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Abstract

We study a discrete convolution model for Ising-like phase transitions. This non-
local model is derived as dgrgradient flow for a Helmholtz free energy functional
with general long range interactions. We construct traveling waves and stationary
solutions, and study their uniqueness and stability. In particular, we find some cri-
teria for “propagation” and “pinning”, and compare our results with those for a
previously studied continuum convolution model.

1. Introduction

We study the following infinite system of coupled semilinear evolution equa-
tions

iy = (J *u), —u, —rf(u,), n € Z, (1.2)

where(J x u), = Ziez\{o} J D up—;, Ziez\{o} J (i) =1, f is bistable and. > 0.

The values of the kernel can change sign but some of our results require

to be nonnegative and even. Equation (1.1) can be obtained using a microscopic
viewpoint, from the following argument.

Consider a lattic& whose sites are occupied by blocks, each consisting of many
“atoms” arranged in a finer lattice. Each atom can exist in one of two states, A and
B (such as spin up or spin down). We take the point of view that each arrangement
of atoms has a potential energy of interaction consisting of (i) interactions between
atoms within each block, and (ii) interactions between blocks. Furthermore, we will
account for random (thermal) fluctuations within each block to give an entropy of
mixing but we will not consider random fluctuations between blocka of

The sites ofA will be denoted by but also byi(r), the latter signifying the
smaller lattice which is the block at positiere A. We will useo (s) to denote the
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occupancy of an A-atom at sitec [(r), i.e.,o (s) = 1 if an A-atom occupies site
s and is 0 otherwise. We will us&(r) to denote the average A-occupancy @.

The Helmholtz free energy of our system with an arrangenfef)}, <, is
given by

E=H-TS, (1.2)

where H is the internal interaction energy, the absolute temperature afdhe
entropy.
As postulated above, the interaction energy has the form

H(a) = I1(a) + I2(a),

wherel; is the total energy of interaction within the blocks which makeauand
I> is that between blocks. We may write

n@=-3Y > [/M6-5)0@a)+ s -5 -a()

rel s,s’el(r)

x(L—a(s)) + I8 —s) o)L —o(s") + (L — U(S))G(S’))] ,

where J*# (s — s") is the energy of interaction between atoms of typesnd 3
at sitess ands’ (see [21]). In this formi; actually depends upon the microscopic
configuration given by the’s but a simplifying assumption below resolves this
issue.

The interaction energy between blocks is given by

@ =~4% Y [i*0 - ramat) + e - A - a0 - at)

r,r'eA

+j4 = @)@ - at') + @ = a@)at)]

where j*f (r — r") denotes the interaction energy between atoms of typersd 8
at sitesr andr’, which we assume are symmetric(in— r’).
By completing the square, we may write this as

b)) =7 Y jr—rYa@)—a@))? =3 j@®r)—a@)
rr'eA reA

— %Z&a(r) —c,

relA

where j(r) = jAA) + jBB(r) = 2j48(r), d = X, A (GM () — BB,
j = ZreA ](I") andc = Zr,r’GA jBB(r - r,)-

Since we will be considering the gradient flow of the free energy, there is no
loss in dropping:. Also, we are considering an extremely large latiicand will
ignore boundary effects, so we take ffieto be translation-invariant, which is why
we get constantg andd, above.
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On the other hand, we will consider each identica) to be spatially of such
small size that thd’s are independent of position. Then, if each small lattice has
N vertices, we may writd; as

I(a)=—-3Y N%J(@*(r) —a(r) — 3 Y_N?Da(r) — C,
rei reA
whereJ = JA4 + JBE _2JAB D = jAA — JBB andC = 1JPBN2|A|.
The entropyS(a), is given by

S(a) = sa(r)),

relA

where, for a block ofV vertices with A-occupancy fractiom = p/N, s(«) is
given by

eXF(NS(Q’)/k) = m

The expression on the right side is the number of arrangemeptsimims among
N sites, and is Boltzman'’s constant.

FollowingBraGG & WiLLIAMS [8] we can use Stirling’s formula to approximate
the factorials and discard small term€ (s very large even though eactr) is
spatially very small) to obtain the approximation

s(a) = —k[aloga + (1 — a)log (1 — «)]
and so
S(a) = —k Z[a(rﬂog (a(r)) + (1 —a(r)log(1—a(r))].
rei

Rearranging the terms which comprise (1.2) and dropping additive constants, we
get

E(@=3% Y. jr—r)a)—at)?+ > {da(r)
rr'eA r
+Tkla(r)log (a(r) + (1 — a(r)log (1 — a(r)] — q(a®(r) —a(r)))},  (1.3)
where
d = -3+ N?D)andg = 1(j + N2)).

We assume that > 0, which is typical for ferromagnetic-like materials. Note that
for |[d| < g andT k small enough, the last summand in (1.3) has two minima, which
are of equal depth i# = 0.

Fix T > 0 sufficiently small so that this summand has two minima, at a;
anda = ap, say. Change variables, letting= —1 + 2(a — a1)/(a2 — a1) So that
(1.3) becomes

Ew) =% Y jor—r)u@)—ut))?+Y Wur)), (1.4)

r,r'eA reA
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where the factotay —a1)?/4 has been absorbed by redefinjr@andW has minima
atu = =1, not necessarily of equal depth.
Observe that even though we assume- 0 we do not always assumgeis
everywhere positive. However, in much of our analysis, that will be the case.
From now on, for simplicity we assume that = Z. The l>-gradientVE
of E is

VEGW), = =%, + (3 5m) Jun + W), n e Z.

We assume that solutions evolve along curves of ‘steepest descent These
curves, at each point, lie in the direction of the negative gradiénE («). Thus
the evolution can be represented by a gradient flow (see [13])

un, = —-VEW),, neZ. (1.5)

SetJ = W fw) = W (u) andr = ST With this normalization, the

‘strength’ of the interaction kernel is contained in the constant Dividing by
> j(m) and rescaling time brings (1.5) into the form of (1.1). In general, the
various physical forces which contribute foresult in J being not necessarily
monotone or even positive on the set of positive integers.

