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Abstract

We study a discrete convolution model for Ising-like phase transitions.This non-
local model is derived as anl2-gradient flow for a Helmholtz free energy functional
with general long range interactions. We construct traveling waves and stationary
solutions, and study their uniqueness and stability. In particular, we find some cri-
teria for “propagation” and “pinning”, and compare our results with those for a
previously studied continuum convolution model.

1. Introduction

We study the following infinite system of coupled semilinear evolution equa-
tions

u̇n = (J ∗ u)n − un − λf (un), n ∈ Z, (1.1)

where(J ∗ u)n ≡ ∑
i∈Z\{0} J (i)un−i ,

∑
i∈Z\{0} J (i) = 1,f is bistable andλ > 0.

The values of the kernelJ can change sign but some of our results requireJ

to be nonnegative and even. Equation (1.1) can be obtained using a microscopic
viewpoint, from the following argument.

Consider a lattice3whose sites are occupied by blocks, each consisting of many
“atoms” arranged in a finer lattice. Each atom can exist in one of two states, A and
B (such as spin up or spin down). We take the point of view that each arrangement
of atoms has a potential energy of interaction consisting of (i) interactions between
atoms within each block, and (ii) interactions between blocks. Furthermore, we will
account for random (thermal) fluctuations within each block to give an entropy of
mixing but we will not consider random fluctuations between blocks of3.

The sites of3 will be denoted byr but also byl(r), the latter signifying the
smaller lattice which is the block at positionr ∈ 3. We will useσ(s) to denote the
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occupancy of an A-atom at sites ∈ l(r), i.e.,σ(s) = 1 if an A-atom occupies site
s and is 0 otherwise. We will usea(r) to denote the average A-occupancy ofl(r).

The Helmholtz free energy of our system with an arrangement{a(r)}r∈3 is
given by

E = H − T S, (1.2)

whereH is the internal interaction energy,T the absolute temperature andS the
entropy.

As postulated above, the interaction energy has the form

H(a) = I1(a)+ I2(a),

whereI1 is the total energy of interaction within the blocks which make up3 and
I2 is that between blocks. We may write

I1(a) = − 1
2

∑
r∈3

∑
s,s′∈l(r)

[
JAA(s − s′) σ (s) σ (s′)+ JBB(s − s′)(1 − σ(s))

×(1 − σ(s′))+ JAB(s − s′)(σ (s)(1 − σ(s′))+ (1 − σ(s))σ (s′))
]
,

whereJαβ(s − s′) is the energy of interaction between atoms of typesα andβ
at sitess ands′ (see [21]). In this formI1 actually depends upon the microscopic
configuration given by theσ ’s but a simplifying assumption below resolves this
issue.

The interaction energy between blocks is given by

I2(a) = − 1
2

∑
r,r ′∈3

[
jAA(r − r ′)a(r)a(r ′)+ jBB(r − r ′)(1 − a(r))(1 − a(r ′))

+jAB(r − r ′)(a(r)(1 − a(r ′))+ (1 − a(r))a(r ′))
]
,

wherejαβ(r − r ′) denotes the interaction energy between atoms of typesα andβ
at sitesr andr ′, which we assume are symmetric in(r − r ′).

By completing the square, we may write this as

I2(a) = 1
4

∑
r,r ′∈3

j (r − r ′)(a(r)− a(r ′))2 − 1
2

∑
r∈3

j̄(a2(r)− a(r))

− 1
2

∑
r∈3

d̄a(r)− c,

wherej (r) = jAA(r) + jBB(r) − 2jAB(r), d̄ = ∑
r∈3(jAA(r) − jBB(r)),

j̄ = ∑
r∈3 j (r) andc = ∑

r,r ′∈3 jBB(r − r ′).
Since we will be considering the gradient flow of the free energy, there is no

loss in droppingc. Also, we are considering an extremely large lattice3 and will
ignore boundary effects, so we take thej ′s to be translation-invariant, which is why
we get constants̄j andd̄, above.
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On the other hand, we will consider each identicall(r) to be spatially of such
small size that theJ ′s are independent of position. Then, if each small lattice has
N vertices, we may writeI1 as

I1(a) = −1
2

∑
r∈3

N2J̄ (a2(r)− a(r))− 1
2

∑
r∈3

N2Da(r)− C,

whereJ̄ = JAA + JBB − 2JAB,D = JAA − JBB, andC = 1
2J

BBN2|3|.
The entropy,S(a), is given by

S(a) =
∑
r∈3

s(a(r)),

where, for a block ofN vertices with A-occupancy fractionα = p/N , s(α) is
given by

exp(Ns(α)/k) = N !
p!(N − p)! .

The expression on the right side is the number of arrangements ofp atoms among
N sites, andk is Boltzman’s constant.

FollowingBragg & Williams [8] we can use Stirling’s formula to approximate
the factorials and discard small terms (N is very large even though eachl(r) is
spatially very small) to obtain the approximation

s(α) = −k[αlogα + (1 − α)log(1 − α)]
and so

S(a) = −k
∑
r∈3

[a(r)log(a(r))+ (1 − a(r))log(1 − a(r))].

Rearranging the terms which comprise (1.2) and dropping additive constants, we
get

E(a) = 1
4

∑
r,r ′∈3

j (r − r ′)(a(r)− a(r ′))2 +
∑
r

{
da(r)

+T k[a(r)log(a(r))+ (1 − a(r))log(1 − a(r))] − q(a2(r)− a(r)))
}
, (1.3)

where

d = −1
2(d̄ +N2D) andq = 1

2(j̄ +N2J̄ ).

We assume thatq > 0, which is typical for ferromagnetic-like materials. Note that
for |d| < q andT k small enough, the last summand in (1.3) has two minima, which
are of equal depth ifd = 0.

Fix T > 0 sufficiently small so that this summand has two minima, ata = a1
anda = a2, say. Change variables, lettingu = −1 + 2(a − a1)/(a2 − a1) so that
(1.3) becomes

E(u) = 1
4

∑
r,r ′∈3

j (r − r ′)(u(r)− u(r ′))2 +
∑
r∈3

W(u(r)), (1.4)
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where the factor(a2−a1)
2/4 has been absorbed by redefiningj andW has minima

atu = ±1, not necessarily of equal depth.
Observe that even though we assumeq > 0 we do not always assumej is

everywhere positive. However, in much of our analysis, that will be the case.
From now on, for simplicity we assume that3 = Z. The l2-gradient∇E

of E is

∇E(u)n = −(j ∗ u)n +
(∑
m

j (m)
)
un +W ′(un), n ∈ Z.

We assume that solutions evolve along curves of ‘steepest descent’ forE. These
curves, at each point, lie in the direction of the negative gradient−∇E(u). Thus
the evolution can be represented by a gradient flow (see [13])

u̇n = −∇E(u)n, n ∈ Z. (1.5)

SetJ = j∑
j (m)

, f (u) = W ′(u) andλ = 1∑
j (m)

. With this normalization, the

‘strength’ of the interaction kernelj is contained in the constantλ. Dividing by∑
j (m) and rescaling time brings (1.5) into the form of (1.1). In general, the

various physical forces which contribute toJ result inJ being not necessarily
monotone or even positive on the set of positive integers.

