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Abstract

In this work we propose a new method for investigating connection problems
for the class of nonlinear second-order differential equations known as the Painlevé
equations. Such problems can be characterized by the question as to how the asymp-
totic behaviours of solutions are related as the independent variable is allowed to
pass towards infinity along different directions in the complex plane. Connection
problems have been previously tackled by a variety of methods. Frequently these
are based on the ideas of isomonodromic deformation and the matching of WKB
solutions. However, the implementation of these methods often tends to be heuristic
in nature and so the task of rigorising the process is complicated. The method we
propose here develops uniform approximations to solutions. This removes the need
to match solutions, is rigorous, and can lead to the solution of connection problems
with minimal computational effort.

Our method relies on finding uniform approximations of differential equations
of the generic form

d2φ

dη2
= −ξ2F(η, ξ)φ
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as the complex-valued parameterξ → ∞. The details of the treatment rely heavily
on the locations of the zeros of the functionF in this limit. If they are isolated, then
a uniform approximation to solutions can be derived in terms of Airy functions of
suitable argument. On the other hand, if two of the zeros ofF coalesce as|ξ | → ∞,
then an approximation can be derived in terms of parabolic cylinder functions. In
this paper we discuss both cases, but illustrate our technique in action by apply-
ing the parabolic cylinder case to the “classical” connection problem associated
with the second Painlevé transcendent. Future papers will show how the technique
can be applied with very little change to the other Painlevé equations, and to the
wider problem of the asymptotic behaviour of the general solution to any of these
equations.

1. Introduction

Asymptotic behaviour of solutions of the second Painlevé transcendent (PII),

q ′′ = 2q3 + xq + β, (1.1)

where ′ ≡ d/dx andβ is a complex constant, have been much studied, for ex-
ample in [7, 8, 11–30, 32–35, 38–41]. In particular, connection problems have been
investigated in which one attempts to relate the asymptotic behaviour in onex-
direction to that in another. Some of the results are heuristic, and some rigorous. The
heuristic arguments tend to use the method of isomonodromic deformations, linked
with asymptotic arguments that use the WKB method and matching, and although
Deift & Zhou [8, 9] have given a rigorous version of this for one problem as-
sociated with the second Painlevé transcendent (1.1), the task of extending these
techniques rigorously to more complicated problems, and in particular to problems
associated with the higher equations, seems formidable.

Linear connection problems for ordinary differential equations have been ex-
tensively studied for over a hundred years; however, nonlinear connection problems
are rare. The usual method for linear equations is to considerx as a complex vari-
able and pass fromx → +∞ tox → −∞ along a large semi-circle in the complex
x-plane. Provided that the coefficients in the equation have a reasonably simple
asymptotic behaviour asx → ±∞, then it is usually possible to construct an
asymptotic expansion for the solution at all points on the semi-circle, and so relate
the asymptotic behaviour asx → +∞ to the asymptotic behaviour asx → −∞.

However, this method fails in general for nonlinear equations since the solutions
may be very complicated asx → ±∞; though, for nonlinear equations such as the
Painlev́e equations which have the Painlevé property (and in particular those equa-
tions such as (1.1) whose solutions are meromorphic in the finite complex plane),
this method is feasible. IndeedBoutroux [5, 6] (see also [4, 17]) studied the
asymptotics of the first Painlevé equation in considerable detail and remarks that
his ideas can be extended to the other Painlevé equations as well. Essentially, the
solutions behave asymptotically like elliptic functions, at least locally, and although
not considered byBoutroux, the solution of the connection problem is a matter
of matching different elliptic functions in different sectors on the large semi-circle
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in the complex plane. Whereas this method is theoretically feasible, it certainly in-
volves considerable technical difficulties and the connection problems are solvable
by a different method. Recently,Joshi & Kruskal [24, 25], discuss how one
can extend the ideas ofBoutroux and use singular perturbative techniques, to
obtain connection formulae for the first and second Painlevé equations.

An alternative method for determining connection formulae for the Painlevé
equations is through theisomonodromic deformation technique(cf. Its & No-
vokshenov [20]). Classically,Fuchs [14], Garnier [15] and Schlesinger
[39] considered the Painlevé equations as the isomonodromic conditions for suitable
linear systems with rational coefficients possessing regular and irregular singular
points (see also [36]). Since the development of the inverse scattering method for
solving partial differential equations, there has been renewed interest in expressing
the Painlev́e equations as isomonodromic conditions for suitable linear systems
[11, 21–23]. Subsequently, there has been considerable interest in the use of the
isomonodromy method, which is a very powerful technique, to derive properties of
the Painlev́e equations, including for PII (1.1) [8, 9, 11–13, 18–20, 26–30, 32, 34,
35, 41].

In this paper we develop a new technique for investigating asymptotic problems
for the Painlev́e equations. The technique uses the method of isomonodromy, but
thereafter develops a uniform approximation which dispenses with matching, is
rigorous and even from a computational point of view is simpler than previous
methods. We will use it in this paper to study the asymptotic behaviour of solutions
of PII (1.1) whenβ = 0, giving the algorithm which enables one to compare
asymptotic behaviour in different directions, but we emphasise that the method is
certainly not restricted to PII, and we will return in later papers to its application to
the other transcendents.

In particular, of course, we can solve once again the “classic” problem for
PII (1.1), which for convenience and completeness we state here. Its statement
depends upon the following theorem, a proof of which was given byHastings
& McLeod [16].

Theorem A.There exists a unique solution of(1.1)withβ = 0 which is asymptotic
toa Ai(x) asx → +∞, a being any positive number. Ifa < 1, this solution exists
for all real x asx decreases to−∞, and, asx → −∞,

q(x) ∼ d|x|−1/4 sin
{

2
3 |x|3/2 − 3

4d
2 log |x| + γ

}
for some constantsd, γ which depend ona.

Hastings & McLeod also proved that ifa = 1, thenq(x) grows alge-
braically asx → −∞ according toq ∼ (− 1

2x
)1/2, whilst if a > 1, then solutions

blow up at some finite value ofx (which, of course, depends ona). From the state-
ment of Theorem A it is easy to compute more detailed asymptotics which hold as
x → +∞:
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q(x) = 1
2aπ

−1/2x−1/4 exp
(− 2

3x
3/2
)[

1 − 5
48x

−3/2 +O
(
x−3

)]
, (1.2a)

r(x) = dq

dx
= −1

2aπ
−1/2x1/4 exp

(− 2
3x

3/2
)[

1 + 7
48x

−3/2 +O
(
x−3

)]
. (1.2b)

The usual connection problem is the question of the specific dependence ofd

andγ ona, and this is given as follows:

Theorem B.

d2(a) = −π−1 log
(
1 − a2

)
, (1.3a)

γ (a) = 3
4π − 3

2d
2 log 2− arg0

(− 1
2id2

)
. (1.3b)

The amplitude connection formula (1.3a) and the phase connection formula
(1.3b) were first conjectured, derived heuristically and subsequently verified nu-
merically by Ablowitz & Segur [2] and Segur & Ablowitz [40], respec-
tively. It was not until some years later thatClarkson & McLeod [7] gave a
rigorous proof of (1.3a), using a Gel’fand-Levitan-Marchenko integral equation ap-
proach, andSuleimanov [41] derived (1.3a) and (1.3b) using an isomonodromy
approach. However, it was only in the very recent work ofDeift & Zhou [8,9]
that the form of the phase formula (1.3b) was finally proved rigorously.

This long history of the search for a rigorous verification of Theorem B illustrates
the main problem pertaining to connection formulae for the Painlevé transcendents.
The second Painlevé transcendent has a simpler structure than most of the remainder
(see for example [17] for a list of all six transcendents). Given the formidable
technical difficulties that have had to be overcome in order to establish Theorem
B, the prospect of extending the existing techniques to problems for the other
transcendents is somewhat daunting.

It is with this background that we expound our new method which, as we have
already mentioned, involves the concept of isomonodromy, and we now quickly
review the relevant facts [11]. (Again we give the details for PII (1.1) but emphasise
that comparable results are known [20] for all the other Painlevé transcendents, and
indeed that there is a hierarchy of equations [3] of higher order which fit into the
same general framework.) Suppose thatx andλ are independent complex variables
and there exists a 2× 2 matrix function9(x, λ) which satisfies both

∂9

∂x
= (−iλσ3 + qσ1)9, i.e., Dx9 = 0, (1.4)

and

∂9

∂λ
=
{
−i(4λ2 + x + 2q2)σ3 + 4λqσ1 − 2rσ2 − β

λ
σ1

}
9, i.e., Dλ9 = 0.

