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Abstract

In this paper we analyze the uniqueness and the pointwise growth of the positive
solutions of a nonlinear elliptic boundary-value problem of general sublinear type
with a weight function multiplying the nonlinearity. When this function vanishes
on some subdomain, the problem exhibits a bifurcation from infinity. In this case
almost nothing is known about the pointwise growth of the positive solutions as the
parameter approaches the critical value where the bifurcation from infinity occurs.
In this work we show that the positive solutions grow to infinity in the region where
the weight function vanishes and that on its support they stabilize to the minimal
positive solution of the original equation subject to infinite Dirichlet boundary
conditions. This behavior provides us with the uniqueness of the positive solution
near the value of the parameter where the bifurcation from infinity occurs. Also, we
solve the problem using spectral collocation methods coupled with path-following
techniques to show how the main uniqueness result is optimal. Throughout the
paper the mathematical analysis aids the numerical study, and the numerical study
confirms and illuminates the analysis.

1. Introduction

In this work we study the pointwise behavior and the uniqueness of positive
solutions for the nonlinear boundary-value problem

−1u = λ u− a(x)
(
ur + g(x, u)

)
u in �, u|∂� = 0, (1.1)

where � ⊂ R
N , N = 1, is a bounded domain whose boundary ∂� is of class C1,1

(cf. [10]), λ ∈ R is regarded as a continuation parameter, r > 0, and a(x), g(x, u)
satisfy the assumptions:

(Ha) a ∈ C(�) is non-negative, a |= 0. The open set

D := { x ∈ � : a(x) > 0 }
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satisfies D ⊂ � and possesses a finite number of connected components Dj ,
1 5 j 5 l, such that Di ∩Dj = ∅ if i |= j . Each Dj is of class C1. The open set

�0 := � \D
is connected if N = 2.

(Hg) The function g : � × [0,+∞) → R, satisfies g, gu := ∂g
∂u

∈ C(� ×
[0,∞); R) and the growth conditions

lim
u↓0

g(·, u) = 0, lim
u↑∞

gu(·, u)
ur−1

= 0, uniformly in �.

A number of results hold under conditions weaker than (Hg) (cf. Section 2 for
details).

Our general setting includes some simple prototype models from population
dynamics which have been used as laboratory examples since the late sixties for
most of the techniques from nonlinear analysis, e.g., sub- and supersolutions, lo-
cal and global bifurcation theory, topological degree and variational methods. For
example, in case g = 0, problem (1.1) becomes

−1u = λ u− a(x)ur+1 in �, u|∂� = 0, (1.2)

which is the paradigmatic model in population dynamics (cf. [16]): the logistic
problem. In this context � is the region inhabited by the species u, λ measures
its birth rate and a(x) measures the capacity of � to support the species u. Quite
surprisingly, the general problem when the species u is free from crowding effects
on some subdomain of�, i.e., when a(x) vanishes on some subdomain of�, has not
been tackled until very recently (cf. [3, 17, 7] and the references therein), although
there is a huge amount of literature dealing with the case when a(x) is positive and
bounded away from zero.

In order to summarize what it is known for (1.1), (1.2) and give our main results,
we need to introduce some notation. Throughout this work, given an open subset
�1 ⊂ �with a finite number of components and an elliptic operatorL in�, σ�1

1 [L]
stands for the principal eigenvalue of L in �1 subject to homogeneous Dirichlet
boundary conditions on ∂�1 (the minimum of the principal eigenvalues of L on
each of the components of �1 separately). From the relatively recent results of [3,
17, 7], it readily follows that problem (1.2) possesses a positive solution if and only
if σ�1 [−1] < λ < σ

�0
1 [−1]. Moreover, it is unique, if it exists, and its L∞-norm

decays to zero asλ ↓ σ�1 [−1], and grows to infinity asλ ↑ σ�0
1 [−1]. In fact, due to

the main theorems of [5] and [18], the point (λ, u) = (σ�1 [−1], 0) is a bifurcation
point for positive solutions of (1.1) from the state u = 0, and the continuum of
positive solution pairs (λ, u) emanating from it is unbounded. It turns out that a
bifurcation from infinity occurs at the value of the parameter λ = σ

�0
1 [−1] and

that no positive solution is available for λ = σ
�0
1 [−1] (cf. [13, 9]). In particular,

(1.1) possesses at least one positive solution for each λ ∈ (σ�1 [−1], σ�0
1 [−1]),
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but now the problem might exhibit more than one positive solution in this range of
the parameter λ because of the lack of monotonicity of the nonlinearity.

In this paper we ascertain the exact pointwise growth of the positive solutions
as λ ↑ σ�0

1 [−1] and analyze the uniqueness of the positive solution. It turns out
that the positive solutions grow to infinity uniformly on compact subsets of�0 and
that they stabilize in D, the support of a(x), to the minimal weak solution of the
singular boundary-value problem

−1u = λ u− a(x)
(
ur + g(x, u)

)
u in D, u|∂D = ∞. (1.3)

Singular problems of this type have been previously considered for instance in [11].
Our theory provides us with a broad class of realistic models where these singular
problems arise in a natural way. Also, we show that when a(x) is sufficiently smooth
on ∂D, then the divergence to infinity is uniform on any compact subset of�0∪∂D.
The problem of analyzing the limiting behavior on the interphase ∂D for general
non-smooth weights seems very difficult to handle, and remains open.

That the positive solutions of (1.1) grow to infinity in �0 as λ ↑ σ
�0
1 [−1]

while they stabilize onD is rather striking as it entails that a global interior Harnack
inequality uniform in compact subintervals of the parameter λ is not available for
(1.1), in strong contrast with the case when a(x) is positive and bounded away
from zero, where the theory developed in [8] shows the validity of a global interior
Harnack inequality uniform on compact subintervals of λ > σ�1 [−1].

As to the uniqueness of the positive solution, our main result shows that if
either the thickness of the support of a(x) or the amplitude of a(x) is sufficiently
small, then (1.1) possesses a unique positive solution for λ in a left-neighborhood of
σ
�0
1 [−1]. Also, we complement the analysis with some numerical computations

illustrating the pointwise growth of the positive solutions of (1.1) as λ ↑ σ�0
1 [−1]

and showing that our uniqueness result is optimal in the sense that if the amplitude
of a(x) grows, then the set ofλ’s for which (1.1) possesses a unique positive solution
becomes smaller.

An outline of this paper is as follows: In Section 2 we study the existence of
positive solutions for (1.2) and (1.1). Although most of these results are known, we
state them in our general setting for further use, and sometimes we give new shorter
proofs of them. Also, we solve (1.1) using spectral collocation methods coupled
with path-following techniques. This gives high accuracy with low computational
work. Our numerical computations predict the pointwise growth of the positive
solutions as λ approaches σ�0

1 [−1]. In Section 3 we analyze how these solutions
grow to infinity on �0 and ∂D. In Section 4 we first show the uniqueness result
referred to above and then give another uniqueness result of a different nature,
which will be used in Section 6 to show the stabilization of the positive solutions
in D. In Section 5 we use the numerical computations introduced in Section 2 to
discuss the optimality of the main uniqueness result. Finally, in Section 6 we show
the stabilization of the positive solutions inD towards the minimal positive solution
of problem (1.3).
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2. On the Existence of Positive Solutions

The existence results are valid under a condition weaker than (Hg). Notice that
(Hg) implies that

lim
u↑∞

g(·, u)
ur

= 0 uniformly in �, (2.1)

while from the regularity assumption on g it follows that |g(x, u)−g(x, v)|/|u−v|
remains bounded on bounded sets of � × [0,∞). For the rest of this section and
Section 3 the following weaker hypotheses will be enough:

(Hgw) g ∈ C(� × [0,∞)) is locally Lipschitz continuous in � × [0,∞) with
respect to u and

lim
u↓0

g(·, u) = 0, lim
u↑∞

g(·, u)
ur

= 0, uniformly in �. (2.2)

Definition 2.1. A function u : � → [0,∞) is said to be a solution of (1.1) if
u ∈ L∞(�) ∩W 1,p0(�) for some p0 > 1 and (1.1) is satisfied in the weak sense.

Lemma 2.2. If u is a solution of (1.1), then u ∈ W 2,p(�) ∩ W
1,p
0 (�) for all

p > 1 and hence, u ∈ C1,ν(�) for all 0 < ν < 1. Moreover, u is a.e. in � twice
continuously differentiable. In other words, u is a strong solution of (1.1).