One may observe that in the above derivation, the function

g(u) = u+ λf (u)

is monotone if we ignore short range interaction and setJ̄ = 0. However, in the
analysis of (1.1) that follows, we do not requireg to be monotone, and in fact some
results rely upon the nonmonotonicity ofg.

We remark that in the continuum mean field approximation, (1.4) becomes

E(u) = 1
4

∫
R

∫
R

j (x − y)(u(x)− u(y))2 dx dy +
∫

R

W(u(x)) dx, (1.6)

as was derived in [3]. AnL2-gradient flow of (1.6) is then

ut = J ∗ u− u− λf (u), (1.7)

whereJ = j∫
j

andλ = 1∫
j
. This equation has been studied recently in [5,15,9,

10] and [3].
Going one step further, one can change variables in (1.6), usingη = x−y

2 ,
ξ = x+y

2 , and expandu(x) = u(ξ + η) andu(y) = u(ξ − η) aboutξ , to get the
formal expression

2
∫

R

∫
R

J (2η)
( ∞∑
k=0

D2k+1u(ξ)η2k+1

(2k + 1)!
)2
dξ dη +

∫
R

W(u(x)) dx. (1.8)

Truncating the summation in (1.8) atk = 0 gives, forc = ∫
J (2η)η2dη, an energy

c

∫
R

|u′(x)|2 dx +
∫

R

W(u(x)) dx,
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whoseL2-gradient flow is

ut = cuxx − f (u). (1.9)

This is the familiar Allen-Cahn equation [2], often referred to as the bistable equa-
tion (e.g., [14]). Some results for higher order truncations have been obtained in
[7] and [4].

A version of (1.1) with nearest-neighbor interactions, i.e.,

u̇n = 1
2un+1 + 1

2un−1 − un − λf (un), n ∈ Z, (1.10)

has been studied in other contexts. It is often referred to as a discrete Allen-Cahn
or Nagumo equation. Many results specific to this equation may be found in [18,
22,23], [17,19,16,11,12] and [20]. In these papers, the authors investigate both
traveling waves and so-called ‘pinning’ (‘lack of propagation’), which occurs for
largeλ even when the wells ofW are of unequal depth.

Pinning also occurs in the continuum convolution equation (1.7), as was discov-
ered in [5,9,10] and [3]. However, it does not occur in the local bistable equation
(1.9).

The paper is organized as follows:
In Section 2, under the assumption thatJ is even and nonnegative, we construct

traveling wave solutions. Our method is different than those in [22,17] and [11]
which rely on the finite-range coupling in equation (1.10). Our approach is to
consider a sequence of traveling wave solutions of (1.7) with varyingJ ’s, which
are smooth approximations of sums of delta functions. We show that these solutions
have a limit, which is a traveling wave of (1.1). We then attempt to relate its speed
to the general nonlinearityf . However, a ‘propagation /no-propagation criterion’
seems to be much harder to establish than that for the equation (1.7) [5]. One of the
reasons is that a traveling wave of (1.7) is always a solution of an integrodifferential
equation. However, a traveling wave of (1.1) is a solution of either a functional
equation, or an infinite system of coupled ODE’s, depending on whether its speed
is nonzero or zero. Our ‘criterion’ is thus not complete, but nonetheless it is stronger
than the corresponding results in [18,22] and [19]. In particular, we find that (1.1)
admits ‘less propagation’ than (1.7). Next, we show uniqueness of traveling waves
with nonzero speed, using a certain ‘squeezing’technique. This method also enables
us to obtain a stability result.

In Section 3, we adapt a technique from [3] to prove that for largeλ, equation
(1.1) admits pinning. We construct all stationary solutions and give precise criteria
for their stability. We note that this result holds for multi-dimensional lattices and
generalJ ’s, including those which change sign.

2. Monotone traveling waves, in the caseJ = 0

In this section, we study monotone traveling wave solutions of (1.1).
DefineJδ(x) = ∑

|i|=1 J (i)δ(x − i), whereJ (i) = J (−i) = 0 for all i ∈ Z,∑
|i|=1 J (i) = 1 and

∑
|i|=1 |i|J (i) < ∞. We also assume that the support of
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J contains eitheri = 1 or two relatively prime integers,i = p and i = q. We
consider the equation

cu′(x)+ (Jδ ∗ u)(x)− u(x)− λf (u(x)) = 0, x ∈ R, (2.1)

together with the boundary conditions

u(−∞) = −1, u(+∞) = 1. (2.2)

Heref is bistable, withf ∈ Cr(R), r = 1, andf has only three zeros, at−1, 1 and
a ∈ (−1,1). Clearly, solutions(u(x), c) of (2.1), subject to (2.2), give traveling
waves for (1.1), by settingun(t) = u(n− ct).

Defineg(u) ≡ u+ λf (u). For simplicity, we make the following assumptions
aboutg:

g has at most three intervals of monotonicity,[−1, β), [β, γ ] and(γ,1], for
someβ 5 γ . Moreover,

g′ > 0 on[−1, β) ∪ (γ,1], g′ 5 0 on(β, γ ).

In the caseβ < γ , for any number

k ∈ K ≡ {g(u) : u ∈ [−1, β]} ∩ {g(u) : u ∈ [γ,1]}
definegk(u) to be the continuous nondecreasing function obtained by modifying
g to be the constant valuek between the ascending branches ofg.

In the caseβ = γ , k can be chosen to be any number in[−1,1], andgk(u) =
g(u) for all u.

Theorem 2.1 (Existence of monotone traveling waves). There exists a strictly
monotone traveling wave solutionun(t) = uδ(n − cδt) of (1.1), such that
uδ(−∞) = −1 anduδ(+∞) = 1. Moreover:

A. sgncδ = sgn
∫ 1
−1 f (u) du, if cδ |= 0.

B. cδ = 0 if there existsk such that
∫ 1
−1 gk(u) du = 0.

C. cδ |= 0 if
∫ 1
−1 f (u) du |= 0 andλ 5 λ(f ), whereλ(f ) is small enough.

D. In the caseg monotone,cδ < 0 (cδ > 0) if there existsu∗ ∈ (−1,1) such that
λf (u∗) < −1 (λf (u∗) > 1).

E. In the caseg nonmonotone,cδ < 0 (cδ > 0) if there existsu∗ ∈(−1, β) ((γ,1))
such thatλf (u∗) <−1 (λf (u∗) > 1), or if there existsu∗ ∈ (γ,1) ((−1, β))
such thatλf (u∗) < −1 (λf (u∗) > 1) andg(β) 5 g(u∗) (g(γ ) = g(u∗)).

