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Abstract

We consider two mass points of massgs= my = % moving under Newton’s
law of gravitational attraction in a collision elliptic orbit while their centre of mass
is at rest. A third mass point of magss ~ 0, moves on the straight ling,
perpendicular to the line of motion of the first two mass points and passing through
their centre of mass. Singez ~ 0, the motion of the masses; andm> is not
affected by the third mass, and from the symmetry of the motion it is cleanthat
will remain on the lineL. So the three masses form an isosceles triangle whose
size changes with the time. The elliptic collision restricted isosceles three-body
problem consists in describing the motiorvof.

In this paper we show the existence of a Bernoulli shift as a subsystem of the
Poincag map defined near a loop formed by two heteroclinic solutions associated
with two periodic orbits at infinity. Symbolic dynamics techniques are used to show
the existence of a large class of different motions for the infinitesimal body.

1. Introduction

Sitnikov [16] showed the possibility of the existence of oscillatory motions
for the elliptic non-collision restricted isosceles three-body problem. This problem
is now called theStnikov problem. ALEKSEEV [1,2] (see alsMoskr [13]) proved
the existence of such a motion by using some homoclinic or heteroclinic orbits. We
extended all the dynamics found in the elliptic non-collision restricted isosceles
three-body problem to the collision problem. These two problems are very different
due to the existence of the triple collision in the second problem.

We have two mass points with equal masses,= m2 (called primaries),
moving under Newton’s law of gravitational attraction in a collision elliptic orbit
while their centre of mass is at rest. We consider a third mass point ofimeass0,
moving on the straight liné (z-axis) perpendicular to the line of motion-éxis)
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of the first two mass points and passing through their centre of mass /&irree,

the motion of the masses; andm is not affected by the third mass, and from the
symmetry of the motion it is clear that3 will remain on the lineL. So the three
masses form an isosceles triangle whose size changes with the time. The origin
of the coordinatesx, z) is at the centre of mass. ThHiptic collision restricted
isosceles three-body problem consists in describing the motion efs. In what
follows we call it simplythe restricted isosceles three-body problem.

UsingMcGeHEE's blow up at infinity [11] we study a neighbourhood of both
infinities (z = 4o00). This allows us to show that there are two special periodic
orbits at infinity denoted b{ ™ andI"~. Each of these periodic orbits has one stable
and one unstable invariant manifold formed by parabolic orbits, (i.e., orbits which
start and end at infinity with zero radial velocity). We denotefs§ and P+
the unstable and stable invariant manifolds'éf. These manifolds are analytic
cylinders, their expressions are computed in Appendix B.

The intersections o™ N P~ and P~* N Pt define two transversal
heteroclinic orbitg; andé». Since the restricted isosceles three-body problemis far
from an integrable one (see the end of Section 8), we use numerical computations in
order to obtain the transversality of the heteroclinic ofisnds». The loop formed
by &1 andé; provides the necessary recurrent motion for showing the existence of
rich dynamics in its neighbourhood, and for studying all final evolutions:ef
without taking into account triple collisions. For a study of this triple collision see
[3]. For analysing the flow near the loop we use the PomaaapF defined on the
transversal section= 0 near the intersection with the loop.

ALEKSEEV [1] andMoskr [13] characterize the orbits of the Sitnikov problem
by using symbolic dynamics. This technique has been used later on to study many
differentthree-body problems, see for insta@ogs & LLIBRE [4—6], DEVANEY [7],
LLIBRE, MARTINEZ & S1MO [8], LLIBRE & SiM6 [9, 10], andMEYER & WANG [12].

For the restricted isosceles three-body problem we shall define a Bernoulli shift on
the set of sequences of symbgig} determined by the number of binary collisions

of m1 andmy between two consecutive passingsnef through the transversal
sectionz = 0. We prove that this shift appears as a subsystem of the Peingp”

F, see Theorem 8.2. The dynamics described by this theorem are one of the main
results of this paper. An immediate consequence is the existence of periodic orbits
and the non-existence of real analytic integrals different from the total energy of
the system.

Finally, we give the topology of the set of initial conditions for the capture and
escape orbits (i.e., orbits which start or end parabolically or hyperbolically after
crossingz = 0 n times).

The rest of the paper is organized as follows. First, in Section 2 we deduce
for the restricted isosceles three-body problem its equations of motion, its final
evolutions, study its three symmetries, and define the Panoap. The flow in a
neighbourhood of infinity is analysed in Section 3. In Section 4 we deal with the
invariant manifolds formed by the parabolic orbits, and compute numerically their
transversal intersections in Section 5. The Bernoulli shift is defined in Section 6,
and the conditions for appearing as a subsystem of a map, in Section 7. In Section 8
we prove that the Bernoulli shift is a subsystem of the Pomoaap of the restricted
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isosceles three-body problem. Finally, in Section 9 we study the capture and escape
orbits.

2. Formulation of the problem

We have taken the units of length, mass and time in such wayithat mo = %
the time between two consecutive binary collision of the primaries equalariti
the gravitational constant equals 1.

Letx be the distance between the centre of masgandnd let; be the distance
of m3 from the centre of mass. S@;, 0) denotes the position @f1, (—x, 0) that of
m2, and(0, £z) the position ofnz. Then the motion of the two primaries is given
by

x(E) = 3(1 - cosE), t=E —sinE
where we have choser(0) = #(0) = 0, r the time andE the eccentric anomaly;
see for more details [15].

Note that binary collisions betweety andmy are only possible whef = 0
(mod 27). Of course, we have(E) = x(E + 2x) for all E € R.

From Newton’s laws of mechanics, the equation of motiomgis

d?z Z

a2 = 0 + 2 @y

wherex () = x(E(1)).

We denote by(w_, w;) the maximal interval where a solutiorz(¢) of the
differential equation (2.1) is defined.

Let z(r) be a solution of system (2.1) defined in the maximal interval
(—o0, +00). A final evolution of this solutionz(¢) of the restricted isosceles three-
body problem describes its asymptotic behaviour when —oo ort — +o00. We
have the following possible final evolutions for a solutigin) of system (2.1).

Whenw; = 400 we say thatz(r) has a final evolution oparabolic type
(P1), if lim;— 400 2(¢) = oo and lim_, 1« 2(t) = 0; of hyperboalic type (H*),
if im0 z(t) = oo and lim_, ;. | z(t) |> 0; and ofdliptic type ET), if
m3 intersects infinitely many times the axes= 0 whens — +oo. Inside the
class€™ there are thescillatory (O™) final evolutions which are characterized
by lim;_ ;5 sSuUp| z(¢) | = 400 and lim_, ;1 inf | z(z) | = 0, and the periodic
orbits.

In a similar way whenw_ = —oo we define the final evolutior®—, H~, £~
andO~.

We describe a solution(¢) # 0 of (2.1) by giving its velocityzg and timerg
whenz(tp) = 0. We note that such a zero oft) always exists, and usually it is
not unique. Ifz(zp) = 0 we are interested in the solutions such thag) # O,
otherwise by the uniqueness theorem of the solutions of a differential equation we
would get the trivial solutiong(r) = 0. Thus we can describe an arbitrary orbit
z(¢) of system (2.1) by givingg (mod 2r) andz(zg). The valuegg (mod 2r) and
z(t0) = 0 correspond to Euler’s collinear solutiariy) = 0 (see for instance [15]).
In short, we have the following result.
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(to, 2)
2>0
2<0
to=m t,=0
(mod 2m) (mod 27)

Fig. 2.1. The cylinderz = 0.

Proposition 2.1. Orbits of the mass m3 are determined by points of a cylinder
z = 0, parametrized by 1o (mod 2r) and z(zp), without the generatrix 7o = 0
which corresponds to triple collision orbits (see Fig. 2.1).

We note that the differential equation (2.1) is invariant under the symmetries

So: (z,z,0) > (—z, -2, 1),
S1: (z,2,t) = (z, —z, —1),
S2: (z,2,1) = (—z,2,—1).

We define a Poincarmap /3 (or f-) from the cylinderz = 0 into itself
by following the solution with initial conditiong(rg) = 0, zo = z(t0) > 0 (or
z(to) < 0) to its nextz zero, and denote by the smallest > 1z for which
z(t1) = 0 andz(r1) < O (respectivelyz(r1) > 0), if it exists. Then, iz = z(r1),
f+(Zo, o) = (21, 1) (respectively,f_(Zo, to) = (21, 11)).

If £5° (£5°") denotes the domain of definition of the map(£_), then&;*
(&, ) represents the initial values of the orbits which retura te 0 in forward
time. From the continuity of the solutions of (2.1) with respect to initial conditions,
we have that; * and€, "’ are open sets.

Now we study the complement 8} * UE, **. First, letz(1) be a solution of (2.1)
satisfyingz(tp) = 0, z(fp) > 0 ands; = 4o0; thenz(¢t) > O for allt > 1p. Thus
z(t) is monotonically increasing for> 1y and,z(r) — +ocowhent — +o00. Since
by (2.1)Z(¢r) < Oforallr > 1y, the functiorz > 0 is monotonically decreasing and

z2(00) = lim z(1) = 0

exists. We have shown thatr) is aparabalic (or hyperbolic) orbit if z(co) = 0
(respectivelyz(co) > 0). A similar study can be made for an orbit with initial
conditions in&, .

In fact, the complement of the ség” U&7 INC={z=0,z+#0,1t#
0 (mod 2t)} corresponds to initial conditions for parabolic or hyperbolic orbits
whent — +o0. The set of initial conditions irC of parabolic (or hyperbolic)
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orbits fors — +oo is denoted by, U P, ** (respectivelyHy * U Hy ), with

Py UHY' c(Cni{z>0handPy* UHy’ C (CN{z < 0}). We note
that C is contained in a cylinder, but it is not a cylinder because the generatrix
{z = 0,z,t = 0 (mod 2r)} which corresponds to initial conditions of triple
collision is omitted. However, roughly speaking, it can called a cylinder, and in
what follows we will talk about the cylindet.

