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Abstract

We find new stable solutions of the Ginzburg-Landau equation for high κ su-
perconductors with exterior magnetic field hex. First, we prove the uniqueness of
the Meissner-type solution. Then, we prove, in the case of a disc domain, the co-
existence of branches of solutions with n vortices of degree one, for any n not too
high and for a certain range of hex; and describe these branches. Finally, we give an
estimate on the nucleation energy barrier, to pass continuously from a vortexless
configuration to a configuration with a centered vortex.

1. Introduction

The aim of this work is to improve the results of a previous work [S1, S2] on
the gauge-invariant two-dimensional Ginzburg-Landau functionals

J (u, A) = 1

2

∫
�

|∇Au|2 + |h − hex|2 + 1
2κ2(1 − |u|2)2 − 1

2

∫
�

h2
ex,(1.1)

which describe, according to the Ginzburg-Landau model, the energy of a super-
conductor put in a prescribed uniform magnetic field hex. The stationary states of
such a superconductor are the critical points of J , among which the stable states
are the local minimizers.

Any critical configuration (u, A) of this functional is a solution of the Ginzburg-
Landau equations:

(G.L.) −∇2
Au = κ2u(1 − |u|2), − ∗ dh = (iu, dAu).

Let us emphasize that this is the free Ginzburg-Landau functional (used in physics),
there are no boundary conditions, and all the complexity of the solutions comes
from the variations of the parameter hex.
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We recall the notations used for this problem (see [S1] for a more detailed
introduction).

∗ is the Hodge transform for 1-forms (∗dx = dy, ∗dy = −dx).
A is the vector potential, considered here as a real-valued 1-form A1dx1+A2dx2

or as a vector (A1, A2), and h = ∗dA (or curl A), is the magnetic field in the
superconductor.

We assume that the exterior field hex is uniform, vertical, and that the supercon-
ductor is a vertical cylinder, so that the problem is reduced to a two-dimensional
problem in a bounded domain � ⊂ R

2. We also assume that � is smooth and
simply connected.

u is a complex-valued function called the order parameter. The superconductiv-
ity phenomenon in the material can be described through pairs of superconducting
electrons called Cooper pairs. Then, |u(x)| represents the local density of Cooper
pairs at a point x of the superconductor. One has |u| 5 1 and, where |u| ' 1, the
material is in its superconducting phase, whereas, where |u| ' 0, it is in its normal
phase.

κ = 1/ε is the Ginzburg-Landau parameter, depending on the material only.
In physics, κ = λ/ξ , where λ is the London length, and ξ is the superconductor’s
coherence length. The superconductors we shall study are those with high κ , which
are called in physics extreme type-II superconductors. Here, as in [S1] and [S2],
we carry out an asymptotic analysis for κ → +∞, equivalent to ε → 0. hex is a
function of ε, and the configurations (u, A) we consider depend on ε, but we shall
drop the subscripts most of the time.

Physically, at low temperatures (T < Tc, the critical temperature), there exists
a critical magnetic field known as the first critical magnetic field (Hc1 ), such that:

• For hex < Hc1 , the superconductor is in the superconducting phase everywhere
(|u| ' 1), and the magnetic field does not penetrate it. This is called the Meissner
phase.

• For hex = Hc1 , small defects, called vortices, appear. They are small regions of
size κ−1 that switch to the normal phase. Each of them carries with it a quantized
amount of the magnetic flux.

The most important feature is thus the appearance of zeros of u, and the chal-
lenge, as in all the similar problems [BBH, BR], is to study these zeros and the prop-
erly defined vortex-structure of the solutions. Mathematically, we define the vortices
of size δ of a function u to be points ai such that |u| = 3

4 outside ∪iB(ai, δ), asso-
ciated with the integers di = deg (u, ∂B(ai, δ)), whenever they are well-defined.
In practice, u vanishes in each of those B(ai, δ).

When hex is raised, these vortices become more and more numerous, and repel
one another, thus forming some kind of triangular lattice, called in physics the
Abrikosov lattice.

In [S1, S2], I studied J for hex 5 C|Log ε|, but the analysis that was carried
out still holds if some a priori bound hex 5 Cε−α is valid. In addition, the main
tools that we use here are on the one hand technical tools concerning vortices
already introduced in [S1, S2] and inspired from [AB, BR, BBH], and on the other
hand a convenient splitting of the energy J . These tools are supplemented with a
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slightly special minimization idea that was already used in [S1, S2], but which is
more widely used here. This idea allows us to isolate local minimizers of J having
an arbitrary number of vortices. We also emphasize that this work, as well as the
previous one, concerns configurations with few vortices, i.e., with a number of
vortices that remains bounded as ε → 0. Configurations with a possibly divergent
number of vortices (i.e., global minimizers instead of local ones) and high external
fields are studied in [SS1, SS2].

In [S1, S2], I proved some theorems concerning the behavior around the first
critical field. We call Hc1 the value of hex for which the energy of the single-vortex
configuration becomes equal to the energy of the vortexless configuration (in which
|u| = 3

4 ). I proved that

Hc1 = Log κ

2 max |ξ0| + O(1) as κ → +∞,(1.2)

where ξ0 is a smooth function, depending on the domain � only, that satisfies




−12ξ0 + 1ξ0 = 0 in �

1ξ0 = 1 on ∂�

ξ0 = 0 on ∂�


 ⇔

{−1ξ0 + ξ0 + 1 = 0 in �

ξ0 = 0 on ∂�

}
.(1.3)

J0 was defined to be J (1, hexd
∗ξ0), the approximate minimal energy for vortexless

configurations, which satisfies J0 + 1

2

∫
�

h2
ex = 1

2
h2

ex

∫
�

|ξ0|. Setting M > 0, I

sought minimizers of J in the domain

D =
{
(u, A) ∈ H 1(�, C) × H 1(�, R

2)/F (u)

:= 1

2

∫
�

|∇u|2 + 1

2ε2
(1 − |u|2)2 < M |Log ε|

}
,

(1.4)

(which is roughly the domain of configurations with less than M/π vortices),
hoping that for M large enough, they were in fact global minimizers. Notice that
F is the functional that was studied in [BBH].

The first main result of [S1] is

Theorem 1.1. There exist kε
2 = Oε(1) and kε

3 = oε(1), such that

Hc1 = k1|Log ε| + kε
2,

(
k1 = 1

2 max |ξ0|
)

and ε0(M) such that for 0 < ε < ε0, the following statements hold:

• If hex 5 Hc1 , then a solution of (G.L.) that is minimizing in D exists, satisfies
1
2 5 |u| 5 1 and has an energy J0 + oε(1).
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• If Hc1 +kε
3 5 hex 5 Hc1 +Oε(1), then a solution of (G.L.) that is minimizing in

D exists, it has a bounded positive number of vortices aε
i of degree 1, such that

dist (aε
i , 3) → 0 where

3 = {x ∈ �/ |ξ0(x)| = max |ξ0|} ,

and there exists a C > 0, such that dist (aε
i , a

ε
j ) = C for i |= j , i.e., the ai’s tend

to distinct points ∈ 3.

This result shows the bifurcation behavior of the equation, i.e., that the min-
imizing solution is vortexless for hex 5 Hc1 , and has one vortex for hex ' Hc1 .
However, it does not prove that the physical system switches from the Meissner
(i.e., vortexless) solution to one with vortices at hex = Hc1 . Indeed, there exists an-
other critical field, called the superheating field Hsh, such that the Meissner solution
becomes unstable for hex > Hsh. This bifurcation has been studied for example
in [BBC], where the authors prove that (with our normalization of the quantities),
Hsh ' cκ = c/ε. Here, with that behavior in mind, we wish to study the domain
of existence, uniqueness and stability of the Meissner solution, and we prove

Theorem 1. There exist α > 0 and ε0 such that, if ε < ε0, a stable vortexless

solution of (G.L.) for hex 5 Cε−α with
∫

�

|∇u|2 5 o(εα) is unique.

Let E0 = {(u, A) ∈ D/|u| = 3
4 }. For ε < ε0, there exists a unique locally min-

imizing solution (u, A) = (u, d∗ξ) of (G.L.) in E0 for hex 5 Cε−α that minimizes
J over E0. Its energy is J0 + o(1). In addition,

inf
θ∈[0,2π ] ‖(u, ξ) − (eiθ , hexξ0)‖ −→ 0 as ε → 0,

where ‖.‖ is defined as

‖(u, z)‖2 = ‖∇u‖2
L2 + ‖u‖2

L2 + ‖∇z‖2
L2 + ‖1z‖2

L2 .

Thus, we prove that the branch of vortexless solutions continues to exist up to
hex = Cε−α , and we have an approximation of it: (1, hexd

∗ξ0), up to a gauge-
transformation. Since this branch of solutions remains stable, in the process of
raising hex vortices should not appear at Hc1 , but rather at a higher value of hex,
probably equal to Hsh. E. Sandier and I [SS1 ] proved the global minimality of
the Meissner solution under Hc1 .

After this work was completed, we learned that the uniqueness of the Meiss-
ner solution (in another function space) had also been proved by A. Bonnet,
J. Chapman & R. Monneau in [BCM] for hex ' C/ε.

In [S2], I also obtained a result analyzing the appearance of n-vortices mini-
mizing solutions in a disc (the disc is the model case of 3 being reduced to a finite
number of points, which is the case for convex �’s for example; see [S1]), with
vortices at a characteristic distance C/

√
hex from the center, and from one another

(C always denotes a positive constant). Calling Hn the value of hex for which a
minimizing solution (in D) with n vortices appears, I proved that

Hn ' k1(|Log ε| + (n − 1)|Log |Log ε||).
The precise theorem is:
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Theorem 1.2. If � = B(0, R) (in this case 3 = {0}), there exists ε0(M) > 0
such that, for ε < ε0, a minimizer (u, A) of J in D̄ is a solution of (G.L.) and if

hex = k1(|Log ε|+δ|Log |Log ε||)+Oε(1), 0 5 n−1 < δ < n <
M
π

(n ∈ N),

then u has n vortices aε
i of degree 1 such that |aε

i | 5 C/
√|Log ε|, for all i. More-

over, if n = 2, |aε
i −aε

j | = C/
√|Log ε| for all i |= j , and if ãi = aε

i (k1|Log ε|)1/2,
then the configuration of the ãi’s converges to a minimizer of w as ε → 0, where
w is defined as

w(x1, . . . , xn) = −π
∑
i |=j

Log |xi − xj | + πξ ′′
0 (0)

n∑
i=1

|xi |2.

