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Abstract

In this work we propose a new method for investigating connection problems
for the class of nonlinear second-order differential equations known as the Rainlev
equations. Such problems can be characterized by the question as to how the asymp-
totic behaviours of solutions are related as the independent variable is allowed to
pass towards infinity along different directions in the complex plane. Connection
problems have been previously tackled by a variety of methods. Frequently these
are based on the ideas of isomonodromic deformation and the matching of WKB
solutions. However, the implementation of these methods often tends to be heuristic
in nature and so the task of rigorising the process is complicated. The method we
propose here develops uniform approximations to solutions. This removes the need
to match solutions, is rigorous, and can lead to the solution of connection problems
with minimal computational effort.

Our method relies on finding uniform approximations of differential equations
of the generic form

d?¢

a7 = —£2F(n, &)¢
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as the complex-valued parameer> co. The details of the treatment rely heavily

on the locations of the zeros of the functigrin this limit. If they are isolated, then

a uniform approximation to solutions can be derived in terms of Airy functions of
suitable argument. On the other hand, if two of the zerds obalesce a§| — oo,

then an approximation can be derived in terms of parabolic cylinder functions. In
this paper we discuss both cases, but illustrate our technigue in action by apply-
ing the parabolic cylinder case to the “classical” connection problem associated
with the second Painl&@transcendent. Future papers will show how the technique
can be applied with very little change to the other Paialeguations, and to the
wider problem of the asymptotic behaviour of the general solution to any of these
equations.

1. Introduction

Asymptotic behaviour of solutions of the second Paialeanscendent (PIl),
q" =2¢°+xq +B, (1.1

where’ = d/dx and B is a complex constant, have been much studied, for ex-
amplein[7,8,11-30, 32-35, 38—41]. In particular, connection problems have been
investigated in which one attempts to relate the asymptotic behaviour ix-one
direction to thatin another. Some of the results are heuristic, and some rigorous. The
heuristic arguments tend to use the method of isomonodromic deformations, linked
with asymptotic arguments that use the WKB method and matching, and although
DerrT & Znou [8, 9] have given a rigorous version of this for one problem as-
sociated with the second Painéetranscendent (1.1), the task of extending these
techniques rigorously to more complicated problems, and in particular to problems
associated with the higher equations, seems formidable.

Linear connection problems for ordinary differential equations have been ex-
tensively studied for over a hundred years; however, nonlinear connection problems
are rare. The usual method for linear equations is to considsra complex vari-
able and pass from — +o0otox — —oo along a large semi-circle in the complex
x-plane. Provided that the coefficients in the equation have a reasonably simple
asymptotic behaviour as — +oo, then it is usually possible to construct an
asymptotic expansion for the solution at all points on the semi-circle, and so relate
the asymptotic behaviour as— +oo to the asymptotic behaviour as— —oo.

However, this method fails in general for nonlinear equations since the solutions
may be very complicated as— +o0; though, for nonlinear equations such as the
Painle\e equations which have the Pairdguroperty (and in particular those equa-
tions such as (1.1) whose solutions are meromorphic in the finite complex plane),
this method is feasible. Indee@ouTrOUX [5, 6] (see also [4,17]) studied the
asymptotics of the first Painlévequation in considerable detail and remarks that
his ideas can be extended to the other Pambyuations as well. Essentially, the
solutions behave asymptotically like elliptic functions, at least locally, and although
not considered byBouTrOUX, the solution of the connection problem is a matter
of matching different elliptic functions in different sectors on the large semi-circle
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in the complex plane. Whereas this method is theoretically feasible, it certainly in-
volves considerable technical difficulties and the connection problems are solvable
by a different method. RecentlyJosHi & KRUSKAL [24, 25], discuss how one

can extend the ideas dBouTROUX and use singular perturbative techniques, to
obtain connection formulae for the first and second Pa@ésuations.

An alternative method for determining connection formulae for the Panlev
equations is through thesomonodromic deformation techniq(ef. Its & No-
VOKSHENOV [20]). Classically,Fucss [14], GARNIER [15] and SCHLESINGER
[39] considered the Painlévequations as the isomonodromic conditions for suitable
linear systems with rational coefficients possessing regular and irregular singular
points (see also [36]). Since the development of the inverse scattering method for
solving partial differential equations, there has been renewed interest in expressing
the Painlee equations as isomonodromic conditions for suitable linear systems
[11,21-23]. Subsequently, there has been considerable interest in the use of the
isomonodromy method, which is a very powerful technique, to derive properties of
the Painle@ equations, including for PII (1.1) [8, 9, 11-13, 18-20, 26-30, 32, 34,
35, 41].

In this paper we develop a new technique for investigating asymptotic problems
for the Painlee equations. The technique uses the method of isomonodromy, but
thereafter develops a uniform approximation which dispenses with matching, is
rigorous and even from a computational point of view is simpler than previous
methods. We will use it in this paper to study the asymptotic behaviour of solutions
of PIl (1.1) wheng = 0, giving the algorithm which enables one to compare
asymptotic behaviour in different directions, but we emphasise that the method is
certainly not restricted to PIl, and we will return in later papers to its application to
the other transcendents.

In particular, of course, we can solve once again the “classic” problem for
PIl (1.1), which for convenience and completeness we state here. Its statement
depends upon the following theorem, a proof of which was giverHsTINGS
& McLEoD [16].

Theorem A. There exists a unique solution(@f 1)with 8 = 0 which is asymptotic
toa Ai(x) asx — +o00, a being any positive number.df < 1, this solution exists
for all real x asx decreases te-oco, and, asx — —oo,

q(x) ~ d|x|—1/4sin{§ 1x[3/2 — 24210g]x| + y}

for some constant$, y which depend oa.

HasTINGS & McLEoOD also proved that it = 1, theng(x) grows alge-
braically ast — —oo according ta; ~ (— %x)l/z, whilst if « > 1, then solutions
blow up at some finite value af (which, of course, depends ai). From the state-
ment of Theorem A it is easy to compute more detailed asymptotics which hold as
X — +00.
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qg(x) = %an_l/zx_l/4 exp( — %xg/z)[l — 4—58x_3/2 + O(x_?’)], (1.2

r(x) = g—q = —%an_1/2x1/4exp( — %xs/z)[l + %x‘wz + O(x_s)]. (1.2b)
x

The usual connection problem is the question of the specific dependedce of
andy ona, and this is given as follows:

Theorem B.

d*(a) = —n7tlog(1—a?), (1.3a)

y(a) = 37 — 3d?log 2 — argl' ( — 1id?). (1.3b)

The amplitude connection formula (1.3a) and the phase connection formula
(1.3b) were first conjectured, derived heuristically and subsequently verified nu-
merically by ABLowiTz & SEGUR [2] and SEGUR & ABLOWITZ [40], respec-
tively. It was not until some years later th&tLARKSON & McLEOD [7] gave a
rigorous proof of (1.3a), using a Gel'fand-Levitan-Marchenko integral equation ap-
proach, andSuLEIMANOV [41] derived (1.3a) and (1.3b) using an isomonodromy
approach. However, it was only in the very recent workidfirt & ZHoU [8,9]
that the form of the phase formula (1.3b) was finally proved rigorously.