(1.5)
Here

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,
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are the standard Pauli spin matrices which, in particular, satisfy

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2.

Then there is a compatibility condition

[Dx,Dλ]9 = (DxDλ −DλDx)9 = 0, (1.6)

and an easy calculation shows that (1.6) reduces to (1.1). Conversely, ifq(x)evolves
according to (1.1), then (1.4) and (1.5) are compatible. Thus (1.1) is equivalent to
compatibility and compatibility is easily seen to imply isomonodromy.

For suppose that we have two fundamental solutions9(1),9(2) of (1.5) in two
different but overlapping sectors in theλ-plane. (The equation has an irregular
singularity atλ = ∞ and a regular singularity atλ = 0 but, as far as monodromy is
concerned, we need only deal with the irregular singularity.) Since9(1) and9(2)

are both fundamental solutions, there must be a matrixS independent ofλ but in
general dependent onx, such that

9(2)(x, λ) = 9(1)(x, λ)S(x), (1.7)

andS is referred to as the monodromy matrix. (Of course,S depends on the partic-
ular fundamental solutions which are compared, and we return to this point later.)
There is a monodromy matrix for each pair of sectors, and the assemblage of all the
monodromy matrices forms the monodromy data. If we now differentiate (1.7) with
respect tox and use the fact that9(1) and9(2) satisfy (1.4), we obtain immediately
thatS is independent ofx, which is to say that the problem is isomonodromic in
x. It should be noted that this involves care in choosing9(1) and9(2), for if we
multiply 9(1)(x, λ) by a function ofx, it still satisfies (1.5), but no longer (1.4).

We make the remark also that we shall be able to arrange that the monodromy
matrix takes the form of a triangular matrix with 1 as the principal diagonal. Thus
the monodromy data reduces to the one remaining entry in the matrix, the so-called
Stokes multiplier.

Given isomonodromy, we can now prove Theorem B as follows. We work out the
monodromy data for (1.5) asx → +∞, using the known asymptotic dependence
of q on x, and then the monodromy data asx → −∞, and equate them to give
the required result. The way in which this has so far been carried out is to compute
the fundamental solutions in different sectors and use (1.7) to obtainS. This means
that we have to compute the solutions (or at least their asymptotic behaviours) as
|λ| → ∞ and also as|x| → ∞. This uses WKB asymptotics, and also matching,
since the form of the asymptotics depends on the relative values ofλ andx, and we
have to match different forms in different regions. The procedure can be complicated
and rigorising it difficult.

The procedure would be much simplified if one could find approximations to
solutions which are uniformly valid for all relevant large|λ|, |x|. This we can in
fact do, and in a general form which is certainly applicable to more than just PII
(1.1). Once it is done, there is no further rigorous analysis required; it is merely a
matter of computing the monodromy data by relating it to the (known) data for the
approximations.
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In Section 2 we describe, in the context of PII (1.1), the heuristic reasoning
which leads to the uniform approximation. Then in Sections 3, 4 we state and prove
two theorems on uniform approximations, which we believe to be the only such
theorems necessary for the discussion of any of the Painlevé equations. In the final
sections of the paper we use these theorems to compute monodromy data both in a
general setting and in the particular case of PII, and finally as an application prove
Theorem B.

It should be remarked that for the purposes of Theorem B only the first of the
two approximation theorems (that relating to double turning points) is required. For
more general solutions of PII, and for a general discussion of the other Painlevé
equations, the second theorem is also required. We intend to return to such devel-
opments in later papers.

2. Deriving a Uniform Approximation

To see the nature of the uniform approximation, we turn (1.5) into a single
second-order equation. We first make the scaling

ξ = x3/2, η = x−1/2λ,

so that (1.5) becomes

d9

dη
= ξ

{
−i

(
4η2 + 1 + 2q2

x

)
σ3 +

(
4ηq√
x

− β

ηξ

)
σ1 − 2r

x
σ2

}
9,

which, with

9 =
(
ψ1

ψ2

)
,

is equivalent to

dψ1

dη
= ξ

{
−i

(
4η2 + 1 + 2q2

x

)
ψ1 +

(
4ηq√
x

− β

ηξ
+ 2ir

x

)
ψ2

}
, (2.1a)

dψ2

dη
= ξ

{
i

(
4η2 + 1 + 2q2

x

)
ψ2 +

(
4ηq√
x

− β

ηξ
− 2ir

x

)
ψ1

}
. (2.1b)

Eliminatingψ1, we obtain

d2ψ2

dη2
= ξ

{
i

(
4η2 + 1 + 2q2

x

)
dψ2

dη
+ 8iηψ2 +

(
4q√
x

+ β

η2ξ

)
ψ1

− iξ

(
4ηq√
x

− β

ηξ
− 2ir

x

)(
4η2 + 1 + 2q2

x

)
ψ1

+ ξ
(

4ηq√
x

− β

ηξ
+ 2ir

x

)(
4ηq√
x

− β

ηξ
− 2ir

x

)
ψ2

}
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= ξ

{
−ξ

(
4η2 + 1 + 2q2

x

)2

ψ2 + 8iηψ2 + ξ

[(
4ηq√
x

− β

ηξ

)2

+ 4r2

x2

]
ψ2

+ 1

ξ

(
1 + β

4η2qx

)(
η − ir

2q
√
x

− β

4ηqx

)−1

×
[

dψ2

dη
− iξ

(
4η2 + 1 + 2q2

x

)
ψ2

]}
.

The term dψ2/dη can be removed by setting

φ =
(
η − ir

2q
√
x

− β

4ηqx

)−1/2

ψ2,

whence

d2φ

dη2
= ξ2φ

{
−(4η2 + 1)2 + 8iη

ξ
+
(

4r2

x2
− 4q2

x
− 4q4

x2
− 8qβ

x2
+ β2

η2x3

)

− i

ξ

(
1 + β

4η2qx

)(
4η2 + 1 + 2q2

x

)(
η − ir

2q
√
x

− β

4ηqx

)−1

+ 1

ξ2

β

4η3qx

(
η − ir

2q
√
x

− β

4ηqx

)−1

+ 3

4ξ2

(
1 + β

4η2qx

)2(
η − ir

2q
√
x

− β

4ηqx

)−2
}
. (2.2)

In (2.2), attention should be drawn to the terms

4r2

x2
− 4q2

x
− 4q4

x2
− 8qβ

x2
= M(ξ), (2.3)

say, which depend only onx orξ , and not onη.HowM(ξ)behaves for largeξ (which
is always our interest) depends on the asymptotics of the functionsq(x), r(x) as
|x| → ∞, and therefore on the particular solution of PII. For the remainder of this
heuristic discussion we will consider the case whereM(ξ) → 0, since in the case
of Theorem B this is certainly true from the given asymptotics both asx → +∞
and asx → −∞. But it is not true for a general solution thatM(ξ) → 0, and our
methods do not need it, and we will point out where the essential difference lies.

Assuming then thatM(ξ) → 0 as|ξ | → ∞, we expect from the form of (2.2)
that, as|η| → ∞ with |ξ | large, the dominant term on the right-hand side is

−ξ2(4η2 + 1)2φ,

so that, from the usual WKB approximation, the solution should be asymptotically
of the form
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η−1 exp

{
±iξ

∫ η

(4σ 2 + 1)dσ

}
= η−1 exp

{
±iξ

(
4

3
η3 + η

)}
.

The two exponentials are thus equipollent in directions

arg
(
ξη3

)
= 0, ±π, ±2π, . . . ,

i.e.,
argη = −1

3 argξ ± 1
3kπ, k = 0,1,2, . . . ,

and these are the so-called Stokes directions. We can determine the Stokes multi-
pliers by relating the asymptotic behaviour of a solution in one Stokes direction to
its asymptotic behaviour in the next, since it is in Stokes directions (and only in
Stokes directions) that the full asymptotics appear and solutions can be defined by
their asymptotics.