We improve this result here by proving

Theorem 2. Suppose � = B(0, R) and hex is any function of ε such that hex → ∞
as ε → 0, with hex 5 Cε−α .

1. If ε is sufficiently small, (G.L.) has a locally minimizing solution (u, A) with
exactly one vortex aε of degree 1, satisfying

|aε| 5 C√
hex

,

J (u, A) = J0 + π

(
|Log ε| − hex

k1

)
+ O(1).

2. More generally, for each n ∈ N
∗ such that πn < M, if ε < ε0(M), then

(G.L.) has a locally minimizing solution (u, A) with exactly n vortices aε
i of

degree 1. In addition, if ãi = aε
i

√
hex, then

|ãi | 5 C ∀ i, |ãi − ãj | = C ∀ i |= j,

and the configuration of the ãi’s converges to a minimizer of w.

Furthermore,

J (u, A) = J0 + πn

(
|Log ε| − hex

k1

)
+ π

2
(n2 − n)Log hex

+ w(ã1, · · · , ãn) + Qn + o(1)

where Qn is a constant depending only on n.
We thus show that the branch of stable solutions with n vortices found in [S2]

continues to exist for hex 5 Hn and hex = Hn+1, although it is only globally
minimizing (in D) for hex ∈ [Hn, Hn+1]. Moreover, it specifies that the charac-
teristic distance from the vortices to the center and to one another is still of the
order of 1

√
hex and their positions are still governed by the renormalized energy

w. As mentioned in [S1], a study of the minimizers of w has been carried out in
[GS]. For small values of n (n 5 6), the regular polygons centered at the origin are
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local minimizers (and probably global minimizers) together with the regular stars
centered at the origin for 4 5 n 5 10. For higher n, the minimizers form certain
kinds of lattices concentrated around the center. These are thus the shapes, up to
rescaling, of the vortex configurations that we exhibit in Theorem 2.

This theorem also yields solutions for relatively small values of hex. Usually, the
value of hex under which any vortex solution is unstable is called the subcooling
field Hsc. Since we find stable solutions for any function hex → +∞, we can
conclude that there exists a positive constant 0 (independent of ε) and a sequence
εn → 0, such that there is a sequence of stable vortex solutions for hex = 0 (the
contrary would contradict the theorem).

We thus obtain that Hsc = O(1), which was already proved, using a different
method by Q. Du & F. H. Lin [DL]: Actually, they proved the existence of a stable
vortex solution for a constant value of hex, using the heat-flow. Here, as already
mentioned, we get in addition a whole branch of stable solutions for hex ranging
from O(1) to ε−α for arbitrary numbers of vortices, and we have details on the
positions of their vortices.

Superconductors thus have theoretically a hysteretic behavior: starting in a
Meissner state, when raising hex, vortices only appear for hex ' Hsh ' C/ε,
while, starting in a vortex state and decreasing hex, they only disappear for hex '
Hsc = O(1). Yet, for quantum mechanical reasons, this is not exactly what happens
in reality, and it seems that the physical systems jumps from one branch to another
following the minimal curve.

The picture of the branches of solutions we find (which exist from hex = O(1) to
hex 5 Cε−α) is approximately that shown in Fig. 1, where we sketch J + 1

2

∫
�

h2
ex

instead of J . All the curves are roughly parabolas. These results totally agree
with the experimental knowledge on the subject, and especially with very recent
experiments in which dJ/dhex is measured and gives very similar curves (with
regularly placed intersections).

The study for hex = Cε−α seems to be more difficult. The first reason is tech-
nical: As we perform in the proofs a regularization of the functions u at the scale
εγ (0 < γ < 1), the errors do not tend to zero when hex is too high compared to
εγ . The second reason is that the order of the repulsion between the vortices then
becomes equivalent to their intrinsic cost (π |Log ε|). Consequently, the approach
used here, which consists in studying vortices individually in the spirit of the renor-
malized energy of [BBH], is no longer convenient. However, it is possible, as E.
Sandier and I have done in a forthcoming work [SS2], to study global minimizers
of the energy. We have switched to a different approach and a different construction
of the vortices. We prove, by finding equivalent lower and upper bounds, that the
minimal energy for Hc1 � hex � Hc2 is

J + 1

2

∫
�

h2
ex ' 1

2
vol(�)hexLog

1

ε
√

hex
,

and the density of vortices converges to the uniform measure equal to hex, whence
their number diverges, and their mutual distances are still of the order of C/

√
hex.

For further details, refer to [SS2].
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Fig. 1. The branches of solutions

Our last result is devoted to the problem of the appearance of a vortex when
hex is sufficiently high, considered on a more physical and heuristic viewpoint. It
was meant to answer a question asked by Yves Pomeau. Physicists assume that, in
order to follow a continuous path from the Meissner solution to the vortex solution,
a vortex is created at the boundary of the superconductor and moves to the center.
We give here a justification for this assumption and we prove a result concerning
the energetic cost of such a path, or “nucleation energy barrier”, by computing
rigorously the function φ = inf J over all the configurations having exactly one
vortex (of degree 1) at a distance r from the boundary.

Theorem 3. Assume that � = B(0, R). Then

1. max
[εβ ,R]

φ = J0 + π |Log ε| − πLog hex + O(1).

2. φ achieves its maximum at rmax, and there is a C > 0 such that

rmax 5 C

hex
.

3. φ(εβ) 5 J0 + π(1 − β)|Log ε| + πLog 2 + γ0 + o(1).

Thus, we see that the order of the energy barrier to be climbed must be max φ −
J0 = π |Log ε| − πLog hex + O(1).
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3 vortices-
solutionsolution

0

Fig. 2. Shape of the energy

If hex is raised, the barrier decreases, and at some point (estimated by hex 5
Hsh ' C/ε = Cκ), becomes so small that the system can pass over it by thermic
agitation and “fall” into the vortex solution well (or by “tunnel effect”). Actually,
this seems to happen very early in experiments.

In addition, we must have the same energy barrier between the single-vortex
solution of our Theorem 2, and the two-vortices solution of Theorem 2 of [S2];
or between the two-vortices solution and the three-vortices solution etc. Indeed,
each time, the process probably is the nucleation of one vortex migrating from the
boundary to the center. Thus, I believe that we have an energy configuration of
the form of Fig. 2 (where, as an example, k1(|Log ε| + 2|Log |Log ε||) 5 hex 5
k1(|Log ε| + 3|Log |Log ε||)). From our existence results, we immediately infer
the existence of mountain-pass solutions between the vortexless and one-vortex
solutions, and between the n-vortex and (n + 1)-vortex solutions in the case of a
disc. We may conjecture that these solutions have a vortex at a distance rmax from
the boundary of the domain. Also see Section 4.3 for remarks, interpretations, and
open problems.

We now recall some notations and definitions from [S1]. J (u, A) is invariant
under U(1)-gauge transformations, i.e., transformations of the type

v = eiφu for φ ∈ H 2(�, R), B = A + dφ,(1.5)
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which makes the problem non-compact. Therefore, we impose the gauge condition

d∗A = div A = 0 on �, A.n = 0 on ∂�.(1.6)

Since we assume that � is simply connected, we can say that there exists ξ ∈
H 2(�, R) such that

A = d∗ξ = −ξx2dx1 + ξx1dx2, (or ∇⊥ξ)

with d∗ being the Hodge differential, and we obviously get

h = 1ξ.

Let us now turn to the method. In Section 2, we prove the uniqueness of the
Meissner solution. To do so, we use an argument that is similar to a convexity
argument: Assuming that there are two such solutions (u1, A1) and (u2, A2), we
prove, through some explicit computations that

J

(
u1 + u2

2
,
A1 + A2

2

)
<

J(u1, A1) + J (u2, A2)

2
.

Then, we deduce that for all t ∈]0, 1[, J ((1 − t)u1 + tu2, (1 − t)A1 + tA2) 5
max(J (u1, A1), J (u2, A2)). This contradicts the stability of the solutions.

After this work was completed, we learned of a paper of D. Ye & F. Zhou
([YZ]) in which a similar method was used to prove the uniqueness of the solution
of the Ginzburg-Landau equation studied in [BBH2].

In Section 3, we prove Theorem 2 and Proposition 3.1, thus finding new so-
lutions of (G.L.). The main idea is to find them as minimizers over well-chosen
domains. For this purpose, we minimize J over the domains

Un =
{
(u, A) ∈ H 1(�, C) × H 1(�, R

2)/

nπ |Log ε| < F(u) < (nπ + 1
2 )|Log ε|

}

(n ∈ N). From the analysis of [S1] inspired from that of [BBH], (u, A) ∈ Un

roughly means that u has n vortices (counted with multiplicity). A first difficulty is
to prove that the minimum is achieved. We then derive (using our technical tools)
qualitative properties on the vortices of (ũ, Ã) achieving minŪn

J , such as their
positions and the fact that all are of degree 1. Then, as in [S1], we have to prove that
minŪn

J cannot be achieved on the boundary of Un, and this is proved thanks to the

qualitative properties previously deduced. Hence, the minimum is achieved in
◦
Un,

thus leading to a solution that is a local minimizer, and has n vortices of degree 1.
To sum up, roughly speaking, we can say that we find our n-vortex solutions by
taking the minimizer of the energy over all n-vortex configurations, and we prove
in the paper that it is exactly the case. For the vortexless solution, we just replace
n|Log ε| by cε → 0 in the definition of the domain.
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In Section 4, we prove Theorem 3 concerning the nucleation energy for � =
B(0, R). We use a family of sets defined in [S1]:

Ea = {(u, A) ∈ D̄/ the regularized u has a unique vortex of degree 1

centered near a},
and we compute precisely

φ(r) = inf∪{Ea,dist(a,∂�)=r} J,

which is the minimal energy for configurations having a vortex at a distance r

from the boundary. Using the computations already made in [S1, S2] and using the
splitting of J , we compare φ with two auxiliary functions, and obtain the desired
estimates.