Thislong history of the search for arigorous verification of Theorem Biillustrates
the main problem pertaining to connection formulae for the Pa@rti@nscendents.
The second Painl&transcendent has a simpler structure than most of the remainder
(see for example [17] for a list of all six transcendents). Given the formidable
technical difficulties that have had to be overcome in order to establish Theorem
B, the prospect of extending the existing techniques to problems for the other
transcendents is somewhat daunting.

It is with this background that we expound our new method which, as we have
already mentioned, involves the concept of isomonodromy, and we now quickly
review the relevant facts [11]. (Again we give the details for PIl (1.1) but emphasise
that comparable results are known [20] for all the other Pageanscendents, and
indeed that there is a hierarchy of equations [3] of higher order which fit into the
same general framework.) Suppose thahda are independent complex variables
and there exists a® 2 matrix function¥ (x, 1) which satisfies both

ow . .
e (—iro3+ go)¥, i.e, D,W¥ =0, (1.4
X
and
o . .
8_A = {—|(4)»2 +x 4+ 2q2)03 + 4rgo1 — 2rop — gﬂl} v, ie, D¥v =0.
(1.5
Here

(01 (0 i (1 o0
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are the standard Pauli spin matrices which, in particular, satisfy
0102 = i03, 0203 =101, 0301 =Ii02.
Then there is a compatibility condition
[Dyx, D;]¥ = (DyD;. — D, D)W = 0, (1.6)

and an easy calculation shows that (1.6) reduces to (1.1). Convergéhy, @volves
according to (1.1), then (1.4) and (1.5) are compatible. Thus (1.1) is equivalent to
compatibility and compatibility is easily seen to imply isomonodromy.

For suppose that we have two fundamental solutiBfs, ¥ @ of (1.5) in two
different but overlapping sectors in theplane. (The equation has an irregular
singularity at. = oo and a regular singularity at= 0 but, as far as monodromy is
concerned, we need only deal with the irregular singularity.) Singeé andw
are both fundamental solutions, there must be a m&tindependent of. but in
general dependent on such that

U@, 1) =D, )Sk), (1.7)

ands is referred to as the monodromy matrix. (Of couSegepends on the partic-

ular fundamental solutions which are compared, and we return to this point later.)
There is a monodromy matrix for each pair of sectors, and the assemblage of all the
monodromy matrices forms the monodromy data. If we now differentiate (1.7) with
respect toc and use the fact thalt D andw @ satisfy (1.4), we obtain immediately
thatS is independent af, which is to say that the problem is isomonodromic in

x. It should be noted that this involves care in choosing andw @, for if we
multiply ¥ (x, 1) by a function ofy, it still satisfies (1.5), but no longer (1.4).

We make the remark also that we shall be able to arrange that the monodromy
matrix takes the form of a triangular matrix with 1 as the principal diagonal. Thus
the monodromy data reduces to the one remaining entry in the matrix, the so-called
Stokes multiplier.

Given isomonodromy, we can now prove Theorem B as follows. We work outthe
monodromy data for (1.5) as— +o0, using the known asymptotic dependence
of ¢ on x, and then the monodromy data.as> —oo, and equate them to give
the required result. The way in which this has so far been carried out is to compute
the fundamental solutions in different sectors and use (1.7) to d®tdinis means
that we have to compute the solutions (or at least their asymptotic behaviours) as
|A| = oo and also a$x| — oo. This uses WKB asymptotics, and also matching,
since the form of the asymptotics depends on the relative valuearodx, and we
have to match different forms in differentregions. The procedure can be complicated
and rigorising it difficult.

The procedure would be much simplified if one could find approximations to
solutions which are uniformly valid for all relevant largfd, |x|. This we can in
fact do, and in a general form which is certainly applicable to more than just PlII
(1.1). Once it is done, there is no further rigorous analysis required; it is merely a
matter of computing the monodromy data by relating it to the (known) data for the
approximations.
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In Section 2 we describe, in the context of Pl (1.1), the heuristic reasoning
which leads to the uniform approximation. Then in Sections 3, 4 we state and prove
two theorems on uniform approximations, which we believe to be the only such
theorems necessary for the discussion of any of the P&glguations. In the final
sections of the paper we use these theorems to compute monodromy data both in a
general setting and in the particular case of Pll, and finally as an application prove
Theorem B.

It should be remarked that for the purposes of Theorem B only the first of the
two approximation theorems (that relating to double turning points) is required. For
more general solutions of Pll, and for a general discussion of the other Fainlev
equations, the second theorem is also required. We intend to return to such devel-
opments in later papers.

2. Deriving a Uniform Approximation

To see the nature of the uniform approximation, we turn (1.5) into a single
second-order equation. We first make the scaling

E=x%¥2 p=y V2

so that (1.5) becomes

v 242 4 2
d_:é{—i(4n2+l+i>03+(ﬂ—ﬁ)al——rO'Z}‘IJ,
dn X § x

which, with

is equivalent to

5 .

dy JX g
dvo [ (,2 242 dng B 2ir
d_n_ {|<477 +1+7>¢2+(W—E—7)¢1} (Zlb)

Eliminatingvy1, we obtain

2 2
d—wzzzg{i<4n2+1+2q )%+smwz+<ﬁ+i)wl

dn x ) dp Jx 0%
. {4ng B 2ir 2 2q2
(e ) (e T

dng B 2_ir><4’7_‘1_£_2_ir> }
jLE(«/)7 né+x Jx o ong x Ve
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242\ ? . 4 2 42
=é{—s<mﬁ+1+—i) wz+smwz+s[<lﬂ—~ﬁ)-+lg v2
x Jx o ng X

et s
3 an2gx )\ " 29/ dngx

d . 2¢°
X [ﬂ —i& <4n2+1+i) wz:H.
dn X
The term di»/dn can be removed by setting

ir B\ M2
o= mmag) "

whence

x2 x x2 x2 = p2x3
[ B 2 2q? < ir B\t
—— (1 an? 14 2L L S
E( +4nZQX)< (AN 2q9/x  Angx
N 1 B < ir B )—1
2ap3gx "7 2% angx

