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Abstract

In this paper we study the convergence of weak solutions of the Navier-Stokes
equations in some particular domains, with different horizontal and vertical vis-
cosities, when they go to zero with different speeds. The difficulty here comes from
the Dirichlet boundary conditions. Precisely we show that if the ratio of the vertical
viscosity to the horizontal viscosity also goes to zero, then the solutions converge
to the solution of the Euler system. We study the same limit for rotating fluids with
Rossby number also going to zero.

1. Introduction

The zero-viscosity limit for the Navier-Stokes equations for incompressible
fluids in a bounded domain, with Dirichlet boundary conditions, is a challenging
problem due to the formation of a boundary layer satisfying the Prandtl equations,
which seem to be ill-posed. The case of the whole space was treated by several
authors; we can refer, for instance, $ovanNn [13] and KaTo [7].

In another work,KaTo [6] gives some equivalent formulations of this problem
in the case of bounded domains, showing that the convergence to the Euler system s
equivalent to the fact that thie? strength of the boundary layer goes to 0. Recently,
CAFLISCH & SAMMARTINO [3] solved the problem for analytic solutions on a
half space by solving the Prandtl equations.

In this paper, we show without using the Prandtl equations, and in some particu-
lar domains such as the half-space, that if the ratio of vertical viscosity to horizontal
velocity also goes to zero, then all the weak solutions of the Navier-Stokes equa-
tions converge to the expected limit, namely, the solution of the Euler system. In
general, the anisotropy of the viscosity coefficients is not natural. However, this
is a classical situation in geophysical fluids. In fact, instead of putting the classi-
cal viscosity—v Ay , . of the fluid in the equations, meteorologists often model



376 N. MASMOUDI

turbulent diffusion by using a viscosity of the formAp A, , — AVBZZZ, where
Ay and Ay are empirical constants, and whet¢ is usually much smaller than
Apg (for instance, in the oceamy ranges from 1 to ﬂ)cmz/sec whereast y
ranges from 19to 10° cm?/sec. We recall that the viscosity of the water is of order
102 cnm?/sec). We refer to the book dPEDLOVSKY [12, Chapter 4], for a more
complete discussion.

In the second part we show that weak solutions of the Navier-Stokes equations
with a large Coriolis term converge to the Euler system with a damping term as
the Rossby number and the horizontal and vertical viscosities go to zero, by using
the Ekman layer [4] in the case of appropriate initial data. The case of general
initial data, possibly depending an will be investigated in a forthcoming paper.
This system was studied b§RENIER & MAsMoUDI [5] in the case of constant
horizontal viscosity. The energy estimates here are different from those of [5] since
|Vxyu| is no longer bounded here. We refer to the introduction of that paper for a
physical discussion of this model.

1.1. Statement of Theorems

1.1.1. The Euler Limit of the Navier-Stokes Equations

We consider the system of equations

du™ + V@ @u") —voZu — A = =Vp+ F" in Q, (1)

V-u =0 inQ, )
u™ =0 in JgQ, (3)
u™ () =uly’ with V.ul" =0 (4)

whereQ = w x [0, k], or @ = » x [0, o[, andw = T?, or [R?, A, , denotes
the two-dimensional Laplace operator in the variablesdy, F7" is an exterior
force which converges t6° in L1(0, T, L2(2)3), whereT < oo, andug” is a
divergence-free initial condition converging stronglylif(€2) to a functionug, as
n,v gotoO.

Let us recall a result concerning the Euler systerfein

8tw+V(w®w)=—Vp+FO in ,
V.-w=0 in ,
(%)
w-n==2w3=0 o0no,
w(t = 0) = wl.

It is known that ifs is given,s > 3, and

wle H'(Q)3, v-wl=0 w®-n=0o0ndQ,

FO e LY0, T; H* ()%,
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then there exist™*, and a unique solution of (5), defined on f0*] and satisfying
w e L0, T*; H*(Q)%).
We refer to [1] and [15] for a proof of this classical result.