2. Uniqueness of the Meissner Solution

2.1. Preliminary Results

We recall some of the notations and definitions of [S1]:

F(u) = 1

2

∫
�

|∇u|2 + 1

2ε2
(1 − |u|2)2.

We define the following regularization of u, introduced in [AB]: Given any 0 <

γ < 1, for any (u, A) ∈ D such that |u| 5 1, uγ is defined as a minimizer for

inf
H 1(�,C)

∫
�

1

2
|∇v|2 + 1

4ε2
(1 − |v|2)2 + |v − u|2

2ε2γ
.

We denote by (ai, di)i∈J ′ the vortices of uγ of characteristic size ρ as in Proposition
3.2 of [S1]. There exist some 0 < γ < µ̄ < µ < 1 such that εµ 5 ρ 5 εµ̄ (see
[S1] for the definition of µ and µ̄). The ai’s are the centers of the vortices, and
the di’s are the degrees. More precisely, these vortices are defined to be such that
|uγ | = 3

4 on �\ ∪i∈J ′ B(ai, ρ), and deg(uγ /|uγ |, ∂B(ai, ρ)) = di . Moreover,
di |= 0, for all i ∈ J ′ (see Section 3 in [S1]), so that uγ has to vanish somewhere
in each B(ai, ρ). In [S1, S2], we chose 1

2 instead of 3
4 in the definition, but it is

very easy to see that both are equivalent as ε tends to 0. Let us also make precise
that the vortices of uγ are well-defined, which is not the case for an arbitrary u.
Through this regularization, we are thus able to define a vortex-structure (with a
bounded number of vortices) for any u ∈ D. This regularization, as seen in [S1, S2],
introduces many technical difficulties, but allows us to deal with local minimizers.

We also recall the definitions

V (ξ) = 1

2

∫
�

|∇ξ |2 + |1ξ |2 + 2π
∑
i∈J ′

diξ(ai) − hex

∫
�

1ξ,
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Ṽ (ζ ) = 1

2

∫
�

|∇ζ |2 + |1ζ |2 + 2π
∑
i∈J ′

diζ(ai).

In the sequel, C will always denote a positive constant. Moreover, most of the
quantities will depend on ε, but we shall drop the subscript as soon as no confusion
is possible.

We now state some preliminary results, which are improvements of some results
of [S1, S2]. As in [S1], D is any domain of the form defined in (1.4).

Lemma 2.1. There exists α ∈]0, 1
4 [, such that if hex 5 Cε−α , then

1. For all (ũ, Ã) ∈ D̄ with J (ũ, Ã) 5 Ch2
ex, there exists (u, A) ∈ D̄ such that

u = T (ũ) =



ũ if |ũ| 5 1
ũ

|ũ| if |ũ| = 1


 , |u| 5 1, F (u) 5 F(ũ),

(u, A) satisfies the second equation of (G.L.):

− ∗ dh = (iu, dAu),

and
J (u, A) 5 J (ũ, Ã) + o(εα).

2. The energy can be split as

J (u, A) = F(u) + V (ξ) + o(εα)

= J0 + F(u) + 2πhex

∑
i∈J ′

diξ0(ai) + Ṽ (ζ ) + o(εα),

where the (ai, di)’s denote the vortices of uγ .
3. If (ũ, Ã) minimizes J over D̄, then F(u) = F(ũ) + o(εα) and J (u, A) =

J (ũ, Ã) + o(εα) = J (u, Ã) + o(εα).

Proof. Just follow the proof of Lemma 2.2 and Section 4 of [S1], replacing the
assumption hex 5 C|Log ε| by hex 5 Cε−α . ut
Lemma 2.2. If (u, A) is a solution of (G.L.), and if J (u, A) 5 Ch2

ex with hex 5
Cε−α , then

‖u‖L∞(�) 5 1, ‖∇u‖L∞(�) 5 C

ε
.

In addition, if (u, A) is energy-minimizing in D, then for all β > 0, there exists ε0
such that |u| = 3

4 on {x ∈ �/dist(x, ∂�) 5 εβ} for all ε < ε0.

Proof. Follow the proof of Proposition 6.2 of [S1], replacing 1
2 by 3

4 . ut
If (u, A) is a solution of (G.L.), then |∇u| 5 C/ε is satisfied. Hence, following

[BBH], we are able to define vortices of u of size λε. (λ is some constant; refer to
[S1, Section 2.2.]). Then, as in Proposition 3.2 of [S1], we can define its vortices
of size ρ, exactly as for uγ . The following proposition relates the vortices (of size
ρ) of u and uγ .
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Proposition 2.1. If (u, A) is a solution of (G.L.) such that uγ has no vortex (i.e.,
|uγ | = 3

4 ) and that J (u, A) 5 J0, then u has no vortex on �. If (u, A) is a solution
of (G.L.) given by Theorem 1 or 2 of [S1] or [S2], then its vortices of size ρ satisfy
the same conclusions as those of uγ . In addition, if the (ai)i∈J ′ are the vortices of
uγ of degree 1, then the vortices bi of u are of degree 1 and

d(a, b) := inf
σ∈Scard J ′

card J ′∑
i=1

|ai − bσ(i)| 5 Cεγ |Log ε|.

Proof. Again, refer to the proof of Proposition 6.2 of [S1]. ut

2.2. Proof of the Uniqueness

We assume here that hex 5 Cε−α . We prove that if a Meissner (i.e., a vortexless)
solution (u, A) exists and is stable, then it is unique among the solutions satisfying
‖∇u‖2

L2(�)
5 o(εα). In particular, a solution (u, A) that is energy-minimizing

among vortexless solutions is unique. The existence of such a solution for hex 5
Hc1 is justified by Theorem 1 of [S1] combined with Proposition 2.1. Its global
minimality is proved in [SS1]. Furthermore, we shall prove the existence of such a
solution for hex = Hc1 in the next section.

To prove the uniqueness, we assume, for contradiction, that there are two distinct
stable solutions (u1, A1) and (u2, A2) of (G.L.) with the choice of gauge div Aj = 0

(j = 1, 2), such that
∫

�

|∇uj |2 5 o(εα). We assume that

J (u1, A1) 5 J (u2, A2).

We denote ηj = |uj | as in [S1].

Lemma 2.3. For all j ∈ [1, 2], (uj , Aj ) is gauge-equivalent to (ηj , A
′
j ), with

div(η2
j A′

j ) = 0,(2.1)

J (uj , Aj ) = 1

2

∫
�

η2
j |A′

j |2 + |∇ηj |2 + 1

2ε2
(1 − η2

j )2 + |dA′
j − hex|2 − h2

ex.

(2.2)

Proof. Since ηj = 3
4 , we can write

uj = ηj e
iφj

globally on �. Then, (uj , Aj ) is gauge-equivalent to

(uj e
−iφj , Aj − dφj ) = (ηj , Aj − dφj ).

We write A′
j = Aj − dφj . Thus, since

∫
�

|∇Au|2 is invariant under gauge-trans-
formations,∫

�

|∇Au|2 =
∫

�

|∇A′
j
ηj |2 =

∫
�

|∇ηj − iA′
j ηj |2 =

∫
�

|∇ηj |2 + η2
j |A′

j |2.
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The expression (2.2) follows.
For (2.1), notice that the second (G.L.) equation gives

− ∗ dh = (iuj , dAj
uj ) = (iηj , dA′

j
ηj ) = −η2

j A′
j ,

which means that η2
j A′

j = ∇⊥h, hence div(η2
j A′

j ) = 0. ut

Lemma 2.4. Under the same hypotheses, if hex 5 Cε−α , then

‖A′
j‖L∞(�) 5 o

(
1

ε

)
as ε → 0.

Proof. As in Lemma 2.2 of [S1], since (uj , Aj ) is a solution of (G.L.), we have
‖Aj‖L∞(�) 5 Chex 5 Cε−α . Then, if (uj , Aj ) is energy-minimizing among vor-
texless solutions,

J (uj , Aj ) 5 J (1, hexd
∗ξ0) = J0.(2.3)

Writing as usual ξ = hexξ0 + ζ , and dropping the subscript j , we obtain

J0 = J (uj , Aj ),

J0 = 1

2

∫
�

|∇u|2 + |∇ξ |2

+ 1

2ε2
(1 − |u|2)2 +

∫
�

|1ξ |2 − hex

∫
�

1ξ + o(εα),

⇔ J0 + o(εα) = J0 + F(u) + 1

2

∫
�

|1ζ |2 + |∇ζ |2,

⇔ o(εα) = F(u) + 1

2

∫
�

|1ζ |2 + |∇ζ |2.

Therefore, ∫
�

|∇u|2 =
∫

�

|∇η|2 + η2|∇φ|2 5 o(εα).(2.4)

We now assume that this condition is satisfied. We then return to the estimate on
A′. We have

‖A′‖L∞ 5 ‖A‖L∞ + ‖∇φ‖L∞ 5 C

ε
.

By interpolation, for any p > 1,

‖∇η‖Lp 5 C‖∇η‖1− 2
p

L∞ ‖∇η‖
2
p

L2

5 Cε
−1+ 2

p ε
α
p (by Lemma 2.2 and (2.4))

5 Cεδ

for some δ > 0, provided that p < α + 2.
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On the other hand, thanks to (2.1), we have

η2div A′ = −2η∇η.A′,

and since A′ = d∗ξ − dφ, this transforms into

−1φ = −2

η
∇η.A′.

We deduce that

‖1φ‖Lp 5 C‖A′‖L∞‖∇η‖Lp .