Now, we define the inverse Poineamap. Let(zg, 7o) be one point on the
cylinder C, andz(z) be the orbit ofim3 such thatz(rp) = 0 andz(rg) = zp. We
denote by_1 the largest < #o for whichz(r_1) = 0, if it exists. If 7_1 = z(¢_1),
thenwe defing’; (20, 10) = (2-1,7-1) if 2-1 > 0,andf (20, 10) = (21, 1-1) if
z-1 < 0.We note thaﬁfl (orf__l) is the inverse Poincamhap off;. (respectively,
f-).

If 86““ and&; " denote respectively the domains of deﬁnitiﬁﬁ1 and f__l,
then&g " and&; " are the set of initial conditions for the orbits which go back to
z = 0 at least once for backward time. From the continuity of the solutions of (2.1)
with respect to initial conditions, we have tr&f" and&, " are open sets.

The orbits:(¢) defined on the complement&f " U&; " in C satisfy the condi-
tions thatz(rg) = 0,71_1 = —o0, |z(t)| = +oowhent — —oo, and|z(—o0)| = 0.
Therefore the points i@ in the complement Q*fa“’” U&, " correspond to parabolic
or hyperbolic orbits when— —oo. We denoted by, U Py " (or Hy “UH, "),
with P U H" c (CNn{z <0pandPy, " U Hy™" C (CN{z > 0O} the
set of initial conditions inC for parabolic (respectively, hyperbolic) orbits when
t — —o00.

In order to find the domain of definition of* (#=1) we use the symmetry
S1. We remark that on the cylinder the symmetryS; is given bySi(zo, fo) =
(—z0, 21 —10) if 19 € (0, 27); 80 f1 1 = Sy o froS1andf=t = Sto fo 0 S1.
Consequently we have the following result.

Proposition 2.2. The following equalities hold:
5" = S1(E ). Hy " = S1(Hy ™), P = S1(Py ™),
& =81& "), Hy " = S1(Hy ), Py " = S1(Py 7).

We remark thaf+ ¢ £5°° and€~ ¢ £5". This means that not all orbits with
initial conditions ingét’”(” have elliptic final evolution. In a similar way, we have
thatPy™* ¢ Pt, Hy* ¢ Ht, Py ¢ P~ andHy " & H~.

3. Theflow near infinity
An orbit escapes at (orcomes from) infinity if z(¢) tends totoo when: tends

to +o0 (respectively—oo). To study the flow in a neighbourhood of the infinity we
use the transformation introduced BicGEHEE [11], that is,

. 2 . : _
z= Slgn(z);, ;= —signz)p, dt =4q 3ds,
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with 0 < ¢ < +00. Sog — 0 corresponds to — +oo. Then, (2.1) becomes

dg

as P (3.1)
—-3/2 .

P _ g (14 Lz /,

ds 4

defined in the phase spai@, p. 1) € R®: ¢ > 0}. We note that with system (3.1)
we can study both neighbourhoods of the infinjty= 0, i.e., the neighbourhood
of z = —oo and the neighbourhood af= +oc.

Since the function (1) = %(1— COSE) is 2r-periodic inE andr = E —SinE,
we have that i{(q, p.t) € R3 : ¢ > 0} the orbitg = p = 0 is 2r-periodic for
the system

dqg _ ¢*
dt 4~
-3/2
dp _q* q* (3.2)
E = Z <1+ Z)C (f) s
dt
— =1
dt
We write the system as follows
dq 1,
TR (=p),
d(—p) 1,
—al ] Lx(D)), 3.3
ar 27 (1+g1(g. x(®))) (3.3)
d
a_q
dt

wheregi(q, x(2)) is a power series expressiongrstarting with order 4 ands2-
periodic int.

System (3.3) has ar2periodic solution atg, p) = (0, 0) (which corresponds
toI't andI'™ for z = +oo andz = —oo respectively).

Proposition 3.1. The Poincarémap inaneighbourhood of theperiodicorbitg = 0,
p = Oisgiven by

T3 T 3
P(q.—p) = (61 +54 (p+rilg, p),—p— 24 (p +r2(p, q))) ,
where r1 and r, arereal analytical functions of third order in ¢ and p.
Proof. See AppendixA. O

For every open neighbourhodd of the origin ofR? we defineAt (P, U) as
{a € U :Pka) e Uforall k > 0, andP*(a) — 0 whenk — +oc }. Clearly,
the parabolic orbits for — +oo contained inJ are exactlyA™ (P, U). McGehee
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proved that there exists such thatd™ (P, U) is an analytic curve ig > 0. Using
P~1 we defineA= (P, U) which is the set of parabolic orbits for~ —oc.

The flow near(qg, p) is obtained by rotating Fig. 3.1 around theaxis. The
point (¢, p) = (0,0) can be seen as a fixed point for the Poiecardp having
one 1-dimensional stable invariant manifald and one 1-dimensional invariant
manifold P* which are analytic in a neighbourhood(©f 0) with ¢ > 0. Of course,
P’ |y= AT (P, U) andP* |y= A= (P, U).

Fig. 3.1. The flow at infinityz = +ooc.

System (3.2) is invariant by the symmetgy, p,t) — (¢, —p, —t). There-
fore, if the local stable invariant manifoldl™ (P, U) is given by the equation =
F(—p,—1),theng = F(p,t) is the equation of the local unstable invariant mani-
fold A= (P, U). We just point out that the expansigr= F(p,t) = >_,>gan(t) p"
can be computed by comparing coefficients, after substituting this expansion in
(3.3).

Proposition 3.2. The points (¢, p,t) of the local unstable invariant manifold
A~ (P, U) of theperiodic orbit g = p = 0 at infinity satisfy

g=F(p,t)=p+asp>+agt)p®+---,

and the points of the local stable invariant manifold A™ (P, U) verify that g =
F(—p, —t), where F is 2z -periodicint and analyticin p € (0, b) for some b.

Proof. See Appendix B. O
When we go back to the variablés z, r), the invariant manifold®* and P*

duplicate toP™* and P**, where P and P are near, = +oo, and P~
andP~* are neag = —oo.
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4. Manifolds of parabolic orbits

We transform the invariant manifolds in the coordinate planes through the
change of variables

u=3(q—F(—p,—1) = 3(q+ p) + Os,

(4.1)
v=3(q—F(p,n) =7(q —p)+ Os,
and system (3.1) goes over to
W uto
== _u ,
ds >
d
& 40, 4.2)
ds
dt
o= 20+ i+ 07t =448

This differential system is restricted to the domgim, v, ) : ¢ = 2(u+v)+ O5 >
0}. HereO, stands for & *° function f = f(u, v, t) of period 2Zr in ¢ and such that
A" f (Au, v, t) is bounded uniformly in wheni — 0 running through positive
values.

In order to study the orbits near= v = 0 we eliminate the variable and
write

d
d—” — 2u(u + v)% + 07,

d; (4.3)
i —2v(u + v)3 + O7.

We have the following lemma; its proof is easy.

Lemma 4.1. The differential system

i =2u(u+ v)3,
V= —2v(u+ v)s,

inthedomain R = {(u, v) € R? : u 4+ v > 0} verifies:

(a) The family of curves uv = ¢ in R are solutions of the system.

(b) Its flow istopologically equivalent to the one described in Fig. 4.1.

(c) The flow on the second (fourth) quadrant tends to the boundary of R when
t > 400 (—00).

From this lemma we can discuss the local behaviour of the solutions of differ-
ential system (4.3) in a sufficiently small neighbourhood ef v = 0.

The set{(u,v) : u < 0,v > 0,9 > 0} is contained in the second quadrant,
its solutions approach + v = 2¢ = 0 whens — +oc0. On the other hand, if
u= %(q + p) + Os < 0thenp tends to a negative number or zero whes +oc.
Sincez = sign(z)qi2 andz = —sign(z) p, we can observe that(+o0o) = 400
with z(+00) > 0, andz(4+o00) = —oo with z(+00) < 0. Hence these points
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hyperbolic
for t—+4o00

elliptic

parabolic for {—-+o0

parabolic for t——oc

hyperbolic
for t——o0

Fig. 4.1. Orbits ofmg near the infinity.

correspond to orbits which escape with positive or negative velocity at infinity,
that is, hyperbolic orbits. The poinfgu, v) : u = 0,v > 0,9 > 0} are such
that z(+00) = oo with z(+o00) = 0. Thus they correspond to orbits which
escape with zero velocity at infinity, that is, parabolic orbitstfes +o0o. The set
{(w,v) :u > 0,v > 0,q > 0} corresponds to orbits which pass close to infinity
and then return.

In a similar way we find thaf(u, v) : © > 0,v < 0,¢ > 0} and{(u, v) : u >
0,v = 0,9 > 0} correspond to hyperbolic and parabolic orbits respectively for
t — —o0.

We will study the topology of the invariant manifolds of parabolic orbits, and
their first intersection with the cylinder. We have denoted by ™* and P the
unstable and stable invariant manifold associated with the periodigosbip = 0
atz = 4o0. In a similar way we havé —* and P~ atz = —o0.

We definePy* (and P, **) as the first intersection @t +* (respectivelyp )
in backward time witly = 0. Inthe same wayz,™" (or P, ") is the firstintersection
in forward time of P™* (respectively,P —*) with z = 0.

Now we are interested in the first intersections of the parabolic orbits with
the cylinderC, that is in the study of the curve®,* and P;"*. Later on we see
numerically that the curveBo+’“ and P, intersect transversally.

The curveP0+’“ has been computed numerically, solving in forward time the
system

d

d_IZE = (1 — CcOSE)v,

do . (4.4)
— =—(1—-COSE)———————,

dE ( )(xZ(E) + 22)%/2

starting on the unstable manifold™* nearz; = +oo and ending in the first

intersection withy = 0. The initial conditions orP** can be obtained from the
series expansion @?* given in Proposition 3.2. Working in this way we obtain
the curvePy ", and the curve®,™’, P;"" and P, ** can be obtained by using the



326 MARTHA ALVAREZ & JAUME LLIBRE

2t Py N

_4 1 1 1
0 1 2 3 4 ) 6

t (mod 2m)
Fig. 4.2. Parabolic orbits on the cylindér = 0, z, ¢ (mod 2r)).

symmetriesS1, Sp and S, respectively (see Fig. 4.2). See Appendix C for more
details about the numerical computation.

