)g + (C(¥p) + DHAY* = f (3.2.21)

and corresponding boundary conditions

1+ b2 (AY™), — %(Aw*)g —bAY* =g on r =b(®), (3.2.22)

AY* =d(0) — Y10 ON 1 = 11, (3.2.23)
where| f || c2+e, [|gllc2+e are quantitie®) (¢). Therefore, we have
1AV [ c2ra(gmy < CUIA©) = Vol coo,2x) + &)

which leads to (3.2.12) directly.
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3.3. The problemsin exterior annuli

Next we consider the nonlinear probleidL)“ in the exterior annulus,,
with fixed boundaryp = «y andp = B,. The image of g (r) under the inverse
partial hodograph transformatiafi—* will be called the background solution for
(NL)*, and will be denoted by z (p). To linearize(NL)(?), we multiply (3.2.4) by
uf; and then linearize the background solutiog: ug(p). In view of

dup 2 rv-—1 2 “1.2

we obtain the linearized equation fdmas follows.

612142
LO% = (Nf — (1+ uP)a®)ityp — —Liigo
u
2

2a%u 1+u 1+u? u .
+ ( P ZMPPN]- + N2 < 3 — —12) Up (3.3.1)
P

u I/tlz7 up u
2N 2u — 2
+ ( Lipp(2 = pip) _ a—zulz, — 2a2uupp + N2 (ﬁ - %)) u
up u u,, I/tp
= f’
whereN1 = (14 u?)/up —up, N2 = (y — D /u — (1+ u®)up).
The boundary conditions op = «1, - - - , ax, B1, - -+ , Br—1 are taken as

Meanwhile, the boundary condition 6fon p = yo(= B) is the linearization of
(3.1.10), that s,

2uii - H — (H — poo) p(uity + upit)

u u_ u un
+Q+u?—upup) - H [ 2+ (p— —)(——-=D)| =g
I/lp Mp up I/tp

In view of H = p, H' = p/a?, the condition can be rewritten as

(- s B (- ) 2 L)),

UpZ iy Up
14+ u?— 1
" <_2u+(1_ﬂg)pup_w<p_1)_>L-,:g,
0 a up/ up

which will be denoted by
Y3y + yal = g. (3.3.3)
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Therefore, we can establish the linearized boundary value problems

equation(3.3.1) in €,

Ly Ly =gy on p=ay, (3.3.4)
= q on p =B,

for1 < ¢ <k — 1, and the problem

equation(3.3.1) in €,

L@ i =gy on p=u, (3.3.5)
condition3.3.3) on p = vYp.

Notice that all| 8, — «¢| are chosen small, so that the coefficients of (3.3.1) satisfy
the requirement of the comparison principle. Then the principle is available for
solutions of (3.3.4) or (3.3.5), provided, y4 in (3.3.3) take the same sign. To
verify the last fact we notice that on the boundary= g

u
p——=v—-ry=uv,
Up

1
Ltu? —upuy = (A2 =) = = V1402 <0,
r Uy
u\ u 1 1
(=) e b= sl —upuy VT2 w0

3
p Up P

According to the Rankine-Hugoniot condition (3.1.8) we hate+ u?)p =
puu,(p — poo) for the background solution. This |mpll(€1— —) pup = 17 ,
then

1 1
y3 = +r ——U—"\/1+r2\/1+r Vi,

Up

U2
= v, (1+r?) <1— —';) >0,
a

1+ 72 1

va= —2r +

v
S|
Y

|_\

+
leﬁ\) Q
N~

|

~
/N

|_\
QI\J SN
N~

Under the assumption of weak shock the qualtity %—z is small, hences > 0.
Sinceai points in the outward normal direction of the boundary= v of Q,,

then the sign of coefficients in the linearized boundary condition (3.3.3) satisfies
the requirement of the maximum principle for elliptic boundary value problems.
Therefore, we can use a similar method to thatin Lemma 1 to establish the following
proposition.



166 SHUXING CHEN

Lemma5. Thereis$’ > 0, such that the solution i, of (L)) uniquely exists, and
satisfies the comparison principle, that is,

0 qgu 20, g 20=1u; 20 in Q,
g:O, q1k§O:>ug§O in ng.

f
f

Meanwhile, the following estimates hold:

el carae,,) < C1(l flice(@e,) + lqaellczra o 20y + llgze lc2+a(0.27)). (3-3.6)

liellczre o) = Co(Il flicace,) + Iq1ell co,20) + lg2ell co0,2)) (3.3.7)
for1<¢<k-1,and

ikl c2re g, ) = C1(Ilf ca(@ey) + gllcrvao ony + 191kl c2tao om)),  (3-3-8)
”L"k”CZW(ng) < C2(||f||C°‘(QPk) + ||8||C1+u(o,2n) + ||511k||(:0(o,2n)), (3.3.9)

where @, = [y + 1581, Be — 7561:0. 271 for 1 < ¢ < k—land Q, =
lak + 7581, Bi: O, 27].

