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Abstract

We give an intrinsic definition of a heteroclinic network as a flow-invariant set
that is indecomposable but not recurrent. Our definition covers many previously
discussed examples of heteroclinic behavior. In addition, it provides a natural frame-
work for discussing cycles between invariant sets more complicated than equilibria
or limit cycles. We allow for cycles that connect chaotic sets (cycling chaos) or het-
eroclinic cycles (cycling cycles). Both phenomena can occur robustly in systems
with symmetry.

We analyze the structure of a heteroclinic network as well as dynamics on and
near the network. In particular, we introduce a notion of ‘depth’ for a heteroclinic
network (simple cycles between equilibria have depth 1), characterize the connec-
tions and discuss issues of attraction, robustness and asymptotic behavior near a
network.

We consider in detail a system of nine coupled cells where one can find a
variety of complicated, yet robust, dynamics in simple polynomial vector fields
that possess symmetries. For this model system, we find and prove the existence of
depth-2 networks involving connections between heteroclinic cycles and equilibria,
and study bifurcations of such structures.
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1. Introduction

Dynamical systems that commute with a group of symmetries often display
complicated robust dynamics that results from the presence of symmetry. In sym-
metric (equivariant) dynamical systems one can find robust attractors that (a) are
not recurrent, and (b) do not display ergodic behavior. The simplest examples of this
phenomenon are heteroclinic cycles of the type made famous by Guckenheimer
& Holmes [23]. Slight variations on these examples can lead to rather complicated,
but apparently robust, attractors. While the presence of symmetry can lead to com-
plexity, the assumption of symmetry yields a range of new tools, algebraic and
geometric, that can often make the complicated dynamics analytically tractable.

Up until now, there has been no general definition that covers all examples of
‘heteroclinic’-type attractors. In this paper, we aim to give a usable definition that
includes all known examples of heteroclinic cycles and networks. Our definition is
nonetheless strong enough that we can prove structural results about heteroclinic
networks. To this end, we concentrate on the problem of describing the dynamics
on the network. That is, the dynamics intrinsic to the network, rather than dynam-
ics near the network. We then examine the consequences for dynamics near the
network.

The paper is organized in the following way. In Sections 2–4, we present defi-
nitions and theoretical results. The remaining sections discuss specific models and
examples.

In Section 2, we start by discussing recurrence properties of flows, in particular,
topological and chain recurrence. Next we give definitions for homoclinic and het-
eroclinic cycles. Roughly speaking, these are cyclic chains of connections between
recurrent invariant sets. This leads up to our intrinsic definition of a heteroclinic
network in Section 2.3. A heteroclinic network is a continuous flow on a compact
metric space that is indecomposable and such that the set of recurrent points (the
set of nodes) satisfies certain regularity conditions.
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We refer to the set of non-recurrent points as the set of connections. Associated
to every network we define a positive integer invariant that we call the depth of
the network. Heteroclinic cycles have depth 1, more complicated networks have
depth greater than 1. A quantity related to depth appears in the construction of
the ‘Birkhoff center’ of a dynamical system. We prove some basic results on the
structure of heteroclinic networks and discuss a number of examples.

In Section 3, we discuss the dynamics and asymptotics near a heteroclinic
network that is embedded as an invariant set of a dynamical system on Rn. We
discuss various conditions that imply that an embedded heteroclinic network is an
attractor for nearby trajectories and we characterize the behavior of observables
from trajectories converging to such networks.

In Section 4 we tackle the problem of how to decide whether a given network
is robust in a given equivariant setting. At least for networks of depth greater
than 1, structural stability does not appear to form the basis of a good definition
of robustness. We formulate a weak, though verifiable, definition of stability that
relates the asymptotics on the network to the orbit structure of the group action.

In the remaining sections we focus on specific examples of equivariant systems
in Rn. Let ∆n = (Z2)

n be the group generated by the set of reflections in all coor-
dinate hyperplanes and Γ be a finite group of linear symmetries of Rn containing
∆n. It has been known for some time that the presence of the symmetries ∆n can
lead to robust attracting heteroclinic cycles in flows with symmetry Γ .

In Sections 5 and 6, we study a model system of nine coupled identical one-
degree-of-freedom cells with Z3×Z3 global permutation symmetry and ‘internal’
Z2 symmetry. We do this both from a theoretical point of view and also numerically.
We find, among other phenomena,

• Existence of depth-2 heteroclinic networks between equilibria with depth-1 sub-
networks that are attracting.

• Bifurcation of such networks to create networks between periodic orbits.
• Existence of cycles between ‘synchronized’ states that are ‘essentially asymptot-

ically stable’.

All of this behavior is robust to perturbations preserving the symmetry. We also
briefly discuss some generic one-parameter bifurcations of these generalized net-
works.

Finally, in Section 7, we consider the correspondence between our model equiv-
ariant systems and Lotka-Volterra-type equations that arise in game dynamics [33].
(This correspondence arises because equations that are symmetric under ∆n re-
stricted to an invariant sphere are equivalent to a game system on an (n − 1)-
simplex.) We also discuss some other consequences of the observed behavior and
implications for cycles between more complicated invariant sets, for example cy-
cling chaos [12, 20].

2. Heteroclinic Networks

In this section our emphasis is on describing the intrinsic properties of a class
of compact flow-invariant sets. Although this class naturally arises in the study of
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smooth flows on Rn, it is helpful at first to formulate our definitions in an abstract
setting. Consequently, throughout this section, we shall work with continuous flows
on a compact metric space. In Sections 3 and 4, this metric space is embedded into
Rn and the flow is the restriction of a smooth flow on Rn.

2.1. Preliminaries

Suppose Σ is a compact connected metric space with metric ρ. We consider
the continuous flow

φt : Σ→Σ, t ∈ R.(1)

In the sequel, we sometimes write (Σ, φ) to denote the set Σ together with the flow
φ. If the flow is clear from the context, we usually just write Σ .

For x ∈ Σ , let ω(x) and α(x) denote the set of limit points of the trajectory
passing through x as t →∞ and−∞, respectively. Recall that ω(x) and α(x) are
compact, connected flow-invariant subsets of Σ .

Definition 2.1. Given x, y ∈ Σ and ε, T > 0, we say there is an (ε, T )-pseudo
orbit joining x to y if we can find a finite subset {x = x0, y0, x1, . . . , xn, yn = y}
of Σ and ti = T , 0 5 i < n such that for all 0 5 i < n we have

ρ(xi, yi) < ε,

xi+1 = φti (yi).

Remark 2.2. Our definition of (ε, T )-pseudo orbit follows that given in Shub [41,
page 18] and is slightly different from that originally used by Conley [11]. It
has the advantage that an (ε, T )-pseudo orbit joining x to y is automatically an
(ε, T )-pseudo orbit joining y to x for the time reversed flow.

Following [11], we define a relation ∼ on Σ2 by requiring that x ∼ y if and
only if for all ε, T > 0, there exists an (ε, T )-pseudo orbit joining x to y. Let
P(Σ) = {(x, y) ∈ Σ2 | x ∼ y}. Just as in [11, Chapter III, §6], it may be shown
that ∼ is transitive and that P(Σ) ⊂ Σ2 is closed and invariant with respect to the
diagonal flow on Σ2.

Definition 2.3. The chain recurrent set Rch(Σ) of Σ is defined to be the subset
of Σ consisting of all x such that x ∼ x.

Since we may identify Rch(Σ) with the intersection of P(Σ) and the diagonal
of Σ2, it follows that Rch(Σ) is a closed flow-invariant subset of Σ .

We recall that

Rch(Rch(Σ)) =Rch(Σ),(2)

Rch(ω(x)) = ω(x), (x ∈ Σ),(3)

Rch(α(x)) = α(x), (x ∈ Σ).(4)
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Definition 2.4 (cf. Guckenheimer & Holmes [22, Defn. 5.2.5]). We say that
(Σ, φ) is indecomposable if x ∼ y for all x, y ∈ Σ .

Since we are assuming that Σ is compact and connected, it follows that Rch(Σ)

= Σ if and only if Σ is indecomposable.

Remarks 2.5. (1) The definition of indecomposability given by Guckenheimer &
Holmes is weaker than ours in that they require points to be connected by (ε, 1)-
pseudo orbits, ε > 0.
(2) It follows from (4) that ω(x) and α(x) are always indecomposable.

Definition 2.6. A φ-invariant subset S ⊂ Σ is recurrent if there is an x ∈ S such
that ω(x) = α(x) = S.

Remarks 2.7. (1) A recurrent subset of Σ is always connected and compact.
(2) Obviously, if S is recurrent, then S is topologically transitive. Conversely, if
there exists an x ∈ S such that ω(x) = S, then there is a residual subset of S

consisting of recurrent points (see, for example, Mañé [34]).
(3) If there exists x ∈ S such that S = α(x) ∪ ω(x) and x ∈ α(x) ∩ ω(x), then S

is recurrent.

If S is an invariant subset of Σ , we define

R(S) = {x ∈ S | x ∈ ω(x) ∩ α(x)}.
We call R(S) the set of recurrent points (of S).

Remarks 2.8. (1) Even if S is closed, R(S) may not be a closed subset of S. In
the literature, R(S) is often defined to be the closure of the set of recurrent points.
In our applications we shall primarily be interested in R(Σ) and as part of our
regularity hypotheses, we shall require that R(Σ) is closed.
(2) If S = R(S), then S is a union of recurrent sets – S = ∪x∈Sα(x) ∩ ω(x).

Lemma 2.9. Suppose that X is a closed invariant connected subset of Σ and that
X is a union of recurrent sets. Then X is indecomposable.