Theorem 1.1. Let u”¥(0) converge inL2(Q) to w®, F" converge inL1(0, T,
L?(2)) to F°, andv/n converge td. Then, there exist global weak solutiaris”
of (1)—(4)such that

u™ —w — 0 in L®O, T*, L)),

Ve ™, Jdu™’ — 0 in L20, T*, L()).

1.1.2. Rotating Fluids

We consider this system of equations

&,v, &,v, &,v, 2. &0, &,v,
opu " + Vs @ut"y —vafut T — nAy yut

LA W o e ©
P £

VouttT =0 in Q, @)

u®”"=0 onaQ, (8)

uSV(0) = ug""  with V- ug"" =0, ©)

whereQ = T2 x [0, h] andez is the unit vertical vector. In the sequel we omit the
parameters, v, n if no ambiguity can occur.

These equations describe the evolution of an incompressible three-dimensional
fluid in a rotating frameg~lez x u®"-" being the Coriolis force created by the
rotation at high frequency 1.

We assume that®"-"(0) converges in.2($2) to w?, wherew® € H*, s > 2,

w§ = 0, [w® = 0, andw?® does not depend on and thatF*"" converges in
LY, T, L)) to FO, where FO ¢ L%(0, T, H*), F§ = 0, and F° does not
depend orz. We also assume thatv,  go to zero.

By assumption, the initial data do not depend;ofihis is linked to the Taylor-
Proudman theorem [14] which says thkatx u is a gradient if and only if: is
independent of.

Let us recall a result concerning the Euler system with a damping term in the
two-dimensional cases(= T?):

dws + V(W @ w) + Jfe 2w = —Vp + FO,
V- ws’ =0, (10)
w®’(r = 0) = wP.

If s is given,s > 2, and
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w®e H(T??, v.uw’=0, /wo =0,
FOe LY, T; H*(T??),
then there exists a unique strong solutioof (10) such that
we L®0,T; H(T??) forany T’ < T,
w e L®(0, T; H*(T??) if T < oo.
This can be proved by using the classical results of [8, 11]. We only notice that

sincedv/a#w” is a damping term, the bounds we getwmre uniform ing, v.
We use|w|r~ (0,77, 1) to denote this bound.

Theorem 1.2. Letu® " (0) strongly converge if.%(2) to w®, and F&" strongly
converge inL1(0, T, L2(2)) to FO. Then there exist global weak solutions”"
of (6)—(9), and a constant C(h), such that if

n > C(h)e|lw|?x,

then
utV — w0 in L2, T, LARQ)),

Ve &V S0t — 0 in L2(0, T, L3(R)),
foranyT’ < T.

1.2. Preliminary Results and Definitions

Let us denote by ? the subspace of2($2)° consisting of divergence-free
vectors (divu = 0) that are tangent t8Q2 so thatu3(0) = 0, andug(h) = O if
Q = w x [0, h]. Form = 0 we also set

vt =H"(Q)*NVO={ue H" ()3 divu=0,u-n=0 on Q).

Let = be the orthogonal projection @ (2)2 onto V0. We recall that” is also
a linear continuous operator frofi” ($2)2 into itself; hence

|| gm = Clul|pm.
We use some classical results concerning the Sobolev spe¢®s ), namely,
if s > 1d,t € R, then
lulpee = Clulps, |uvlge = Clulps|vlge,

whereu € HS, andv € H'.
We also need a trace theorem: fos %

|“\3§2|Ht71/2(39) = Clulgr.

We recall the Hardy-Littlewood inequality

1 Z
’—/ f(t)dt
ZJo

= C|f|L2(R+);
L2(R*)
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we refer for instance to [9] for a proof of these two classical results. Finally we
show a lemma of Gronwall’s type.

Lemma 1.1. Lete > O and leta, b, c be nonnegative functions it (0, T') satis-

fying
T
/ a(t)dt < C,
0

T T
/ b(t)dt < Ca, / c(t)dt < Ca?.
0 0
If a nonnegative functiorf satisfies
W(fAHZatfP+b)f+c@), fO) = Ca,

then| f ()| £ Ma, for all t = 0, whereM depends only oq'.