One may observe that in the above derivation, the function

gw) =u+Arf(u)

is monotone if we ignore short range interaction andJset 0. However, in the
analysis of (1.1) that follows, we do not requiy¢o be monotone, and in fact some
results rely upon the nonmonotonicity of

We remark that in the continuum mean field approximation, (1.4) becomes

E(u) = %/ / J&x =) ) —uy)?dxdy +/ W(u(x))dx, (1.6)

R JR R

as was derived in [3]. Ad.2-gradient flow of (1.6) is then
uy=Jxu—u—rf(u), a.7)

whereJ = Lj andi = % This equation has been studied recently in [5,15,9,
10] and [3].

Going one step further, one can change variables in (1.6), ysing=2,
&= % and expand (x) = u(§ + n) andu(y) = u(¢ — n) abouté, to get the
formal expression

D2k+1u(§)n2k+l
/fJ(z) X "G ) dédr)—l—[;{W(u(x))dx. (1.8)

Truncating the summation in (1.8)/at= 0 gives, forc = [ J(2n)n%dn, an energy

c/ |u’(x)|2dx+f W (u(x)) dx,
R R
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whoseL?-gradient flow is

ur = cuxy — f(u). (1.9)

This is the familiar Allen-Cahn equation [2], often referred to as the bistable equa-
tion (e.g., [14]). Some results for higher order truncations have been obtained in
[7] and [4].

A version of (1.1) with nearest-neighbor interactions, i.e.,

iy = %un+l + %uwl —uy, — Af(uy), nez, (1.10)

has been studied in other contexts. It is often referred to as a discrete Allen-Cahn
or Nagumo equation. Many results specific to this equation may be found in [18,
22,23], [17,19,16,11,12] and [20]. In these papers, the authors investigate both
traveling waves and so-called ‘pinning’ (‘lack of propagation’), which occurs for
large even when the wells div are of unequal depth.

Pinning also occurs in the continuum convolution equation (1.7), as was discov-
ered in [5,9,10] and [3]. However, it does not occur in the local bistable equation
(1.9).

The paper is organized as follows:

In Section 2, under the assumption thids even and nonnegative, we construct
traveling wave solutions. Our method is different than those in [22,17] and [11]
which rely on the finite-range coupling in equation (1.10). Our approach is to
consider a sequence of traveling wave solutions of (1.7) with varyisgwhich
are smooth approximations of sums of delta functions. We show that these solutions
have a limit, which is a traveling wave of (1.1). We then attempt to relate its speed
to the general nonlinearity. However, a ‘propagation/no-propagation criterion’
seems to be much harder to establish than that for the equation (1.7) [5]. One of the
reasons is that a traveling wave of (1.7) is always a solution of an integrodifferential
equation. However, a traveling wave of (1.1) is a solution of either a functional
equation, or an infinite system of coupled ODE'’s, depending on whether its speed
is nonzero or zero. Our ‘criterion’is thus not complete, but nonethelessitis stronger
than the corresponding results in [18,22] and [19]. In particular, we find that (1.1)
admits ‘less propagation’ than (1.7). Next, we show uniqueness of traveling waves
with nonzero speed, using a certain ‘squeezing’technique. This method also enables
us to obtain a stability result.

In Section 3, we adapt a technique from [3] to prove that for largequation
(1.1) admits pinning. We construct all stationary solutions and give precise criteria
for their stability. We note that this result holds for multi-dimensional lattices and
general/’s, including those which change sign.

2. Monotone traveling waves, in the casd > 0
In this section, we study monotone traveling wave solutions of (1.1).

Define Js(x) = Zm;l J@@)8(x —i),whereJ(i) = J(—i) = O0foralli € Z,
2z /@ = landy ;> 1ilJ(@) < oo. We also assume that the support of
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J contains eithei = 1 or two relatively prime integers, = p andi = ¢q. We
consider the equation

cu' (X)) + (Js xu)(x) —ux) —Af(ux) =0, xeR, (2.1)
together with the boundary conditions
u(—oo) = -1, u(4+o0) =1 (2.2)

Here f is bistable, withf € C"(R),r = 1, andf has only three zeros, atl, 1 and
a € (—1,1). Clearly, solutionqu(x), c) of (2.1), subject to (2.2), give traveling
waves for (1.1), by setting, (1) = u(n — ct).

Defineg(u) = u + Af (u). For simplicity, we make the following assumptions
aboutg:

g has at most three intervals of monotonicity1, 8), [8, y] and (y, 1], for
somep < y. Moreover,

g >00n[-1L A U(y,1, g <0o0n(B, y).
In the case8 < y, for any number
ke K={gu): uel-1B81N{gw): ucely 1}

definegy (1) to be the continuous nondecreasing function obtained by modifying
g to be the constant valuebetween the ascending brancheg of

In the case8 = y, k can be chosen to be any numbefl, 1], andgy (1) =
g(u) for all u.

Theorem 2.1 Existence of monotone traveling waye3here exists a strictly
monotone traveling wave solutiom,(t) = us(n — cst) of (1.1), such that
us(—o0) = —landus(4+o0) = 1. Moreover:
A.sgncs = sgnf_l1 fw)du,ifcs £0.

cs = 0 if there exists such thatf_l1 gx(u)du =0.

B.

C.cs £ 0if f}l fw)du £ 0andx < A(f), wherer(f) is small enough.