3 B \? ir B \7?
g2 <1+ 4n2qX) (77 2% 4rm> } ' (22

In (2.2), attention should be drawn to the terms

2 i 2 2 4 2
37(2=52¢{—(4n2+1)2+%+<4r n B M. ﬂ)

ey = M), 23

say, whichdepend only onor&, and not ory. How M (&) behaves for large (which

is always our interest) depends on the asymptotics of the fundfionsr (x) as

|x| — oo, and therefore on the particular solution of PII. For the remainder of this

heuristic discussion we will consider the case whihg) — 0, since in the case

of Theorem B this is certainly true from the given asymptotics both as +oo

and asx — —oo. Butitis not true for a general solution that(¢) — 0, and our

methods do not need it, and we will point out where the essential difference lies.
Assuming then that/ (¢) — 0 as|é| — oo, we expect from the form of (2.2)

that, agn| — oo with |£| large, the dominant term on the right-hand side is

—£2(4n% + 1%,

so that, from the usual WKB approximation, the solution should be asymptotically
of the form
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1 4
nt exp{iig / (40?2 + 1) da} =n! exp{iis <§773 + n)} )
The two exponentials are thus equipollent in directions
arg<$n3) =0, £m, £2n, ...,

i.e.,
argn = —fargé £ kn, k=0,12...,

and these are the so-called Stokes directions. We can determine the Stokes multi-
pliers by relating the asymptotic behaviour of a solution in one Stokes direction to
its asymptotic behaviour in the next, since it is in Stokes directions (and only in
Stokes directions) that the full asymptotics appear and solutions can be defined by
their asymptotics.

However, in order to connect the behaviours|@s— oo on, say, arg =
—1argt and arg) = —3argé + 37, we need to follow the solution along a
curve for which Rei& ["(402 4+ 1)do'} = 0, for if we depart significantly from
such curves (so-called Stokes curves), we lose equipollence, and so the effect of
exponentially small solutions and therefore the Stokes multiplier. Now there is some
choice of Stokes curve depending on the initial point of integration, but to obtain
a uniform approximation we consider Stokes curves which pass through turning
points of equation (2.2); by a turning point we mean a valugwhich is a zero of
the right-hand side of (2.2) although we will slightly adapt this definition later.

The idea of uniform asymptotics through turning points was first proposed by
LANGER [31] and TrTcHMARSH [42] in work on the distribution of eigenvalues
for the Schodinger equation (see also [37]). They dealt with the equation

d?y
— tln—q@]y=0, —00 <z < 00, (2.9
dz
where, for example, we may think pfas a large positive parameter and) — oo
asz — oo. If g is strictly monotonic, then there is a simple turning point at
¢(z) = n. LANGER pointed out that the prototypical case of thigig) = z, so
that the equation becomes
2
(;Tz +(u—-2y=0,

whose general solution is a linear combination ofZAH ) and Bi(z — u), where
Al, Bi are the usual Airy functions. He then went on to show that one could obtain
a uniform approximation to solutions of (2.4), valid for largeandz — +o0, by
introducing Airy functions of a suitable argument.

We need to modify the idea further, becauseNGER’s approximation relates
to situations where the turning point is simple, whereas in our case (2.2) there are
two turning points which, for largé, are close to; = %i (and two others close to
n= —%i). (This of course is a consequence of our assumptionih@) — 0. If
M (&) = 0, then the turning points are simple, and it is then a matter of adapting
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LANGER'’s approximation using Airy functions.) In our present situation, therefore,
it seems that the parabolic cylinder equation

— =3 -(v+3)]y (2.5)

with linearly independent solutiom,,(z) andD_,_1(—iz), is an appropriate one
for coping with coalescing turning-points, and in fact this possibility has already
been explored byOLVER [37] and DUNSTER [10], primarily for real values of.

With our particular applications in mind, it will be better to consider (2.5) in the

form
d?y of o 2v+1
-0 — 2.6
022 3 <z iz )y (2.6)

= —£2(z2 - ad)y, 2.7

whereEa? = 2v+1, which has solution®,, (671/4,/2Ez) andD_,,_1 (e /4 /2& 7).
To see how this applies to (2.2), we restrict ourselves to the particular case when
B = 0. We try as a uniform approximation to a solution of (2.2) the expression

o) = p()D, (67425 () = pFuCO). say  (28)

where the functiong and¢ are to be determined. Substituting (2.8) in (2.2) with
B = 0 we have

p'Fo+20'C'F) + p(&)2F) +¢"F))
8i 4 2 2 4
:gzva{—(4n2+1)2+?"+< A )
i 24° ir \ 7t 3 ir \ 72
) g i)
§ < x 2q/x 42 2q/x
Recalling thatF, satisfies (2.6) we can compare coefficient&FpaindF,, in (2.9).
The vanishing of the coefficient @t gives

(2.9)

20"t +p¢" =0,

so that we can take
p =2 (2.10)

for the choice of integration constant at this point is inconsequential. The vanishing
of the coefficient off, gives

£2(c2 - a?)(¢")?
.2 2 > 8in 42 4q%  agt
= {(477 +1) —?—(7—7—7> (2.11)

i 2q2>< ir )—1 3 ( ir )‘2 p”}
(4P +1+ =) (n-—=) —5(n-5—= e
+§(n U s @2 \"" qx) e
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If we ignore the last two terms if. .} as being of smaller order (for largg than
the others, then we are left with

i 2 2 4
(% — o)) = (AP + 17— 22— (4% S 412)
& X X X
i (42 212> ( _r >—1 (2.12)
+s (477 +1+ o n 2%
=G, §), say

which, apart from a constant of integration, defigeas a function of; once we
have specified:.. (We recall always that, ¢, x, & are constants as far as¢ are
concerned.) We note however from (2.10) that we certainly want to avoid zeros of
¢’ and, from (2.12);’ has a zero whereveér(n, £) = 0; i.e., essentially at a turning
point of the equation, unless we can choes® that the zeros af® — «? coincide

with those ofG. For large, there are two turning points, sgy andsa, close to%i,

and two close t(}%i. If we are interested in a Stokes curve which passes through
(or close to)%i, then we must chooseso that; = —« corresponds tg = 51 and

¢ = 4« corresponds tg = 2. We can ensure that one of these holds by use of
the constant of integration implicit in the evaluationzofrom (2.12). The second
can be achieved by definirgso that

1

o n
(€2~ o®)2d; = / " GY2(n, £) dn.
5 i

Since the left-hand side integrates easily%tdaz, we havex given by

1 n2
Enioﬂ:/ GY?(n, &) dn. (2.13)
n

1

With « so defined, ang chosen according to

¢ n
/ (2 —a®Y?%dr =/ GY? (0, &) do,
o n

2

we can hope that solutions of (2.2) are approximated, uniformly for largeé&,
by some linear combination of

&)V2D, (€4 /25¢) and (¢)7YV2D_, (74 2¢0).

A precise statement and proof of this conjecture is given in the next section.