Proof. Suppose that X = ∪i∈IXi , where the Xi are recurrent sets. If x, y ∈ X and
ε, T > 0, we may choose {x = x0, x1, . . . , xn} ⊂ X such that ρ(xi, xi+1) < 1

2ε,
0 5 i < n. Since recurrent sets are indecomposable (Remarks 2.5(2)), we have
xi ∼ xi . Hence there is an ( 1

2ε, T )-pseudo orbit Oi joining xi to xi , 0 5 i < n.
Concatenate the pseudo orbitsO0, . . . , On−1 to obtain a (ε, T )-pseudo orbit joining
x to y. ut

2.2. Heteroclinic Cycles

Before we give our definition of a heteroclinic network, we briefly review the
definition and basic properties of a heteroclinic cycle. We start by giving an intrinsic
definition of a heteroclinic cycle (that is, without reference to the phase space in
which it may be embedded). Suppose that φt has equilibria

A = {p0, . . . , pk−1, pk = p0}.



112 P. Ashwin & M. Field

Fig. 1. Sketch of a flow on a Möbius band that is a heteroclinic cycle from α to β and back.
Observe that the closure of the set of connections from α to β contains the single connection
from β to α.

Definition 2.10 (cf. Krupa & Melbourne [32, Definition 2.1]). We say that Σ is
a heteroclinic cycle connecting the equilibria A if for all x ∈ Σ there is a j with
0 5 j < k such that either x = pj , or

α(x) = pj and ω(x) = pj+1.

Remarks 2.11. (1) According to Definition 2.10 there can be infinitely many con-
nections between adjacent equilibria pj , pj+1 of the cycle. (This is also possible
with Krupa & Melbourne’s definition.)
(2) It is possible to construct examples for which the closure of the set of all connec-
tions between just one pair of adjacent equilibria is equal to all of Σ . For example,
see Figure 1.

Example 2.12. One of the simplest (and best known) examples of a heteroclinic
cycle that occurs in equivariant dynamics is the cycle described by Guckenheimer
& Holmes [23] (see Figure 3(b)). In this case, Σ is one-dimensional and consists
of three equilibria connected by three trajectories. Since Σ is a heteroclinic cycle
of a ∆3 o Z3-equivariant vector field on R3, it follows by equivariance that γΣ is
also a heteroclinic cycle for all γ ∈ ∆3 o Z3 (see also [20, §4.2]).

There are extensions of Definition 2.10 to allow for heteroclinic cycles con-
necting limit cycles or even chaotic sets (see [36, 20]). We describe one such gen-
eralization formulated in terms of stable and unstable sets.

If A ⊂ Σ is a compact flow-invariant set, we define the stable and unstable sets
of A by

W u(A) = {y ∈ Σ | lim
t→−∞ ρ(φt (y), A) = 0},

W s(A) = {y ∈ Σ | lim
t→∞ ρ(φt (y), A) = 0}.

Obviously, W u(A), W s(A) are flow-invariant subsets ofΣ and W u(A), W s(A)

⊃ A. Observe that ω(x) ⊂ A if and only if x ∈W s(A). There is a similar relation
between α(x) and W u(A).

Suppose that N = {Ni | i = 0, . . . , k − 1} is a finite set of mutually disjoint
compact flow-invariant subsets of Σ . For notational convenience, we define Nk =
N0.
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Definition 2.13. We say that Σ is a heteroclinic cycle with node set N if

(a) W u(Ni) ∩W s(Nj ) |= ∅ if and only if j = i + 1 or j = k, i = 0, and
(b) ∪iW u(Ni) = ∪iW s(Ni) = Σ .

Remarks 2.14. (1) If N consists of equilibria, then Definition 2.13 is equivalent
to Definition 2.10.
(2) Although we have connections between nodes of the cycle, there may be few,
if any, connections between proper invariant subsets of nodes.

It is worthwhile singling out a class of particularly well behaved heteroclinic
cycles, also called closed cycles in [4].

Definition 2.15. We say that Σ is a regular heteroclinic cycle if W u(Nj )∪{Nj+1}
is closed, j = 0.

Remarks 2.16. (1) If Σ is regular, then the behavior described in Remarks 2.11(2)
does not occur. For example, the Guckenheimer-Holmes cycle is regular.
(2) An equivalent definition of regularity is to require that {Nj } ∪W s(Nj+1) is
closed, j = 0.
(3) If the stable (or unstable) sets of the nodes are all one-dimensional, then Σ is
regular.

A characteristic feature of a heteroclinic cycle is that the asymptotic dynamics
of points within the cycle is supported on the nodes of the cycle. That is, for all
x ∈ Σ , we have

ω(x) ∪ α(x) ⊂ ∪iNi.

In the literature, there have been several attempts to extend the concept of a
heteroclinic cyclic to allow for more complicated connections between equilibria
or other invariant sets (see, for example, [31], [16, §15], [20], [4]). The resulting
constructions are typically referred to as ‘heteroclinic networks’ or ‘heteroclinic
complexes’.

In the next section, we present a definition of a heteroclinic network that gen-
eralizes these definitions. Roughly speaking, we require that asymptotic dynamics
on the network is supported on the nodes of the network. The nodes may, for exam-
ple, consist of equilibria or more generally compact topologically transitive sets.
Our definition includes the examples of ‘cycling chaos’ found in [20, 12, 1] but
not the ‘Shilnikov’ network discussed in [20, Appendix]. It also includes the type
of cycling chaos discussed in [5] where there are connections to fixed points con-
tained within chaotic attractors. Although the dynamics on the cycle is relatively
simple, we emphasize that the dynamics in a neighborhood of an embedded cycle
is typically rich and complex.

2.3. Intrinsic Definition of a Heteroclinic Network

We define
C(Σ) = Σ \ R(Σ).

In the sequel, we refer to C(Σ) as the set of connections of Σ .
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Lemma 2.17. If X is a compact invariant subset of Σ , then X ∩ R(Σ) |= ∅.
Proof. Since R(X) = ∪x∈Xα(x)∩ω(x) ⊂ ∪x∈Σα(x)∩ω(x) = R(Σ), it follows
that R(X) ⊂ R(Σ) ∩ X. Since X is compact and invariant, R(X) |= ∅ (see [30,
Chapter 3]). ut
Definition 2.18. We say that (Σ, φ) has a finite nodal set if we can write R(Σ) as
a finite union of disjoint, compact, connected flow-invariant subsets. The set N of
such subsets is referred to as the nodal set of (Σ, φ). Elements of N are referred
to as the nodes.

Remarks 2.19. (1) If (Σ, φ) admits a finite nodal set, then necessarily R(Σ) is
closed and C(Σ) is open. Moreover, if it is finite then the nodal set is unique (up
to re-ordering).
(2) Since a node is connected and is a union of recurrent sets, it follows from
Lemma 2.9 that nodes are indecomposable.

Examples 2.20. (1) Suppose that Σ is a heteroclinic cycle between the equilibria
p0, . . . , pk = p0. Then Σ has finite nodal set N = {p0, . . . , pk−1}.
(2) Suppose that Γ is a non-finite connected compact Lie group acting continuously
on Σ and φ is Γ -equivariant. Suppose that (Σ, φ) has nodal set N = {Ni | 0 5
i 5 k − 1}. It follows by the Γ -equivariance of φ and the connectedness of Γ that
each Ni is Γ -invariant. Let φ̃t denote the flow induced by φt on the orbit space
Σ̃ = Σ/Γ . Then ˜N = {Ni/Γ | 0 5 i 5 k − 1} is a finite nodal set for (Σ̃, φ̃).
In this context, it is natural to assume that each orbit space Ni/Γ is recurrent for φ̃.
This would be the situation, for example, if the sets Ni were relative equilibria. In
particular, Σ is a heteroclinic cycle between relative equilibria N0, . . . , Nk = N0 if
and only if Σ̃ is a heteroclinic cycle between equilibria N0/Γ, . . . , Nk/Γ = N0/Γ .

Suppose that X is a compact subset of Σ . Define

λ+(X) = ∪x∈Xω(x),

λ−(X) = ∪x∈Xα(x),

λ1(X) = λ(X) = λ−(X) ∪ λ+(X).

Remark 2.21. If X is closed but not finite, neither ∪x∈Xω(x) nor ∪x∈Xα(x) need
be closed.

For n > 1 we define λn(X) = λ(λn−1(X))) inductively. Taking X = Σ , we
have the sequence of inclusions

Σ = λ0(Σ) ⊇ λ1(Σ) ⊇ · · · ⊇ λn(Σ) ⊇ · · · .
Set Σn = λn(Σ), n = 0. We call {Σ0, Σ1, . . . } the asymptotic filtration of (Σ, φ).
Obviously, Σn ⊃ R(Σ), n = 0. Moreover, since Σn is a compact flow-invariant
set, each connected component of Σn has non-empty intersection with R(Σ).
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Definition 2.22. We say that (Σ, φ) has depth N if

(a) ΣN = R(Σ).
(b) Σn ) R(Σ), n < N .

Remarks 2.23. (1) If depth(Σ) = N , then Σn = R(Σ), n = N . In this case, we
regard {Σ0, . . . , ΣN } as the asymptotic filtration.
(2) depth(Σ) = 0 if and only if R(Σ) = Σ .

Example 2.24. Let Σ be a heteroclinic cycle connecting equilibria p0, . . . , pk =
p0. Then depth(Σ) = 1 and the asymptotic filtration of Σ is given by Σ0 = Σ ,
i.e., the whole cycle, and Σ1 = {p0, . . . , pk−1}, the set of equilibria. For example,
if Σ is the Guckenheimer-Holmes cycle, then Σ1 consists of three equilibria.

Lemma 2.25. Suppose that depth(Σ) = N and that X is a compact connected
invariant subset of Σ . There exists a unique n, 0 5 n 5 N , and a connected
component Σ0

n of Σn such that

(a) X ⊂ Σ0
n .

(b) X |⊂ Σn \Σn+1.

Proof. Obviously there exists a largest n 5 N such that X ⊂ Σn. Since X is
connected, X is a subset of a unique connected component Σ0

n of Σn. If X ⊂ Σn,
then λ(X) ⊂ Σn+1. Since X ⊃ λ(X), it follows that X |⊂ Σn \Σn+1. ut
Definition 2.26. We say that (Σ, φ) is a heteroclinic network if

(a) Σ is indecomposable.
(b) Σ has a finite nodal set.
(c) Σ has finite depth.