However, in order to connect the behaviours as|η| → ∞ on, say, argη =
−1

3 argξ and argη = −1
3 argξ + 1

3π, we need to follow the solution along a
curve for which Re

{
iξ
∫ η
(4σ 2 + 1)dσ

} = 0, for if we depart significantly from
such curves (so-called Stokes curves), we lose equipollence, and so the effect of
exponentially small solutions and therefore the Stokes multiplier. Now there is some
choice of Stokes curve depending on the initial point of integration, but to obtain
a uniform approximation we consider Stokes curves which pass through turning
points of equation (2.2); by a turning point we mean a value ofη which is a zero of
the right-hand side of (2.2) although we will slightly adapt this definition later.

The idea of uniform asymptotics through turning points was first proposed by
Langer [31] and Titchmarsh [42] in work on the distribution of eigenvalues
for the Schr̈odinger equation (see also [37]). They dealt with the equation

d2y

dz2
+ [µ− q(z)]y = 0, −∞ < z < ∞, (2.4)

where, for example, we may think ofµ as a large positive parameter andq(z) → ∞
as z → ∞. If q is strictly monotonic, then there is a simple turning point at
q(z) = µ. Langer pointed out that the prototypical case of this isq(z) = z, so
that the equation becomes

d2y

dz2
+ (µ− z)y = 0,

whose general solution is a linear combination of Ai(z−µ) and Bi(z−µ), where
Ai, Bi are the usual Airy functions. He then went on to show that one could obtain
a uniform approximation to solutions of (2.4), valid for largeµ andz → ±∞, by
introducing Airy functions of a suitable argument.

We need to modify the idea further, becauseLanger’s approximation relates
to situations where the turning point is simple, whereas in our case (2.2) there are
two turning points which, for largeξ, are close toη = 1

2i (and two others close to
η = −1

2i). (This of course is a consequence of our assumption thatM(ξ) → 0. If
M(ξ) ----→ 0, then the turning points are simple, and it is then a matter of adapting
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Langer’s approximation using Airy functions.) In our present situation, therefore,
it seems that the parabolic cylinder equation

d2y

dz2
= [1

4z
2 − (

ν + 1
2

)]
y, (2.5)

with linearly independent solutionsDν(z) andD−ν−1(−iz), is an appropriate one
for coping with coalescing turning-points, and in fact this possibility has already
been explored byOlver [37] and Dunster [10], primarily for real values ofz.
With our particular applications in mind, it will be better to consider (2.5) in the
form

d2y

dz2
= −ξ2

(
z2 − 2ν + 1

iξ

)
y (2.6)

= −ξ2(z2 − α2)y, (2.7)

where iξα2 = 2ν+1, which has solutionsDν(eπ i/4√2ξz)andD−ν−1(e−π i/4√2ξz).
To see how this applies to (2.2), we restrict ourselves to the particular case when

β = 0. We try as a uniform approximation to a solution of (2.2) the expression

φ(η) = ρ(η)Dν

(
eiπ/4

√
2ξζ(η)

)
= ρ(η)Fν(ζ(η)), say, (2.8)

where the functionsρ andζ are to be determined. Substituting (2.8) in (2.2) with
β = 0 we have

ρ′′Fν + 2ρ′ζ ′F ′
ν + ρ((ζ ′)2F ′′

ν + ζ ′′F ′
ν)

= ξ2ρFν

{
−(4η2 + 1)2 + 8iη

ξ
+
(

4r2

x2
− 4q2

x
− 4q4

x2

)
− i

ξ

(
4η2 + 1 + 2q2

x

)(
η − ir

2q
√
x

)−1

+ 3

4ξ2

(
η − ir

2q
√
x

)−2}
.

(2.9)

Recalling thatFν satisfies (2.6) we can compare coefficients ofF ′
ν andFν in (2.9).

The vanishing of the coefficient ofF ′
ν gives

2ρ′ζ ′ + ρζ ′′ = 0,

so that we can take
ρ = (ζ ′)−1/2, (2.10)

for the choice of integration constant at this point is inconsequential. The vanishing
of the coefficient ofFν gives

ξ2(ζ 2 − α2)(ζ ′)2

= ξ2
{
(4η2 + 1)2 − 8iη

ξ
−
(

4r2

x2
− 4q2

x
− 4q4

x2

)

+ i

ξ

(
4η2 + 1 + 2q2

x

)(
η − ir

2q
√
x

)−1

− 3

4ξ2

(
η − ir

2q
√
x

)−2

+ ρ′′

ξ2ρ

}
.

(2.11)
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If we ignore the last two terms in{. . .} as being of smaller order (for largeξ ) than
the others, then we are left with

(ζ 2 − α2)(ζ ′)2 = (4η2 + 1)2 − 8iη

ξ
−
(

4r2

x2
− 4q2

x
− 4q4

x2

)
+ i

ξ

(
4η2 + 1 + 2q2

x

)(
η − ir

2q
√
x

)−1

= G(η, ξ), say,

(2.12)

which, apart from a constant of integration, definesζ as a function ofη once we
have specifiedα. (We recall always thatr, q, x, ξ are constants as far asη, ζ are
concerned.) We note however from (2.10) that we certainly want to avoid zeros of
ζ ′ and, from (2.12),ζ ′ has a zero whereverG(η, ξ) = 0; i.e., essentially at a turning
point of the equation, unless we can chooseα so that the zeros ofζ 2 −α2 coincide
with those ofG. For largeξ, there are two turning points, sayη1 andη2, close to1

2i,
and two close to−1

2i. If we are interested in a Stokes curve which passes through
(or close to)12i, then we must chooseα so thatζ = −α corresponds toη = η1 and
ζ = +α corresponds toη = η2. We can ensure that one of these holds by use of
the constant of integration implicit in the evaluation ofζ from (2.12). The second
can be achieved by definingα so that∫ α

−α
(ζ 2 − α2)1/2 dζ =

∫ η2

η1

G1/2(η, ξ)dη.

Since the left-hand side integrates easily to1
2π iα2, we haveα given by

1

2
π iα2 =

∫ η2

η1

G1/2(η, ξ)dη. (2.13)

With α so defined, andζ chosen according to∫ ζ

α

(τ2 − α2)1/2 dτ =
∫ η

η2

G1/2(σ, ξ)dσ,

we can hope that solutions of (2.2) are approximated, uniformly onη for largeξ,
by some linear combination of

(ζ ′)−1/2Dν(e
iπ/4

√
2ξζ ) and (ζ ′)−1/2D−ν−1(e

−iπ/4
√

2ξζ ).

A precise statement and proof of this conjecture is given in the next section.
We remark finally that it is a consequence of this uniform approximation that

the monodromy data for (2.2) as|ξ | → ∞ is the same as that for the parabolic
cylinder functions, which can be found in any text on special functions, modified
only by some allowance for the various changes of variable involved. We work this
out more precisely in Sections 5 and 6.
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3. The Uniform Approximation Theorem for a Double Turning Point

We are interested in differential equations of the form

d2φ

dη2
= −ξ2F(η, ξ)φ (3.1)

and, guided by the heuristic discussion in Section 2, we make the following assump-
tions aboutF . Suppose that our concern is with the limit|ξ | → ∞ with argξ → θ;
we then hypothesise that

H1. There is a sequence of valuesξn, |ξn| → ∞, argξn → θ, such that

F(η, ξn) = F0(η) (η − η0)
2 − F̃ (η, ξn)

ξn
,

where

(i) F0(η) is a polynomial inη, with F0(η0) |= 0 and

F0(η) ∼ Aηm as η → ∞, (3.2)

(ii) F̃ (η, ξn) is a rational function ofη, with the location of its poles possibly
dependent onξn.

(Further assumptions oñF are given in due course.)

Remarks.

1. The assumption thatF0 is polynomial is not essential. Polynomial-like behaviour
of some sort would certainly be sufficient, but in applications to the Painlevé tran-
scendents it is always the case thatF0 is a polynomial, and since no new ideas would
be involved in generalization, we do not consider this here. Similar comments hold
with regard to the rational behaviour of̃F .

2. The assumption thatF0(η0) |= 0 is crucial. It implies that (3.1) is to have a double
turning point atη = η0 (or, more precisely, for large|ξ |, two turning points close
to η0), but no other turning points close toη0.