Furthermore, similar to Lemmas 2 and 3, we can establish the solvability of
nonlinear problemgNL)“ for 1 < ¢ < k and the corresponding comparison
principle.

Lemma®. (a) If [lg1e(0) — up(@e)llc2ra(0.27) < &, l1g2e(0) — up(Be)llc2+e (0 27)
< e(1 £ ¢ £ k—1) hold for sufficiently small ¢ > 0, then (NL)©{g1,(o),
q2¢ (o)} has a unigque solution. Moreover,

”M(p, U) —_ uB(p)”CZ'H’(Qe[) —> O Whm £ —> O (3310)

(0) If llqu (o) — up(e2)|lc2ra 27y < € holds for sufficiently small ¢ > 0, then
(NL)¥) {g1;(0')} has a unique solution. Moreover,

lu(p, o) — "‘B(p)”CZW(QEk) — 0 when ¢— 0. (3.3.11)

Proof. The proof for cases (a) and (b) are similar, so we will only prove case (b).
For the problen{NL)* the three equations in (3.1.14) can be regarded as a map
from C?+(Q,,) to C*(Q,,) x C>t(0, 21) x C¥*(0, 27). It has been shown
that for(0, ug(ax), 0) € C* x C?T® x C1+* the nonlinear problem has a solution
ug(p), which is the inverse ofiz(r). Besides, the estimate (3.3.6) holds for the
linearized problem. According to the implicit function theorem, there is an0

such that(NL)“ has a unique solution, providdd (o) — up(a2)| g2+ < .
Finally, (3.3.11) also follows from the implicit function theorem.



Existence of Stationary Supersonic Flows Past a Pointed Body 167

Lemma7. (a) If ) (0) — ug(@D) | c2ra < &, llg5) (@) — up(By) | c2re < & and

u (p,o) = NL)@ (g (0), g5 (0)} (L € € £k —1,j = 1,2) hold for
sufficiently small ¢ > 0, then

42(0) 2 ¢\P(0), 452 (0) = 45 (0) = uP (p, o) = uP (p, o).
(3.3.12
Besides,

lug”(p. o) = up(P)llc2ragy)

< Clgy) (@) — up@)llco.2r) + g5y (@) — up (Bl coo.2ry)-  (3-3.13)

() If g\) (o) —up(ax) | c2ra < & holdsfor sufficiently small ¢ > 0,u (p, o) =
(NL)(@) {g 7}, then
42(0) 2 ¢ (0) = uP(p, o) = ul (p, o). (33.14)

Moreover,
lud’ (p.o) = uB(P)lc2raar) < Cllagt @) —up@licoam- (3315

Proof. We only prove the conclusion (b). Takg, = q§> —qﬁ) G20 = qéﬁ) —qé%),
Uy = uéz) (1), (1 £ ¢ £ k), thenu, satisfies

2 2y 2 a’uf . .
(Nl — (A4 ua )upp - 7”00 + DO’/‘pcr

2a%u 1+ u? 1+u? u
+ P 2uppN1—2 +N2( 3 p) + D1 I/t[, + Doty
u us uy up

Clzulz, 2N1upp(2u — pup)
+\——= +
u Up

- 2a2uupp + N2<M£—iz) + D3 )u=0,

p up
(3.3.16)
where N1, N2 have the same expression as in (3.3.1) andl stand forué ), )
to simplify the notation. According to the assumptions of the lemipads non-
negative on the boundapy= «1, 81, andiy is non-negative op = «;. Moreover
uy satisfies

1+ u—upu 1 u _u . .
(1—pﬁ>pu+—2p[’<——3+(l’——)—2)+E1 up+ Ezig
P a uy up  us

1+ u?— 1
N (—2u+ (1_ p;-o)pup _ w(p_ 1>_ +E3>u _0
) a up/) up
(3.3.17)

on the boundary = . Since in (3.3.16), (3.3.17) abb;, E; are small quantities

of order O (¢), then the coefficients in (3.3.16), (3.3.17) are perturbations of the
corresponding coefficients in (3.3.1), (3.3.2). Using Lemma 3.5 we obtain (3.3.14)
and (3.3.15).
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3.4. Monotone alternating approximation

Based on the discussion @fIL)® and(NL)?), we are able to construct the
solution of(NL) or (NL)* now. Using the value of the background solution on the
boundary- = r; as data, we first solveNL) @in ;. Then by alternatively solving
(NL)® in €., and(NL)? in ©;, we will establish sequencég ™} and{ug’)}
of solutions for(NL)® and (NL)®)., It will be shown that these sequences are

convergent, the limits offz”) anduf{_‘gl coincide inQy N Q1 forl < ¢ <k —1,

and the limits ofu(l”) andy ™ are the inverse of each other in their overlapped
domain. Hence we are led to the solution(NL ).