Remarks 2.27. (1) If depth(Σ) > 0, or equivalently if the set of connections C(Σ)

is non-empty, we say that the heteroclinic network is non-trivial; otherwise we say
the network is trivial.
(2) Since each connected component of Σn contains at least one node, it follows
that Σn has finitely many connected components, n > 0.

Definition 2.28. If Σ is a heteroclinic network and R(Σ) is a finite set of equilibria,
then we say Σ is a heteroclinic network between equilibria in R(Σ).

Lemma 2.29. Suppose that Σ is a heteroclinic network between finitely many equi-
libria and that depth(Σ) = 1. Then Σ is a (possibly infinite) union of heteroclinic
cycles.

Proof. We are given that depth(Σ) = 1 and R(Σ) is a finite set of equilibria.
Hence, if x ∈ C(Σ), we can find p, q ∈ R(Σ) such that α(x) = p, ω(x) = q.
Define X1 to consist of the union of W s(p) and those equilibria which are the
α-limit points of trajectories in W s(p). Iterating in the obvious way, we obtain
an increasing sequence of subsets (Xn) of Σ . Since there are only finitely many
equilibria, it follows that there exists N = 1 such that Xn = XN , n = N . If
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XN = Σ , we are done since then q ∈ XN and so there is a sequence of connections
of distinct equilibria joining q to p. The required cycle is obtained by adding the
connection from p to q. We assert that XN is a closed connected flow-invariant
subset of Σ . Under this assertion, it follows that XN = Σ , since if XN |= Σ ,
then Σ cannot be indecomposable (XN is a repellor). To prove the assertion, let
z ∈ XN \R(Σ). Necessarily, the trajectory through z must also lie in the closure of
XN . But this implies that λ(z) ⊂ XN (otherwise depth(Σ) > 1). Hence z ∈ XN .
ut

Since a heteroclinic network has an associated asymptotic filtration, it is natural
to ask whether each component of the filtration has the structure of a heteroclinic
network.

Theorem 2.30. Let (Σ, φ) be a heteroclinic network of depth N . For N = n > 0,
Σn is a finite union of heteroclinic networks each with depth less than or equal to
N − n.

Proof. We use induction on N . If N = 1, the result is trivial since λ(Σ) is a finite
union of trivial heteroclinic networks. Suppose that the result is proved for N−1 and
that depth(Σ) = N . Recall that λ(Σ) ⊇ R(Σ) and that each connected component
of λ(Σ) intersects R(Σ). Since R(Σ) has finitely many connected components,
we can conclude that λ(Σ) has finitely many connected components. Therefore
we restrict our attention to one connected component Λ of λ(Σ). Observe that if a
connected component of R(Σ) intersects Λ, then it is contained within Λ and so
R(Λ) has a nodal set that is a union of connected components of R(Σ). Moreover,
depth(Λ) < N , and so it only remains to prove that Λ is indecomposable.

If x ∈ Λ, there exist sequences {xn} ⊂ Λ and {yn} ⊂ Σ such that xn→x

and xn ∈ λ(yn), n = 0. Without loss of generality we assume that xn ∈ ω(yn),
n = 0. Since ω(yn) is connected, it follows that ω(yn) ⊂ Λ, n = 0. But ω(yn) is
indecomposable and so xn ∼ xn on ω(yn) for all n = 0. Hence xn ∼ xn on Λ and
so, letting n→∞, x ∼ x. ut
Remark 2.31. Obviously, there are other possible ways of defining the ‘asymptotic
filtration’. For example, we could define the filtration by taking Σi to be the non-
wandering set of φ|Σi−1 . This gives a nested sequence Σ0 ⊇ Σ1 ⊇ · · · that in the
transfinite limit defines the Birkhoff center of the system (see [30, pp. 129–130]). If
we assume finite depth, the Birkhoff center corresponds to the nodal set. However,
it is possible to construct examples for which Σi is not indecomposable and so
Theorem 2.30 fails (for example, see [11, §6.4]).

Definition 2.32. We say that a heteroclinic network of depth N is regular if all
connected components in Σn, 0 5 n < N , which are of depth 1 are finite unions
of regular heteroclinic cycles.

Remark 2.33. In the case of a regular heteroclinic cycle, one can represent the dy-
namics as a directed graph on vertices that represent the equilibria. For heteroclinic
networks with depth greater than 1, this is not possible since there is an x ∈ Σ

whose limits are not contained within R(Σ). For networks with depth 1, there is a
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Fig. 2. The Chawanya heteroclinic network; a network with depth equal to 2.

graphical representation of the network, although this can be misleading because
in principle the set of connections between one pair of equilibria may accumulate
on connections between totally unrelated equilibria. This problem is related to our
definition of regularity for heteroclinic cycles. See also an example of Chossat,
Guyard & Lauterbach [9].

Example 2.34. An example due to Chawanya [7, 8] of a regular (and robust) hete-
roclinic network of depth 2 is shown in Figure 2. This network contains a connection
between an equilibrium and a heteroclinic cycle. More precisely, if we let Σ ′ denote
the heteroclinic cycle a→b→c→d→a, then ω(y) = Σ ′ for all points y |= h with
α(y) = {h}. Since the ω-limit set of any point in Σ ′ lies in {a, b, c, d}, it follows that
the network has depth 2. The associated asymptotic filtration is given by Σ0 = Σ ,
Σ1 = Σ ′ ∪ {e, f, g, h}, Σ2 = {a, b, . . . , h}. We remark that in Homburg [29]
there is a (non-robust) example of a network where there is a connection from an
equilibrium to a heteroclinic cycle.

In the next example we show how to construct a (regular) network of arbitrary
depth.

Example 2.35. Let N = 1. We construct a smooth flow φt on the torus TN =
RN/(2πZ)N such that (TN, φ) is a heteroclinic network of depth N . Define φt to
be the flow of the system

θ̇j = (1− cos θj )
2 + α(1− cos θj+1), 1 5 j < N,

θ̇N = (1− cos θN)2,

where α > 0 is a constant. Regard Tj as embedded in Tj+1 by the inclusion
(θ1, . . . , θj ) 7→ (θ1, . . . , θj , 0), and T0 ⊂ TN as the point θ1 = . . . = θN = 0.

We assert that if x? ∈ TN \TN−1, then the closure of the trajectory through x?

has depth N and λ(x?) ⊂ TN−1 has depth N − 1. Given this assertion, the result
follows easily.

The fact that for any x? ∈ TN \ TN−1 we have [φt (x
?)]N → 0 as t → ∞

and [φt (x
?)]N−1 winds arbitrarily many times around [0, 2π ] as long as θN(t) |= 0

proves the assertion for N = 2. Suppose the result is proved for all 2 5 n 5 N − 1
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(a) Kirk–Silber network (b) Guckenheimer–Holmes network

Fig. 3. Examples of heteroclinic networks.

and pick any x? ∈ TN \ TN−1. It follows from the equation for θ ′N , that θN(t)→0
as t→±∞. Hence λ(x?) ⊂ TN−1. Since θN−1(t) visits all values infinitely often,
given any 0 < ξ < 2π there must be (by compactness) an accumulation point of the
trajectory having θN−1 = ξ . Therefore there exists a y? ∈ λ(x?)∩ (TN−1 \TN−2)

and so φy?(R) ⊂ λ(x?). By the inductive hypothesis, depth(φy?(R)) = N − 1.
Since φx?(R) is indecomposable, it follows that depth(φx?(R)) = N .

Heteroclinic networks often occur robustly in systems with symmetry and we
give some simple examples below of heteroclinic networks that occur in equivariant
dynamics. All of these examples have depth 1.

Examples 2.36. In Figure 3(a), we show the one-dimensional heteroclinic network
studied by Kirk & Silber [31]. The network contains four equilibria A, B, C, D

and three heteroclinic cycles: A→B→D→A, A→C→D→A and A→B→
C→D→A.

In Figure 3(b) we show the ∆3oZ3-orbit of the Guckenheimer & Holmes het-
eroclinic cycle. Note that the network contains more cycles than just the translates
of the original cycle by elements of ∆3 oZ3. For example, a→ e→ b→ c→ d→
f → a is a heteroclinic cycle.

In Figure 4 we show an example of an irregular two-dimensional heteroclinic
network. This example occurs in a ∆5 oZ5-equivariant vector field on R5 [16, §15].
If we let Z5 act by mapping a to b, b to c, etc., then the network is the Z5-image
of the triangle 4abd (shaded in the figure). Just as in the previous examples, the
ω-limit of any point in the network is one of the equilibria a, . . . , e and so the
network has depth one.

We conclude this section with a technical lemma that gives an effective and
simple way of proving the indecomposability of a heteroclinic network. We make
use of this result in Section 5.
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Fig. 4. A two-dimensional, depth-1 network.

Lemma 2.37. Suppose that Φ is a continuous flow on a compact connected metric
space Σ such that λ(Σ) ⊂ Σ ′, where Σ ′ is compact and indecomposable. Then
Σ is indecomposable.

Proof. Suppose x ∈ Σ . Either x ∈ Σ ′, and so x is chain recurrent, or x |∈ Σ ′. In
the latter case, since λ(Σ) ⊂ Σ ′ we pick any two points y ∈ ω(x) and z ∈ α(x).
Given any ε, T > 0, we can find (ε, T )-pseudo orbits from z to x and from x to y

and so z ∼ x and x ∼ y. Since Σ ′ is indecomposable, we have y ∼ z and so, by
transitivity, x ∼ x. ut

3. Dynamics and Asymptotics Near Embedded Heteroclinic Networks

Although the dynamics on a heteroclinic network are relatively simple to quan-
tify, the dynamics that can occur in a neighborhood of an embedded network can
be very subtle and complex. For example, the Chawanya network arose out of a
study of a Lotka-Volterra type cubic five-dimensional system of differential equa-
tions restricted to a four-dimensional hyperplane. Careful numerical investigations
by Chawanya indicate that there can be parameter values for which there are
infinitely many attractors in a neighborhood of the cycle [7, 8].