We remark finally that it is a consequence of this uniform approximation that
the monodromy data for (2.2) as| — oo is the same as that for the parabolic
cylinder functions, which can be found in any text on special functions, modified
only by some allowance for the various changes of variable involved. We work this
out more precisely in Sections 5 and 6.
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3. The Uniform Approximation Theorem for a Double Turning Point

We are interested in differential equations of the form

d2
d—‘ﬁ = —E°F(1.6)¢ (31)
n
and, guided by the heuristic discussion in Section 2, we make the following assump-
tions aboutF'. Suppose that our concern is with the lingit — oo with argé — 6;
we then hypothesise that

H1. There is a sequence of valugs |£,| — oo, argé, — 6, such that

F(’?» &)

F(1, &) = Fo(n) (n — n0)® — :

’

where

(i) Fo(n) is a polynomial inp, with Fo(no) £ 0 and
Fo(n) ~An™ as n— oo, (3.2

(ii) F(n, &, is a rational function ofy, with the location of its poles possibly
dependent 0§,,.

(Further assumptions OR are given in due coursg.

Remarks.

1. The assumption tha is polynomial is not essential. Polynomial-like behaviour
of some sort would certainly be sufficient, but in applications to the Pdiritew-
scendents itis always the case thgts a polynomial, and since no new ideas would
be involved in generalization, we do not consider this here. Similar comments hold
with regard to the rational behaviour 5t

2. The assumption thab(no) + Ois crucial. Itimplies that (3.1) is to have a double
turning point aty = no (or, more precisely, for largg|, two turning points close
to no), but no other turning points close #g.

3. Our assumption is only about a sequence of vafyesnce it will turn out in

our applications to be a consequence of isomonodromy that behavigurasco
through a sequence is sufficient to determine behavioy# |as> oo generally.
However, in the present approximation theorem, which is in itself quite indepen-
dent of the concept of isomonodromy, we are not involved in comparing different
sequences, and so we can without confusion drop the subscépt &amnd this is
done henceforth.

4. The usual WKB approximation for (3.1) would suggest, in view of (3.2), that,
for largen, the solutions of (3.1) are asymptotic to linear combinations of

n
p~m+2)/4 exp<ii€/ Fo'?(s) (s = 10) ds) ’

and so for Stokes directions we must have



252 A.P.BassoM, P. A. CLarksoN, C. K. Law & J.B. McLEOD

arg(éAl/2n<4+m)/2) =0, +7, +27, ...

or
(%m + 2) argn = —argé — SargA + kr  (k =0,+1,...). 3.3)

To compute monodromy data for (3.1), we need the behaviour of solutions in two
successive Stokes directions, and this leads to the next hypothesis.

H2. There exists a Stokes cur€g ;- 1, defined by

Re(ig /n FY2(o, g)ob) =0,
no

which connectso in two successive Stokes directiqas/en bykm and (k + D
in (3.3) above, passes througho and is (for large &) bounded from any zero of
Fo.

H3. On and in a neighbourhood @y x+1, F has no poles, at least for largg
and, for alln and uniformly for larges,

F(n,8)
Fo(n)

while, for largen and uniformly for larges,

=0(nl+D),

F'/F=0n™Y, F'/F=0Ww?%, F =dF/dn.

Remarks.

1. Itis now clear from Rouddis theorem that, fof sufficiently large 7 (n, ) has,
as a function ofy, precisely two zerog1, n2 close tong. In fact, if F(n, &) — L
asn — no, |§] — oo, we have

L \"? 1/2
=10 - 1 1}, =1, 2. 3.4
nj =no (Fo(no)> E71+0(D)}, (X0

(We can take) to correspond to the upper sign.)
2. In line with the heuristic discussion in Section 2, we define a numaliogr

o n2
brio? = [ (- a?)2dr = [ V2.6 an, @5)
n

—o

and a new variable by

¢
/ (2 —a®Y?%dr = /” FY2(s, &) ds. (3.6)
o n

2

There is a choice of signs for the various square roots, but any consistent choice
will do. Other choices merely lead to a permutation amongst the solufigs,

D, (—z), D_,_1(iz) and D_,_1(—iz) of (2.5) (or, of course, (2.6)) and do not
therefore affect the space of approximating functions in our theorem below. We
note also tha# does not vanish on or neé¥, ;41 if £ is large, except a1, 12,
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and so there is no ambiguity in the sign®/2 once some initial value has been
chosen.

3. Thereis acertain arbitrariness in the precise choice of a Stokes curve. All thatis re-
quired is that on it both WKB approximations are equipollent, so that both appear in
an asymptotic expansion of a solution. With this in mind, it would be equally good to
choose a curve connecting two Stokes directions on whicmﬁ FY2(0, &) do)

is bounded independently gfand&, and we shall make use of this possibility.

Given these three assumptions concerning the problem (3.1) we can now show
that solutions of this equation can be approximated uniformly by parabolic cylinder
functions so long ag remains orCy 1. This result can be summarised thus:

Theorem 1.Under hypotheses H1-H3, and given any solutoaf (3.1), there
exist constantss, ¢z such that, uniformly fon on Cy x+1, as|é| — oo,

2 2\ L4
(iw g)) ¢(n.5)

= {lex + oID, (€/V28¢) + (e + 0] D--1 (74282 )}

Proof. We have to compare the equations

327‘2’ = —&°F(n, )¢ 3.7
and dzw L, ,
Gz = Sy (38
Set " g 12
=g () 29

which we note is bounded both above and below on any bounded p@gtxqf.

The only problem can occur negy, and there we notice thaf —«? andF have the
same zeros, so thatandp—1 are analytic in a neighbourhood gf. Since trivially
p and p~1 are bounded on some fixed small cirthe— 0| = &, say, it follows
from the maximum principle that andp ! are bounded inside — no| = k. Also

asn, { — oo, itis immediate from (3.6) that

1 ) 2A1/2772+m/2

2 4+ m

’

so thatp is asymptotically some power gf(or ¢), and so, considering = p(¢)
andp’ =dp/d¢, we have, ag| — oo, from H3,

Foo(t) 5eol®)
D ¢ D ¢

and the bounds implicit in th@-terms are independent &f Now
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dp _1dp &g 1% pdp

dp — pdc’ dp2  p2de2 p3de

so that (3.7) becomes

d?¢ 2,2 2 p' do
— = — —a%)p + ——.
app = ~E@—ade+ T
Setting
¢ = pt?o, (3.10)
we have 2 , o
2,2 2 L[P_3()
0= £2(t2 —a®)d 2l "2 2 ®. (3.12)
Now we have already seen that linearly independent solutions of (3.8) are
D, (e/*2c), Doy (e 282), (312
where, by (2.7),
v=—3+ 3ika?, (3.13)

and the asymptotics of the functions in (3.12)]98£¢| — oo, are always linear
combinations of

exp(~diec?) (vae) . exp(disc?) (vazc)

(For the asymptotics of parabolic cylinder functions, one can consult, for example,
[43].) We want to assert that these are bounded’pp,1, which is so if

Re(%ig;z —vlog (@;)) is bounded. (3.14)

But by definition

¢
ig/ (2 — Y2 = it fn FY2(s, £)ds
o n

2

n no
=ig | FY?%s,&)ds +i& FY2(s, &) ds,
no n2

and the last term is bounded independer.qMerely sets — no = r& Y2 in the
integrand, and use the fact thab — 10)&'/? is bounded.) Thus, 06} ;1.

e
Re(is / (rz—a2)1/2d1:> is bounded, (3.15)

and it is an elementary integration that

¢
/ (12— a?)V2dr = % {C(Cz —a)V2 _¢2log (¢ + (12 — a)Y2) JrOl2|ogol} _

(3.16)
Substituting forx from (3.13), we see easily that (3.15) implies (3.14).
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We can now turn (3.11) into an integral equation in the usual way. In fact, any
solution of (3.11) satisfies, for some constantsc,, the integral equation

() = e1D, (6V4\/26¢ ) + oDy (674 /287 )

_ziﬁ {DU (e”i/“\/Eg) D_y_1 (e*”‘/“@z) (3.17)
—D_, 1 (e”i/“\/gg“) D, (e‘”i/“\/gt) } [%ﬁ - g(l;—/z)z} (1) dt.