Proof. The Lp-estimates of Agmon, Douglis & Nirenberg (cf. [10, Chapter
IX] ) show that u ∈ W 2,p(�)∩W 1,p

0 (�) if p > 1. The remaining assertions follow
from the embeddingW 2,p(�) ⊂ C2−N/p(�), p > N , and Theorem VIII.1 of [19].
ut
Remark 2.3. If u is a positive solution of (1.1), then the maximum principle implies
that u(x) > 0 for all x ∈ � and that ∂u

∂n
(x) < 0 for all x ∈ ∂�, where n is the

outward unit normal to � at x (cf. [10, Chapter IX], and [20]), i.e., u lies in the
interior of the cone of positive functions of C1

0(�).

If u → ur + g(·, u) is increasing, then the following result holds.

Theorem 2.4. Assume that a(x) satisfies (Ha), g ∈ C(� × [0,∞)) is locally
Lipschitz continuous with respect to u, g(·, 0) = 0, the mapping u → ur + g(·, u)
is increasing, and

lim
u↑∞

(
ur + g(·, u)) = ∞ uniformly in �.

Then (i) Problem (1.1) possesses a positive solution if and only if

σ�1 [−1] < λ < σ
�0
1 [−1]. (2.3)

Moreover, it is unique if it exists.

(ii) Let (2.3) hold and let θ[λ,a,g] denote the unique positive solution of (1.1). Then,

lim
λ↓σ�1 [−1]

‖θ[λ,a,g]‖L∞(�) = 0, lim
λ↑σ�0

1 [−1]
‖θ[λ,a,g]‖L∞(�) = ∞. (2.4)
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(iii) The mapping λ → θ[λ,a,g] is pointwise increasing. If it is regarded as a
mapping from the interval (2.3) into C1,ν(�), 0 < ν < 1, then it is continuous.

In fact, if gu ∈ C(� × [0,∞)), then this mapping is differentiable and
∂θ[λ,a,g]
∂λ

∈
W 2,p(�) ∩W 1,p

0 (�) for all p > 1.

The existence and the uniqueness were found in [3] by using variational meth-
ods. The corresponding result in the context of problem (1.2) was independently
found in [17] by means of global continuation methods. The second half of (iii) was
found in [7], where the method of sub- and supersolutions was used to show that
Theorem 2.4 is also true for general second-order elliptic operators not necessarily
selfadjoint and that in fact θ[λ,a,g] is a global attractor for all positive solutions of
the associated parabolic problem. It should be remarked that the regularity of ∂D
can be weakened to the requirement that ∂D has the segment property (cf. [2]) with
respect to �0. It remains to show the first half of (iii).

Proof. To show that θ[λ,a,g] increases in λ, note that if λ2 > λ1, then θ[λ2,a,g] is a
positive strict supersolution of (1.1) with λ = λ1. Hence, by the monotonicity of
the nonlinearity, the strong maximum principle implies that θ[λ2,a,g] � θ[λ1,a,g] in
the sense that θ[λ2,a,g] −θ[λ1,a,g] lies in the interior of the cone of positive functions

of C1
0(�). For the continuity of θ[λ,a,g] in λ pick σ�1 [−1] < λ̂ < σ

�0
1 [−1] and

a sequence λn ∈ (σ�1 [−1], σ�0
1 [−1]), n = 1 such that limn→∞ λn = λ̂. Set

λ∞ = supn=1 λn. Then, for each n = 1, we have θ[λn,a,g] 5 θ[λ∞,a,g] and hence
‖θ[λn,a,g]‖L∞(�) 5 C, n = 1, for some constant C. This provides us with uniform
bounds for ‖1θ[λn,a,g]‖L∞(�) and hence, by the elliptic Lp estimates of Agmon,
Douglis & Nirenberg and by Morrey’s Theorem we get uniform bounds
for ‖θ[λn,a,g]‖C1,ν (�), 0 < ν < 1. Fix ν ∈ (0, 1) and pick ν̂ ∈ (0, ν). Then, there
exists a subsequence of θ[λn,a,g], relabeled by n, such that

lim
n→∞ ‖θ[λn,a,g] − u‖C1,ν̂ (�) = 0

for some u ∈ C1,ν̂ (�). Necessarily u is a non-negative solution of (1.1) with λ = λ̂.
Moreover, u |= 0, since λ = σ�1 [−1] is the unique value of λ for which bifurcation
to positive solutions from the state (λ, u) = (λ, 0) may occur. Therefore, by the
uniqueness of the positive solution, u = θ[λ̂,a,g]. Since this argument is valid along
any subsequence, the proof is completed. ut

To study the solution curves of (1.1) and the behavior of the positive solutions
along them we have carried out some numerical calculations. We solve (1.1) using
spectral collocation methods coupled with path-following techniques. This gives
high accuracy with low computational work. In all our numerical calculations we
have used trigonometric modes and the collocation points have been taken to be
equidistant, with the number of modes equal to the number of collocation points.
The details of our numerical scheme may be found in [14] and the references therein.
We refer the interested reader to [14]. Figure 2.1 shows a typical bifurcation diagram
of positive solutions for (1.1) under the assumptions of Theorem 2.4. The numerical
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Fig. 2.1. Bifurcation diagram under the assumptions of Theorem 2.4.

calculations were carried out for the choices

� = (0, 1), r = 4, g(x, u) = 11u2, a(x) = max{0, 4
9 (−25x2 + 25x − 4)}.

(2.5)
Note that a(x) = 0 if and only if x ∈ [0, 0.2] ∪ [0.8, 1] and that a(x) > 0 if
x ∈ (0.2, 0.8). Thus, in this example, �0 = (0, 0.2) ∪ (0.8, 1) and hence

σ�1 [−1] = π2 ' 9.8696, σ
�0
1 [−1] = (5π)2 ' 246.7401.
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In Figure 2.1 we have divided the (λ, ‖·‖∞)-diagram of non-negative solutions into
three pieces, those in the first column, corresponding to a different range of values
of λ. These variation ranges are the intervals (0, 125), (125, 233) and (233, 243.5),
respectively (from the top to the bottom). Continuous lines represent stable solutions
and dashed lines unstable solutions, each point on these curves representing a non-
negative solution of (1.1). The first diagram represents the trivial state u = 0
together with the curve of positive solutions emanating from it at π2, where the
trivial state loses stability. Since this bifurcation is supercritical, by the principle
of exchange of stability (cf. [6]) the positive solutions are stable for λ ' π2. The
main theorem of [7] shows that in fact any positive solution is stable. As shown in
Figure 2.1, this agrees with our numerical calculations.

Each of the figures on the second column of Figure 2.1 shows the profiles of
some of the solutions along the corresponding piece of the diagram on its left. The
figure on the first row shows the positive solutions for each of the following values of
λ: 9.8696, 12.2517, 20.2219, 45.1851, 75.1397, 105.0561, 115.0055 and 124.9319,
respectively. Of course, the solutions grow asλ increases (cf. Theorem 2.4 (iii)). The
figure on the second row shows the positive solutions for λ = 144.6433, 181.5242,
211.7337, 222.1816, 227.9162 and 232.1828, and the figure on the third row shows
the positive solutions for λ = 233.5460, 239.4319, 242.4959, 243.0061, 243.2158
and 243.3033. Note how the L∞(�)-norms of the positive solutions grow as λ
increases.

To carry out the numerical computations we have used 63 modes to complete
the calculation of the solution corresponding to λ up to λ = 105.0561, and for
larger values of λ we have used modes 143 in order to increase the accuracy near
the bifurcation point from infinity. A lower number of modes makes impossible the
calculation of the positive solutions for values of λ close to σ�0

1 , as we shall soon
show. The numerical Jacobian of the linearization of the discrete approximation
of (1.1) at the computed solution decreases along the curve, decaying to zero as
λ approaches the value 243.3718. Then, it increases, while the computed solution
decreases. Thanks to Theorem 2.4 (iii) we already now that this is impossible.
Therefore, we must stop the computations here and propose the following numerical
value for the point where bifurcation from infinity occurs:

numerical σ�0
1 ' 243.3718.