Proof. The idea is to ‘approximate’ (2.1) by

cu′ + Jm ∗ u− u− λf (u) = 0, (2.3)

where{Jm} is a family of sums of delta sequences, such that

Jm ∗ φ → Jδ ∗ φ asm → ∞ (2.4)



A Discrete Convolution Model for Phase Transitions 287

uniformly on compact sets for eachφ ∈ C∞
0 (R). The kernelJm can be defined as

follows:
Let ψ be any smooth function, such thatψ = 0 and

∫
R
ψ(x)dx = 1. Then

δm(x) ≡ mψ(mx) is a delta sequence, i.e.,(δm ∗ φ)(x) → φ(x) asm → ∞, for
φ ∈ C∞

0 (R). For simplicity, we assume thatψ is even and has compact support.
Let

Jm(x) ≡
∑

15|i|5m

1

wm
J(i)δm(x − i), (2.5)

wherewm ≡ ∑
15|k|5m J (k). To show (2.4), letφ ∈ C∞

0 (R). For any fixedx,
there exists someMx , such thatδm(x − y − i) = 0 andφ(x − i) = 0 for all m,
|i| = Mx andy ∈ suppφ, so that

Jm ∗ φ(x) =
∑

15|i|5M

1

wm
J(i)

∫
R

δm(x − y − i)φ(y) dy

→
∑

15|i|5M
J(i)φ(x − i) = Jδ ∗ φ(x) asm → ∞,

whereM ≡ min{Mx,m}. Sinceφ′ is bounded, it is easily seen that convergence is
uniform on compact sets for eachφ ∈ C∞

0 (R).
We recall the result in [5], that for eachJm, there exists a (strictly) monotone

traveling wave solutionu(x, t) = um(x− cmt) of (1.7), such thatum(−∞) = −1,
um(+∞) = 1. Note that hereum is a function defined onR and should not be
confused with the sequence{un} appearing in (1.1) and elsewhere.

Proposition 2.1.There exists a solution(um, cm) of (2.3), such thatum is (strictly)
monotone,um(−∞) = −1 andum(+∞) = 1. Moreover,

cm = 0 if, and only if, there existsk such that
∫ 1

−1
gk(u) du = 0, (2.6)

and otherwise,sgncm = sgn
∫ 1
−1 f (u) du.

For proof of this theorem, see [5].

The solutions(um, cm) are of course also weak solutions of (2.3), i.e., for any
φ ∈ C∞

0 (R) they satisfy

−c
∫

R

uφ′ +
∫

R

[Jm ∗ u− u− λf (u)]φ = 0. (2.7)

Consider first the casecm = 0. Takeα ∈ (a,1) and translate eachum so that
um(0) = α. By Helly’s Theorem, there exists a subsequence ofum, which we
still denote byum, converging pointwise to a monotone functionuδ asm → ∞.
Moreover, thecm’s are uniformly bounded, as can be seen from the following
argument.
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Assume to the contrary, that there is a sequencecm → ∞ asm → ∞. From
(2.3) we see that|cmu′

m|∞ 5 const, from which we get|u′
m|∞ → 0 asm → ∞.

This impliesuδ ≡ α, which gives a contradiction, since

0> λf (α) = lim
m→∞ λf (um) = lim

m→∞(Jm ∗ um − um)

= lim
m→∞

∫
R

Jm(x − y)(y − x)u′
m(p(x, y)) dy = 0,

for some functionp, where the last limit follows from|u′
m|∞ → 0 asm → ∞

(we can pass to the limit under the integral sign since
∫
R

|x|Jm(x) dx are uniformly
bounded).

Thus by passing to another subsequence, we also havecm → cδ, for somecδ,
asm → ∞. We now show thatuδ solves (2.1) and thatuδ(±∞) = ±1. By passing
to the limitm → ∞ in (2.7), we note thatuδ is a weak solution of (2.1), i.e., it
satisfies

−cδ
∫

R

uφ′ +
∫

R

[Jδ ∗ u− u− λf (u)]φ = 0 (2.8)

for φ ∈ C∞
0 (R). This follows from Lebesgue’s Dominated Convergence Theorem

and the limit∫
R

(Jm ∗ um)φ =
∫

R

(Jm ∗ φ)um →
∫

R

(Jδ ∗ φ)uδ =
∫

R

(Jδ ∗ uδ)φ. (2.9)

asm → ∞. The first equality is obvious from Fubini’s Theorem (recall that each
Jm is defined to be a finite sum). The limit follows from Lebesgue’s Dominated
Convergence Theorem, since|um| 5 1 andφ has compact support. To show the
last equality we need the following lemma.

Lemma 2.1 (Dominated Convergence Theorem). Let {fi,k} be a double sequence
of summable functions (i.e.,

∑
|i|=1 fi,k < ∞), such thatfi,k → fi ask → ∞ for

all |i| = 1. If there exists a summable sequence{gi} such that|fi,k| 5 gi for all
i, k’s, then

∑
|i|=1

fi,k →
∑
|i|=1

fi ask → ∞.

The proof is similar to that of Lebesgue’s Dominated Convergence Theorem.

Note that
∫

R

(Jδ ∗ φ)uδ = lim
k→∞

∫ k

−k

∑
|i|=1

J (i)φ(x + i)uδ(x) dx

= lim
k→∞

∑
|i|=1

J (i)

∫ k

−k
φ(x + i)uδ(x) dx,
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where the last equality follows becauseφ has compact support and thus the sum is
finite. Since

∣∣∣∣
∫ k

−k
φ(x + i)uδ(x) dx

∣∣∣∣ 5
∫

R

|φ(x + i)| dx = const,

we can use Lemma 2.1, the evenness ofJ and Lebesgue’s Dominated Convergence
Theorem to conclude that∫

R

(Jδ ∗ φ)uδ =
∑
|i|=1

J (i)

∫
R

φ(x + i)uδ(x) dx

=
∑
|i|=1

J (i)

∫
R

uδ(x + i)φ(x) dx =
∫

R

(Jδ ∗ uδ)φ,

which shows the last equality in (2.9).
If cδ |= 0, then (2.8) implies thatuδ ∈ W1,∞(R). A bootstrap argument then

shows thatuδ isC1(R) (and actually,Cr+1(R)) and thus a traveling wave solution
of (1.1).

If cδ = 0, thenuδ need not be continuous, soJδ ∗ uδ(n) need not equal∑
|i|=1 J (i)uδ(n − i). However,uδ is monotone, and so the set of jump disconti-

nuities is at most countable. Thus we can find a sequence{sk} such thatsk ↘ 0 as
k → ∞ anduδ is continuous atn + sk for all n ∈ Z andk > 0. Equation (2.8)
implies that

Jδ ∗ uδ(n+ sk)− uδ(n+ sk)− λf (uδ(n+ sk))

=
∑
|i|=1

J (i)uδ(n+ sk − i)− uδ(n+ sk)− λf (uδ(n+ sk)) = 0

for all n ∈ Z andk > 0. It is then easily seen that the sequenceuδ defined by

uδn ≡ lim
k→∞ uδ(n+ sk), n ∈ Z,

satisfies
∑
|i|=1

J (i)uδn−i = uδn − λf (uδn),

so is a stationary wave solution of (1.1).
We now show thatuδ(−∞) = −1 anduδ(+∞) = 1. From the monotonicity

of uδ we easily see thatf (uδ(±∞)) = 0. Sinceuδ(0) = α, we haveuδ(+∞) = 1
anduδ(−∞) ∈ {a,−1}. If uδ(−∞) = −1, we are done. So assume otherwise, that
uδ(−∞) = a. Thenf (uδ(x)) < 0 onR.