In deriving (3.17) we have made use of the standard result that the Wronskian

W (DU (e’“/“\/Eg) ,D_y1 (e—’”/“\/ig)) —iJ28

and the integral is to be taken alo6g ;1. SinceD,,, D_,_1 are bounded on this

curve, and
7 3 N2 1
p 3" oL
p 2 p? ¢2
and so is integrable to infinity ofix x+1, we can solve (3.17) by iteration (see, for
example [42]), to conclude th&t is bounded orCy 1. Furthermore, we deduce
that

®(¢) = c1Dy (e”‘/“\/ig) +c2D_y1 (e—ﬂi/4\/g§) +o (|Cl|j§|62|>

and, returning tap via the transformation (3.10), we see that the theorem is
proved.

4. The Uniform Approximation Theorem for a Simple Turning Point

Consider differential equations of the form

d¢
G2 = EFm.6)¢, (4.1)
n
where we make the following assumptions abéutn the limit as|&| — oo,
argé = 0.

H1. There is a sequence of valugs |&,| — oo, argé, — 6, such that

F(ﬂa &n)

, 4.2
. 58

F(n, &) = Fo(n, &) (n — no(&n)) —
where

(i) no6:) = neo 8SE, — 00, N finite,
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(i) Fo(n, &) is a polynomial inn whose zeros tend to finite limits §s — oo,
all distinct fromn,, and

(i) F(n, &) is a rational function of;.

Remarks.

1. We are allowing the possibility that the turning poigtmay depend o§. (We

drop the subscript as in Section 3.) We could do this also in Theorem 1, but this
does not seem relevant in the applications of Theorem 1, whereas it certainly is in
applications of the present case.

2. The usual WKB approximation for (4.1) would suggest, from (4.3), that for large
n, solutions of (4.1) are asymptotic to linear combinations of

n
- mth/4 eXIO(iié / Fy/%(s, E)(s — no)l/zdS)

and so for Stokes directions we must have
arg(éAl/zn(3+’")/2) =0, =7, =+27,...
or
$(m+3)argn = —argi — argA +kr  (k=0,%£1,...). (4.4)

Monodromy data for (4.1) can be computed once the behaviours of solutions in
two successive Stokes directions are known. We therefore assume:

H2. There exists a Stokes cur€g ;+1, defined by

Re(ig /” FY2(, é)do) =0,
no

which connectso in two successive Stokes directiqgssen bykzr and (k + D)«
in (4.4) above and which passes througfy and is (for large &) bounded away
from any zero ofp. (We drop the explicit dependencemgfon&.)

H3. On Ci x+1 and in a neighbourhood of it has no poles, at least for large
and, for alln and uniformly for larget,

Fo.8) _
Fo(n, )

whilst, for largen and uniformly for larget,

o),

F/F=00m™, F'/JF=00n?.

Based on the above, it follows from Rough theorem that, fog sufficiently
large, F(n, &) has, as a function of, precisely one zer@* close tong and thus
close ton. In fact,
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n* =no+ O(E™Y). (4.5)

Now if we define a new variable by

¢ n
§¢3/2=/0 rl/zdrzf FY2(s, £)ds, (4.6)
r,*

then we can obtain uniform approximations to the solution of (4.1) according to

Theorem 2.Under hypotheses H1-H3, and given any soluthaf (4.1), there exist
constants1, ¢z such that, uniformly for, on Cy x+1, as|§| — oo,

¢ ~1/4
(F(n, s>> 05

= {[q + o(D]AI (eni/3€2/31> +[c2 + o(L)]B <e71i/3€2/3g)}

whereAi andBi are the usual Airy functions.

Proof. We need to compare the equations

d2¢ i 2 dzlﬂ _ 2
Gz = EF0.O0 and G = €%y, (4.78.b)

_d_ﬂ_<£>1/2
P=a =\F) -

Now p is bounded both above and below on any bounded pa€af.1. The
only difficulty might arise neafo and there we note thgtand F have the same
simple zero (from definition (4.6)) so thatand p—! are analytic neang. Since
trivially p andp~! are bounded on some fixed small cirphe— 79| = ¢, say, itis
a consequence of the maximum principle that ho#md p—1 are bounded inside
In —nol = €. Asn, £ — oo, itis obvious from (4.6) that

and do so by setting

24‘3/2 N 2A1/277(m+3)/2

, 4.8
3 m+3 (4.8)

sothatp is asymptotically some power gf(or ¢). Therefore, considering = p(¢)
andp’ = dp/d¢ we have as¢| — oo, from H3, that

/ 1 " l
£-o(). 5 -o(2)
r ¢ p ¢
and the bounds implicit in th@-terms are independent &f Since

dp _1dp ¢ 1d’% p'dp
dp  pd¢’ dp2  p2de? p3dg’

equation (4.7a) becomes
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d*¢ 2., P d¢
@ =—&Cp+ ?E,
and on setting
¢ = p*?® (4.9)
we obtain ) )
o 5 1[p” 3(p)
F__Sw_i[?_ilﬂ ® (4.10)
It is a standard result that linearly independent solutions of (4.7b) are
Al (ei”/3§2/3§) . Bi (ei”/3§2/3§) (4.11)

and the asymptotics of these functions&¥3;| — oo are always linear combi-
nations of
g1/6,-1/4 exp{i§i§§3/2} '

We would like to assert that these are bounded’pp,1, which is the case if
Re(i£¢¥?) is bounded. However, we have from (4.6) that

2igc32 = it /”F%(s,s)ds = isf"o FY2(s, £)ds + i /n FY2(s, &) ds
n* n* 70

so that, onCy x+1, Re(i£¢%/2) is bounded if and only if R@& S FY2(s, £) ds)
is bounded. This latter expression@s(|&|~Y/2) for large|¢| (by using (4.2) and
(4.5)) so that Réi£ ¢%/2) is indeed bounded on the Stokes curve.