Proof. We have

by g = oy < 20 p2 D02
o o o
Hence denoting
a=a @ c=c+b®a,
o

we have

T T
/ atydt < C’, / ctydt < C'a? 3,(f3) <aw) f2+¢@).
0 0

The standard Gronwall Lemma implies that

t t
|f2<r>|§exp( / a(s)ds) [f2(0)+ / 5(s>ds};
0 0

If(O] = Ma.

hence

Notice that this bound does not depend BnThis concludes the proof of the
lemma. O

2. The Euler Limits of the Navier-Stokes equations

If we try to use energy estimates to show th&at — w remains small, we see
that the integrations by parts introduce terms that we cannot control :gitice w
does not vanish at the boundary.
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2.1. Construction of the Boundary Layer

We construct a boundary layer which allows us to recover the Dirichlet boundary
conditions. Therefore 2 is a corrector with smalL.2 norm, localized nead <.
We assume tha& = w x [0, oo[, and construct the boundary layer neat 0. In
the case2 = w x [0, k], the construction is the same neae= h. So0.% has to
satisfy
PBiz=04+wiz=0=0, .Aiz=o00)=0. (11)

Usually, boundary layers are due to two or many terms of the same order. Here, we
add an extra term to obtain a simple expression. This is not a problem because the
boundary layer has a vanishiig norm.

1

— 327t = 5.7;;1, PBlz=0=-wiz=0, Bz=00)=0 (12

whereé is a parameter that will be chosen later on. Obviously, we have
5’11 = —wl(O)e_z/‘/%, ﬁ’zl = —wz(O)e_z/‘/gT’. (13)
In order to respect the divergence-free condition, we must%@dso that
0. Bk = — (0. B} + 0,.727).

Hence, we havez.%’a,l = 8Zw3(0)efz/*/%. Integrating this, and using the condition
A3z = 00) = 0, we obtain

.%’31(1) = \/Q_UBng(O)e_Z/m.

Then, we see tha%’:,,l does not satisfy the correct boundary conditionp at 0.
All this suggests takingZ’ of the form

Sy = —wr(O (2/v0v),
Sy =~z 00 (2/6v), (14)
T = —Ovaws0)y (z/«/%)

where¢ andy are smooth and satisfy

v =9,
0 =1 () =0, (15)
o) =v(z)=0 for z> 1

In conclusion, notice tha? is a linear combination af1 (0), w2(0), 3, w3(0) and
can be written as

HB(2) = MDA, X, y)
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whereA = (w1(0), w2(0), 3, w3(0)), and._7 is a (3,3)-matrix. Notice thatZ is
composed of two blocks, namelyf a (2,2)-matrix andn a (1,1)-matrix and that
we have

[ #6(2)| 2 = CY VOV, Im(2)| e = CVOv,

20:M(2)|,2 £ Cy/ VOV,  [9:M(2)],2 < C/\/Vov,
220: M (2)| 1= < CVov.

In fact, m satisfies a better estimate, namely(z)|,2 = C~/6vv/ /0y, but

we do not use this refinement since we want to use the same proof for the case of
rotating fluids.

2.2. Energy Estimates

We now state a theorem more precise than Theorem 1.1. We recall'thé)
converges inL?() to w®, and F" converges inL1(0, T, L(2)) to FO, with
w® e Vs andFO e LY(0, T, HY).

Theorem 2.1. Let
™" (0) — w02 £ CA(. v),

|F? — Fl a7 12y < CB™, V)

with 8(n, v) = +/n + /v/n, and converging t®. Then there exist global weak
solutionsu™" of (1)— (4)satisfying

™" — w01+ 12(0)) = C(TF, w)B,

w2 w2 2
77|Vx,yun vlLZ(O’T*’LZ(Q)) + V|8z”n U|L2(0’T*’L2(Q)) g C(T*a w)IB ’

whereT* < T andw is the strong solution of the Euler systéhin L>°(0, T*, H*).

Proof. We prove Theorem 2.1, wheé = w x [0, oo[. The case of2 = w x [0, k]
can be handled similarly by considering a second boundary layet nedr.

