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Homoclinic Saddle-Node Bifurcations
and Subshifts in a Three-Dimensional Flow

Geertje Hek, Arjen Doelman & Philip Holmes

Abstract

We study a two-parameter family of three-dimensional vector fields that are
small perturbations of an integrable system possessing a line Γ of degenerate sad-
dle points connected by a manifold of homoclinic loops. Under perturbation, this
manifold splits and undergoes a quadratic homoclinic tangency. Perturbation meth-
ods followed by geometrical analyses reveal the presence of countably-infinite sets
of homoclinic orbits toΓ and a non-wandering set topologically conjugate to a shift
on two symbols (a Smale horseshoe). We use the symbolic description to identify
and partially order bifurcation sequences in which the homoclinic orbits appear,
and we formally derive an explicit two-dimensional Poincaré return map to fur-
ther illustrate our results. The problem was motivated by the search for travelling
‘structures’ such as fronts and domain walls in partial differential equations.
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1. Introduction

In this paper we study homoclinic and heteroclinic orbits in a family of near-
integrable three-dimensional flows. The underlying idea is to study the global con-
sequences of local (saddle-node) or quasi-local (homoclinic) bifurcations, whose
presence and type can be determined by straightforward normal-form and Melnikov-
type perturbation calculations. Geometrical arguments involving a Poincaré map
then build on these analyses to create a relatively complete global picture, and a
symbolic description, of stable and unstable manifolds and their intersection sets.
In this manner we detect and characterise countable sequences of homoclinic, hete-
roclinic, and periodic orbits, and (partially) describe the bifurcations in which they
are born. This paper extends and generalises the studies of [4] and [3]; in particular,
we introduce the methods of symbolic dynamics to describe the nonwandering set.

The vector fields studied here and in [4, 3] are simple polynomials which repre-
sent key features of rational functions obtained by inserting a travelling-wave ansatz
in evolution equations of Ginzburg-Landau type, and the homoclinic or heteroclinic
orbits correspond to spatial structures with one or more pulses or bumps (domains)
or kinks (interfaces); see [5, 19, 1] and references therein. These structures are gen-
erally regarded as relevant to the questions of pattern-formation and spatio-temporal
dynamics in extended continuum systems. Specifically, near the initial onset of in-
stability in problems such as Taylor-Couette flow, it has been proved that certain
solutions of the governing (Navier-Stokes) equations are tracked by solutions of
modulation or amplitude equations of the form

∂A

∂t
= α

∂2A

∂x2
+ f1(|A|2)A+ i

∂

∂x
[f2(|A|2)A] + iA

∂

∂x
[f3(|A|2)];(1.1)

see [18] and references therein. Here A(x, t) : R × R+ → C represents the enve-
lope of a nearly-sinusiodal wave, α ∈ C is a parameter, and fi(|A|2), i = 1, 2, 3,
are complex-valued real-analytic functions that also depend upon parameters spe-
cific to the problem. Travelling, time-periodic solutions of the form A(x, t) =
A(x − ct)eiwt for (1.1) satisfy the ordinary differential equation

αA′′ + cA′ − iwA+ f1(|A|2)A+ i[f2(|A|2)A]′ + iA[f3(|A|2)]′ = 0,(1.2)

where ′ = d/dξ and ξ = x − ct . Noting the invariance with respect to phase
shift A → Aeiψ and introducing polar coordinates A(ξ) = ρ(ξ)eiθ(ξ) in turn
reduce (1.2) to a three-dimensional (real) system in (ρ, ρ′, θ ′). Several integrable
cases exist, in particular those for which α ∈ R, c = w = 0 and fi are real
valued (i = 1, 2, 3); or α ∈ iR and fi(|A|2) ∈ iR (i = 1, 2, 3); see [2, 19].
Small perturbations of such a limiting case result in a nearly-integrable system
with a structure similar to the problem studied below [4, 3]. However, although our
original motivation derived from this application, the methods developed here are
more generally relevant to three-dimensional dynamical systems.

The systems of concern here are of the general form

ẋ = y,

ẏ = x − x2 + εf (x, y, z;µ),
ż = εg(x, y, z;µ),

(1.3)
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so that, for ε = 0, the functions

k(x, y) = 1
2y

2 − 1
2x

2 + 1
3x

3 and z(1.4)

remain constant and the lines Γ0 = {(x, y, z)|x = y = 0} and V0 = {(x, y, z)|x =
1, y = 0} are respectively filled with hyperbolic and elliptic equilibria. Each point
on Γ0 is connected to itself by a homoclinic loop: the compact part of the level set
k(x, y) = 0. For simplicity the functions f and g, which depend upon a parameter
µ ∈ Rd , are chosen to preserve these lines, but since Γ0 is normally hyperbolic, a
nearby slow manifold Γε = Γ0 +O(ε) is preserved for any C2-small perturbations
f, g [6]. Our main goal is to study the stable and unstable manifolds W s(Γε),
W u(Γε) ofΓε and their intersections: the homoclinic and heteroclinic orbits referred
to above.

In [4] Doelman & Holmes took the quadratic functions f = y(b + cz),
g = ν + ρx + z2, for which a saddle-node bifurcation of fixed points S± =
{(x, y, z) = (0, 0,±√

ν)} occurs on Γε, and the stable and unstable manifolds
of Γε intersect transversely in a primary single pulse loop γ (t) near z = −b/c.
The focus of [4] is the interaction of S± and their stable and unstable manifolds
with γ (t), which leads to the creation (destruction) in explosions (implosions) of
countable sets of secondary homoclinic or heteroclinic orbits connecting S+ to S−,
S+ to z = +∞, z = −∞ to S− and z = −∞ to z = +∞.

In [3] Doelman & Hek took the ostensibly simpler functions f = y(z2 −a),
g = 1 + bx for which W u(Γε) and W s(Γε) have quadratic contact near z = 0 at
a = a∗ = 0 +O(ε). There are no fixed points on Γε in this case (although in [3]
and below it is sometimes convenient to compactify by introducing fixed points
S± far from z = 0 but with |z±| < ∞). It was shown that the primary homoclinic
tangency, which creates two single-pulse homoclinic orbits, is followed by a cascade
of bifurcations creating n-pulse orbits (n = 2, 3, . . . , O(| log ε|)) as a increases
through a∗ to a = O(1). If b = −1, these are the only such connections, but
if b < −1, the picture is considerably more complex. In this case, the vertical
component ż = ε(1 + bx) of the flow is positive for x < −1/b and negative for
x > −1/b. The existence of recurrent orbits which “balance” these counteracting
effects can lead to the creation of a rich non-wandering setΛ topologically conjugate
to a shift on two symbols: a Smale horseshoe. In the present paper we prove the
existence of such a set under appropriate assumptions on the parameters (a, b),
describe its symbolic dynamics, and use them to develop a symbolic description
of orbits in W u(Γε) ∩W s(Γε) and to describe the relationship between this latter
homoclinic set, Λ and W u(Λ), W s(Λ). In doing so we extend and improve the
bifurcation results in Section 6 of [3].

Section 2 reviews and extends the asymptotic calculations of [3], developing
the necessary results on which the geometrical and symbolic analyses of Sections 3
and 4 are built. In those sections we construct the setΛ, recall its (semi-)conjugacy
to the shift on two symbols, develop an analogous symbolic description to charac-
terize homoclinic orbits in W u(Γε) ∩ W s(Γε), and describe a partial ordering of
bifurcations in which these orbits are created. In Section 5 we formally derive an
explicit two-dimensional mapping F which models P , show that it has a topologi-
cal horseshoe for small ε and yields explicit expressions for some of the bifurcation
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sets described earlier, and prove that it has a hyperbolic horseshoe for certain other
parameter ranges. Section 6 contains conclusions.

Early papers in which solutions to ordinary differential equation boundary-value
problems of dimension = 3 were studied are those of Kopell and Howard [12,
14]. There the ordinary differential equations were derived from reaction-diffusion
equations, and in the second paper horseshoes and spatially chaotic patterns were
proved by the same techniques used in Sections 3 and 5 of the present paper (see
also Section 6). This paper proceeds in a similar spirit, the goal being to provide
a global understanding of a complex dynamical system and thereby to elucidate
pattern formation.

2. Review and Extension of Former Results

In this section we recall and extend the results of [3] needed for our subsequent
analysis.

2.1. Basic Features of the Model System

We consider the system (1.3) with the functions f and g of [3]:

ẋ = y,

ẏ = x − x2 + εy(z2 − a),

ż = ε(1 + bx).

(2.1)

Some analyses will require a compact normally hyperbolic slow manifold Γ or a
compactified flow in the z-direction. Without changing the essential ingredients of
the model system, these requirements can be met by putting two saddles far from
z = 0 on Γ :

ż = ε(1 + bx − cz2)(2.2)

with 1 � c � ε, or even by placing invariant planes far from z = 0:

ż = ε(1 + bx)(1 − cz2),(2.3)

again with 1 � c � ε. Replacing the third component of (2.1) by (2.2) or (2.3)
affects neither the conclusions of the Melnikov calculations in this subsection, nor
the calculations below in §2.2, as long as z2 � 1/c. (This z range is sufficient,
since the bifurcations we study occur in an O(1) neighbourhood of the {z = 0}
plane).

Let Γ = Γε = {x = y = 0}. For ε = 0 there exists a homoclinic manifold
H , corresponding to k = 0 (1.4), which connects Γ to itself. For ε > 0, H splits
into a stable manifoldW s(Γ ) and an unstable manifoldW u(Γ ), compact pieces of
which contain orbits O(ε) close to H for t = 0 and t 5 0, respectively; see [6].
We studyW u(Γ ) andW s(Γ ) via their intersections with the Poincaré cross section
V = {y = 0, 1 < x < 3

2 +O(ε)}. We denote the “first” intersections of W u(Γ )
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and W s(Γ ) with {y = 0}, lying O(ε)-close to the component {y = 0, x = 3
2 }

of H ∩ {y = 0}, by P(Γ ) and P−1(Γ ) respectively. P is (formally) “half” the
Poincaré return map P defined in Section 2.2 below. See [4] and Figure 1.

The Melnikov method for slowly varying systems gives an expression approx-
imating the distance between P(Γ ) and P−1(Γ ) as a function of z. Let xu

ε and
xs
ε denote the intersections of P(Γ ) and P−1(Γ ) with {z = z0}. Solutions γ u

ε =
(xu
ε , y

u
ε , z

u
ε) in W u(Γ ) and γ s

ε = (xs
ε, y

s
ε, z

s
ε) in W s(Γ ) of equations (2.1) are de-

termined by the initial condition γ u,s
ε (0) = (xu,s

ε , 0, z0); γ0(t) = (x0(t), y0(t), z0)

is defined as the homoclinic solution to the unperturbed system (ε = 0) with
γ0(0) = ( 3

2 , 0, z0). Using the expression for the Melnikov function derived (for
instance) in [17] we find that

4W(0, z0, a) =
∫ ∞

−∞
y2

0 (t)(z
2
0 − a)dt = 6

5
(z2

0 − a).

Hence 4W(0, z, a) = 0 for z = ±√
a (a > 0), which implies that for ε > 0, a > 0,

W u(Γ ) and W s(Γ ) intersect transversely O(ε) close to the planes {z = ±√
a}.