3. Our assumption is only about a sequence of valuesξn since it will turn out in
our applications to be a consequence of isomonodromy that behaviour as|ξ | → ∞
through a sequence is sufficient to determine behaviour as|ξ | → ∞ generally.
However, in the present approximation theorem, which is in itself quite indepen-
dent of the concept of isomonodromy, we are not involved in comparing different
sequences, and so we can without confusion drop the subscript inξn, and this is
done henceforth.

4. The usual WKB approximation for (3.1) would suggest, in view of (3.2), that,
for largeη, the solutions of (3.1) are asymptotic to linear combinations of

η−(m+2)/4 exp

(
±iξ

∫ η

F
1/2
0 (s) (s − η0) ds

)
,

and so for Stokes directions we must have
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arg
(
ξA1/2η(4+m)/2

)
= 0, ±π, ±2π, . . .

or (
1
2m+ 2

)
argη = − argξ − 1

2 argA+ kπ (k = 0,±1, . . .). (3.3)

To compute monodromy data for (3.1), we need the behaviour of solutions in two
successive Stokes directions, and this leads to the next hypothesis.

H2. There exists a Stokes curveCk,k+1, defined by

Re

(
iξ
∫ η

η0

F 1/2(σ, ξ)dσ

)
= 0,

which connects∞ in two successive Stokes directions(given bykπ and(k + 1)π
in (3.3) above), passes throughη0 and is(for large ξ) bounded from any zero of
F0.

H3. On and in a neighbourhood ofCk,k+1, F̃ has no poles, at least for largeξ,
and, for allη and uniformly for largeξ,

F̃ (η, ξ)

F0(η)
= O(|η| + 1),

while, for largeη and uniformly for largeξ ,

F ′/F = O(η−1), F ′′/F = O(η−2), F ′ = dF/dη.

Remarks.

1. It is now clear from Rouch́e’s theorem that, forξ sufficiently large,F(η, ξ) has,
as a function ofη, precisely two zerosη1, η2 close toη0. In fact, if F̃ (η, ξ) → L

asη → η0, |ξ | → ∞, we have

ηj = η0 ±
(

L

F0(η0)

)1/2

ξ−1/2{1 + o(1)}, j = 1,2. (3.4)

(We can takeη2 to correspond to the upper sign.)

2. In line with the heuristic discussion in Section 2, we define a numberα by

1
2π iα2 =

∫ α

−α
(τ2 − α2)1/2 dτ =

∫ η2

η1

F 1/2(η, ξ)dη, (3.5)

and a new variableζ by∫ ζ

α

(τ2 − α2)1/2 dτ =
∫ η

η2

F 1/2(s, ξ)ds. (3.6)

There is a choice of signs for the various square roots, but any consistent choice
will do. Other choices merely lead to a permutation amongst the solutionsDν(z),

Dν(−z),D−ν−1(iz) andD−ν−1(−iz) of (2.5) (or, of course, (2.6)) and do not
therefore affect the space of approximating functions in our theorem below. We
note also thatF does not vanish on or nearCk,k+1 if ξ is large, except atη1, η2,
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and so there is no ambiguity in the sign ofF 1/2 once some initial value has been
chosen.

3. There is a certain arbitrariness in the precise choice of a Stokes curve. All that is re-
quired is that on it both WKB approximations are equipollent, so that both appear in
an asymptotic expansion of a solution. With this in mind, it would be equally good to
choose a curve connecting two Stokes directions on which Re(iξ

∫ η
η0
F 1/2(σ, ξ)dσ)

is bounded independently ofη andξ, and we shall make use of this possibility.

Given these three assumptions concerning the problem (3.1) we can now show
that solutions of this equation can be approximated uniformly by parabolic cylinder
functions so long asη remains onCk,k+1. This result can be summarised thus:

Theorem 1. Under hypotheses H1–H3, and given any solutionφ of (3.1), there
exist constantsc1, c2 such that, uniformly forη onCk,k+1, as|ξ | → ∞,(
ζ 2 − α2

F(η, ξ)

)−1/4

φ(η, ξ)

=
{
[c1 + o(1)]Dν

(
eπ i/4

√
2ξζ

)
+ [c2 + o(1)]D−ν−1

(
e−π i/4

√
2ξζ

)}
.

Proof. We have to compare the equations

d2φ

dη2
= −ξ2F(η, ξ)φ (3.7)

and
d2ψ

dζ 2
= −ξ2(ζ 2 − α2)ψ. (3.8)

Set

p = dη

dζ
=
(
ζ 2 − α2

F

)1/2

, (3.9)

which we note is bounded both above and below on any bounded part ofCk,k+1.

The only problem can occur nearη0, and there we notice thatζ 2−α2 andF have the
same zeros, so thatp andp−1 are analytic in a neighbourhood ofη0. Since trivially
p andp−1 are bounded on some fixed small circle|η − η0| = k, say, it follows
from the maximum principle thatp andp−1 are bounded inside|η−η0| = k. Also
asη, ζ → ∞, it is immediate from (3.6) that

1

2
ζ 2 ∼ 2A1/2η2+m/2

4 +m
,

so thatp is asymptotically some power ofη (or ζ ), and so, consideringp = p(ζ )

andp′ = dp/dζ, we have, as|ζ | → ∞, from H3,

p′

p
= O

(
1

ζ

)
,

p′′

p
= O

(
1

ζ 2

)
,

and the bounds implicit in theO-terms are independent ofξ. Now
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dφ

dη
= 1

p

dφ

dζ
,

d2φ

dη2
= 1

p2

d2φ

dζ 2
− p′

p3

dφ

dζ
,

so that (3.7) becomes

d2φ

dζ 2
= −ξ2(ζ 2 − α2)φ + p′

p

dφ

dζ
.

Setting
φ = p1/28, (3.10)

we have
d28

dζ 2
= −ξ2(ζ 2 − α2)8− 1

2

[
p′′

p
− 3

2

(p′)2

p2

]
8. (3.11)

Now we have already seen that linearly independent solutions of (3.8) are

Dν

(
eπ i/4

√
2ξζ

)
, D−ν−1

(
e−π i/4

√
2ξζ

)
, (3.12)

where, by (2.7),
ν = −1

2 + 1
2iξα2, (3.13)

and the asymptotics of the functions in (3.12), as|√2ξζ | → ∞, are always linear
combinations of

exp
(
−1

2iξζ 2
) (√

2ξζ
)ν
, exp

(
1
2iξζ 2

) (√
2ξζ

)−ν−1
.

(For the asymptotics of parabolic cylinder functions, one can consult, for example,
[43].) We want to assert that these are bounded onCk,k+1, which is so if

Re
(

1
2iξζ 2 − ν log

(√
2ξζ

))
is bounded. (3.14)

But by definition

iξ
∫ ζ

α

(τ2 − α2)1/2dτ = iξ
∫ η

η2

F 1/2(s, ξ)ds

= iξ
∫ η

η0

F 1/2(s, ξ)ds + iξ
∫ η0

η2

F 1/2(s, ξ)ds,

and the last term is bounded independent ofξ. (Merely sets − η0 = tξ−1/2 in the
integrand, and use the fact that(η2 − η0)ξ

1/2 is bounded.) Thus, onCk,k+1,

Re

(
iξ
∫ ζ

α

(τ2 − α2)1/2dτ

)
is bounded, (3.15)

and it is an elementary integration that∫ ζ

α

(τ2−α2)1/2dτ = 1
2

{
ζ(ζ 2 − α2)1/2 − α2 log

(
ζ + (ζ 2 − α2)1/2

)+ α2 logα
}
.

(3.16)
Substituting forα from (3.13), we see easily that (3.15) implies (3.14).
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We can now turn (3.11) into an integral equation in the usual way. In fact, any
solution of (3.11) satisfies, for some constantsc1, c2, the integral equation

8(ζ) = c1Dν

(
eπ i/4

√
2ξζ

)
+ c2D−ν−1

(
e−π i/4

√
2ξζ

)
− i

2
√

2ξ

ζ∫
α

{
Dν

(
eπ i/4

√
2ξζ

)
D−ν−1

(
e−π i/4

√
2ξ t

)
(3.17)

−D−ν−1

(
eπ i/4

√
2ξζ

)
Dν

(
e−π i/4

√
2ξ t

)}[p′′

p
− 3

2

(p′)2

p2

]
8(t)dt.