At first glance this value is far away from the value given by Theorem 2.4, namely,
σ
�0
1 ' 246.7401. Fortunately, this difference can be explained from the fact that

in the numerical calculations we are reducing the support of a(x) to the interval
(0.2013, 0.7987), because 0.2013 and 0.8 are the first collocation points after 0.2
and 0.7987, respectively, and therefore the numerical σ�0

1 should approximate
(π/0.2013)2 ' 243.5635 rather than 246.7401. Of course, for our purposes here
243.3718 is an excellent numerical approximation. This explains as well why a
high number of modes might be necessary to get a reasonable approximation when
spatially varying coefficients arise in the formulation of the model, in strong contrast
with the case of constant coefficients where in general a low number of modes are
sufficient to get good numerical approximations even when dealing with systems
(cf. [14] and the references therein).
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A striking feature is that the positive solution grows to infinity in �0 while it
stabilizes on D, the support of a(x), as λ approaches 243.3718. This shows that
in general (1.1) does not admit a global interior Harnack inequality as it does for
general linear models and for (1.1) in the case when a(x) is a positive constant. Note
that in the second case the positive solution can be decomposed into the form λ2λ
and that there exists a positive constant c > 0 such that limλ↑∞2λ = c uniformly
on compact subsets of� (cf. [8] for details). Figure 2.2 shows the global bifurcation
diagram of positive solutions of (2.5), obtained by bringing together the three pieces
on the first column of Figure 2.1, and a piece of the profiles of the positive solutions
corresponding with the values λ = 124.9319, 200.9235, 230.3918, 240.7325 and
242.5004 to illustrate how the solutions stabilize to a limiting solution on the support
of a(x) and grow to infinity on its complement. The main goal of Sections 3 and 6
will be to show how these numerical predictions are true.

The following example shows that the monotonicity assumption imposed on
the nonlinearity in the statement of Theorem 2.4 is necessary for its validity:

� = (0, 1), r = 4, g(x, u) = 11u2 − 6u3 − 6u,

a(x) = max{ 0, 4
9 (−25x2 + 25x − 4).

(2.6)

Using 63 modes we have computed the curve of positive solutions emanating from
u = 0 at λ = σ�1 [−1] ' 9.8696 up to the value λ = 15. For λ > 15 the bifurca-
tion diagram looks like the diagram of (2.5). Figure 2.3 shows the corresponding
bifurcation diagram as well as the graphics of some representative solutions on it.

Now, the curve of positive solutions exhibits three turning points at the values
λ = 9.1973, 10.2233 and 9.3071. The dimension of the unstable manifold of the
positive solution changes by 1 each time that a turning point is passed. Stable
positive solutions are represented by continuous lines, unstable positive solutions
by dashed lines. The dimension of the unstable manifold of the unstable solutions is
always 1. As in (2.5), in the present example the positive solution grows to infinity
in �0 while it stabilizes on D to a limiting solution as λ approaches the numerical
σ
�0
1 [−1]. Notice that for each λ ∈ (9.1973, 9.8696) the problem possesses at

least two positive solutions, one stable and the other unstable, and that for each λ ∈
(9.8696, 10.2233), it possesses three positive solutions, two stable and one unstable.
In fact, it possesses four solutions for eachλ ∈ (9.3071, 9.8696), two stable and two
unstable. In particular, condition (2.3) does not in general characterize the existence
of a positive solution and, in addition, the uniqueness assertion of Theorem 2.4 might
fail. What remains true for general nonlinearities is that under condition (2.3) the
problem has a positive solution and that it does not admit a positive solution if
λ = σ

�0
1 [−1]. The following result makes precise these general features.

Theorem 2.5. Suppose that a(x) and g(x, u) satisfy (Ha) and (Hgw), respectively.
Then (i) Problem (1.1) does not admit a positive solution if λ = σ

�0
1 [−1], and it

possesses a positive solution if (2.3) is satisfied.
(ii) Let {uλ} be any family of positive solutions of (1.1), λ ∈ (σ�1 [−1], σ�0

1 [−1]).
Then,

lim
λ↑σ�0

1 [−1]
‖uλ‖L∞(�) = ∞. (2.7)
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Fig. 2.2. Global bifurcation diagram and stabilization in D.

This result is new in all its generality. For smooth nonlinearities, (i) is contained
in [9] and [13]. Here, we give a shorter different proof.

Proof. Let u be a positive solution of (1.1). Then, u is a positive eigenfunction of
the operator −1+ a(x)(ur + g(x, u)) associated with the eigenvalue λ. Thus, by
the uniqueness of the principal eigenvalue and its monotonicity with respect to the
domain, we find that

λ = σ�1 [−1+ a(x)(ur + g(x, u))] < σ
�0
1 [−1],
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Fig. 2.3. Bifurcation diagram in the absence of monotonicity.

since a = 0 on �0. Now, pick λ satisfying (2.3). Let ϕ denote the principal eigen-
function associated with σ�1 [−1]. By (Hgw), for ε > 0 sufficiently small the
function εϕ provides us with a subsolution of (1.1) in the interior of the positive
cone of C1

0(�). Thus, to complete the proof of (i) it suffices to show the existence
of a supersolution in the interior of this cone (cf. [1]). Fix ε ∈ (0, 1) and consider
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the auxiliary problem

−1u = λ u− (1 − ε) a(x)ur+1 in �, u|∂� = 0. (2.8)

Thanks to Theorem 2.4, θ[λ,(1−ε)a,0] is the unique positive solution of (2.8). More-
over, by (Hgw) there is u1 = u1(ε) such that

|g(x, u)| 5 ε ur ∀ (x, u) ∈ �× [u1,∞).

Note that for any c > 1 the function u := cθ[λ,(1−ε)a,0] is a supersolution of (2.8)
in the interior of the positive cone. Let c be so large that infx∈D u = u1. For this
choice we have

au(ur + g(x, u)) = (1 − ε)aur+1

for all x ∈ � and hence

−1u = λu− (1 − ε)aur+1 = λu− au(ur + g(x, u)).

Therefore, u is a supersolution of (1.1) in the interior of the positive cone. This
completes the proof of (i).

To show (ii) we argue by contradiction. If (2.7) fails, then there exists a constant
K and a sequence λn, n = 1, such that limn→∞ λn = σ

�0
1 [−1] and

‖uλn‖L∞(�) 5 K

for each n = 1. Now, the same compactness argument as in the proof of Theorem
2.4 shows that (1.1) possesses a positive solution for λ = σ

�0
1 [−1]. By (i) this is

impossible. This contradiction completes the proof. ut

3. Pointwise Growth to Infinity on �0 and ∂D

As already shown by Theorem 2.5, theL∞-norm of any solution of (1.1) grows
to infinity as λ ↑ σ�0

1 [−1] and it ceases to exist for λ = σ
�0
1 [−1]. In this section

we explain this explosive character by analyzing the pointwise growth of solutions.
As an immediate consequence, our analysis entails that any solution of (1.1) must
grow to infinity uniformly on compact subsets of �0 ∪ ∂D as λ ↑ σ

�0
1 [−1].

In Section 6 the optimality of this result is shown to arise from the fact that any
positive solution must approach a limiting solution in D. These results agree with
the numerical calculations already done in Section 2. Some previous results in this
direction were given in [15] for the very special case when g = 0. Our first result
provides us with the pointwise divergence in �0.

Theorem 3.1. Suppose that a(x) and g(x, u) satisfy (Ha) and (Hgw), respectively.
Let {uλ} denote any family of positive solutions of (1.1), λ ∈ (σ�1 [−1], σ�0

1 [−1]).
Then,

lim
λ↑σ�0

1 [−1]
uλ(x) = ∞ ∀ x ∈ �0. (3.1)
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In the proof of this theorem we shall use a technical lemma which is of interest
in its own right:

Lemma 3.2. Let {uλ} be a family of positive solutions of (1.1), σ�1 [−1] < λ <

σ
�0
1 [−1], and pick λ1 ∈ (σ�1 [−1], σ�0

1 [−1]). Then, there exists a positive con-
stant c > 0 such that

inf
x∈D uλ(x) = c > 0 ∀ λ = λ1. (3.2)

Proof. We first show that there exists ĝ ∈ C(�×[0,∞)) locally Lipschitz contin-
uous with respect to u such that g 5 ĝ, ĝ(·, 0) = 0, u → ur + ĝ(·, u) is increasing
and

lim
u↑∞

(
ur + ĝ(·, u)) = ∞ uniformly in �.

