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Existence of Weak Solutions
for the Motion of Rigid Bodies

in a Viscous Fluid

B. Desjardins & M. J. Esteban

Communicated by P.-L. Lions

Abstract

We study the evolution of a finite number of rigid bodies within a viscous in-
compressible fluid in a bounded domain of R

d (d = 2 or 3)with Dirichlet boundary
conditions. By introducing an appropriate weak formulation for the complete prob-
lem, we prove existence of solutions for initial velocities inH 1

0 (Ω). In the absence
of collisions, solutions exist for all time in dimension 2, whereas in dimension 3
the lifespan of solutions is infinite only for small enough data.

1. Introduction

LetΩ ⊂ R
d (d = 2 or 3) be a C1,1 domain occupied by a viscous incompress-

ible fluid surrounding k rigid bodies 1 5 i 5 k of masses m1, . . . , mk , with C1,1

regularity. The fluid has density ρ̄F > 0, viscosity µ > 0, pressure p, velocity v

and is governed by the Navier-Stokes equations for incompressible fluids:

ρ̄F (∂tv + div(v ⊗ v))+ ∇p − µ1v = ρ̄Ff in D ′(QT )
d, (1)

div v = 0 in QT , v|t=0 = v0 in ΩF (0), (2)

where ΩF (t) ⊂ Ω denotes the fluid domain at time t ,

QT = {(t, x) / t ∈ (0, T ), x ∈ ΩF (t)} ,

and f ∈ L2((0, T ) × Ω)d is a homogeneous external bulk force, for instance
gravity. Let Ωi(t) be the bounded open connected subdomain of Ω representing
the ith body at time t . For each body, we define the density ρ̄i > 0, the center
of gravity xGi (t) and its velocity wGi (t), the velocity field wi , the rotation vector
Ri (t) and the symmetric inertial matrix Ji ∈ M(Rd) by
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|Ωi(0)| , xGi (t) = 1

|Ωi(t)|
∫
Ωi(t)

x dx, wGi (t) = dxGi (t)

dt
,

wi (t, x) = wGi (t)+ Ri (t)× (x − xGi (t)) for x ∈ Ωi(t), (3)

tyJiy = ρ̄i

∫
Ωi(0)

|y × (x − xGi (0))|2 dx for all y ∈ R
d .

The evolution law of the ith body is given by

mi
dwGi

dt
=
∫
∂Ωi(t)

σ · n dτ +
∫
Ωi(t)

ρ̄if dx, (4)

Ji
dRi

dt
= Ri × (Ji · Ri )+

∫
∂Ωi(t)

(x − xGi (t))× (σ · n) dτ

+
∫
Ωi(t)

ρ̄i (x − xGi(t))× f dx, (5)

σ = 2µD(v)− pI denoting the stress tensor of the fluid, where the strain tensor
D(v) is defined as the symmetric part of ∇v. Indeed, the local force applied by the
fluid on an elementary surface dτ of ∂Ωi(t) with normal n pointing outside the
solid is σ · n dτ . Next, we write the initial condition on wi as

wi |t=0(x) = w0
i (x) = wGi (0)+ Ri (0)× (x − xGi (0)). (6)

At the domain boundary, we enforce homogeneous Dirichlet boundary conditions

v = 0 on ∂Ω ∩ ∂ΩF (t), (7)

and at the interface between the fluid and solid bodies, we require the velocity and
the stress to be continuous in the normal direction

wi · ni = v · ni and σ · ni = Ti on ∂Ωi(t), t = 0, (8)
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where −Ti is the force applied by the ith body on the fluid. Notice that it can be
expressed in terms of the Cauchy stress tensor Σi in the solid as Ti = Σi · ni .

This problem is “formally well-posed”, since a priori bounds for finite energy
solutions are easy to derive from (1)–(8). A similar observation for a somewhat
different model was already made in [6, 7, 11].

In the case of one heavy enough rigid disk interacting with a two-dimensional
viscous incompressible fluid, local existence of strong solutions has been proved
in [10, 11]. In the case of one rigid body in the whole space under the action of
gravity, see [13, 14]. See also [8] for a different problem in the whole space.

