
Arch. Rational Mech. Anal. 142 (1998) 253–279.c© Springer-Verlag 1998

Axisymmetric Solutions
of the Euler Equations for Polytropic Gases

Tong Zhang & Yuxi Zheng

Communicated byT.-P. Liu

Abstract

We construct rigorously a three-parameter family of self-similar, globally
bounded, and continuous weak solutions in two space dimensions for all positive
time to the Euler equations with axisymmetry for polytropic gases with a quadratic
pressure-density law. We use the axisymmetry and self-similarity assumptions to
reduce the equations to a system of three ordinary differential equations, from which
we obtain detailed structures of solutions besides their existence. These solutions
exhibit familiar structures seen in hurricanes and tornadoes. They all have finite
local energy and vorticity with well-defined initial and boundary values. These so-
lutions include the one-parameter family of explicit solutions reported in a recent
article of ours.

1. Introduction

We are interested in finding some solutions to the initial-value problem for
the two-dimensional Euler equations for compressible fluids. Our approach is to
generalize to two dimensions some of the results on Riemann problems for the one-
dimensional Euler equations for compressible fluids. One natural generalization is
to consider initial data which consist of four constant states, or any finite number
of constant states [10–12]. The well-known configurations of regular and Mach
reflections are special cases of such a generalization. However, no rigorous proofs
of existence of any nontrivial solutions to these problems have been established.

A more complete generalization is to consider initial data which depend only
on the polar angle in the two-dimensional space of positions. This generalization
certainly looks more formidable, if not impossible. However, it now contains a
special three-parameter family of data, namely, the axisymmetric initial data, which
allows us to reduce the initial-value problem of the partial differential equations to
a boundary-value problem for a system of ordinary differential equations. With this



254 T. Zhang & Y. Zheng

simplification we were able to construct in [13] a two-parameter family of solutions
corresponding to pure rotational initial data.

Our main task here is to study rigorously the resulting boundary-value problem
for the non-autonomous system of three ordinary differential equations, in the hope
of rigorously constructing all solutions for the three-parameter data. Singularity
points of the system consist of two-dimensional manifolds in the four-dimensional
phase space. These singularity points correspond to surfaces of characteristics in
physical space-time, where solutions may not be differentiable. A typical global
solution may consist of as many as three nontrivial connecting orbits chained to-
gether continuously. The complete construction of the three-parameter family of
solutions is described in the Conclusions at the end of the paper.

We find that our solutions capture some typical properties of swirling flows such
as hurricanes and tornadoes. For example, there are the eye structure near the center
with low rotational speeds and the wall region with high speeds (see Figure 8.1).
We refer the reader to our paper [13] for calculations of explicit particle trajectories
which clearly exhibit spiral structures.

We mention that our initial data in this paper will be restricted to the set of data
with nonnegative radial velocities (swirling outward), in addition to axisymmetry
and radial symmetry. Shock waves may arise if the initial radial velocities are
allowed to be negative (swirling inward). Also, in this paper we study only the
special case where the pressure is a quadratic function of density. For partial results
on non-quadratic pressure-density cases, we refer the reader to our paper [13] or
article [14]. Rigorous proofs for solutions constructed in [13] and more complete
constructions of the three-parameter family of solutions for non-square pressure-
density cases are forthcoming.

There is a great deal of related work, from which we mention only the most
pertinent. For general existence of weak solutions with axisymmetry for the two-
dimensional Euler equations for compressible fluids outside a core region, we refer
the reader to the recent work ofChen & Glimm [4]. For some explicit solutions
of such Euler equations with spherical symmetry but without swirls, seeCourant
& Friedrichs [3]. For swirling motions of viscous fluids, we refer the reader to
Bellamy-Knights [1]; Colonius, Lele & Moin [2]; Mack [6]; Powell
[8] and Serrin [9].

2. The Problem

We consider the two-dimensional Euler equations for a compressible and poly-
tropic gas:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (2.1)

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

wherep = p(ρ) is a given increasing function ofρ. Global existence of weak
solutions to its initial-value problem is open. Attempts have been made through
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considering special situations such as the diffraction of a planar shock at a wedge
or generalized Riemann problems with four different initial constant states. Here
we consider a situation which involves swirling motions.

We impose axisymmetry to the system. That is, we assume that our solutions
(u, v, ρ) have the property

ρ(t,r,θ) = ρ(t,r,0),(
u(t,r,θ)

v(t,r,θ)

)
=

(
cosθ − sinθ

sinθ cosθ

) (
u(t,r,0)

v(t,r,0)

)
(2.2)

for all t = 0, θ ∈ R andr > 0, where(r, θ) are the polar coordinates of the(x, y)-
plane. With this symmetry, system (2.1) can be reduced for continuous solutions
to

ρt + (ρu)r + ρu

r
= 0,

ut + uur + pr

ρ
− v2

r
= 0, (2.3)

vt + uvr + uv

r
= 0,

whereρ = ρ(t, r, 0), etc. Notice now thatu andv in (2.3) represent the radial and
pure rotational velocities in the flow, respectively.