By (2.2), there exists u0 > 0 and L > 0 such that g(x, u) 5 1
2u
r for u = u0 and

x ∈ �, and g(x, u) 5 Lu for 0 5 u < u0 and x ∈ �. Taking any continuous
increasing function ĝ(x, u) = ĝ(u) such that ĝ(0) = 0, ĝ(u) = Lu for u ∈ [0, u0]
and ĝ(u) = 1

2u
r for u = u0 we are done.

Since ĝ = g, any positive solution of (1.1) is a positive supersolution of

−1v = λ v − a(x)
(
vr + ĝ(x, v)

)
v in �, v|∂� = 0, (3.3)

which is a problem satisfying all the requirements of Theorem 2.4. By the unique-
ness of the positive solution, the strong maximum principle gives uλ > θ[λ,a,ĝ].
Moreover, thanks to Theorem 2.4(iii), θ[λ,a,ĝ] = θ[λ1,a,ĝ] provided that

λ ∈ [λ1, σ
�0
1 [−1]).

SinceD ⊂ � and θ[λ1,a,ĝ] lies in the interior of the positive cone ofC1
0(�), making

the choice c := infD θ[λ1,a,ĝ] completes the proof. ut
Proof of Theorem 3.1. Pick λ1 ∈ (σ�1 [−1], σ�0

1 [−1]) and let c > 0 be the
constant given by Lemma 3.2. By (2.2) there is M > 0 such that

g(x, u) 5 M ur for each x ∈ � and u = c.

Then, since a = 0 in � \D, for each λ = λ1 and x ∈ � we have that

a(x)
(
urλ(x)+ g(x, uλ(x))

)
5 a(x) (M + 1)urλ(x),

and hence, uλ is a positive supersolution of

−1v = λ v − (M + 1) a(x)vr+1 in �, v|∂� = 0,

for each λ = λ1. Thus,

uλ = θ[λ,a(M+1),0] = (M + 1)−1/rθ[λ,a,0], (3.4)
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and it suffices to show that

lim
λ↑σ�0

1 [−1]
θ[λ,a,0](x) = ∞ (3.5)

for each x ∈ �0. Although this relation was shown to occur in [15], for the sake of
completeness we outline its proof here. Differentiating the θ[λ,a,0]-equation with
respect to λ gives

(−1− λ+ (r + 1)a(x)θr[λ,a,0]
) dθ[λ,a,0]

dλ
= θ[λ,a,0] in �, θ[λ,a,0]|∂� = 0.

Moreover, for λ = λ1 we have θ[λ,a,0] = θ[λ1,a,0] and hence there exists a constant
c1 > 0 such that

θ[λ,a,0] = c1ψ in �,

where ψ(x) is the principal eigenfunction associated with σ�0
1 [−1]. Thus, the

strong maximum principle implies that dθ[λ,a,0]
dλ

> wλ for each λ > λ1, where wλ
is the unique positive solution of

(−1− λ)wλ = c1ψ in �0, wλ|∂�0 = 0,

which is given by wλ = (σ
�0
1 [−1] − λ)−1ψ1. Therefore,

lim
λ↑σ�0

1 [−1]
dθ[λ,a,0]
dλ

(x) = ∞, ∀ x ∈ �0.

This shows (3.5) and completes the proof. ut
In Section 6 we shall show how the family {uλ} is uniformly bounded above

on any compact subset of D as λ ↑ σ�0
1 [−1]. So, in order to acquire a complete

understanding of the pointwise growth of the positive solutions of (1.1) atσ�0
1 [−1],

it only remains to analyze the limiting behavior of the family at the interphase ∂D.
Actually, for the very special case when g = 0 this analysis was carried out in [15],
where some sufficient conditions on the decay to zero of a(x) were given so that
(3.1) holds for each x ∈ ∂D. Based on these results, the argument of the proof of
Theorem 3.1 provides us with the following result.

Corollary 3.3. Assume that a(x) and g(x, u) satisfy (Ha) and (Hgw), respectively,
and that in addition each component of D is a C3 subdomain of � and

lim
dist(x,∂D)↓0

a(x)

dist (x, ∂D)
= 0. (3.6)

Then,
lim

λ↑σ�0
1 [−1]

uλ(x) = ∞ uniformly on ∂D. (3.7)

Proof. Theorem 4.3 of [15] implies that condition (3.7) is satisfied if g = 0. This
corollary is then an immediate consequence of estimate (3.4). ut
Remark 3.4. If a(x) is assumed to be of class C1 near ∂D, then condition (3.6) is
satisfied.
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4. On the Uniqueness of the Positive Solution

In this section we give some sufficient conditions for the uniqueness of the
positive solution of (1.1) in the general case when g(x, u) satisfies (Hg). As has
been noted in the Introduction, the positive solutions of (1.1) for λ close to σ�1 [−1]
bifurcate from the state u = 0. Moreover, by using singularity theory, it is easy
to give examples exhibiting any predetermined number of positive solutions in
a neighborhood of the bifurcation point. Figure 2.3 shows one of the possible
bifurcation diagrams. Our uniqueness results show how the complexity of these
bifurcation diagrams diminishes as λ is taken progressively closer to σ�0

1 [−1],
the value where bifurcation from infinity occurs. Indeed, Figure 2.3 suggests that
the model (2.6) possesses a unique positive solution for λ sufficiently close to
σ
�0
1 [−1]. Our main uniqueness result establishes that this is in fact the case for

the general problem (1.1) provided that the support D of the weight function a(x)
satisfies a geometrical condition involving its thickness. To state the main theorem
we have first to introduce that concept. Given z ∈ R

N , l > 0, and v ∈ R
N with

|v| = 1, consider the slice Sz,v,l based upon z, with thickness l in the direction of
v:

Sz,v,l := { x ∈ R
N : 0 < (x − z) · v < l }.

Then, the thickness T := T (D) of D is defined by

T (D) := inf {l > 0 : D ⊂ Sz,v,l for some z, v ∈ R
N , |v| = 1}.

In other words, T (D) is the minimum distance between parallel hyperplanes en-
closing D. We are now ready to state our first uniqueness result.

Theorem 4.1. Assume that a(x) and g(x, u) satisfy (Ha) and (Hg), respectively,
and let T be the thickness of D. Then, there exists ε0 > 0 such that if

T 2 ‖a‖L∞(�) 5 ε0, (4.1)

then there exists δ > 0 with the property that (1.1) possesses a unique positive
solution for each λ ∈ [σ�0

1 [−1] − δ, σ
�0
1 [−1]).

Remark 4.2. Condition (4.1) can be reached either by fixing the amplitude of a(x)
and taking T (D) sufficiently small, or by fixing T (D) and taking a(x) with suf-
ficiently small amplitude. Therefore, this result provides us with a substantial im-
provement of the main theorem of [13], where the uniqueness was shown to occur
for a(x) sufficiently small.

Proof of Theorem 4.1. Pick λ0 ∈ (σ�1 [−1], σ�0
1 [−1]). Thanks to Lemma 3.2 and

the first part of the proof of Theorem 3.1, there exists a constant M = M(λ0) > 0
such that

u = M−1/rθ[λ,a,0] (4.2)

for any positive solution u of (1.1) with λ = λ0. Now, fix ε > 0 sufficiently small
and consider the open set

Dε := {x ∈ � : dist (x,D) < ε}.
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Since ∂Dε ⊂ �0, Theorem 3.1 implies that

lim
λ↑σ�0

1 [−1]
θ[λ,a,0](x) = ∞ uniformly on ∂Dε. (4.3)

Moreover, since λ → θ[λ,a,0] is pointwise increasing, for each n ∈ N there exists
λn ∈ (λ0, σ

�0
1 [−1]), λn < λn+1, such that

θ[λ,a,0] > n on ∂Dε ∀ λ ∈ [λn, σ�0
1 [−1]). (4.4)

Necessarily limn→∞ λn = σ
�0
1 [−1], and it follows from (4.4) that if λ = λn, then

θ[λ,a,0] is a positive supersolution of the problem

−1v = λ v − ‖a‖L∞(�) v
r+1 in Dε, v|∂Dε = n. (4.5)

We now show that (4.5) has a unique positive solution for each λ ∈ [λ0, σ
�0
1 [−1])

provided that n = (λ0/‖a‖L∞(�))1/r . To prove the uniqueness, assume that v1, v2
are two positive solutions of (4.5). Then,(

−1− λ+ ‖a‖L∞(�)
vr+1

1 − vr+1
2

v1 − v2

)
(v1 − v2) = 0 in Dε, (v1 − v2)|∂Dε = 0,

(4.6)
and moreover there is R = 0, R |= 0, such that

vr+1
1 − vr+1

2

v1 − v2
= vr1 + R(x).