First let us describe the method of choosinagay, 8,(0 < ¢ < k) precisely.
Taker1 > bp = maxb(6), so that|ry — b(#)| < & and the problemiNL)® is
uniquely solvable in the domaif®; : (@) < r < r1. According to Lemmas
2 to 4 the solutiony of (NL)® (b(9), v (r1)) satisfiesy < ¥ and the value
of ¥ in Q; depends monotonically on the boundary valueroa r1. Applying
Lemma 6 and Lemma 7, we can fifigy}, {8} (1 < ¢ < k) satisfying (3.1.11), so
that the problentNL) " is uniquely solvable in the domai,, and satisfies the
comparison principle with respect to the data on boundaries.

Next, to simplify the notation, we assunie= 2 in the following discussion
without loss of generality. Besides, in what followss a function op, 6 is denoted
by v~1(p, ), providedp = v (r, §), while p as a function of, o is denoted by
u=L(r, o), providedr = u(p, o).

The approximate sequences will be established as follows. Settthg= v,
M(10> = ”(12) = u<20) = ug, we choosey D (r, 6) to be the solution of the problem
(NLYD{b(0), 5 (r1)}. Forn = 1 we take

u(p, o) = (NLD (D)), @) 1B},
ug? (p, o) = (NL)@ (" (a2)},

ul (p, o) = (NLP (" (@), ud” (B},

Y ) = (NLYD{b(O), ) X(r1. 0))
inductively.

Lemmas8. If ||b(0) — bollc2+« < & with & being sufficiently small, then the se-
quences {1 ™}, {u"}, (u"}, (ul"} are well defined. The first sequence is mono-

tone, decreasing with respect to n, and other three sequences are monotone, in-
creasing with respect to n. Furthermore, we have

Up(r) S YW, 0) S Yp(r) in QF,

@ (3.4.1)
Iy (r, 0) — 1//B(r)llc2+0t(g2’_—) < Ce,
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ig(p) = u(ln)(p, o), u(l'i)(p,o) Zup(p) in Q,
ip(p) 2 u’(p.o) Zup(p) in Q.
luy” (p.0) = up(P)lczraq) < Ce. (3.4.2)
lug) (p. o) = us(P)lczraq) < Ce.

luz” (P, o) = s (Pl coraq, < Ce
where all constants are independent of .

Proof. Lemma 4 indicates that the solutiqfri(l)(r 0) of the nonlinear problem
(NL)D{b(9), ¥ (r1)} exists and satisfiegs < y@ < yp, whereyp =
(NL){bo}. In view of |bg — bg| < &, we have||¢B — ¥gllco < Cze, and then

Iy ® — ¥pllcog,) < Cse. (3.4.3)
||W(1) —¥B ”C2+Dt(Qi_) § Cye. (344)
Becausey D is a small perturbation af 5, theny Y > ¢ > 0, where is a constant

independent of. Hence(y M)~ is well defined andy @)1 > (y5)~1 = up.
Moreover, from (3.4.3) andrr(l) > ¢ > 0, we have

C
I D) Yer. 0) — up @) lcog 2r) < 738 (34.5)

Taking (v M)~Y(a1, o) and up(B1) as the data for the nonlinear problem
(NL)? on the boundanp = a1 andp = fB; respectively, we obtain the so-

lution u(" (p, o) of (NL)© by Lemma 6, while Lemma 7 implies the following
estimates:

1 _
luy” = upllczagr) < Col(W™) a1, 0) — ug@vllcoo2m

C2C35 (3.4.6)
=7
iip(er) 2 u (@1, 0) 2 uper) in Q. (34.7)
Hence
ip(p) 2 uy’ (p. o) 2 up(p) (3.4.8)

holds onp = as».
Using Lemmas 6 and 7 we can solve the prob(eth)(€2){u )(az)} Moreover,

ip(p) = ul’(p,o) Zug(p) in

(3.4.9)
1u$” (p. o) — up(p)lcereqy,) < Ce

hold.
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Returning to the domaif,,, we solve the Dirichlet problerdNL)(? once
more, and obtain
1 1
uP(p.o) = (ND P (@1, 0), us” (1. 0)),

which also satisfies (3.4.6) and (3.4.7). Frari)),, > 0, we know(u{") 1 < v
onr =ry and