For anyn, v the existence of a weak solution of (1) — (4) can be shown by using
the Galerkin method. We refer here to [8] and to [16]. We find a sequefite
of smooth approximate solutions that converges weakly'tvin L>(0, T, L?)
and inL2(0, T, HY). Let v’ = u"" — w™’ — .72, where.Z is the boundary
layer constructed in the last section. Replaaifig by w™" +v"" 4+.7in (1) and
subtracting (5) yields

0778 + hv+uNVv+w VAR + RBNAB+vV.B+. B NVNw+vVw
— NAx B —NAx v — nA; yw — UBZZ.Z’ - vazzv — vazzw (16)

=-Vq' +F —F°.
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We take the scalar product of (16) withyields to get

%31/|U|2+/n|Vx,yv|2+v/|azv|2
:_/3t<%’v—/u-Vvv—/w~V.%’v—f.*/fj’.V.%’v

17)
—fv~V.7j’v—/.%’-va—/v~va+n/Ax,ye%v
~|—an”va+v/83.73’v~|—v/83wv+f(F— FOy
where we use the fact th#tVg'v = — [ ¢'V.v = 0. (In fact, we should carry out

all these computations on the approximate sequefiéeand then take the limit.)
In the sequel, we denote the first and second componentsaspectively by,
and Vs, and those of#’ by By andB», and so on.

We now have to bound each of the twelve terms of the right-hand side of (17).
In the sequelC denotes any constant depending onlyxgmandc denotes a small
constant which will be chosen later.

1) First of all, we notice that
3.7 = M)A,
and sinceh,w = Z(—w - Vw + F°), we have
18ew| gs-1 £ C) (1w - Vwl o1 + |FO| 1) £ Clw(Fy + C|F| s

Hence we have

‘/ 3;.%’1}

< [0/ 7| 2|v] 12

< /0@ 210 Al z o2
< CY VOV Idw O lvl 2

é CV BY% 0U|8tw|Hs—l|U|L2
< CYNVOV(w % + | FO 1) vl 2

sinces — 1> 3.

2) Here, we write as usual

/(u~Vv)-v:/u,~8,-(%vj2) :—/(Ehui)% Z=0.

3) We split this term into two parts. On one hand,
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SAW - 0y, Bl 2lv] 12

‘/ W - 0y . Bv
= |WlLe]#6(2)| 2| Ve y Al 2 [V] 2

< \/\/GU|W|%I§|U|L2

since|Vy yAl,; 2| = |[w(0)|,2 < |w|gs. (We recall here tha denotes the first
and the second componentswof) On the other hand,

1
/wgaz./}"v =// w30;. A
o J0

since.Z(z) vanishes for > 1. Also

‘/ w30, . B

w3 7
< =128 72 2o V]2

< |azw3|L°°|Z8z'—//g|L2|A|L§)|U|L2

S Clwlgsy VOV[w(O)| galvl 2

< CVVOvIwlZsv] ;2
since|Al 2 < Vi yw(0)] 2 + [wl 2 < [w(0)] .
4) We split the integral into two parts:
//) -V.2Bv = f B -V, Bv+ / b9, Pv
§ |B . V.@|L2|U|L2 + |b . 8Z.%)|L2|U|L2.
The first term is treated as the third term (see 3) above:

|B- V.22l 2 S [w(0)] 1 |dr,y 21 2] 2

< C\/v9v|w|§s|v|Lz.

The second one is very easily treated:

13| 210l 2 < Il el Aloo |02 22 L2y | Al 2 [0l 2

< CVov|wlgs

1
lwlgs|v|p2
VA0V

< VOV w2 v 2

since|d;w(0)|r, |Al2 < [wlgs.
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5) We deal here with the “worst” term:

/U-V.Z’v =/V-Vx’yBV—f-/V-Vx,ybv3+/.v381.’/5?v

=L+ D+ Iz
We first observe that
|I1] £ 2|V [3,|Vy y Bl

2
< Jw(0)]yau 012,

2
C é |U)|HS|U|L2,

wherer =5 — 3.
Integrating the second term by parts, we find that

[I2| = | — /(axvl + 0yv2)bvz + v1b0y V3 + Vv2bOy V3|
< |Vx,yU|L2|b|L°°|U|L2

< Vv Il Vil 2I0] 2

c
2 2 2
< V| Ve o7, + ?lwIHslvle,

/ /vgBZBV
x,y J0

Here, we use the fact thatvanishes at = 0, and thusz is small whered, B is
large. We sef?’ = w x [0, 1].