Thus, taking 2 < p < α + 2, we have

‖1φ‖Lp 5 C‖A′‖L∞‖∇η‖Lp 5 C
εδ

ε
5 o

(
1

ε

)
.

In addition, we have a Neumann boundary condition for u:
∂u

∂n
= 0, implying

∂φ

∂n
= 0 on ∂�. Thus, by an elliptic estimate and by Sobolev embedding, since

p > 2, we obtain

‖∇φ‖L∞ 5 o

(
1

ε

)
,

implying that

‖A′‖L∞ 5 o

(
1

ε

)
. ut

From now on, we assume that the change of gauge has been performed, and
write Aj instead of A′

j . We are going to prove that

J

(
η1 + η2

2
,
A1 + A2

2

)
<

J(η1, A1) + J (η2, A2)

2
5 J (η2, A2),

using some kinds of convexity arguments, and thus getting a contradiction. The main
idea we follow is that we consider separately the expanded terms of 1

2 (J (η1, A1)+
J (η2, A2)) − J

(
η1+η2

2 , A1+A2
2

)
and try to exhibit positive expressions like (η1 −

η2)
2 and (A1 − A2)

2. Indeed, this is inspired by the simplest case of convexity:

a2 + b2

2
−
(

a + b

2

)2

= (a − b)2

4
.

The main difficulty is that, for the term
∫
�

η2|A|2, expressions combine η and A. We
display expressions using the differences (η1 − η2) and (A1 −A2). Still, this is not
enough, and we have to use combinations of the term

∫
�

η2|A|2 with 1
ε2

∫
�
(1−η2)2,

which is dominant thanks to 1
ε2 and to our previous estimate ‖A‖L∞ 5 o(ε−1).
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Lemma 2.5. If (η1, A1) |= (η2, A2), then

∫
�

(
η1 + η2

2

)2 ∣∣∣∣A1 + A2

2

∣∣∣∣
2

+ 1

2ε2

(
1 −

(
η1 + η2

2

)2
)2

<
1

2

∫
�

η2
1|A1|2 + 1

2ε2
(1 − η2

1)
2 + η2

2|A2|2 + 1

2ε2
(1 − η2

2)
2.

Proof. We compute X = X1 + X2, where

X1 = 1

2

∫
�

η2
1|A1|2 + η2

2|A2|2 −
∫

�

(
η1 + η2

2

)2 ∣∣∣∣A1 + A2

2

∣∣∣∣
2

,(2.5)

X2 = 1

2

(
1

4ε2

∫
�

(1 − η2
1)

2 + (1 − η2
2)

2
)

− 1

4ε2

∫
�

(
1 −

(
η1 + η2

2

)2
)2

.

(2.6)

First, we expand all the terms in X2:

X2 = 1

64ε2

∫
�

7η4
1 + 7η4

2 − 8η2
1 − 8η2

2 − 6η2
1η

2
2 + 16η1η2 − 4η3

1η2 − 4η3
2η1

= 1

64ε2

∫
�

7(η2
1 − η2

2)
2 + 8η2

1η
2
2 − 8(η1 − η2)

2 − 4η1η2(η
2
1 + η2

2)

= 1

64ε2

∫
�

7(η2
1 − η2

2)
2 − 4η1η2(η

2
1 + η2

2 − 2η1η2) − 8(η1 − η2)
2

= 1

64ε2

∫
�

7(η2
1 − η2

2)
2 − 4η1η2(η1 − η2)

2 − 8(η1 − η2)
2

= 1

64ε2

∫
�

(η1 − η2)
2(7(η1 + η2)

2 − 4η1η2 − 8).

Now, since u1 and u2 are vortexless solutions, we know that 3
4 5 η1 5 1 and

3
4 5 η2 5 1, which guarantees that they are in the domain of convexity of the
function (1 − x2)2. Thus 7(η1 + η2)

2 − 4η1η2 − 8 = 7 9
4 − 12 = 3. We conclude

that

X2 = 3

64ε2

∫
�

(η1 − η2)
2.(2.7)



344 S. Serfaty

Next, we turn to the computation of X1:

X1 = 1

16

∫
�

(
7η2

1|A1|2 + 7η2
2|A2|2 − η2

1|A2|2 − η2
2|A1|2

− 2η1η2(|A1|2 + |A2|2 + 2A1.A2) − 2(η2
1 + η2

2)A1.A2
)

= 1

16

∫
�

(− 2A1.A2(η1 + η2)
2 + |A1|2(7η2

1 − 2η1η2 − η2
2)

+ |A2|2(7η2
2 − 2η1η2 − η2

1)
)

= 1

16

∫
�

(− 2A1.A2(η1 + η2)
2 + 2|A1|2(η1 − η2)

2 + 4η2
1|A1|2

+ 4η2
2|A2|2 + (|A2|2 − |A1|2)(3η2

2 − η2
1 − 2η1η2)

)
= 1

16

∫
�

(− 2A1.A2(η
2
1 + η2

2 + 2η1η2 − 4η1η2) + 2|A1|2(η1 − η2)
2

+ 4|η1A1 − η2A2|2 + (A2 − A1).(A2 + A1)((η2 − η1)
2

+ 2(η2 − η1)(η2 + η1))
)

= 1

16

∫
�

(− 2A1.A2(η1 − η2)
2 + 2|A1|2(η1 − η2)

2 + 4|η1A1 − η2A2|2

+ (A2 − A1).(A2 + A1)((η2 − η1)
2 + 2(η2 − η1)(η2 + η1))

)
.

On the other hand,

|η1A1 − η2A2|2 = η2
1|A1 − A2|2 + |A2|2(η2

2 − η2
1) + 2(η2

1 − η1η2)A1.A2

= η2
1|A1 − A2|2 + (η2 − η1)(|A2|2(η2 + η1) − 2η1A1.A2)

= η2
1|A1 − A2|2 + (η2 − η1)(A2.(A2 − A1)(η1 + η2)

+ A1.A2(−2η1 + η1 + η2))

= η2
1|A1 − A2|2 + (η2 − η1)(A2.(A2 − A1)(η1 + η2))

+ (η2 − η1)
2A1.A2.

Hence

X1 = 1

16

∫
�

(
2A1.A2(η1 − η2)

2 + 2|A1|2(η1 − η2)
2 + 4η2

1|A1 − A2|2

+ 4A2.(A2 − A1)(η2 − η1)(η1 + η2)

+ (A1 + A2).(A2 − A1)((η2 − η1)
2 + 2(η2 − η1)(η2 + η1))

)
= 1

16

∫
�

(
(η1 − η2)

2(2|A1|2 + 2A1.A2) + 4η2
1|A1 − A2|2(2.8)

+ (η2 − η1)(A2 − A1).(−4A2(η1 + η2) + (A2 + A1)(−η1 − 3η2))
)

= 1

16

∫
�

(
(η1 − η2)

2|A1 + A2|2 + 4η2
1|A1 − A2|2

+ (η2 − η1)(A2 − A1).(A1(−2η1 − 4η2) + A2(−6η1 − 8η2))
)
.
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Now, let us assume for contradiction that X 5 0; by combining (2.7) and (2.8) this
would lead to

1

16

∫
�

(η1 − η2)
2
(

|A1 + A2|2 + 3

4ε2

)
+ 4η2

1|A1 − A2|2

5
∫

�

|η1 − η2||A2 − A1|(6|A1| + 14|A2|)
5 C(‖A1‖L∞ + ‖A2‖L∞)‖η1 − η2‖L2‖A1 − A2 |L2 .

On the other hand,

1

16

∫
�

(η1 − η2)
2
(

|A1 + A2|2 + 3

4ε2

)
+ 4η2

1|A1 − A2|2

= 2

16

(
3

4ε2

)1/2

‖η1 − η2‖L2‖A1 − A2‖L2 .

We would thus obtain

‖η1 − η2‖L2‖A1 − A2‖L2 5 Cε(‖A1‖L∞ + ‖A2‖L∞)‖η1 − η2‖L2‖A1 − A2‖L2

5 o(1)‖η1 − η2‖L2‖A1 − A2‖L2

from Lemma 2.4, which implies η1 = η2 or A1 = A2.
If η1 = η2, a simple convexity argument proves that

∫
�

η2
1

∣∣∣∣A1 + A2

2

∣∣∣∣
2

<
1

2

∫
�

η2
1|A1|2 + η2

2|A2|2,

and thus X > 0. (A1 cannot then be equal to A2.)
If A1 = A2, again by convexity

∫
�

(
η1 + η2

2

)2

|A1|2 + 1

4ε2

∫
�

(
1 −

(
η1 + η2

2

)2
)2

<
1

2

∫
�

η2
1|A1|2 + 1

4ε2
(1 − η2

1)
2 + η2

2|A2|2 + 1

4ε2
(1 − η2

2)
2,

and X > 0. (η1 cannot then be equal to η2.)
We are led to a contradiction in all cases; therefore X > 0, which proves the

lemma. ut

Proposition 2.2. There exists ε0 such that, if ε < ε0, a stable vortexless solution

of (G.L.) for hex 5 Cε−α with
∫

�

|∇u|2 5 o(εα) is unique.

Let E0 = {(u, A) ∈ D/|u| = 3
4 }. For ε < ε0, if there exists a solution of (G.L.)

in E0 for hex 5 Cε−α that minimizes J over E0, then it is unique.
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Proof. We continue the proof of our lemma. By convexity,

∫
�

∣∣∣∣∇ η1 + η2

2

∣∣∣∣
2

5 1

2

∫
�

|∇η1|2 + 1

2

∫
�

|∇η2|2,

∫
�

∣∣∣∣d
(

A1 + A2

2

)
− hex

∣∣∣∣
2

5 1

2

∫
�

|dA1 − hex|2 + 1

2

∫
�

|dA2 − hex|2,

with strict inequalities respectively if η1 |= η2 and A1 |= A2. Combining these with
the result of Lemma 2.5 and the expression (2.2) for the energy, we obtain

J

(
η1 + η2

2
,
A1 + A2

2

)
<

1

2
(J (η1, A1) + J (η2, A2)) 5 J (η2, A2).