For the remainder of this section, we suppose that F is a smooth vector field
on Rn with flow Φt . Given x, y ∈ Rn, let d(x, y) = ‖x − y‖ denote Euclidean
distance, and let d(x, X) = infy∈Xd(x, y). If X is a compact Φ-invariant subset
of Rn, we define the stable and unstable sets of X by

Wu(X) = {y ∈ Rn | lim
t→−∞ d(Φt (y), X) = 0},

Ws(X) = {y ∈ Rn | lim
t→∞ d(Φt (y), X) = 0}.

If X has hyperbolic structure, then W s(X), W u(X) are fibered by smooth man-
ifolds (see [30, Chapter 6]). In particular, if X is a hyperbolic equilibrium or limit
cycle, then W s(X) and W u(X) are smoothly immersed manifolds. If X is not hy-
perbolic, then W s(X), W u(X) typically do not have smooth structure.
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On occasions, we refer to W s(X) as the basin of attraction of X. We say that
X is a (Milnor) attractor [38] if

`(W s(X)) > 0,

where `(·) is Lebesgue measure on Rn.
Now suppose that Σ is a compact Φ-invariant subset of Rn and set Φt |Σ = φt .

For the remainder of this section, we assume that (Σ, φ) is a heteroclinic network
with node set N = {N1, . . . , Nk}.

3.1. Recurrence and Attraction Near Embedded Networks

Although Σ is indecomposable (in particular, chain recurrent), Σ is not recur-
rent unless depth(Σ) = 0. However, if Σ is embedded in Rn, it is natural to ask
about the ω-limit sets of points in the basin of attraction of Σ . In particular, under
what circumstances can we find points x ∈ W s(Σ) such that ω(x) ⊇ R(Σ)? We
remark that the problem of characterizing those (Σ, φ) which are representable as
ω-limit sets has been considered by Bowen [6] in the context of discrete continuous
dynamical systems defined on (possibly disconnected) spaces.

Example 3.1. The Guckenheimer-Holmes network Σ arises as the heteroclinic net-
work of a ∆3 oZ3-equivariant cubic vector field F on R3. We recall that F depends
on three real parameters (a, b, c). It may be shown that there is a non-empty open
set Π of parameters for which we may represent Σ as a subset of a globally at-
tracting flow-invariant 2-sphere S ⊂ R3. Moreover, we may choose Π so that Σ is
an asymptotically stable attractor (we refer to [20, §6.2] for details). Henceforth,
assume (a, b, c) ∈ Π . We may represent the Guckenheimer-Holmes heteroclinic
cycle Σ0 as the intersection of Σ with the positive octant of S. Since the coordinate
planes xi = 0 are flow-invariant subspaces, it follows that if x = (x0, x1, x2) ∈ R3,
then ω(x) is a subset of any octant containing x. Further, provided that |x0|, |x1| and
|x2| are not all equal and are non-zero, the octant is unique and there exists a unique
γ ∈ ∆3 such that ω(x) = γΣ0. Hence, although the Guckenheimer-Holmes net-
work is chain recurrent, nearby trajectories do not visit all of the nodes, even if the
network is asymptotically stable. Of course, if we ignore the symmetry, it is an easy
exercise to embed (Σ, φ) in a flow Φ̃ on R3 so that Σ is an asymptotically stable
attractor for Φ̃ and there exist points x ∈ R3 such that ω(x) = Σ . Indeed, we may
require that Φ̃ be equal to the original equivariant flow near R(Σ).

We now give a number of conditions on embedded heteroclinic networks that
strengthen the transitivity condition and avoid the pathology described in the pre-
vious example. Note however that the presence of codimension-one invariant sub-
spaces may force the previous behavior to be typical.

Condition A1. There exists an x ∈ Rn such that ω(x) = Σ .

Condition A2. There exists a positive Lebesgue measure set of x ∈ Rn such that
ω(x) = Σ .

Condition A3. There exists an open set of x ∈ Rn such that ω(x) = Σ .
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Conditions B1–B3. The same as conditions (A1)–(A3) except that ω(x) ⊇ R(Σ).

Conditions C1–C3. The same as conditions (A1)–(A3) except that ω(x)∩N |= ∅
for each N ∈N .

We have the following diagram of implications between the conditions.

A3⇒ A2 ⇒ A1
⇓ ⇓ ⇓
B3⇒ B2⇒ B1
⇓ ⇓ ⇓
C3⇒ C2⇒ C1

In particular, every condition implies (C1). If Σ is a one-dimensional heteroclinic
cycle, then conditions (An) and (Bn) are equivalent. For higher-dimensional cycles,
these conditions are not equivalent. For example, Ashwin & Chossat [4] show
there are cycles where (B3) holds but (A3) fails. An example of Ashwin & Ruck-
lidge [5] shows that the (Cn) conditions generally do not give much information
about dynamics near the network.

For a given embedding of a heteroclinic network, it is generally nontrivial
to verify condition (B1) (or even (C1)). Nevertheless, we conjecture that in the
absence of codimension-one invariant subspaces for the flow, it is possible to satisfy
condition (B2) generically. (Note that if the network has at least two nodes, we can
never satisfy any of the conditions with trajectories through points of Σ .)

Remarks 3.2. (1) Condition (B1) is the weakest condition we can envisage placing
on an embedded heteroclinic network that excludes the pathology described in Ex-
ample 3.1. Thus, the only subnetworks of the Guckenheimer-Holmes network that
satisfy (B1) are the group translates of the Guckenheimer-Holmes cycle.
(2) In practice, one would hope that an embedded ‘attracting’ network satisfies
condition (B2).
(3) Conditions (B2) and (B3) suggest the possibility of defining a symbolic dy-
namics associated to the cycle. Symbol sequences would be defined in terms of
visitation of nodes.

Examples 3.3. (1) An illustrative example is provided by the 4-dimensional system
studied by Guckenheimer & Worfolk [25] (see also Worfolk [43]). Gucken-
heimer & Worfolk study a cubic vector field on R4 with symmetry group Γ equal
to the determinant one subgroup of ∆4 oZ4. Just as for the Guckenheimer-Holmes
network, there is an open region of parameter space for which this system has an
asymptotically stable one-dimensional heteroclinic network Σ and this network
may be represented as a Γ -invariant subset of the 3-sphere in R4. Let Σ0 denote
the intersection of Σ with the positive sector R4+ ⊂ R4. Unlike the Guckenheimer-
Holmes network the coordinate hyperplanes xi = 0 are not flow-invariant and so
there is the possibility of trajectories which are asymptotic to Σ leaving the R4+
and having ω-limit equal to Σ . In this case, trajectories twist around the the one-
dimensional connections and repeatedly visit all the ‘octants’ of R4. While this
phenomenon has not yet been verified for the cubic form used by Guckenheimer
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& Worfolk, it can be shown that condition (A2) is satisfied for generic vector
fields near the cubic normal form.
(2) The example of Kirk & Silber [31], shown in Figure 3(a), gives an example
where none of the conditions (A1)–(B3) is satisfied. This is because of the pres-
ence of codimension-one invariant subspaces. Kirk & Silber show that points are
attracted to one of two possible subcycles.

3.2. Averaged Behavior Near Embedded Networks

Suppose that Σ is a heteroclinic network embedded in Rn and ω(x) ⊂ Σ for
some x ∈ Rn. If depth(Σ) > 0, this will have consequences on the behavior of
averages along the trajectory of x; in particular, any intersection of ω(x) with the
nodes causes ‘slowing-down’ behavior typical of heteroclinic orbits. We now state
this precisely.

For any x with ω(x) ⊆ Σ , define �(x) to be the set of accumulation points of
the set of measures

1

T

∫ T

t=0
δΦt (x) dt, (T ∈ R),

as T →∞ in the weak dual topology on the space of continuous functions on Σ .
Measures in �(x) are Φt -invariant and so we may define the essential ω-limit

set of x (see also [42, 2])

ωess(x) = ∪µ∈�(x)supp(µ).

The compactness of Σ implies that the set of invariant probability measures is
also compact and so ωess(x) |= ∅. Obviously, ω(x) ⊇ ωess(x) and ωess(x) is flow
invariant.

Remark 3.4. The set ωess(x) can be thought of as the set of all limit points that
contribute asymptotically to averages of observables along the trajectory of x.

Our main result about ωess(x) is that it is disjoint from the set C(Σ) of connec-
tions. This follows directly from [30, Theorem 4.1.18(1)]

Theorem 3.5. Let (Σ, φ) be a heteroclinic network embedded in Rn. Suppose that
x ∈ Rn and that ω(x) ⊆ Σ . Then

ωess(x) ⊆ R(Σ).

Remark 3.6. (1) For particular examples one can say more. In particular, if ωess(x)

is not a single ergodic measure, then the trajectory throughx behaves non-ergodically.
That is, averages of observables along the orbit do not converge but subsequences
can be found that converge to a continuum of values. This has been shown for
specific heteroclinic cycles [21, 42].
(2) It follows from [30, Theorem 4.1.18] that R(Σ) supports all flow-invariant
probability measures on Σ .
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It is possible for a sub-network of an embedded heteroclinic network to be
a Milnor attractor [38]. In this case, (A2) can hold for the sub-network but (A3)
cannot. This can occur, for example, if the sub-network is essentially asymptotically
stable in the terminology of Melbourne [37]. Numerical results of Chawanya
[7, 8] suggest that close to such invariant sets, there may be a countable infinity of
stable periodic orbits accumulating on the set.

4. Regularity and Stability of Embedded Heteroclinic Networks

It is well-known that heteroclinic cycles can occur robustly in systems that pos-
sess families of invariant subspaces. We recall that there are several natural classes
of dynamical system of this type. Differential equation models for population dy-
namics often have invariant subspaces (extinction is a conserved quantity) and we
refer to the article by Hofbauer [27] and book by Hofbauer & Sigmund [28]
for examples of robust heteroclinic cycles in population models. Another impor-
tant and widely studied class of examples are symmetrically coupled systems of
identical cells or oscillators (see, for example, [13, 20]). More generally, if Γ is a
Lie group, (V , Γ ) is a Γ -representation, and H ⊂ Γ , then the fixed point space
V H = {v ∈ V | H(v) = {v}} is an invariant linear subspace for all Γ -equivariant
vector fields on V . If Γ is finite or compact Abelian, then V has finitely many
fixed-point subspaces. If Γ is compact non-Abelian, then V typically has infinitely
many invariant subspaces (for example, take the standard action of SO(3) on R3).