We limit ourselves to Riemann-type initial data; that is, we require the initial
data to be independent of the radial variabler > 0:

(ρ(0, r, θ), u(0, r, θ), v(0, r, θ)) = (ρ0(θ), u0(θ), v0(θ)). (2.4)

We remark in passing that the initial-value problem of system (2.1) with the type of
data in (2.4) may justly be called the two-dimensional Riemann problem for (2.1).
It degenerates to the classical Riemann problem for the one-dimensional case; it is
simple and yet general enough to contain important waves such as swirling motions
as well as shock and rarefaction waves and slip lines (surfaces).

When the axisymmetry condition (2.2) is imposed onto (2.4), we find that our
data are limited to

u(0,r,θ) = u0 cosθ − v0 sinθ,

v(0,r,θ) = u0 sinθ + v0 cosθ, (2.5)

ρ(0,r,θ) = ρ0,

whereρ0 > 0, (u0, v0) ∈ R
2 are arbitrary constants. Hence our data for system

(2.3) are
ρ(0, r, 0) = ρ0, u(0, r, 0) = u0, v(0, r, 0) = v0. (2.6)

Since the problem (2.3), (2.6) is invariant under self-similar transformations,
we look for self-similar solutions(ρ, u, v) which depend only onξ = r/t . We thus
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have the following boundary-value problem for a system of ordinary differential
equations:

ρr = ρ

r

Θ

∆
, ur = 1

r

Σ

∆
, vr = uv

r(r − u)
, (2.7)

lim
r→+∞(ρ, u, v) = (ρ0, u0, v0) (2.8)

where

∆ ≡ p′(ρ) − (u − r)2,

Θ ≡ v2 − u(r − u),

Σ ≡ (r − u)Θ − u∆ = v2(r − u) − up′(ρ),

andr is used in place ofξ for notational convenience.
We construct global continuous solutions or establish their existence for problem

(2.7), (2.8) for anyρ0 > 0, u0 = 0, v0 ∈ R andp(ρ) = A2ρ
2 whereA2 > 0 is a

constant. We can assume thatv0 = 0 because the casev0 < 0 can be transformed
byv → −v to the casev0 > 0. It can be verified that these solutions are also global
continuous solutions to the original Euler equations.

3. Far-Field Solutions

We show that problem (2.7), (2.8) has a local solution nearr = +∞ for any
datum(ρ0, u0, v0) with ρ0 > 0. Lets = 1/r. Then (2.7), (2.8) can be written as

dρ

ds
= ρ[u(1 − us) − sv2]

s2p′(ρ) − (1 − us)2
,

du

ds
= sup′(ρ) − v2(1 − us)

s2p′(ρ) − (1 − us)2
, (3.1)

dv

ds
= − uv

1 − us
,

(ρ, u, v)|s=0 = (ρ0, u0, v0). (3.2)

Problem (3.1), (3.2) is a classically well-posed problem which has a unique local
solution for any initial datum withρ0 > 0.

We find thatv = 0 and

sv2 − u(1 − us) = 0 (3.3)

are invariant surfaces in the four-dimensional(ρ, u, v, s) space. It can be verified
that

d

ds
[sv2 − u(1 − us)] = (1 − 3su)sp′ + u(1 − su)2

(1 − su)[s2p′ − (1 − su)2]
[sv2 − u(1 − us)].
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Explicit Solutions.In the special caseu0 = 0, we find from the invariant surface
(3.3) a set of explicit solutions nearr = +∞:

ρ = ρ0, u = v2
0

r
, v = v0

r

√
r2 − v2

0, r = r∗ (3.4)

where

r∗ ≡ 1

2

(√
p′(ρ0) + 4v2

0 +
√

p′(ρ0)

)
. (3.5)

The functions in (3.4) are defined forr = v0, but we cannot use them up tov0
with absolute certainty since (3.1) has a singularity at the pointr = r∗ on the curve
(3.4). In fact, we find that the positionr, the radial velocityu, and the sound speed√

p′(ρ) at r∗ along (3.4) have the relation

r∗ = u(r∗) +
√

p′(ρ0),

which is to say thatr∗ is the radial characteristic speed; that is, the distance that a
small disturbance generated from the origin at time zero can travel radially in time
t = 1.

4. Intermediate Field Equations

We can simplify system (3.1) by assuming the relation

p(ρ) = A2ρ
γ (4.1)

for someA2 > 0 andγ > 1, and introducing the variables

I = su, J = sv, K = s
√

p′(ρ). (4.2)

Then system (3.1) can be put into the form

s
dI

ds
= 2IK2 − (1 − I )[J 2 + I (1 − I )]

K2 − (1 − I )2
,

s
dJ

ds
= J

1 − 2I

1 − I
, (4.3)

s
dK

ds
= K

2

2K2 − 2(1 − I )2 − (γ − 1)[J 2 − I (1 − I )]

K2 − (1 − I )2
.