Now, by a standard argument, this is true on the whole segment [(η1, A1), (η2, A2)],
i.e., for all t ∈]0, 1[,

J ((1 − t)η1 + tη2, (1 − t)A1 + tA2) < J (η2, A2),

thus contradicting the stability of (η2, A2). Hence (η1, A1) = (η2, A2). ut
By Theorem 1 of [S1] (combined with Proposition 2.1), we know that, for

ε < ε0 and for hex 5 Hc1 , a minimizing solution in D exists and satisfies |u| = 3
4

on �. This justifies the existence of a solution satisfying the hypotheses of this
proposition. In addition, with this proposition, we have proved that this solution
was unique. We are going to show a stronger existence result in the next section.

3. Some New Stable Solutions

3.1. Existence of a Vortexless Solution

In this section, we show that for hex higher than the critical field (up to Cε−α),
the vortexless solution of (G.L.) continues to exist and to be locally minimizing.
From now on, we use the notations and conventions of [S1] and [S2], i.e., we assume
that A = d∗ξ , ξ = hexξ0 + ζ , and consider uγ as defined previously.

Proposition 3.1. There exist α > 0 and ε0 such that, if ε < ε0 and hex 5 Cε−α ,
there exists a unique solution (u, A) = (u, d∗ξ) of (G.L.) with |u| = 3

4 , that is a
local minimizer for J . In addition,

inf
θ∈[0,2π ] ‖(u, ξ) − (eiθ , hexξ0)‖ −→ 0 as ε → 0,

where ‖.‖ is defined as

‖(u, z)‖2 = ‖∇u‖2
L2 + ‖u‖2

L2 + ‖∇z‖2
L2 + ‖1z‖2

L2 .
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Proof. Step 1. We define the open domain

U =
{
(u, A) ∈ D/ F(u) + 1

2

∫
�

|∇ζ |2 + |1ζ |2 < ε
α
2

}
,

where α is given by Lemma 2.1. Assume that (ũ, Ã) achieves minŪ J . Such a
configuration exists by the same argument as in [S1], i.e., by following the proof
of Theorem 1 of [BR] and using the lower semi-continuity of F . By applying
Lemma 2.1, we derive a configuration (u, A) that satisfies

F(uγ ) 5 F(u) 5 F(ũ) < εα/2 = o(1).

Denoting by (ai, di)i∈J ′ the vortices of uγ (given by Proposition 3.2 of [S1]), we
may assert, using Lemma 5.1 of [S1], that

F(uγ ) = π
∑
i∈J ′

|di |
∣∣∣∣Log

ε

ρ

∣∣∣∣+ O(1)

= π(1 − µ)
∑
i∈J ′

|di ||Log ε| + O(1),

because ρ = εµ. This implies that J ′ = ∅, i.e., uγ has no vortex (recall that
di |= 0). Therefore, by Lemma 2.1,

J (u, A) = F(u) + V (ξ) + o(εα)

= J0 + F(u) + 1

2

∫
�

|1ζ |2 + |∇ζ |2 + o(εα).(3.1)

On the other hand, (1, hexd
∗ξ0) is a comparison map that belongs to U ; hence by

the minimality of (ũ, Ã), we obtain

J (ũ, Ã) 5 J0.

Then, by Lemma 2.1,

J (u, A) 5 J (ũ, Ã) + o(εα) 5 J0 + o(εα).

Therefore, in view of (3.1),

F(u) + 1

2

∫
�

|1ζ |2 + |∇ζ |2 5 o(εα).

This guarantees that (u, A) ∈ Ū for ε sufficiently small. Hence, by minimality
again,

J (ũ, Ã) 5 J (u, A) 5 J (u, Ã) 5 J (ũ, Ã) + o(εα).

Arguing by contradiction, let us assume that (ũ, Ã) ∈ ∂U . Then,

F(ũ) + 1

2

∫
�

|∇ ζ̃ |2 + |1ζ̃ |2 = εα/2.
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Using assertion 3 of Lemma 2.1, in which we can replace the domain D by U , we
find that F(u) = F(ũ) + o(εα) and J (ũ, Ã) = J (u, Ã) + o(εα). In addition, since
ξ̃ = hexξ0 + ζ̃ and since we have ‖ζ̃‖H 2 5 εα/4, the splitting of the energy is also
true for (u, Ã):

J (u, Ã) = J0 + F(u) + 1

2

∫
�

|∇ ζ̃ |2 + |1ζ̃ |2 + o(εα).

Hence,

J (ũ, Ã) = J (u, Ã) + o(εα)

= J0 + F(u) + 1

2

∫
�

|1ζ̃ |2 + |∇ ζ̃ |2 + o(εα)

= J0 + F(ũ) + 1

2

∫
�

|1ζ̃ |2 + |∇ ζ̃ |2 + o(εα)

= J0 + εα/2 + o(εα)

> J0

if ε is sufficiently small. But this contradicts the minimality of (ũ, Ã). We conclude

that there is some (ũ, Ã) ∈ ◦
U such that J (ũ, Ã) = minŪ J , and that (ũ, Ã) is a local

minimizer for J . In addition, (ũ, Ã) is a stable solution of (G.L.), and is vortexless
by Proposition 2.1. Thus (ũ, Ã) = (u, A) in view of the construction of (u, A). By
Proposition 2.2, such a local minimizer is unique.

Step 2. We prove the second assertion of the proposition. Defining the norm

‖(u, z)‖2 = ‖∇u‖2
L2 + ‖u‖2

L2 + ‖∇z‖2
L2 + ‖1z‖2

L2 ,

(‖∇z‖2
L2 +‖1z‖2

L2 is equivalent to the H 2 norm on {ξ/ ξ = 0 on ∂�}), we suppose
that there is a C > 0 such that there exists a sequence εn → 0, for which

inf
θ∈[0,2π ] ‖(uεn, ξεn) − (eiθ , hexξ0)‖ =

√
C.(3.2)

We have

‖(u, ξ) − (eiθ , hexξ0)‖2 =
∫

�

|∇u|2 +
∫

�

|u − eiθ |2 +
∫

�

|∇ζ |2 +
∫

�

|1ζ |2.
(3.3)

Since (u, A) ∈ U , we have∫
�

1

2
|∇u|2 + 1

4ε2
(1 − |u|2)2 + 1

2

∫
�

|∇ζ |2 + |1ζ |2 5 o(1).(3.4)

Combining (3.3) and (3.4), we get

∀ n, ∀ θ ∈ [0, 2π ],
∫

�

|uεn − eiθ |2 = C − o(1) = C

2
.(3.5)
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On the other hand, using the Poincaré-Wirtinger inequality, we have

∀ ε < ε0,

∫
�

|u − ū|2 5 C

∫
�

|∇u|2 5 o(1),(3.6)

(by (3.4)), where

ū = 1

|�|
∫

�

u.

In addition, ∫
�

| |u| − |ū| |2 5
∫

�

|u − ū|2 5 o(1),

i.e., ‖|u| − |ū|‖L2 5 o(1). But we also have

‖1 − |u|‖L2 5 ‖1 − |u|2‖L2 5 o(1).

This implies
‖ |ū| − 1‖L2 5 o(1).

Since ū is a constant function, we can thus write

∀ ε < ε0, ū = eiθε + o(1),

for some θε ∈ [0, 2π ]. Inequalities (3.6) now transform into

∀ ε < ε0,

∫
�

|u − eiθε + o(1)|2 5 o(1),

and

∀ ε < ε0, ∃ θε ∈ [0, 2π ] such that
∫

�

|u − eiθε |2 5 o(1),

in contradiction to (3.5). Inequality (3.2) was hence false, and we are able to con-
clude that

inf
θ∈[0,2π ] ‖(u, ξ) − (eiθ , hexξ0)‖ −→

ε→0
0. ut

Notice that all the (eiθ , hexd
∗ξ0) are gauge-equivalent to (1, hexd

∗ξ0). Thus,
we have shown that, up to a gauge-equivalence, our solution gets closer and closer
to (1, hexd

∗ξ0), which is a good approximate solution, although it is not an exact
solution of (G.L.). This result is similar to that of Theorem 3 of [S2].

Theorem 1 now results from the combination of Propositions 2.2 and 3.1.

Theorem 1. There exist α > 0 and ε0 such that, if ε < ε0, a stable vortexless

solution of (G.L.) for hex 5 Cε−α with
∫

�

|∇u|2 5 o(εα) is unique.

Let E0 = {(u, A) ∈ D/ |u| = 3
4 }. For ε < ε0, there exists a unique locally min-

imizing solution (u, A) = (u, d∗ξ) of (G.L.) in E0 for hex 5 Cε−α that minimizes
J over E0. In addition,

inf
θ∈[0,2π ] ‖(u, ξ) − (eiθ , hexξ0)‖ −→ 0, ε → 0,

where ‖.‖ is defined as

‖(u, z)‖2 = ‖∇u‖2
L2 + ‖u‖2

L2 + ‖∇z‖2
L2 + ‖1z‖2

L2 .
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3.2. Survival of Vortex Solutions

We now set � = B(0, R), and recall the definition of the renormalized energy
(depending on the number d of points) introduced in [S1]:

w(x1, · · · , xd) = −π
∑
i |=j

Log |xi − xj | + πξ0"(0)

d∑
i=1

|xi |2.

In [S2], I have proved Theorem 1.2 stated in the Introduction. Our new result is:

Theorem 2. Suppose that � = B(0, R) and that hex is any function of ε such that
hex → +∞ as ε → 0, with hex 5 Cε−α .

1. If ε is sufficiently small, (G.L.) has a locally minimizing solution (u, A) with
exactly one vortex aε of degree 1, satisfying

|aε| 5 C√
hex

,

J (u, A) = J0 + π

(
|Log ε| − hex

k1

)
+ O(1).

2. More generally, for each n ∈ N
∗, such that πn < M, if ε < ε0(M), (G.L.)

has a locally minimizing solution (u, A) with exactly n vortices aε
i of degree 1.