The numerical results have been drawn on the cyliqderO, z, ¢+ (mod 2r)).
Since in the triple collision the velocity; |= +o0, from Fig. 4.2 there is numerical
evidence that there exists at least one intersection point of the maniféIts’ with
the generatrix = 0 (mod 2r) of the cylinderz; = 0 at infinity (i.e.,| z |= +00).

In other words, there is at least a parabolic orbit starting-at+oo which ends at
collision, and the symmetric ones. Later on we will give topological arguments for
proving the existence of a such solution.

Now we consider system (3.2) at infinity & 0),

d dt
P _o Y-
dt dt
Sincet (mod 2r) is an angular variable ang € R, the invariant manifold at
infinity is the cylinder

{(g.p,1):q=0,peR,te S =R x S,

foliated by the periodic orbitp = constant. Therefore the-limit and w-limit

sets of the hyperbolic and parabolic orbits are periodic orbits. In fact, the infinity
manifold is formed by two cylinders, associated with= —co andz = +oo
respectively.

Theorem 4.2. The set Py (or Py ") of the initial conditions for the parabolic
orbits which tend to z = +oo (respectively, z = —oo) when ¢ — +o0o is home-
omorphic to a ssimple closed curve with at least one point on | z |= +o0o when
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to = 0 (mod 27). Thecurve Pg“s (or P, ") dividesthecylinder z = Owithz > 0
(respectively, z < 0) into two components. One component is formed by the initial
conditions:So+ * (or & "), andtheother by theinitial conditionsHar ¥ (respectively,
Hy).

Proof. We have seen that the parabolic orbits which tengd+o+oc (orz = —o0)

whent — +oo correspond in a small neighbourhood of infinity wittx, v, ¢) :

u = 0,v > 0} andr arbitrary. Sincer is an angular variable, we have that the
intersection of this set with the plane= vg > 0 for vg sufficiently small is a
simple closed curve (see Fig. 4.3). This intersection is transversal, otherwise the
parabolic orbit would not reach the infinity.

Since any orbit different ta = 0 intersects the cylindef transversally, it is
clear that the mappin@: = 0, vg, 1) — (z = 0, 20, tp) Obtained by following in
backward time the solutions from= vg to C is well defined. By the uniqueness
theorem of the solutions of a differential equation this map is a diffeomorphism.
Thus the parabolic orbits which tend3e= +oc0 (or z = —o0) whent — +oo is
a cylinder such that its first intersection with the cylindeis a simple curvd’OJ“s
(respectively,P, ") with at least one point if¢| = o0 with 7o = 0 (mod 2r).

The curveP;™* (or Py ") is the boundary of;* denoted by&;* (respectively,
&y " andagy ™). The ey’ (or &, °*) corresponds to initial values for the orbits
returning toC at least once in forward (respectively, backward) time. The orbits
with initial values inaé’(’;"Y (or 9&, ) correspond to parabolic orbits for= +oo
(respectivelyz = —oo) whent — +oo. Clearly, we also have,™* = dHg *

and Py’ = dH,*, whereH, ™" (or H,*) correspond to the orbits which escape
hyperbolically toz = +o0 (respectivelyz = —o0) whent — +o0, and do not
intersect in forward time the cylind€r. 0O

20>0

s

’
.
.
.
.
.
/
.
’

(u=0,v="14t)

'

0

Vg v

tO: ™ to ; 0
(mod 27) (mod 27)

Fig.4.3. Parabolicorbitson = 0, v = vg, r (mod 2r) andonthecylindefz =0,z > O, ¢
(mod 2r)).
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Applying the symmetrys; to the Theorem 4.2 we obtain:

Theorem 4.3. The set Py (or P,") of the initial conditions for the parabolic
orbits which tendsto z = 4oo (respectively, z = —oo) whenr — —oo is home-
omorphic to a simple closed curve with at least one point, with | z |= 400 when
to =0 (mod 2r). Thecurve Py (or Py ") dividesthecylinder z = Owithz < 0
(respectively, z > 0) into two components. One component is formed by the initial
conditions £ " (respectively, &), and the other by the initial conditions Hy™"

(respectively, Hy ™").

Figure 4.4 shows the curvélgt’“(” dividing the set of initial conditions in the
cylinderC.

2<0
t=m t=0
(mod 2m) (mod 27)

Fig. 4.4. Curves which divide the cylinder.

5. Transversality of the parabolic manifolds
The numerical computations of the cur\@%’“(‘” inthe coordinate& = 0, z, ¢
(mod 2r)), show that the intersection &, " (or Py*) with Py~ (respectively,
Py ) is nontangential at= 7 (mod 2r), i.e., these intersections are transversal,
see Fig. 4.2.
Consequently we have the following result.

Proposition 5.1. For the restricted isosceles three-body problem the curves P(;r "
(or P,y and Py (respectively, Py™*) intersect transversally on the generatrix
to = m (Mod 2r). That is, there exists one orbit &1 (respectively, £2) beginning
parabolically at z = +o0 (respectively, z = —o0), ending parabolically at z =
—oo (respectively, z = +00), and crossing only once the surface z = 0.

We defined bys; = P N Py ** andé, = Py " N Py *. Note that the orbits
&1 and&, which intersect = 0 at the pointsf; andé, are heteroclinic orbits to
the periodic orbitg; = p = 0 at the infinityz = +00 andz = —oo. These two
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heteroclinic orbits form a loop (see Fig. 6.2) which will provide a rich recurrent
motion.

6. The Bernoulli shift

In this section we introduced two cylindefs= 0, 7 £ 0,¢ (mod 2r)}. One
is associated with initial coordinates defining the sets of hyperbolic oH@tté
parabolic orbitsPS” and orbitsSSE’S for forward time, see Fig. 6.1. The other
cylinder is the image byS; (see Section 2) of the cylinder of Fig. 6.1, and it
is associated with initial conditions defining the sets of hyperbolic omﬁs”,
parabolic orbitsP;* and orbits, " for backward time.

The final evolutions for — +oco ofthe orbitngE’S andPoi’S, andforr — —oo
of the orbitsH,, ™" and P;~" are clear. Now we want to study the final evolutions of
the orbits having initial conditions o * and<s . More specifically, the objective
of the following sections is to study the regiafis™ N &5° and&y " N &y ina
neighbourhood of the transversal heteroclinic pofntandé;. Remember that the
heteroclinic orbit; (or &) starts parabolically in the periodic orkjt= p = 0 at
7z = 4oo (respectively; = —o0) crosseg = 0 once, and ends parabolically in
the periodic orbiy = p = 0 atz = —oo (respectivelyz = +00).

We will show that in a neighbourhood of the heteroclinic loop formed by the
union of the two heteroclinic orbits andé, there exist oscillatory motions, as a
consequence of which the Poineamap will have a Bernoulli shift as a subsystem
(see Fig. 6.2).

>0

w
Il
o

£<0

Fig. 6.1. Initial conditions set on cylinder = 0.

We introduce a sequence of integers related to the orhit;dh the following
way: given the timeg and the positiont(fp) = 0, we consider the sequence of
all ¢, such that;(¢,) = 0, ordered in such a way that < ¢,,1. There are four
possibilities:

(a) There exist, forall n € Z.
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Z="00

Fig. 6.2. Neighbourhood of the heteroclinic loop formedfyandéo.

(b) There exist, for all n € Z with n > 0, but there is some integérsuch that
it is the first negative integer, starting-afl, for whichz, does not exist. Then
we taker; = —oo.

(c) For alln € Z with n < 0 there exists,, but there is some integésuch that it
is the first positive integer for whicty does not exist. We take = +oco.

(d) The only indices for whichy, exists satisfyk < n </ withk < 0andl > 0.
In this case we set = —oo andf; = 4-o00.

We can define the integers

h —Ih—1
an = —271_ s

and let[y] denote the integer part of, if y € R. Thena, € N U {co} measure
the number of binary collisions of the primaries between two zeragpfthat is,
between two consecutives crossings of the axis0 by ms.

In this way, we can associate a double infinite sequence with each ori of
wherea is the set of the natural numbers. The sequences are of four types:

(@) (-++,a—2,a_1,a0,a1,az,---)

with a, € N for all n € Z. These sequences describe orbits withcutting

z = 0 an infinite number of times in positive time, and therefore they never
escape to infinity, similarly for negative time. As a consequence orbits of this
kind never escape and are never captured by infinity.

(8) (00, Apy1, Ar42, )

with k¥ < 0, anda, € N, for all n € Z such that: > k. These sequences
describe orbits which come from infinity and remain cutting 0 for all time.

(v) (-, a—2,a1—1,0)

with/ 2 1anda, € N, foralln € Z suchthak < [. These sequences describe
orbits for whichmz for negative times cuts = 0 an infinite number of times,
but at some positive time is captured by the infinity.
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The orbits define sequences of type
Py y Hy (00,a1,az,---)
(00,a1, -+ ,a;_1,00)conl =2 1
Py Yy Hj (---,a_1,ag, 00)
(00, ag+1, -+ ,ag, co) conk < 0
Py NPy, Py N Hy (ag, a1) = (00, 00)
N S
HY NPy, HY N H

Table6.1.
Sequences typgs Final evolutions

a E~neEr, £ not, o~ n&r, o—not
B H-NEY, H NnOT, P~ n&EF, P noOT
y ETNHT, & NPT, 0" nHT, o npt
B H- NHT, H NPT, P nHt, P NPt

Table 6.2.

(5) (OO, ak—1, - ,04]-1, OO)

with k £ 0,/ 2 1anda, € N, foralln € Z such thatt < n < I. These
sequences describe orbits of capture and escape.

In order that sequences are well defined it is sufficientghat 0 (mod 27)
for all 7, € R such that(7,) = 0. Otherwise there would be a triple collision.

In Table 6.1 we show the types of sequences which are defined by the orbits
with initial conditions Py, Py, Hy and Hj, and their intersection.

The main result in this paper is the following theorem, which describes the

dynamics ofimz in a neighbourhood of the heteroclinic loop formed by the orbits
&1 andé.