Consider first the casecδ > 0. Integrate equation (2.1) over(−N,N) to get

cδ

∫ N

−N
u′
δ(x) dx +

∫ N

−N
(Jδ ∗ uδ(x)− uδ(x)) dx = λ

∫ N

−N
f (uδ(x)) dx < 0.
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To obtain a contradiction, we show that limN→∞
∫ N
−N(Jδ ∗ uδ − uδ) = 0. We have

∫ N

−N
(Jδ ∗ uδ − uδ) =

∫ N

−N

∑
|i|=1

[J (i)(uδ(x − i)− uδ(x))] dx

= −
∑
|i|=1

J (i)

∫ N

−N

∫ 1

0
u′
δ(x − t i)i dt dx

= −
∑
|i|=1

iJ (i)

∫ 1

0
(uδ(N − t i)− uδ(−N − t i)) dt

→ −(1 − a)
∑
|i|=1

iJ (i) = 0 asN → ∞.

In the above calculation we used Lebesgue’s Dominated Convergence Theorem,
Fubini’s Theorem, Lemma 2.1 and the evenness ofJ .

Next, assume thatcδ = 0. Then, using an argument similar to the above, the
sequence{uδ} defined byuδn ≡ limk→∞ uδ(n+ sk), n ∈ Z, is a stationary solution
of (1.1), i.e.,

(J ∗ uδ)n − uδn − λf (uδn) = 0, n ∈ Z.

However, it is easily seen that

0 =
∑
n∈Z

((J ∗ uδ)n − uδn) =
∑
n∈Z

λf (uδn) < 0,

a contradiction again.
Finally, in the casecm 5 0, a similar argument is used takingα ∈ (−1, a).
To show strict monotonicity, we consider first the casecδ = 0. For simplicity

of notation here, we drop the subscriptδ, i.e., we letu ≡ uδ.
We argue by contradiction. Assume thatun0+1 = un0 for somen0 ∈ Z. We

then have

∑
|i|=1

J (i)(un0+1−i − un0−i ) = 0,

i.e.,un0+1−i = un0−i for i ∈ suppJ . Since eitherJ (±1)>0 orJ (p), J (q)>0 for
some relatively prime integersp andq, by induction it then follows thatu ≡ const,
a contradiction.

Let c |= 0. Supposeu′(x0) = 0 for somex0. Sinceu′(x) = 0 for all x ∈ R,
u′′(x0) = 0. Therefore

0 = −cu′′(x0) =
∑
|i|=1

J (i)u′(x0 − i)
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andu′(x0 − i) = 0 for all i ∈ suppJ . Since eitherJ (±1) > 0 or J (p) > 0 and
J (q) > 0 with p andq relatively prime, we conclude thatu′(x0 + n) = 0 for all
n ∈ Z. Defineun(t) = u(n− ct), thenun satisfies the initial value problem

ẇn =
∑
|i|=1

J (i)wn−i − wn − λf (wn)

wn(−x0

c
) = u(n+ x0).

Sinceu′(n + x0) = 0 for all n ∈ Z, the constantwn(t) ≡ u(n + x0) also solves
(2), contradicting the uniqueness of solutions to (2).

Remark. It is only here where we use the assumption that either 1∈ suppJ or
p, q ∈ suppJ . An interesting open question is then how to relax these restrictions
onJ to preserve strict monotonicity andu′ > 0 (for waves with nonzero speed).

To complete the proof, we now show A–E.
Suppose thatcδ |= 0. Multiply equation (2.1) byu′

δ(x) and integrate overR.
We get

cδ

∫
R

u′
δ(x)

2 dx +
∫

R

(Jδ ∗ uδ − uδ)u
′
δ =

∫ 1

−1
λf (u) du. (2.10)

However,

∫
R

(Jδ ∗ uδ − uδ)u
′
δ =

∑
|i|=1

J (i)

∫
R

(uδ(x − i)− uδ(x))u
′
δ(x) dx = 0,

where we used Lebesgue’s Dominated Convergence Theorem, the evenness ofJ ,
and the equalities

∫
R

uδ(x − i)u′
δ(x) dx = −

∫
R

uδ(x + i)u′
δ(x) dx

and
∫
R
uδ(x)u

′
δ(x) dx = 0. From (2.10) we thus get sgncδ = sgn

∫ 1
−1 f (u) du (it

also follows that
∫ 1
−1 f (u) du = 0 impliescδ = 0). This proves A.

If cδ = 0, thenuδ is not necessarilyC1(R) (in fact, we conjecture that it
may be a step function, constant on half-closed intervals of unit length), so this
argument cannot be used anymore. However, from our construction of(uδ, cδ) and
Proposition 2.1, B easily follows.

To prove C, we argue by contradiction. Assume that
∫ 1
−1 f (u) du |= 0 and

cδ = 0. Letuλ ≡ uδ be the stationary solution to (1.1), i.e.,

(J ∗ uλ)n − uλn = λf (uλn), n ∈ Z. (2.11)
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Multiply (2.11) byuλn+1 − uλn−1 and sum overn ∈ Z, to get

1

λ

∑
n∈Z

(
∑
|i|=1

J (i)uλn−i − uλn)(u
λ
n+1 − uλn−1)

=
∑
n∈Z

[f (uλn)(uλn+1 − uλn)+ f (uλn)(u
λ
n − uλn−1)].

(2.12)

First note that

max
n∈Z

(uλn+1 − uλn) → 0 asλ → 0. (2.13)

This follows from the following argument by contradiction. Assume there exists
ε > 0 and a sequence{λk} converging to 0 such that

max
n∈Z

(u
λk
n+1 − uλkn ) = u

λk
nk+1 − uλknk = ε ask → ∞.