1) 101, 0) = YpGDllcooan < [Fa(r) — YserDl <e. (3410

In addition, we can solve the problefNL)® {b(6), (u(l)) 1(rq, 0)} in the interior
annulusQ® by Lemma 2. Its sqlutiorrjﬂz)(r, 0) satlsﬂesp(z) < ¢y @ according
to Lemma 3 and satisfigs® > 3 according to Lemma 4. Therefore, we have

1@ (r2.0) — Y2l co.20) < & (3.4.11)
1P, 0) = v5()ll cora(gy < Col@®) 1. 0) = YDl co0.2)
< Coe. (3.4.12)

By the same procedure, we obtaiﬁ(p,o) uz)(p,a) ul*)(p,a) v @ (r, 6) and
so on. Then (3.4.1) and (3.4.2) can be proved by induction.

To prove the monotonicity of the sequen¢gs™} and{u™}, we are going to
verify the following inequalities by induction

v (r,0) <y, 0),
-1

W (p,o) 2 ul" P (p, o),
-1

ug(p, o) 2 udV(p, o),

1
W (p, o) 2 u(l’; '(p, o).

(3.4.13)

According to the process of establishing these sequences, weyhdye 0) <

¥p(r) from Lemma 4. Furthermore,” (p, o) = ug(p), uY (p, o) = up(p),

us )(p, ) 2 ug(p) follow from Lemma 7. Hence (3.4.13) holds faer= 1. Now
assume that (3.4.13) with indexis valid. Then Lemma 4 implies

1l/(rH-:L) r,0) < w(n)(r’ 9), (3.4.14)

because their boundary valueiog: r1 satisfies this inequality by the assumption of
induction. Equation (3.4. l4)imp|i@§1"+l) (a1,0) 2 u(l”) (a1, o). Then, combining
this with the boundary condltloml*H) (B1,0) 2 u )(ﬂl, o), we have

ugn+l)(p,a) = u(ln)(p,a) (3.4.15

according to part (a) of Lemma 7. Finally, by using (3.4.15) on thejire as and
the boundary condition op = B82(= V), the inequality

ugﬂrl)(p,o) > u(zn)(p,a) (3.4.16)
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is also valid according to part (b) of Lemma 7. Furthermore, (3.4.16) on the line
p = B1and (3.4.15) on the ling = o1 lead us to

W7 (p, o) 2 ufl) (p, o). (3.4.17)
Now (3.4.17) yields
@MY, 0) < @)A1, 6). (3.4.18)
Therefore, we come back to (3.4.14) with index- 1:
v 0) <y 6).
Hence the monotonicity as shown in (3.4.13) is proved by induction.

Finally, we prove the following lemma, which leads to the conclusion of The-
orem 2 directly.

Lemma 9. If |b(0) —bo|| o2+« < € Withe being sufficiently small, then the problems
(NL) and (NL)* are solvable.

Proof. Aswe proved inthe above lemma, the sequel{nz%’é(p, o)}, {u(zn)(p, o)},
{u(li?(p,a)} and {y™ (r, 9)} are bounded and monotone with respeci:tcso
these sequences are convergent. Let us denote their limits(byo), u2(p, o),
ut(p, o), ¥ (r, 0) respectively. Notice that th&2t® norm of ™ onr = ug(ay)

is dominated by it€° norm onr = rq, theC?* norm ofu{”, u{” in a1 + 48 <

p < B1— 458 is dominated by thei€® norm onp = a1, p = p1, and theC?+«
norm ofug') inay + 1—108 < p < o is dominated by its”® norm onp = ay, so
the 2t norms ofy ™, u{”, u{", u$" are uniformly bounded. This fact implies
thaty, ut1, uts, up areC2+* functions in their respective domains.

On the other handy satisfy (3.1.1), (3.1.2) angr(r1, 0) = (u1) 1(ry, 0);
u1, us Satisfy (3.1.7) anat1 = u1, on the boundary = a3 andp = B1; u» satis-
fies(3.1.7),(3.1.8) aneh (a2, o) = u2(w2, o). Notice that (3.1.7) is the equation for
the function whose inverse satisfies (3.1.1), and vice versa. Hencélott) and
(u1)~1(r, 0) satisfy (3.1.1) in the overlapped doma&pN7-%(<2,,). Besides, these
two functions coincide on the boundaries= r1 andr = u(«1, 6) (equivalently
p = ¥(r1,0) andp = a1). Since the domaif; is chosen so small, the linearized
operatorL ) does not have a non-negative eigenvaluginTherefore, there is no
non-negative eigenvalue in its subdomgim T‘l(Qel) either. By the uniqueness
of the Dirichlet problem for the nonlinear elliptic equation (3.1.1), the functions
¥ (r,0) andu1}(r, 6) coincide on the whole domai; N TV (<,,). Moreover,
u1(p, o), u1(p, o), u2(p, o) coincide on the corresponding overlapped domain.
Therefore, viewing functions; (r, 6), u,*(r, ) as extensions of (r, §), we ob-
tain the solution of NL) in the whole domairb(8) < r < ¥ (v, 6). Corre-
spondingly, the problentNL)* is also solved simultaneously.