Theorem 6.1. Thereexistsaninteger » > 0 suchthat for every sequence of integers
{b,,} of one of the previous types, providing that b, = b (for all n € Z such that b,
is defined), thereis an orbit of m3 such that its associated sequenceis {b,}.

Theorem 6.1 shows the existence of all possible final evolutions (without triple
collision) for the restricted isosceles three-body problem, which are given in Table
6.2. To prove this theorem we shall introduce some notions.

7. The Bernoulli shift asa subsystem of a map

As usualZ will denote the set of integer numbers, adavill denote the set of
non-negative integers numbers.
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Let A be the selN | {oo}, whereoo is an arbitrary element. We providewith
a total ordering with the usual ordering of naturals extended by oo for all
a € N.

Let S be the set of sequences of elementd aff the followings types:

@ (---,a_2,a_1,ap,a1,az,---)with a, # occforalln € Z;
(b) (ak, axs1, ags2, ---) withk < 0,a; = oo, anda, # oo for alln € Z such that

n>k;

©) (- ,ai—2,a1-1,a;) with [ 2 1, a; = 00, anda,, # oo for all n € Z such that
n<lI;

(d) (ag, ag+1, -+ ,ai—1,a;) with k £ 0,1 2 1, conay = a; = 00, anda,, # oo

foralln € Z suchthak <n < I.

We introduce a topology i as follows. For each elemeamte S there exists a
base of neighbourhood®;(a)}, j =1, 2,3, ... defined by

Ui(a)={d" € S:a,
Ui(a)=1{d' € S:a,
Ui(a)={d" € S:a,=a,if —j<n<lI, a2j},
Ui(a)={d" € S:a,

= ay if [n|< j},

=ay,ifk<n<j, a 2 j},

=a,ifk<n<l, a,a 2 j},

whereq is of type (a), (b), (c) and (d) respectively. Foralk S the neighbourhoods
{Uj(a)} satisfy the following.

(1) EachUj(a) is not empty.

(2) Forallj,a e Uj(a).

(3) Given two arbitrary neighbourhood$ (a) and U;(a), there exists another
neighbourhood/;, (a) such thaty,,(a) C U;(a)NUj(a). Itis sufficient to take
m 2 maxi,j}.

(4) For allU;(a) there exists a subsét of U;(a) such thata € U, and for all
b € U there exists som&;(b) contained inU.

We remark thatit/ = U;(a) andi = j + 1, then statement (4) is satisfied. In short,
the neighbourhood basi#/; (a)} providesS with the structure of a topological
space.

Now, we will prove the following proposition by using the technique of con-
tinued fractions.

Proposition 7.1. With the topology induced by the neighbourhood basis {U; (a)}
the topological space S is compact.

Proof. In order to show tha$ is compact we shall prove the existence of a home-
omorphism betweefi and the squar€ = [0, 1] x [0, 1]. SinceC is compact with
the Euclidean topology dR x R, it follows thatsS is compact.

A sequenceng, m1, mo, - - - , m; of arbitrary real numbers, all positive except
perhapsng, defines the continued fraction
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[mo, m1,m2, --- ,m;j] =mo +

miq +
! mp +

. 1
+ 1
mj_1+ —
mj

A continued fraction isimpleif all m; € N.

Letmy, mo, --- , m; afinite sequence of numbersif) mo € Z and[mq, m1,
mp, ---m;] be the continued fraction associated with them. From Theorem 7.2 of
[14] we get that any finite simple continued fraction represent a rational number.

Now, we consider the infinite sequenae, mo, - - - of numbers iN andmg €
7. The value of any infinite simple continued fractipng, m1, m2 - - -] is define
as lim,_, oo[mo, m1, m2--- , m,]. By Theorem 7.7 of [14] we have that this limit
converges to an irrational number.

On the other hand, ifn1, mo, - -- is a periodic sequence, that is, there is a
n € N such thatn, = m,, for all »r € N sufficiently largermg € Z. Then the
associated continued fraction is periodic, and by Theorem 7.19 of [14] we have that
it converges to an irrational number.

From the sequences Sfwe define the following continued fractions:

1
Xaga_1a_p = 1 ,

ao + 1

a-1+

a-2+
1
Yayazaz--- = 1 )
ai + 1
2+
as+
1 .
Xapa_1-—ag+1 — 1 if k<0,
ag +
0 a-i+
1
+
ak+1
1 .
Yarap--ai_1 = 1 if [>1
ai +

az +

' 1
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The mapy, that assigns to each sequence of type (a) the poi@twith coor-
dinates(xugq_1a_p--» Yayazas-) iS @ homeomorphism between the set of sequences
of type (a) and the subset 6fformed by points having irrational coordinates.

The mapf; that assigns to each sequence of type (b) the @aif_;...q;. 1.
Yarazas--) 1T k < 0,and(0, ygya0a5---) if K = 0, is a homeomorphism between the set
of sequences of type (b) and the subsef dbrmed by the points having a rational
number as first coordinate and as second coordinate an irrational number.

The mapf. that assigns to each sequence of type (c) the @ait_ia_,.-,
Yarap—ar_1) 1f 1 > 1, OF (Xg9a_4a_,-., 0) if I = 1, is @ homemomorphism between
the set of type (c) sequences and the subsétfofmed by the points with irrational
first coordinate and rational second coordinate.

The mapf; that assigns to each sequence of type (d) the @@if_;...q; 1
Yaraz--a_1) Tk <0andl > 1, (Xqpa_q...ar,1, 0) if K < Oandl = 1; (0, Yayap--a;_q)
if k =0and > 1,and(0, 0) if k = 0and! = 1, is a homeomorphism from the set
of type (d) sequences onto the subset of pointS bfaving rational coordinates.

In short, the applicatiorf : S — C restricted to the sets of sequences of type
(@), (b), (c)and (d) i, f», f- andf, respectively; itis ahomeomorphism between
SandC. O

The mapping : § — S defined by(o (a)), = an+1, witha € S is known as
theBernoulli shift of S. The domain of definitionaf isD(o) = {a € S : ag # o0},
and itsimage is Inv = {a € S : a1 # o0}.

The version of the Bernoulli shift as a subsystem of a convenient Peintap’
used here was inspired Bjoser [13]. If f is a continuous map frori into itself,
andg is another continuous map frorinto itself, then we say thatis asubsystem
of f if there is a homeomorphismfrom Y to 2(Y) C X such that the following
diagram commutes.

f

X — X

T

Y—g>Y

Let 4+ andi/~ be two copies of the squafé, 1] x [0, 1]. Now, from the
geometry of a convenient mabfromi/ = U+ UL/~ into itself, we will show that
there are two copies of the Bernoulli shiftas a subsystem of. We need some
preliminary definitions.

Let © € (0,1). We define avertical curve in T asx = v(y) if
0Sv(y)<1forall0<y<1,and

lv(yD) —v(2) ISEplyr—y2| forall 0<y; <y, =1

If v1(y) andv2(y) define two vertical curves, and if8 vy (y) < va(y) < 1for
alo< y <1, wecallthe seV = {(x,y) e UT : v1i(y) £ x < va(y)} avertical
stripin .

We define theliameter of a vertical stripV as

d(V) = ogyagxl(UZ(y) — v1(y)).



The Elliptic Collision Restricted Three-Body Problem 335

Similarly, we describe &orizontal curvein U™ asy = h(x),if0 < h(x) £ 1
forall0<x <1,and

| h(x1) —h(x2) IS p|x1—x2| forall 0Sx;Sxp2=1

If h1(y) andh2(y) define two horizontal curves, and if® 21(x) < ha(x) <1
forall 0 £ x £ 1,wecalltheseH = {(x,y) e Ut : hi(x) £ y £ hp(x)} a
horizontal strip in /™.

We define theliameter of a horizontal stripH as

d(H) = OmaX (h2(x) — h1(x)).

<x<1
Similarly, we define theertical curves andstripsin U/ ~.

Proposition 7.2 ([13], Lemma 1, p. 7R Let V1 D Vo D --- be a sequence of
vertical strips (or horizontal strips). If d(Vx) — 0 ask — oo, then (N2, Vi
defines a vertical curve (respectively, horizontal curve).

Proposition 7.3 ([13], Lemma 2, p. 7R A vertical curve and a horizontal curvein
U™ or U™ intersect at exactly one point.

We set the following conditions:

(@) LetF be a homeomorphism frod to F(U{) c R? such that there are two
families of pairwise disjoint vertical stripg,” andV,” withn € N, and two families
of pairwise disjoint horizontal strip&,” andH,;” with n € N, andF(V,") = H,,
F(V,) = H, foralln € N. The vertical boundariesV," andaV,~ of the vertical
strips v, and V,~ underF are the boundaries of the horizontal strips preserving
the order; thatis7(dV,") = 9H,” andF(9V, ) = dH," (see Fig. 7.1).
Furthermore the stripg= and " are ordered as in Fig. 7.2. The set of vertical
strips is completed by adding = {(x,y) e U" | x = 1} andV = {(x,y) €
U~ | x = 1}. We need thaV,” — V; andV,” — V_ whenn — oco. The limit
setH} and H are defined in a similar way.
(b) LetV c U2V, be a vertical strip in/*. ThenV, = V., N F~ (V) is a
vertical strip in{~ for all n, and for some € (0, 1) we have thad (V) < r-d(V).
Let H C US> H," be a horizontal strip ii{*. ThenH, = H, N F(H) is a
horizontal strip i/~ for all » and we have alsd(H,) < r - d(H). A similar
assertion is true for the families of vertical and horizontal striggm

We letS* and S~ be two copies of the set, and we defined = st U S~.
We consider a homeomorphisin: S — U, such thati, = h [g+: ST — U*
andh_ = h |g-: ST — U~. On other hand, we define the mép S — S such
thats |g+: ST — S~ and& |g-: S~ — ST are copies of the Bernoulli shiét.
Then the domain of definition & is D(5) = {a € S:ap # oo} and its image is
Im& = {a € S : a1 # oo}. Let F be a continuous map &f into itself, such that
Fy=F ly+:U" > U andF_ = F |y-: U~ — U™ If the following diagram

ULRZ
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o
1
1
\

+

%

1
\
1
1
1
I :
! : H
1
1
I
|
A

ur U

Fig. 7.1. Application of the vertical strip¥,; into the horizontal strips7,,”.