D. In the casezs monotonegs < 0 (¢s > 0) if there existsi* € (—1, 1) such that
Af(u*) < =1 (A f(u*) > 1).

E. Inthe casg nonmonotone;; < 0(cs > 0) ifthere existe* € (—1, B) ((v, 1))
such thath f (u*) < —1 (Af (u*) > 1), or if there existsi* € (¥, 1) ((—1, B))
such thatuf (u*) < =1 (Af w*) > 1) andg(B) = g(u*) (g(y) = g(™)).

Proof. The idea is to ‘approximate’ (2.1) by
cu' + Jpxu—u—rf(u) =0, (2.3)
where{J,,} is a family of sums of delta sequences, such that

Jnx¢ — Jsx¢p asm — oo (2.4)
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uniformly on compact sets for eaghe C5°(R). The kernel/,, can be defined as
follows:

Let y be any smooth function, such that > 0 and [ ¥ (x)dx = 1. Then
3 (x) = my(mx) is a delta sequence, i.€5,, * ¢)(x) — ¢(x) asm — oo, for
¢ € C°(R). For simplicity, we assume that is even and has compact support.
Let

In()y= Y L D=1, (2.5)

w
1< Em "

wherew,, = 3 1< <, J (k). To show (2.4), lep € C3°(R). For any fixedx,
there exists soméf,, such that,,(x — y —i) = 0 and¢(x — i) = 0O for all m,
li| 2 M, andy € supp¢, so that

1
Inxpx)= Y w—J(i)fRsmu—y—i)qsw)dy

1<1i1EM

— Z J()p(x —i) = Js xp(x) asm — oo,

1£1iIEM

whereM = min{M,, m}. Since¢’ is bounded, it is easily seen that convergence is
uniform on compact sets for eaghe C3°(R).

We recall the result in [5], that for each,, there exists a (strictly) monotone
traveling wave solutiom (x, t) = u,;, (x — ¢;ut) of (1.7), such thai,, (—o0) = —1,
u,(+00) = 1. Note that herey,, is a function defined ofR and should not be
confused with the sequen¢e,} appearing in (1.1) and elsewhere.

Proposition 2.1.There exists a solutiotu,,,, ¢,,) of (2.3), such thats,, is (strictly)
monotoney,, (—oo) = —1 andu,, (+o00) = 1. Moreover,

1

c¢m = 0 if, and only if, there exist such that/ gr(w)du =0, (2.6)
1

and otherwisesgrn,,, = sgnf_l1 f)du.

For proof of this theorem, see [5].

The solutiongu,,, ¢,,) are of course also weak solutions of (2.3), i.e., for any
¢ € C°(R) they satisfy

—c/ u¢’+/[Jm*u—u—Af(u)]¢=O. 2.7
R R

Consider first the case, = 0. Takea € (a, 1) and translate each,, so that
un(0) = «o. By Helly's Theorem, there exists a subsequencea,pf which we
still denote byu,,, converging pointwise to a monotone functiepnasm — oo.
Moreover, thec,,’s are uniformly bounded, as can be seen from the following
argument.
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Assume to the contrary, that there is a sequence> oo asm — oco. From
(2.3) we see that,,u), | < const, from which we g&/,|.c — 0 asm — oo.
This impliesus = «, which gives a contradiction, since

0> Af(a) = lim Af(uy) = im (Jy xupm — uy)
m—0o0 m—00

= lim '/RJm(x—y)(y—X)uﬁn(p(X,)’))dy =0,

m—0oQ0

for some functionp, where the last limit follows fromu,,|c — 0 asm — oo
(we can pass to the limit under the integral sign sifigéx|J,, (x) dx are uniformly
bounded).

Thus by passing to another subsequence, we alsodyave cs, for somecs,
asm — oo. We now show thais solves (2.1) and thats (+o0) = £1. By passing
to the limitm — oo in (2.7), we note thats is a weak solution of (2.1), i.e., it
satisfies

—C5/ u¢’+/[]g*u—u—kf(u)]¢:0 (2.8)
R R

for ¢ € C3°(R). This follows from Lebesgue’s Dominated Convergence Theorem
and the limit

/(Jm * U )@ :/(Jm * Py — /(JE * Q)us :/(-15 *Us)P. (29)
R R R R

asm — oo. The first equality is obvious from Fubini’'s Theorem (recall that each
J, is defined to be a finite sum). The limit follows from Lebesgue’s Dominated
Convergence Theorem, singg,| < 1 and¢ has compact support. To show the
last equality we need the following lemma.

Lemma 2.1 Pominated Convergence Theorgrhet{ f; x} be a double sequence
of summable functions (i.ez‘i@l fi.k < 00), suchthatf; y — f; ask — oo for
all |i] = 1. If there exists a summable sequerigg such that| f; x| < g; for all

i, k's, then

Zfi,k—> Zf,- ask — oo.

li|21 li|21

The proof is similar to that of Lebesgue’s Dominated Convergence Theorem.
Note that

k
[ Greoms = fim_ [ 30 5000+ st do

Kz

k
= lim > 7G) [k¢(x +i)us(x) dox,

li|=1
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where the last equality follows becaugéas compact support and thus the sum is
finite. Since

k
’/ ¢(x +ius(x)dx
—k

< f |¢(x +i)|dx = const,
R

we can use Lemma 2.1, the evennesg ahd Lebesgue’s Dominated Convergence
Theorem to conclude that

/R(Ja TR J(i)/R¢(x + Dus(x) dx

li|I21

= J(i)/ us (x + )¢ (x) dx 2/(Js*us)¢,
R R

li|I21

which shows the last equality in (2.9).

If cs + 0, then (2.8) implies that; € W1 (R). A bootstrap argument then
shows that; is C1(R) (and actuallyC"+1(R)) and thus a traveling wave solution
of (1.1).