It is obvious that the solution aNL) or (NL)* satisfies the entropy condition
on the shock front, because the solution is a small perturbation of the background
solution, which already satisfies the entropy condition on the corresponding shock
front.
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4. Approximation on level two

4.1. Generalized hodograph transformation

We have obtained the approximate solution of level one in Section 3. Combin-
ing this with the solutiong,(r, 8), - - - , ¢n(r, 6) of the problem (2.1.5), (2.1.8),
(2.1.17), we obtaim(z, r, 0) — the approximate solution satisfying the boundary
value problem with errop (zV). Starting from this approximate solution we will
use the Newton iterative procedure to modify it and finally obtain the precise solu-
tion of our problem. Let us simply cajl the approximate solution of level two, and
call the iterative process starting fragnan approximation on level two. Writing
¢(z,1,0) aszx(z, r, 0), we consider the problem for instead. To further sim-
plify the notation and remove the formal degeneracy at 0, we introduce a
transformation

t=Ing, z=é, (4.1.1)

which maps the poing = 0tor = —oo. By using coordinate§, 6, r) the problem
(1.2.15), (1.2.17), (1.2.18) for the new functigrbecomes

L(x) = aoo(xs + xie) + a11x-r + a22x00 + 2a01x:r + 2a02x16 + 2a12%r0
+ (a1 + 2a01) xr + (a2 + 2a02) xo = 0, (4.1.2)

b
E(x)=®+b) (X + x0) + r—g)w —@A+rb+b))xr=0 (4.1.3)

GO = (X242 + O+ =)0+ 0= 1 = 400) ) H

— (X + Xt — T Xr — doo) dooPoo
=0,
X = qoo> (4.1.4)

where (4.1.3) is given on the fixed boundary= b(z, 6), while (4.1.4) is given on
the free boundary = s(z, 6).

The rest of this paper is devoted to proving the existence of a solution for
(4.1.2)—(4.1.4) near = —oo, which will obviously imply Theorem 2. Since the
function (2.1.1)¢(z, r, 0) satisfies (1.2.13), (1.2.15), (1.2.16) with er@r(z"),
then the corresponding(z, r, 6) satisfies (4.1.2)—(4.1.4) with errar(e~N'l).

Since the shock front is a free boundary, we will also use a transformation like
the partial hodograph transformation in Section 3 to fix the boundary. In view of
the hyperbolicity of (4.1.2) in the domain, we prefer to make a modification to
the partial hodograph transformation so that both the boundagyb(z, 6) and
r = s(t, 0) are transformed into fixed boundaries. The transformation is

r—>b
yo=1t, y1=96, 2 T (4.15)
which transforms the boundary= b andr = s into y» = 0 andy, = 1 respec-
tively.

We notice that herg., — x > 0 away from the shock front, and— b > 0

away from the surface of the pointed body. Therefore, we alwaysd@yé, r) =
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r—>b,0)+usx — x(t,0,r) > 0. Besides, in view of, = v,, which is positive
for the background solution, we also have

Oy2=d 2(xy(r —b) + (goo — x)) > 0 (4.1.6)

in the whole domairb(z,6) < r < s(¢, 0); so the transformation (4.1.5) is uni-
formly nonsingular.
The differential relations of first order for (4.1.5) are

dyo = dt, dyr =d®b,
—db; —d;(r — b —dbyg —dyg(r — b d—d.(r—»>
¢ — di(r )dt—i— 9 — do(r )d0+ (r—b)

dy2 = 72 12 72 dr,
4.1.7)
whered, = —b; — x;,dp = —bg — x9,d, = 1 — x,. Consequently,
db; +d,(r — b dbyg +dyp(r — b d?
gr= Qo dilr = 0) o A A D) T, 1)
dy d1 d1

whered, =d —d,(r —b) = x,(r — b) + g0 — x > 0. Hence we have

L _dbtdir=b)  _dbytdyr—b)  _d?
Yo — d1 ’ = dr ’ Y2 = dy’

To derive a terse form of nonlinear problem (4.1.2)—(4.1.4) in coordinates
(yo, y1, ¥2), we choose