H,
\—/\_/ Hn
\_’\_/
——————n,
—— 1 H

v Vo Ve

Fig. 7.2. The ordering of the vertical and horizontal strips.

is commutative, we say th& hastwo copies of Bernoulli shift o as a subsystem.

Theorem 7.4. If F : 1/ — R? isa map satisfying conditions (a) and (b). Then F
has two copies of the Bernoulli shift o as a subsystem.

Proof. The setS has four types of elemends 8, y andé. We give explicitly the
images for elements of typesandp underh, the ones for typeg ands are similar.
From statements (a) and (b), we can verify tiator 7~1) maps each of the
squareg/™ andi/~ into horizontal (respectively, vertical) strips containedfin
andi/* respectively.
Leta=(---,a_1,a0, a1, ) be asequence of type We define recursively
forn =21

Vaoaseas = Vay VF Ve ya,):
and
Vaasan = Vao VF Vel ar,)
Using condition (b) we have th tafl_,,afn is a vertical strip contained ™
andV,., ,..., IS @ vertical strip contained &~ . The same condition assures us
that the diameters df=,  , satisfy

dVE, o )Sr-dVE . YSrmdVE )<,

in consequence, the diameters tend to zero when co.
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From the definition of vertical strip we have

)nfl

+ _ v+ —1,1,— —1,.1 4 -1 —1 v sign(—1
Vaoa—l‘“a—n+1 - Vao nr (Va—l nr (Vafz NF=C--F (V;Eu )
-)))
and
Vo ay =V N F NV N FNVS, A F N PRSI ),
Then we find that
v cvt
apa—1---d—p apa—1---d—p+1

is satisfied, and therefore using Proposition 7.2,
+o00

Vi@ = () Vaba roa,
n=0

isavertical curve itd ™. Equivalent properties hold for the vertical Stris, 1a
inZ{~. Thus we have the vertical curv&s (a) in /™ andV ~(a) contained iri/~,

V¥a) ={peU* :F"(p)eV, form=0-2 -4, ... and
F™(pev, form=-1-3 ..}

Vi@={peU :F"(peV, form=0-2-4,... and
F™p)eV, form=-1-3..}

Forn = 2 we define recursively

H;{az-.-an = H; N f(Ha_z..-an)’
and
Hy oo = Hy NFHE ).

Condition (b) assures us tha ,, , is a horizontal strip i{*, andH,_,, , is

...ap

a horizontal strip i/ ~. As above, the diameters of the horizontal strips satisfy
d(HE . q) Sr-dHE. ) St d(HE) <t

Therefore, the limit of the diameters tend to zero wher oo.
Now, we use the definition of horizontal strips to obtain

_ 0 _1yn—1
Hf o o = Hi 0 F(H, N F(HS, N F( FHID) ),
—_ H —
Hp .y = Ha N F(Hyy 0 F(HE N F(C-- FHZITDY ),

and from both equalities we get

HF CHT

ayaz...an41 ayap...ay”
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Finally, from Proposition 7.2H " (a) = N2\ H;- is horizontal curve id/*.

ayaz...an

Equivalent properties hold for the horizontal striigs ., , in~. Hence, we get
the following horizontal curves it ™ andi{~ respectively,

form=0,2,4,... and
form=13,...},

HYa)={peUt :F™(p)eHS ,
f_m(p) € Ha;1+

1
and
H (@)={pelUd” :F"™(p)e H, . form=0,24,... and
F™p) eHS  form=13,...}.

am+1

From Proposition 7.3 we obtain the fact that (a) N H*(a) (or V= (a) N
H~(a)) is a unique poinp € U™ (respectivelyld ™).

Now, we shall consider a sequence of tyh¢hat is,b = (ax, axs1, - - - ) where
k < 0. In this case we have that the sequemgery, . .. defines horizontal curves

HY(b)={pelU" :F"(p)eH
F"(p) € H,,,

form=0,2,4,... and
form=1,3,...},

1
1
and

form=0,2,4,... and
form=1,3,...}.

H (b)={peU :F"(p)eH,,
F™p) e H

1
+1

Proposition 7.2 tell us that,t N F~1(Vy) (or V,- n F~L(V)) is a vertical
curve inl/* (respectivelyl{~) for all n € N. Moreover, the inverse image Iy of
a vertical curve o/t (U{~) is a vertical curve inside each strifj” (respectively,
V). Then

Vi) =vinF v, nF v N
_ ian(—1 —k+1 _ ign(—1 —k
N FRRETY T A VET )
={peU":F™(p)eV, form=0-2 -4 ... and
F™peV, form=-1-3 ... withO=m =k}

and
Vo) =V nF R nF v, N

i _1\—k+1 ian —1)—k
N f*l(VS@r( D ﬂffl(vosggr( 1 ))))

k41

={peU :F"(p eV, form=0-2-4,... and
f_m(p)eVa: form=-1,-3,--- with0<m < k}
are vertical curves ity ™ andi/~ respectively. Consequently, from Proposition 7.3

we get thatV™(b) N HT(b) (or V=(b) N H~ (b)) is a unique pointp € U™
(respectivelyl(™).



The Elliptic Collision Restricted Three-Body Problem 339

Note that for the sequence®f typec all the succesive images and inverse im-
ages ofi(a) underF exist. However, for asequeneeftypes,a = (ax, ag+1, -+ )
all the preimages exist, but only the fit&t images. That isF!*(h, (a)) belongs
to a vertical curve with indezo.

Let p € U be the intersection point of the vertical curve with a horizontal curve,
associated with one of the sequenegs, y ors. Then, we defingé, (a) = VT (a)N
HY(a)ifae St andh_(a) =V (@) NH (a)ifae S .

The continuity ofh is obtained as follows. We take two sequenceg;i'rﬁ they
are of typex, many terms coincide, and if they are of typéen an element aj; is
large enough. Then poingsandp’ belong to the same vertical and horizontal strips
with small diameters if the elements are close enough; that is, if a large number of
terms of the sequence coincide.

The maph is injective because the strips of the same class having different
subindices are disjoint. Sincgis compact and is continuous, we have thats)
is a compact set. Sindeis injective,h 1 ln3) is @ continuous map. Henck,is
homeomorphism betwe&]andh(g).

Due to the construction, we have that the Bernoulli shifs a subsystem afF,
thatis,hod = Foh |,z . O

When the mapping is C*, condition (b) is usually replaced by another condi-
tion which is easier to verify. We will replace it by the following:

(c) WhenR € (0, 1) we can define in the tangent bundle the sector

S, =, v) € T U o] < Rlul},

on the set of pointéx, y) belonging to vertical strips (whef&, )l is the tangent
space foi/ at (x, y)), so that:

() The bundlex™ is mapped into itself under the differenti@.F, that is,
+ +
DF ey (B y) © Epiy y)-
(I If (uo,vo) € 2&» and (u1,v1)) = DFxy)(uo,v0) € Tru. U, then
uol = R™Hual.

In an analogous way, iE~ is the bundle of sectors defined over horizontal
strips by|u| < R|v|, it is mapped into itself undeb F~1 and|vg] = R~ 1jvy|.

Proposition 7.5. If F : U/ — R? isamap which is continuously differentiable and
satisfies conditions (a) and (¢) with0 < R < 1/2, then condition (b) holds with
r=R(1-R)L

Proof. The proof is similar of the proof of Theorem 3.2 in [13] p. 711

Theorem 7.6. Let F : U — R? be a map which satisfies conditions (a) and (c).
Then F has two copies of the Bernoulli shift o as a subsystem.

Proof. The proof follows from Theorem 7.4 and Proposition 7.&
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We have seen that in the neighbourhoodjo&= 0, p = 0 the flow of the
restricted isosceles three-body problem is very close to the Sitnikov problem flow,
so the proofs of Lemmas 4 and 5 ([13], pp. 167—-181) follow also for the restricted
isosceles three-body problem. This is a consequence of the fact that in our problem,
as in the Sitnikov one, when the third body arrives parabolically at infinity there
is no distinction between the case where the primaries are moving in an elliptic
collision orbit and that where they are in an elliptic orbit.

Remember that Poincarhapsf; and f_ defined in Section 2 are given by
fx(o. 10) = (1. 11), such thaty ™" = f1(£5) and&y " = f-(E5™).

Lemma7.7 ([13] , Lemma 4, p.8R Let y = {(Zo,%0) | Z20 = zo(A), 10 =
to(x) with 0 < 1 < 1} bea €t arc contained in 83“5 (or £*) such that y
meets P,~" (respectively, P, ") in the endpoint corresponding to A = 0. Just at
this point the curves y and Py™" (respectively, P, ") are nontangential. Then the
image curve f1(y) = {(Z1,11) | 212 = 22(0), 1 = t1(A) with 0 = A = 1} (or
f-(y)) approaches P;" (respectively, Py ") spiralling, that is, 11(A) — +oo
when A — 0 (seeFig. 7.3).

Po-i-.s N i

- ~a.

Fig. 7.3. Showing Lemma 7.7.

Fore > 0 sufficiently small, we definé(;—L’S(e) as the set of points ifﬁ”whose
distance fromPé” is lesse. Since the curvep(f" is continuously differentiable
(actually analytic), we can associate with any pding Soi’s(e) a unique point
£ € Py such thatd(z, Py") = d(¢, &). Hered is the distance over cylinder
z = 0 induced by Euclidean distance®f.

In 86“’5(8) (and&; " (¢)) we define two bundles of sectors: The bunBlig =
Yo(e1/3) assigns to every poirgt Ear’s(s) (respectivelyg, ~* (¢)) the set of lines
of the tangent plane to the cylinder= 0 at this point, which form an angle
less than or equal te'/3 with the line throught; (respectivelyg;) parallel to the
tangent to the curvPJ" (respectively,P, ") at¢. The bundl&] assigns to every
point the set of lines complementary to thatXf (see Fig. 7.4). Similarlyxs
and £} are the corresponding bundles of sectors (ﬁ(,@l” (respectively&, ™),
obtained for example applying the symme8y to o and X;. Remember that
S1(2,1) = (=2, —1).
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+u
Fy

Fig. 7.4. Bundles of sectors.