In this section, we restrict our attention to Γ -equivariant vector fields on a finite
dimensional representation (V , Γ ), Γ finite. We do this mainly to simplify our
presentation. All our results and definitions extend straightforwardly to population
models defined on Rn+ or indeed to any class of vector fields which preserve a
sufficiently regular filtration of the phase space.

The first stability result on heteroclinic cycles was obtained by dos Reis [40].
He proved a result characterizing structural stability for equivariant vector fields
on compact 2-manifolds. In particular, he showed that if certain conditions on
eigenvalues hold, then cycles like the Guckenheimer-Holmes cycle are (locally)
structurally stable. Unfortunately, it is unrealistic to expect that local structural
stability holds, even generically, for heteroclinic networks of depth greater than 1,
even if the nodes are structurally stable. In the examples below, we sketch two of
the ways in which structural stability can fail in networks of depth greater than one.

Examples 4.1. (1) Let Σ ⊂ R4 denote the one-dimensional heteroclinic network
considered by Guckenheimer & Worfolk [25]. This network has depth 1 and is
the group orbit of the base cycle Σ ′ = R4+ ∩Σ . For an open region of parameters,
Σ is attracting and contained in an attracting flow-invariant 3-sphere S ⊂ R4. In
this example there are no codimension-1 reflection planes and so trajectories typi-
cally twist around the one-dimensional connections between equilibria and appear
to visit randomly all of the cycles in the group orbit of Σ ′. Although the network is
robust under equivariant perturbation, the flow is never locally structurally stable
in a neighborhood of the network in S. We present a brief sketch of an argument
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showing the failure of local structural stability. We associate to each forward tra-
jectory asymptotic to Σ ′ a symbol sequence identifying the ordered sequence of
edges in Σ ′ visited by the trajectory (we ignore the measure-zero set of trajectories
which are asymptotic to one of the equilibria in the network). The symbol sequence
of a trajectory is then a conjugacy invariant of the trajectory (we may assume the
conjugacy is C0-close to the identity map). By making arbitrarily small perturba-
tions supported near a single edge we can change the order of symbol sequences
and hence structural stability fails.
(2) It is possible to modify the Guckenheimer-Holmes cycle and obtain a cycle
Σ ⊂ R6 between three limit cycles which has two-dimensional connections and
each pair of cycles lying in a four-dimensional fixed point space. We may further
require that Σ be attracting and that Σ be contained in an attracting flow-invariant
5-sphere S. In this case, the flow is not structurally stable in a neighborhood of
Σ ⊂ S because of the appearance of moduli of stability [39] such as ratios of
eigenvalues of linearizations near fixed points. In fact the codimension of the C0-
equivalence class of the flow is infinite.

In spite of the limited prospects of obtaining satisfactory conjugacy or structural
stability results for networks, or even higher-dimensional cycles, there are still good
stability questions one can ask. In particular, we would like to have some stability
in the asymptotics and symmetry properties of the network. This stability should
be related to the structure of the invariant subspaces of our phase space. Our aim
in this section is to formulate a verifiable concept of robustness for heteroclinic
networks in a symmetric system.

4.1. Orbit Strata

Henceforth, we assume thatΓ is a finite group and (V , Γ ) is a finite-dimensional
real Γ -representation.

If J ⊂ Γ , we let V J denote the fixed point set of J acting on V . Obviously, V J

is a linear subspace of V and is equal to the fixed-point subspace of the subgroup
of Γ generated by J . It is known (see below) that there is an open and dense subset
U of V J such that all points in U have the same isotropy, say H , and

V J = V H .

It follows that the set of invariant linear subspaces of V is parametrized by the set
I = I (V , Γ ) of isotropy groups for the action of Γ on V . Let V (H) denote the
set of points in V H with isotropy group equal to H . Then

V (H) = V H \
⋃

J)H,J∈I
V J ,

and so V (H) is open and dense in V H .
Let 〈H 〉 denote the conjugacy class of H in Γ and define

V 〈H 〉 =
⋃

J∈〈H 〉
V (J ).
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The collection {V 〈H 〉 | H ∈ I (V, Γ )} defines the stratification of V by iso-
tropy type or the orbit stratification of V . We call connected components of V 〈H 〉
orbit strata. Note that V 〈H 〉 consists of at least |Γ/H | orbit strata. We let S (V , Γ ),
or just S , denote the set of all orbit strata. If X is a smooth Γ -equivariant vector
field on V , then the orbit strata are all invariant by the flow of X.

Let S be a stratum of the orbit stratification and let ∂S denote the frontier of S.
Using the linearity of the Γ -action, we can show that if H ∈ I , then

∂V 〈H 〉 ∩ V 〈J 〉 |= ∅ ⇐⇒ J ) H and ∂V 〈H 〉 ⊃ V 〈J 〉.

Example 4.2. The symmetry group associated to the Guckenheimer-Holmes cycle
is the semi-direct product ∆3 o Z3, and ∆3 o Z3 acts linearly on R3. Define
connected subsets of R3 by V0 = {(0, 0, 0)}, V1 = {(x, 0, 0) | x > 0}, V2 =
{(x, x, x) | x > 0}, V3 = {(x, y, 0) | x, y > 0}, V4 = {(x, y, z) | x, y, z > 0} \
V2. The orbit stratification of R3 is given as the union of the ∆3 o Z3-orbits of
V0, . . . , V4. Thus, γVj is a connected orbit stratum for all γ ∈ ∆3 oZ3. All points
in ∆3 o Z3(Vj ) have the same isotropy type, and x, y ∈ R3 have the same isotropy
type if and only if x, y ∈ ∆3 o Z3(Vj ) for some (unique) j .

4.2. Relating the Asymptotic Filtration to the Orbit Stratification

Let Σ ⊂ V be a ‘robust’ heteroclinic network for a Γ -equivariant flow Φ on
V and suppose that depth(Σ) = N . Let x ∈ Σ and suppose that x lies in the orbit
stratum S ∈ S . Provided that x |∈ R(Σ), it is often the case that λ(x) ⊂ ∂S.
Indeed, the existence of a robust cycle between equilibria, implies that we have at
least one non-transverse saddle connection between equilibria. The only way these
can persist under equivariant perturbation is if at least some of the equilibria lie in
the frontier of the orbit strata containing the connections.

We restrict our attention to networks where we have the strongest relation
between the asymptotic filtration of the network to the orbit stratification of V .
It should be possible to weaken our requirements to allow for cycles like those
constructed by Matthews et al. [35] (see below).

Suppose that Σ has asymptotic filtration {Σ = Σ0, Σ1, . . . , ΣN }. Given j ∈
{0, . . . , N}, we recall that Σj can be written (uniquely) as a finite union Σj =
∪p(j)

i=1 Σij of heteroclinic networks, each of depth less than or equal to N − j .
Let A(Σ) denote the set of all subnetworks of Σ derived in this way from the
asymptotic filtration. Suppose that S ∈ A. Denote the asymptotic filtration of S

by {S0, . . . , SM}, where M = depth(S). For 0 5 k 5 M , let ρk(S) be the minimal
union of orbit strata such that

Sk \ Sk+1 ⊂ ρk(S).

Set F(S) = (ρ0(S), . . . , ρk−1(S)). We call F(S) the orbit flag of S.

Definition 4.3. Let Σ, Σ ′ be heteroclinic networks. We say that Σ, Σ ′ are iso-
morphic if there is a bijection ι : A(Σ)→A(Σ ′) such that for all S ∈ A(Σ),
F(S) = F(ι(S)).
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Definition 4.4. Let S ∈A(Σ). We say that S is symmetry adapted if

Sk+1 ⊂ ∂ρk(S), 0 5 k < depth(S).

If all the heteroclinic subnetworks in A(Σ) are symmetry adapted, we say that
Σ is symmetry adapted.

Example 4.5. The Guckenheimer-Holmes network is symmetry adapted as indeed
are all the edge cycles and networks described in [20, Chapter 6]. So also is the
Kirk-Silber network [31]. However, the robust heteroclinic cycle of Matthews
et al. [35] is not symmetry adapted as there are connections between equilibria
within a fixed orbit stratum. In other words, their cycle includes connections that
limit to equilibria with the same symmetry as the points on the connecting orbit.

4.3. Robustness of Networks

Definition 4.6. Let Σ be a symmetry adapted heteroclinic network for the Γ -
equivariant vector field X. We say that Σ is geometrically robust if for every open
Γ -invariant neighborhood U of Σ , we can find an open neighborhood U of X in
the C1-topology such every Y ∈U has a heteroclinic network ΣY ⊂ U such that
ΣY is symmetry adapted and A(Σ) is isomorphic to A(ΣY ).

Example 4.7. The Guckenheimer-Holmes network is geometrically robust as in-
deed are all the edge cycles and networks described in [20, Chapter 6]. So also is
the Kirk-Silber network [31].

5. A Coupled Cell System

We think of a cell as being a low-dimensional ordinary differential equation
that can be coupled to other cells. In this way we can build up a higher-dimensional
dynamical system with desired symmetries that can have specifiable properties such
as a heteroclinic network.

In particular, we consider a coupled-cell network consisting of nine cells, each
with one degree of freedom, coupled directionally such that the network has global
Z3 × Z3 symmetry. To simplify notation, we write Z3 × Z3 = Z(3, 3). We shall
assume that each of the cells has an independent internal Z2 symmetry. We may
think of this system as a coupling of three Guckenheimer-Holmes models [23] in
a ring. The symmetry group Γ of the system is ∆9 o Z(3, 3) or, equivalently, the
wreath-product Z2 o Z(3, 3) [13]. Some of the dynamical and bifurcation theoretic
consequences of wreath-product symmetries are discussed in [13] (see also the
works [16, 20] which treat similar groups in semi-direct rather than wreath-product
notation).