In addition, if ãi = aε
i

√
hex, then

|ãi | 5 C ∀ i, |ãi − ãj | = C ∀ i |= j,

and the configuration of the ãi’s converges to a minimizer of w. Furthermore,

J (u, A) = J0 + πn

(
|Log ε| − hex

k1

)

+ π

2
(n2 − n)Log hex + w(ã1, . . . , ãn) + Qn + o(1).

(Qn is a constant depending only on n).

To prove this theorem, we use the same method as in Section 3.1. As in [S1]
and [S2], we define

Ed =
{
(ũ, Ã) ∈ D̄/ uγ has d vortices of degree 1,

and ∃ c > 0, dist(ai, ∂�) = c

}
.

Then, for n, a given positive integer < M/ π , we define, as stated in the Introduc-
tion,

Un =
{
(ũ, Ã) ∈ H 1(�, C) × H 1(�, R

2)/

πn|Log ε| + B < F(T (ũ)) <
(
n + 1

2

)
π |Log ε|

}
.
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B is a constant, to be defined later, and T is the continuous mapping

ũ ∈ H 1(�, C) 7−→ u = T (ũ) =



ũ if |ũ| 5 1,

ũ

|ũ| if |ũ| = 1

that was used in Lemma 2.1. Un, being the inverse image of an open set by the
continuous mapping F ◦ T , is an open set in H 1 × H 1.

Lemma 3.1. infEn∩Un J and infEn J are both equal to

J0 + πd

(
|Log ε| − hex

k1

)
+ π

2
(n2 − n)Log hex + inf w + Qn + o(1).

Proof. The proof is very similar to that of Lemma 3.3 of [S2]; therefore, we only
state its main steps.

Step 1. With the usual conventions, considering (ũ, Ã) ∈ En and transforming it
into (u, A) as in Lemma 2.1, we obtain

J (u, A) = J0 + F(u) + 2πhex

∑
i

ξ0(ai) + Ṽ (ζ ) + o(1).

It is proved in [S2, Lemma 2.2], that there exist positive constants b1 and b2 such
that

b1|x|2 5 ξ0(x) − ξ0(0) 5 b2|x|2.
As in [S2] we deduce (using 2|ξ0| 5 k−1

1 ), that

J (u, A) = J0 + πn

(
|Log ε| − hex

k1

)
+ 2πhex

∑
i

(ξ0(ai) − ξ0(0))

− π
∑
i |=j

Log |ai − aj | + O(1).

Writing r = maxi |ai |, as |ai − aj | 5 2r , we are led to

J (ũ, Ã) = J0 + πn

(
|Log ε| − hex

k1

)
− π(n2 − n)Log 2r + 2πhexb1r

2 + O(1) ∀ (ũ, Ã) ∈ En.

(3.7)

Minimizing over r , we find that

J (ũ, Ã) = J0 + πn

(
|Log ε| − hex

k1

)

+ π

2
(n2 − n)Log hex + O(1) ∀ (ũ, Ã) ∈ En.

Conversely, we construct a function u having n vortices of degree 1 on a regular

polygon of radius

(
d2 − d

2b2hex

)1/2

centered at the origin. (u, hexd
∗ξ0) is easily seen
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to belong to En as in [S2] (see Proposition 3.3 in [S1], compares the vortices of u

with those of uγ ).
Referring to [S1, Proposition 5.2], we can also construct it so that |u| 5 1 and

F(u) = πn|Log ε| + π/2(n2 − n)Log hex + O(1).

Hence, (u, hexd
∗ξ0) ∈ En ∩ Un (if α is chosen sufficiently small), and

inf
En

J 5 inf
En∩Un

J 5 J0 + πn

(
|Log ε| − hex

k1

)
+ π

2
(n2 − n)Log hex + O(1),

with equality

inf
En∩Un

J = J0 + πn

(
|Log ε| − hex

k1

)
+ π

2
(n2 − n)Log hex + O(1).(3.8)

Step 2. If (ũ, Ã) is a minimizer (or approximates the infimum closely enough) in
En ∩ Un, then we deduce that r = maxi |ai | 5 Ch

−1/2
ex . Indeed, comparing (3.7)

and (3.8), we necessarily obtain

π
2 (n2 − n)Log hex + O(1) 5 −π(n2 − n)Log r + 2πhexb1r

2

5 π
2 (n2 − n)Log hex + O(1),

so that
−π(n2 − n)Log (rh

1/2
ex ) + 2πb1(rh

1/2
ex )2 = O(1).

Thus, rh
1/2
ex remains bounded and

|aε
i | 5 Ch

−1/2
ex ∀ i, for small ε.

Step 3. As in [S2], we have the more precise estimate

inf
En∩Un

J = J0 + inf
E(a)

F + 2πhex

n∑
i=1

ξ0(ai) + inf
E(a)

Ṽ + o(1)(3.9)

for a suitable configuration (a) (or sequence of configurations). Indeed, infE(a)
F =

πn|Log ε|+ π
2 (n2−n)Log hex+O(1) can be approximated by functions belonging

to Un as in Step 1.

Exactly as in [S2], we have the inequalities |aε
i | 5 Ch

− 1
2

ex , to show that

inf
E(a)

Ṽ = πn2ζ 0(0) + o(1),(3.10)

2πhex

n∑
i=1

ξ0(ai) = −πn
hex

k1
+ 2πhex

n∑
i=1

(ξ0(ai) − ξ0(0))

= −πn
hex

k1
+ 2πhexξ

′′
0 (0)

n∑
i=1

|ai |2
2

+ o(1).(3.11)
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By Proposition V.2 of [S1],

inf
E(a)

F = πd|Log ε| + W(a1, . . . , an) + dγ0 + o(1),(3.12)

where γ0 is an absolute constant defined in [BBH], and exactly as in [S1],

W(a1, . . . , an) = −π
∑
i |=j

Log |ai − aj | − π

d∑
i=1

R0(ai)

= −π
∑
i |=j

Log |ai − aj | + (πd)2Log R + o(1).(3.13)

Combining (3.9)–(3.13), we get

inf
En∩Un

J = J0 + πn|Log ε| − π
∑
i |=j

Log |ai − aj |

− πn
hex

k1
+ πhexξ

′′
0 (0)

n∑
i=1

|ai |2 + Qn + o(1),

where Qn = πn2ζ 0(0) + (πn)2Log R + nγ0 is a constant depending only on n.
We now perform our change of variables ãi = ai

√
hex (ãi is bounded by Step

2), and find that

inf
En

J = J0 + πn

(
|Log ε| − hex

k1

)

+ π

2
(n2 − n)Log hex + w(ã1, . . . , ãn) + Qn + o(1). ut

Proof of the theorem. Step 1. We consider (ũ, Ã) ∈ Ūn such that J (ũ, Ã) 5
infŪn

J + 1. We transform it into (u, A) with Lemma 2.1, and denote as usual by

(ai, di) the vortices of uγ . Notice that (u, A) ∈ Ūn. We have

J (ũ, Ã) = J (u, A) + O(1) = J0 + F(u) + 2πhex

∑
i

diξ0(ai) + Ṽ (ζ ) + O(1).

(3.14)

Constructing a test configuration in Un having n vortices suitably located (as for
(3.8)), we find that

inf
Ūn

J 5 inf
En∩Un

J = J0 + πn

(
|Log ε| − hex

k1

)
+ π

2
(n2 − n)Log hex + O(1).

(3.15)

Step 2. We first prove that di > 0. By Proposition 5.1 of [S1], we have

F(u) = π(1 − µ)
∑

i

|di ||Log ε| + O(1).
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On the other hand,

πn|Log ε| + B 5 F(u) 5 π(n + 1
2 )|Log ε|.

By choosing µ small enough (which can be done in the construction of Proposition
3.2 of [S1]), we deduce that

∑
i |di | 5 n. But the fact that (ũ, Ã) ∈ Ūn also implies

that

J (u, A) = J0 + F(u) + 2πhex

∑
i

diξ0(ai) + O(1)

= J0 + πn|Log ε| + 2πhex

∑
i

diξ0(ai) + O(1).
(3.16)

Comparing this to (3.15), we obtain

πn|Log ε| + 2πhex

∑
i

diξ0(ai) 5 πn|Log ε|

−πn
hex

k1
+ π

2
(n2 − n)Log hex + O(1),

n
hex

k1
5 2hex

∑
i/di>0

di |ξ0(ai)| + n2 − n

2
Log hex + O(1).

(3.17)

Dividing by hex → ∞, we obtain, as k1 = (2 max |ξ0|)−1,

n 5
∑

i/di>0

di + o(1),

while
∑

i |di | 5 n. Hence, di > 0 and
∑

i di = n for small ε and for all i ∈ J ′.
We now prove that ai → 0 for all i ∈ J ′ (� = B(0, R)). Considering (3.17)

again, we obtain

n
hex

k1
5 2hex

∑
i

di |ξ0(0)|+2hex

∑
i

di(ξ0(0)−ξ0(ai))+1

2
(n2 −n)Loghex +O(1),

whence

2hex

∑
i

di(ξ0(ai) − ξ0(0)) 5 1

2
(n2 − n)Log hex + O(1),

∀ i, 0 5 ξ0(ai) − ξ0(0) 5 o(1).

Since ξ0 achieves its single minimum at 0, we conclude that ai → 0 as ε → 0;
hence dist(ai, ∂�) remains bounded below, for all i.

We next prove that di = 1, for all i ∈ J ′. As in [S1, Section 6], the two
previous results imply that W(ai) = O(1); hence by Lemma 5.1 of [S1], we obtain

F(u) = F(uγ ) = π
∑

i

d2
i |Log ρ| + π

∑
i

|di |
∣∣∣∣Log

ε

ρ

∣∣∣∣+ O(1).
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Since
∑

di = n, we have

F(u) = πn|Log ε| + π
∑

(d2
i − di)|Log ρ| + O(1),

F (u) = πn|Log ε| + µ̄π
∑

(d2
i − di)|Log ε| + O(1),

(3.18)

while, by (3.15),

F(u) + 2πhex

∑
i

diξ0(ai) 5 πn

(
|Log ε| − hex

k1

)

+ π

2
(n2 − n)Log hex + O(1),

F (u) 5 πn|Log ε| + π

2
(n2 − n)Log hex + O(1).