Let z∗± = √
a ± O(ε) denote the exact z values for which P(Γ ) and P−1(Γ )

intersect. Since 4W(0, 0, 0) = ∂
∂z

4W(0, 0, 0) = 0, ∂2

∂z2 4W(0, 0, 0) |= 0, ∂
∂a

4
W(0, 0, 0) |= 0, a unique value a = a∗ = 0 +O(ε) exists, for which W u(Γ ) and
W s(Γ ) have quadratic contact (cf. Theorem 4.5.4 of [8]). Let z∗ = 0 + O(ε) be
such that for a = a∗, P(Γ ) and P−1(Γ ) are tangent at a point with z coordinate
z∗. The two intersections W u(Γ ) ∩ W s(Γ ) found for a > a∗ correspond to two
single-loop homoclinic orbits γ+(t) and γ−(t) to Γ . These are defined such that
γ±(0) = (x±, 0, z∗±) ∈ P(Γ ) ∩ P−1(Γ ), where x± = 3

2 +O(ε).

2.2. Structure of W u(Γ ) and W s(Γ ) for Different Parameter Values

We approximate the Poincaré map on the cross section V = {y = 0, 1 < x 5
3
2 +O(ε)} to investigate the flow inside the manifoldsW s(Γ ) andW u(Γ ). Define

P (k, z) = (k + 4K(k, z), z+ 4Z(k, z))(2.4)

with k ∈ (− 1
6 , 0) as in (1.4). Repeated applications of P to P(Γ ) and P−1(Γ )

yield further intersections ofW u(Γ ) andW s(Γ ) with V , leading to insight on the
structure of these manifolds. For n > 1 we define

Pn(Γ ) ≡ P n−1(P (Γ )), P−n(Γ ) ≡ P −n+1(P−1(Γ )).

A solution (xε(t), yε(t), zε(t)), with initial data on V , returns to V after a time
Tε(k, z). The quantities 4K(k, z) and 4Z(k, z) measure the accumulated change
in the variables k and zwithin this time interval. Thus, taking the compactified case
(2.2), we have

4K(k, z) =
∫ Tε(k,z)

0
k̇(xε, yε, zε)dt = ε

∫ Tε(k,z)

0
y2
ε (z

2
ε − a) dt,

4Z(k, z) =
∫ Tε(k,z)

0
ż(xε, yε, zε)dt = ε

∫ Tε(k,z)

0
(1 + bxε − cz2

ε) dt.
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Fig. 1. The structure of W s(Γ ) and Wu(Γ ) for a > 0, b = −1, a, b = O(1).

(For (2.1), simply set c = 0.) We approximate Tε and (xε(t), yε(t), zε(t)) by T0
and (x0(t), y0(t), z0(t)): the solution of (2.1) with ε = 0 and period T0 and the
same or O(ε)-close initial data. This yields

4K(k, z0) = ε

∫ T0(k,z0)

0
y0(t)

2(z2
0 − a)dt +O(ε2),(2.5)

4Z(k, z0) = ε

∫ T0(k,z0)

0
(1 + bx0(t)− cz2

0)dt +O(ε2),(2.6)

or, after changing variables,

4K(k, z) = 2ε
∫ x2(k)

x1(k)

(z2 − a)

√
2k + x2 − 2

3x
3 dx +O(ε2),(2.7)

4Z(k, z) = 2ε
∫ x2(k)

x1(k)

1 + bx − cz2√
2k + x2 − 2

3x
3
dx +O(ε2).(2.8)
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Here 0 < x1(k) < 1 < x2(k) <
3
2 are the points where the unperturbed orbit

intersects the plane {y = 0}.
We can now distinguish two cases. If the averaged flow in the fast field is in the

same direction as the flow on Γ (4Z(k, z) > 0), the system is called cooperating;
if the averaged flow in the fast field is opposed (4Z(k, z) < 0), the system is
counteracting. To determine the different regions in parameter and phase space
we estimate 4Z(k, z) in the limits k ↓ − 1

6 and |k| � 1 by the methods of [4],
obtaining

lim
k↓−1/6

4Z(k, z) = 2επ(1 + b)+O(εc)+O(ε2),(2.9)

4Z(k, z) = −ε log |k| + 6εb +O(−kε log |k|),(2.10)

when |k| � 1, k < 0.

By (2.8) the system is obviously cooperating for b = 0 (and z such that cz2 < 1 if
(2.2) or (2.3) are used). By (2.8) and (2.9) we already have a small counteracting
region near {x = 1, y = 0} (k = − 1

6 ) for b < −1. As b decreases, from (2.9),
(2.10), the counteracting region grows until eventually, for b = O(| log ε|) and
negative, it includes the neighbourhood of W u(Γ ) and W s(Γ ) (4Z(k, z)||k|�1 <

0).
The importance of the distinction between 4Z(k, z) > 0 and 4Z(k, z) < 0

becomes clear if one applies the Poincaré map P or P −1 to the curves P(Γ ) and
P−1(Γ ). The following lemmas proved in [3] describe how P acts on points at
anO(ε)-distance from P−1(Γ ) and on points exponentially close to P−1(Γ ), and
similarly how P −1 acts on points at an O(ε)-distance from P(Γ ) and on points
exponentially close to P(Γ ). They will be used frequently throughout this paper,
not always with explicit citation.

Lemma 2.1. If d(q0, P
−1(Γ )) = δ � 1 for a point q0 = (x, 0, z) with k(q0) <

0(+O(ε)), then d(P (q0), P (Γ )) = O(δ). Similarly, if d(q0, P (Γ )) = δ for a
point q0 = (x, 0, z) with k(q0) < 0(+O(ε)), then d(P −1(q0), P

−1(Γ )) = O(δ).

Here d(., .) is the standard distance function or, equivalently and in the same
order of magnitude with respect to ε, the weighted distance expressed in terms
of k.

In the next lemma, B is a neighbourhood of Γ , independent of ε, in which
local (Fenichel) coordinates can be defined.

Lemma 2.2. If a solution of (2.1) enters B exponentially (O(e−κ/ε) for some
constant κ > 0) close to W s(Γ ), then the trajectory of this solution remains in
B for an O(1/ε) time and leaves B exponentially close to W u(Γ ). Between
entering and departing B , a time interval also of lengthO(1/ε) elapses, in which
the solution is exponentially close to both W s(Γ ) and W u(Γ ). During this time
interval the z coordinate of the solution changes by an O(1) amount.

Since solutions in the domain of P , P −1 spend only O(1) time in the fast
field (outside B ), orbits starting exponentially close to P−1(Γ ) ⊂ W s(Γ ) enter
B exponentially close to W s(Γ ) and orbits leaving B exponentially close to
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W u(Γ ) pass P(Γ ) exponentially close. In fact, this observation is a special case
of Lemma 2.1. Lemma 2.2 is also a C0 version of the (C1) Exchange Lemma with
exponentially small error [13] for this model.

Applying P and P −1 to points on P(Γ ) (or P−1(Γ )) in the domain of P (or
P −1) and using these two lemmas, one finds a curve P (P (Γ )) = P 2(Γ ) and two
distinct curves P −1(P−1(Γ )) = P−2(Γ ) as in Figure 1. This procedure can be
repeated by applying P inside its domain on P 2(Γ ), and P −1 on P−2(Γ ), etc.
The curves Pn(Γ ) ∈ W u(Γ ) are just single tongues, but each P−m(Γ ) ∈ W s(Γ )

consists of m distinct curves. One of these is a branch “paralleling” P−1(Γ ), and
another is the root tongue ofP−m(Γ ). The others are all parts of haloes surrounding
each root tongue P−k(Γ ), 1 < k < m. Indeed, for a > a∗

n and b > −1, each
tongue P−k(Γ )with k 5 n is surrounded by a halo of parallel tongues of P−j (Γ ),
k + 1 5 j 5 n+ 1. See §4 of [3] and Figure 6 below.

Note that for b > −1 the flow in the z direction is always upwards for forward
time, so the ‘tip’ of the forward image of a tongue has greater z coordinate than the
tip of the tongue itself. For a detailed description we refer to §4.1 of [3].

Analyzing the structures of W u(Γ ) and W s(Γ ) we find more intersections of
these manifolds: curves Pn(Γ ) and P−m(Γ ) intersecting in the neighbourhoods of
γ+(0) and γ−(0); see Figure 1. These intersections correspond to orbits homoclinic
toΓ with multiple loops through the fast field, to be considered further in Section 4.
They are created in bifurcations a∗

n , with properties formulated below. The notation
a∗
n is that of [3]. The values a∗

n depend on b, so in fact there is a bifurcation curve
{(a∗

n(b), b)}, which we denote in this paper by

Bn(· 1
2 11 . . . 1︸ ︷︷ ︸

n−1

).

This notation will be explained in §§3.2–4.1. B1(·12 ) is the bifurcation curve on

which the stable and unstable manifolds W s(Γ ) and W u(Γ ) of Γ are tangent;
W s(Γ ) and W u(Γ ) intersect in two primary homoclinic orbits for (a, b) to the
right of this curve and have no primary intersections for (a, b) to the left of it. Then

1. For (a∗(b), b) ∈ B1(· 1
2 ) there is exactly one homoclinic orbit to Γ . For a(b) <

a∗(b), W u(Γ ) ∩W s(Γ ) = ∅, and for a(b) > a∗(b) there are two single-loop
homoclinic orbits.

2. For each b fixed there exists a sequence of parameter values a∗
n with a∗

n+1 >

a∗
n , n > 1, at which two n-loop homoclinic orbits are created in a saddle-

node bifurcation: for a < a∗
n , P−n(Γ ) ∩ P(Γ ) = ∅, while for a > a∗

n , two
intersection points P−n(Γ ) ∩ P(Γ ), corresponding to two n-loop homoclinic
orbits, exist. In the present notation this ordered sequence of bifurcation curves

is called Bn(· 1
2 11 . . . 1).

The bifurcations described here occur in both the cooperating and the counteracting
cases. We refer to Theorems 4.2, 4.7 and 6.1 of [3].
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Remark 2.3. If we replace the equation for ż by (2.2), the picture changes in that
there are now two saddle points S± on Γ : S+ with positive and S− with negative z
coordinate. The point S+ has a two-dimensional stable manifoldW s(S+) and a one-
dimensional strong unstable manifold W u(S+), while S− has a two-dimensional
unstable manifoldW u(S−) and a one-dimensional strong stable manifoldW s(S−).
Hence the orbit through a point p ∈ P−1(Γ ) is homoclinic to Γ for t → ∞ if it
tends to S+. Orbits through points exponentially close to p are mapped by P to
a neighbourhood of W u(S+) ∩ P−1(Γ ) (instead of a point with z coordinate � 1
as in system (2.1)). Similarly, an orbit homoclinic to Γ for t → −∞ in system
(2.1) corresponds to an orbit originating from S−. (See [4, 1, 8] for a detailed
description of the maps P and P −1 near critical points on Γ .) The tongues and
branches Pn(Γ ) and P−m(Γ ) are no longer infinitely long as in Figure 1, but
are ‘pinched’ at the intersections of P−1(Γ ) and P(Γ ) with the strong stable and
unstable manifolds of S±. See Figure 4 below and [4].