Lemma 7.8 ([13], Lemma 5, p. 9L Thereexistsav in 0 < v < 1, such that for
sufficiently small e the map £, (or f_) takes 56“‘“ (¢) (respectively, £, (¢)) into
£ " (") (respectively, £ (¢")), and the tangent map Dfy (or Df_) takes the
bundle ) = £(e¥/3) into £1 = T1(e"/3). Moreover, if wo € £, w1 = Df4(wo)
(or Df—(wo)) and ug isthe orthogonal projection of wq into the centre line of X
and u1 that of w1 into the centre line of 1, then |u1| < ¢~ 1/3|ug.

The situation of Lemma 7.8 is depicted in Fig. 7.4. Now, we take a curae
in Lemma 7.7. This one is differentiablé}) with startpoint inPg“s (or Py %), and
itwill lie in % for sufficiently smalls. HenceDf. (y) (or Df_(y)) will lie in Xy;
that is, the direction oD £, (y) (resprectivelyDf_(y)) deviates from the nearest
tangent at most by an angt¢/. This shows thatf, () (or f_(y)) approaches
Py" (respectively,P; ") also in its tangent direction.

8. The Bernoulli shift as a subsystem of the Poincar& map

Sitnikov  has shown the possibility of existence of oscillatory motions for a
special restricted three-body problem [18].exsEev proved the existence of such
a motion by using the existence of homoclinic or heteroclinc orbits, showing how
to embed the shift of infinite elements in two-dimensional diffeomorphisms [1],
[2]. A simplified geometrical version of this type of statements was provided by
MOSER [13].

In [8] LLIBRE, MARTINEZ & Sim6 studied the restricted circular three-body
problem for values of the Jacobi constahtnear the valu&,, associated with
the Euler critical pointLy. A Lyapunov family of periodic orbits neaty, the so-
called family (¢), is born atC = C, and exists for values of less thanCs.
These periodic orbits are hyperbolic. The corresponding invariant manifolds meet
tranversally along homoclinic orbits (see Fig. 8.1). Symbolic dynamic techniques
are used to show the existence of orbits passing in a random way (in a given sense)
from the region near one primary to the region near the other.
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|

Lyapunov periodic orbit

Fig. 8.1. Loop formed by two homoclinic orbits; andé, to thel” Lyapunov periodic orbit
around the critical poinL» for restricted circular three-body problem.

We have introduced two periodic orbifs. andl'y. in z = —oo andz = +o0,
respectively, for the restricted three-body problem. The unstable and stable man-
ifolds are analytic (2-dimensional cylinders), and they are formed by parabolic
orbits. Besides, in the plane= 0, they intersect each other transversally at het-
eroclinic pointsg; andé&;, which correspond to two heteroclinic orbis and
(see Fig. 8.2). We shall show the existence of solutions with final evolution of
oscillatory type in the restricted isosceles three-body problem. In the case of the
Sitnikov problem, these orbits exist in a neighbourhood of the homaoclinic loop. In
fact, if we consider a convenient identification of phase space using the symmetry
of the restricted isosceles three-body problem, we can reduce the heteroclinic loop
to a homoclinic one, in the same way that Moser did it for the Sitnikov problem.
Here, we do not consider such an identification in order that the description of the
dynamics of the flow for the restricted isosceles three-body problem be clearer and
more direct. To understand the dynamics, around the loop of Fig. 8.2, we will apply
Theorem 7.6.

Fore > O sufficiently small, we defin€;*(e) = {¢ € & : d(¢, Pi™)
< ). £5" (e) as the symmetric regiofiy ' (¢) = S1(&5 (). In a similar way,
we define&y () = (¢ € &' 1 d(¢, Py ") < e} & "(¢) as the symmetric
region&, " (e) = S1(&; " (¢)).

periodic orbit
at z =400

v periodic orbit

I at 2 =—o0

Fig. 8.2. Loop formed by the two heteroclinic orbi§s andé, to the periodic orbit§_ and
"4 at infinity, for the elliptic collision restricted isosceles three-body problem.
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Let U be the connected component & “(¢) N 56“’5(8) which contains
the heteroclinic poing; it is clear from Proposition 5.1 thdf *+ containsg), €
Py" N Py In asimilar way letV ~ be the connected componenggf* (¢) N
&, " (¢) which contains the heteroclinic poigf. Note thatS1(UT) = U~.

For sufficiently smalk the boundarie8U* are four arcs of clasé: Cf, €5,
C5 andCj respectively (see Fig. 8.3).

—u
P 0 PO‘EH

=S
P0+$ u P 0

Fig. 8.3. Arcs Cf, Cét, C?jf andcf

Let U be the union of rectangld$* andU ~. From now onU ™ andU ~ will
play the role of/™ andi{~ (respectively) in Theorem 7.6.

We define the mapping : U — f1(E5°) U f-(&, ") in such a way that
F |y+= fy andF |y-= f—. The mappingrF will play the role of F in Theorem
7.4.

From Proposition 5.1 the arc{SIr (Cy)and Cgf (C3) are curves ending on
Py (Py*). Therefore, by Lemma 7.7, the image (U ™) spirals towards?y "
intersecting in infinitely many componentstio, in such a way that the diameter of
the strips tend to zero when the strips tenng“o”. So, £+ (UT)NU™ isthe union
of infinitely many horizontal strips (perhaps dropping finitely many components
of £,.(UT) N U~ which are not horizontal strips, see Fig. 8.4). We denote these
horizontal strips byH, , H, , ..., beginning with the strip nearest @, N U~
ThenH =Ilim, . oo H, =C; NU".

In a similar way, we have that the strifp. (U~) approaches?, " spiralling
(Lemma 7.7). Hencg— (U ~) N U™ is the disjoint union of infinitely many hori-
zontal stripst, H2+, ..., beginning with the strip nearesth;f NUY (perhaps
dropping finitely many of the components ¢f (U~) N U™T). In consequence,
Hf =lim, o HS =CfnU™.

We can make a similar study to analyge'(U*). So, f~1(U™) is a strip
contained ir€; " which cutsU ~ infinitely many times, spiralling towardg&, **, in
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—u
PO Po-i-,s

Fig.84. f-(UTYNU".

such away that the diameter of the strip decreases to zero when it apprégches
The intersection of this strip with/ — has infinitely many components, bounded
by C, andC, . Each one of the components 6L W) N U~ will be called a
vertical strip ofU ~. Hence, we have defined a family of vertical stigs, v, , .. .,
contained inU/ ~, which are bounded by the curv€§ andC, , in such a way that
its diameter goes to zero when- oo. We defineV = lim, oV, =C, NU™.
In the same mannegf;l(U—) is a strip contained irﬁa“”, which cutsU™
infinitely many times, spiralling th(j“S. The components of;l(U*) NUt are
vertical stripsv;*, V5", ..., bounded by the curves) andC; . Their diameter goes
to zero when they approad, and we definé’f = lim,_.« V, = C; NU™.
Observe thaV,” = S1(H,") andV,” = S1(H,).

Lemma 8.1. The following relations hold:
[V =H, o f-(V,) =H, .
Proof. From Section 2 we havﬁj;1 = 810 f+ o S1. Therefore

V.E cSi(f+U) = fiSUT,

and hence
o
frvh csiot = H (8.1)
k=1
In a similar way we have

fNHD) = SufeSiHy) = Sufe(V,H) € S <U Hk_) .

k=1
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and hence

H C f+81< U Hk) = f+< U V,j). (8.2)
k=1 k=1

Then, from (8.1) and (8.2) it follows that)>>, f+(V,") = U2, H, . Ina
similar way the equality_(V,,) = H, can be proved. We have strifj andH,"
pairwise disjoint; each vertical strig," must be sent by’ onto a horizontal strip
H_ . Itremains to show that = n.

Lety be the symmetry line df *, that is, the diagonal df * throughé;. Then
7 has a point irPg“’s, and therefore by Lemma 7.7 the imagie(y) spirals towards
PO“‘. Hencef; (y) andS1(y) have infinitely many pointg; of intersection. We
order these points so thaj is the first point of intersection witl§1(y), which is
an arc with endpoint af; " N &5 *, p2 is the second point, etc. SPJ; pi =

Sip)n f74@) and
SN A0 = 1Sy Ny =Sty n g

Considering the ordering of intersection, it follows that( py) = S1pk. AS px
belongs to a vertical strify,” andS1(px) belongs to a horizontal striff,” we get
that one is the image of the other, thatis=n. 0O

Now, conditions (a) and (c) of Theorem 7.6 follow essentially from Lemmas 7.8
and 8.1. In short, we have proved the following result (see the notation of Section 8).

Theorem 8.2. The Poincaré map F defined in U has two copies of the Bernoulli
shift & definedin D(5) C S asasubsystem. That is, there exists a homeomor phism
hof D()onto h(D(0)) C U suchthat Foh =hoo.

Now, we see that Theorem 6.1 is a consequence of Theorem 8.2.

Proof of Theorem 6.1. From the sequend®,,} of Theorem 6.1 we construct a new
sequenceéa, } such that, = b, — b. The points inV~ (Vk+) are initial conditions
for the orbits ofms, such that the time up to the next collision betweenand
m2 is 2 (k + b + ©), whereb is related with the integer number of turns given by
F(U) around the cylindet = 0 before intersecting/ though the sidec; N U+
(C, NnU7),and? € [0, 1).