In deriving (3.17) we have made use of the standard result that the Wronskian

W
(
Dν

(
eπ i/4

√
2ξζ

)
,D−ν−1

(
e−π i/4

√
2ξζ

))
= i
√

2ξ

and the integral is to be taken alongCk,k+1. SinceDν,D−ν−1 are bounded on this
curve, and

p′′

p
− 3

2

(p′)2

p2
= O

(
1

ζ 2

)
and so is integrable to infinity onCk,k+1, we can solve (3.17) by iteration (see, for
example [42]), to conclude that8 is bounded onCk,k+1. Furthermore, we deduce
that

8(ζ) = c1Dν

(
eπ i/4

√
2ξζ

)
+ c2D−ν−1

(
e−π i/4

√
2ξζ

)
+O

( |c1| + |c2|√
ξ

)
and, returning toφ via the transformation (3.10), we see that the theorem is
proved.

4. The Uniform Approximation Theorem for a Simple Turning Point

Consider differential equations of the form

d2φ

dη2
= −ξ2F(η, ξ)φ, (4.1)

where we make the following assumptions aboutF in the limit as |ξ | → ∞,

argξ = θ.

H1. There is a sequence of valuesξn, |ξn| → ∞,argξn → θ, such that

F(η, ξn) = F0(η, ξn) (η − η0(ξn))− F̃ (η, ξn)

ξn
, (4.2)

where

(i) η0(ξn) → η∞ asξn → ∞, η∞ finite,
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(ii) F0(η, ξn) is a polynomial inη whose zeros tend to finite limits asξn → ∞,

all distinct fromη∞, and

F0(η, ξn) ∼ Aηm as η → ∞, (4.3)

(iii) F̃ (η, ξn) is a rational function ofη.

Remarks.

1. We are allowing the possibility that the turning pointη0 may depend onξ . (We
drop the subscriptn as in Section 3.) We could do this also in Theorem 1, but this
does not seem relevant in the applications of Theorem 1, whereas it certainly is in
applications of the present case.

2. The usual WKB approximation for (4.1) would suggest, from (4.3), that for large
η, solutions of (4.1) are asymptotic to linear combinations of

η−(m+1)/4 exp

(
±iξ

∫ η

F
1/2
0 (s, ξ)(s − η0)

1/2ds

)
and so for Stokes directions we must have

arg
(
ξA1/2η(3+m)/2

)
= 0, ±π, ±2π, . . .

or

1
2(m+ 3)argη = − argξ − 1

2 argA+ kπ (k = 0,±1, . . .). (4.4)

Monodromy data for (4.1) can be computed once the behaviours of solutions in
two successive Stokes directions are known. We therefore assume:

H2. There exists a Stokes curveCk,k+1, defined by

Re

(
iξ
∫ η

η0

F 1/2(σ, ξ)dσ

)
= 0,

which connects∞ in two successive Stokes directions(given bykπ and(k + 1)π
in (4.4) above) and which passes throughη0 and is(for large ξ) bounded away
from any zero ofF0. (We drop the explicit dependence ofη0 on ξ.)

H3. OnCk,k+1 and in a neighbourhood of it,̃F has no poles, at least for largeξ,
and, for allη and uniformly for largeξ,

F̃ (η, ξ)

F0(η, ξ)
= O(1),

whilst, for largeη and uniformly for largeξ,

F ′/F = O(η−1), F ′′/F = O(η−2).

Based on the above, it follows from Rouché’s theorem that, forξ sufficiently
large,F(η, ξ) has, as a function ofη, precisely one zeroη∗ close toη0 and thus
close toη∞. In fact,
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η∗ = η0 +O(ξ−1). (4.5)

Now if we define a new variableζ by

2
3ζ

3/2 =
∫ ζ

0
τ1/2dτ =

∫ η

η∗
F 1/2(s, ξ)ds, (4.6)

then we can obtain uniform approximations to the solution of (4.1) according to

Theorem 2.Under hypotheses H1-H3, and given any solutionφ of (4.1), there exist
constantsc1, c2 such that, uniformly forη onCk,k+1, as|ξ | → ∞,(

ζ

F (η, ξ)

)−1/4

φ(η, ξ)

=
{
[c1 + o(1)]Ai

(
eπ i/3ξ2/3z

)
+ [c2 + o(1)]Bi

(
eπ i/3ξ2/3ζ

)}
whereAi andBi are the usual Airy functions.

Proof. We need to compare the equations

d2φ

dη2
= −ξ2F(η, ξ)φ and

d2ψ

dζ 2
= −ξ2ζψ, (4.7a,b)

and do so by setting

p = dη

dζ
=
(
ζ

F

)1/2

.

Now p is bounded both above and below on any bounded part ofCk,k+1. The
only difficulty might arise nearη0 and there we note thatζ andF have the same
simple zero (from definition (4.6)) so thatp andp−1 are analytic nearη0. Since
trivially p andp−1 are bounded on some fixed small circle|η − η0| = ε, say, it is
a consequence of the maximum principle that bothp andp−1 are bounded inside
|η − η0| = ε. As η, ζ → ∞, it is obvious from (4.6) that

2

3
ζ 3/2 ∼ 2A1/2η(m+3)/2

m+ 3
, (4.8)

so thatp is asymptotically some power ofη (orζ ). Therefore, consideringp = p(ζ )

andp′ ≡ dp/dζ we have as|ζ | → ∞, from H3, that

p′

p
= O

(
1

ζ

)
,

p′′

p
= O

(
1

ζ 2

)
,

and the bounds implicit in theO-terms are independent ofξ. Since

dφ

dη
= 1

p

dφ

dζ
,

d2φ

dη2
= 1

p2

d2φ

dζ 2
− p′

p3

dφ

dζ
,

equation (4.7a) becomes
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d2φ

dζ 2
= −ξ2ζφ + p′

p

dφ

dζ
,

and on setting
φ = p1/28 (4.9)

we obtain
d28

dζ 2
= −ξ2ζ8− 1

2

[
p′′

p
− 3

2

(p′)2

p2

]
8. (4.10)

It is a standard result that linearly independent solutions of (4.7b) are

Ai
(
eiπ/3ξ2/3ζ

)
, Bi

(
eiπ/3ξ2/3ζ

)
(4.11)

and the asymptotics of these functions as|ξ2/3ζ | → ∞ are always linear combi-
nations of

ξ−1/6ζ−1/4 exp
{
±2

3iξζ 3/2
}
.

We would like to assert that these are bounded onCk,k+1, which is the case if
Re
(
iξζ 3/2

)
is bounded. However, we have from (4.6) that

2
3iξζ 3/2 = iξ

∫ η

η∗
F

1
2 (s, ξ)ds = iξ

∫ η0

η∗
F 1/2(s, ξ)ds + iξ

∫ η

η0

F 1/2(s, ξ)ds

so that, onCk,k+1,Re(iξζ 3/2) is bounded if and only if Re
(
iξ
∫ η0
η∗ F 1/2(s, ξ)ds

)
is bounded. This latter expression isO

(|ξ |−1/2
)

for large|ξ | (by using (4.2) and
(4.5)) so that Re

(
iξζ 3/2

)
is indeed bounded on the Stokes curve.

To complete the proof of Theorem 2 we turn (4.10) into an integral equation in
the usual way. It follows that any solution of (4.10) satisfies, for some constantsc1
andc2, the equation

8(ζ) = c1Ai
(
eπ i/3ξ2/3ζ

)
+ c2Bi

(
eπ i/3ξ2/3ζ

)
− i

4ξ5/6

∫ ζ

0

{
Ai
(
eπ i/3ξ2/3ζ

)
Bi
(
eπ i/3ξ2/3t

)
(4.12)

− Bi
(
eπ i/3ξ2/3ζ

)
Ai
(
eπ i/3ξ2/3t

)}[p′′

p
− 3

2

(
p′

p

)2
]
8(t)dt.

In deriving (4.12) we have used the standard result for Wronskians that

W
(
Ai
(
eπ i/3ξ2/3ζ

)
,Bi

(
eπ i/3ξ2/3ζ

)) = 2iξ5/6.