The phase space we work with is R9. We regard R9 as (R3)3 and denote points
in R9 as 3-tuples (x, y, z), where x = (x0, x1, x2), y = (y0, y1, y2) and z =
(z0, z1, z2).

Let σ be a generator of Z3 and define an action of Z3 on R3 by σ(x, y, z) =
(y, z, x). We let κ : R3→R3 be defined by κ(x, y, z) = (−x, y, z).
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The action of Γ on R9 is generated by

ρ1(x, y, z) = (σx, σy, σz),

ρ2(x, y, z) = (y, z, x),

κ0
x (x, y, z) = (κx, y, z).

Note that

Z3 × Z3 = 〈ρ1, ρ2〉,
and that Z3×Z3 is a transitive subgroup of S9. Consequently, in order to specify a
Γ -equivariant differential equation on R9 it suffices to write down one component
of the equation (see [16]).

In the sequel we use the following notational conventions. Let A = (a0, a1, a2),
B = (b0, b1, b2), . . . denote general points of R3. We let A0 denote a point
(0, a1, a2) of R3 with first coordinate zero. If x ∈ R3, A ∈ R3, we define

A(x2) = a0x
2
0 + a1x

2
1 + a2x

2
2 .

If X = (x, y, z) ∈ R9, we define ‖X‖2 = ‖x‖2 + ‖y‖2 + ‖z‖2, where ‖ ‖
denotes the Euclidean norm.

We consider two modelΓ -equivariant vector fields whose dynamics are uniquely
determined by their first component:

ẋ0 = x0(1− ‖X‖2 + A0(x
2)+ B(y2)+ C(z2)),(5)

ẋ0 = x0(1− ‖X‖2 + A0(x
2)+ B(y2)+ C(z2))+ x0(dx2

1x2
2 + ey2

0z2
0).(6)

Both vector fields consist of a general Γ -equivariant cubic polynomial. In (6),
fifth-order terms with (small) coefficients d and e have been added to the second
vector field in order to break a degeneracy of the third-order system; see [1]. The
coefficient of the radial term x0‖X‖2 is chosen to be−1 so that if ‖A0‖, ‖B‖, ‖C‖
are sufficiently small, then the conditions of the invariant-sphere theorem hold [15].
That is, near the origin of R9, the dynamics of both systems are forward asymptotic
to a flow-invariant 8-sphere, S ⊂ R9.

In fact, we will often discuss a system that has more symmetry. Let ρ3 ∈ S9 be
defined by

ρ3(x, y, z) = (σx, y, z),

where σ is a generator of Z3. Let H = 〈ρ1, ρ2, ρ3〉 and set Γ ? = ∆9 oH . In terms
of wreath products we have

Γ ? = (Z2 o Z3) o Z3.

The system (5) is Γ ?-equivariant if and only if B = (b, b, b) and C = (c, c, c),
for some b, c ∈ R.

We emphasize that all of the phenomena we describe below persist under per-
turbations with only ∆9 symmetry.
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5.1. Equilibria

In order to describe the equilibria of (6) it is easiest to work with the truncated
cubic system (5). It follows from [16, §§13, 14] that there is an open and dense
semialgebraic subset R of R8 such that if (A0, B, C) ∈R, then all equilibria of
(5) are hyperbolic. Consequently, for fixed (A0, B, C) ∈R, the equilibria of (6) are
hyperbolic for sufficiently small |d|, |e|. Moreover, the isotropy of the equilibria is
the same as in the truncated system. That is, the symmetry of equilibria is unchanged
if we perturb (6) by higher-order symmetric terms.

Using the results of [16, §§13, 14] enables us to give a useful ‘parametrization’
of the equilibria that occur for (A0, B, C) ∈ R. First, however, we need some
preliminaries. We define a fundamental domain for the action of ∆9:

R9+ = {(x0, . . . , z2) | x0, . . . , z2 = 0}.
Since ∆9 ⊂ Γ , it is clear that if X is an equilibrium of (5), then we can find δ ∈ ∆9
such that δX ∈ R9+. Consequently, to describe the set of equilibria of (5), it suffices
to find the equilibria lying in R9+. Since R9+ is Z(3, 3)-invariant for the flow of (5),
it follows that the action of Z(3, 3) restricts to an action on R9+.

Let E denote the Z(3, 3)-invariant subset of R9+ consisting of all non-zero
vectors V such that each component of V lies in {0,+1}. It is shown in [16] that
if X ∈ R9+ is a hyperbolic equilibrium of (5), then there exists a unique point
V ∈ E such that ΓX = ΓV (equivalently, Z(3, 3)X = Z(3, 3)V). If V ∈ E , then
V = (a, b, c), where a, b, c ∈ R3. In future, we just set V = abc. If a = (0, 0, 0),
we write a = 0. If a = (1, 0, 0), we set a = 1 and if a = (1, 1, 1), we set a = 3.
In the sequel, if X ∈ R9+ is an equilibrium, we usually set X = pa, where a is the
unique point in E such that ΓX = Γa.

As an easy application of the methods in [16] (see also [20]), we have

Lemma 5.1. An equilibrium X ∈ R9+ of (6), (5) has maximal isotropy type if and
only if X corresponds to a point on the Z(3, 3)-orbit of 100 or 111 or 300 or 333.
All other equilibria have submaximal isotropy type. The same result also holds if
equations are Γ ?-equivariant (with Z(3, 3) replaced by the subgroup of Γ ? leaving
R9+ invariant).

If V ∈ E is not maximal, (5) may have no equilibria with isotropy equal to
ΓV. In fact, corresponding to each submaximal V ∈ E it is possible to compute
explicit equations and inequalities that determine the closed subset of R8 for which
there are no equilibria with isotropy equal to ΓV. In practice, these computations,
although quite tractable, can be complicated (see [16, §14]). The following result
will suffice for our needs.

Lemma 5.2. There is a nonempty open subset D of R such that if (A0, B, C) ∈
D , then (5) has no equilibria with isotropy group equal to Γab0, where a, b range
over all 3-tuples for which Γab0 is submaximal.

Proof. Let us start by assuming that (5) is Γ ?-equivariant. Let R? ⊂ R4 be
the open and dense semialgebraic subset consisting of all A0, B = (b, b, b) and
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C = (c, c, c) for which (5) has only hyperbolic equilibria. Let D ? denote the
open subset of R? corresponding to which (5) has no equilibria with submaximal
isotropy equal to Γab0.

Straightforward computations show that a point (a1, a2, b, c) ∈R? lies in D ?

if and only if

a1a2 < 0,

bc < 0,

(3c − a1 − a2)b < 0,

(3c − a1 − a2)(3b − a1 − a2) < 0.

Hence D ? |= ∅. But now every point of D ? determines an interior point
of D . ut

5.2. Stabilities of the Equilibria p100 and p300

It is straightforward to compute the eigenvalues and eigenspaces of the lin-
earization of (5) at the equilibria p100 and p300. The eigenvalues at p100 may be
written as the 3-tuple

([−2, a2, a1], [c0, c1, c2], [b0, b1, b2]),(7)

where the eigenvalue−2 corresponds (as always) to the radial direction. The triples
[−2, a2, a1], [c0, c1, c2], and [b0, b1, b2] respectively correspond to eigenvalues
of the linearization in the x-hyperplane, y-hyperplane and z-hyperplane. (Each of
these subspaces is invariant by the flow of (5).) For every eigenvalue, the eigenvector
can be taken to be the unit vector along the corresponding coordinate axis.

The eigenvalues at p300 are given by the triple([
− 2,

a1 + a2 ± ı
√

3(a1 − a2)

a1 + a2 − 3

]
,

[
c0 + c1 + c2

3− (a1 + a2)

]
,

[
b0 + b1 + b2

3− (a1 + a2)

])
.(8)

The single eigenvalues associated to the y, and z-spaces occur with multiplicity
3. The eigenvalues in the x-space are exactly those that occur in the linearization
analysis of the Guckenheimer-Holmes cycle (see [16, §15] or [20, Chapter 6]).

5.3. The Invariant-Sphere Theorem

We recall some details on the invariant-sphere theorem. Suppose that X is a
smooth vector field on Rn of the form X(x) = x+Q(x), where Q is a homogeneous
cubic polynomial. If we define

m(Q) = inf{(Q(u), u) | u ∈ Rn, ‖u‖ = 1},
M(Q) = sup{(Q(u), u) | u ∈ Rn, ‖u‖ = 1},

then for all x ∈ Rn

m(Q)‖x‖4 5 (Q(x), x) 5 M(Q)‖x‖4.
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If M(Q) < 0, then (Q(x), x) < 0 for all x ∈ Rn, x |= 0. If this condition on
Q holds, we say that Q is contracting. It is shown in [20, Chapter 5] that if Q

is contracting, then there exists a topologically embedded flow-invariant (n − 1)-
sphere S for the flow of ẋ = X(x) such that ω(x) ⊂ S for all x ∈ Rn, x |= 0.
Moreover, the invariant sphere S is contained in the annulus A(r, R) = {x | r 5
‖x‖ 5 R}, where

r =
√
−1

M(Q)
, R =

√
−1

m(Q)
.

In general, S is not differentiably embedded.
For a ∈ R, define Qa(x) = Q(x) + a‖x‖2x, Xa = I + Qa . Obviously,

M(Qa) = M(Q)+ a, m(Qa) = m(Q)+ a. It follows by rescaling and the theory
of normal hyperbolic sets [26] that if we fix Q, N ∈ N, we can find aN ∈ R

such that if a 5 aN , then Qa is contracting and the corresponding invariant sphere
S = Sa is embedded as a CN -submanifold of Rn.

Remark 5.3. If a 5 aN , the invariant sphere Sa is contained in the annulus A(r, R),

where r =
√

−1
M(Q)+a

, R =
√

−1
m(Q)+a

. In particular, r→0, R/r→1 as a→−∞.

It follows from the previous remark that if we are given Q and N ∈ N, we can
rescale so that R < 1, for all a 5 aN .