If ¢s = 0, thenus need not be continuous, sB * us(n) need not equal
ZIiIZl J()us(n — i). However,us is monotone, and so the set of jump disconti-
nuities is at most countable. Thus we can find a sequgngsuch that, \, 0 as
k — oo andus is continuous at + si for all n € Z andk > 0. Equation (2.8)
implies that

Js xus(n + sp) — us(n + sp) — Af (us(n + sp))

= > J@us(n+ sk — i) — us(n +5x) = hf (us(n +5)) =0
li|=1

foralln € Z andk > 0. Itis then easily seen that the sequengéefined by
us, = lim us(n +sy), neZ,
k— 00
satisfies

D T Dusni = usy — 1S ws),

li|21

S0 is a stationary wave solution of (1.1).

We now show thatis(—oo) = —1 andus(+00) = 1. From the monotonicity
of us we easily see thaf (us(d+o00)) = 0. Sinceus(0) = o, we havars(+oo) = 1
andugs(—o0) € {a, —1}. If us(—o0) = —1, we are done. So assume otherwise, that
us(—oo) = a. Thenf(us(x)) < 0onR.

Consider first the casg > 0. Integrate equation (2.1) over N, N) to get

N N N
C5/ ug(x) dx +/ (Js *us(x) —us(x))dx = A/ f(us(x))dx < 0.
N -N —-N
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To obtain a contradiction, we show that lim, o f_NN(Ja *ug —ug) = 0. We have

N N
[ s == [ S U Owst =) usceld

izt

N 1
==Y J(i)/ f ul(x — ti)i dr dx
—-N JO

li|21

1
=— Z iJ(i)f (us(N — ti) — us(—N — ti)) dt
1121 0
— —(1—a) Y_iJ(@i)=0asN — oo.
li121

In the above calculation we used Lebesgue’s Dominated Convergence Theorem,
Fubini’s Theorem, Lemma 2.1 and the evenness.of

Next, assume thats = 0. Then, using an argument similar to the above, the
sequencéus} defined byus, = limg_ o us(n+s), n € Z, is a stationary solution
of (1.1), i.e.,

(J * uB)n —Usn — )‘f(uén) =0, neZ

However, it is easily seen that

0= ((J xus)y —usy) = Yy _ Mf(usy) <0,

nez nez

a contradiction again.

Finally, in the case,, < 0, a similar argument is used takiage (—1, a).

To show strict monotonicity, we consider first the case= 0. For simplicity
of notation here, we drop the subscripi.e., we letu = u;.

We argue by contradiction. Assume thgt 1 = u,, for someng € Z. We
then have

> T ngp1-i — ttng—i) =0,

li|=1

I.€.,Upg+1—i = Uny—i fOri € suppJ. Since eithet/ (1) >0orJ(p), J(q) >0 for
some relatively prime integegsandg, by induction it then follows that = const,
a contradiction.

Letc # 0. Suppose/(xg) = 0 for somexg. Sinceu’(x) = 0 for all x € R,
u” (xg) = 0. Therefore

0= —cu’(xg) = Z J (' (xo — i)

lil21
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andu’(xg — i) = 0 for all i € suppJ. Since eithe/(£1) > 0orJ(p) > 0 and
J(g) > 0 with p andgq relatively prime, we conclude that(xg + n) = 0 for all
n € Z. Defineu, (t) = u(n — ct), thenu,, satisfies the initial value problem

hy = Y J()wa—i — wy — Af (wy)

li|21

X0
wn(—?) = u(n + xo).

Sinceu’(n + xg) = 0 for alln € Z, the constantv,, (t) = u(n + xg) also solves
(2), contradicting the uniqueness of solutions to (2).

Remark. It is only here where we use the assumption that eithersuppJ or
P, q € suppJ. An interesting open question is then how to relax these restrictions
on J to preserve strict monotonicity amd > 0 (for waves with nonzero speed).

To complete the proof, we now show A-E.
Suppose thats + 0. Multiply equation (2.1) by (x) and integrate oveR.
We get

1
63/ ul(x)2 dx +/(Jg * s — Us)y :/ Af (u) du. (2.10)
R R -1
However,

[ s = sy = 32 000 [ st =) = st dx =0

li|=1

where we used Lebesgue’s Dominated Convergence Theorem, the evensess of
and the equalities

/u,g(x—i)ué(x)dx:—/ us(x +iug(x)dx
R R

and [ us(x)uj(x) dx = 0. From (2.10) we thus get sgp = sgn f_ll f(u) du (it
also follows thatf_ll f(u)du = 0impliescs = 0). This proves A.

If ¢s = 0, thenus is not necessarilyC1(R) (in fact, we conjecture that it
may be a step function, constant on half-closed intervals of unit length), so this
argument cannot be used anymore. However, from our constructiag,af;) and
Proposition 2.1, B easily follows.

To prove C, we argue by contradiction. Assume tﬁa{ f(u)du + 0 and
cs = 0. Letu* = us be the stationary solution to (1.1), i.e.,

(J xuM), —ul =rf@h), nelk. (2.11)
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Multiply (2.11) byu;:,, — uj,_, and sum over € Z, to get

1
2 T — g — )

nel jizt (2.12)
= Y @) Whyq — uh) + f@l) @l —uh_p)].
neZ
First note that
Teazx(uﬁ+l —uk) — 0asr — 0. (2.13)

This follows from the following argument by contradiction. Assume there exists
¢ > 0 and a sequendg,} converging to 0 such that

mEaZx(uz’jrl —up) =) —upk 2 e ask — oo
n

Through translation, we can takge = 0. Since every solution** is monotone,
by Helly’s Theorem there exists a subsequence’sfwhich converges to some
monotone:°. It is easily seen from (2.11) thaf satisfies