Through translation, we can takenk = 0. Since every solutionuλk is monotone,
by Helly’s Theorem there exists a subsequence ofuλk which converges to some
monotoneu0. It is easily seen from (2.11) thatu0 satisfies∑

|i|=1

J (i)(u0
n−i − u0

n) = 0 (2.14)

for all n ∈ Z and thatu0
1 − u0

0 = ε. Let J (0) = 0, then (2.14) becomes∑
i∈Z

J (n− i)(u0
i − u0

n) =
∑
i∈Z

J (n− i)(u0
i+1 − u0

n+1) = 0

for all n ∈ Z. After subtraction, we get∑
i∈Z

J (n− i)(u0
i+1 − u0

i ) = u0
n+1 − u0

n (2.15)

for all n ∈ Z. Since−1 5 u0
n 5 1 for alln ∈ Z, the number of integersn for which

u0
n+1 − u0

n = ε is finite, which gives us a contradiction to (2.15).
Statement(2.13) implies that the right side of (2.12) is a Riemann sum, which

tends to 2
∫ 1
−1 f (u) du |= 0 asλ → 0. However, the left side of (2.12) is 0 for all

λ’s, as is seen from the following calculation. LetJ (0) = 0. Since∑
n∈Z

∑
i∈Z

|J (i)(un−i − un)(un+1 − un−1)| 5 2
∑
n∈Z

∑
i∈Z

J (i)(un+1 − un−1) = 8,

the double series
∑
n∈Z

∑
i∈Z

J (i)(un−i − un)(un+1 − un−1) is summable. By an
equivalent of Fubini’s Theorem for series, we can rearrange this series to get∑

n∈Z

∑
i∈Z

J (i)(un−i − un)(un+1 − un−1)

=
∑
n∈Z

∑
i∈Z

J (n− i)(ui − un)(un+1 − un−1)

=
∑
i∈Z

∑
n∈Z

J (n− i)(ui − un)(un+1 − un−1) ≡ S.
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In S (the last series) we interchangei with n and use the evenness ofJ to get

S =
∑
i∈Z

∑
n∈Z

J (n− i)(un − ui)(ui+1 − ui−1).

Summing the last two series, we get

2S = −
∑
i∈Z

∑
n∈Z

J (n− i)(un − ui)(un+1 − ui+1)

+
∑
i∈Z

∑
n∈Z

J (n− i)(un − ui)(un−1 − ui−1) = 0,

which gives us the desired contradiction.
To show D, we assume without loss of generality that there existsu∗ ∈ (−1,1)

such thatλf (u∗) < −1. Choose a smallε > 0, and define a monotone functiongε
as follows:

gε(u)




= g(u), for u = u∗,
= g(u∗), for − 1 + ε 5 u 5 u∗,
= g(u) and is increasing, for − 1 5 u 5 −1 + ε.

We first prove that the equation

u̇n = (J ∗ u)n − gε(un), n ∈ Z, (2.16)

has a solutionuε(n− cεt), with cε < 0, and then show that this implies thatcδ < 0
as well.

From the existence part, it clearly follows that (2.16) has a solutionuε(n−cεt).
To show thatcε < 0, we argue by contradiction. Ifcε |= 0, then sgncε =
sgn

∫ 1
−1 fε(u) du, whereλfε(u) ≡ gε(u) − u. However, from the facts that

there existsu∗ ∈ (−1,1) such thatλfε(u∗) < −1 andgε is monotone, we have∫ 1
−1 fε(u) du < 0, socε |= 0 implies thatcε < 0. Now assume thatcε = 0. Let
uε be the stationary solution of (2.16). For convenience, let us drop the subscript
ε, i.e., we letu ≡ uε. Sinceun is strictly increasing, so is the sequence(J ∗ u)n.
Thus,un |∈ [−1 + ε, u∗] for anyn ∈ Z. To see this, assume otherwise and letn0
be such thatun0 ∈ [−1 + ε, u∗]. Then sincegε is constant on[−1 + ε, u∗],

gε(u
∗) = gε(un0) >

∑
i5−1

J (i)u∗ +
∑
i=1

J (i)(−1) = 1
2u

∗ − 1
2.

Recalling thatλfε(u∗) < −1, we then concludeu∗ > 1, a contradiction.
Sinceu is translationally invariant, we can assume thatu0 < −1 + ε and

u1 > u∗. This implies that

gε(u0) < gε(u
∗)

and

gε(u1) >
∑
i5−1

J (i)u∗ +
∑
i=1

J (i)(−1) = 1
2u

∗ − 1
2,
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from which we get

ε
2 + 1

2(1 − u∗) >
∑
|i|=1

J (i)(u1−i − u−i ) = gε(u1)− gε(u0)

> 1
2u

∗ − gε(u
∗)− 1

2 = −λfε(u∗)− 1
2 − 1

2u
∗.

Hence,

λfε(u
∗) > −1 − ε

2,

which, for small enoughε, contradicts the assumptionλf (u∗) < −1.
It is obvious from the above strict inequalities thatgε can be madeCr(R), with

cε < 0 preserved. In the following, we assume thatgε isCr(R).
To show thatcε < 0 impliescδ < 0, we argue by contradiction. Assume that

cδ = 0. Define

wεn(t) = −uε(n− z− cεt − B(1 − e−αt ))+ µe−αt + uδn

wherez is chosen so that

wεn(0) = −uε(n+ z)+ µ+ uδn > 0

and all other constants are chosen as in (2.18)-(2.22) below. Sincegε = g, a
calculation similar to (2.24) below shows thatwεn(t) > 0 for all n ∈ Z andt = 0.
However, sincecε < 0, we obtain a contradiction.

The proof of E is analogous to that of D, and we leave the details to the reader.
ut
Remark. Conclusion B of Theorem 2.1 is only a one-way implication while (2.6)
gives an equivalence in the continuous case. Also, conclusions C-E do not exclude
the possibility that B should also be an equivalence. Thus, an interesting question
arises as to whether (2.6) holds for traveling wave solutions of (1.1) as well, i.e.,
does (1.1) admit the same ‘amount’ of propagation as (1.7)? The answer is no, as
the following simple example shows.

Assumeg is strictly monotone,
∫ 1
−1 g(u) du = 0 and letu be a stationary wave

solution of (1.1) with thisg, as constructed in Theorem 2.1. Sinceu is a strictly
monotone sequence, we can redefineg on an interval which is not in the range of
u, in such a way that the ‘new’̄g is still strictly monotone and

∫ 1
−1 ḡ(u) du |= 0.

Note thatu is still a stationary wave solution for (1.1) with̄g, there are no traveling
wave solutions with nonzero speed by Theorem 2.2 below, and that the traveling
wave solution for (1.7) with̄g has nonzero speed by (2.6).

This example shows that equation (1.1) admits ‘less propagation’ than equation
(1.7).

We now study uniqueness of our solutions.

Theorem 2.2 (Uniqueness of traveling waves with nonzero speed). Let (uδ, cδ) be
a solution to(2.1)and(2.2), as given in Theorem 2.1, such thatcδ |= 0. Let(ûδ, ĉδ)
be another solution to(2.1) and (2.2). Then ĉδ = cδ and, up to a translation,
ûδ = uδ.
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Proof. We begin the proof with the observation that if(û, ĉ) is a solution to (2.1)
and (2.2), then

|û|∞ 5 1. (2.17)

Suppose otherwise, i.e., letx0 be such that maxx∈R |û(x)| = |û(x0)| > 1. Without
loss of generality, let us assume thatû(x0) > 1. We obviously havêu′(x0) = 0,
and so

0 = Jδ ∗ û(x0)− û(x0) = λf (û(x0)) > 0

gives a contradiction.
First we show that̂cδ = cδ. We use the ‘squeezing’ technique from [1]. For

convenience, we drop the subscriptδ.
Suppose thatc |= 0. Chooseα, d,M > 0 such that

λf ′(z) > α when|z± 1| < d, (2.18)

|u(x)− 1| < d

2
whenx = M, (2.19)

|u(x)+ 1| < d

2
whenx 5 −M, (2.20)

u′(x) > d when|x| 5 M. (2.21)

Note that (2.21) is possible since in the proof of Theorem 2.1 we showed that
u′(x) > 0 for all x ∈ R.