(3.19)

Inequalities (3.18), (3.19), and hex 5 Cε−α yield

µ̄π
∑

(d2
i − di)|Log ε| 5 π

2
(n2 − n)Log hex + O(1),

µ̄π
∑

(d2
i − di) 5 n2 − n

2
α + o(1).

If α is chosen sufficiently small (according to M and µ̄), this allows us to conclude
that di = 1, for all i. Thus, uγ has exactly n vortices of degree 1 tending to 0. This
proves that (u, A) ∈ En ∩ Ūn.

Step 3.

Lemma 3.2. infŪn
J is achieved.

Proof. Let (ũk, Ãk) be a minimizing sequence. As in the proof of Theorem 1 of
[BR], we easily have (extracting a subsequence if necessary)

ũk ⇀ ũ in H 1, Ãk ⇀ Ã in H 1, J (ũ, Ã) 5 inf
Ūn

J.

We need to show that (ũ, Ã) ∈ Ūn. First, uk = T (ũk) ⇀ u = T (ũ) in H 1. Indeed,
it is a bounded sequence in H 1, and so has a weak limit up to a subsequence, and
its limit must be its distributional limit u. Hence, by lower semi-continuity,

F(T (ũ)) 5 lim infF(T (ũk)) 5
(
n + 1

2

)
π |Log ε|.

The difficulty is to derive the lower bound on F(u). The key argument is that weak
H 1 convergence preserves the vortices, in some way.

Let us denote by uγ and u
γ

k the corresponding regularized maps and by (bi, qi),
(ak

i , d
k
i ) their respective vortices. We observe that∫

�

(iuk, (ξ0)x2(uk)x1 − (ξ0)x1(uk)x2) − (iu, (ξ0)x2ux1 − (ξ0)x1ux2)

=
∫

�

(i(uk − u), dξ0 ∧ duk) + (iu, dξ0 ∧ (duk − du)).
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For the first term, we can write∣∣∣∣
∫

�

(i(uk − u), dξ0 ∧ duk)

∣∣∣∣ 5 ‖∇ξ0‖L∞‖uk − u‖L2‖∇uk‖L2

5 o(1) as k → ∞
because since uk ⇀ u in H 1, ‖∇uk‖L2 is bounded and uk → u in L2. For the
second term, we integrate by parts to obtain∫

�

(iu, dξ0 ∧ (duk − du)) =
∫

�

d(iu, dξ0(uk − u)) +
∫

�

dξ0 ∧ (idu, uk − u)

=
∫

∂�

dξ0(iu, uk − u) +
∫

�

dξ0 ∧ (idu, uk − u).

The first integral vanishes because ξ0 ≡ 0 on ∂�. On the other hand,∣∣∣∣
∫

�

dξ0 ∧ (idu, uk − u)

∣∣∣∣ 5 C‖∇u‖L2‖uk − u‖L2 = o(1).

We conclude that

∫
�

(iuk, (ξ0)x2(uk)x1 − (ξ0)x1(uk)x2) −→
k→∞

∫
�

(iu, (ξ0)x2ux1 − (ξ0)x1ux2).

(3.20)

On the other hand, as in [S1], it is easy to obtain that∫
�

(iuk, (ξ0)x2(uk)x1 − (ξ0)x1(uk)x2)

=
∫

�

(iu
γ

k , (ξ0)x2(u
γ

k )x1 − (ξ0)x1(u
γ

k )x2) + o(1)(3.21)

= 2π
∑

i

dk
i ξ0(a

k
i ) + o(1) as ε → 0,

while,∫
�

(iu, (ξ0)x2ux1 − (ξ0)x1ux2) =
∫

�

(iuγ , (ξ0)x2(u
γ )x1 − (ξ0)x1(u

γ )x2) + o(1)

= 2π
∑

i

qiξ0(bi) + o(1).(3.22)

Since ũk is a minimizing sequence in Ūn, the argument of Steps 1 and 2 implies
that ũk ∈ En; hence dk

i = 1,
∑

i dk
i = n, and by (3.17),

n
hex

k1
5 2hex

∑
i

|ξ0(a
k
i )| + 1

2
(n2 − n)Log hex + O(1).

Thus,

n

k1
5 2

∑
i

|ξ0(a
k
i )| + o(1).(3.23)
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On the other hand, combining (3.20)–(3.22), we have

2π
∑

i

ξ0(a
k
i ) = 2π

∑
i

qiξ0(bi) + ok(1) + oε(1).(3.24)

By (3.23), this yields( ∑
i/qi>0

qi

) 1

k1
= −2

∑
i

qiξ0(bi) = n

k1
+ ok(1) + oε(1),

and we are able to conclude that ∑
i/qi>0

qi = n.

Conversely, we know that

π(1 − µ)
∑

i

|qi ||Log ε| 5 F(uγ ) 5 F(u) 5 (n + 1
2 )|Log ε|,

and as usual we get that ∑
i

|qi | 5 n.

Hence qi > 0 for all i, and
∑

i qi = n. Thus, the vortices of uγ satisfy the same
results as those mentioned in Step 2 and ũ ∈ En. Therefore,

F(u) = F(uγ ) = nπ |Log ε| + O(1),

and ũ ∈ Ūn if B is chosen small enough, so J (ũ, Ã) = minŪn
J . ut

Step 4. It remains to show that (ũ, Ã) achieving the infimum does not belong
to ∂U . Indeed, suppose that is does. Then F(u) = nπ |Log ε| + B, or F(u) =
(n + 1

2 )π |Log ε|. Let us deal with the second case: We would have

J (u, A) = J0 + (n + 1
2 )π |Log ε| + 2πhex

∑
i

diξ0(ai) + O(1).

Hence, by minimality and (3.15),

π
2 |Log ε| + 2πhex

∑
i

diξ0(ai) 5 −πn
hex

k1
+ π

2 (n2 − n)Log hex + O(1),

π
2 |Log ε| 5 π

2 (n2 − n)Log hex + O(1) 5 π
2 α(n2 − n)|Log ε| + O(1),

which is impossible if we choose α > 0 small enough, and πn < M.
On the other hand, since (ũ, Ã) achieves minEn∩UnJ , it is stated in the proof of

Lemma 3.1 that |ai | 5 Ch
−1/2
ex . We thus have

F(u) = πn|Log ε| − π
∑
i |=j

Log |ai − aj | + O(1)

= πn|Log ε| + π

2
(n2 − n)Log hex + O(1).



358 S. Serfaty

Hence the first case is impossible if n > 1, since hex → ∞. If n = 1, it suffices to

choose B small enough to get a contradiction. We conclude that (ũ, Ã) ∈ ◦
Un, and

minimizes J locally. It is hence a stable solution of (G.L.), and (ũ, Ã) = (u, A).
From Lemma 3.1, we conclude that the ãi’s tend to minimize w; from the expression
for w, this implies that the |ãi − ãj |’s remain bounded below, and the proof is
complete. ut

Remark. In addition, J (u, A) is also equal to minEnJ because the last terms of any
sequence of minimizers of J in En are easily seen to belong to Un. This proves that
minEnJ is achieved.

4. Estimate of the Energy of Vortex-Nucleation

In this section, we restrict our attention to � = B(0, R). In Section 3, we
proved, for hex = Hc1 , the existence of two locally minimizing solutions of (G.L.),
one without any vortex (the Meissner solution), one with one vortex near the center,
having a lower energy than the previous one. We wish to estimate the value of the
energy barrier around the Meissner solution. Indeed, when this value gets low, even
before reaching Hsh, the Meissner solution probably becomes physically unstable,
and the system then moves to the vortex solution. In order to achieve this, we
define a function of the location of the vortex, describing the path between the two
solutions. The evaluation of this function is based on the method of the “image
vortex” or reflected vortex.

4.1. Definition of the Function φ

We recall a definition from [S1]:

Ea = {(u, A) ∈ D̄/ uγ has a unique vortex of degree1 centered in B(a, ε
γ
2 )}.

φ is defined on [0, R] as

φ(r) = inf∪{Ea,dist(a,∂�)=r} J(4.1)

By symmetry, it is clear that infEaJ remains constant when dist(a, ∂�) remains
constant.

Actually, since the vortices of uγ are defined to have a characteristic size εµ 5
ρ 5 εµ̄, (see Proposition 3.2 of [S1]), it does not really make sense to define φ

for r 5 εµ̄. In addition, their location is known only up to εγ/2. Hence, we choose
β = 1

2γ , and we shall study φ on [εβ, R].
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4.2. Computation of φ

We use the notations in Section 5 of [S1]. Since we consider uγ with only one
vortex, we can assume that this vortex is at a and W(a) = −πR0(a), where R0 is
defined by

1R0 = 0 in B(0, R),

R0 = −πLog |x − a| on ∂B(0, R).
(4.2)

We have
R0 |∂B(0,R) = −Log R.

Therefore, by the maximum principle, R0 = −Log R on B(0, R). Hence W(a) 5
πLog R 5 o(|Log ε|). We can then apply Proposition 5.2 of [S1], which asserts
that

inf
Ea

F = π |Log ε| + W(a) + dγ0 + o(1) = π |Log ε| − πR0(a) + dγ0 + o(1).

(4.3)

We deduce

Lemma 4.1.

π |Log ε| + πLog 2r + max
(
−C, πLog

(
1 − r

R

))
+ γ0 + o(1)

5 inf
Ea

F 5 π |Log ε| + πLog 2r + γ0 + o(1).

Proof. As in [BBH] and [S1], we use the function 80, satisfying

180 = 2πδa in B(0, R),

80 = 0 on ∂B(0, R).