As b decreases below −1, near the axis {x = 1, y = 0}, the averaged flow in the
z direction becomes increasingly negative and tonguesPn(Γ ) andP−m(Γ ),m, n >
1, can intersect. First, for b close to −1, the high-order (n,m � 1) tongues Pn(Γ )
and P−m(Γ ) (the latter with its halo) intersect near {x = 1, y = 0}, and hence new
(n+m−1)-loop homoclinic orbits arise. If P and P −1 are applied repeatedly, this
implies that Pn+m−1(Γ ) intersects P−1(Γ ) and P−n−m+1(Γ ) intersects P(Γ ). In
[3] it was proved that

1. No intersections of tongues Pn(Γ ) and P−m(Γ ) can appear before all bifurca-

tions Bn(· 1
2 11 . . . 1) have occurred.

2. As b enters the counteracting régime for a > 0, each tongue P−k(Γ ), k = 3,
with its halo, bends around P−2(Γ ) and passes down to z = −∞ before the
P−(k−1)(Γ ) tongue intersects P(Γ ).

3. The last tongues to pass through P±1(Γ ) are P∓2(Γ ).

The orbits created as each tongue and its halo first intersect P(Γ ) are those
described in [3] Section 6, Theorems 6.3–6.9, in which the existence of 4(N−1)−2
N -loop homoclinic orbits is proved for each N = 2, with a > 0 and b sufficiently
negative.

Since it is simplest to describe and analyse the flow near P(Γ ) and P−1(Γ ),
we take b = O(| log ε|) and negative. Moreover, in this paper we will show that P
has the structure of a full topological horseshoe only when b = O(| log ε|) and is
sufficiently negative. In this case, P∓2(Γ ) and P(Γ ) intersect as shown in Figure 2
and described in the next result, which follows from Theorem 6.3 of [3]. Since it is
crucial for our subsequent analysis, we give a formulation and proof independent
of [3].

Theorem 2.4. For a = O(1) > 0, b = O(| log ε|) with b sufficiently negative, the
tongues P 2(Γ ) and P−1(Γ ), and hence P(Γ ) and P−2(Γ ), intersect.

Proof. The theorem is proved by showing that there are points in P(Γ ) that have
their images P (s) ∈ P 2(Γ ) to the right of P−1(Γ ) and below γ−(0). Without
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Fig. 2. Structure ofWu(Γ ) andW s(Γ ) for b = O(| log ε|) sufficiently negative: P(Γ ) and
P−2(Γ ) (or P−1(Γ ) and P 2(Γ )) intersect. The compactified case is shown.

loss of generality we assume that |b| = O(1) and b < 0. Take a point s ∈ P(Γ )
and define d = d(s, P−1(Γ )) where d(., .) is the standard distance function (or,
equivalently, the distance in k). Assume that d � ε is at most algebraically small
in ε. Then by Lemma 2.1, d(P (s), P (Γ )) = O(d). By ż = ε(1 + bx) (or one of
equations (2.2) and (2.3)) and (2.10) the shift in z between s and P (s) is

4Z(s) = O(εb)+O(ε| log ε|);(2.11)

the first term corresponds to the fast flow and is negative if b is negative enough,
the second term is the positive slow flow.

If a = O(1) > 0, the angle between P(Γ ) and P−1(Γ ) is O(ε). Hence P (s)

lies to the right of P−1(Γ ) and below γ−(0) if | 4 Z(s)| � d/ε and 4Z(s) < 0;
see Figure 3. Combining this with (2.11) we find that P (s) lies as claimed if

|b| � | log ε| and ε|b| � d

ε
,

or |b| � max(| log ε|, d/ε2). Since d is “free” as long as d � ε, we can make
the special choice d = O(ε2| log ε|), which ensures that for |b| � | log ε| and
sufficiently negative the image of the point s lies to the right of P−1(Γ ). However,
the crucial value of b for which 4Z(s) becomes sufficiently negative isO(| log ε|),
and we can state the theorem for |b| = | log ε| sufficiently negative. ut
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Fig. 3. Neighbourhood of γ−(0) in the plane V , showing conditions on s ∈ P(Γ ) to be
mapped to the right of P−1(Γ ) and below γ−(0).

2.3. Existence and Local Character of Periodic Orbits

We consider the compactified vector field, i.e., (2.1) with (2.2). The fixed points
of the Poincaré map P for this vector field are given by

4K(k, z) = ε(z2 − a)S0(k)+O(ε2) = 0,(2.12)

4Z(k, z) = ε(1 − cz2)T0(k)+ εbT1(k)+O(ε2) = 0,(2.13)

where, for concision, we use the notations for the integrals of (2.7), (2.8) introduced
in [4]:

Ti(k) =
∮

xi√
2k + x2 − 2

3x
3
dx,(2.14)

Si(k) =
∮
xi
√

2k + x2 − 2
3x

3dx.(2.15)

Since 4K(k, z) = O(ε2) in the planes {z = ±√
a}, a = 0 , and S0(k) |= 0 for

− 1
6 < k < 0, fixed points can exist only O(ε)-close to these planes. Equating

4Z(k, z) to zero in a plane {z = z0} leads to

b = (cz2
0 − 1)

T0(k)

T1(k)
+O(ε) = cz2

0 − 1

T (k)
+O(ε)(2.16)
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where T (k)
def= T1(k)

T0(k)
. If in place of (2.2) we consider (2.3), then

4Z(k, z) = ε[(1 − cz2)T0(k)+ bT1(k)] = 0 for b = − 1

T (k)
,

so we can simply follow the computations for (2.2) with c = 0.
It was shown in [4] that d

dk
T (k) < 0 for − 1

6 < k < 0, limk↓−1/6 T (k) = 1
and limk↑0 T (k) = 0. Hence, in the relevant domain cz2

0 < 1, for each b < cz2
0 −

1 < 0 there is (to orderO(ε)) exactly one k(b) ∈ (− 1
6 , 0) such that 4Z(k, z) = 0.

Thus, for a > 0 and b < ca − 1 < 0 the map P has two fixed points (k0,
√
a)+

h.o.t., and (k0,−√
a) + h.o.t. which we define to be p and q. These fixed points

exist only for b in the counteracting régime; they appear at the axis {x = 1, y = 0}
for b = −1 and move to the right as b decreases.

To determine the local character of the periodic orbits corresponding to these
fixed points, we estimate the linearised map DP . At leading order this yields the
matrix

M =




1 + ∂

∂k
4K

∂

∂z
4K

∂

∂k
4 Z 1 + ∂

∂z
4 Z




4K = 4Z = 0

def=
(

1 + εA1 εB1

εC1 1 + εD1

)
.(2.17)

Writing the eigenvalues of M as

λ = 1 + ελ1 +O(ε2),

introducing higher-order terms ε2A2 and ε2D2 on the diagonal and expanding the
characteristic equation we find

A1D1 − B1C1 − (D1 + A1)λ1 + λ2
1 = 0.(2.18)

Note that theO(ε2) termsA2 andD2 do not appear at this order. Recall that 4K = 0
only for z2 − a = 0 (to O(ε)), so

A1 = 1

ε

∂

∂k
4K|4K=4Z=0 = (z2 − a)

∂

∂k
S0(k)|4K=4Z=0 = 0.

Using T0 > 0, S0 > 0 and z = ±√
a for 4K = 0 in the equations

B1 = 2zS0(k)|4Z=0, D1 = −2czT0(k),(2.19)

we find that

signB1 = sign z, signD1 = −sign z if c > 0, D1 = 0 if c = 0.(2.20)

Finally, the expressions

d

dk
T0 = − 6kT0 + T1

6k(6k + 1)
and

d

dk
T1 = −T0 + T1

6k + 1
(2.21)
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from [4] yield

C1 = (1 − cz2)

(
− 6kT0 + T1

6k(6k + 1)

) ∣∣∣∣4K=4Z=0
+ b

(−T0 + T1

6k + 1

) ∣∣∣∣4K=4Z=0
.

Since, at leading order, z2 = a and T1 = − 1−ca
b
T0 for 4Z = 0, 4K = 0, we can

eliminate T1 from this expression:

C1 = b
Y 2 − 12kY − 6k

6k(6k + 1)
T0|4Z=0 with Y = 1 − ca

b
.(2.22)

The polynomial in Y satisfies Y 2 − 12kY − 6k > 0 for k ∈ (− 1
6 , 0), so

signC1 = −sign b.(2.23)

If λ+
1 and λ−

1 satisfy (2.18), then λ+
1 + λ−

1 = D1 and λ+
1 λ

−
1 = −B1C1, since

A1 = 0. In the relevant case b < −1 + ca < 0 we can therefore formulate:

Theorem 2.5. For b < −1 + ca < 0, c > 0, |c| � 1, the periodic orbit corre-
sponding to q ≈ (k(b),−√

a) is unstable. For c = 0 it is of center type (at first
order). The periodic orbit corresponding to p ≈ (k(b),

√
a) is of saddle type for

all b < −1 + ca < 0, c = 0.

3. A Topological Horseshoe for b = O(| log ε|) and Negative

The asymptotic calculations of [3], summarised above in Theorem 2.4, show that
for a = O(1) and b = O(| log ε|) sufficiently negative, there exists εs(a, b) > 0
such that for all 0 < ε < εs(a, b),P(Γ ) andP−2(Γ ) intersect as shown in Figure 2.
Here and in the next section we show that this in turn implies the existence of a
topological horseshoeΛwhose stable and unstable manifolds intersect the unstable
and stable manifolds of Γ . We use the symbolic dynamics associated with points in
Λ to construct symbol sequences of arbitrary length that describe homoclinic orbits
in W u(Γ ) ∩W s(Γ ). These sequences precisely characterize orbits created in the
subset of homoclinic bifurcations described in [3], and clearly reveal infinitely many
additional bifurcations. They also allow us to partially order these bifurcations in
terms of their sequences as one moves “monotonically” across the (a, b) parameter
plane.

3.1. Existence of a Topological Horseshoe and Symbolic Dynamics

In the following we sometimes assume that all “primary” intersections of stable
and unstable manifolds are transverse and that contraction and expansion estimates
for the linearised Poincaré map DP , restricted to certain regions, are sufficient to
guarantee hyperbolicity. (We prove this for a model mapping in Section 5.3.) This
simplifies our analysis, and implies that the correspondence to shifts on symbol
sequences is by homeomorphism. We have been unable to check hyperbolicity by
asymptotic calculations of the type done in Section 2, but relaxing this requirement,
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Fig. 4. (a) The compactified flow, showing the regions Hj and their images Vj = P (Hj ).
(b) The topological horseshoe. S is the rectangle bounded by the leftmost and rightmost
components of Wu

loc(p), and by the uppermost and lowermost components of W s
loc(p). H1

and H2 are the horizontal strips and V1 and V2 the vertical strips. H̃i are the unions of Hi
and the vertical-dashed regions, Ṽi are constructed likewise.

we still obtain a topological horseshoe and an associated semi-conjugacy to symbol
sequences (each sequence has at least one orbit, but possibly more than one, as
preimage). Indeed, we have:

Theorem 3.1. For a (= O(1)) > 0 and b = O(| log ε|) sufficiently negative, the
map P has an invariant setΛ on which P is semi-conjugate to a full shift on two
symbols: P has a topological horseshoe.

Proof. Theorem 2.4 asserts that the structure of Figure 2 occurs in the parameter
range assumed. Using the compactification of Section 2 and “rectifying” this pic-
ture, we may construct a region S part of whose image P (S) ∩ S = V1 ∪ V2 lies
as shown in Figure 4, such that P (Hj ) = Vj , j = 1, 2. Let

Λ =
∞⋂

n=−∞
P n(S).