The integral within (4.12) is taken along the Stokes curveCk,k+1 and since Ai and
Bi are bounded there and

p′′

p
− 3

2

(
p′

p

)2

= O

(
1

ζ 2

)
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and so is integrable to infinity onCk,k+1, we can solve (4.12) by iteration to conclude
that8 is bounded onCk,k+1. Furthermore, we have that

8(ζ) = c1Ai
(
eπ i/3ξ2/3ζ

)+ c2Bi
(
eπ i/3ξ2/3ζ

)+O

( |c1| + |c2|
ξ5/6

)
and, returning to the variableφ via the transformation (4.9), we conclude that the
theorem is proved.

5. Monodromy Data for Parabolic Cylinder Functions

This section sets out the well-known results that we shall need concerning Stokes
multipliers for the parabolic cylinder function. We shall be interested in comput-
ing the multipliers for the curveCk,k+1; i.e., we wish to compare the asymptotic
behaviours on(1

2m+ 2
)

argη + argξ + 1
2 argA = kπ and (k + 1)π

and, since 2 argζ ∼ 1
2 argA + (1

2m + 2)argη for largeη, ζ , this is equivalent to
comparing behaviours on

arg
(√

2ξζ
)

= 1
2kπ and 1

2(k + 1)π.

Let us setz ≡ eπ i/4√2ξζ ; the complete asymptotic behaviours ofDν(z) as|z| →
∞ are well known (see for example [4]) and are given by

Dν(z) ∼



zν exp
(− 1

4z
2
)
, if | argz| < 3

4π,

zν exp
(− 1

4z
2
)−

√
2π

0(−ν)e
iπνz−ν−1 exp

(1
4z

2
)
, on argz = 3

4π,

e−2iπνzν exp
(− 1

4z
2
)−

√
2π

0(−ν)e
iπνz−ν−1 exp

(1
4z

2
)
, on argz = 5

4π,

e−2iπνzν exp
(− 1

4z
2
)
, if 5

4π < argz < 11
4 π.

(5.1)
Then, on argz = ±1

4π + 2lπ, with l integral,

Dν(ze
−2ilπ ) ∼ (ze−2ilπ )ν exp

(− 1
4z

2
)

and so, sinceDν(z) is single-valued,

Dν(z) ∼ exp
(− 1

4z
2
)
zνe−2lπ iν . (5.2)

Similarly, on argz = 3
4π + 2lπ, we have

Dν(z) ∼ exp
(− 1

4z
2)zνe−2lπ iν −

√
2π

0(−ν)e
νπ i exp

(1
4z

2)z−ν−1e2lπ i(ν+1). (5.3)

To evaluate the Stokes multiplier we proceed as follows. In any sector between
two adjacent Stokes directions there is (modulo multiplication by a constant) a
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unique solutionf1 which is asymptotic to the small exponential. All other solutions
are necessarily asymptotic to some multiple of the large exponential, but if we take
such a solution on the first Stokes line, then we find that on the second Stokes line
its asymptotics have added a multiple off1. That multiple is the Stokes multiplier.
Thus, relative to the asymptotic forms exp(−1

4z
2)zν and exp(1

4z
2)z−ν−1, the Stokes

multiplier for the sector14π+2lπ to 3
4π+2lπ, in which exp(−1

4z
2)zν is dominant,

can be immediately deduced from (5.2) and (5.3). Consequently,

SM

(
1

4
π + 2lπ,

3

4
π + 2lπ

)
= −

√
2π

0(−ν) eνπ ie4lπ iν . (5.4)

Similar calculations for each of the other pairs of sectors yields the complete mon-
odromy data in the form

SM

(
3

4
π + 2lπ,

5

4
π + 2lπ

)
= 0(−ν)√

2π
e−νπ ie−4lπ iν(1 − e−2π iν)

= i

√
2

π
0(−ν)e−(4l+2)π iν sinπν, (5.5)

SM

(
−3

4
π + 2lπ,−1

4
π + 2lπ

)
=

√
2π

0(−ν) e−νπ ie4lπ iν, (5.6)

SM

(
−1

4
π + 2lπ,

1

4
π + 2lπ

)
= −i

√
2

π
0(−ν)e−4lπ iν sinπν. (5.7)

To obtain (5.7) we need the asymptotics ofD−ν−1, which are that

D−ν−1(iz) ∼


e−π i(ν+1)/2z−ν−1 exp

(
1

4
z2
)
, on argz = −1

4π,

−
√

2π

0(ν + 1)
e−π i(ν+2)/2zν exp

(
− 1

4
z2
)
, on argz = +1

4π.

6. Monodromy Data for (3.1)

Although one might expect the double turning-point case to be more compli-
cated than the simple case (and in some sense it is), yet in the double turning-point
case one can work out the monodromy data quite explicitly, in terms of the co-
efficients of the monodromy equations, even for a general form of equation. It is
this that leads to the wealth of explicit connection formulae given, for example,
in [20]. They are explicit because they are connecting directions where the be-
haviour of the solution of the Painlevé equation leads to a double turning point in
the isomonodromy equations.

In the present section, we show how this monodromy data can be calculated.
To do this, we add to Hypotheses H1–H3 in Theorem 1 the following additional
hypothesis.



The Second Painlevé Transcendent 261

H4. Suppose that in H1 we can expressF̃ in the form

F̃ (η, ξ) = F1(η, ξ)+ ξ−γ F2(η, ξ)

for someγ > 0, whereF1 andF2 are rational in η. Suppose also thatF0 is a
perfect square, so thatF1(η, ξ)/{F 1/2

0 (η)(η − η0)} is rational in η with partial
fraction decomposition

F1(η, ξ)

F
1/2
0 (η)(η − η0)

=
N∑
i=1

Ai

η − si
, with s1 = η0. (6.1)

Finally, suppose that, onCk,k+1 and in a neighbourhood of it,F2/F
1/2
0 is bounded

uniformly inξ.

Remarks.

1. The quantitiesAi, si in general depend onξ, but we suppress that dependence.
We, however, assume that they tend to finite limits as|ξ | → ∞.

2. It is obvious that

A1 = F1(η0, ξ)

F
1/2
0 (η0)

, (6.2a)

and we set

B =
N∑
i=1

Ai. (6.2b)

3. To compute the monodromy data, we need the relation betweenζ andη for large
ξ. This is the content of the next theorem.

Theorem 3.Under Hypothesis H4, and Hypotheses H1–H3 of Theorem 1, for large
ξ andη,

ζ 2 − α2 logζ + 1

4
α2 logF0(η0)+ o(ξ−1)

= 2
∫ η

η0

F
1/2
0 (s)(s − η0)ds − B

ξ
logη + 1

ξ

N∑
i=2

Ai log(η0 − si).

(6.3)

Proof. From the definition ofζ and (3.16), we have

1
4

{
2ζ 2 − 2α2 log(2ζ )+ 2α2 logα − α2 +O(α4ζ−2)

} =
∫ η

η2

F 1/2(s, ξ)ds.

(6.4)
In calculating the right-hand side, we replaceF(η, ξ) by

F̂ (η, ξ) = F0(η)(η − η0)
2 − F1(η, ξ)

ξ
,

i.e., we ignoreF2. This is justifiable because we will find that even theF1 term
contributes only a term of sizeO(ξ−1), which is all that we are interested in. The
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termF2, if we included it, would similarly contribute a term of onlyO(ξ−1−γ ).
Thus ∫ η

η2

F̂ 1/2(s, ξ)ds =
(∫ η∗

η2

+
∫ η

η∗

)
F̂ 1/2(s, ξ)ds = I1 + I2, (6.5)

say, where
η∗ = η0 + T ξ−1/2

andT is a large positive number to be specified more precisely later. InI1 we make
the change

s − η0 = tξ−1/2,

and then

I1 = 1

ξ

∫ T

{F1(η0)/F0(η0)}1/2
{F0(s)t

2 − F1(s)}1/2 dt.

Sinces − η0 = O(ξ−1/2) and we are only concerned with evaluating (6.5) correct
toO(ξ−1), we can safely replaces by η0 in I1 which, on integration using (3.16),
gives

I1 = F
1/2
0 (η0)

4ξ

{
2T 2 − 2F1(η0)

F0(η0)
log(2T )+ F1(η0)

F0(η0)
log

(
F1(η0)

F0(η0)

)
− F1(η0)

F0(η0)

}
+O(ξ−1T −2)+ o(ξ−1).