Y IOy —u) =0 (2.14)

li|21

foralln € Z and that9 — u3 > e. Let J(0) = 0, then (2.14) becomes

Z J(n — i)(ulQ - ug) = Z J(n — i)(”zo+l - ”2+1) =0

i€Z i€Z
for all n € Z. After subtraction, we get
DT =iy —ud) =ud g —ul (2.15)
i€’

foralln € Z. Since—1 < ug < 1foralln € Z, the number of integersfor which
u%, 1 —ul = ¢ is finite, which gives us a contradiction to (2.15).
Statement(2.13) implies that the right side of (2.12) is a Riemann sum, which

tends to 2f_llf(u)du + 0 as\h — 0. However, the left side of (2.12) is O for all
A’s, as is seen from the following calculation. LEt0) = 0. Since

DY @i = u)ngr =yl £2Y YT (@) (g1 — un-1) =8,

neZ i€l neZ i€l

the double serie}", .7 > ;7 J () (n—i — ty) (Up+1 — up—1) is summable. By an
equivalent of Fubini’'s Theorem for series, we can rearrange this series to get

SO TG ni = un) (g1 — un-1)

neZ i€l

= Z Z J(n — i) — up)(Upt1 — Un—1)

neZ i€l

=22 I =i — un)Wns1 — 1) = S.

i€Z neZ
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In S (the last series) we interchangeith n and use the evenness.bto get

S=Y " Jn— i)y — ;) (uiy1 — ui-1).

i€eZ neZ

Summing the last two series, we get

25 ==Y T D)un — ui)(tn 1 — i)
i€Z nel
+ Z Z Jn —i)(un —u;i)(up—1—u;—1) =0,

i€Z neZ

which gives us the desired contradiction.

To show D, we assume without loss of generality that there exists(—1, 1)
such that f (u*) < —1. Choose a smail > 0, and define a monotone functigp
as follows:

= g(u), foru 2> u*,
ge(u) 4 = g™), for— 146 <u<u*,

> g(u) andisincreasingfor —1 < u < —1+¢.
We first prove that the equation
iy = (J *u), — ge(up), n ez, (2.16)

has a solutiom, (n — c.t), with ¢, < 0, and then show that this implies thgt< O
as well.

From the existence part, it clearly follows that (2.16) has a solutjém — c.7).
To show thatc, < 0, we argue by contradiction. ; + 0, then sgnc, =
sgn f_ll fe(u)du, where Af,(u) = g.(u) — u. However, from the facts that
there existst* € (—1, 1) such that.f, (u*) < —1 andg, is monotone, we have
f_ll fe(u)du < 0, soc, + 0 implies thatc, < 0. Now assume that, = 0. Let
u, be the stationary solution of (2.16). For convenience, let us drop the subscript
g, i.e., we letu = u.. Sinceu, is strictly increasing, so is the sequendex u),,.
Thus,u, ¢ [—1+ ¢, u*] for anyn € Z. To see this, assume otherwise andilgt
be such that,, € [-1+ ¢, u*]. Then sinceg, is constant ofi—1+ ¢, u*],

ge(*) = geung) > Y J(u* + Y J() (1) = u* — 3.
iS-1 izl

Recalling that.f; (u*) < —1, we then conclude* > 1, a contradiction.
Sinceu is translationally invariant, we can assume thgt< —1 + ¢ and
u1 > u*. This implies that

gs(up) < gs(u*)
and

ge(un) > Y T+ Y J()(~1) = Ju* — 3,

i<-1 iz1
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from which we get

S+ 3A—u*) > > T uri —u_j) = ge(u1) — ge(uo)
lil=1

> Ju* — g (u) — 3 = —Afow*) — 5 — Ju*.
Hence,
Me®) > =1-5,

which, for small enough, contradicts the assumptiarf (u*) < —1.

Itis obvious from the above strict inequalities tlgatcan be mad€” (R), with
ce < 0 preserved. In the following, we assume thats C" (R).

To show that, < 0 impliescs < 0, we argue by contradiction. Assume that
c¢s = 0. Define

wi(f) = _ue(n —Z — Cgt — B(l — e—ott)) + Me_at + us,
wherez is chosen so that
wi(0) = —u,(n+2) + p+us, >0

and all other constants are chosen as in (2.18)-(2.22) below. Since g, a
calculation similar to (2.24) below shows tha§ () > 0 for alln € Z andr = 0.
However, since, < 0, we obtain a contradiction.

The proof of E is analogous to that of D, and we leave the details to the reader.
O

Remark. Conclusion B of Theorem 2.1 is only a one-way implication while (2.6)
gives an equivalence in the continuous case. Also, conclusions C-E do not exclude
the possibility that B should also be an equivalence. Thus, an interesting question
arises as to whether (2.6) holds for traveling wave solutions of (1.1) as well, i.e.,
does (1.1) admit the same ‘amount’ of propagation as (1.7)? The answer is no, as
the following simple example shows.

Assumeg is strictly monotoneffll g(u) du = 0 and letu be a stationary wave
solution of (1.1) with thisg, as constructed in Theorem 2.1. Sincés a strictly
monotone sequence, we can redefjran an interval which is not in the range of
u, in such a way that the ‘newg is still strictly monotone an(fflg(u)du + 0.

Note thatu is still a stationary wave solution for (1.1) wifh there are no traveling
wave solutions with nonzero speed by Theorem 2.2 below, and that the traveling
wave solution for (1.7) witty has nonzero speed by (2.6).

This example shows that equation (1.1) admits ‘less propagation’than equation
1.7).

We now study uniqueness of our solutions.

Theorem 2.2 Unigueness of traveling waves with nonzero speket (us, cs) be
a solution to(2.1)and(2.2), as given in Theorem 2.1, such that+ 0. Let(is, ¢s)
be another solution t¢2.1) and (2.2). Thenés = ¢s and, up to a translation,
125 =us.
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Proof. We begin the proof with the observation thatif, ¢) is a solution to (2.1)
and (2.2), then

li]oo = 1. (2.17)

Suppose otherwise, i.e., le§ be such that maxg |u(x)| = |u(xo)| > 1. Without
loss of generality, let us assume thidig) > 1. We obviously havé’(xg) = 0,
and so

0 2 Js*ii(xo) — it(x0) = Af (it (x0)) > 0

gives a contradiction.