Note that the flow must be compactified to define Λ, since otherwise the regions
P n(S)might be unbounded in the z direction. The setΛ is clearly invariant under
P .

As usual in the canonical piecewise linear case (§5.1 of [8]) or the more general
hyperbolic case (§3 of [16]; §5.2 of [8]), we define a mapping x → a(x) associating
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each point x ∈ Λ to a bi-infinite sequence a(x) ∈ {1, 2}Z which describes its
itinerary. Specifically, let a(x) = {aj (x)}∞j=−∞ with

aj (x) =
{

1 if P j (x) ∈ H1,

2 if P j (x) ∈ H2.
(3.1)

Clearly, each point inΛ defines a sequence, for if some iterate P j (x) |∈ H1 ∪H2,
then x |∈ Λ. Moreover, since Vj = P (Hj ) is stretched across both H1 and H2, for
every sequence a there exists at least one point x ∈ Λ whose orbit P j (x) follows
a. This gives the desired semi-conjugacy to symbol sequences, and thus we have a
topological horseshoe. ut

If DP |Λ and DP −1|Λ satisfy uniform expansion bounds (cf. §5.3), the cor-
respondence is unique and a is a homeomorphism fromΛ to {1, 2}Z equipped with
the metric

d(a, b) =
∞∑

j=−∞

|aj − bj |
2|j | .

Via the correspondence (3.1), the local component of W s(Λ) containing x
is identified by the forward-going part of the sequence . . . · a0(x)a1(x)a2(x) . . . ,
while the local component ofW u(Λ) is identified by . . . a−3(x)a−2(x)a−1(x) · . . . .
Here we define these local manifolds as W s,u

loc (Λ) = W s,u(Λ) ∩ S. The symbolic
description allows one to enumerate periodic and homo- and heteroclinic points in
Λ, and to prove the existence of a dense orbit [8].

Remark 3.2. The Poincaré map P is defined “globally” on the cross section V =
{y = 0, 1 < x 5 3

2 +O(ε)} and the fundamental regionsHi and Vj are clearly also
global in V : they extend above and below γ±(0) (Figure 4(a)). Hence, orbits of
(2.1) defined by different sequences a(x) ∈ {1, 2}Z are not all close in the (x, y, z)-
phase space (this is clear for the 1-periodic orbits which lie near z = ±√

a). It is
this global aspect that obstructs a hyperbolicity proof for Λ for the flow itself. To
apply the method of Moser ([16]; see also §5.3), one needs global estimates on
the linearisationsDP andDP −1 of the return map. The singular structure of the
flow near W u,s(Γ ) is completely different from its regular structure O(1) away
fromW u,s(Γ ), and it seems difficult to maintain sufficient control on derivatives in
matching orbits. (In the formal derivation of a model mappingF of Section 5, naive
matching leads to “unbalanced” orders of ε; cf. §5.1.) Of course this does not mean
thatΛ cannot be hyperbolic, merely that “simple” estimates fail. In the paper [14] by
Kopell & Howard a horseshoe was constructed in a three-dimensional system
similar to (2.1). However, there — as in most explicit horseshoes constructed in
ordinary differential equations — the return map is only defined in a small region (of
sizeO(ε2)×O(ε2)). As a consequence, hyperbolicity follows from the linearised
flow near a slow manifold. The Šilnikov construction [20], cf. [8], is similarly
quasi-local.
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Fig. 5. The period three orbits . . . 112112112 . . . and . . . 122122122 . . . in Λ; the orbits
form a nontrivial link.

Hyperbolic or not, the global nature of Λ enables us to find “large” periodic
orbits, most of them nontrivially knotted and linked, which encircle the line {x =
1, y = 0} and span the region z ∈ [−√

a,+√
a]. For example, keeping track of

twisting as the Hi are carried by the flow to Vj , we can sketch the period-three
orbits with sequences . . . 112112112 . . . and . . . 122122122 . . . as in Figure 5.
They are clearly nontrivially linked. (See [7] and references therein for a detailed
study of knots and links associated to horseshoes and three-dimensional flows in
general.) Such global information on periodic orbits is usually hard to obtain for
specific ordinary differential equations; here it readily follows from the geometrical
construction of Λ.

Remark 3.3. The existence and stability types of the fixed points p and q proved
in §2.3 are consistent with the horseshoe, since p (= . . . 111 . . . ) near z = √

a is a
hyperbolic saddle and q (= . . . 222 . . . ) near z = −√

a is unstable. However, as in
the better-known Hénon map [9], one must take parameter ranges such that q has
undergone a period-doubling bifurcation; cf. §5.1. In particular, ifΛ is hyperbolic,
the Lambda Lemma (cf. [8, Theorem 5.2.10]) implies that the closures ofW u,s(p)

are the stable and unstable manifolds W u,s(Λ) of Λ.

By construction, p lies above all tongues Pn(Γ ), and W u,s(p) thread through
W u,s(Γ ) (see Figure 4(b)). Carefully studying the structure of this picture and noting
that the effect of increasing b is to “draw back” the tongues Pn(Γ ) and P−m(Γ ),
we observe that each tongue Pn(Γ ) ⊂ W u(Γ ) must first intersect W s(p) before
it intersects any tongue P−m(Γ ) (and P−m(Γ ) ⊂ W s(Γ ) must similarly intersect
W u(p) before any intersection Pn(Γ ) ∩ P−m(Γ ) occurs). This observation leads
to a theorem giving a bound between the cooperating and the counteracting cases.
See Figure 6.
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Fig. 6. The Poincaré cross section {x > 1, y = 0} showing the fixed points p and q, the
(local) manifolds Wu,s(p), and the structure of Wu,s(Γ ) at the bifurcation value a∗

5 =
B5(· 1

2 1111).

Theorem 3.4. In the parameter plane there exists a curve B∞(· 1
2 111 . . . ) =

{(a∗∞(b), b)}, such that for every b fixed all bifurcation values a∗
n(b) satisfy a∗

n(b) <

a∗∞(b) and W s(p) ∩W u(Γ ) = ∅ for a < a∗∞(b). This curve satisfies

lim
b↑−1

a∗∞(b)
{= ∞ for c = 0,

5 1
c

for small c > 0,

lim
b→−∞ a

∗∞(b) � 1.

Corollary 3.5. Since W s(p) ∩W u(Γ ) = ∅ for a < a∗∞(b), by the above obser-
vation there are no intersections between tongues in W u(Γ ) and (root) tongues in

W s(Γ ) for a < a∗∞(b), so the curveB∞(·12 111 . . . ) is a boundary in the parameter

plane between the cooperating and the counteracting régimes.

Proof of Theorem 3.4. We consider the cross section V = {y = 0, 1 < x <
3
2 +O(ε)}. The fixed point p appears at the axis {x = 1, y = 0} for b = −1 + ca
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(see Section 2.3). At that parameter value the stable and unstable manifoldsW u,s(p)

of p coincide with the invariant line {x = 1, y = 0} and hence p and W u,s(p) lie
entirely “inside” W u(Γ ) and W s(Γ ). Since p can never lie on W s(Γ ) or W u(Γ ),
it cannot cross any branch P−n(Γ ) as b decreases. Hence p remains inside all of
them.

When a < a∗
n(b) for some b fixed, W u(Γ ) ∩ P−m(Γ ) = ∅ for all m =

n and W u(Γ ) lies completely outside P−n(Γ ). All branches P−m(Γ ), m = n

lie between p and W u(Γ ). Since W s(p) cannot intersect P−m(Γ ) ⊂ W s(Γ ),
W s(p) ∩W u(Γ ) = ∅ for such a.

P(Γ ) must pass through all the branches of P−n(Γ ) paralleling P−1(Γ )

before it can intersect any root tongue in P−m(Γ ) (i.e., all bifurcations a∗
n or

Bn(· 1
2 11 . . . 11) have occurred before the slow and fast fields become counteract-

ing). Hence there must be an upper bound a∗∞ on the bifurcation values a∗
n for each

b in the counteracting regime. The pairs (a∗∞(b), b) form a curve B∞(· 1
2 111 . . . ).

As b ↑ −1 + ca, the system becomes cooperating, p and q limit on the line
{x = 1, y = 0} and the branches P−n(Γ ) for n → ∞ remain close to the invariant
line V0 = {x = 1, y = 0}. For c = 0 this means that a must pass to ∞ to make
P(Γ ) intersect all branches P−n(Γ ); thus limb↑−1 a

∗∞(b) = ∞. However, for
c > 0 small, the intersections P(Γ )∩P−1(Γ ) cross the strong stable and unstable
manifolds of S± for a ≈ 1/c. For a > 1/c the part of W s(Γ ) between the saddles
already lies completely outside W u(Γ ) (for a < a∗ W u(Γ ) lies outside W s(Γ )!),

so all bifurcations a∗
n or Bn(·12 11 . . . 11) must occur before a reaches 1/c. Thus

limb↑−1 a
∗∞(b) 5 1/c.

When b = O(| log ε|) < 0, P(Γ ) intersects the root tongue of P−m(Γ ) for
every m and all a = O(1). The bifurcations a∗

n all occur before these tongues first
intersect P(Γ ) and while the k coordinates of p and q are nearly zero (independent
of a as long as a > 0; see (2.16)). Since the tongues P−m(Γ ) of W s(Γ ) and
W u(Γ ) first intersect for a � 1, W s(p) and W u(Γ ) must already intersect for
a � 1. These observations yield limb→−∞ a∗∞(b) � 1. ut
Remark 3.6. One must take care interpreting the limit a → ∞: a can be taken large,
but it has to remainO(1), since the unperturbed vector field changes dramatically if
a = O(1/ε), becoming for ε = 0 a damped oscillator with no homoclinic manifold.

Remark 3.7. The relation between bifurcations creating the intersectionsW u(p)∩
W s(p) (and the corresponding standard homoclinic tangle and horseshoe for the
map P [8]) and the homoclinic bifurcations studied here is quite delicate and
interesting. Under appropriate conditions the curve a = a∗∞(b) is also the “first”
W u(p) ∩ W s(p) homoclinic bifurcation curve; this will be the subject of future
work.

3.2. Symbol Sequences for Orbits in W u(Γ ) ∩W s(Γ )

Since W u(Γ ) and W s(Γ ) thread through Λ, by construction, an arc of W s(Γ )

lies between each pair of arcs in W s
loc(Λ) and an arc of W u(Γ ) lies between each
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pair of arcs inW u
loc(Λ). We will use this fact to define symbol sequences for points

in W u(Γ ) ∩W s(Γ ) and hence uniquely identify homoclinic orbits to Γ .
We will need a notion of local manifolds W s,u

loc (Γ ), which we define with the
help of Figure 4 as W s,u

loc (Γ ) = W s,u(Γ ) ∩ S̃, where S̃ is the rectangle bounded
by the leftmost and rightmost components of W u

loc(p), and by two components of
P−1(Γ ); P−k

loc (Γ ) and P lloc(Γ ) are defined analogously. Our construction implies
that P−k

loc (Γ ) consists of 2k horizontal arcs and P lloc(Γ ) of 2l−1 vertical arcs. These
two sets intersect in exactly 2k+l−1 points, representing points on 2k+l−1 distinct
(k+ l− 1)-loop homoclinic orbits to Γ . We will identify these by finite sequences
of length k + l − 1.