(y0, ¥1, y2) = d(yo, y1, (Yo, ¥1, ¥2))

as the unknown function, wheré¢yg, y1, y2) is the inverse function determined by
the last equality of (4.1.5). We notice that the choice of the independent variables
and the new unknown function is equivalent to the combination of the following
transformations:

(1) Transformation of unknown function

r—>b

H(,0,r) = , 4.19
( ) r—b+qe — x(t,r,0) ( )

(2) Partial hodograph transformation
yo=t,y1=0,y2o=H(t,r0), (4.1.10

(3) Transformation of unknown function

o (Y0, ¥1, y2) = (r — b(y0, y1))/y2. (4111
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Such a combination is called a generalized hodograph transformation.
By the chain rulewy, = d,ry, = d?d1~1d,. Meanwhile, fromd, = wy, +
Wy, Y21, dg = Wy, + Wy, Y29, WE have
dby +di(r —b dbg +do(r — b
wyo=dt+¥dr, wylzde_i_L()dr'
d1 d1
Therefore, denoting
(t,0,r) by (%o, &1, &2),
8(50: él» 52) 8(“))10’ a)yl’ w)‘z)

by J, and by J,
3(y0, ¥1, y2) 0(dgy, dgy, dey)
we have
d 0 (db; + d;(r — b))d
d1 d?
. d (dbg +do(r — b))d d
J @ 2 all (4.1.12)
d3
0 o S
di

In view of the expression af, the second derivativeg; equal—d;;, adding a
given function involving the second derivativesiaf, 6). Therefore, the principle
part of (4.1.2) is

92 8%d
Zaij—x = aij—— + lower order
3&; 9E; d&;0&;

;i — ——— —— + lower order
=24 dewe Iyedyx 0

2

w
= Z ark + lower order
dyedyk
where od )
i Yk
Qg = ( ) T
2 5“5
Therefore,
(@ij) = ddi I T (ij)J, (4.1.13)
andw satisfies a quasilinear equation
Po= ) aij(@, Voo, + R, Vo) =0 (4.1.14)
i,j=0,1,2

in the domain(—oo, —T) x [0, 2] x (0, 1).
Turn to the boundary conditions. On the boundagy= 0 corresponding to
r = b, we haved; = d and

Wy, 10 bl dt B d[
oy, | =0 1 by dg | =J | dp

Wy, 00 d dy dy
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Hence the boundary condition farcan be written as
Qow = MVy» + Rpy(w) =0 on y, =0, (4.1.15)

whereM = M(JT)~1 and M is the vector formed by the coefficients Gf x in
(4.1.3).

Finally, according to the relation amorng,w, Ved and V¢ x the condition
(4.1.4) is transformed to

Qsw = G(w, yy, @y, 0y,) =0 0N yp = 1. (4.1.16)
We notice here that the relation
v,G =V,GJ ! (4.1.17)

holds, whereg, p stand for the argumer¥,w, Ve x in the nonlinear functions
G, G1 respectively.

Wheny is replaced by the approximate solutigrof level two, the right-hand
side of (4.1.2) should be replaced liye"'). Therefore, the corresponding ap-
proximate solutior(yo, y1, y2) obtained fromy (¢, 6, r) by the above generalized
hodograph transformation satisfies (4.1.14)—(4.1.16) with &rer'>°), because
x(t, 0, r) satisfies (4.1.2)—(4.1.4) with errér(e"*). Obviously, our main theorem
will be proved if we obtain the existence and uniqueness of the precise solution to
the boundary value problem (4.1.14)—(4.1.16). In the remaining part of this paper
we will use Newton'’s iteration to prove the conclusion:

There existg” > 0, such that (4.1.14)—(4.1.16) has a unique classical solution
(Y0, y1, ¥2) in (=00, =T).
Remark 6. The above-mentioned generalized hodograph transformation retains
the property of normal hyperbolicity of the equation with respect to an assigned
direction. This means, the new form of the equatiofif y1, y2) coordinates is
still normal hyperbolic with respect to the image of the assigned direction under
the transformation. Besides, for the nonlinear boundary conditions we can define
linearized boundary operators and corresponding multidimensional linear stability
conditions (see [18]), so that the property of satisfying the multidimensional linear
stability condition also remains valid under the nonlinear hodograph transforma-
tion.