(6.6)

TakingT = −(F1(η0)/F0(η0))
1/2, we can computeI1 explicitly (with s = η0)

and so conclude from (3.5) that

1

2
iπα2 = F

1/2
0 (η0)

4ξ

[
2iπ

F1(η0)

F0(η0)

]
+ o(ξ−1),

or

α2 = F1(η0)

ξF
1/2
0 (η0)

+ o(ξ−1). (6.7)

Also, by the binomial expansion, the integralI2 in (6.5) is given by

I2 =
∫ η0

η∗
F

1/2
0 (s)(s − η0)

[
1 − F1(s)

2ξF0(s)(s − η0)2

]
ds

+O
(∫ η

η∗

∣∣∣∣∣ F 2
1 (s)ds

ξ2F
3/2
0 (s)(s − η0)3

∣∣∣∣∣
)
.

(6.8)

According to Hypothesis H4,F1 is bounded byF 1/2
0 and so the final term in this

expression is of size

O

(
1

ξ2

∫ η

η∗

|ds|
|F 1/2

0 (s)||s − η0|3

)
= O

(
1

ξ2

1

|η∗ − η0|2
)

= O(ξ−1T −2).
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Using the proposed form forF1(η, ξ) as given by (6.1), we find that the second
term inI2 is equal to

− 1

2ξ

N∑
i=1

∫ η

η∗

Ai

s − si
ds = − B

2ξ
logη +O(η−1ξ−1)+ o(ξ−1)

(6.9a)

+ 1

2ξ
log

N∏
j=2

(η0 − sj )
Aj + F1(η0)

4ξ [F0(η0)]1/2
log

(
T 2

ξ

)
,

whilst the first term may be written as∫ η

η∗
F

1/2
0 (s)(s − η0)ds

(6.9b)

=
∫ η

η0

F
1/2
0 (s)(s − η0)ds − 1

2
F

1/2
0 (η0)T

2ξ−1 + o(ξ−1).

Combining (6.5), (6.6), (6.9a) and (6.9b) yields∫ η

η∗
F 1/2(s)ds = F1(η0)

4ξF 1/2
0 (η0)

{
−2 log 2− logξ + log

(
F1(η0)

F0(η0)
− 1

)}

− B

2ξ
logη +

∫ η

η0

F
1/2
0 (s)(s − η0)ds

+ 1

2ξ
log

N∏
j=2

(η0 − sj )
Aj +O(ξ−1T −2)+ o(ξ−1),

and so, using (6.4) and (6.7) and making a choice ofT large, we see that Theorem
3 is verified.

We have shown that linearly independent solutions of (3.8) areDν(eπ i/4√2ξζ )
andD−ν−1(e−π i/4√2ξζ ) and the asymptotic behaviours of these functions in var-
ious sectors have been noted in (5.1). Using the result of Theorem 3 and recalling
that iξα2 = 2ν + 1, we find that asξ, ζ → ∞,

ζ 1/2e−iξζ2/2
(
eπ i/4

√
2ξζ

)ν
(6.10a)

∼ e−iξF (η)ηiB/2
{

eiξF (η0)ξ ν/2
N∏
j=2

(η0 − sj )
−iAj /2F

(2ν+1)/8
00 2ν/2eiπν/4

}
,

ζ 1/2eiξζ2/2
(
eπ i/4

√
2ξζ

)−ν−1

∼ eiξF (η)η−iB/2
{

e−iξF (η0)ξ−(1+ν)/2
N∏
j=2

(η0 − sj )
iAj /2F

−(2ν+1)/8
00 (6.10b)

2−(1+ν)/2e−iπ(ν+1)/4
}
,
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whereF (η) ≡ ∫ η
0 F

1/2
0 (s)(s − η0)ds andF00 denotes the valueF0(η0). These

relations, together with the Stokes multipliers (5.4)–(5.7) for the parabolic cylinder
function, enable us to write down the complete monodromy data for (3.1). With
z ≡ eπ i/4√2ξζ, the Stokes multipliers relative to the solutions

e−iξF (η)ηiB/2 and eiξF (η)η−iB/2

are

(i) from argz = 1
4π + 2lπ to 3

4π + 2lπ (where e−iξF (η)ηiB/2 is the dominant
solution)

−
√

2π

0(−ν)e
iπ(4l+1)ν−2iξF (η0)ξ−ν−1/2

(6.11a)

×
N∏
j=2

(η0 − sj )
iAj F

−(2ν+1)/4
00 2−ν−1/2e−iπ(2ν+1)/4;

(ii) from argz = 3
4π + 2lπ to 5

4π + 2lπ (eiξF (η)η−iB/2 dominant)

i

√
2

π
0(−ν)e−iπ(4l+2)ν+2iξF (η0)ξ ν+1/2

(6.11b)

×
N∏
j=2

(η0 − sj )
−iAj F

(2ν+1)/4
00 2ν+1/2eiπ(2ν+1)/4 sinπν;

(iii) from argz = −3
4π + 2lπ to −1

4π + 2lπ (e−iξF (η)ηiB/2 dominant)

√
2π

0(−ν)e
iπ(4l−1)ν−2iξF (η0)ξ−ν−1/2

(6.11c)

×
N∏
j=2

(η0 − sj )
iAj F

−(2ν+1)/4
00 2−ν−1/2e−iπ(2ν+1)/4;

(iv) from argz = −1
4π + 2lπ to 1

4π + 2lπ (eiξF (η)η−iB/2 dominant)

−i

√
2

π
0(−ν)e−4iπlν+2iξF (η0)ξ ν+1/2

(6.11d)

×
N∏
j=2

(η0 − sj )
−iAj F

(2ν+1)/4
00 2ν+1/2eiπ(2ν+1)/4 sinπν.

We remark finally that, from Theorem 1 and (6.10), the asymptotic forms ofφ

are

F−1/4e−iξF (η)ηiB/2 and F−1/4eiξF (η)η−iB/2. (6.12)
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7. Application to the Painlev́e Equations

Suppose that equation (3.1) arises after scaling from the monodromy equation
of some Painlev́e equation. (It is our contention that all such monodromy equations
reduce to the form (3.1) with simple or double turning points.) In the preceding
sections we have evaluated the monodromy data with respect to the usual WKB
solutions

F−1/4 exp

{
±iξ

∫ η

η0

F 1/2(t)dt

}
.

(These solutions are given in terms of the variableη but when expressed in terms of
the original variableλ they are the usual WKB forms.) The theory of the Painlevé
equations tells us that the monodromy data are independent ofξ provided that the
λ-sector in which the Stokes multipliers are being calculated remains fixed. Since
ξ, λ, η are inter-related (in the case of (2.2)η = ξ−1/3λ), the condition that the
λ-sector remains fixed means that theη-sector changes withξ, or at least with argξ,
and also the turning pointη0 depends in general onξ. Indeed, it may change from
simple to double as argξ changes. (In the case of (2.2), this is a question of the
behaviour ofM(ξ) as|ξ | → ∞ in a specific direction;M(ξ) → 0 gives double
turning points.)

Thus, the monodromy data depend onξ in various ways, but so long as the
λ-sector remains fixed, these various dependences must cancel. This leads, for
example, to relations betweenM(ξ) andξ for large|ξ |, and so to statements about
the possible asymptotic behaviours of the Painlevé functions, which we will pursue
in later papers.

We now turn to examine the application of our method to the specific case of
PII (1.1) withβ = 0 with the aim of using it to establish Theorem B. The relevant
version of the generic equation (3.1) is

d2φ

dη
= ξ2φ

{
− (4η2 + 1)2 + 8iη

ξ
− i

ξ
(4η2 + 1)

(
η − ir

2q
√
x

)−1

+ 4r2

x2
− 4q2

x
− 4q4

x2
− 2iq2√x

ξ2

(
η − ir

2q
√
x

)−1

+ 3

4ξ2

(
η − ir

2q
√
x

)−2}
,

(7.1)

and this form follows directly from (2.2). If eitherx → +∞ or x → −∞, we
have a double turning pointη0 = ±1

2i, and although we can choose, say,η0 = 1
2i

when we are consideringx → +∞, the turning point that we have to use when
x → −∞ is then fixed. Thus we have

F0(η) = 16
(
η + 1

2i
)2

if η0 = 1
2i, F0(η) = 16

(
η − 1

2i
)2

if η0 = −1
2i.