We first describe the sequences for the one- and two-loop orbits in W u(Γ ) ∩
W s(Γ ), before proceeding to the general case. We attach the sequences .1 and .2 to
the two points γ+(0) and γ−(0) inP−1(Γ )∩P(Γ ), identifying the former as lying
in the upper component of P−1

loc (Γ ) and the latter as lying in the lower component
of P−1

loc (Γ ). The four points of P−1(Γ ) ∩ P 2(Γ ) are denoted 1· 1, 2· 1, 1· 2 and
2· 2, the first pair lying in P(Γ )∩ H̃1 and the left (or right) component of P 2

loc(Γ ),
the second pair lying in P(Γ ) ∩ H̃2 and the left (or right) component of P 2

loc(Γ );
their preimages lie in P−2(Γ ) ∩ P(Γ ) and have sequences · 11, · 21, · 12 and · 22
respectively. Here H̃1,2 areH1,2 extended to the upper (or lower) bound (P−1(Γ ))
of S̃ and to the lower (or upper) part of the root tongue P−2(Γ ); see Figure 4.

In general, by analogy with (3.1), a point in P−k
loc (Γ ) ∩ P lloc(Γ ) is identified

by a sequence b−l+1b−l+2 . . . b−1 · b0b1 . . . bk−1 of length k + l − 1 in which
b−l+1 . . . b−1 specifies the component ofP lloc(Γ ) and b0 . . . bk−1 specifies the com-
ponent of P−k

loc (Γ ). By construction, shifts of this sequence automatically locate

P 3(Γ ) P (Γ )

2.1
.1
.11

1.12

1.22

2.12

.22

1.2 2.2 .21
.2

.12

2.22

1.1

.111

.211

21.2

22.2

11.2

21.2

P 2(Γ )

P−2(Γ )

P−3(Γ )

P−3(Γ )

P−3(Γ )

P−2(Γ )

P−1(Γ )

Fig. 7. Some sequences for points in Wu(Γ ) ∩W s(Γ ).
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iterates correctly in P−k+j
loc (Γ ) ∩ P l+jloc (Γ ). To identify individual orbits, we need

only specify one of the j ∈ [−l+1, k−1] shifts. To fix notation, we take those points
lying in P−(k+l−1)

loc (Γ ) ∩ Ploc(Γ ), with sequences of the form · b0b1 . . . bk+l−1,
as representative. The procedure may be summarised as follows. To each point
x ∈ P−(N−1)

loc (Γ ) ∩ Ploc(Γ ) we assign a sequence {bj (x)}N−2
j=0 via

bj (x) =
{

1 if P j (x) ∈ W u
loc(Γ ) ∩ H̃1,

2 if P j (x) ∈ W u
loc(Γ ) ∩ H̃2.

(3.2)

Further examples are given in the next section.

Since arcs of W u(Γ ) (or W s(Γ )) lie between arcs of W u(Λ) (or W s(Λ)) and
W s(Λ) ∩W u(Λ) |= ∅, the manifolds W u(Γ ) and W s(Λ) (or W s(Γ ) and W u(Λ))
must also intersect (in countably many points!). Such intersections correspond to
orbits which originate near Γ and first follow W u(Γ ), then pass to Λ and remain
near it for an arbitrarily long ‘time’, and finally follow W s(Γ ) back to Γ . This
provides another interpretation of the codes for homoclinic orbits to Γ :

Theorem 3.8. For every finite block ai . . . aj contained in a sequence a(x) of a
point x ∈ Λ a homoclinic orbit to Γ can be constructed. This orbit corresponds
to the sequence · b0 . . . bj−i−1 = · ai . . . aj and follows (i.e., remains close to) the
orbit of x during a finite time. The beginning and ending points of the sequence
represent the intersection points W u(Γ ) ∩W s(Λ) and W u(Λ) ∩W s(Γ ).

4. Symbolic Dynamics and Bifurcation Sequences

In Section 2 certain subsets of homoclinic bifurcations were described. First,
for all b (cooperating and counteracting cases) “saddle-node” bifurcations occur,
each of which creates a pair of N -loop homoclinic orbits having respectively N
loops near z = +√

a, and one loop near z = −√
a and N − 1 near z = +√

a ([3,
Theorems 4.2 and 6.1]). For the counteracting (b < −1) case, certain additional
homoclinic bifurcations were described ([3, Theorems 6.3–6.9]). All these homo-
clinic orbits belong to W u(Γ ) ∩W s(Γ ) and may therefore be identified via their
symbol sequences. We start by describing the first and simplest, those appearing
for all b.

4.1. Identifying Homoclinic Orbits and Bifurcation Sequences

As described in Section 2, the “primary” homoclinic orbits occurring for allb are
created when P(Γ ) first intersects P−N(Γ ). Since P(Γ ) penetrates P−1(Γ ) and
the components ofP−k(Γ ), k = 2, from the right, the homoclinic points necessarily
lie in the rightmost component of P−k

loc (Γ ) for each k = 2. The corresponding
symbol sequences are therefore

· 111 . . . 11︸ ︷︷ ︸
N

and · 2 11 . . . 11︸ ︷︷ ︸
N−1
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respectively. Sequences of these forms are the only ones to appear in the cooperating
case.

Fig. 8. Primary tongues P−k
loc (Γ ) and their halos intersecting Ploc(Γ ), k 5 5.

To assign further sequences, it is helpful to refer to Figure 8, which shows the
tonguesP−k

loc (Γ ) and their halos identified by the integers k, with those components
relevant to Section 6 of [3] in solid lines and other components dotted. Only tongues
with k 5 5 are shown. Using the symbol assignment rule (3.2) of Section 3, we
can now write the sequences forM-loop orbits created in the “first” intersection of
the N ’th tongue and its halo with P(Γ ) (i.e. those described in [3]) as follows:

N = 2 · 1
2 2 11 . . . 11︸ ︷︷ ︸

M−2

,

N = 3 · 1
2

1
2 2 11 . . . 11︸ ︷︷ ︸

M−3

,

N = 4 · 1
2 1 1

2 2 11 . . . 11︸ ︷︷ ︸
M−4

,

N = 5 · 1
2 11 1

2 2 11 . . . 11︸ ︷︷ ︸
M−5

,

...

· 1
2 1 . . . 1︸ ︷︷ ︸

N−3

1
2 2 11 . . . 11︸ ︷︷ ︸

M−N
,

...

N = M · 1
2 1 . . . 1︸ ︷︷ ︸

M−3

1
2 2 .

(4.1)

Here we adopt the convention of writing · 1
2 xx

1
2 xx to indicate the quartet of orbits

· 1 xx 1 xx, · 2 xx 1 xx, · 1 xx 2 xx, and · 2 xx 2 xx associated with a given tongue
and its halo. These represent only 4(M−1) of the 2M possible sequences of length
M , and hence M-loop homoclinic orbits; the remaining ones correspond to the
dotted components of P−k(Γ ) in Figure 8. We now turn to the question of how and
in what order(s) these orbits appear as the parameters a, b vary.
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B1(· 1
2 ) ∼ a∗, BN(· 1

2 11 . . . 1︸ ︷︷ ︸
N−1

) ∼ a∗
N

, B∞(· 1
2 111 . . . ) ∼ a∗∞,

B2(· 1
2 2) ∼ bi1,2, B3(· 1

2
1
2 2) ∼ b

i,ii
2,2 = b

i,ii
2 , B4(· 1

2 1 1
2 2) ∼ b

i,ii
2,3 ,

BN(· 1
2 11 . . . 1︸ ︷︷ ︸

N−3

1
2 2) ∼ b

i,ii
N+1

2
(N odd), ∼ b

i,ii
N
2 ,

N+1
2

(N even).

Table 4.1. Equivalences of bifurcation notations (see text).

In [3] and Section 2.3 above we described how the N -loop homoclinic orbits

with sequences · 1
2 11 . . . 11 appear as a increases for fixed b. These bifurcations,

in which P(Γ ) passes through the rightmost components of P−N(Γ ), N = 2,
must take place before further homoclinic orbits to Γ can appear. Then with a (=
O(1)) > 0 fixed and decreasing b and for each N = 2, additional bifurcations
occur in which the other 4(N − 1)− 2N -loop orbits identified in (4.1) are created.

The key to understanding the bifurcation set in which these and the balance of
the 2N N -loop orbits appear, is to use the Cantor set-like structure of the countable
set
⋃∞
k=1 P

−k
loc (Γ ) (see Figure 8) to define bifurcation curves BN(· b0 . . . bN−1) in

(a, b) space on which N -loop orbits with sequences · b0 . . . bN−1 appear. For the
reader’s convenience, we provide in Table 4.1 a translation from the present notation
to the a∗

n , bi,iin,n+1 and bi,iin notation used in [3]. The main result of [3] concerning

bifurcation sequences is Theorem 6.6, which establishes the order bin−1,n < biin <

bin < biin,n+1 < bin,n+1, ∀n > 1. In the present terms this is

B2(· 1
2 2) < B3(· 1

2
1
2 2) < · · · < BN(· 1

2 1 . . . 1︸ ︷︷ ︸
N−3

1
2 2) <(4.2)

< BN+1(· 1
2 1 . . . 1︸ ︷︷ ︸

N−2

1
2 2) < · · · < B∞.

Here the notation < means that the curve BN+1(· 1
2 1 . . . 1 1

2 2) lies above

BN(· 1
2 1 . . . 1 1

2 2) in the (a, b) plane. Here, as above, · 1
2 xx and · 1

2 xx
1
2 xx re-

spectively denote a pair and a quartet of orbits, and in writing BN(· 1
2 xx

1
2 xx)

we do not distinguish between the first and second bifurcations (bin, b
ii
n ) in which

such a quartet is born. Indeed, as shown in [11, 10], the genealogies may change
in a two-parameter problem such as the present one. This exactly corresponds to

what is sketched in §6.4 of [3]: · 1
2 xx

1
2 xx are generically created pairwise as ei-

ther · 1 xx 1
2 xx followed by · 2 xx 1

2 xx or · 1
2 xx 1 xx followed by · 1

2 xx 2 xx. Thus,

BN(· 1
2 xx

1
2 xx) denotes a pair of saddle-node bifurcations.
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As noted in Theorem 6.8 of [3], four additional M-loop orbits are created for
eachM > N as the root tongue P−N(Γ ) passes through P(Γ ). These form a halo
around each of the leftmost and rightmost pairs of components of P−N

loc (Γ ) (cf.
Figure 8), and referring to (4.1) we may identify their bifurcation sets as

BM(·12 1 . . . 1︸ ︷︷ ︸
N−3

1
2 2 11 . . . 11︸ ︷︷ ︸

M−N
).

In addition to (4.2) we can write

B∞(· 1
2 111 . . . ) < · · · < BN+1(· 1

2 11 . . . 1︸ ︷︷ ︸
N

) < BN(· 1
2 11 . . . 1︸ ︷︷ ︸

N−1

) < · · ·(4.3)

< B2(· 1
2 1) < B1(· 1

2 ),

B2(· 1
2 2) < B3(· 1

2 21) < · · · < BN(· 1
2 2 11 . . . 1︸ ︷︷ ︸

N−2

)(4.4)

< BN+1(· 1
2 2 11 . . . 1︸ ︷︷ ︸

N−1

) < · · · < B∞(· 1
2 2111 . . . ),

to specify the orders in which pairs of orbits are created in the first (cooperat-

ing) and final bifurcation sequences up to the bifurcation B2(· 1
2 2) in which the

(topological) horseshoe is completed. This final bifurcation sequence involves the
tongue P−2(Γ ) and its entire halo. Note that (4.3) corresponds to the ordering
a∗ < a∗

2 < a∗
3 < · · · < a∗∞ of [3] (the curve a∗

N−1 lies to the left of a∗
N in

the (a, b) plane, or in terms of BN(. . . ) the curve BN−1(· 1
2 11 . . . 1) lies above

BN(· 1
2 11 . . . 1)). For ε small enough (certainly for ε < εs(a, b); cf. Section 3) the

orderings (4.2), (4.3) and (4.4) combined with Theorem 3.4 imply the bifurcation
diagram sketched in Figure 9.