The above conclusion for the usual partial hodograph transformation is proved
in [18]. The conclusion for generalized hodograph transformation introduced in this
section is still valid because our transformation is a combination of the usual partial
hodograph transformation with two transformations of the unknown function, as
shown in (4.1.9)—(4.1.11). On the other hand, the conclusion can also be verified
directly, because up to a constant factor the change of coefficients obey the same
rule as that under the normal coordinate transformation:

M=MIJ,
di oy~ -
A= (El)JTAJ, (4.1.18)

V,G1=V,GJ.
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4.2. Basic energy estimate for linearized problems
In order to obtain the precise solution of (4.1.14)—(4.1.16) by successively
modifying @, we linearize them ab near®. The linearization is
2 2
P@)d =Y (@00 + Y _aj(@)dy;d + az(@)d
P20 i (4.2.1)

=f in0<yx<1,

2

Q@)=Y P1jdy,&+ Pi> = g1 0on y2 =0, (4.2.2)
j=0
2
Qs (@)=Y y1j0y0 + yo0 = g2 ON y2 =1, (4.2.3)
j=0

wherefo, B1;, yo, y1; are derivatives o3, R,, G with respect taw, wy, respec-
tively. As usual we will use the-weighted Sobolev norm to derive energy estimates
in our hyperbolic problem. For smooth functio@svhich vanish neaypg = —oo,

we define the following norms for a non-negative integer

|w|§,n,yo = /f e2mo 2Tolvrw(yo, v, Y22 dyidys,  (4.2.4)
0+|7|=s
T
e (4.25)
—00
On the boundary, = 0, 1, we define the boundary norms
2
W), 1= /J e 2P|V w(y0. y1. y2)|* dyadyo,

ro+\r| s,y2=0,1

2
)21 = / J 210020V (yo, y1, y2)|? dy1dyo.
fo+\f| 5,y2=0,1

(4.2.6)

The latter includes the estimates of normal derivatives. Here we are able to intro-
duce the norms involving the same regularity of derivatives in the normal direction
and in the tangential direction because the boundary 0 andy, = 1 is not
characteristic. Finally, we define

loll?, 7= sup lwlsny +nllol?, 7 + (@), 1. (4.2.7)
—oo<yo<T
The completion of the set of all smooth functions vanishing ngae —oo with
respect to the norm (4.2.7) is a Sobolev space and denot&gl.[8ince the dimen-
sion of the space of independent variables is 3, then forl + n, H, functions
have continuous classical derivatives up to order
For solutions of the linear boundary value problem (4.2.1)—(4.2.3), we have the

following energy estimate:
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Theorem 3. Assume that s > 2 isaninteger, n = g is sufficiently large, @ isthe
approximate solution of level two, and & € H1 satisfying [|& — &lls+1,9,7 = So.
Then the solution o of (4.2.1)—(4.2.3katisfies the energy estimate

. 1
oz, 7 < Cs (;Hfuf,n,f +(g1)2, 7. + <g2>§,,7,T,> , (4.2.8)

where the constant Cy isindependent of the choice of &.

Proof. The general conclusion for boundary value problems of hyperbolic equation
of second order in given in [18]. Applying the result obtained there we only need
to verify that the boundary conditions (4.2.2), (4.2.3) satisfy the linear stability
condition (L.S.C.). Writing the linearized boundary operators on the boundary

yp=1as
d " d + d
V=Yo7 tVi1;— +t V12—,
dyo dy1 dy2

the requirement of L.S.C. is that the vecBintersects the boundary transversally,
and 2y + N is a timelike direction, wher&/ = —3 g, d,,. According to the
analysis in Remark 6, we only need to verify L.S.C. for the boundary conditions on
a physical space with coordinates x», x3. Since our problem is a perturbation of
the background solution, it is enough to verify L.S.C. for the latter.

Take a pointO1 on the shock front. Due to the symmetry of the background
solution we assume, = 0 at O; without loss of generality. Introduce new local
coordinatex, z2, z3, such thatz = xp, O1z1 is tangential to the shock, and
O1z3 points in the normal direction. Thefi, = 0 at O1 due to the axisymmetry.
Meanwhile, in the coordinate syste z1z2z3, the equation of the tangential plane
of the shock is

¥ — §0071COSB — gooz3SiNB =0,
and the Rankine-Hugeniot condition becomes

(21 (P21 — Goo COSB) + B2, + 23 (hey — oo SINB) H
= oo Poo(($z; — Goo COSP) COSP + (923 — goo SINB) SINB)  (4.2.9)

with H = H(C — 3(¢2 + ¢2, + ¢2)). Regardingp_, as an argumens, we have

G . .

% = (2073 — qoo SINBYH — Goo oo SINB + (@7, (@7, — Goo COSP)

+ ¢z3(Pz5 — Goo Sin.B))H/(_(bzs)-

Recalling the physical meaning of all quantitigs, = vy, goo SINB = Vpoo,
Goo COSP = Voo = ¢, We have

G _ ) + n( )a~%p(—vy)

=&, — Uy - Un Un(Un — Unoo)@ —Un

ap3 20l Poctinee poltt P (4.2.10)

= (n — Unoo)p(1 — a~%v2) # 0.