To complete the proof of Theorem 2 we turn (4.10) into an integral equation in
the usual way. It follows that any solution of (4.10) satisfies, for some constants
andc,, the equation

®() = c1A] (e”i/3g2/3;) + 2B (e”i/3§2/3§)

_ @ /Oé“ {Ai (eﬂi/sgz/sg) Bi (eﬂi/ssyst) 4.12)

—Bi (eﬂi/3$2/3§) Ai <e”i/3§2/3t> } [%ﬁ - g’ <%)2} @ (1) dr.

In deriving (4.12) we have used the standard result for Wronskians that
W(Ai (eni/SEZ/Bg)’ Bi(eﬂi/3§2/3§)) — 2i§5/6.

The integral within (4.12) is taken along the Stokes cu@yg 1 and since Ai and
Bi are bounded there and

1" N\ 2
S o)
p 2\p ¢
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and sois integrable to infinity af x1, we can solve (4.12) by iteration to conclude
that® is bounded orCy x+1. Furthermore, we have that

®(2) = 1A (€7/36%/30) + c2Bi(e7%%3%¢) + 0 <|01I + ICzI>

%—5/6

and, returning to the variablg via the transformation (4.9), we conclude that the
theorem is proved.

5. Monodromy Data for Parabolic Cylinder Functions

This section sets out the well-known results that we shall need concerning Stokes
multipliers for the parabolic cylinder function. We shall be interested in comput-
ing the multipliers for the curv€y x1; i.e., we wish to compare the asymptotic
behaviours on

(3m +2)argn +argé + 2argA = kr and (k+ Dz

and, since 2arg ~ 1 argA + (3m + 2) argy for largen, ¢, this is equivalent to
comparing behaviours on

arg(@;) =3kn and 1(k+ D7

Let us set = €7'/4,/2E; the complete asymptotic behavioursiof(z) as|z| —
oo are well known (see for example [4]) and are given by

Fad exp( — %Zz), if |argz| < %T[,
Do) ~ 2" exp(— 322) - %e‘"”z“"l exp(3z2), on arg: = 3,
e 27z exp( — 322) — %é””z*“*l exp(1z?), on arg = 37,
e 27z exp( — 122), if 37 <argz < .
(5.1)
Then, on arg = +37 + 27, with [ integral,
Dy(z67217) ~ (267217 exp( — 1:2)
and so, sincd, (z) is single-valued,
Dy(z) ~ exp( - %Zz)z”e_z”i". (5.2)
Similarly, on arg; = 37 + 2i, we have
Dy(z) ~ exp( _ %ZZ)Zueleniu _ r‘/f_:[))euni exp(%ZZ)vafleZIni(qul). (5.3)

To evaluate the Stokes multiplier we proceed as follows. In any sector between
two adjacent Stokes directions there is (modulo multiplication by a constant) a
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unique solutionf; which is asymptotic to the small exponential. All other solutions
are necessarily asymptotic to some multiple of the large exponential, but if we take
such a solution on the first Stokes line, then we find that on the second Stokes line
its asymptotics have added a multiplefaf That multiple is the Stokes multiplier.
Thus, relative to the asymptotic forms eéxps z2)z” and exg1z2)z "2, the Stokes
multiplier for the sectol  +2/7 to 37 + 2/, in which exp—12z2)z" is dominant,

can be immediately deduced from (5.2) and (5.3). Consequently,

) _ v2r evrrie41niv‘

=—tew (5.4)

1 3
SM <Zn + 2w, Zn + 2

Similar calculations for each of the other pairs of sectors yields the complete mon-
odromy data in the form

3 5 Ir'(— . . :
SM (Zn +20m, o7+ ZZn) = —(2:) g VTlgTAmiv(q _ g72mlvy

.2 o
=i/ = T(—v)e @2V gingy  (5.5)
7

)= V2n e—vnie4lniv

: (5.6)

4

3 1
SM| —- 20w, —— 2l
( 471 + 2 T+ 2 T (—v)

1 1 .2 v o
SM (—Zn + 2, i + ZZn) =—i/— I'(—v)e ¥V sinzv. (5.7)
T

To obtain (5.7) we need the asymptoticsiaf, 1, which are that

; 1
e—m(u+1)/2z—v—1 EXD(ZZZ), on argz = —‘—]iJT,

D_,_1(iz) ~ N

; 1
__NEr ami(w+2)/2 v _ =2 _ 1
F(v+1)e Z exp< 4z ) on argz = +37.

6. Monodromy Data for (3.1)

Although one might expect the double turning-point case to be more compli-
cated than the simple case (and in some sense it is), yet in the double turning-point
case one can work out the monodromy data quite explicitly, in terms of the co-
efficients of the monodromy equations, even for a general form of equation. It is
this that leads to the wealth of explicit connection formulae given, for example,
in [20]. They are explicit because they are connecting directions where the be-
haviour of the solution of the Painléwequation leads to a double turning point in
the isomonodromy equations.

In the present section, we show how this monodromy data can be calculated.
To do this, we add to Hypotheses H1-H3 in Theorem 1 the following additional
hypothesis.
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H4. Suppose that in H1 we can exprdasn the form

Fn,8) = F1(n, &) + £V F2(n, §)

for somey > 0, where F1 and F» are rational in». Suppose also thaky is a
perfect square, so thaly(n, g)/{Fé/z(n)(n — no)} is rational in n with partial
fraction decomposition

N
Fi1(n, A; .
Fy " —mo) i 7S

Finally, suppose that, 06y x+1 and in a neighbourhood of iﬂ';"z/Fol/2 is bounded
uniformly in&.
Remarks.

1. The quantities;, s; in general depend of, but we suppress that dependence.
We, however, assume that they tend to finite limitgas—> oo.

2. It is obvious that

F1(no,
Ay = %, (6.2a)
Fo (no)
and we set
N
B = Z A;. (6.2b)

i=1

3. To compute the monodromy data, we need the relation betgvaedr for large
&. This is the content of the next theorem.

Theorem 3.Under Hypothesis H4, and Hypotheses H1-H3 of Theorem 1, for large
& andn,

1
t? —a?log¢ + Zaz log Fo(no) + o6 ™1
0 B 1 N (6.3)
= 2/ Fol/z(s)(s —no) ds — E logn + g ZAi log(no — ;).
1

0] i=2
Proof. From the definition ot and (3.16), we have

n
3 {2¢2 — 202109(2¢) + 222 loga — a? + O(a*c2)} = / FY2(s, &) ds.
12

(6.4)
In calculating the right-hand side, we replagéy, &) by
- Fi(n,
F(n,€) = Foln (n — 10) — @

i.e., we ignoreFs. This is justifiable because we will find that even thgterm
contributes only a term of siz@ (¢ 1), which is all that we are interested in. The
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term F», if we included it, would similarly contribute a term of only (¢ =177).