In this paper, we introduce a global weak formulation for the above problem. For
initial velocities inH 1

0 (Ω), we show the existence of solutions by using techniques
which are related to those used to solve the multifluid Navier-Stokes problem (see
[12, 1])). One of the key arguments involves the DiPerna-Lions theorem on com-
pactness of sequences of solutions to linear transport equations [5]. Our method
requires some additional regularity: ∂tu ∈ L2((0, T )×Ω)d . This explains why our
results are limited to solutions local in time in dimension 3, since such a regularity
property for global weak solutions to the homogeneous Navier-Stokes equations
(without solids) is still unknown. Apart from this limitation, the lifespan can also
be affected by the appearance of body-body or body-boundary collisions.

In a forthcoming work, we shall address the case of deformable bodies embed-
ded in an incompressible fluid.

The paper is organized as follows. In Section 2, we introduce the weak formula-
tion for the fluid-solid interaction problem. Our main theorem is stated in Section 3,
and is proved in Section 5. Section 4 is devoted to the derivation of a priori bounds
and compactness results needed in Section 5, where we sketch the approximation
procedure. The construction of approximate solutions will be found with greater
details and in a more general framework in [4].

2. Alternative Formulation

In order to give a more global formulation of (1)−(8), we introduce the Eulerian
densities ρF (t, x) = ρ̄F 1ΩF (t)(x), ρi(t, x) = ρ̄i1Ωi(t)(x) and the global density
of the system ρ = ρF +∑k

i=1 ρi . We also define in Ω the global velocity u by

u(t, x) =
{

v(t, x) in ΩF (t),

wi (t, x) in Ωi(t), 1 5 i 5 k.
(9)

Thus, in view of the conservation of mass, the density function ρ is the solution of
the linear transport equation

∂tρ + div(ρu) = 0. (10)
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On the other hand, denoting the global rate-of-deformation tensor by D(u) =
1
2 (∇u +t∇u), we can formulate the evolution of the momentum for the fluid as

∂t (ρFu)+ div(ρFu ⊗ u)

= 1

ρ̄F
div (ρF (2µD(u)− pI ))+

k∑
i=1

1

ρ̄i
Σi · ∇ρi + ρFf .

(11)

Note that Σi · ∇ρi is supported on ∂Ωi(t) since it is a surface force.
On the walls, we enforce homogeneous Dirichlet boundary conditions

u|∂Ω = 0. Moreover, the incompressibility of the fluid, the rigidity of the structure
and (8) readily imply that div u = 0.

In order to derive the equations for the solids, we remark that (4), (5) can be
expressed in terms of Eulerian quantities as follows

∂t (ρiu)+ div(ρiu ⊗ u) = ρif + 1

ρ̄i
div (ρiΣi)− 1

ρ̄i
σ · ∇ρi, (12)

where the right-hand side is the sum of the external force, the internal rigidity force,
and the force applied by the fluid on the surface.

Summing (11) and the k equations (12), using (8) and introducing the global
stress tensor T , we obtain the global system in D ′((0, T )×Ω)d :

∂t (ρu)+ div(ρu ⊗ u) = div T + ρf , (13)

T = 1

ρ̄F
ρF σ +

k∑
i=1

1

ρ̄i
ρiΣi, (14)

div u = 0, ∂tρ + div(ρu) = 0, ρiD(u) = 0 1 5 i 5 k, (15)

supplemented with the initial conditions

u|t=0(x)=
{

v0(x) in ΩF (0),

w0
i (x)=wGi (0)+Ri (0)×(x−xGi (0)) in Ωi(0), i=1, . . . , k,

(16)

ρi,0(x) = ρ̄i1Ωi(0)(x), 1 5 i 5 k, ρF,0(x) = ρ̄F 1ΩF (0)(x),

ρ|t=0 = ρ0 := ρF,0 +
k∑
i=1

ρi,0 , (17)

where (ΩF (0),Ω1(0), . . . ,Ωk(0)) is a given open partition ofΩ . More precisely,
we assume that Ωi(0) are C1,1 open domains such that

Ωi(0) ⊂ Ω, Ωi(0) ∩Ωj(0) = ∅ for i |= j, ΩF (0) = Ω
∖ k⋃
i=1

Ωi(0). (18)
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Taking the inner product of (13) with u and integrating the product by parts,
we obtain the total energy conservation of the system, i.e., dE

dt
= 0, where E =

Ek + Ed + Ep, Ek is the kinetic energy:

Ek =
∫
Ω

1
2ρ|u|2dx =

∫
Ω

1
2ρF |u|2dx +

k∑
i=1

1
2

(
mi |uGi |2 +tRiJiRi

)
, (19)

Ed is the viscous dissipation:

Ed = 1

ρ̄F

∫ t

0

∫
Ω

µρF D(u) : D(u) dx ds, (20)

and Ep the total work of the external forces f

Ep = −
∫ t

0

∫
Ω

ρ f · u dx ds. (21)

Thus, formally, the energy satisfies the a priori estimate∫
Ω

1
2ρ|u|2 dx + µ

∫ t

0

∫
Ω

|∇u|2 dxds 5
∫
Ω

1
2ρ0|u0|2dx +

∫ t

0

∫
Ω

ρ f · u dx ds

(22)

Notice that in the case of curl-free time-independent bulk forces f = ∇W (for
instance gravity for which W(x) = −γ xd ), we have∫ t

0

∫
Ω

ρ f · u dx ds =
∫
Ω

W(x)ρ(t, x) dx −
∫
Ω

W(x)ρ0(x) dx, (23)

Let us now make precise the notion of weak solutions of the above physical
system.

We say that (ρ,u) is a weak solution of (13)–(17) in (0, T ) if it satisfies the a
priori energy bounds

ρ ∈ L∞((0, T )×Ω), u ∈ L∞(0, T ;L2(Ω))d ∩ L2(0, T ;H 1
0 (Ω))

d,

and if for all φ ∈ V and for almost every t ∈ (0, T ),∫ t

0

∫
Ω

(
ρu · ∂tφ + ρu ⊗ u : D(φ)− µD(u) : D(φ)+ ρf · φ) dx ds

+
∫
Ω

ρ0u0 · φ(0) dx =
( ∫

Ω

ρu · φ dx
)
(t), (24)

∂tρ + div(ρu) = 0 in D ′((0, T )×Ω), (25)

div u = 0, ρiD(u) = 0, 1 5 i 5 k, (26)

u|∂Ω = 0, ρ0 ∈ L∞(Ω) satisfies (17), u0 ∈ L2(Ω)d, (27)

where V is defined by

V =
{
φ ∈ H 1((0, T )×Ω)d / φ(t) ∈ V (t) ∀t ∈ (0, T )

}
, (28)
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and

V (t) =
{
φ ∈ H 1

0 (Ω)
d / divφ = 0, ρi(t)D(φ) = 0, 1 5 i 5 k

}
. (29)

In this formulation, the Lagrange multipliers of the problem, namely the pres-
sure p and the Cauchy stress tensors Σi of the solids, no longer appear, since the
corresponding constraints are taken into account by the choice of test functions.

3. Main Theorem

Let us define the minimal distance δ(t) by

δ(t) = min
{
d(Ωi(t),Ωj (t)), d(Ωi(t), ∂Ω), i, j = 1, . . . , k ; i |= j

}
,

and make the following assumptions on the data:

u0 ∈ H 1
0 (Ω)

d, div u0 = 0, ρi,0D(u0) = 0, 1 5 i 5 k, (30)

f ∈ L2((0, T )×Ω)d for all T > 0, (31)

δ(0) > 0. (32)

We now state our main result:

Theorem 1. Under assumptions (30)–(32), there exist T ∗ ∈ (0,+∞] and a solu-
tion (ρ,u) of (24)–(27) such that

• β(ρ) ∈ C([0, T ];Lp(Ω)) ∩ L∞((0,∞) × Ω) for all T < T ∗, p < ∞ and
β ∈ C1(R; R).

• u ∈ L∞(0, T ;H 1
0 (Ω))

d and ∂tu ∈ L2((0, T )×Ω)d for all T < T ∗.

• If d = 2, then T ∗ = min{ t / δ(t) = 0}, and u ∈ L2(0, T ;W 1,p
0 (Ω))2 for all

p < +∞, T < T ∗.

• If d = 3, then u ∈ L2(0, T ;W 1,6
0 (Ω))3 for all T < T ∗ and T ∗ = +∞ only if

|f |L2((0,+∞)×Ω) + |∇u0|L2(Ω) is small enough and δ(t) > 0 for all t > 0.

Moreover, the energy inequality (22) holds for all time t ∈ (0, T ∗).