(7.2)

In view of the behaviours of the solution of PII asx → ±∞ (given by Theorem A
and (1.2)), we will write
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q = x−1/4Q(ξ) = ξ−1/6Q(ξ), (7.3a)

so that

r = dq

dx
= 3

2
ξ1/6

(
Q′(ξ)− 1

6ξ
Q

)
. (7.3b)

With these definitions we assume that there exists a sequenceξn → ∞eiθ with

ir

2q
√
x

= 3

4
i

(
Q′

Q
− 1

6ξ

)
→ l1, (7.4a)

ξ

(
4r2

x2
− 4q4

x2
− 4q2

x

)
≡ 9

[(
Q′)2 − 1

3ξ
QQ′ + Q2

36ξ2

]
− 4Q4

ξ
− 4Q2 → l2.

(7.4b)

(This assumption is certainly justified ifθ = 0, 3
2π, andq is the solution given by

Theorem A. Of course,l1 andl2 depend onθ.) Then, with the notation of Section
6, as|ξn| → ∞,

F1(η, ξn) → 8iη − i(4η2 + 1)

η − l1
+ l2, (7.5)

and, from (3.13) and (6.7), in the limit as|ξn| → ∞,

2ν + 1 − i
F1(η0, ξn)

F
1/2
0 (η0)

→ 0, (7.6a)

so that

ν + 1 → il2
16η0

. (7.6b)

(Recall that we may haveη0 = 1
2i or η0 = −1

2i.) Furthermore,F1/F
1/2 has poles

atη = ±η0 andη = l1 and

F1

F 1/2
= − i(2ν + 1)

η − η0
+ i(2ν + 3)

η + η0
− i

η − l1
, (7.7)

so thats2 = −η0, s3 = l1, A2 = i(2ν + 3), A3 = −i and

B =
3∑

j=1

Aj = i.

We are now in a position to write down the respective monodromy data by
appealing to formulae (6.11). However, rather than expressing the data relative to
the solutions (see (6.12))

φ ∼ F−1/4e−iξF (η)ηiB/2, φ ∼ F−1/4eiξF η)η−iB/2, (7.8)

it is more convenient to use modified reference solutions. We must useψ rather
thanφ (see (2.1)), since it is in terms ofψ andλ that the monodromy data are
independent ofξ. As ψ2 = (η − l1)

1/2φ and sinceB = i, linearly independent
asymptotic solutions forψ2 are
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ψ
(1)
2 ∼ η−1e−iξF (η), ψ

(2)
2 ∼ eiξF (η).

In order that9 should satisfy (1.4), where the matrix has zero trace, we need
the componentψ(1)1 ∼ exp(−iξF ). It is then immediate from (2.1) thatψ(1)2 ∼
1
2q iξ−1/3η−1 exp(−iξF ), and so we choose to establish monodromy data with
respect to

1
2q iξ−1/3η−1e−iξF (η) and eiξF (η),

whence, from (6.11), for argz ≡ arg
(
eiπ/4√2ξζ

) = 1
4π + 2lπ to 3

4π + 2lπ, the
Stokes multiplier is

− i
√

2π

0(−ν)e
(4l+1)iπν−2iξF (η0)ξ−ν−1/2

[
3∏

j=2

(η0 − sj )
iAj

]
(7.9a)

×F−(ν+1/2)/2
00 2−ν−3/2e−iπ(2ν+1)/4qξ−1/3,

whilst for the sector from argz = 3
4π + 2lπ to 5

4π + 2lπ it is√
2

π
0(−ν)e−(4l+2)iπν+2iξF (η0)ξ ν+1/2

 3∏
j=2

(η0 − sj )
−iAj


(7.9b)

×F (ν+1/2)/2
00 2ν+3/2eiπ(2ν+1)/4q−1ξ1/3 sinπν.

8. Monodromy Data asx → +∞
Here we takeη0 = 1

2i, and the Stokes curves throughη0 = 1
2i are given by

Re

{
iξ
∫ η

i/2

(
4σ 2 + 1

)
dσ

}
= Re

[
iξ
(

4
3η

3 + η − 1
3i
)]

= 0,

which are asymptotic to the directions (with argξ = 0) argη = 1
3jπ, for integral

j.We choose the sector bounded by argη = 0 and argη = 1
3π, which corresponds

to theλ-sector 05 argλ 5 1
3π. This λ-sector must then be the same when we

considerx → −∞.

The asymptotics in Theorem A tell us that, asx → +∞,

ir

2q
√
x

→ −1

2
i,

so that, in the notation of Section 7,

l1 = −1
2i, l2 = 0, ν = −1, s2 = −1

2i, s3 = −1
2i, A2 = i,

A3 = −i, B = i.

Also, from (6.10),
F (η0) = 1

3i, F00 = −16.

Thus from (7.9) the Stokes multiplier for the relevantz-sector
(1

4π 5 argz 5 3
4π
)

is given by
SM∞ = −a. (8.1)
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9. Monodromy Data asx → −∞

Sinceη = x−1/2λ and we now have argx = π, the requirement that theλ-sector
be fixed now demands that

−1
2π 5 argη 5 −1

6π. (9.1)

We assert that the relevant turning point must now be−1
2i. For if we suppose for

contradiction that it is still+1
2i, then we note that the Stokes curve from12i to

∞e−iπ/2 passes through−1
2i, since

Re

{
iξ
∫ −i/2

i/2

(
4σ 2 + 1

)
dσ

}
= 0.

(Recall that argξ = 3
2π.) Thus also the Stokes curve associated with−1

2i and the
sector (9.1) must pass through+1

2i, and this is impossible since the real direction
from −1

2i is also a direction for which

Re

{
iξ
∫

−i/2

(
4σ 2 + 1

)
dσ

}
= 0.

(Setσ + 1
2i = τ for small realτ.)

The asymptotics in Theorem A tell us that, asx → −∞,

ir

2q
√
x

∼ −1
2 cot

(2
3 |x|3/2 − 3

4d
2 log |x| + γ

)
,

so that
l1 = −1

2 lim
n→∞

{
cot

(2
3 |xn|3/2 − 3

4d
2 log |xn| + γ

)}
,

where the sequence{xn} (or {ξn}) has to be chosen so that the limit exits. Also

l2 = 4e3π i/2d2, ν = −1 + 1
2id2, s2 = 1

2i,

s3 = l1, A2 = i(2ν + 3), A3 = −i,

F (η0) = −1
3i, F00 = −16.

Note also that since, from Theorem 3, argζ = 3
2 argη for large|η|, and since

argz = 1
4π + 1

2 argξ + argζ

= 1
4π + 3

4 argx + 3
2 argη

= 1
4π + 3

2 argλ,

we see that keeping theλ-sector fixed also fixes thez-sector and so we have that the
relevantz-sector is again14π 5 argz 5 3

4π. Thus from (7.9) the Stokes multiplier
is



The Second Painlevé Transcendent 269

i
√

2π

0(1 − 1
2id2)

eπd
2/2e−2ξ/3ξ (1−id2)/2(−i)−(2ν+3)

(
−1

2
i − l1

)
× (−16)(1−id2)/4 2−(1+id2)/2eiπ/4+πd2/4qξ−1/3.

(9.2)

Since

1
2i + l1 = −1

2 lim
n→∞

{
exp

{− i
(2

3|ξn| − 1
2d

2 log |ξn| + γ
)}

sin
(2

3|ξn| − 1
2d

2 log |ξn| + γ
) }

we see that (9.2) reduces to

SM−∞ = 2
√
π

d0(−1
2id2)

e−π i/4e−iγ 2−3id2/2e−πd2/4. (9.3)

Since the Stokes multiplier must be independent of thex-direction, comparison of
(8.1) and (9.3) gives (1.3) and proves Theorem B.
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mula via a Riemann-Hilbert problem and other results.J. Diff. Eqns.68 (1987) 344–
372.

33. J.W. Miles,On the second Painlev´e transcendent.Proc. R. Soc. Lond. A361(1978)
277–291.

34. V.Yu. Novokshenov, The Boutroux ansatz for the second Painlevé equation in
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