1 1
%
/ /U3aZBVdZ=/ /EzzazB—dz
x,y J0O x,y J0 Z Z

2
< |vs/zlp2q)|2°0: Bl [v/zl L2

while

L=I3+ 13, |3 =

< Cl0:v3l 12220 M | Lo | Al Lo |0:0] L2y
< Cl9;v3]12(q) VOVIW(0)|Lo]d;v] 20
S CVOv|wlpe|Vy yvlp2|0;v] ;2

COlw|?
#wazvﬁz_
cn

[IA

C77|Vx,yv|i2 +

Next, we have

2
1131 = ‘/ v30;bv3| = Clwlps|v]7.
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6) This term is handled like the third and fourth terms:

/.%’-va S [ 22| Vi ywlre|vl 2

< VOV w|sv] 2.

7) As for the sixth term, we have

‘/vova

8) Integrating by parts, we find that

n ’/ Ay y SV

2
< [Vl ol

2
< wlgs vl

cn 2 n 12
S — |V v% + —|Vy . 78
= 2| X,y |L2 2C| X,y |L2

cn C
< S IVeyvlfe + —nvoviwly..

9) Similarly, we have

/Ax’ywv

cn 2 n 2
n = ?|vx,yU|L2+§|vx,yw|L2

n 2 9 2
< S Vayvlfa + —nlwlfs.
10) Integrating by parts once more, we obtain

/ 822.%’1)

Vv

v ,, cv
< o 1071 + S 10017,

A

cv
5 10:0Z2 + Cvloz 217,14

A

cv 2
2 javiZ, + Cv

L e
— W s
/—9 H

v
cv P cC /v 5
7|8ZU|L2+;\/;|U)|HS'

A

11) Similarly, we obtain

/8zzwv

V 2 cv 2
i, + oo,

A

Vv

cv 2 C 2
?|3zU|L2+;V|w|H:-

385
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12) Using the Cauchy-Schwarz inequality, we have

/(F”” — FO < |F™ — FO 2 |v],2.

Adding up the estimates for the twelve terms yields
30,1012, + 0| Ve yvl25 + v]0:0[%,

< c(n+v0)| Ve 0|2,

0lw|? 2 A
o Ndvlgz +C 0+, /2 ) wl (18)

+ Clwlps|olZ, + (C Vo (1wl + lwiF)

+v(c+

+|F7Y — FO|L2)|U|L2.

Until now, we only assumed that v, & < 1. In the sequel we assume thak 7,
andv < 6. Takingc small enough we can absorb the, ,v|2, and|d,v|?, of the
right-hand side into the left-hand side, provided that

6 < Chy—1—. (19)
|w] oo

We can suppose that (19) holds becafids a free parameter. In fact, we take
0 = C(h)n/|w|?~. We notice then that (18) leads to

3010132 < a®vlZ, + b()v] 12 + c()
with

a(t) = Clwlgs,
bty = Cy VoV (jwlus +1wlde) + [F™ = Fz,

v
ct)=C (n + \/%|w|§,s> lw|%s.

The conditions of Lemma 1.1 are then satisfied, with

a:ﬁzcm—i—\/?.
n

|U"U|Lw(o,r/,L2) < MB,

whereM is a constant that depends only brand|w|=o,7’, 1), While the esti-

mates on7? yield
|'%)|L°°(O,T’,L2) § C\/ vV 91) é Cﬂ,

This yields
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whence
|MU'U - w|Loo(0’T/’L2) § C(T/, 'LU)ﬂ
We also have

2 2 2
NV, yvl72 +v[0:0]72 < Mg

and since
Ve B35, IVw|?, S K,
1 v
V[0, 212, < Kv x =K /-,
Z L2 ,_9\} 7]
we find that
w2 2 2
7)|Vx,yun V|L2(O,T/,L2(Q)) + v|azu|L2(O,T’,L2(Q)) § C(T/’ w)ﬂ .