Remark. In dimension d = 2, a more precise regularity result is available for the
velocity u: There exists γ ∈ L2

loc([0, T ∗)) such that for all p ∈ [2,∞)

|∇u(t, .)|Lp(Ω) 5 C
√
p γ (t) for all t < T ∗. (33)
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4. Auxiliary Results

4.1. Elliptic Estimates in Time-Dependent Domains

Let t ∈ (0,∞) be such that δ(t) > 0 and consider the Stokes problem satisfied
by u in the fluid domain

−µ1u + ∇p = g, div u = 0 in ΩF (t), u|∂Ω = 0, u|∂Ωi(t) = wi |∂Ωi(t).

That u and wi , and not only their normal components, coincide on ∂Ωi(t) derives
from the viscosity term in the equation which yields H 1 a priori bounds on u (see
(22) and the beginning of the next section). By using ad hoc cut-off functions and
using the rigid structure of the velocity inΩi(t), we deduce in dimension 2 that for
all p = 2,

|∇u|Lp(Ω) 5 C
√
p |g|1−2/p

L2(ΩF (t))

(
|∇u|L2(Ω) + δ−1|u|L2(Ω)

)2/p

+C√
p
(
|∇u|L2(Ω) + δ−1|u|L2(Ω)

)
δ(2/p)−1,

whereas in dimension 3, we have

|∇u|L6(Ω) 5 C
(|g|L2(ΩF (t))

+ δ−1|∇u|L2(Ω) + δ−2|u|L2(Ω)

)
,

so that in particular

|∇u|L2d/(d−1)(Ω) 5 C
(|∇u|L2(Ω) + (3 − d)δ−1|u|L2(Ω)

)1/2|g|1/2
L2(ΩF (t))

+Cδ−1/2|∇u|L2(Ω) + Cδ−3/2|u|L2(Ω). (34)

4.2. A Priori Bounds on the Velocity

Taking φ = u in (24), we obtain formally∫
Ω

1
2ρ(t)|u(t)|2dx + µ

∫ t

0

∫
Ω

|∇u|2dx ds

=
∫ t

0

∫
Ω

ρf · u dx ds +
∫
Ω

1
2ρ0|u0|2dx, (35)

so that we have the natural energy bounds ρ ∈ L∞((0, T )×Ω), √ρu ∈ L∞(0, T ;
L2(Ω))d , u ∈L2(0, T ;H 1

0 (Ω))
d provided that f ∈ L2((0, T )×Ω)d . Let us point

out that in the case when f reduces to gravity forces: f = −γ ed with γ > 0, the
left-hand side of (35) can be estimated globally in time by∫

Ω

1
2ρ0|u0|2dx + 2γ

∫
Ω

ρ0dx. (36)

Starting fromH 1
0 (Ω) initial velocities u0, we obtain additional bounds by taking

φ = ∂tu in (24) and integrating by parts. Indeed, assuming that u is suitably smooth,
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which will be the case in the approximate problem introduced in Section 5, ∂tu can
be taken as a test function in the weak formulation, since ρiDu = 0 implies that
ρiD(∂tu) = 0. Thus, by the Cauchy-Schwarz inequality, there exists a constant
C > 0 depending only on µ and |ρ0|L∞(Ω) such that

∫ t

0

∫
Ω

ρ|∂tu|2dx ds +
∫
Ω

|∇u(t)|2dx 5 C

∫
Ω

|∇u0|2dx + C

∫ t

0
|f |2

L2(Ω)
ds

+C
∫ t

0
|u · ∇u|2

L2(Ω)
dxds. (37)

We now have to estimate u · ∇u in terms of the left-hand side of (37). Writing
the equation for the fluid as a Stokes problem at some fixed time t > 0 and using
the results of the preceding section and the Gagliardo-Nirenberg inequality written
as

|u|L2d (Ω) 5 C|u|(3−d)/2
L2(Ω)

|u|(d−1)/2
H 1

0 (Ω)
,

we deduce that

|u · ∇u|2
L2(Ω)

5 |u|2
L2d (Ω)

|∇u|2
L(2d)/d−1(Ω)

5 Cδ−1|u|3−d
L2(Ω)

|∇u|d+1
L2(Ω)

+ Cδ−3|u|5−d
L2(Ω)

|∇u|d−1
L2(Ω)