Thus, by the monotonicity of the principal eigenvalue with respect to the potential,
we find that

σD
ε

1

[
−1− λ+ ‖a‖L∞(�)

vr+1
1 − vr+1

2

v1 − v2

]
> σD

ε

1

[−1− λ+ ‖a‖L∞(�)v
r
1

]
.

(4.7)
On the other hand, since v1 is a solution of (4.5), it provides us with a strict positive
supersolution of the operator −1−λ+‖a‖L∞(�)vr1 inDε subject to homogeneous
Dirichlet boundary conditions and hence, the strong maximum principle implies
that σD

ε

1

[−1− λ+ ‖a‖L∞(�)vr1
]
> 0. Thus, due to (4.7),

σD
ε

1

[
−1− λ+ ‖a‖L∞(�)

vr+1
1 − vr+1

2

v1 − v2

]
> 0

and we find from (4.6) that v1 = v2, which is impossible. This shows the uniqueness
of the positive solution of (4.5), if it exists. Note that in this argument v1 does not
need to be the minimal positive solution. To prove the existence of a solution we use
the method of sub- and supersolutions. Sufficiently large constants provide us with
positive supersolutions. It remains to show the existence of a positive subsolution.
To construct it we use functions of traveling-wave type:

v(x) = w(ζ ), ζ = (x0 − x) · n(x0), (4.8)
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where x0 ∈ ∂Dε and n(x0) stands for the outward unit normal to Dε at x0. Since
T (Dε) = T (D) + 2ε, there exists x0 ∈ ∂Dε such that Dε ⊂ Sx0,−n(x0),T (D)+2ε.
Moreover, the function v(x) defined by (4.8) satisfies the v-equation of (4.5) inD

ε

if and only if w(ζ ) satisfies

−d
2w

dζ 2
= λw − ‖a‖L∞(�)w

r+1, 0 5 ζ 5 T (D)+ 2ε. (4.9)

To complete the proof of the existence it suffices to show that (4.9) admits a solution
w(ζ ) with

w(0) = w(T (D)+ 2ε) = n. (4.10)

This is so because any solution of (4.9), (4.10) satisfies w(ζ ) < n for each ζ ∈
(0, T (D)+2ε) and hence, the associated v(x) satisfies v 5 n on ∂Dε. The existence
of a positive solution to (4.9), (4.10) is guaranteed by the following lemma whose
proof is postponed until the end of the proof of Theorem 4.1.

Lemma 4.3. Consider the one-dimensional problem

−u′′ = λ u− Aur+1 in (0, T ), u(0) = u(T ) = σ, (4.11)

where λ > 0,A > 0, r > 0, T > 0 and σ ∈ [(λ/A)1/r ,∞]. Then, (4.11) possesses
a unique solution, denoted by Uσ (ζ ), which is positive and pointwise increasing
with respect to σ . Moreover, the solution U∞ corresponding to σ = ∞ is finite in
0 < ζ < L and is given by U∞(ζ ) = limσ↑∞ Uσ (ζ ). Furthermore,

2B2
0

(r + 2)AT 2
5 min
ζ∈(0,L) U

r∞(ζ ) 5
2B2

0

(r + 2)AT 2
+ λ(r + 2)

2A
, (4.12)

where B0 = B( r
2(r+2) ,

1
2 ) and B(p, q) = ∫ 1

0 t
p−1(1− t)q−1 dt is Euler’s function.

Thanks to Lemma 4.3, the problem (4.9), (4.10) possesses a unique solution
wn := Un(ζ ), necessarily positive, provided that n = (λ/‖a‖L∞(�))1/r . Moreover,
thanks to (4.12), the corresponding subsolution of (4.5), vn(x) given from wn by
(4.8), satisfies

inf
Dε
vn =

(
2B2

0

‖a‖L∞(�)(r + 2)(T + 2ε)2

)1/r

. (4.13)

Now, by the uniqueness of the positive solution of (4.5), there exists n0 ∈ N such
that for each λ ∈ [λn0 , σ

�0
1 [−1]) we have θ[λ,a,0] = vn0 and therefore, thanks to

(4.2) and passing to the limit as ε ↓ 0, we find from (4.13) that

inf
D
u =

(
2B2

0

(r + 2)MT 2‖a‖L∞(�)

)1/r

(4.14)

for any positive solution u(x) of (1.1) with λ = λn0 . Thanks to (4.14), infD u is as
large as we want if T 2‖a‖L∞(�) is sufficiently small. By (Hg) there exists u0 > 0
such that u → ur+g(x, u) is increasing in [u0,∞) for each x ∈ �. By (4.14) there
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exists ε0 > 0 such that (4.1) implies that infD u = u0 for any positive solution of
(1.1) with λ = λn0 . It remains to show that ε0 satisfies the statement of the theorem.
To prove this we use a device from [3]. It was shown in [3] that for any pair u1, u2
of solutions of (1.1) with u1/u2, u2/u1 ∈ L∞(�) the following inequality holds

I (u1, u2) :=
∫
�

(−1u1

u1
+ 1u2

u2
)(u2

1 − u2
2) dx = 0.

By the Hopf Lemma, this inequality is true for any pair of positive solutions. Thus,
if u1, u2 are two positive solutions of (1.1), then

I (u1, u2) =
∫
D

a(x)(g(x, u2)− g(x, u1)+ ur2 − ur1)(u
2
1 − u2

2) dx = 0, (4.15)

since a = 0 in � \ D. Now, pick λ = λn0 and assume that (1.1) possesses two
positive solutions, say, u1 and u2. By the construction of ε0, condition (4.1) implies

a(x)(g(x, u1)− g(x, u2)+ ur1 − ur2)(u
2
1 − u2

2) = 0 ∀ x ∈ �.
Thus, I (u1, u2) 5 0, and thanks to (4.15), I (u1, u2) = 0. Hence, there exists
γ > 0 such that u2 = γ u1 in � (cf. [3] for details). Therefore,

g(x, γ u1(x))+ γ rur1(x) = g(x, u1(x))+ ur1(x) for each x ∈ D,
which is impossible unless γ = 1. This contradicts u1 |= u2 and completes the
proof of the theorem. ut

Proof of Lemma 4.3. We look at the phase portrait of the planar first-order system
associated with the differential equation of (4.11). The ′ stands for differentiation
with respect to ζ . With v = u′, the orbits of the system are described by the family
of curves

1

2
v2 + λ

2
u2 − A

r + 2
ur+2 = E, E ∈ R,

and two regimes are possible: Either 0 < σ < (λ/A)1/r or σ = (λ/A)1/r . By the
assumptions of the lemma we are restricting ourselves to deal with the second one.
If σ = (λ/A)1/r , then u = (λ/A)1/r provides us with the unique solution of (4.11),
since this value corresponds to an equilibrium. Hence, in the sequel it is assumed
that σ > (λ/A)1/r . In this case, by simply looking at the phase portrait, it is easily
seen that u0 ∈ R corresponds to the minimum of a solution of (4.11) if and only if

(λ/A)1/r < u0 < σ, 1
2T =

∫ σ

u0

(
2Aur+2

r + 2
− λu2 + λu2

0 − 2Aur+2
0

r + 2

)−1/2

du,

i.e., if and only if

( λ
A

)1/r
< u0 < σ, 1

2T = J (σ, u0), (4.16)
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where

J (σ, u0) :=
∫ σ/u0

1

[
λ(1 − t2)+ 2A

r + 2
ur0(t

r+2 − 1)

]−1/2

dt. (4.17)

Thus, the solutions of (4.11) are in one-to-one correspondence with the solutions
of (4.16). Since J (σ, u0) is decreasing in u0 and

lim
u0↓(λ/A)1/r

J (σ, u0) = ∞, lim
u0↑σ

J (σ, u0) = 0, (4.18)

there exists a unique value of u0, say, u0(σ ), satisfying (4.16). Therefore, (4.11)
possesses a unique solution, denoted in the sequel by u = Uσ (ζ ).