Letµ ∈ (0, d2) and define

B = µ

αd

[
α − min

z∈[−1,1] λf
′(z)

]
. (2.22)

First, consider the case wherec > ĉ and define

w(x, t) = u(x + z+ (ĉ − c)t + B(1 − e−αt ))+ µe−αt − û(x), (2.23)

where by (2.17)z can be chosen so that

w(x,0) = u(x + z)+ µ− û(x) > 0.

We claim thatw(x, t) > 0 for all x ∈ R andt = 0. To see this, suppose that there
exists(x0, t0) such that

w(x0, t0) = 0 5 w(x, t) for x ∈ R and 05 t 5 t0.

From (2.23) we see thatwt(x0, t0) exists and is nonpositive and that ifĉ |= 0 (so
thatû isCr+1), wx(x0, t0) = 0. Furthermore,Jδ ∗ w(x0, t0) 5 0. Define

P(x, t) ≡ x + z+ (ĉ − c)t + B(1 − e−αt ).
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Using (2.1), we have at(x0, t0),

0 = wt − Jδ ∗ w
= (ĉ − c + Bαe−αt0)u′(P )− αµe−αt0 − Jδ ∗ u(P )− µe−αt0 + Jδ ∗ û(x0)

= − u(P )− λf (u(P ))+ (ĉ + Bαe−αt0)u′(P )− αµe−αt0 − µe−αt0

− ĉû′(x0)+ û(x0)+ λf (û(x0))

= − λf (u(P ))+ Bαe−αt0u′(P )− αµe−αt0 + λf (u(P )+ µe−αt0)
= Bαe−αt0u′(P )− αµe−αt0 + λf ′(z0)µe

−αt0
(2.24)

for somez0 ∈ (u(P ), u(P )+ µe−αt0) ⊂ [−1,1].
If |P(x0, t0)| 5 M then by (2.21) the right hand side of (2.24) is strictly greater

than

e−αt0[Bαd − αµ+ µλf ′(z0)]
which is nonnegative by (2.22), contradicting the inequality on the left side of
(2.24).

If |P(x0, t0)| = M, then|u(P (x0, t0))− 1| < d
2 or |u(P (x0, t0))+ 1| < d

2 by
(2.19) and (2.20), so the choice ofµ implies

|z0 − 1| < d or |z0 + 1| < d.

Therefore,λf ′(z0) > α by (2.18). Sinceu′(P ) > 0 we see that the right hand side
of (2.24) is positive in this case, also giving a contradiction and establishing the
claim thatw(x, t) > 0 for all x ∈ R andt = 0.

If ĉ = 0, assume that̂un, n ∈ Z, is the corresponding stationary wave solution.
Let

wn(t) = u(n+ z− ct + B(1 − e−αt ))+ µe−αt − ûn, n ∈ Z.

We then use the same estimates as in (2.24) to getwn(t) > 0 for all n ∈ Z and
t = 0, the only difference being that instead ofJδ ∗ w we now have to use the
operator(J ∗ w)n, n ∈ Z, as defined before.

Now fix x̄ such that̂u(x̄) > −1 and use the observation thatu(P (x̄, t)) → −1
ast → ∞ (becausec > ĉ) to contradict the positivity ofw.

In the casec < ĉ, define

w(x, t) = −u(x − z+ (ĉ − c)t − B(1 − eαt ))+ µe−αt + û(x),

wherez is chosen so thatw(x,0) > 0. The same analysis as before leads to a
contradiction in this case too, proving the uniqueness ofc.

Remark. In the above proof we replacedλf (u(P ) + µe−αt0) − λf (u(P )) by
λf ′(z0)µe

−αt0 for somez0 ∈ (u(P ), u(P ) + µe−αt0) and had chosenµ small so
that z0 lies in an interval close to 1 and−1, thereby ensuringλf ′(z0) > α. We
could instead first chooseµ > 0 with µ < µ0 ≡ min {1 − a, a + 1} (a is the
middle zero off ). Now chooseα, d > 0 so that foru ∈ (1 − d,1) we have
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λf (u)− λf (u− z) > αz and foru ∈ (−1,−1+ d), λf (u+ z)− λf (u) > αz for
all z ∈ (0, µ). Such choices are clearly possible sincef is bistable with zeros only
at−1, a and 1. NowM > 0 is chosen so that||u(x)| − 1| < d when|x| = M and
u′(x) > d when|x| 5 M. The point of this is thatµ need not be small. In fact,
we can usually do better than the boundµ0 when we are considering one-sided
estimates. For instance, if we are squeezing from above we can take anyµ < a+1.

These considerations, similar to the proof of the previous lemma yield a proof for
the following ‘stability’ result.

Let un(t), n ∈ Z, be the solution to the initial value problem

u̇n = (J ∗ u)n − un − λf (un), n ∈ Z,

un(0) = u0
n.

Proposition 2.2.Let (uδ, cδ) be the solution given by Theorem 2.1, and letcδ |=
0. Assume−2 + a < u0

n < 2 + a for all n ∈ Z, lim inf n→∞ u0
n > a and

lim supn→−∞ u0
n < a. Then there exist constantss1, s2 andµ1, µ2, α > 0, such

that

uδ(n− s1 − cδt)− µ1e
−αt 5 un(t) 5 uδ(n− s2 − cδt)+ µ2e

−αt

for all n ∈ Z andt > 0.

We now return to the proof of Theorem 2.2, and show that, up to a translation,
û = u.

The same analysis which yieldedw > 0 forw defined in (2.23) can be carried
out for ĉ = c. Taking the limitt → ∞, we get

u(x + z+ B) = û(x) for all x ∈ R.

Thus there exists a minimalz̄ such that

u(x) = û(x − z) for all z > z̄ for all x ∈ R.

Note that ifu(x) 6≡ û(x − z̄) thenu(x) > û(x − z̄). Suppose otherwise, i.e., that
for somex0, u(x0) = û(x0 − z̄). Letw(x) = u(x)− û(x − z̄). Then atx = x0 we
have

0 5 Jδ ∗ w = −cw′(x0)+ w(x0)+ λf (u(x0))− λf (ū(x0 − z̄)) = 0,

thereforew(x0 − i) = 0 for all i ∈ Z. vn(t) ≡ w(x0 + n− ct), n ∈ Z satisfies

v̇n = (J ∗ v)n − vn − qn(t)vn,

vn(0) = 0
(2.25)

for some functionqn(t), by the Mean Value Theorem. But (2.25) has a unique
solution, namelyvn(t) ≡ 0, and hencew ≡ 0, a contradiction.
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Forη > 0 define

z(η) = inf {z : u(x) = û(x − z)− η for all x ∈ R}.
Note thatz(η) < z̄ sinceu′ is bounded and limη→0 z(η) = z̄ by minimality of z̄.