This picture is primarily qualitative, but some quantitative results may also be
noted. Theorem 5.1 of [3] states that a∗

n+1 −a∗
n = O(ε2(log ε)2) for n = O(1) and

b > −1. Then by Theorem 5.3 of [3] a∗
n+1 = a∗

n+O(a∗
n) for n > O(1). Moreover,

since the complete topological horseshoeΛ exists for allb = O(| log ε|) sufficiently

negative, a = O(1), the final bifurcation curve B2(· 1
2 2) satisfies

lim
b↓−∞ a(b) = o(1) for a(b) ∈ B2(· 1

2 2),

and hence all other curves BN(. . . ) must approach a similar limit. On the other

hand, by Theorem 3.4 the curve B∞(· 1
2 111 . . . ) ∼ a∗∞ is an upper bound for all

counteracting bifurcation curves, since no root tongueP−N(Γ ) can intersectP(Γ )
before P(Γ ) has passed all branches P−M(Γ ), M = 1, and hence the bifurcation

B∞(· 1
2 111 . . . ) has occurred.
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Fig. 9. Partial bifurcation diagram in (a, b)-plane. The halo bifurcations are indicated by
the dotted lines.

One can give some additional partial orderings by noting that all members
of the halo of any root tongue of P−N(Γ ) must first intersect P(Γ ) before the
root tongue itself: specifically, if two branches in the halo belong to P−k(Γ ) and
P−l (Γ ), k > l, then P−k(Γ ) already intersects P(Γ ) twice before intersections
P−l (Γ )∩ P(Γ ) appear. However, the halo bifurcations may be “completed” after
the second root tongue bifurcation or between the first and second root tongue
bifurcations. See the examples for P−3(Γ ) in Figures 10(a), where

B5(· 1 1
2 211) > B4(· 1 1

2 21) > B3(· 1 1
2 2)

> B5(· 2 1
2 211) > B4(· 2 1

2 21) > B3(· 2 1
2 2)

and (b), where

B5(· 1
2 1211) > B4(· 1

2 121) > B3(· 1
2 12) > B3(· 1

2 22)

> B4(· 1
2 221) > B5(· 1

2 2211).
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(a)

(c)

(b)

P(Γ )

-5-3 -4

Fig. 10. Examples of different admissible sequences.

A mix between both sequences may also occur, for instance,

B5(· 1
2 1211) > B4(first) > B3(· 1 1

2 2) > B4(second) > B5(· 1
2 2211) > B3(· 2 1

2 2).

Here in B4(first) the orbit · 1121 and a preliminary state of the other three orbits
are created, and in B4(second) the preliminary state bifurcates to the orbits · 1221,
· 2121 and · 2221 by a third order contact; see Figure 10(c).

Generically, there are two other possible bifurcation sequences (or a mix of
them), but exponential closeness of the haloes evidently precludes their appearance
here. In §5.2 we will find that a ‘mixed scenario’ with cubic tangencies, as shown

in in Figure 10(c), occurs at leading order for the bifurcations B3(· 1
2

1
2 2) of a

model mapping. There the higher-order corrections restore the generic scenarios of
Figures 10(a) and (b).

4.2. Horseshoes for P N with N > 1

In this subsection we construct a horseshoe ΛN for the N ’th iterate P N of
P . The existence of ΛN for large N ensures horseshoe behaviour throughout the
counteracting régime, including the physically relevant case a, b = O(1) (and
a > 0, b < −1).

After passing either the bifurcationBN+1(· 1
2 11 . . . 112)orBN+1(· 11 . . . 11 1

2 2),

depending on the ordering, the root tongue P−N−1(Γ ) and its entire halo intersect
P(Γ ). In a manner analogous to Figure 4 we can define strips HN

j and their im-

ages V Nj = P N(HN
j ) under P N such thatΛN = ⋃∞

j=−∞ P jN (HN
1 ∪HN

2 ) is a

topological horseshoe for the N th iterate P N of P :
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P(Γ )

V N1 VN2

HN1

HN2

PN+1(Γ )

P−1(Γ )

P−N−1(Γ )

Fig. 11. RegionsHN
j

and their images VN
j

= P N(HN
j
)when the tongue P−N−1(Γ ) just

intersects P(Γ ).

Theorem 4.1. As soon as two (N + 1)-pulse homoclinic orbits are created in one

of the bifurcations BN+1(· 1
2 11 . . . 112) or BN+1(· 11 . . . 11 1

2 2) the map P N has

an invariant setΛN on which P N is semi-conjugate to a full shift on two symbols:
P N has a topological horseshoe.

Sketch of Proof. Figure 11 illustrates the construction of ΛN . The structure of
these horseshoes is not as clean as that of Λ for P , although the proof proceeds
analogously. The “strips” HN

2 and V N2 are invaded by tongues P−k(Γ ) or P k(Γ ),
1 < k 5 N , that are cut out by iterates P ±k , 1 5 k < N . Moreover, if we define
symbol sequences similar to (3.1):

aNj (x) =
{

1N if P jN (x) ∈ HN
1 ,

2N if P jN (x) ∈ HN
2 ,

(4.5)

the correspondence between points x ∈ ΛN and sequences aN(x) is certainly non-
unique: there are sequences with more than one preimage, and thus the horseshoe
cannot be hyperbolic. ut

However, we can determine some specific symbol sequences inΛN as a subset
of those in Λ1 = Λ. The correspondence (4.5) is not convenient for this, and we
shall label points in ΛN , like points in Λ, by sequences a(x) defined as in (3.1).
Now these sequences cannot be defined in general when the tongue P−N−1(Γ )

intersects P(Γ ) but P−N(Γ ) does not, for the stripsHk and Vl , k, l = 1, 2, cannot
yet be defined; cf. [11]. Nonetheless, if we apply P N+1 to the largest possible
horizontal strip, HN

1 = SN , we easily find that P N+1(SN) intersects SN in two
disjoint strips, showing that P N+1 has a 2-shift.
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Indeed, following the proof of the Smale-Birkhoff Homoclinic Theorem and
defining neighbourhoods U and V as in [8, Theorem 5.3.5], we obtain a transition
matrixAwhich enables us to symbolically describe points in

⋂∞
j=−∞ P (N+1)j (SN)

⊂ ΛN+1, especially the periodic points. For N odd we define two squares U and

V ⊂
(
P −( N−1

2 )(U) ∩ P
N+3

2 (U)
)

such that U contains all points x that have

sequences a(x) with a central block

11 . . . 1︸ ︷︷ ︸
N−1

2

·1 . . . 11︸ ︷︷ ︸
N+1

2

,

and likewise V contains points with sequences with central block

11 . . . 1︸ ︷︷ ︸
N

2·1 . . . 11︸ ︷︷ ︸
N

.

Since V is a subset of P −( N−1
2 )(U) ∩ P

N+3
2 (U) that does not intersect U , this

gives a collection {U,P −( N+1
2 )(V ), . . . ,P

N−3
2 (V )} of disjoint sets which forms

a Markov partition R for a zero-dimensional invariant set. In the same way we
define for N even a set U containing all points with a central block

11 . . . 1︸ ︷︷ ︸
N
2

·1 . . . 11︸ ︷︷ ︸
N
2

in their sequences, V ⊂
(
P −N

2 (U) ∩ P
N
2 +1(U)

)
containing the points with a

middle block

11 . . . 1︸ ︷︷ ︸
N

2·1 . . . 11︸ ︷︷ ︸
N

and a collection R = {U,P −N
2 (V ), . . . ,P

N
2 −1(V )}.

In both cases the (N + 1)× (N + 1) transition matrix A is


1 1 0 . . . 0
0 0 1 . . . 0
...
...
...

...

0 0 0 . . . 1
1 0 0 . . . 0


 .

Now trace(Ak) is equal to the number of fixed points for P k . For 0 < k < N + 1
trace(Ak) = 1, so the only fixed point is

11 . . . 1︸ ︷︷ ︸
k

.

As expected, trace(AN+1) = N+2; there areN+2 period-(N+1) points: the fixed
point 11 . . . 1 and the points in the period-(N + 1) orbit 11 . . . 12 7→ 11 . . . 121 7→
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. . . 7→ 211 . . . 1. Thus we find not only period-j (N + 1) points (j = 1), but also a
period-k orbit for all k > N + 1. Such a (nontrivial) orbit is for instance found by
“marking time” atU for k− (N + 1) steps, then successively following the iterates
P n(V ) ∈ R and returning to U . Its sequence is

11 . . . 1︸ ︷︷ ︸
k−1

2 periodically repeated.

Finally, we see that every sequence which has at least N 1’s between each pair of
2’s occurs in ΛN+1.

5. A Model for the Poincaré Map P

In this section we formally derive and analyse an explicit model F for the
Poincaré return map P . We start with the derivation in §5.1, then construction of
a topological horseshoe and explicit bifurcation calculations for small ε follow in
§5.2, and finally we give a hyperbolicity proof for large ε in §5.3.

5.1. Derivation of the Model Mapping

As in Šilnikov [20] (cf. [8]) we write F = S10 ◦ T01 as the composition of
a local map T01 obtained by integrating the flow near Γ in Fenichel coordinates,
and a global map S01 chosen as a simple polynomial to capture the leading order
behaviour near the quadratic tangency of W u(Γ ) and W s(Γ ). Specifically, T01 is
approximated by the linearised system

ṗ = p, q̇ = −q, ż = ε,

integrated from the local cross section Σ0 = {(p, q, z)|q = ∆} to the section
Σ1 = {(p, q, z)|p = ∆}. With (k0, z0) ∈ Σ0 and (k1, z1) ∈ Σ1 denoting initial
and “final” conditions, this yields

T01(k0, z0) = (k1, z1) = (k0, z0 + ε log(∆/k0)).

The global map S10 : Σ1 → Σ0 is derived by assuming that vertical components
are carried down by an amount εB, mimicking the counteracting effect of the flow
for x > −1/b, and that vertical line segments k1 = c = 0 are carried into parabolas
k = ε(A− z2)+ c. This leads to

S10(k1, z1) = (k2, z2) = (k1 + ε[A− (z1 − εB)2], z1 − εB),

and so the composed “logarithmic-quadratic” map may be written

F(k0, z0) =
(
k0 + ε[A− (z0 + εf (k0))

2], z0 + εf (k0)
)

;(5.1)

f (k0) = log(1/k0)− B,

where we have used log(∆/k) − B = log(1/k) + log∆ − B and redefined B
accordingly. See Figure 12 for a sketch of the “unrolled” geometry.
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Fig. 12. The geometry of the model map F = S10 ◦ T01 : Σ0 → Σ0, unrolled. The right-
hand copy of Σ0 can in essence be interpreted as a part of the cross section V = {y =
0, x > 1} for the flow, viewed from behind.