Thus
n__ n* UANDN
/F”(s,s)dS:(/ +/)Fl/2(s,s)ds=11+12, (6.5)
n2 n2 n*

say, where
n* = no+ TE 2

andT is a large positive number to be specified more precisely latér.we make
the change

s —no = tE7 Y2,

and then

1 T

& J(F1(no)/ Fo(no)) 2
Sinces — o = 0(¢~1/2) and we are only concerned with evaluating (6.5) correct
to 0(¢~1), we can safely replaceby o in I; which, on integration using (3.16),
gives

I {Fo(s)t? — Fi(s)}Y/2 dr.

I =

Fy"*(10) { L2 2P0 Fa(m) (Fl(no)>

2T
2 Fotno) 2T T Fotmey 2\ Fo(no)

_ F1(mo)
Fo(no)

(6.6)

} +O0EIT2) +oE™D.

TakingT = —(F1(n0)/Fo(n0))Y/2, we can computd; explicitly (with s = 7o)
and so conclude from (3.5) that

1/2
%inaz = Fo 45(770) |:2' 2222;} +o(E™,
or
2= % +o(E™h. (6.7)
SFO (no)
Also, by the binomial expansion, the integralin (6.5) is given by
1o
I = /n Fol/z(s)(s —10) [1 — —ZgFo(gl((sS)— no)z} ds

6.8
Flz(s)ds ©8)

E2FY2(s)(s — no)3

+o(/nf )

According to Hypothesis H4l7; is bounded byFy’~ and so the final term in this
expression is of size

l n |dS| ( 1 1 > 12
o= —o(S———)=0E1r?.
(Ez /n |Fg"?(s)]ls — no|3) £2 |n* — nol? S )
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Using the proposed form faFy1(n, &) as given by (6.1), we find that the second
term in [ is equal to

N

1 A B
R ! ds = —— | +0 —1s—-1 + -1
2512/,”—&- = =5 logn+ 06 Y + o6 6o

1 . F1(10) 12
+ 1 — s+ = | (—)
2% °g,[£(”° 7 e Romon2 0\ g

whilst the first term may be written as

n
/ Ry %(5)(s = o) ds

! (6.9h)

n 1
_ / Ry ()6 = n0) s — SRy o) T2 + 06,
n

0

Combining (6.5), (6.6), (6.9a) and (6.9b) yields

/n FY2(s)ds = % {—Zlog 2—logé + log (M — 1)}
n* 4E Fy'"(no) Fo(no)

B n
——|09n+/ Fol/z(S)(s—no) ds
2 o

N
+ % log H(no —sp)Y +O0ETIT 4o,
j=2
and so, using (6.4) and (6.7) and making a choicg tdrge, we see that Theorem
3 is verified. .

We have shown that linearly independent solutions of (3.8gI@"'/4/2£¢)
andD_,_1(e "/*/2E¢) and the asymptotic behaviours of these functions in var-
ious sectors have been noted in (5.1). Using the result of Theorem 3 and recalling
that Ea? = 2v + 1, we find that ag, ¢ — oo,

gpl/ze—isé/z (e71i/4\/2§>v
(6.10a)

N
T i i£.7 _iA; 2v+1)/8 i
~ |§/(n)n|B/2{e|§/(no)Ev/2 l_[(no _ sj) |Aj/2F0(Ov+ )/ 21)/2€|7'rv/4}’
j=2

o2 . —v—-1
¢ Y22 (em/4 ﬁ2€§>
N
N eig,T(n)n—iB/Z{e—i§-7(no)é—(1+v)/2 [T —sp)4/2Fos> /8 (6.100)

j=2
2—(l+v)/2e—in(v+l)/4} ,
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where.7 (n) = fo" Fol/z(s)(s — no)ds and Fpo denotes the valuép(ng). These

relations, together with the Stokes multipliers (5.4)—(5.7) for the parabolic cylinder
function, enable us to write down the complete monodromy data for (3.1). With
z = e"/4,/2E ¢, the Stokes multipliers relative to the solutions

e 67 iB/2 ang  ET ) -iB/2

are
(i) fromargz = 3w + 27 to 3 + 2n (where €57 (yi5/2 is the dominant
solution)

V21 eiﬂ(4l+l)v—2i§.7(no)é—v—1/2

F(_"I)V (6.11a)
> l_[(no _ Sj)iAj F&)(ZV+1)/42—v—l/Ze—in(2v+l)/4;
j=2
(i) fromargz = 37 + 2Ix to 37 + 2x (€57 MWy~'8/2 dominant)
i /EF(_v)e—in(4J+2)v+2ié.7(no)%.v+1/2
T ; (6.11b)
X 1_[(7]0 _ sj)*iAj Fégv+1)/421}+1/2ei7'[(2U+l)/4Sinnv;
j=2
(iii) fromargz = —37 + 27 to —1x + 2x (€757 MyiB/2 dominant)
v2n A-Dv—2i6.7 (10) g —v-1/2
F=v . (6.110
X 1_[(’70 _ SJ)IAJ FO_O(ZV"F]-)/427V71/2e7i7T(2U+l)/4;
j=2
(iv) from argz = — %7 + 2I7 to 3x + 2 (€57 My~18/2 dominant)
/2 —Airlv+2iE.7 (no) £ v+1/2
—iy/ —T'(=v)e : &
T N (6.11d)
% l—[(ﬂo _ Sj)—iAj F(ggv+l)/42v+l/2ein(2v+1)/4 sinzv.
j=2

We remark finally that, from Theorem 1 and (6.10), the asymptotic forngs of
are
F—1/4e—ig.7(n)ni3/2 and F—1/4eis.7(n)n—i3/2_ (6.12)
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7. Application to the Painleve Equations

Suppose that equation (3.1) arises after scaling from the monodromy equation
of some Painle® equation. (It is our contention that all such monodromy equations
reduce to the form (3.1) with simple or double turning points.) In the preceding
sections we have evaluated the monodromy data with respect to the usual WKB
solutions .

FY4 exp{iié Fl/z(t)dt} .

1o

(These solutions are given in terms of the variaplbeit when expressed in terms of
the original variable. they are the usual WKB forms.) The theory of the Paiglev
equations tells us that the monodromy data are independémntrafvided that the
A-sector in which the Stokes multipliers are being calculated remains fixed. Since
£, A, n are inter-related (in the case of (22)= £~1/31), the condition that the
A-sector remains fixed means that theector changes with or at least with arg,
and also the turning poinjg depends in general @n Indeed, it may change from
simple to double as atgchanges. (In the case of (2.2), this is a question of the
behaviour ofM (§) as|é| — oo in a specific directionM (¢§) — 0 gives double
turning points.)

Thus, the monodromy data depend €in various ways, but so long as the
A-sector remains fixed, these various dependences must cancel. This leads, for
example, to relations betweei(¢) and¢ for large|&|, and so to statements about
the possible asymptotic behaviours of the Paialenctions, which we will pursue
in later papers.