Then, if we assume that— 0 and thav/n — 0, we easily conclude the proof
of the theorem.

Remarksl) There is no need to take subsequences because we do not use com-
pactness results here: We start with a solution of the limit system and construct an
approximate solution, and then prove that there is a solution near this approximate
solution.

2) Notice that the theorem does not give any information about the “real” boundary
layer. Therefore it gives us more information ab@tt than the simple convergence
to w in the L2 norm, namely,

NV 25 + v[ou™" |2, < M'B2 (20)

This shows that there is no energy dissipatioinin [6], whenn = v, and for
general bounded domaind{aTo shows that the absence of dissipatioriris
equivalent to the absence of dissipation in the boundary strip of widtAnd also
equivalent to the convergence ©f¥ to the solution of the Euler equation. The
proof of KaTo can be extended to the case whem@ndv are different.

3)If B = /n+/v/n, andv/n® is bounded, then (20) yields that, ,u™’ is
bounded inL> (0, 77, L?).

4) The theorem can be extended to the case of dimedsiwhered = 2, by taking

s > %(d + 2), which allows us to have the existence for the Euler system and to
bound|A|.~ by the H* norm ofw. Moreover, when! = 2, the Euler system has

a global solution and the convergence is then global and uniform on any compact
time interval.
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3. Rotating Fluids

As in the second section, we now prove a theorem more precise than Theorem
1.2. We recall that:®""(0) converges inL2(Q) to w®, and F&"" converges in
LY, T, L?%(Q)) to FO, wherew® € H*, s > 2,w§ = 0, [ w® = 0, andw? does
not depend on. We also suppose that’ € L2(0, T, H*), F{ = 0 andF° does
not depend on.

Theorem 3.1. Let
|t 1(0) — w2 < CB,

|F€v — FO|L1(0,T,L2(Q)) § Cﬂ

B = Cy/n++ev.

Then there exist global weak solutiom®" of (6)—(9)and a constant (k) such
that if

where

n
> Ch)|w|?w,
then

[ — w2 S C(t, w)B,

2 2 2
n|vxyM8W]|L2 + v|azu51"l|L2 < Ct,w)p”.

Remarksl) The case wherg = v isvalid if ¢ < C(h)|w|%oon. In fact this is the
case of a rotating fluid in a container.

2) Here, we have a global convergence in time since the two-dimensional Euler
system has global existence @0, T, H*), s > 2. Therefore we do not have
uniform convergence on [@o[, since theH* norm of w can grow very fast
with 7.

3) Notice that the condition
Ui
- > C()|w|?

says that the product of the regularizing terms, namely, the horizontal viscosity and
the Coriolis term has to be great enough.

3.1. Construction of the Boundary Layer

We can derive the limit equation and the form of the boundary layer by using
a formal asymptotic expansion. We refer to [5], and to the bookPabrovsky
[12] for this formal expansion. In this section we only construct a boundary layer
which allows us to recover the Dirichlet boundary conditions and to balance the
damping term in the limit equation.

The boundary layer7 is the sum of four terms#1, ..., .%*. First of all
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w1 + Wy
= W2 + Wy
Jev eurl(w)G(z)
where
- _ 0 . 0
w1 = —e 0//2 (U)]_ COS<72> + wz SIn (—2>> s

Wy = _6—9/«/2 (wz COS(

Sl

)l )
e—0/V2

b1 () e 2)
with § = z//ev and

Wy = —e /Y2 (wl cos(%) + wysin (%)) ,
by = —e M2 (wz cos(%) — wySin (%)) ,

L e MV2 5 5 ) A
w3 = T( w2 — dyw1) (sm (E) + cos<72>>

with A = (h — z)/4/ev, and where

/ . T / . h —Z TT
G — | _p—2/V2ev sin <L + _> + h—z/~/2ev sin <_ + _>:| X
@ [ ¢ \/E 4 ¢ \/E 4

In fact, w satisfies the equations of the boundary layer near0 at the leading
order, namely,

V21 = —1/ewp,

V321, = +1/ein,
W1(z =0) = —wy, iMoo @1 =0,
Wo(z=0) = —wp, liM,oiip=0

and satisfies the same equation neas 4. The third component of#* allows
us to satisfy the divergence-free condition.