We have made no attempt to estimate errors in this derivation; indeed, we shall
even be concerned with “large” values of ε in §5.3. Our derivation is in the spirit
of that of the celebrated Hénon map [9]. However, note that the properties of F are
similar to those of P near W u(Γ ) and W s(Γ ): 4K(0, z) = 6

5ε(z
2 − a)+O(ε2)

corresponds to the shift ε[A−(z0 +εf (k0))
2] in (5.1) (we take k → −k in defining

F ), and the estimate (2.10) corresponds to the shift ε[log(1/k0)−B] (B plays the
rôle of −b in (2.1)). Moreover,T01 retains the behaviour of the vector field described
in Lemmas 3.1 and 3.2 of [3] and Lemma 2.1 above: orbits entering at a distance
k0 = δ fromW s(Γ ) leave at a distance k1 = δ fromW u(Γ ), while being carried up
O(ε| log δ|) in z. Note, however, that the term εf (k0) = O(ε2) in (z0 + εf (k0))

2

in (5.1) has no obvious quantitative equivalent in 4K(0, z). This might give F
some special properties not possessed by P ; for example, as we see below, F is
area-preserving while P need not be so (and certainly is not for c |= 0 in (2.2),
(2.3); cf. Theorem 2.5.

In the remainder of this section we study the dynamics of F ; in particular, in
Section 5.3 we prove that, for appropriate ranges of the parameters A,B, ε > 0, F
has an invariant set topologically (semi-)conjugate to a full shift on two symbols:
a Smale horseshoe (Ch. 5 of [8]).

First observe that, forA > 0,F has a pair of fixed points (k, z) = (e−B,±√
A).

The linearisation

DF(k, z) =
(

1 − 2ε2(z+ εf (k))f ′(k) −2ε(z+ εf (k))

εf ′(k) 1

)
(5.2)
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satisfies det(DF) = 1, trace(DF) = 2[1 − ε2(z + εf (k))f ′(k)], so at the fixed
points we have f (e−B) = 0, f ′(e−B) = −eB and trace(DF) = 2(1 ± ε2

√
AeB).

Hence (e−B,+√
A) is a hyperbolic saddle with positive eigenvalues for allA > 0,

B > 0 and ε > 0, while (e−B,−√
A) is a center forA > 0 and 0 < ε2

√
AeB < 2,

and a hyperbolic saddle with negative eigenvalues for ε2
√
AeB > 2. A period-

doubling bifurcation occurs at ε2
√
AeB = 2 (§3.5 of [8]); note thatB = O(| log ε|)

and negative is necessary for this. These fixed points are analogues of the points
p and q and the corresponding pair of periodic orbits found in the perturbation
calculations of §2.3.

5.2. A Topological Horseshoe for Small ε

The horseshoe of the Poincaré map P has its origin in two mechanisms: (i)
the exponential stretching and bending due to the fact that orbits close to P(Γ )
and P−1(Γ ) are caught by the slow flow near Γ and (ii) the averaged fast counter-
acting flow that balances this effect. Both mechanisms are preserved in the model
mapping F , and assuming that 0 < ε � 1 and B = O(| log ε|), we can construct
a topological horseshoe for F very similar to that found in Section 3 for P . More-

over, we can determine explicitly the analogues of the bifurcation curves B2(· 1
2 2),

B3(· 1
2

1
2 2), etc. We introduce β by

B = β log
1

ε
(5.3)

so the fixed points of F are now (εβ,±√
A). The counterpart Σ ∈ (k, z)-space

of the region S introduced in Section 3 (Figure 4) is determined by its boundary
∂Σ = σ1 ∪ σ2 ∪ · · · ∪ σ6, where

σ1 = { k = 0, z ∈ [√A, 2
√
A] },

σ2 = { k = ε(A− z2), z ∈ [−√
A,

√
A] },

σ3 = { k = 0, z ∈ [−√
A, −2

√
A] },

σ4 = { z = −2
√
A, k ∈ [0, 1 − 3ε

√
A] },

σ5 = { k = 1 + ε(A− z2), z ∈ [−2
√
A, 2

√
A] },

σ6 = { z = 2
√
A, k ∈ [0, 1 − 3ε

√
A] }.

See Figure 13. The exact choices of σ4,5,6 are not crucial, but σ1,2,3 are chosen so
that the exponential stretching and bending occur near this part of the boundary.
Note that the inverse map F−1 can be explicitly calculated:

F−1(k, z) =
(
k − ε[A− z2], z− εf [k − ε(A− z2)]

)
,(5.4)
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Fig. 13. The regions Σ , F(Σ) and F−1(Σ).

withf as in (5.1). Thus, the rôle ofP(Γ ) orP−1(Γ ), i.e., the boundary of the region
in which P −1 or P is defined, is now respectively played by {k = ε(A−z2)} ⊃ σ2
or {k = 0} ⊃ σ1 ∪ σ3, the boundary of the region where F−1 or F is defined.

Tongue-like structures analogous to those ofP−k(Γ ) can be determined by cal-
culating the imagesF−1(σ3) andF(σ2). We first take points inσ3 with z coordinates
O(1) away from −√

A and find

F−1(0, z) =
(
ε(z2 − A), z− ε(1 − β) log

1

ε

)
+ h.o.t.;

thus, F−1 shifts the k-coordinates of these points O(ε) to the right and shifts the
z-coordinates O(ε log(1/ε)) up or down, depending on β. Closer to the critical
point (0,−√

A) we set z = −√
A− εαζ , with α, ζ > 0 and find that

F−1(0, z) =
(

2ε1+α√Aζ,−√
A− εαζ − ε(1 + α − β) log

1

ε

)
+ h.o.t.,

(5.5)

i.e., the shift in the z-coordinate increases as α increases. This mechanism is by
construction exponentially strong: if we set z = −√

A−ζexp(−1/εα) (withα, ζ >
0), we observe that

F−1(0, z) =
(

exp. small,− 1

εα−1
+ h.o.t.

)
.

The resulting (root) tongue F−1(σ3) is shown in Figure 14(a), where we also show
the branch F−1(σ1) that runs ‘parallel’ to k = 0. In Figure 14(b) we show the
(unbounded) tongue F(σ2) that is folded along {k = ε(A− z2)}. The calculations
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F−1(σ3)

σ2

F(σ2)

F−1(σ1)
σ1

σ3

√
A

−√
A −√

A

√
A

(a) (b)

Fig. 14. The curves F−1(σ3) and F−1(σ1) (a) and F(σ2) (b)

leading to F−1(σ1) and F(σ2) are completely analogous to those above. Compu-
tations of F±(σ4,5,6) are even more straightforward; together with the above they
lead to the picture ofF(Σ) andF−1(Σ) shown in Figure 13. We can now formulate
the equivalent of Theorem 3.1:

Theorem 5.1. For B > 2 log(1/ε) the map F has an invariant set Λ which is a
topological horseshoe.

That the critical value of β is 2 (cf. (5.3)) follows from (5.5): theO(ε log(1/ε))
term dominates the z-component of F−1(0, z) for α = 1, the upward effect of β
can bring the tip of F−1(σ3) above the line {z = −√

A} when β > 2. However,
it is not yet clear whether this is sufficient for a full topological horseshoe. As for
P it is necessary to have an intersection of the F−1(σ3)-tongue with the σ2 part
of ∂Σ , or equivalently, an intersection of the F(σ2)-tongue with the σ3 part of ∂Σ
(see Figure 13). Inserting the general scaling

z = −√
A− ζεα1

(
log

1

ε

)α2

, α1 > 0, α2 ∈ R, ζ > 0

into F−1 (with k = 0), we find that the tip of the F−1(σ3)-tongue is described by
values of z with α1 = 1 and α2 = 0. Introducing β1 by

β = 2 + β1

(
log

1

ε

)−1

or B = 2 log
1

ε
+ β1

(via (5.3)) and ζ > 0 by z = −√
A− εζ yields that the tip of the F−1(σ3)-tongue

is described at leading order by

(k, z) 7→
(

2ε2
√
Aζ,−√

A− ε[ζ − C − log ζ ]
)
,

where C = β1 + log 2
√
A. Analogously the tip of the F(σ2)-tongue is given at

leading order by

(k, z) 7→
(

2ε2
√
A[2ξ − C − log ξ ],−√

A+ ε[ξ − C − log ξ ]
)



Homoclinic Saddle-Node Bifurcations 323

(a) (b) (c)

Fig. 15. Three bifurcations: B3(first) (a) and B3(second) (b), and the bifurcation Bhs (c).

for z = −√
A + εξ . Straightforward rescalings of (k, z), ζ, ξ into (x, y), s, t and

neglect of higher-order terms then give the following scaled descriptions of the two
critical ‘tips’:

F−1(σ3) : { (s,−s + C + log s), s = 0 },
F (σ2) : { (2t − C − log t, t − C − log t), t = 0 }.(5.6)

Note that at the tips the a priori two-parameter family of maps F has reduced to
a one-parameter (C) family at this order of approximation. Using the relatively
simple expressions (5.6) we can explicitly determine the value of B at which the
F gives has a full topological horseshoe (cf. Figure 15(c)):

Bhs = B2(· 1
2 2) = 2 log

1

ε
+ 1 + log 2 − log 2

√
A+ h.o.t.

Thus, we can now sharpen the condition B > 2 log(1/ε) to B > Bhs in The-
orem 5.1. We can also, for example, determine the two bifurcations B3(first) <
B3(second) < Bhs preceding this last horseshoe bifurcation. In Figure 15(b) we
see that the tongue of F−1(Σ) and F(Σ) have third-order contact in the second
bifurcation. Hence, at leading order a mixed scenario like the one sketched in Fig-
ure 10(c) occurs (in reverse order, since B ∼ −b). In B3(first) the orbit · 112 and
a second 3-pulse orbit arise, in B3(second) the latter orbit undergoes a pitchfork
bifurcation to the orbits · 122, · 212 and · 222. Thus we know explicitly which
homoclinic bifurcations occur for F . The calculations give:

B3(first) = 2 log
1

ε
+ 1 − log 2

√
A+ h.o.t.,

B3(second) = 2 log
1

ε
+ 1

3
+ log 3 − log 2

√
A+ h.o.t.

Since neither B3(· 2 1
2 2) < B3(· 1 1

2 2) (where F−1(Σ) penetrates F(Σ), Figure

10(a)), norB3(· 1
2 12) < B3(· 1

2 22) (whereF(Σ)penetratesF−1(Σ), Figure 10(b)),

is preferred byF at leading order, either bifurcation sequence can generically occur.
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The one which does could be determined by higher-order calculations, in which
we would again have a 2-parameter problem (i.e., A and B (or β1) instead of only
C). Thus one expects a curve in the A,B plane that distinguishes between the two
generic orderings.

5.3. Hyperbolicity of the Horseshoe for Larger ε

For what follows, we will also require an expression for the derivative of F−1,
which may be found to be

DF−1(k, z) =
(

1 2εz

−εf ′(k − ε(A− z2)) 1 − 2ε2zf ′(k − ε(A− z2))

)
.(5.7)

We first construct a set D analogous to S of §3.1 and Σ above, but simpler
in shape, so that explicit estimates on the location of images and preimages can
be calculated. This will lead to relatively crude estimates, which could probably
be sharpened and brought closer to the bifurcation sets for topological horseshoes
derived above.