The sequencedg;,} belong toD (), and by Theorem 7.6 we can associate with
each of these sequences a unique ppiatU ™ U U~. By Theorem 7.6 we know
that F7"(¢) € V;; UV, for all a, of the sequencgu,}. Therefore for the orbit
defined by the integers, measure the number of binary collisionsof andm
between two consecutives crossingsby 0. O

From Theorem 6.1 we can derive some consequences of the final evolutions of
our problem. From Theorems 4.2 and 4.3 we know that in a neighbourhood of the
heteroclinic orbits defined b§; andé,, there exist orbits with final evolutions of
typesH- NH, P~ NHT andH~ NP*; while the orbits associated with and
&> have final evolutions of typeB~ N P~.
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Using Theorem 6.1 we have that/iiD(c)) there are points with associated
orbits of the other types of final evolution described in Table 6.2. Furthermore we
can establish the existence of infinitely many periodic orbits. {bg} be am-
periodic orbit sequence with, = b. Then Theorem 6.1 assures the existence of a
point¢ = h({b,}) in U U U~ such that the associated orbit:a§ is periodic of
period 2rm, because

F™(¢) = he"h™(¢) = ha" ({by)) = h({ba}) = ¢.

As the Poincae’'mapF has the Bernoulli shift as subsystem, from Theorem
3.10 of [13], p. 107 we have the following proposition.

Proposition 8.3. Thedlliptic collision restricted isoscel esthree-body problemdoes
not have a real analytic integral.

9. Captureor escape orbits

In Section 8 we have seen that there are 16 types of final evolutions for the
restricted isosceles three-body problem (see Table 6.2), without taking into consid-
eration those beginning or ending in triple collisions.

Let p = (Zo, to (mod 27)) be a point of the cylinder = 0 withzg (mod 27) #
0. We suppose thap > 0. We say thap defines goarabolic orbit of type PZJ;’S
forn € Nand writep € Pztl’s if the orbit throughp when time is zero crosses 2
times the linez = 0 before escaping parabolically 0= +o0co whent — +o0; or
equivalently(f— o f1)"(p) € Py .

We say thaip defines goarabolic orbit of type P2_rzi1 forn e NU {0}, and we
write p € Pz;;il if the orbit throughp when time is zero crosses 2- 1 times
the linez = 0 before escaping parabolically to= —oco whens — +o0, or
equivalentlyf, o (f— o f1)"(p) € Py .

Now, we suppose thdt < 0. We say thap defines goarabolic orbit of type
P, forn € N, and writep € P, if (f 0 f2)"(p) € Py .

We say thap defines goarabolic orbit of type szl’jr'l forn € NU{0}, and write
pe Py it foo(fyof)(p)ePy.

We say thatp defines aparabolic orbit of type P,,"* for n € N and write
p € P, " if the orbit throughp when time is zero crosses #imes the linez = 0
before being captured parabolically o= —oco whenr — —oo, in other words
(fro f)™"(p)e Pyt

We say thap defines garabolic orbit of type sz:’fl forn € NU{0}, and write
pe Py if fito (fio f)™(p) € Po .

We considet > 0 again. We say that defines garabolic orbit of type PZJ;'“
forn € N, and writep € P;>", if (f— o f1)™"(p) € P4 .

In a similar way,p defines garabolic orbit of type Pz_n’jr‘l forn e NU{0}, and

we write p € Py if f o (oo f)T"(p) € Pyt
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We say thatp defines ahyperbolic orbit of type Hsz for n € N, and write
pE HZJ;’S, if the orbit throughp when time is zero crosses #imes the lingz = 0,
beJl:oSre escaping parabolicallyto= +o0co whent — +o0; thatis,(f—o f1)"(p) €
H'.

We say thatp defines ahyperbolic orbit of type Hz_n'jl forn € NU {0}, and
write p € Hy )1, 1f fy o (f-o f1)"(p) € Hy . Letz < 0. We say thap defines
ahyperbolic orbit of type H, ** forn € Nif (f; o f-)"(p) € Hy ™.

Similarly p defines ehyperbolic orbit of type H;;;il forn € NU {0}, and we
write f— o (fy o f2)"(p) € Hy .

Letz > 0. We say thap defines ahyperbolic orbit of type H;;” forn e N,
and writep € Hztl’“, if the orbit throughp when time is zero crosses 2imes
the linez = 0 before being captured by = —oco whent — —oo; that is,
(f-o f+)™"(p) € Hy .

We say thatp defines ayperbolic orbit of type H{;ﬁl forn € NU {0}, and
write p € Hy 'y if f=1 o (f= o f)™"(p) € He "

Letz < 0. We sayp defines ehyperbolic orhit of type H,, " for n € N, and
write p € Hy, ", if (fy o f-)™"(p) € Hy "\

We say thatp defines ayperbolic orbit of type szlﬁl forn € NU {0}, and
write p € Hy, "1, if frto (fso f0)™"(p) € Hy "

Let &5 € {z > Oy and&,* € {z < 0} be the domains of definition of
fro(f-o fr)tand f— o (f+ o f_)" for n € N U {0} respectively; and define
&3 {2 > 0yand&,’, C {z < 0} with n € N as the domains aff_ o f4)"
and(fy o f_)", respectively.

Also, we define§; " < {z < 0} and&," € {z > 0} as the domains of
definitionfor fy o (f_o fy)™andf_o(fro f_) " forn € NU{0}, respectively;
and in a similar way,", C {z < 0} and&,"; C {z > O} with n € N are defined
as the domains daff— o f4)™" and(f+ o f—)™", respectively.

We observe thafy ™, &, &5 and&, " are the domains of the mag,
/-, -t and f=* respectively, that we obtained in Section 2.

We will study the final evolution of the points i} ** for the points inf;* a
similar study can be made.

We consider, aC arc, contained idg ** with endpoint atP;* (see Fig. 9.1).
Now, we use Lemma 7.7 to obtain the domain of nyap o f, restricted toy,
which will be denoted by,"*. Observe thag;* = 715" N fr(y N &),
then we omit fromy infinitely many closed intervalg such thatf, (1;) € &, °. It
is clear that such intervals accumulateRg*. By continuity, the domaiig; " is
EJ’S minus the strip$B1, Bo, ..., which intersect the arg in the closed intervals
I1, I, . .. respectively. These strips are the preimagg.oic; ") N Hy ** by f+.

Each one of these strip8; has two curves as boundary, one of these curves
corresponds to the points &f * and the other one corresponds to orbits which
end in triple collision. The interior of the strip; is formed by the points off; .
Using the symmetny$; we obtain the set§;”", P, and H,"".
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=u
Fy Pom

+u
By B

Fig. 9.1. Thearcy in £;°.

The domain of definition of+ o f_ o f4 restricted toy is
vyt = [N THEST N ET N iy NETTN).

FromLemma7.7,we knowthah(yﬂ %yisacurve splralllngt " therefore
the components of . (y N 50 *) which are close enough Ii?b+ “are transversal to
Py " insuch away thaf_ (50_ 0 fr(y NEG)) is a curve which spirals tending
to P, . Then, to obtairy * we must omit fromy, not onIyU 1 1i, but also

27 U2 i where eachy;; is a closed interval such th;L(f+(Il])) ¢ &5
We must observe that when varyiigthe intervalsl;; accumulate to the interval
I; as we show in Fig. 9.2.

P0+. s

{ HHH = HHH };Hi}lm

111 I, - I [21]22 Iz
Fig. 9.2. Accumulation of the intervalg;;.

By continuity, the domair€; " is £&* minus infinitely many strip11, B1z,

, B21, Boo, ..., B31, B3p, ... which intersect the arg in the closed intervals
I, o, ..., 121, Do, ..., I31, I3, - - - rESpeEctively.
By arecursive process we can obtain the domains, £, *, ... .. Sinces, " =

S1&," itis enough to obtaid, ** for n = 0. Itis clear thay () (/3 & ") is a
Cantor set.
In consequence, the following theorem holds.
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Theorem 9.1. For therestricted isoscel es three-body problem, the set of the initial
conditions which define orbits of type PE", PE*, HE and P for n € NU {0},
on the cylinder z = 0, isthe one shown in Table 9.1.

The set of initial conditions is homeomorphic to
of type
= s -
Pyt or PG S1\ {point}
pEYorpES n>1 countable union of intervals
open and disjoint
HE"orHFS n>1 set of positive Lebesgue measure
+,u +,5 .
P, NP, a countable set of points

PEYNHES or HE* N PE* | countable union of intervals
open and disjoints

HEYnHES set of positive Lebesgue measure

Table9.1.

Appendix A. Computations of the unstable manifold of the parabolic orbits

The unstable manifold of the periodic orlit= p = 0 for the differential
system:

da_ o

dt 4°

d 4 4 -3/2
LT (14+L20) |
dt 4 4

dt

g

dt

is an analytic curve ip and 2r-periodic int. In order to obtain its expression

+00
q=F(p.n)=>) ayt)p",
n=0

we expand the coefficients, (¢) in Fourier series. Derivating = F(p, t) with
respect ta and substituting/q /dt anddp/dt as power series g from (3.3), we

obtain a systerda, (t)/dt = g,(¢) that can be solved recursively. From (B.2) we
getao(r) = 0 anday(¢) = 1.
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More specifically, we have

dq oFdp OF

=4 = p dt+_’

and substitutingﬁ;‘f and‘;—f from the differential system

dg _ a°p
dt 4’

—3/2
dp _ q* 1+q—4x2(t) /
dt 4 4 ’
dt
- =1,
dt

in the above expression, we have

p 4 4 -3/2 +00

- -1 .
e (Z a (t)np" ) ( <1+ Zx (r)) ) + Zoanmp".
From the development in Taylor series

4 —3/2
3 15
<1+ qzxz(t)> =1- §q4x2(t) + 58618354@) +0(q™),

we can write

4 3
Tp — (Z an(t)np" 1) (— q°x%(1) + 0<q12)> + Zan(np :

n=0

Now replacingg by the serlei 20an () p", we obtain

00 3 00 00 4
1 1
Z (Zan(t)pn> p= Z (Zan(t)npn_l> (Zan(t)pn>

n=0 n=0 n=0

00 00 8
3
2 (Zan(zmp"l) (Z an(r)p") x2(1)
0 n=0

o
+O(P'?) + Y an(t)p”,
n=0

or equivalently,
Sodnp" = § (Xnoan)p")’p
1 (X% a,(np™Y) (2 g an (1) p")* A1)

+3 (X2 g annp™ ) (X2 an () p")® x2(1) + O(p1).