First we show thats = cs. We use the ‘squeezing’ technique from [1]. For
convenience, we drop the subscidpt

Suppose that & 0. Choosex, d, M > 0 such that

A (z) >awhen|z £+ 1] <d, (2.18)
d
lu(x) — 1| < > whenx =2 M, (2.19)
d
lu(x) + 1| < > whenx £ —M, (2.20)
u'(x) > d when|x] £ M. (2.21)

Note that (2.21) is possible since in the proof of Theorem 2.1 we showed that
u'(x) > Oforallx € R.
Letu € (0, %) and define

_ K /
B=L [a _min, Af (z)]. (2.22)

First, consider the case wheare- ¢ and define
wx, ) =u(x+z+E =)t +BL—e) 4+ pe ™ —i(x), (2.23)
where by (2.17) can be chosen so that
wx,0) =u(x+2z)+pu—ux)>0.

We claim thatw(x, ) > 0 for allx € R ands = 0. To see this, suppose that there
exists(xg, fg) such that

w(xg, 10) =0 w(x,t)forx e R and 0=+ < 1.

From (2.23) we see that, (xg, 79) exists and is nonpositive and thatit- 0 (so
thata is C" 1), wy (xo, 10) = 0. FurthermoreJs s w(xo, 1) < 0. Define

Px,)=x+4+z+ (¢ —o)t+ B(l—e 9.
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Using (2.1), we have dto, 10),

0= w, —Js*xw
= (6 —c+ Bae ")/ (P) —ape 0 — Js % u(P) — e *° + Js * ii(xg)
= —u(P) — Af(u(P)) + (¢ + Bae ™)' (P) — ape @0 — e
— ¢’ (x0) + i (x0) + Af (@t (x0))
= —Af(P)) + Bae *u'(P) — ape 0 + Af (u(P) + pe *0)
= Bae 0y (P) — aue 0 4+ Af'(zo) e *"
(2.24)

for somezg € (u(P), u(P) + pe*0) C [—1, 1].
If | P(x0, 10)] £ M then by (2.21) the right hand side of (2.24) is strictly greater
than

e *®[Bad — ap + prf'(20)]

which is nonnegative by (2.22), contradicting the inequality on the left side of
(2.24).

If | P (x0, 10)] = M, then|u(P (xo, 10)) — 1| < § o [u(P (x0, 10)) + 1| < § by
(2.19) and (2.20), so the choice pfimplies

lzo—1] <dor|zo+ 1] <d.

Therefore A f’(z0) > o by (2.18). Since//(P) > 0 we see that the right hand side
of (2.24) is positive in this case, also giving a contradiction and establishing the
claim thatw(x, r) > 0 for all x € R ands = 0.

If ¢ =0, assume thak,, n € Z, is the corresponding stationary wave solution.
Let

wp(t) =un+z—ct+BA—e ) +pe * —a,, nelZ

We then use the same estimates as in (2.24) tavgét) > 0 for alln € Z and
t 2 0, the only difference being that instead Bf+ w we now have to use the
operaton(J * w),, n € Z, as defined before.

Now fix x such thati(x) > —1 and use the observation thdtP (x, 1)) — —1
ast — oo (because > ¢) to contradict the positivity ofv.

In the case < ¢, define

wx,t) =—ulx—z+ E—c)t —BA—e"")) + pe ™ +i(x),

wherez is chosen so thab(x,0) > 0. The same analysis as before leads to a
contradiction in this case too, proving the uniqueness of

Remark. In the above proof we replacedf (u(P) + pne %) — Af(u(P)) by
Af'(zo) e~ for somezg € (u(P), u(P) + ne %) and had chosen small so
that zg lies in an interval close to 1 and1, thereby ensurin@gf’(zo) > a. We
could instead first choose > O with u < wo = min {1 —a,a + 1} (a is the
middle zero of f). Now choosex,d > 0 so that foru € (1 — d, 1) we have
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M) —Af(u—2z) >azandforu € (=1, —=1+d), Af (u +2) — Af (u) > az for

all z € (0, w). Such choices are clearly possible sirtes bistable with zeros only
at—1,a and 1. NowM > 0 is chosen so thafu(x)| — 1| < d when|x| = M and
u'(x) > d when|x| £ M. The point of this is thatx need not be small. In fact,
we can usually do better than the boyngl when we are considering one-sided
estimates. For instance, if we are squeezing from above we can take-amayt 1.

These considerations, similar to the proof of the previous lemma yield a proof for
the following ‘stability’ result.
Letu,(t), n € Z, be the solution to the initial value problem

iy = (J*M)n_un_)‘f(un)v n e Z,
u,(0) = ug
Proposition 2.2.Let (us, cs) be the solution given by Theorem 2.1, andclet:
0. Assume-2 +a < u® < 24 aforaln e Z, liminf,u® > a and

lim sup,_, _., 4% < a. Then there exist constanis, sz and 11, 12, @ > 0, such
that

us(n —s1— cst) — pae " S up(t) S us(n — s2 — cst) + poe™
forall n € Z andr > 0.

We now return to the proof of Theorem 2.2, and show that, up to a translation,
iU =u.