We now construct the solution corresponding to σ = ∞. From (4.16), it is
easily seen that u0(σ ) = min(0,T ) Uσ is increasing in σ . In fact, the strong max-
imum principle implies that Uσ is pointwise increasing in σ . Now, assume that
limσ↑∞ u0(σ ) = ∞. Then, we find from (4.16) and (4.17) that

0 <
T

2
= J (σ, u0(σ )) <

∫ ∞

1

[
λ(1 − t2)+ 2A

r + 2
ur0(σ )(t

r+2 − 1)

]−1/2

dt,

while a simple calculation yields∫ ∞

1

[
λ(1 − t2)+ 2A

r + 2
ur0(t

r+2 − 1)

]−1/2

dt ∼
(
r + 2

2A

)1/2

B1 u
−r/2
0 ↓ 0,

as u0 ↑ ∞, where B1 = ∫∞
1 (tr+2 − 1)−1/2 dt . This contradiction shows that

limσ↑∞ u0(σ ) is finite. Similarly, limσ↑∞ Uσ (ζ ) is finite for each ζ ∈ (0, T ).
From these features, it is easily seen that the pointwise limit

U∞(ζ ) := lim
σ↑∞Uσ (ζ ), ζ ∈ (0, T ),

provides us with the unique solution of (4.11) for σ = ∞, which is characterized
by u0(∞) := limσ↑∞ u0(σ ), which is the unique solution of

1
2T = J (∞, u0(∞)). (4.19)

Finally, the estimates in (4.12) follow readily from(
2Aur0(∞)

r + 2
− λ

)
(tr+2 − 1) 5 λ(1 − t2)+ 2Aur0(∞)

r + 2
(tr+2 − 1)

5
2Aur0(∞)

r + 2
(tr+2 − 1),

which is valid for all t = 1. This completes the proof. ut
We complete this section by giving another uniqueness result valid for a special

class of g(x, u)’s. Beside its own interest, since no further restrictions on the weight
amplitude nor on the thickness of D are needed for it, it will be one of the most
important tools of Section 6 to analyze the behavior in D of the positive solutions
of (1.1) as λ ↑ σ�0

1 [−1].
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Theorem 4.4. Assume that a(x) satisfies (Ha) and pick δ ∈ (0, r) and b ∈ R.
Then, there exists λ0 ∈ (σ�1 [−1], σ�0

1 [−1]) such that the problem

−1u = λ u− a(x) u(ur − b ur−δ) in �, u|∂� = 0, (4.20)

possesses a unique positive solution for each λ0 5 λ < σ
�0
1 [−1].

Proof. Thanks to Theorem 2.4, we can assume b > 0. In this case, for fixed
ε > 0 sufficiently small, it follows from Theorem 3.1 that there exists λ0 ∈
(σ�1 [−1], σ�0

1 [−1]) such that u > b1/δ on ∂Dε for any positive solution of (4.20)
with λ = λ0, where Dε := {x ∈ � : dist (x,D) < ε }. Moreover, multiplying
(4.20) by (b1/δ − u)+ ∈ H 1

0 (D
ε) and integrating on Dε leads to

−
∫
Dε

|∇(b1/δ − u)+|2 dx

=
∫

{u5b1/δ}∩Dε
u(b1/δ − u)

(
λ− a(x)ur−δ(uδ − b)

)
dx = 0,

and hence, (b1/δ − u)+ = 0 a.e. in Dε. Therefore, since u is continuous, we find
that

u = b1/δ on D, (4.21)

for any positive solution of (4.20) with λ = λ0. Finally, since the mapping u →
ur − bur−δ is increasing in u = b1/δ , the device of [3] used in the last part of
the proof of Theorem 4.1 shows that (4.20) possesses a unique solution for each
λ = λ0. ut

5. On the Optimality of the Main Uniqueness Result

In this section we use an example to show how Theorem 4.1 is optimal in
the sense that there are problems such that for fixed T , an increase in ‖a‖L∞(�)
produces a decrease in the range of λ’s for which (1.1) has unique solutions. To
make this analysis we consider a variant of problem (2.6),

� = (0, 1), r = 4, g(x, u) = 11u2 − 6u3 − 6u,

a(x) = ε max{ 0,
4

9
(−25x2 + 25x − 4),

(5.1)

where ε > 0 is regarded as a real parameter, and we compute the curve of positive
solutions for the values ε = 1, 10, 50 and 100. Figure 5.1 shows the bifurcation
diagrams for each of these values of ε. We have represented the solutions for values
of λ < 45. The numerical calculations have been carried out as already explained
in Section 2.

The folds of the bifurcation diagrams are magnified as the weight amplitude
is increased. The case ε = 1 corresponds to the example (2.6) of Section 2. In
this case the numerics suggest that (5.1) possesses a unique positive solution for
each λ > 10.2233, which is the value of λ where the curve exhibits the subcritical
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Fig. 5.1. Variation of the bifurcation diagram as ε grows.

turning point. In this case the problem admits at least three solutions for each
λ ∈ (π2, 10.2233). When ε = 10, the subcritical turning point of the curve moves
up to 13.4255 and hence, for each λ ∈ (π2, 13.4255) the problem possesses at least
three solutions. When ε = 50 the subcritical turning point grows up to 27.5376
and so the problem possesses at least three solutions for each λ ∈ (π2, 27.5376).
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Finally, if ε = 100 then the numerical computations show that (1.1) with the
choice (5.1) possesses at least three positive solutions for each λ ∈ (π2, 41.6149),
but in this case a further feature arises: The arc of the curve after the subcritical
turning point exhibits a loop which did not appear for the previous values of ε.
This loop has been magnified in the second picture of Figure 5.1. The delimiting
turning points of this loop are located at λ = 29.7489 and λ = 31.5152. Therefore,
if ε = 100, then the problem possesses at least five positive solutions for each
λ ∈ (29.7489, 31.5152). In each of these examples the numerical computations
suggest that the problem possesses a unique positive solution for λ greater than the
value of λ where the subcritical turning point arises. Since the existence of isolas
was not excluded, we cannot be sure if for these ranges of λ the problem possesses
a unique solution or not. Nevertheless, if the existence of isolas is excluded, then
the interval of λ’s where uniqueness occurs decreases as ε grows.

Now, instead of the amplitude of the weight function, we change the thickness
of the support of a(x). For this, we consider (1.1) with

� = (0, 1), r = 4, g(x, u) = 11u2 − 6u3 − 6u,

and a ∈ {a1, ..., a4}, where

a1(x) := max{ 0,−100x2 + 100x − 24},
a2(x) := max{ 0, 4

9 (−25x2 + 25x − 4)},
a3(x) := max{ 0, 1

4 (−25x2 + 25x − 9
4 )},

a4(x) := max{ 0, 1
144 (−625x2 + 625x − 49

4 )}.
All these weights have amplitude 1, each of them being supported in

(0.4, 0.6), (0.2, 0.8), (0.1, 0.9), (0.02, 0.98),

respectively, and so their respective thicknesses are T1 := 0.2, T2 := 0.6, T3 := 0.8
and T4 := 0.96. The corresponding bifurcation diagrams look like those shown in
Figure 5.1, but now the subcritical turning points are located at λ1 = 10.0166,
λ2 := 10.2233, λ3 := 10.2509 and λ4 = 10.2540, respectively. Thus, though
these values increase with the thickness, their variations are far from significant.
Moreover, increasing thickness makes �0 smaller and hence, the points where
bifurcation to infinity occurs grow from 61.6850 up to 24674.0110. Therefore, the
numerics suggest that in practice the interval where uniqueness occurs enlarges
when the thickness increases. We conjecture that this is the case. Unfortunately,
Theorem 4.1 does not provide us with a proof of this conjecture.

6. Convergence of the Positive Solutions in D

In this section we complete the analysis of Section 3 ascertaining the pointwise
growth as λ ↑ σ�0

1 [−1] of an arbitrary family {uλ}, σ�1 [−1] < λ < σ
�0
1 [−1],

of positive solutions of (1.1). First we analyze the pure logistic problem (g = 0).
Then, we consider the general problem (1.1).