Fix N > 0. We claim that there existsηN > 0 such that for allη ∈ (0, ηN ]
u(x) > û(x − z(η))− η for |x| 5 N. (2.26)

If not, there existηn ↘ 0, xn → x0 ∈ [−N,N ] with

u(xn) = û(x − z(ηn))− ηn.

Taking the limit asn → ∞ then givesu(x0) = û(x0 − z̄), a contradiction to our
previously established assertion.

Let

ŵ(x, t) ≡ u(x)− û(x − (z̄− ε))+ µe−αt ,

whereµ < ηM , M is from (2.19)–(2.21),α is as in (2.18) andε > 0 is taken
so that 2ε < z̄ − z(η). Thenw̄(x,0) > 0, and if for somet0 > 0 andx0 ∈ R,
ŵ(x0, t0) = 0< ŵ(x, t) for all t < t0 andx ∈ R, then at(x0, t0)

0 = ŵt − Jδ ∗ ŵ − ŵ − ĉŵx

= −αµe−αt + λf (û)− λf (u) = [λf ′(p)− α]µe−αt (2.27)

for somep ∈ (u(x0), u(x0)+ µe−αt0). Sinceu(x0) = û(x0 − (z̄ − ε))− µe−αt0,
it follows that z(µe−αt0) = z̄ − ε, and becauseµe−αt0 < ηM , (2.26) implies
that |x0| > M and hence||p| − 1| 5 d, by (2.19) and (2.20). Consequently,
λf ′(p)− α > 0 by (2.18), contradicting (2.27).

Thusŵ(x, t) > 0 for all t > 0 andx ∈ R. Taking the limit ast → ∞ gives

u(x) = û(x − (z̄− ε)) for all x ∈ R,

contradicting the minimality of̄z and proving thatu ≡ û. ut

3. Stationary solutions, in the caseλ large, generalJ

In this section, we construct stationary solutions to (1.1), i.e., solutions to the
equation

(J ∗ u)n − un − λf (un) = 0, (3.1)

where nown ∈ Z
d , d = 1 and(J ∗ u)n ≡ ∑

|i| |=0 J (i)un−i . Compared to Section
2, we relax the assumptions onJ . First, we assume thatf has at least linear growth
outside[−1,1]. Let

λf (u) 5 r(u+ 1) for u 5 −1,

λf (u) = r(u− 1) for u = 1
(3.2)
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for somer > 0. Define

P ≡ {i ∈ Z
d\{0} : J (i) > 0},

N ≡ {i ∈ Z
d\{0} : J (i) < 0}.

We now allowJ to change sign, but with the restriction that

r > 2
∑
i∈N

|J (i)|. (3.3)

Note that we do not requireJ to be even or have a finite first moment. First we
show that (3.2) and (3.3) imply some ‘a priori’ bounds for solutions of (3.1). These
estimates will be needed in a later argument.

Proposition 3.1.Assume(3.3)holds. Then any solutionu to (3.1)satisfies

−r
r − 2

∑
i∈N |J (i)| 5 un 5 r

r − 2
∑
i∈N |J (i)| for all n ∈ Z

d . (3.4)

Proof. SetM1 ≡ inf n∈Zd un,M2 ≡ supn∈Zd un. Let{n1
k} be a sequence inZd such

thatun1
k

→ M1 ask → ∞, and{n2
k} a sequence such thatun2

k
→ M2 ask → ∞.

If M1 or M2 are achieved at some pointsn1 or n2 ∈ Z
d , then the corresponding

sequence{n1
k} or {n2

k} is defined asn1
k ≡ n1 or n2

k ≡ n2. We have

λf (un2
k
)−M2

∑
i∈P

J (i)−M1

∑
i∈N

J (i)

=
∑
i∈P

J (i)(un2
k−i −M2)+

∑
i∈N

J (i)(un2
k−i −M1)− un2

k
5 −un2

k
.

Passing to the limit ask → ∞, we get

λf (M2) 5 (M2 −M1)
∑
i∈N

|J (i)|. (3.5)

A similar argument shows that

λf (M1) = (M1 −M2)
∑
i∈N

|J (i)|. (3.6)

If M1 = −1 andM2 5 1, then obviously (3.4) is satisfied. Let us assume otherwise.
First, suppose thatM1 < −1 andM2 > 1. Applying (3.2) to (3.5) and (3.6),

we get

r(M2 − 1) 5 (M2 −M1)
∑
i∈N

|J (i)| (3.7)

and

r(M1 + 1) = (M1 −M2)
∑
i∈N

|J (i)|. (3.8)
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From (3.8) and (3.3) we obtain

−M1 5 r +M2
∑
i∈N |J (i)|

r − ∑
i∈N |J (i)| .

Substituting this into (3.7), we get

M2

(
r −

∑
i∈N

|J (i)| − (
∑
i∈N |J (i)|)2

r − ∑
i∈N |J (i)|

)
5 r + r

∑
i∈N |J (i)|

r − ∑
i∈N |J (i)| .

Thus, because of (3.3), we have

M2 5 r

r − 2
∑
i∈N |J (i)|

and

M1 = −r
r − 2

∑
i∈N |J (i)| .

Finally, if M2 5 1 andM1 < −1, (3.8) and (3.3) imply that

M1 = −r − ∑
i∈N |J (i)|

r − ∑
i∈N |J (i)| = −r

r − 2
∑
i∈N |J (i)| .

A similar argument shows thatM2 > 1 andM1 = −1 implies

M2 5 r

r − 2
∑
i∈N |J (i)| ,

which completes the proof.ut
Remark. Note that ifJ = 0 andu is a nonconstant solution of (3.1), then (3.4)
implies that

−1 5 un 5 1 for all n ∈ Z
d ,

but one can then see from (3.1) that−1 < un < 1 for all n ∈ Z
d for such non-

constant solutions.

Define

b ≡ r

r − 2
∑
i∈N |J (i)|

∑
i |= 0

|J (i)|.

Then, obviously (3.4) implies that|J ∗ u|∞ 5 b. We now assume thatλ is large
enough that

|1 + λf ′(u)| >
∑
i |=0

|J (i)| whenever|u+ λf (u)| 5 b. (3.9)
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λ u+ f(u)

u1
J u2

J u3
J u4

J

1

-1

-b

b

-1 1

Fig. 3.1. g(u) = u+ λf (u).

Let uJ1 , uJ2 be the zeros ofu + λf (u) − b such that−1 < uJ1 < uJ2 < 1 anduJ3 ,
uJ4 the two zeros ofu+ λf (u)+ b such that−1< uJ3 < uJ4 < 1 (see Figure 3.1).
Define

IJ1 ≡
[ −r
r − 2

∑
i∈N |J (i)| , u

J
1

]
,

I J2 ≡
[
uJ2 , u

J
3

]
,

I J3 ≡
[
uJ4 ,

r

r − 2
∑
i∈N |J (i)|

]
.

We note that (3.9) and (3.4) enable us to improve the ‘a priori’ bounds (3.4) for
a solution of (3.1).