+C|u|3−d
L2(Ω)

|∇u|d−1
L2(Ω)

|ρ∂tu + ρu · ∇u − ρf |L2(Ω)

×(|∇u|L2(Ω) + (3 − d)δ−1|u|L2(Ω)

)
(38)

5 ε |ρ∂tu + ρu · ∇u − ρf |2
L2(Ω)

+ Cε−1|u|2(3−d)
L2(Ω)

|∇u|2d
L2(Ω)

+C(3 − d)ε−1δ−2|u|2(4−d)
L2(Ω)

|∇u|2(d−1)
L2(Ω)

+Cδ−1|u|3−d
L2(Ω)

|∇u|d+1
L2(Ω)

+ Cδ−3|u|5−d
L2(Ω)

|∇u|d−1
L2(Ω)

(39)

for all ε > 0. Denote

A0(t) = |∇u0|2L2(Ω)
+
∫ t

0
|f |2

L2(Ω)
ds, B0(t) = |u0|2L2(Ω)

+
∫ t

0
|f |2

L2(Ω)
ds.

In dimension 2, for ε small enough, (37), (39) and Poincaré’s inequality yield

∫ t

0
|∂tu|2

L2(Ω)
ds + |∇u(t)|2

L2(Ω)

5 C
(
A0(t)+

∫ t

0

((
(1+B0(t)

2)δ(s)−2+B0(t)δ(s)
−3)|∇u|2

L2(Ω)

+B0(t)|∇u|4
L2(Ω)

)
ds
)
,

(40)
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whereas in dimension d = 3, we obtain∫ t

0
|∂tu|2

L2(Ω)
ds + |∇u(t)|2

L2(Ω)

5 C
(
A0(t)+

∫ t

0

((
δ(s)−2 + B0(t)δ(s)

−3
)

|∇u|2
L2(Ω)

+ |∇u|6
L2(Ω)

)
ds
)
.

(41)

Estimates (40), (41) enable us to conclude our proof by looking separately
at the 2- and 3-dimensional cases. In dimension d = 2, since

∫ t
0 |∇u|2

L2(Ω)
ds 5

CB0(t), Gronwall’s lemma allows us to prove that

∫ t

0
|∂tu|2

L2(Ω)
ds + |∇u(t)|2

L2(Ω)

5 CA0(t) exp

(
CB0(t)

2+C
∫ t

0

(
(1+B0(t)

2)δ(s)−2+B0(t)δ(s)
−3
)
ds

)
. (42)

In dimension d = 3, there exists η > 0 such that

∫ t

0
|∂tu|2

L2(Ω)
ds + |∇u(t)|2

L2(Ω)
5 CA0(t)H(t), (43)

where

H(t) = exp

(
C

∫ t

0

(
δ(s)−2 + B0(t)δ(s)

−3
)
ds

)
,

provided that either the time t is small enough:

tA0(t)
2H(t)3 5 η, (44)

or the data are not too large:

B0(t)A0(t)H(t)
2 5 η. (45)

The preceding inequalities show that if δ(0) > 0, δ(t) remains positive for t > 0
small enough. Indeed,

δ(t) = δ(0)−
∫ t

0
|u(s)|L∞(Ω)ds, (46)

and in dimensions 2 and 3, W 1,4
0 (Ω) is embedded in L∞(Ω).

Remark: The above estimates show that smooth enough solutions of (24)–(27) sat-
isfy u ∈ L2(0, T ;H 1

0 (Ω))
d ∩ L∞(0, T ;L2(Ω))d as long as they exist. Moreover,

a priori bounds for ∂tu in L2((0, T ) ×Ω)d and for u in L2(0, T ;W 1,4(Ω))d are
available whenever there is no collision, and the above criteria on small time or
small data are met in dimension 3. Note finally that ∂tu ∈ L2((0, T ) × Ω)d and

u ∈ L2(0, T ;W 1,4(Ω))d imply for instance that u ∈ C0, 1
2 ([0, T ];H 1

0 (Ω))
d .
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4.3. Compactness Results

Let (ρn,un) be a sequence of weak solutions of (24)–(27) in (0, T ) such that ρn

is bounded inL∞((0, T )×Ω) uniformly in n, un is bounded inL2(0, T ;H 1
0 (Ω)∩

W 1,4(Ω))d , ∂tun is bounded in L2((0, T )×Ω)d uniformly in n, ρn0 converges to
ρ0 in L2(Ω), un0 converges to u0 in L2(Ω)d , for all φn ∈ Vn,(∫