282 J.Garćia, R.Gómez, J. López-Gómez & J.C. Sabina de Lis

6.1. The case g = 0

In case g = 0, the following result characterizes the limiting behavior in D as
λ ↑ σ�0

1 [−1] of the positive solutions θ[λ,a,0] of (1.1).

Theorem 6.1. Assume that g = 0 and a(x) satisfies (Ha). Then (i) For each x ∈ D
the pointwise limit

ū(x) := lim
λ↑σ�0

1 [−1]
θ[λ,a,0](x) < ∞

is well defined.

(ii) ū ∈ W 2,p
loc (D)∩C1,ν(D) for all p > 1 and ν ∈ (0, 1) and ū is a weak solution

of the equation
−1u = λ u− a(x)ur+1

in the domain D. Moreover,

lim
λ↑σ�0

1 [−1]
‖θ[λ,a,0] − ū‖C1,ν (D) = 0.

In the proof of this result we need the following radial counterpart of Lemma
4.3.

Lemma 6.2. Let B ⊂ R
N denote the ball of radius R centered at 0 and consider

the boundary-value problem

−1u = λ u− Aur+1 in B, u|∂B = σ, (6.1)

where λ > 0, σ > (λ/A)1/r , r > 0 and A > 0 are constants. Then, (6.1) pos-
sesses a unique positive solution uσ ∈ C∞(B̄), the mapping σ → uσ is pointwise
increasing in B and

u∞(x) := lim
σ↑∞ uσ (x) = sup

σ>0
uσ (x) < ∞ ∀ x ∈ B.

Moreover, u∞ provides the minimal classical solution to the singular boundary-
value problem

−1u = λ u− Aur+1 in B, u|∂B = ∞, (6.2)

where the boundary condition must be understood in the sense that u(x) ↑ ∞ as
dist (x, ∂B) ↓ 0.

Proof. The proof of the existence and the uniqueness of a positive solution for (4.5)
applies mutatis mutandis to (6.1). So, (6.1) possesses a unique positive solution.
Let uσ denote it. Since (λ/A)1/r is a subsolution of (6.1) and σ is a supersolution
of (6.1), the uniqueness of the positive solution together with the strong maximum
principle provide us with the estimate

(λ/A)1/r < uσ < σ in B. (6.3)
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A further bootstrapping argument together with the Lp-estimates of Agmon,
Douglis & Nirenberg and Schauder’s theory give uσ ∈ C∞(B̄) (cf. [10,
Chap. VI, IX]). Moreover, by the uniqueness of the positive solution, uσ must be
radially symmetric, since the Laplacian is invariant by rotations.

Hence, there exists Uσ ∈ C∞([0, R]) such that uσ (x) = Uσ (s), s = |x|. The
function Uσ is the unique positive solution of the one-dimensional problem

− d

ds

(
sN−1 dUσ

ds

)
= sN−1

(
λUσ − AUr+1

σ

)
0 < s < R,

dUσ

ds
(0) = 0, Uσ (R) = σ.

(6.4)

Now, the change of variable

ρ = g(s) :=
{

1
N−2

[
1

sN−2 − 1
RN−2

]
, N = 3,

log
(
R
s

)
, N = 2,

vσ (ρ) = Uσ (g
−1(ρ)),

transforms (6.4) into

−v′′
σ = (g−1(ρ))2(N−1)

(
λ vσ − Avr+1

σ

)
, ρ > 0,

vσ (0) = σ, v′
σ (∞) = 0,

(6.5)

where ′ stands for derivation with respect to ρ. By (6.3), vσ > (λ/A)1/r and hence,

λvσ − Avr+1
σ < 0.

Thus, v′(ρ) < 0 for each ρ > 0. Now, fix ρ1 > 0. Since g is decreasing, for
0 < ρ < ρ1, we have g−1(ρ) > g−1(ρ1) and hence

−v′′
σ = (g−1(ρ))2(N−1)(λvσ − Avr+1

σ ) < (g−1(ρ1))
2(N−1)(λvσ − Avr+1

σ ).

Thus, vσ is a subsolution of the problem

−w′′ = (g−1(ρ1))
2(N−1)

(
λw − Awr+1

)
0 < ρ < ρ1,

w(0) = w(ρ1) = σ.

(6.6)

Thanks to Lemma 4.3, (6.6) possesses a unique positive solution. Let wσ denote
it. By the uniqueness of the positive solution, it follows from the strong maximum
principle that

vσ (ρ) < wσ (ρ) ∀ ρ ∈ (0, ρ1],
where we have used that vσ (ρ1) < σ . Hence, for each ρ = 1

2ρ1 we find that

vσ (ρ) 5 vσ (
1
2ρ1) 5 wσ (

1
2ρ1) = min

(0,ρ1)
wσ := w0(σ ) < lim

σ→∞w0(σ ) := w0(∞).

(6.7)
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Moreover, thanks to Lemma 4.3, the following estimate for w0(∞) holds:

w0(∞) 5 λ(r + 2)

2A
+ 2B2

0

(r + 2) A ρ2
1 (g

−1(ρ1))2(N−1)
.

Therefore, since ρ1 > 0 is arbitrary,

u∞(x) := lim
σ→∞ uσ (x) = sup

σ→∞
uσ (x) < ∞ for each x ∈ B.

Moreover, (6.7) implies that

u∞(x) 5 λ(r + 2)

2A
+ 2B2

0

(r + 2) A ρ2
1 (g

−1(ρ1))2(N−1)
, ρ1 = 2ρ(|x|).

We now show that u∞ is a solution of −1u = λu− Aur+1 in B. Set

U0,σ := inf
(0,R)

Uσ = Uσ (0), U0,∞ := U∞(0),

where U∞ is the unique function such that u∞(x) = U∞(s), s = |x|. Since Uσ
satisfies (6.4),

Uσ (s) = U0,σ −
∫ s

0

∫ ρ

0

(
τ

ρ

)N−1

(λUσ − AUr+1
σ ) dτ dρ (6.8)

for each s < R, and hence, passing to the limit as σ ↑ ∞ in (6.8), we find from the
theorem of dominated convergence that

U∞(s) = U0,∞ −
∫ s

0

∫ ρ

0

(
τ

ρ

)N−1

(λU∞ − AUr+1∞ ) dτ dρ. (6.9)

Since (6.9) holds for each s < R, it readily follows that U∞ ∈ C∞(B). Moreover,
by the uniqueness of the solution of the Cauchy problem, U∞(s) is the unique
positive solution of

−(sN−1u′)′ = sN−1
(
λ u− Aur+1

)
, 0 < s < R,

u(0) = U0,∞, u′(0) = 0,

which is defined on 0 5 s < R. SinceU∞(s) is increasing and lims↑R U∞(s) = ∞,
we are done.

To complete the proof it remains to show the minimal character of U∞ among
all positive solutions. Note that given any positive classical solution u of (6.2) for
each σ > 0 there exists r(σ ) < R such that

uσ (x) < u(x), r(σ ) 5 |x| < R.

By the uniqueness of the positive solution, the strong maximum principle implies
that u > uσ in |x| 5 r(σ ) as well and hence, uσ < u. Therefore, passing to the
limit as σ ↑ ∞ yields u∞ 5 u. This completes the proof. ut
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Proof of Theorem 6.1. Let B be an arbitrary ball such that B ⊂ D and take
λ ∈ (σ�1 [−1], σ�0

1 [−1]). Then, the restriction u := θ[λ,a,0]|B satisfies

−1u = λu− a ur+1 < σ
�0
1 [−1]u− (inf

B
a) ur+1

and hence,
θ[λ,a,0] < u∞,B in B,

where u∞,B stands for the minimal classical solution of

−1u = σ
�0
1 [−1] u− (inf

B
a)ur+1 in B, u|∂B = ∞,

whose existence is given by Lemma 6.2. Therefore, since θ[λ,a,0] is pointwise
increasing in λ, the pointwise limit ū(x) := lim

λ↑σ�0
1 [−1] θ[λ,a,0](x) is well defined

and finite for each x ∈ D.
Let B ′ and B ′′ be two arbitrary concentric balls contained in B, with B ′ ⊂

B ′ ⊂ B ′′ ⊂ B ′′ ⊂ B. For each p > 1 we have θ[λ,a,0] ∈ W 2,p(B). Moreover,
θ[λ,a,0] < u∞,B . Thus, from the interior Lp-estimates and Morrey’s embedding
theorem we find that for each ν ∈ (0, 1) there exists C = C(ν, B ′, B ′′) such that

‖θ[λ,a,0]‖C1,ν (B ′) 5 C (6.10)

for any λ ∈ (σ�1 [−1], σ�0
1 [−1]). Now, a rather standard compactness argument

together with the uniqueness of the pointwise limit ū shows that

lim
λ↑σ�0

1 [−1]
‖θ[λ,a,0] − ū‖

C1,ν (B
′
)
= 0,

and therefore,
lim

λ↑σ�0
1 [−1]

‖θ[λ,a,0] − ū‖C1,ν (D) = 0.