Noting that F maps vertical line segments k = const. to arcs of parabolas, and
arcs z + εf (k) = const. to horizontal line segments, we define D as the simply-
connected region enclosed by

z+ εf (k) = ±κ√A, k = e±2κ
√
A/ε−B,(5.8)

for some κ > 1. We claim that the parameters A < B < ε and κ can be chosen
such thatD and F(D) appear as in Figure 16, with D ∩ F(D) = V1 ∪ V2 forming
two disjoint “horizontal” strips and F−1(D)∩D = H1 ∪H2 two disjoint “vertical”
strips. In this figure the letters a, b, . . . , h denote points on ∂D and a′, b′, . . . , h′
their images under F .

Lemma 5.2. For parameter values A,B, ε > 0 and κ > 1 such that

eB > max

{
2 sinh(2κ

√
A/ε)

εA(κ2 − 1)
,

2 sinh(2κ
√
A/ε)

εA

}
(5.9)

the point d ′ lies to the right of k = e2κ
√
A/ε−B and g′ lies to the left of c, so

that D ∩ F(D) forms two disjoint strips bounded vertically between [z−1 , z−2 ] and
[z+2 , z+1 ] respectively, where

z±1 = ±
√
A+ 2e−B

ε
sinh

(
2κ

√
A

ε

)
, z±2 = ±

√
A− 2e−B

ε
sinh

(
2κ

√
A

ε

)
.

(5.10)
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Proof. This is a direct computation, using the locations and images of selected
points as follows. Letting C = e2c

√
A/ε, we have

d =
(
e−B

C
,−2κ

√
A

)
F7−→

(
e−B

C
+ εA, 0

)
= d ′,

g =
(
Ce−B, κ

√
A
)

F7−→
(
Ce−B − εA(κ2 − 1),−κ√A

)
= g′,

and noting that c = ( e
−B
C
,−κ√A), we obtain the first assertion if

eB > max

{
C2 − 1

CεA
,

C2 − 1

CεA(κ2 − 1)

}
,

which, when rewritten, gives (5.9).
For the (crude) bounds on the strips we compute the z coordinates of appropriate

intersections of the parabolas a′h′g′ and c′d ′e′ given by

k = Ce−B + ε(A− z2), k = e−B

C
+ ε(A− z2)

with their preimages, the vertical lines ahg and cde:

k = Ce−B, k = e−B

C
.

We note that (5.9) implies that the second square root in (5.10) is well defined. Also
observe that these latter bounds imply that the strips F−1(D) ∩D lie between the
curves

z+ εf (k) = z−1 , z
−
2 , z+ εf (k) = z+1 , z

+
2

respectively, and that the fixed points (e−B,±√
A) lie in F−1(D)∩D∩F(D). ut

This lemma implies that the invariant setΛ = ⋂∞
n=−∞ Fn(D) is a topological

horseshoe. To prove hyperbolicity, we must verify that the linearised mapDF and
its inverse DF−1 additionally satisfy the condition iii of Moser [16, pp. 76–
77] (cf. [8, hypothesis H3 and Theorem 5.2.4, pp. 240-241]). Noting that F is an
area-preserving map, we have to find stable and unstable cones

Ss = {(ξ, η) : |ξ | < µ|η|}, Su = {(ξ, η) : |η| < µ|ξ |},
for some 0 < µ < 1

2 , such that DF(Su) ⊂ Su and DF−1(Ss) ⊂ Ss and, if
DF(ξ0, η0) = (ξ1, η1) and DF−1(ξ0, η0) = (ξ−1, η−1), then |ξ1| = |ξ0|/µ and
|η−1| = |η0|/µ. (Note the reversal of the roles of ξ and η, compared with [8].) See
Figure 16.

Using the expression (5.2) for DF , we see that DF(Su) ⊂ Su provided that
the vector (1, η0)

T has image (ξ1, η1)
T with∣∣∣∣η1

ξ1

∣∣∣∣ =
∣∣∣∣ εf ′(k)+ η0

1 − 2ε(z+ εf (k))(εf ′(k)+ η0)

∣∣∣∣ 5 µ

or, rewritten,
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f ′
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e
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DF−1(Ss)
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Su

DF(Su)

ξ

η

Fig. 16. Bounds on strips, and stable and unstable cones.

∣∣∣∣2ε(z+ εf (k))+ 1

(ε/k − η0)

∣∣∣∣ = 1

µ
∀ |η0| 5 µ,(5.11)

where we use f ′(k) = −1/k. From the trace(DF) calculations above, we note that
z+εf (k)must be large in magnitude for the lower fixed point to be a hyperbolic sad-
dle; clearly a necessary condition for hyperbolicity of Λ. The proof of Lemma 5.2
and (5.8) imply that satisfying (5.11) for z + εf (k) ∈ [z−1 , z−2 ] ∪ [z+2 , z+1 ] and

k ∈ [e−2κ
√
A/ε−B, e2κ

√
A/ε−B ] is sufficient. (Note that z = z±2 give worse cases

than z = z±1 .)
An analogous calculation using (5.7) shows thatDF−1(Ss) ⊂ Ss provided that∣∣∣∣ ε

k − ε(A− z2)
+ 1

ξ0 + 2εz

∣∣∣∣ = 1

µ
∀ |ξ0| < µ,(5.12)

where in turn it is sufficient to satisfy the inequality for the worst cases z = z±2 and

k − ε(A− z2) ∈ [e−2κ
√
A/ε−B, e2κ

√
A/ε−B ].

To check the conditions on the expansion of ξ1 components under DF we
compute

|ξ1| =
∣∣∣∣1 − 2ε(z+ εf (k))

(
εf ′(k)+ η0

ξ0

)∣∣∣∣·|ξ0|

=
∣∣∣∣1 + 2ε(z+ εf (k))

(
ε

k
− η0

ξ0

)∣∣∣∣·|ξ0|,

so that the condition is satisfied provided



Homoclinic Saddle-Node Bifurcations 327

∣∣∣∣1 + 2ε(z+ εf (k))

(
ε

k
− η0

ξ0

)∣∣∣∣ = 1

µ
∀
∣∣∣∣η0

ξ0

∣∣∣∣ 5 µ.(5.13)

Again the worst cases are given by z + εf (k) = z±2 and k = e±2κ
√
A/ε−B . An

analogous condition implies expansion of η−1 components under DF−1:

|η−1| =
∣∣∣∣− εf ′(k − ε(A− z2))

(
ξ0

η0

)
+ 1

−2ε2zf ′(k − ε(A− z2))

∣∣∣∣·|η0| = 1

µ
|η0|

or, rewritten, ∣∣∣∣∣1 + ε(2εz+ (
ξ0
η0
))

k − ε(A− z2)

∣∣∣∣∣ = 1

µ
∀
∣∣∣∣ ξ0

η0

∣∣∣∣ 5 µ.(5.14)

Here the worst case is given by k − ε(A − z2) = e±2κ
√
A/ε−B , z = z±2 . We have

proved

Theorem 5.3. For parameter values A,B, ε > 0, κ > 1 such that the inequal-
ities (5.9), (5.11–(5.14) are satisfied for all (k, z) ∈ D ∩ F(D), the set Λ =⋂∞
n=−∞ Fn(D) is an invariant, hyperbolic Cantor set for F (a Smale horseshoe).

If (5.9) holds but one or more of the other inequalities fails, thenΛ is a topological
Cantor set which may not be hyperbolic.

Remark 5.4. We can find open sets of parameter values satisfying these sufficient
conditions. Without loss of generality we set A = 1. Noting that B = O(| log ε|)
is necessary for (5.9), but that sinh(2κ

√
A/ε) = O(e2κ

√
A/ε) cannot be too large

either, we pick B and ε both of O(1). Specifically, by setting A = 1, B = 2,
ε = 3, κ = 1.1 all the inequalities are comfortably satisfied with µ = 1

2 . However,
since the left-hand sides of (5.11)–(5.14) are at most

√
A = 1, it does not seem

possible to satisfy the inequalities for arbitrarily small ε. If ε is taken smaller, one
must increase A or B; for instance, with A = 5, B = 8, ε = 1 and κ = 1.1 all
inequalities are satisfied also. It would be interesting to study this systematically
for decreasing ε using computational tools such as [15].

6. Conclusions and Discussion

In this paper we have significantly extended the analysis of a three-dimensional
vector field begun in [3], which in turn built on the methods of [4]. The basic idea
is to use geometric singular perturbation methods (Fenichel theory) to establish the
quasi-local structure of certain stable and unstable manifolds to a slow manifold
Γ . Melnikov-type calculations enable us to approximate a Poincaré return map P
and prove that quadratic tangencies and transverse intersections occur. We focus
on the case in which the slow flow in the neighbourhood of Γ can be balanced by
the counteracting effects of the fast flow, and a complicated non-wandering set Λ,
a Smale horseshoe, appears. The perturbation methods do not seem sufficient to
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give hyperbolicity of Λ, but the topological semi-conjugacy between orbits in Λ
and bi-infinite symbol sequences extends naturally to a symbolic description of the
countable sets of homoclinic orbits to Γ . This enables us to conveniently describe
and partially order homoclinic bifurcation curves in the (a, b) parameter plane.
This analysis occupies the bulk of the paper: Sections 2–4. A key idea is that, since
the unstable and stable manifolds of Γ intersect the stable and unstable manifolds
of Λ, one can find orbits homoclinic to Γ which remain under the influence of the
chaotic dynamics of Λ for as long as one wishes (Theorem 3.8).

To further illustrate our results, in Section 5 we formally derive an explicit
return mapping F which shares the key features of P , and for which we can
explicitly approximate some of the homoclinic bifurcation curves and, relaxing the
small parameter condition, prove hyperbolicity via the sector-bundle estimates of
Moser. This logarithmic-quadratic map may be of general interest as an example
of a singular mapping with complicated dynamics.

The major problem not addressed in this paper is the existence of a homeomor-
phic equivalence between symbol sequences and orbits in Λ for small ε. We were
unable to prove such a correspondence even for the explicit map F constructed
in Section 5. The main obstruction seems to be the global interplay between the
singular part of the map (near P±(Γ ) for P or σ1 ∪σ2 ∪σ3 for F ) and the counter-
acting regular part (the averaged fast flow). Such a structure may not be amenable
to the uniform cone estimates of Moser’s method. (We note that the horseshoes
constructed in [14] have a more “local” character; there the key ingredient in prov-
ing hyperbolicity — and hence the correspondence by homeomorphism — is the
hyperbolic structure near the slow manifold.) Other open problems include the
possibility that some of the ΛN ’s defined in §4.2 may be hyperbolic even if Λ is
not. (The “full” horseshoe cannot be hyperbolic for small ε, since the fixed point
q ∈ Λ has eigenvalues 1+O(ε) (cf. Theorem 2.5): it has not yet undergone period
doubling). It would also be nice to obtain further explicit bifurcation orderings of
the type given in §4.1.

Although this class of problems was motivated by specific applications to
boundary-value problems arising in the search for travelling wave solutions of
Ginzburg-Landau type partial differential equations, the methods are more gener-
ally applicable to near-integrable (n = 3)-dimensional flows.
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(PH) and the Netherlands Organization for Scientific Research (AD). Erin Lynch’s soft-
ware for studying invariant domains and hyperbolicity of two-dimensional mappings [15]
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