Ω

ρnun · φndx
)
(t) =

∫
Ω

ρ0
nu

0
n · φn(0, .) dx

+
∫ t

0

∫
Ω

(
ρnun · ∂tφn + ρnun ⊗ un :D(φn)

−µD(φn) :D(un)+ ρnf · φn
)
dx ds, (47)

∂tρ
n + div(ρnun) = 0, div un = 0, ρni D(un) = 0, 1 5 i 5 k, (48)

α = inf
{
δn(t), t ∈ [0, T ], n = 0

}
> 0, (49)

where δn is defined as δ in Section 3 with u replaced by un.
The bounds derived in Sections 4.1, 4.2 allow us to use the DiPerna-Lions

stability results [5] for linear transport equations: There exists (ρ,u) such that up to
the extraction of a subsequence, β(ρn) converges to β(ρ) inL∞((0, T )×Ω)weak
∗ and in C([0, T ];Lp(Ω)) for all p < +∞ and all β ∈ C1(R), and un converges
to u in C([0, T ];Hs

0 (Ω))
d for all s < 1. Moreover, u ∈ L2(0, T ;W 1,4(Ω))d ,

∂tu ∈ L2((0, T ) × Ω)d , div u = 0, ρi D(u) = 0 for 1 5 i 5 k, and ∂tρ +
div(ρu) = 0. We now have to prove that (47) holds for all given φ ∈ V . First,
for 1 5 i 5 k we introduce the invertible affine transformation T ni (t) defined by
Ωn
i (t) = T ni (t)Ω

n
i (0), and similarly we introduce Ti , and we observe that for n

large enough

sup
15i5k, t∈(0,T )

(|T ni (t)− Ti(t)| + ∣∣Ṫ ni (t)− Ṫi (t)
∣∣)

5 CT sup
15i5k

|ρni un − ρiu|L∞(0,T ;L2(Ω)) 5 α

4
, (50)

since ρni u
n converges to ρiu in C([0, T ];L2(Ω))d . Next considering a cut-off

function χ ∈ C∞(R+) such that χ ≡ 1 in [0, 1
2 ] and χ ≡ 0 in [1,∞), we define

φi as

φi(t, x) = curl

(
χ

(
2d(x,Ωi(t))

α

)
A(t, x)

)
,

where A is a current function for φ in Ω , i.e., φ = curl A (curl denotes ∇× when
d = 3, and denotes ∇⊥ when d = 2). We now define ψ as

ψ = φ −
k∑
i=1

φi.
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Hence, we construct a new test function φn ∈ Vn as

φn(t, x) = ψ(t, x)+
k∑
i=1

φi

(
t, Ti(t) ◦ T ni (t)−1 · x

)
,

for which we know that (47) holds. The preceding bounds (50) imply that φn con-
verges toφ inC([0, T ];L2(Ω))d . Moreover, D(φn) and ∂tφn converge respectively
to D(φ) and ∂tφ in L2((0, T ) ×Ω)d , so that all the quantities in (47) pass to the
limit.

5. Proof of Theorem 1

For any ε > 0 such that ε < 1
4δ(0), let ρε0 ∈ C∞(Ω) be a regularization of ρ0

defined as

ρεi,0 = 0 in ΩF (0), ρ
ε
i,0(x) = ρ̄i if d(x,ΩF (0)) = 2ε, 0 < ρεi,0 < ρ̄i otherwise,

ρεF,0 = ρ̄F

(
1 −

k∑
i=1

ρεi,0

ρ̄i

)
, ρε0 := ρεF,0 +

k∑
i=1

ρεi,0,

ρεi,0 converges to ρi,0 in Lp(Ω) (1 5 p < +∞, 1 5 i 5 k).