Proposition 3.2.Assume(3.3)and(3.9)hold. Then any solutionu to (3.1)satisfies

un ∈ IJ1 ∪ IJ2 ∪ IJ3 for all n ∈ Z
d . (3.10)

The proof easily follows from the definition ofb.
We now state our theorem.

Theorem 3.1 (Existence of stationary solutions). Letλ∗ be the infimum ofλ’s for
which (3.9) holds. Fixλ = λ∗. All solutions of (3.1) can be characterized as
follows.

LetS1 andS2 be any two disjoint nontrivial subsets ofZ
d . Then there exists a

solutionû of (3.1), such thatûn ∈ IJ1 for n ∈ S1, ûn ∈ IJ2 for n ∈ S2 andûn ∈ IJ3
for n ∈ Z

d\(S1 ∪ S2). û is the unique such solution, if(3.9)holds.



302 Peter W. Bates & Adam Chmaj

Proof. Let S1 andS2 be any two nontrivial disjoint subsets ofZ
d . Define

F(u, 1
λ
)
n

= 1
λ
[(J ∗ u)n − un] − f (un), n ∈ Z

d

and

u0
n =




−1, n ∈ S1,

a, n ∈ S2,

1, n ∈ Z
d\(S1 ∪ S2).

(3.11)

Note thatF(u0,0)n = 0,n ∈ Z
d . LetL0 be the Frechet derivative ofF at (u0,0),

i.e.,L0v = ∂F
∂u
(u0,0). It is easily seen that

(L0v)n = −f ′(u0
n)vn, n ∈ Z

d . (3.12)

SinceL0 is invertible inl∞(Zd), by the Implicit Function Theorem, there is some
1
λ0
> 0 such that there exists a locally unique solutionuλ of F(u, 1

λ
) = 0 for

λ = λ0. We continue this solution of (3.1), withλ = λ0, to the intervalλ = λ∗, in
the following way.

By a change of notation,F(u, 1
λ
) = 0 is equivalent to

G(u, λ)n ≡ (J ∗ u)n − un − λf (un) = 0, n ∈ Z
d . (3.13)

Clearly,G isC1 on l∞(Zd)×R. Whenλ = λ0, (3.13) has the solutionuλ0. We use
the Implicit Function Theorem to obtain the same conclusion for allλ ∈ [λ∗, λ0].

Let uλ be a solution ofG(u, λ) = 0, andLλ be the linear operator defined in
l∞(Zd) by

(Lλv)n = (J ∗ v)n − [1 + λf ′(uλn)]vn, n ∈ Z
d . (3.14)

Note thatLλ ≡ ∂G
∂u
(uλ, λ).

Letλ1 ∈ (λ∗, λ0] be such that a solution,uλ1, exists to the equationG(u, λ1) =
0. First, we show that there existsε > 0 such that forλ ∈ (λ1 − ε, λ1], (3.13) has
a solution.

By the Implicit Function Theorem, it suffices to show thatLλ1 is invertible.
Recall the notationg(u) ≡ u+λf (u). The defining equation (3.14) can be rewritten
as

(Lλ1v)n = g′(uλ1
n )

[ 1

g′(uλ1
n )
(J ∗ v)n − vn

]
, n ∈ Z

d .

Since (3.10) implies that|g′(uλ1
n )| > ∑

|i| |=0 |J (i)|, it follows thatLλ1 is invertible.
To show that we can continue the solution branch toλ ∈ [λ∗, λ0], we argue

by contradiction. Suppose that there is someλ̄ = λ∗ such that a solution exists
for λ ∈ (λ̄, λ0], but not forλ = λ̄. Choose a sequenceλk → λ̄, ask → ∞.
By a diagonal argument, there exists a subsequence, which we also denote byλk,
such thatuλkn → uλ̄n for eachn ∈ Z

d , ask → ∞. Continuity and the Dominated

Convergence Theorem imply thatuλ̄ is a solution ofG(u, λ̄) = 0. This completes
the existence proof.
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To show uniqueness when (3.9) holds, assume that there are two distinct solu-
tionsu1 andu2 of (3.1), such thatu1

n, u
2
n ∈ IJ1 for n ∈ S1, u1

n, u
2
n ∈ IJ2 for n ∈ S2

andu1
n, u

2
n ∈ IJ3 for n ∈ Z

d\(S1 ∪ S2). Then

|u1 − u2|∞ 5 |g−1
i (J ∗ u1)− g−1

i (J ∗ u2)|∞ 5 k|u1 − u2|∞,
whereg−1

i , i = 1,2,3, is defined to be one of the three branches ofg−1 andk < 1
by (3.9). Thusu1

n = u2
n for all n ∈ Z

d . ut
We now provide a stability theorem for the solutions constructed inTheorem 3.1.

Theorem 3.2 (Stability of stationary solutions). Let û be a solution of(3.1), withλ
such that(3.9)holds. Then

1. If ûn ∈ IJ1 ∪ IJ3 for all n ∈ Z
d , thenû is (locally) exponentially stable in the

l∞(Zd) norm.
2. If ûn ∈ IJ2 for n ∈ S, whereS is a nontrivial subset ofZd , thenû is unstable in

thel∞(Zd) norm.

Proof. We investigateσ(Lλ), the spectrum ofLλ, the operator defined in (3.14).
Note that

((Lλ − µ)v)n = (J ∗ v)n − [g′(ûn)+ µ]vn, n ∈ Z
d ,

is invertible for

µ ∈ ∩p∈G{z : |z+ p| >
∑
i |=0

|J (i)|},

whereG ≡ {g′(ûn) : n ∈ Z
d}, since

((Lλ − µ)v)n = (g′(ûn)+ µ)
[

1
g′(ûn)+µ(J ∗ v)n − vn

]
, n ∈ Z

d .

Thus,

σ(Lλ) ⊂ ∪p∈G
{
z : |z+ p| 5

∑
i |=0

|J (i)|
}
. (3.15)

If ûn ∈ IJ1 ∪ IJ3 for all n ∈ Z
d , thenσ(Lλ) lies in the left-half plane, thus by [6],

û is (locally) exponentially asymptotically stable, which proves 1.
Assume on the other hand, thatûn ∈ IJ2 for n ∈ S, whereS is a nontrivial

subset ofZd . From the construction in Theorem 3.1, this solution is continued from
u0 given by (3.11). Note that

σ(L0) ⊂ {−f ′(−1),−f ′(a),−f ′(1)}, and in particular− f ′(a) ∈ σ(L0),

whereL0 is given by (3.12). Each of the points inσ(L0) is an eigenvalue of infinite
multiplicity. Since our continuation is aC1 deformation, by (3.15),σ(Lλ) does not
intersect the imaginary axis andσ(Lλ) contains values in the right-half plane. Thus
from [6] we conclude that̂u is unstable, which proves 2.ut
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Remark. In this section we considered stationary solutions on the latticeZ
d . We

could have easily considered a general multi-dimensional lattice3, interpreting
(J ∗u)p appropriately to give the weighted average of values ofu in a neighborhood
centered atp ∈ 3.
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