Suppose that Z is a smooth vector field on Rn. Let ‖Z‖1 denote the uniform
C1-norm of Z restricted to the unit ball. As a straightforward consequence of the
theory of normally hyperbolic sets, we have the following differentiable version of
the invariant-sphere theorem.

Theorem 5.4 (cf. [15, Theorem 5.2]). Let N ∈ N and let Q be a homogeneous
cubic polynomial on Rn. We may choose aN ∈ R and δ > 0 such that if Z is
a smooth vector field on Rn satisfying Z(0) = 0, DZ(0) = 0, and ‖Z‖1 < δ,
then for a 5 aN the vector field Za(x) = x + Qa(x) + Z(x) has a unique CN

flow-invariant (n−1)-sphere S contained in the unit ball of Rn. Further, ω(x) ⊂ S

for all x ∈ Rn, 0 < ‖x‖ 5 1.

Remark 5.5. In practice, we apply Theorem 5.4 whenQ is the third-order truncation
of a smooth vector field on Rn and Z is the remainder term. Roughly speaking, the
theorem implies that if X(x) = x +Q(x) +O(‖x‖4) is a smooth vector field on
Rn, then we can add a cubic term a‖x‖2x, so that if a is sufficiently negative the
resulting equation has a differentiably embedded flow-invariant sphere containing
the origin.

We use the invariant-sphere theorem in our study of dynamics of (6) in the
following way. First of all, we consider the cubic truncation (5). Provided that the
homogeneous cubic part is contracting, all non-trivial trajectories of (5) are forward
asymptotic to a flow-invariant embedded 8-sphere. Further, for an open dense set
of coefficients A0, B, C, all equilibria of (5) are hyperbolic. The hyperbolicity of
equilibria persists if we add on a term a‖X‖2X, a < 0, except at possibly finitely
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many values of a. For sufficiently negative values of a, the invariant sphere can be
made to have any prescribed finite order of differentiability. If the invariant sphere
is at least of class C1 (in fact, C0 in our case), we can add on small fifth- and
higher-order terms without changing stability or destroying the invariant sphere.
(Of course, dynamics on the invariant sphere may and do change.)

5.4. Connections

We recall that there exists a nonempty open subset D of R8 such that if
(A0, B, C) ∈ D , then (5) has no equilibria of submaximal isotropy type in (x, y)-
space (Lemma 5.2). In particular, all equilibria in (x, y)-space are of maximal
isotropy type and lie in {(x, y) | x = 0 or y = 0}. Let D ′ denote the nonempty
open subset of D consisting of coefficient values for which the conditions of
the invariant-sphere theorem hold (C0-invariant spheres suffice). We investigate
connections between equilibria in x-space and y-space under the assumption that
(A0, B, C) ∈ D ′.

First, we need some notation. Let Z3 = 〈ρ1〉, and recall that ρ1 acts on the R9 by
simultaneous cyclic permutation of coordinates in the x-, y- and z-coordinate sub-
spaces. We also set Z̃3 = 〈ρ2〉, and recall that ρ2 cyclically permutes the coordinate
subspaces.

We write 100−→010, if there exist ρ, δ ∈ Z3 such that there is a connection
from ρp100 = pρ100 to δp010. That is, if W u(ρp100)∩W s(δp010) |= ∅. Note that it
follows by Z3-equivariance that if there is a connection from ρp100 to δp010, then
there are connections from ρ

j

1 ρp100 to ρ
j

1 δp010, for j = 1, 2.
If there are connections from ρp100 to δp010 for all ρ, δ ∈ Z3, we write

100 ⇒ 010.

We generalize this notation to allow for connections between 300 and 030 or 010.
Of course, it follows by Z3-equivariance that

100 −→ 030 H⇒ 100 ⇒ 030,

300 −→ 030 H⇒ 300 ⇒ 030,

300 −→ 010 H⇒ 300 ⇒ 010.

Lemma 5.6. There is a nonempty open subset D ? of D ′ such that if (A0, B, C) ∈
D ?, then (5) has connections

100 ⇒ 010, 100 ⇒ 030, 300 ⇒ 010, 300 ⇒ 030.

All of these connections persist for small values of e, f .

Proof. It follows from Section 5.2, that we can choose a nonempty open subset
D ′′ of D ′ such that if the coefficients of (5) lie in D ′′, then the signs of eigenvalues
of the linearizations at p100 and p300 are given according to the following table.

x-directions y-directions z-directions

p100 (−,+,−) (+,+,+) (−,−,−)

p300 (−, a, ā) (+,+,+) (−,−,−)
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Note that a, ā signify that there is a complex conjugate pair of eigenvalues with
nonzero real part.

Let P denote the 2-plane in (xy)-space defined by P = {(x, 0, 0, y, 0, 0) |
x, y ∈ R}. Observe that P is a fixed-point subspace of R9-space and hence P is
invariant by the flow of (5). If we set P+ = R6+ ∩ P , then P+ is also invariant by
the flow of (5). The intersection of P+ with the invariant sphere is a flow-invariant
arc joining p100 to p010. Since the only equilibria on the arc are p100 and p010, it
follows that there is a connection from p100 to p010. Similarly, we may show that
there is a connection from ρp100 to τp010 for all ρ, τ ∈ 〈ρ1〉. Hence 100 ⇒ 010. A
similar argument proves that 300 ⇒ 030

For the remaining cases, we start by working with the group Γ ?. Each pair of
equilibria that we wish to prove connected are then contained in a two-dimensional
fixed point space of Γ ? and intersection with the invariant sphere then gives a
connecting flow-invariant arc. Connections persist when we break symmetry from
Γ ? to Γ and hence we obtain the required open subset D ? of D ′.

Finally, these connections persist if we allow e, d to be nonzero but small. ut

6. Heteroclinic Cycles

In this section, we describe a variety of nontrivial robust heteroclinic networks
present in the model systems (5) and (6). We present numerical simulations illus-
trating the asymptotic behavior of trajectories near these networks. For simplicity,
we work entirely within the flow-invariant region R9+.

6.1. A Depth-1 Heteroclinic Network

We assume that the coefficients of (5) lie in the region D ? described by
Lemma 5.6. In particular,

(a) The system (5) has an attracting invariant sphere S.
(b) The signs of the eigenvalues of the linearization of (5) at p100 and p300 are

given by

(−,+,−,+,+,+,−,−,−) and (−, a, ā,+,+,+,−,−,−),

respectively.
(c) There are no submaximal equilibria in (x, y)-space.

These conditions imply that there is a ‘Guckenheimer-Holmes’ cycle Σx con-
tained in x-space. Specifically, the cycle determined by the Z3-orbit of the connec-
tion p10000→p01000:

10000↗ ↘
00100 ← 01000

(9)

We let Σy = ρ2Σx and Σz = ρ2
2Σx denote the corresponding cycles in y- and

z-space.
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It follows from Lemma 5.6 that 100 ⇒ 010. In particular, there is a cycle

100↗ ↘
001 ← 010

(10)

Since 100 ⇒ 010, it follows that for all α, β, γ ∈ Z3, there is a cycle

α100↗ ↘
γ 001 ← β010

(11)

As an immediate consequence of Lemma 5.6, we see that there is also a cycle

300↗ ↘
030 ← 003

(12)

We refer to this cycle as a cycle between synchronized states. Finally, yet another
application of Lemma 5.6 yields a plethora of cycles that switch between synchro-
nized and single states. For example, there is a cycle

300↗ ↘
010 ← 001

(13)

It follows from (11) that for coefficients in D ?, there exists a depth-1 hete-
roclinic network linking all equilibria with isotropy conjugate to that of 100. The
connections are shown schematically in Figure 5. Note that, for clarity, not all links
are shown.

Remark 6.1. The connections obtained in the proof of Lemma 5.6 are one-dimen-
sional and came by looking at invariant subspaces. It follows that there is a natu-
ral ‘symmetry-determined’ one-dimensional regular heteroclinic network between
equilibria of symmetry type 100. In general, of course, there may be infinitely many
connections between equilibria of symmetry type 100.

6.2. A Depth-2 Heteroclinic Network

Under certain circumstances, the depth-1 networks described above are part of
a depth-2 network. More precisely, let D ?

2 be the nonempty open subset of D ?
2 for

which the complex eigenvalues of the linearization of (5) have strictly positive real
part. That is, we require A0 = (a1, a2) to satisfy a2 < 0 and

−a2 > a1 > 0.(14)

If these conditions hold, then the cycle Σx is a (globally) attracting heteroclinic
cycle in x-space and the equilibrium 300 is repelling in x-space.

For sufficiently small values of d and e, the cycle Σx persists and attracts all
nonzero and nonsynchronized trajectories in some (preassigned) neighborhood of
the origin in x-space.
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Fig. 5. Schematic partial diagram of connections between equilibria in the ‘one-cell’ equi-
libria.

Fig. 6. Schematic diagram showing the types of connection making up the depth two hete-
roclinic network in the nine coupled cell system.

In particular, we obtain a robust connection p300−→Σy from the ‘synchro-
nized’ state p300 to Σy . Combining this observation with our previous results on
connections between equilibria, we see that we may construct a robust heteroclinic
network of depth-2 that includes the depth-1 networks constructed above as sub-
networks. The network contains new connections shown schematically in Figure 6.
More precisely, if we define

ΣH = ∪2
j=0ρ

j

2 W u(p300) ∩ R9+,

then ΣH is a flow-invariant compact subset of R9 which is contained in the inter-
section of the invariant sphere S with the union of the (x, y)-, (y, z)- and (z, x)-
coordinate hyperplanes.

Proposition 6.2. The set ΣH is a geometrically robust heteroclinic network of
depth 2.

Proof. We start by proving that depth(ΣH ) = 2. Suppose X = (x, y, 0) ∈ ΣH .
If y = 0, then ω(X) ⊂ Σx or ω(X) = {300}. In the first case, ω(X) is either
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an equilibrium in the Z3-orbit of p100 or is all of Σx . If x, y |= 0, then either
ω(X) = {p030} or it is one of the equilibria in the Z3-orbit of p010 or it is all of
Σy . Similar results hold when we look at α-limit points, except that Σx no longer
occurs as an α-limit set. It follows that ΣH

1 is the union of the cycles Σx , Σy

and Σz together with the equilibria p300, p030, p003. Obviously, ΣH
2 is the set of

equilibria in ΣH . Hence depth(ΣH ) = 2. The indecomposability of ΣH follows
from Lemma 2.37.