The same analysis which yieldad> 0 for w defined in (2.23) can be carried
out for¢ = ¢. Taking the limitt — oo, we get

u(x +z+ B) = i(x) forall x e R.
Thus there exists a minimalsuch that
u(x) Z ua(x —z)forallz > zforall x € R.
Note that ifu(x) # a(x — z) thenu(x) > a(x — z). Suppose otherwise, i.e., that
for somexg, u(xg) = ti(xg — 2). Letw(x) = u(x) — ii(x — 7). Then atx = xg we
have
0 < Js xw = —cw'(x0) + w(xo) + Af (u(x0)) — Af (A (xo — 2)) =0,

thereforew(xg — i) = 0foralli € Z. v,(t) = w(xg +n — ct), n € Z satisfies

Uy = (J *0), — Up — gn() vy,

(0 =0 (2.25)

for some functiong, (), by the Mean Value Theorem. But (2.25) has a unique
solution, namelw, () = 0, and hencev = 0, a contradiction.
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Forn > 0 define
z(n) =inf{z : u(x) = a(x — z) — nfor all x € R}.

Note thatz(n) < z sinceu’ is bounded and ligy, 0 z(17) = z by minimality of z.
Fix N > 0. We claim that there exisigy > 0 such that for all € (0, ny]

u(x) > u(x —z(n)) —nfor|x| < N. (2.26)
If not, there existy, \, 0, x, — xo € [—N, N]with
u(xy) = it(x —z2(Mu)) — M-

Taking the limit as1 — oo then givesu(xg) = i (xo — z), a contradiction to our
previously established assertion.
Let

Wx, 1) =u(x) —i(x — (2 — &) + pe ™,
wherep < np, M is from (2.19)—(2.21)¢ is as in (2.18) and > 0 is taken
sothat 2 < 7z — z(n). Thenw(x,0) > 0, and if for somey > 0 andxg € R,
w(xg, fo) = 0 < w(x, t) for all t < 1o andx € R, then at(xg, 7o)

0= w; — Js W — W — CWy
= —ape™ 4 0f (@) — Af ) = [Af'(p) — alpe™

for somep € (u(xp), u(xg) + pe ). Sinceu(xg) = it(xg — (z — €)) — pe 40,
it follows that z(ue ) = 7z — ¢, and becaus@e *° < 5, (2.26) implies
that |[xo| > M and hencg|p| — 1] £ d, by (2.19) and (2.20). Consequently,
Af'(p) —a > 0 by (2.18), contradicting (2.27).

Thusw(x, t) > 0 forall > 0 andx € R. Taking the limit ag — oo gives

(2.27)

u(x) 2u(x —(z—¢)) foralx e R,

contradicting the minimality of and proving that: = i&. O

3. Stationary solutions, in the case. large, generalJ

In this section, we construct stationary solutions to (1.1), i.e., solutions to the
equation

(J *u)y, —up — Af(uy) =0, (3.1)

where now: € Z4,d > 1 and(J % u), = Z\iH:O J(i)u,_;. Compared to Section
2, we relax the assumptions dnFirst, we assume thathas at least linear growth
outside[—1, 1]. Let

Af) Sr(uw+1) foru < -1,

M@ Zrw—1foruz=1 (3.2)
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for somer > 0. Define
P ={i e Z\{0}: J(i) > O},
N = {i € Z\{0} : J(i) < O}.
We now allowJ to change sign, but with the restriction that
r>2%"|JG)| (3.3)
ieN

Note that we do not requirg to be even or have a finite first moment. First we
show that (3.2) and (3.3) imply some ‘a priori’ bounds for solutions of (3.1). These
estimates will be needed in a later argument.

Proposition 3.1.Assumé&3.3) holds. Then any solutiomto (3.1) satisfies
—r

.
r—2%ien VO r—2% oy 170

Proof. SetM1 = inf, zq un, M2 = SUP,cz4 uy. Let{n}} be a sequence i such
thatun% — M ask — oo, and{n,f} a sequence such tm};% — My ask — oo.

A

Up

A

foralln € Z¢. (3.4)

If M1 or M are achieved at some point$ or n? € 74, then the corresponding
sequencény} or {n?} is defined as} = n' or n? = n?. We have

A (uy2) =Mz ) J (i) — M1y J (i)

ieP ieN
=) J()w,p_; — M) + > Tz = M1) =2 < —uy.
ieP ieN

Passing to the limit ak — oo, we get
M (Ma) < (M2 — M1) ) 1T (). (3.5)
ieN
A similar argument shows that
Af (M1) = (M1 — M2) Z MOIE (3.6)
ieN

If M1 2 —1andM> < 1, then obviously (3.4) is satisfied. Let us assume otherwise.
First, suppose tha”; < —1 andM», > 1. Applying (3.2) to (3.5) and (3.6),
we get

r(Ma—1) < (Mz — M1) Y |J (D)) (3.7)
ieN
and
r(My+1) 2 (My— M) YT (D). (3.8)

ieN
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From (3.8) and (3.3) we obtain

r4+M2Y i on 1T
r— ZieN |7 ()]

Substituting this into (3.7), we get

—M

A

o Cien M @D? rYien 1)
M — J e )V < L Lien VAUT
2(’ i%\;' ol r_ZieN”(i)I)_r+r_ZieN|J(i)|

Thus, because of (3.3), we have

r

My <
2= = 23 ien 1@
and
—r
My 2 —.
r=2%en @)
Finally, if M> < 1 andM; < —1, (3.8) and (3.3) imply that
S = Ny 0L -

M = .
L I MOl T2,y O

A similar argument shows thaf, > 1 andM1 = —1 implies

M; = d —,
r=2% ey V@]

which completes the proofo

Remark. Note that if/ > 0 andu is a nonconstant solution of (3.1), then (3.4)
implies that

—1<u, <1 forall neZ¢

but one can then see from (3.1) that < u,, < 1 for alln € Z? for such non-
constant solutions.

Define

r
b= J(@@)].
=2 i 20

Then, obviously (3.4) implies thafl * u|, < b. We now assume thatis large
enough that

11+ Af ()| > Z |J(i)| whenevelu + Af (u)| < b. (3.9)
i+0
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Fig. 3.1. g(u) = u + Af (u).