Besides, the second requirement of L.S.C. becomes trivial in vigiy,of= 0. By
the same method we confirm that L.S.C. is satisfied on the boundary corresponding

to the surface of the body. Then (4.2.8) is valid according to [10] and [18]. Hence
the conclusion in Theorem 3 is obtained.
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4.3. Iterative scheme and convergence

Using the energy estimate (4.2.7) obtained in Theorem 3, we can employ New-
ton’s iteration to establish the existence of a precise solution for (4.1.14)—(4.1.16).
Write the precise solution as

w=0ad+wo, (4.3.1)

and the problem is reduced to determinibgSince is an approximate solution
of (4.1.14)—(4.1.16) with erro© (e">°), then for any; > 0, we can takeV > 7,
so that

~n2 ~\2 ~\2
IP&I2, 7 (Qod)2, 7. (Qs®)2, 1

are bounded. Therefore, for given> 0, we have
Cs(IP@12, 7 + (Qod)2, 1 + (Qsd)Z, 1) <k (4.3.2)
if T < To <« 0. Moreover, ifsg is sufficiently small and € H,; satisfies
o — @lls+1,9,7 = do. (4.3.3)

then (4.3.2) witho replaced byb is uniformly valid. NamelyTy is independent of
the choice ofy.

After linearizing (4.1.14)—(4.1.16) we perform the iteration scheme as follows.
Takewp = 0, and letw; 1 be defined as the solution of the linear boundary value
problem:

2 2
Z ;j (@ + k) dy, By, w1 + Zaj (@ + @k)dy; W41
i,j=0, Jj=0

P(& + wp)wry1

+ a(® + wp)wr+1
=frin 0<y2<1, (4.3.4)

2
~ . . k . k) .
Op(@ + d)ins1 =Y By5 Dy dr1 + By ki
j=0

=gu on y2=0, (4.3.5)

2
~ oy k . k) .
Q5@+ dR)ini1= ) Vl(j)ayfwk+1 + 75 bk

j=0
=gx On yp =1, (4.3.6)
where fi = —P(& + @) + P(& + or)ox, g = —Qs(@ + ax) + Os(@ +

k) D, yl(f) = y1;(® + @) etc. Next we are going to prove the boundedness in the
high norm and the contraction in the low norm of the sequétige

In order to prove the boundedness in the high norm, for givendp we take
T sufficiently negative such that

1
Cy <5||fo||3,,,j + (81002, 7 + <gzo>§,,7,r) <K (4.37)
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Then the estimate
lowlZyy, r <« (4.3.8)

can be proved by induction. Indeed (4.3.8)#o& 0O is trivial. Now suppose (4.3.8)

is valid for indexk, then (4.3.3) holds, and (4.3.2) with replaced by + wy.
Therefore, Theorem 3 can be applied to the problem (4.3.4)—(4.3.6). By using
energy estimate (4.2.8) we obtain

. 1
loksaliZ 1, 7 < Cs <5||fk||§,,7,T + (gu)2, r + <g2k>§,,7,T) <k. (439

Hence (4.3.8) is valid for any by induction.
To prove the convergence of the sequeficg, we take

Ap = g1 — g

and obtain the following boundary value problem foy:

P&+ a)Ar = fr in0<yz<1, (4.3.10)
Op(@w~+ o)Ay = —g1x onyx =0, (4.3.11)
Qs(@+ o)Ay = —gax Onyz =1, (4.3.12)

wheregay = —Qs(@® + wx) + Qs(® + wr—1) + Qs (® + wr—1)Ax—1 €tc. In view
of Theorem 3 A, satisfies

1 .
2 2 ~ 2 ~ 2
A2 1, 7 < Csez (; 12y 7 + 180020 7 + 132612 5, 7

2 s n2
< C'Coall Ae—all?_ g,y 7 NliodlZ,, 7
2
< C'Coan A Al 1

Therefore {ay} is contractive inH,_1 if k satisfiesC’Cy_1k2 < ‘—11. Namely, the
sequencdwy} is convergent. The limit ob» + @, solves the problem (4.1.14)—
(4.1.16).

According to the analysis in the beginning of this section we also solve the
problem (4.1.2)—(4.1.4). Correspondingly, we obtain a functicn r, 6) satisfying
(1.2.13), (1.2.15), (1.2.16). Besides, sinoge, r, 6) is a small perturbation of the
background solutiog g, which satisfies the entropy condition, the(, r, 0) also
satisfies the entropy condition on the shock front. Hence Theorem 1 is proved.
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