Also, we introduce a regularizing operator rε which maps L2(0, T ;H 1
0 (Ω))

d into
L2(0, T ;Ck0 (Ω))d for all k = 0, such that div rε(u) = 0 for all u for which
div u = 0. Then, by following the same steps as in the proof of Theorem 2.6 in [12],
we find that ρε ∈ L∞((0, T )×Ω), uε ∈ L∞(0, T ;L2(Ω))d ∩L2(0, T ;H 1

0 (Ω))
d

are solutions of∫ t

0

∫
Ω

(
ρεuε · ∂tφ + ρεrε(u

ε)⊗ uε : D(φ)− µD(uε) : D(φ)+ ρεf · φ) dx dt
+
∫
Ω

ρε0rε(u0) · φ(0, .) dx =
(∫

Ω

ρεuε · φ dx
)
(t), (51)

div uε = 0, ρεi D(uε) = 0, 1 5 i 5 k, in D ′((0, T )×Ω), uε|∂Ω = 0, (52)

∂tρ
ε
i + div(rε(u

ε)ρεi ) = 0, ρεi |t=0 = ρεi,0 1 5 i 5 k, (53)

∂tρ
ε + div(rε(u

ε)ρε) = 0, ρε|t=0 = ρε0 (54)

for almost every t ∈ (0, T ) and for φ in the space of test functions defined by

V ε = {
φ ∈ C∞((0, T )×Ω)d / φ(t) ∈ V ε(t) ∀ t ∈ (0, T )}, (55)

with

V ε(t) = {
φ ∈ C∞

0 (Ω)
d / divφ = 0, and ρεi (t)D(φ) = 0, 1 5 i 5 k

}
. (56)
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Solving this problem means solving first an appropriate linear problem, then
applying a fixed-point theorem. This is made possible by the a priori estimates
of Section 4.2 and the compactness results of Section 4.3. For all details on this
procedure in a different but related situation, see [9].

By the estimates derived in Sections 4.1 and 4.2, we obtain uniform bounds
for (ρε,uε) in L∞((0, T ) × Ω) × L2(0, T ;H 1

0 (Ω))
d . Moreover, ∂tuε is also

uniformly bounded in L2((0, T ) × Ω)d when d = 2, or when d = 3 and either
T or the initial data are small enough (see (44) and (45)). This essentially follows
from the fact that for every φ ∈ V ε, ∂tφ belongs to V ε, since by (54), we have
|supp(∂tρεi ) ∩ supp(D(φ))| = 0 and so, we can take ∂tuε as a test function. Let us
next take τ ∈ (0, T ) such that

lim sup
ε→0

(inf {δε(t) / t ∈ [0, τ ]}) > 0. (57)

A straightforward modification of the compactness results described in Section
4.3 gives the existence of (ρ,u) such that up to the extraction of a subsequence,
for all β ∈ C1(R), β(ρε) converges to β(ρ) in L∞((0, τ ) × Ω) weak ∗ and in
C([0, τ ];Lp(Ω)) for allp < +∞, and uε converges to u inC([0, τ ];Hs

0 (Ω))
d for

all s < 1. In addition, u ∈ L2(0, τ ;W 1,4(Ω))d , ∂tu ∈ L2((0, τ )×Ω)d , div u = 0,
ρi D(u) = 0 for 1 5 i 5 k, and ∂tρ + div(ρu) = 0. It follows that (ρ,u) is a
solution of (24)–(27). ut

6. Comments

Let us first mention that some unbounded domains can also be treated by similar
techniques (see for instance the regularity results in [12] and the approximating
process in [1]).

Notice also that the case of N incompressible immiscible fluids interacting
with k rigid bodies can be handled similarly, by adapting our weak formulation in
a straightforward manner.

Finally, in dimension d = 2, the L2(0, T ;W 1,p(Ω) ∩ H 1
0 (Ω))

2 bounds (33)
on u, for all p, enable us to show that

|u(t, x)− u(t, y)| 5 Cγ (t)|x − y|
√∣∣∣log

(
|x − y| ∧ 1

2

)∣∣∣
for all (x, y) ∈ Ω2 and t < T ∗ (see [3]). Hence, we can prove by an easy Gronwall-
type lemma that for all h > 0 and for all (x, y) ∈ Ω2 and t < T ∗,

|X(t, x)−X(t, y)| 5 |x − y|1/(1+h) exp
(C
h

(∫ t

0
γ (s)ds

)2 )
,

where X denotes the Lagrangian flow of u defined by Ẋ = u(t, X) and
X(0, x) = x. In particular, X ∈ C0,α([0, T ∗)×Ω)2 for all α ∈ (0, 1).
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