It follows immediately from our construction of ΣH that ΣH is symmetry
adapted and dynamically coherent. Since equilibria on ΣH are all hyperbolic, it
follows easily that symmetry adaptation and dynamic coherence persist under Γ -
equivariant perturbation. From this it follows that ΣH is weakly geometrically
robust. In order to complete the proof of geometric robustness, it is easiest to work
in R9 rather than R9+. If we let Sx denote the intersection of the invariant sphere
S ⊂ R9 with x-space, then ΣH is the Z̃3-orbit of W u(Sx). Let Dy denote
an open unit disk, centered at the origin, in y-space. We may choose an open
Z3 o∆9-invariant neighborhood U of S such that W u(Sx)∩U is homeomorphic
to Sx × Dy . It follows that the homeomorphism type of ΣH near Sx is constant
under equivariant perturbations. Now it is easy to patch the local stability near Sx ,
Sy , Sz with the stability on the complement of ΣH \ Z̃3U to obtain the required
global stability result. ut
Remarks 6.3. (1) For simplicity, we have worked entirely within S ∩ R9+ ⊂ R9+.
Of course, there is a completely analogous result if instead we work in S ⊂ R9.
(2) It is not unreasonable to ask whether the flow on network ΣH is structurally
stable. Structural stability does not follow from the arguments of the proof of
Proposition 6.2. Indeed, a necessary condition for structural stability is that the
invariant manifolds of the equilibria inΣH are stratumwise transverse (equivalently,
Γ -transverse, see [20]). We have not addressed this point and indeed suspect that
it is generally difficult to find conditions on the coefficients of (5) and (6) that yield
stratumwise transversality of the invariant manifolds.

6.3. Numerical Simulations

To investigate these networks further, simulations were carried out using the
dynamical systems package dstool [24] with variable step Runge-Kutta inte-

Table 1. Parameter values for the simulations of equation (6) shown in Figures 7–10. For
all these parameter values, there is an attracting sphere on which the asymptotic dynamics
takes place.

a1 a2 b0 b1 b2 c0 c1 c2 d e

(a) 0.9 −0.87 1 1 1 −0.99 −0.99 −0.99 −0.1 −0.1
(b) 0.9 −0.89 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1
(c) 0.9 −0.91 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1
(d) 0.9 −0.87 1 1 1 −1.1 −1.1 −1.1 −0.1 −0.1
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Fig. 7. Time series for parameter value Table 1(a) for components x0 and y0. This exhibits
attracting two-frequency quasi-periodicity.

grator and error tolerance 10−8. An initial condition was chosen away from any
symmetry-forced invariant subspaces, and the trajectory was computed for several
thousand time-units. Typical parameter values for the simulations are shown in
Table 1. Illustrations of time series at these parameter values are shown in Fig-
ures 7–10; note that the parameters d and e are non-zero to break the degeneracy
of the bifurcation where the cycle (9) changes stability within the subspaces with
isotropy a00.

Figure 7 shows a two-frequency quasi-periodic attractor; this can be thought
of as having come from an interaction between periodic orbits that have bifurcated
from the cycles (9), (10). Note that the parameter values are such that all three of
these cycles are unstable.

Figure 8 shows an attracting heteroclinic network between periodic orbits; in
this case the cycle (10) is stable within the space spanned by its vertices, but it is
unstable in other directions. Because d and e are non-zero, there are periodic orbits
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Fig. 8. Time series for parameter value Table 1(b) for components x0 and y0. This exhibits
a heteroclinic cycle to a periodic orbit; note how the amplitude of the periodic orbit is almost
constant except for the starting and finishing peaks in each ‘burst’.

close to the cycle (9) that are joined by connecting orbits to form a heteroclinic
network between periodic orbits.

Figure 9 shows an attracting heteroclinic network between the ‘one-cell’ equi-
libria. For these parameter values, the cycles (9), (10) are attracting within the
subspaces spanned by their nodes. Simulations indicate that the depth-1 network
is an attractor. Nevertheless, the attracting depth-1 network is embedded within
an asymptotically stable depth-2 network which contains, for example, connec-
tions between p100 and Σy. The numerics we have done suggest that the depth-1
subnetwork is essentially asymptotically stable; almost all trajectories eventually
avoid connections of the form p100→Σy. Such ‘hidden’ connections are likely to
generate many high-period periodic orbits if we break the asymptotic stability of
the underlying depth-2 network.
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Fig. 9. Time series for parameter value Table 1(c) for components x0 and y0. This exhibits a
heteroclinic cycle to a heteroclinic cycle; note that the two rates of slowing down are rather
different.

Figure 10 shows an attracting heteroclinic network between ‘synchronized
3-cell’ equilibria; again, this is part of a depth-2 network, as can be seen by the
presence of decaying oscillations after each switching. However, typical trajectories
avoid connections of the form p300−→p010.

We also investigated some parameter values where submaximal equilibria exist
and can become part of the heteroclinic network; however this leaves many new
possibilities open and a classification is much more difficult.

6.4. Bifurcation Behavior

The network (6) displays a number of bifurcations that are generic in this con-
text. Notably, fix all parameters except for a1 and increase this through |a1| = |a2|;
at this point the inequality in (14) is broken and the cycle (9) loses stability within its
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Fig. 10. Time series for parameter value Table 1(d) for components x0 and y0. In this
case the attractor is a heteroclinic cycle between synchronized states; observe the decaying
oscillations and the slowing down between each approach to a synchronized state.

invariant subspace. For d > 0 this leads to a bifurcation of a large-period periodic
orbit from the cycle in a resonance bifurcation [10]; see [1] for resonance bifur-
cation of a heteroclinic cycle between chaotic invariant sets. Increasing a1 further
causes the periodic orbit to disappear at the 300 solution via a Hopf bifurcation
and consequently creates a depth-2 connection from the cycle (9) to the equilib-
rium p300. A detailed classification of possible generic bifurcations in this system
is beyond the scope of this work; we merely wish to indicate an example of how
bifurcations can alter the structure of a depth two heteroclinic network.

6.5. Extensions and Generalizations

Using the results on edge cycles in [20, Chapter 6], we could easily construct
one-dimensional Z2 o Zp-invariant attracting depth-1 heteroclinic networks in Rp
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for all p = 3. Just as we did in our construction of the Z(3, 3)-invariant network,
it is then straightforward to show that for all p, q = 3 it is possible to construct a
depth-2 geometrically robust attracting heteroclinic network in Rpq with symmetry
group (Z2 o Zp) o Zq (or Z2 × (Zp o Zq ).

We believe that it is possible to extend our methods so as to construct geometri-
cally robust networks of arbitrary depth in systems of symmetrically coupled cells.
As details of this work in progress will appear elsewhere, we limit ourselves to a
few brief remarks and comments.

One might guess that the construction of our depth-2, Z(3, 3)-invariant network
could be iterated N−1 times to form a geometrically robust Z(3, 3, ..., 3)-invariant
network of depth N . However, this approach turns out to be too simplistic as it ig-
nores a crucial feature of the dynamics that leads to the Z(3, 3)-invariant network
having depth 2. Specifically, depth 2 follows from the existence of points x ∈ Σ

such that α(x) is a synchronized state 100 and ω(x) is a Guckenheimer-Holmes
cycle. In order to obtain higher depths, we need cycling between synchronized
states and ‘Guckenheimer-Holmes’ cycles. One way to achieve this is to alternate
the stabilities of the synchronized states and heteroclinic cycles in a symmetrically
coupled ring consisting an even number of heteroclinic cycles. Just as before, this
leads to a depth-2 heteroclinic network. An appropriate coupling of three such
networks should then lead to a depth-3 heteroclinic network. We believe that itera-
tion of this procedure would lead to geometrically robust heteroclinic networks of
arbitrary depth.

A particularly interesting feature of networks of this type (including iterated
Z(3, 3)-invariant networks) is that if the network is asymptotically stable and there
is a bifurcation-breaking asymptotic stability or, alternatively, a forced symmetry
breaking, then there are periodic orbits near the cycle that exhibit multiple time
scales corresponding to their tracking of cycles in the original network.

7. Discussion

We have proposed a definition of a heteroclinic network that encompasses many
previous definitions, but also allows such cycles as that discovered by Chawanya
[7, 8] where connections may limit on to other connections. In doing so we show
that the concept of ‘depth’ of a flow on an invariant set (previously regarded as
having little direct application to generic systems) has real relevance to structurally
stable attractors in symmetric systems.

We have shown that such networks (which may contain robust continua of
connections and/or chaotic invariant sets) have a hierarchical structure that can be
characterized by their depth. We have given sufficient conditions for their embed-
dings that they can appear as ω-limit sets of nearby points, as well as sufficient
conditions that they are robustly embedded in symmetric systems. We emphasize
that these are only sufficient, and in many cases would be hard to verify. It is an
open problem to obtain improved results for stability and robustness. This is likely
to be difficult due to the appearance of essentially asymptotic stable subnetworks,
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and possible existence of sets of stable periodic orbits or other invariant sets accu-
mulating on the network [8].

To address some of the questions about stability, we have examined a model sys-
tem on R9 that has a number of relatively easily analyzable but nontrivial networks;
we can show their robust existence and numerically find attracting networks.

As there is an equivalence between differential equations on Rn with 1n sym-
metry and game dynamics differential equations on the (n−1)-simplex [33], these
results apply in both settings.

Trajectories that are asymptotic to ‘cycling chaos’ networks show a slowing-
down series of switchings between shadowing of different types of recurrent be-
havior characterized by possibly chaotic nodal sets. If the nodes are not uniquely
ergodic, then there is also a question of which of these ergodic measures contributes
to averages of observables along trajectories that approach C. Chaotic sets raise a
number of further questions that we leave to future research.
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