The Elliptic Collision Restricted Three-Body Problem 351

Now, by comparing the coefficients of the same powerg oh both sides of
(A.1), we find a sequence of infinite differential equations

da,(t)/dt = a,(t) = fu(1), (A2)

that can be solved recursively.

We remark that the series on the right-hand side of (A.1) startspfithence
from (A.2) we can see thab(r) = a3(t) = 0, Ssoap = constant andz = constant.

From (A.2)forn = 4,we haveis(t) = a3—aj = 1-1 = 0. Thermu, =constant.

From (A.2) forn = 5, we haveis(r) = 3a2az — afaz — afaz = Jap. Since
ap=constant ands(z) is a periodic function, we have that = 0. Hence, using
as(t) = ap = 0, we obtain thatis(r)=constant.

From (A.2) forn = 6, we havaig(t) = 1741613. The same argument used in the
casen = 5 givesaz = 0 andag =constant.

From (A.2) forn = 7, we obtainiz(t) = —a4(t). Soaq = 0 anday; =constant.

Sincea, (t) are 2r-periodic functions inr, they admit a development in Fourier
series. The constant term of these expansion is

o 1 [,
a"ZZ/(; a,(t)dt.

From (A.2) forn = 8 we obtainig(t) = 2as + 3%x2(t). Therefore

'Ot—l/h2a+32t dt
as()—zo 5 3—2x()

2 3 2

as 3

== dE + —— 1—COSE)°dE
T Jo + 256r 0 ( )

15
2a5 + Eﬁ
Froma$ = 0, we have thats = — &> and

(t) = 2ast + 3 /t(l cosE)3dt

a, = —_— — ,

8 7128 ),

wheret = E — SinE.
From (A.2) forn = 9, we haveig(r) = —3ae. Thenag = 0 andag =constant.
From (A.2) forn = 10, we haveiig = —a7. Thena7 = 0 andajg =constant.

Therefore, the expansion of the unstable manif6(g, ) up to order eight is

= 15 S+ag(np®+
g =p—gp tas®)p
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Appendix B. The Poincar € map near infinity

We consider the differential systein= f(x), wherex € & andi/ C R” is an
open set. Lep (¢, x) = ¢;(x) be the solution of the systein= f(x) satisfying the
initial conditiong (0, x) = po(x) = x. We have that, iff is of clas<C", theng;, (x)
isC" too (see [17]). Hence,

a%(x)h—{— 192 @ (x) 2

¢1(x +h) = i) + = o ox2

Sinceg; (x) is of classC”, we can obtain the first variational equationstof
f(x) by finding the derivative of the relatiop, (x) = f(¢;(x)) with respect to
x, and then changing the derivatives with respeatémdx. In this way the first
variational equations are

d 8<pt(x) 3%(?6)
7 x Df (gr(x))———

with initial conditions
0¢r (x)

=1,
0x

t=0
whereDf is the Jacobian matrix andis the identity matrix ofR”.

The variational equations of second, third and higher order, can be obtained in
a similar way:

d 3¢p(x) @ (x) <Pt(x)
T =D ))( ) + Df (g (%)) ———,
with 2 ffg") =0
d 3B (x) 5 @r(x) ) 320 (x) g (x)
E axg - D f((ot( )) ( _X ) + 3D f((pt(x)) ( axz ) ax )
+ Df(e(x)) ‘”’(x),
with 3%%) =0
X t=0
etcetera.

To find the derivatives of the flow(z, x) with respect to the initial conditions
ag of a periodic orbit, we use the variational equations. In fact, we study the flow
in a neighbourhood of the periodic orkit= p = 0 by using the Poincarmap
defined in a section transverse to this periodic orbit.

Let ¥ be a section transverse to the periodic otbi= p = 0, defined by
the initial conditioneg € X. Leto = o («) be the time needed by the orbit that
passes through € X to return the first time t@. Taking the transversal section
¥’ c ¥ sufficiently small, it is clear from the theorem of continuous dependence
with respect to initial conditions that : ¥’ — X is defined for alkk € ¥’. If we
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start with the initial condition; € X', then the Poinca&rmapP : &’ — X is
given by
Pa1) = a2 = ¢(o(@1), a1),

with a2 € X. Hence we can write the m&gp into the form

Pla) = ¢(o (@), a).

Now we calculate the developmentin Taylor serieBafround the fix pointg € X.
Therefore we need the derivatives®fwith respect to the initial conditions. For
the first derivative we have

P 8(,0 30 do  Jp

e 309a T —f(%( D)ot 3

Where - is computed from the first variational equations. For the second derivatives

PP 0% 9% do 09 3%
9?2 9a?  9oda da o da?’

2
we computeg;‘é and 5 3 “’ from the first and second variational equations, respec-
tively. In a similar way we calculate the derivatives®ffor higher orders. Thus
the Poincae’'map up to order two is:

P(oz):ao—i-(a

P ( )+ a%p
_— o —o
00 | o 0 a2

) (@ — a0)® + O3,

a=0uQ

where®(3) = O((x — ag)d).

We apply this method to compute the Poireanap? defined at time 2 in
a neighborhood of the periodic orhig, p,t) = (0,0, ¢) of the period Z for
differential system (3.2). More precisely: {(g, —p,t) | t =0} — {(¢q, —p, 1) :
t = 2n}andP(0, 0,0) = P(0, 0, 2). We consider the differential system

dg __q%(=p)
dt 4
—3/2
d-p _ 4 1+ q—4x2(t) / (B.1)
dt 4 4 ’
dt
— =1,
dt
or equivalently,
dq _ q3P
dt 4
dp a* 3 5 12
—_— =t = )+ O ,
7 4+3261X()+ (g™)
dt
=1,

dt
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whereP = —p. Hence the vector field oR is given by

— i f1
f(qv P, t) = q + 32q xz(t) +O(q12) = ;2
3

We denote the components of the flgirom x = f(x) by (¢1, 92, ¢3), here
x = (g, P, t). From (B.1) itis clear thaps(z, «) = t; theno («) = 27. Therefore,
sinceo («) is constant, we hav%’;—f = W In our case the Poincarhap
‘P becomes

dg e
Plg, P)=ao+ a—(oto, o(a0))q + — (ap, o (@p)) P
q P

1 (9% 2, o 9%
+ > (a?z(ao’ o(a0))g” + zaan (oo, 0 (x0))g P

82
+ 3—[,“;@0, G(Olo))P2>

1 (33
+ 3,< 3(0lo,0(060))q +3 (0. 0 (@0))q*P

23P
3 3

d 3%
+3-F (a0 0 (@0))g P2 +

9q3P 3P3(Olo,0(ao))P >

4
dg 3aP

1 (9%
+ = ( 4(010,0(010))61 +4

2 (a0, 0 (c0))g 3P

4 4

(0 N7
5 (00, 0/ (20))g* P> + 4

R S , p3
3420 P 0 8P3(Olo o(x0))q

+6

84
+ Soq (@, U(Oto))P4>

+ O5).

We take the initial conditiorg = (g0, Po) = (0, 0), which is a point on the
periodic solution(0, 0, t), and consequently it is a fixed point fg. On the other
hand, as the orbit is/2-periodic we have that (ag) = 2.

Since we hav%‘tzo =1, thenaa% =1land%2 =1.

If we integrate

92 3 92 3 92
iz_qp, fi 32 PNy
dg2 2 dqdP 4 ap2
3% 321> 321>

= -3¢+ qexz(r) +0(¢q9), =0, RAELENO)

ra dqoP P2
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on the periodic orbit, we get the solution of the second variational equations, and
its value atxg = (0, 0) is zero.
As above, we integrate along the periodic orbit

®°n_3, ®°h _ 8 A _,
a3 2 ag2op 27 Gqep2 T 7
®h_, ®h_, #¥ho 1
oP3 aPZq  aPig2 4T
335 5.2 o, OS2 3 f2

= — H+0 =0, =0,
o +3 q FOHOG. 5 ap 999 P2
®f _, ®f _, ®fH _,
ap3 7 aP23g dPdg%

and we obtain the solution of the third variational equations, which vanishes at the
initial conditions.
In the same way, we integrate

"h_, ’pa 3 th
agh 7 9g3P 2" 9q29P2
*f1 *f 3*f1
= 0’ —_— O’ —F = U,
dqoP3 ap4 ap4
a4 94 a4
fl = 07 i = 07 fl = 07
aP3dg dP29g2 dPdg3
*fo *fo *fo
—_— —6’ = O’ —_—
dg? dg30P 9g29 P2
a4 94 94
/2 -0, izo, /2 -0,
dgopP3 a P4 aP3dg

along the periodic orbit, obtaining the solution of the fourth variational equations,
therefore;-£L; o2 A =3 anda %2 = _12r.
J0|n|ng aII the precedmg computations we have the expressidn,for

1
g4 q— 3 HE0GP + -
1
P— P+E(—12ﬂ)q4+---

Therefore, changing the variable by —p, we get that the Poincarmap up to
fourth order is giving by

P(q, —p) = (q + 24+ 06, —p- '+ 0(5)). (B.2)
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Appendix C. Computation of parabolic orbits

We took the initial conditions on the unstable manifold of the parabolic orbits,
given by the serieg = F(p, t), and we computed numerically the first intersection
of P+ with the cylinder; = 0 solving in backward time system (4.4).

In particular, we tookp = 0.01 andg = p — 51—152175 + 0(p?), so we obtained
z = 2000000001171875000514984131060541 anrd —0.01. For the eccentric
anomalyE we chose 60 equally spaced points on the intej@a2r).

The principal program called ISOSCELES uses the subroutines RK78 and DE-
RIV. We used the integration routine RK78 (i.e., Runge-Kutta-Felberg of order 7
and 8) with quadruple precision and tolerance of ¥0while the routine DERIV
defines the vector field associated with system (4.4).

As —1 < cosE < 1, in order to avoid errors we have replaced toskE by
sin? E/1+ cosE whenE € [0, z] U[%’T, 27], leaving the initial expression when
Eel3. %

Takingz = 0 as the transversal section, once the orbits have crassed
we obtain the zero making a refinement using the Newton-Raphson method with
tolerance of 102°.
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