We now turn to examine the application of our method to the specific case of
PIl (1.1) with 8 = 0 with the aim of using it to establish Theorem B. The relevant
version of the generic equation (3.1) is

o o .o 8 i, ir \7*
d—n—§¢{—(477 +1 +?—g(477 +1)(n_2qﬁ>
2 2 4 i 2 H -1
+4L2_41_412_2'q2ﬁ<,7_ Ir > (7.1)
x x X & 2q./x

3 ir \ 2
oz |
4¢2 2q/x ’
and this form follows directly from (2.2). If eithet — 400 or x — —o0, we
have a double turning poimp = :t%i, and although we can choose, say,= %i

when we are considering — +o0, the turning point that we have to use when
x — —o0o is then fixed. Thus we have

2 2
Fo(n):16(n+%i) if 5o = 3i, Fg(n):16(n—%i> if no = —3i.

(7.2)

In view of the behaviours of the solution of Pll &as— +o0 (given by Theorem A
and (1.2)), we will write
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g=x""0@) =%, (7.33)
so that d 3 1
_ M _ 216 grey - =

r=o"=3¢ (Q(@ 65Q>. (7.3b)

With these definitions we assume that there exists a seqggnreecce? with
ir 3./0 1
m = ZI (E - g) — l]_, (74a)
42 At 4qPN _ e 1o, 0f 40* 2
e R R
(7.4b)

(This assumption is certainly justifieddf= 0, %n, andgq is the solution given by
Theorem A. Of coursd; andl; depend ord.) Then, with the notation of Section
61 as'%‘n' - OO,

it +1
Fi(n. &) — 8ig — D g (7.5)
n—>h
and, from (3.13) and (6.7), in the limit &s,| — oo,
F n
2v+1—i% -0, (7.68)
Fo (no)
so that _
L1 e (7.6b)
v _—. .
16no

(Recall that we may havey = 3i or 5o = —3i.) Furthermore 1/ FY/2 has poles
atn = +np andn = /3 and

F i2v+1 i(2v+3 i
1 @D i@y i an
F n—10 n+no n—1nh
sothatsy = —ng, s3=11, A2=i(2v+3), Az=—i and
3
B=ZA]‘ =1
j=1

We are now in a position to write down the respective monodromy data by
appealing to formulae (6.11). However, rather than expressing the data relative to
the solutions (see (6.12))

it is more convenient to use modified reference solutions. We musy usgher
than¢ (see (2.1)), since it is in terms a@f and A that the monodromy data are
independent of. As v, = (n — I1)Y2¢ and sinceB = i, linearly independent
asymptotic solutions fo, are
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1 —1 -7 2 &7
wé),\,n la |§/(77)’ 1/,5),\, I§E7 ()

In order that¥ should satisfy (1.4), where the matrix has zero trace, we need
the componenwf) ~ exp(—i&.7). Itis then immediate from (2.1) tha&él) ~
1qie~13y Lexp(—i&.7), and so we choose to establish monodromy data with
respect to o s

%qié‘_l/sn_le_lg-% ()] and éé;_y (77)’
whence, from (6.11), for arg= arg(e"™/4/2E¢) = 7 + 2in to 37 + 2, the
Stokes multiplier is

. 3
i 27 i £ 7 A
_ e(4l+l)l71v72|§./ (WO)EV1/2|: | |(770 _ Sj)IA-/:|
j=2

I'(=v)

(7.9a)

« Fc)—()(v+1/2)/227v73/2e7i7r(2v+l)/4q€_-71/3’
whilst for the sector from arg= %n + 27 to %n + 2w itis
[2 o 3 .
;F(_v)e—(4l+2)l7tv+2|$./ (7]0)&-1)-&-1/2 1_[(770 _ Sj)—IAj
j=2
(7.9b)

« Fé(u)+1/2)/22v+3/2ein(2v+1)/4q—151/3 sinzv.

8. Monodromy Data asx — +o0

Here we take)g = %i, and the Stokes curves througt = %i are given by

n
Re igf 452 +1 do}:Re ie (28 +n—1i)| =0,
fie [ (a0+1) [ie (8°+n - 3]
which are asymptotic to the directions (with greg= 0) argn = %jn, for integral

j. We choose the sector bounded bygeg 0 and argy = %n, which corresponds

to theA-sector 0< argr < %n. This A-sector must then be the same when we
considerx — —oo.
The asymptotics in Theorem A tell us that,xas> +oo,

ir 1.
2 2
so that, in the notation of Section 7,
llz—%i, lb=0, v=-1, Szz—%‘i, S3=—%i, Ay =1,
Az3=—i, B=I.

Also, from (6.10), .
T (no) = 3, Foo= —16.
Thus from (7.9) the Stokes multiplier for the relevargector( < argz < 3r)

is given by
SMy = —a. (8.1
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9. Monodromy Data asx — —oo

Sincen = x~12) and we now have arg = x, the requirement that thesector
be fixed now demands that

—%n <argnp £ —%n. (9.1

We assert that the relevant turning point must novv—@. For if we suppose for
contradiction that it is stillrk%i, then we note that the Stokes curve frc%'nto
ooe™17/2 passes through 1i, since

Re{is /i;/z (402 +1) do} =0

(Recall that arg = %’n.) Thus also the Stokes curve associated Wi%‘i and the
sector (9.1) must pass through}i, and this is impossible since the real direction
from —%i is also a direction for which

Re{ii;‘/ (402 +1) do} = 0.
—i/2
(Seto + i =  for small realr.)
The asymptotics in Theorem A tell us that,.as> —oo,
ir

2q./x

~ —3cot(5 [x¥? — 3d2log|x| + y),
so that
h=-3 Jim {cot(% |x,|¥? — 3d?log|x,| + 7))},
where the sequende,} (or {£,}) has to be chosen so that the limit exits. Also
lp=4"24% v =-141%id? s =13i
s3=11, Ax=i(2v+3), Az=—i,
T (o) = —3i, Foo = —16.
Note also that since, from Theorem 3, arg % argn for large|n|, and since
argz = 27 + 3 argé + arge
= im + Jargx + 3 argn
=37+ 3argh,

we see that keeping thesector fixed also fixes thesector and so we have that the
relevantz-sector is agair%n <argz < %n. Thus from (7.9) the Stokes multiplier
is
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_ivem 262 3 (1-1dD) /2 _jy~(20+3) (—%i - ll>

r@- 3id? (9.2)
% (_16)(1—id2)/4 2—(1+id2>/zein/4+nd2/4q§—1/3_

Since

v 1 |exp{—i(31&] — 3d%log|&.] + 7))

§|+ll——§ I|m - 2 1,2

noo | sin(§l5| — 3d%logl& | +v)
we see that (9.2) reduces to
. 2w o /gy p-3idY2g-mdY4 ©.3)

 dr(-Lid?)

Since the Stokes multiplier must be independent ofitrection, comparison of
(8.1) and (9.3) gives (1.3) and proves Theorem B.
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