In particular, ū must be a weak solution of −1u = σ
�0
1 [−1]u− a ur+1 in D. By

elliptic regularity, ū ∈ W 2,p
loc (D) for each p > 1. This completes the proof. ut

If we define a weak solution u of the problem

−1u = λ u− aur+1 in D, u|∂D = ∞, (6.11)

to be a function u ∈ W
1,p
loc (D), for some p > 1, such that u(x) → ∞ as

dist (x, ∂D) ↓ 0 (cf. [11], for instance), and we assume that a(x) and ∂D sat-
isfy the assumptions of Corollary 3.3, then lim

λ↑σ�0
1 [−1] θ[λ,a,0] = ∞ uniformly

on ∂D and therefore, ū provides us with a weak solution of (6.11). Moreover, the
corresponding argument in the proof of Lemma 6.2 can be adapted to show that in
fact ū is the minimal weak solution of (6.11). All these features can be summarized
in the following result.

Corollary 6.3. Let ū = lim
λ↑σ�0

1 [−1] θ[λ,a,0] and suppose that a(x) and ∂D satisfy

the assumptions of Corollary 3.3. Then, ū is the minimal weak solution of (6.11).
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6.2. The general problem

Here, we show that Theorem 6.1(i) extends to cover the general case when
g(x, u) satisfies (Hg) and the following growth condition at infinity:

g(x, u) = o(ur−δ) as u → ∞ uniformly in �, (6.12)

where δ ∈ (0, r). Moreover, if in addition we assume (1.1) to possess a unique
positive solution for each λ in a left neighborhood of σ�0

1 [−1], then Theorem
6.1(ii) and Corollary 6.3 also hold.

We begin by analyzing the special model (4.20) in case b > 0. For this model
conditions (Hg) and (6.12) are satisfied. Thanks to Theorem 4.4 there exists λ0 ∈
(σ�1 [−1], σ�0

1 [−1]) such that for each λ ∈ [λ0, σ
�0
1 [−1]) the problem (4.20)

possesses a unique positive solution. Let us denote it by uλ. It is easily seen that
λ → uλ is pointwise increasing. Moreover, by (4.21) we have that uλ0 = b1/δ on
D. Thus, there exist c0 > b1/δ and λ1 ∈ (λ0, σ

�0
1 [−1]) such that

uλ = c0 > b1/δ in D (6.13)

for all λ ∈ [λ1, σ
�0
1 [−1]). Therefore,

ur+1 − bur+1−δ

ur+1
= c1 := 1 − bc−δ0 , ∀ u = c0. (6.14)

We now show the existence of local uniform estimates in D for the family uλ,
λ = λ1. Let B be an arbitrary ball with B ⊂ B̄ ⊂ D . By (6.13) and (6.14), we
have that

−1uλ 5 σ
�0
1 [−1]uλ − c1 (inf

B
a)ur+1

λ in B

for each λ ∈ [λ1, σ
�0
1 [−1]). Thus,

uλ 5 u∞,B in B,

where u∞,B is the minimal positive solution of

−1u = σ
�0
1 [−1]u− c1 (inf

B
a)ur+1 in B, u|∂B = ∞,

whose existence follows from Lemma 6.2. Therefore, for each x ∈ D we find that

ū(x) := lim
λ↑σ�0

1 [−1]
uλ(x) < ∞.

This shows the validity of Theorem 6.1(i) for (4.20). The remaining assertions of
Theorem 6.1 follow easily by using the same argument as in its proof. Therefore,
Theorem 6.1 is valid for (4.20).

Now, we consider (1.1) with g satisfying (Hg) and (6.12). Fix λ1 ∈ (σ�1 , σ�0
1 ).

By Lemma 3.2 there exists a constant c = c(λ1) > 0 such that

inf
x∈D u(x) = c > 0
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for each positive solution of (1.1) with λ = λ1. Moreover, thanks to (6.12), there
exists a constant b1 > 0 such that |g|

ur−δ 5 b1 if u = c. Thus, for each λ = λ1 any
positive solution u of (1.1) satisfies

−1u = λu− a(ur+1 − b1u
r+1−δ) in �,

and hence it is a supersolution of

−1v = λv − a(vr+1 − b1v
r+1−δ) in �, v|∂� = 0. (6.15)

On the other hand, thanks to Theorem 4.4, there exists λ2 ∈ [λ1, σ
�0
1 [−1]) such

that (6.15) possesses a unique positive solution for each λ ∈ [λ2, σ
�0
1 [−1]). Thus,

if uλ,1 stands for the unique positive solution of (6.15), then uλ 5 uλ,1 for any
positive solution uλ of (1.1) with λ ∈ [λ2, σ

�0
1 [−1]). Therefore,

lim sup
λ↑σ�0

1 [−1]
uλ(x) 5 ū1(x) := lim

λ↑σ�0
1 [−1]

uλ,1(x) < ∞ ∀ x ∈ D.

Moreover, a further compactness argument as in the proof of Theorem 6.1 shows
that given any family {uλ} of positive solutions of (1.1), σ�1 [−1] < λ < σ

�0
1 [−1],

there exist a sequenceλn ↑ σ�0
1 [−1] and a weak solution ū ∈ W 2,p

loc (D)∩C1,ν(D),
for each p > 1 and 0 < ν < 1, of the equation

−1u = σ
�0
1 [−1]u− a(ur + g(x, u))u (6.16)

in the domain D such that

lim
n→∞ ‖uλn − ū‖C1,ν (D) = 0

for each ν ∈ (0, 1). In general, ū is not uniquely determined. Nevertheless, if (1.1)
possesses a unique positive solution for each λ in a left neighborhood of σ�0

1 [−1],
then ū is unique and all the conclusions of Theorem 6.1 hold. All these features
can be summarized in the following result.

Theorem 6.4. Assume that a(x) satisfies (Ha) and that g(x, u) satisfies (Hgw)
and (6.12). Then (i) Any family {uλ} of positive solutions to (1.1), λ ∈ (σ�1 , σ�0

1 ),
is uniformly bounded above inD, with the upper bound independent of the family.

(ii) Let {uλ} be any family as in (i) and consider any sequence Λ = {λn}, such
that limn→∞ λn = σ

�0
1 [−1]. Then, there exist a subsequence of Λ, Λ̂ := {λ̂n},

and a weak solution ū
Λ̂

of (6.16) inD, ū
Λ̂

∈ W 2,p
loc (D)∩C1,ν(D), for each p > 1,

0 < ν < 1, such that
lim
n→∞ ‖u

λ̂n
− ū

Λ̂
‖C1,ν (D) = 0

for each ν ∈ (0, 1).

(iii) If (1.1) possesses a unique positive solution for each λ in a left neighborhood
of σ�0

1 [−1] denoted by uλ, then the function ū given by

ū(x) := lim
λ↑σ�0

1 [−1]
uλ(x) ∀ x ∈ D (6.17)
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is well defined and provides a weak solution of (6.16) in W 2,p
loc (D) ∩ C1,ν(D), for

each p > 1 and 0 < ν < 1. Moreover,

lim
λ↑σ�0

1 [−1]
‖uλ − ū‖C1,ν (D) = 0

for each ν ∈ (0, 1).

(iv) Under the assumptions of Corollary 3.3, each of the functions ū
Λ̂

of part (ii)
and ū of part (iv), defines a weak solution to the singular boundary-value problem

−1u = λ u− a(ur + g(x, u))u in D, u|∂D = ∞. (6.18)

Moreover, in the context of (iii), ū is the minimal weak solution of (6.18).

Remark 6.5. The growth condition (6.12) can be slightly weakened by simply as-
suming that g− = o(ur−δ) as u ↑ ∞, for some 0 < δ < r , where g− = min{g, 0}.
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