Then R0 = 80 − Log |x − a|. We set

v(x) = Log |x − a| − Log |x − a∗|,(4.4)

where a∗ is the image of a under the reflection relative to ∂B(0, R), i.e.,

a∗ =
(

2R

|a| − 1

)
0∗ = 2R.

v − 80 then satisfies

1(v − 80) = 0 in B(0, R).(4.5)

Lemma 4.2. There exists a C > 0 such that

max
(

Log
(

1 − r

R

)
, −C

)
5 v |∂B(0,R) 5 0.
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Proof. The point a being set, we define the vector l = 1
2 (a − a∗), and assume that

it is small. Its norm is r . Using the polar parametrization of the circle: ρ = 2R sin θ

for θ ∈ [0, π], with base vector orthogonal to l, we can compute the function v on
the circle:

v(θ) = Log (r2 + ρ2 − 4rR sin2 θ)1/2 − Log (r2 + ρ2 + 4rR sin2 θ)1/2

= 1

2
Log

(
1 − 4rR sin2 θ

r2 + 4R2 sin2 θ

)
− 1

2
Log

(
1 + 4rR sin2 θ

r2 + 4R2 sin2 θ

)

= −
+∞∑
k=0

1

2k + 1

(
4Rr sin2 θ

4R2 sin2 θ + r2

)2k+1

= −
+∞∑
k=0

1

2k + 1

( r

R

)2k+1

= Log
(

1 − r

R

)
.

Hence, for small r , we have

Log
(

1 − r

R

)
5 v |∂B(0,R) 5 0.

Otherwise, in the general case, v is also bounded from below by an absolute con-
stant. Hence, we deduce the expression stated. ut

By the maximum principle, we deduce from this lemma that

max
(

Log
(

1 − r

R

)
, −C

)
5 v − 80 5 0 in B(0, R).

By (4.4), this yields

max
(

Log
(

1 − r

R

)
, −C

)
5 −R0(x) − Log |x − a∗| 5 0.

In addition, since |a − a∗| = 2r , we have

max
(

Log
(

1 − r

R

)
, −C

)
+ Log 2r 5 −R0(a) 5 Log 2r.

By (4.3), the lemma is proved. ut
We are now in a position to prove:

Lemma 4.3. Let hex 5 Cε−α and define

φ1(r) = J0 + π |Log ε| + πLog 2r + max
(
−C, πLog

(
1 − r

R

))
+ γ0 + 2πhexξ0(R − r) + o(1),

φ2(r) = J0 + π |Log ε| + πLog 2r + γ0 + 2πhexξ0(R − r) + Cr1/2 + o(1).

Then
φ1(r) 5 φ(r) 5 φ2(r) ∀ r ∈ [εβ, R].
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Proof. From the analysis of [S1] and [S2], if hex 5 Cε−α , then

inf
Ea

J = J0 + inf
Ea

F + 2πhexξ0(a) + Ṽ (ζ ) + o(1),(4.6)

as seen before, and
inf
Ea

Ṽ (ζ ) = πζa(a) + o(1),

where ζ is the solution of

−12ζ a + 1ζa = 2πδa in B(0, R),

1ζa = 0 on ∂B(0, R),

ζ a = 0 on ∂B(0, R)

(see [S1, Section 4.2]). In addition, by Lemma 4.6 of [S1],

‖ζ a‖L∞(B(0,R)) 5 Cdist (a, ∂B(0, R))k ∀ k < 1.

Thus inf Ṽ 5 Crk for all k < 1.
Combining this with (4.6) and Lemma 4.1, we conclude that

φ1(r) 5 φ(r) 5 φ2(r). ut
Now, we see that φ is a function that passes through a maximum for some

r ∈ [εβ, R]. When a vortex appears in the superconductor, it is physically assumed
that it is created near the boundary and then moves to the center. The energy gap
to be overcome in this process must be of order max φ − J0. This is why we want
to get an estimate on max φ. This is done through the following theorem:

Theorem 3.

1. max
[εβ ,R]

φ = J0 + π |Log ε| − πLog hex + O(1).

2. φ achieves its maximum at rmax, and there exists a C > 0 such that

rmax 5 C

hex
.

3. φ(εβ) 5 J0 + π(1 − β)|Log ε| + πLog 2 + γ0 + o(1).

Proof. Step 1. We begin with

φ(r) 5 φ2(r) 5 J0 + π |Log ε| + πLog 2r + 2πhexξ0(R − r) + C.

From [S2], we know that

ξ0(r) = Z(r)

Z(R)
− 1, Z(r) =

+∞∑
n=0

r2n

22n(n!)2
.(4.7)
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ξ0 is a convex function; hence ξ0(r −R) is convex on [0, R] and its graph is located
under its chord, i.e.,

ξ0(R − r) 5 ξ0(0)r

R
.(4.8)

The function

r 7→ πLog 2r + 2πhex
ξ0(0)r

R

achieves its maximum for r = − R
2hexξ0(0)

, and the maximum is C −πLog hex −π ,

where C is an absolute constant, independent of hex. We deduce that

max
[εβ ,R]

φ 5 J0 + π |Log ε| − πLog hex + C.(4.9)

On the other hand, max[εβ ,R] φ = max[εβ ,R] φ1. Since ξ ′
0 is nondecreasing on [0, R],

it follows that ξ ′
0(r) 5 ξ ′

0(R) and

ξ0(R − r) = −rξ ′
0(R),

max (πLog 2r + 2πhexξ0(R − r)) = max
(
πLog 2r − 2πhexrξ

′
0(R)

)
= −πLog hex + C.

Hence max[εβ ,R] φ1 = J0 + π |Log ε| − πLog hex − C.
We finally conclude that

max
[εβ ,R]

φ = J0 + π |Log ε| − πLog hex + O(1).

Step 2 . Since the function πLog 2r + 2πhex
ξ0(0)r

R
is concave for r = R

2hex|ξ0(0)| , it

is nonincreasing. Suppose now that r = B
hex

for some B > R
2|ξ0(0)| ; then

C + πLog 2r + 2πhex
ξ0(0)r

R
5 C + πLog 2B − πLog hex + 2πξ0(0)B

R
,

implying that
φ(r) 5 φ2(r) < max φ,

if B is chosen sufficiently large. Therefore, φ cannot achieve its maximum at r =
B

hex
. We conclude that φ achieves its maximum at rmax with rmax 5 B

hex
, which

tends to 0 as hex → +∞.

Step 3. From Lemma 4.1, we have the estimate

φ(εβ) 5 J0 + π |Log ε| + πLog 2εβ + Cεβ/2 + 2πhexξ0(R − εβ) + γ0 + o(1)

5 J0 + π(1 − β)|Log ε| + πLog 2 − 2πεβξ ′
0(R)hex + γ0 + o(1)

5 J0 + π(1 − β)|Log ε| + πLog 2 + γ0 + o(1),

which concludes our proof. ut
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We now give the justification in favor of the assumption that when a vortex
appears, it is created at the boundary and moves to the center. Indeed, another
reasonable assumption would be to say that a pair of vortices (one of degree 1,
one of degree −1) is created at some point of B(0, R), and that one moves out of
B(0, R), while the other moves to the center. We are going to prove that at some
point this always costs more energy than max φ.

Proposition 4.1. The minimal energy over such paths of configurations is higher
than max[εβ ,R] φ.

Proof. Denote by a+ the vortex of degree 1, and by a− the vortex of degree −1.
Following Proposition 5.1 of [S1], we are going to compute the minimal energy of
a configuration (u, A) having these vortices when their mutual distance is equal to

1
hex

. Since 1
hex

� εγ/2, Lemma 5.1 of [S1] ensures that

F(uγ ) = 2π |Log ρ| + 2π

∣∣∣∣Log
ε

ρ

∣∣∣∣+ W((a+, 1), (a−, −1)) + O(1),(4.10)

where

W((a+, 1), (a−, −1)) = πLog|a+ − a−| − π(R0(a+) − R0(a−)).(4.11)

But, following the same arguments as in the proof of Proposition 5.1 in [S1], we
have

‖∇R0‖L∞([a+,a−]) 5 C|Log ε|,
and thus

|R0(a+) − R0(a−)| 5 C|Log ε|
hex

5 C.

(4.10) hence becomes

F(uγ ) = 2π |Log ε| − πLog hex + O(1).(4.12)

Now, as usual,

J (u, A) = J0 + F(u) + 2πhex(ξ0(a+) − ξ0(a−)) + O(1).(4.13)

In addition,

hex(ξ0(a+) − ξ0(a−)) 5 Chex‖ξ ′
0‖L∞

1

hex
5 C.

Combining (4.12) and (4.13), we obtain

J (u, A) = J0 + 2π |Log ε| − πLog hex + O(1).

Then, J (u, A) > max φ, and the proposition is proved. ut
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4.3. Remarks and Interpretations

1. If we take β < 1 as close to 1 as we can, we see that the energetical cost of a
vortex at the boundary of � is much less than max φ.

2. max φ − J0 roughly decreases as hex increases; thus we can guess that below
fields of order ε−1 ' Hsh, the gap of energy becomes very small (while the point
of maximum tends to the boundary).

3. Since there are a locally minimizing vortexless solution and a solution with one
vortex near the center with a lower energy, we deduce the existence of an unstable
mountain-pass solution. We may reasonably think, by Theorem 3, that this solution
has a vortex of degree 1 located at rmax from the boundary, and has an energy '
max φ = J0 + π |Log ε| − πLog hex + O(1). It is an open problem to determine
if this is true.

4. Some authors do not have the same normalization of the fields and of the con-
stants: They consider an energy functional 1

2

∫
�

|(∇
κ

− iA)u|2 +|h−hex|2 + 1
2 (1−

|u|2)2; then their fields are 1
κ

times our fields, and their energies are 1
κ2 times our

energies. In this case, our results become

Hc1 = Log κ

2 max |ξ0| κ
+ O

(
1

κ

)
,

max φ − J0 ' πLog κ

κ2
− πLog (κhex)

κ2
' −πLog hex

κ2
,

with hex � 1.
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