Next, we add#? to recover at the ordeyzv the appropriate boundary condition
for the third component, sina8(0) = —G(h) ~ —+/2/2,
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€V ‘/Téwz
B = —JEv Y2y

Jev curl(w) (1 — &)

Notice here that we cannot use the same trick as in the construction of the last
section, since the boundary layer has to satisfy a precise equation.
Now, the boundary values oB! + .72 + w® atz = 0 andz = h are

h h
T V2w _h oy T2 sin( V2
wie COS(\/E) woe v Sln(m) + Jev w2
_ b __h_
woe V2o COS(—%U) + wie Vv Sln(—%v) — Jev #wl
__h
+./ev curl(w)e vaev sm(% 4 %)

where thet is taken at = 0 and the— atz = A.
To get the appropriate boundary conditiefi + w™" = 0, we add

—wy
T3 = ehIN2Y COS(—h )| —w2
2ev 0
which is exponentially small, and
wo 0
Br=f)| —wi | +2@ 0
0 curl(w)

with f(z) + g’(z) = 0 and the boundary conditions

fO) = fh) = Jeu32 + e hVE sin(Lo),
=—g(h) = — —h/N2sv gip(_h_ 4 7
g(0) =—g(h)=—Jfeve 2 sm(\/ﬁq-ﬁ).
We can take, for instance,

f(Z) = Cl(e_z/m —+ e_h_Z/\/E) + b,
80 = Vv e VB Sin (s 4 5) — o S s

2¢ev

wherea andb satisfya < C(h)+/ev, andb < C(h)sv. We refer to [5] for a proof
of this choice.

In the sequel, we denote the first and second componen# by B1, B> and
the third one by, and we denote the first and second componentgbby . %,
Sy Let B = B+ B+ %+ B
We have

div.#2 =0, and .Z+w"” =0 on Q.

We notice here that the boundary layét satisfies an equation of the form

‘% = '/é(Z)A(ta -xa y)a
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where. 74 is a(3 x 3)-matrix andA = (w1, wp, curl(w)). We notice thatZ is
formed by two blocksM a (2 x 2)-matrix andm a (1 x 1)-matrix and that

@)z £ C\Vev,  Im@= < Ce,

20: M@z £ CyVev,  120:M @)z £ C/y e,

IZzazM(z)ILgo < C/ev.
These are the only estimates we used in our computations of the first part.

3.2. The Energy Estimates

Proof of Theorem 3.1.The existence of the weak solutions can be proved by using
the Galerkin method as in the last part. Let

vsvn — ue,v,n _ wsv — B
Replacing:®*" by w + v®V7 + .77 in (6) and subtracting (10), we get
4B +v+u-Vo+w-VAB+.5 - VAB+v- VB +.B - Vw+v-Vuw

— NAx B = NAx v — A yw — vaﬁ.%’ — vafv (22)

N 2
L X +eaxv_\/§£w:_vq/+F_Fo
& & e h

where we used the fact thatdoes not depend an
Taking the scalar product of (21) with and integrating by parts we obtain

%a,/|v|2+nf|vx,yv|2+v/|azv|2

:—/81,%’v—/u~Vvv—/w-V.%‘v—/.%~V.%’v
(22)
—fv-V.Z’v—f,%’-va—/v-va+anx,y.%?v

+anx,ywu+/Lv+/(F—F°)v

where
e3 x 7B V2
-+, ——w

L = uaf.,%’ ;
e e

and where we use the equalitieg x v)v = 0and/ Vq'v = — [ ¢'V-v = 0. (All
these computations should be done for the approximate sequgriceand then
the limit should be taken.)