Letu], uj be the zeros of + Af (u) — b such that-1 < u] < uj < 1 andu,

uy the two zeros of: + Af (u) + b such that-1 < u3 < uj < 1 (see Figure 3.1).
Define

—r Mji|
Lr =2y IO
IZJ u%,ué],
I r
&4 uj, - ]
ST 2w )]

~
Ll
I

We note that (3.9) and (3.4) enable us to improve the ‘a priori’ bounds (3.4) for
a solution of (3.1).

Proposition 3.2.Assumég3.3)and (3.9)hold. Then any solutionto (3.1)satisfies
u, € I UL VI foralln e Z%. (3.10)

The proof easily follows from the definition &f
We now state our theorem.

Theorem 3.1 Existence of stationary solutiond et ... be the infimum of’s for
which (3.9) holds. FixA = A,. All solutions of(3.1) can be characterized as
follows.

Let S; and S» be any two disjoint nontrivial subsets Bf. Then there exists a
solutioni of (3.1), such thati, € Ij forn € S1, i, € Ij forn € S, andii, € I3
forn e Z4\(S1 U S). it is the unique such solution, {8.9) holds.
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Proof. Let S1 andsS> be any two nontrivial disjoint subsets %&f . Define
Fu,$), = 3I(J x1), —up] = f(un), neZ?

and

-1, nes,
u=1{a nebss, (3.11)
1, neZl\(S1US»).

Note thatF (1%, 0), = 0,n € Z¢. Let L? be the Frechet derivative @f at (1°, 0),
i.e., L0 = 3£u0 0). Itis easily seen that

(L%), = —f' @O)v,, n ez (3.12)

SinceL? is invertible in/°°(Z4), by the Implicit Function Theorem, there is some
x_lo > 0 such that there exists a locally unique solutignof F (u, %) = 0 for

A 2 Ao. We continue this solution of (3.1), with > A, to the intervalh. = A,, in
the following way.

By a change of notation; (u, %) = 0 is equivalent to
Gu, M)y = *u)y, —un—Arf(uy) =0, nezd (3.13)

Clearly,G is C* oni®(Z%) x R. Wheni = Ao, (3.13) has the solutiom*0. We use
the Implicit Function Theorem to obtain the same conclusion fox all[A,, Ao].

Let u* be a solution ofG(u, 1) = 0, andL, be the linear operator defined in
1°(24) by

(Lyv), = (J % v), — [L+Af @) ]v,, nezd. (3.14)

Note thatZ; = 3% u*, 2).

Leti1 € (A4, Ao] be such that a solution}t, exists to the equatio@ (u, A1) =
0. First, we show that there exists> 0 such that fon. € (A1 — ¢, A1], (3.13) has
a solution.

By the Implicit Function Theorem, it suffices to show that, is invertible.
Recallthe notatiog (1) = u+Af (u). The defining equation (3.14) can be rewritten
as

(Lyyv), = g/(uﬁl)[g/(jxl)(J *0), — V], neZe
Since (3.10) implies thag/(uﬁ1)| > Zlil:ﬁ:O |J(@)], it follows thatL,, is invertible.
To show that we can continue the solution branch te [A., Ag], we argue
by contradiction. Suppose that there is som& A, such that a solution exists
for A € (X, Ao, but not forx = . Choose a sequencg — X, ask — oc.
By a diagonal argument, there exists a subsequence, which we also dengte by
such that,* — u’ for eachn € Z¢, ask — oo. Continuity and the Dominated

Convergence Theorem imply that is a solution ofG (u, ) = 0. This completes
the existence proof.
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To show unigueness when (3.9) holds, assume that there are two distinct solu-
tionsu® andu? of (3.1), such thatl, u? € I forn € Sy, ul,u? € I forn e S,
andul, u? e 1j forn € Z4\(S1U S2). Then

b —u?l o S g7 I xuh) — g7 1T uP) < klut — u?| .,

wheregi‘l, i = 1,2, 3,is defined to be one of the three branches dfandk < 1
by (3.9). Thusi} = u2foralln € Z4. o

We now provide a stability theorem for the solutions constructed in Theorem 3.1.

Theorem 3.2 Stability of stationary solutionsLet be a solution of3.1), with A
such that(3.9) holds. Then

1.1f 4, € I{ U I for all n € Z4, thena is (locally) exponentially stable in the
1°°(Z%) norm.

2.fa, € 121 forn € S, whereS is a nontrivial subset o, theni is unstable in
thel*(Z4) norm.

Proof. We investigater(L;), the spectrum ol.;, the operator defined in (3.14).
Note that

(L — p)v), = (J % v), — [8' (1) + tlvn, n € 29,

is invertible for

weNpeclz:lz+pl> Y 1J@I)
i+0

whereG = {¢'(i,,) : n € Z%}, since

(Lo = 10)0)y = (') + 1) | gz (4 0y —vn | m € 27,

Thus,

o (L) C Upeglz: 2+ pl £ 31061} (3.15)
i+0

If &, € 1 U I foralln € Z4, thens (L) lies in the left-half plane, thus by [6],
u is (locally) exponentially asymptotically stable, which proves 1.

Assume on the other hand, that ¢ 121 for n € S, whereS is a nontrivial
subset ofZ¢. From the construction in Theorem 3.1, this solution is continued from
u0 given by (3.11). Note that

o (L% c {—f'(-1), —f'(a), — f'(1)}, and in particular— f'(a) € o (LY,

whereLC is given by (3.12). Each of the pointsdr(L) is an eigenvalue of infinite
multiplicity. Since our continuation is@* deformation, by (3.15)5(L;) does not
intersect the imaginary axis andL; ) contains values in the right-half plane. Thus
from [6] we conclude that is unstable, which proves 20
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Remark. In this section we considered stationary solutions on the |afifcaNe

could have easily considered a general multi-dimensional latticeterpreting
(J =u), appropriately to give the weighted average of valuesinfa neighborhood
centered ap € A.
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