We must now bound the eleven terms of the right-hand side of (22). The nine
first terms and the eleventh are treated exactly as in the first part, by repfazjng
¢. We no longer assume tha#?(z) = 0 for z > 1, but this is not a problem and
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we replace thg‘ol by é’/z for the boundary layer near= 0 and byfhh/2 for the

boundary layer near= h. We also notice that is no longer a free parameter since

0 = ¢, and that sincev does not depend a) we need not use trace theorems to
control the boundary layer by. Hence we have é-dimensional gain, and only

need that > 2 for the energy estimates, which is the condition imposed by the
existence theorem of the Euler equation in the two-dimensional case. The only term
that needs a specific treatment is the tenth. In fact, here we need the exact value of
the boundary layer.

10) The expression for the boundary layer yields

e3 X Bl

I)BZZB1 — =0,

&

B? 2
&

Z
2B =o0.
We recall here that? = .21 4+ .42 +.%° +.2% and that
By Bi
B=| B, 7 =| B
b b
Now, we must bound the remaining terms:

f vazzbv3

A

U|azb|L2|azv3|L2

A

2 2
V|Vx,yB|L2 + V|Vx,yv|L2

[IA

V\/— 2 V. 2
- eviw|fys + cv|Vi yulia,

e3 X B3 / cth) _,
— v < ey ——— /Nev , ,
/ . > 81)8\/56 |wlz2, |v|2

'/vBZZB“V‘ < /v|f”<z>| wl V|

(/ leZ/N2V | g=h=2/v/2) |V|dz) lw| dx dy

A

7w,

1/2
v —z/~/2¢ev —h—z/+/2ev\2

— [ g7V 1 |>> / V| 2lw]
A/ EV (/ Xy L?

fv
< VJAVev  —lwlpzlvl;e.
&

We recall here thaf = a(e=¥/V2ev 4 ¢=h=2/¥2vy 4 | wherea andb satisfy
a < C(h)/ev, andb < C(h)ev. Finally, we have

A
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x B* Jev orm oo 12
/63 V é ; (/(|e—z/ 2ev +e—h—Z/ 2£U|)2> |w|L2|V|L2

&

+v|w|L2|V|L2

fv
< VA ev | =lwlpz|vl 2.
3

Notice that,/Lw is bounded inL1(0, T, L?), since

v
w2, = —|w|?
Hwlf 2 8| |
Combining the twelve terms yields

1 2 2 2
50 |vl72 + NIV yvl72 +v]0;0]72

< 2 €|w|§.[x 2
< e+ ve)|Vayolfz +v( e+ =I5 Jiocols

) ) (23)
+Cnlwl3, + Clwlaslvl2,

v
+ [c Jev <|w|m +lwi, +\£|w|> +|FE - F°|L2}|U|L2_

Until now, we did not make any assumptionian, . We assume nowthat v, ¢ <
1,v < n,ande < C(h)n/|w|%oo. Taking ¢ small enough we can absorb the
|Vx.yvl2, and|d.v|?, of the right-hand side into the left-hand side.

We notice then that (23) leads to

30,012, < a®)|v]3, + b(®) vl 2 + (1)
with
a(t) = Clwlps,

v
b(t) = Cy/Vev <|w|m +lwlZ, +,/—|w|Lz) +[F™Y — FOpo,
&

c(t) = Cnlw|%s.

The conditions of Lemma (1.1) are then satisfied, with
a=B2=Cyn+Jev.

|U8’U’H|L00(01T’L2) § Mﬂ

This yields

We also have
2 2 2
77|Vx,yU|L2 + V|BZU|L2 < M'B-.
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Since these two estimates also hold.fgt, we get
[ — w2 £ C(t, w)B,

N Vayu™12, +v|0u"2, < C(t, w) 2.

Note added in proofiVe can see easily that both convergence theorems given in this paper
apply for any sequence of solutions satisfying the energy inequality.
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