Corresponding to the initial data (3.2), we look for solutions of (4.3) with the initial
condition

(I, J, K) ∼ s(u0, v0,
√

p′(ρ0)) (4.4)

ass → 0+. We note that (4.3) is now autonomous forI, J, K with respect to the
new variables′ = ln s.

The invariant surfaces of (4.3) are the surfaceJ = 0, the surfaceK = 0, and
the surface

H ≡ J 2 − I (1 − I ) = 0 (4.5)



258 T. Zhang & Y. Zheng

since

s
d

ds
H = (1 − 2I )[2K2 − 3(1 − I )2]

(1 − I )[K2 − (1 − I )2]
H.

Scaling Symmetry. System (4.3) is invariant under the coordinate transformation
s → αs for any constantα > 0. In particular, we can takeα = 1/

√
p′(ρ0). Thus

we may assume thatρ0 > 0 is such that
√

p′(ρ0) = 1. Hence the structure of
any solution of problem (4.3), (4.4) depends only on the ratiosu0/

√
p′(ρ0) and

v0/
√

p′(ρ0).

5. Solutions Without Swirls

Let us first determine the distribution of integral curves on the invariant surface
J = 0.

Assume thatv0 = 0. We look for solutions to problem (4.3), (4.4) withJ = 0.
Hence we have a subsystem for(I, K):

s
dI

ds
= I

2K2 − (1 − I )2

K2 − (1 − I )2
, (5.1)

s
dK

ds
= K

K2 − (1 − I )2 + γ−1
2 I (1 − I )

K2 − (1 − I )2
. (5.2)

Introducing a new parameterτ , we can rewrite (5.1), (5.2) as

dI

dτ
= I

[
(1 − I )2 − 2K2

]
, (5.3)

dK

dτ
= K

[
(1 − I )2 − K2 − γ − 1

2
I (1 − I )

]
, (5.4)

ds

dτ
= s

[
(1 − I )2 − K2

]
. (5.5)

Note that (5.3), (5.4) form an autonomous subsystem. Ifu0 also vanishes, then we
have a trivial solutionρ = ρ0, u = v = 0.

Suppose theu0 > 0. It can be verified that our far-field solutions starting at
s = 0+ enter the regionΩ ⊂ R

2 in the(I, K)-phase space given by

Ω :




I > 0, K > 0,

a ≡ (1 − I )2 − K2 − γ − 1

2
I (1 − I ) > 0 in 0 < I 5 1

γ
,

b ≡ (1 − I )2 − 2K2 > 0 in
1

γ
5 I < 1.

See Figure 5.1.
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I

K

K = 1 - I

1

1

0 1/γ

Ω
b = 0

a = 0

Figure 5.1. Phase portrait of solutions without swirls

We show that solutions starting in the closureΩ̄ do not leaveΩ̄ ass increases.
Notice first thats > 0 is an increasing function ofτ in Ω by equation (5.5) so we
show that solutions of the two equations (5.3), (5.4) starting in the closureΩ̄ do
not leaveΩ̄ asτ increases. The stationary points of (5.3),(5.4) inΩ̄ are the points

(I, K) = (0, 0), (0, 1), (1, 0),
(

1
γ
, 1√

2

(
1 − 1

γ

))
. The axisK = 0 in 0 < I < 1,

and the axisI = 0 in 0 < K < 1 are trivial solutions. On the boundaryb = 0, i.e.,

K = 1√
2
(1 − I ),

1

γ
< I < 1, (5.6)

we find that dI
dτ

= 0, dK
dτ

< 0. So solutions enterΩ on (5.6). Finally on the
boundarya = 0, i.e.,

K2 = (1 − I )2 − γ − 1

2
I (1 − I ), 0 < I <

1

γ
, (5.7)

we find thatdI
dτ

< 0, anddK
dτ

= 0. So solutions enterΩ on (5.7) also.
Without showing further details we conclude that some solutions inΩ go to

the point(1, 0), while others go to the point(0, 1), with exactly one integral curve

going to the point
(

1
γ
, 1√

2

(
1 − 1

γ

))
.

To determine what data(u0, ρ0) yield the transitional solution leading to the

stationary point
(

1
γ
, 1√

2

(
1 − 1

γ

))
, we first eliminateτ from (5.3), (5.4) by division

and introduceL ≡ (K/I)2 to find

dL

dI
= −L

(γ − 1)(1 − I ) − 2IL

(1 − I )2 − 2I2L
, 0 < I < 1, (5.8)

L = M−2
0 at I = 0 (5.9)
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Figure 5.2. Estimate of the transitional Mach numberM(γ ) <
√

2
γ−1

where

M0 ≡ u0/
√

p′(ρ0)

denotes the Mach number of the initial states(u0, 0, ρ0). Problem (5.8), (5.9)
is well-posed for anyM0 > 0. The transitional solution goes from the point

(I, L) = (0, M−2
0 ) to

(
1
γ
, 1

2(γ − 1)2
)
. However, there does not seem to be an

explicit formula for the valueM0 which yields the transitional solution. We give
an estimate instead. For convenience we letM(γ ) denote the initial Mach number

for the transitional solution. It can be seen thatM0 =
√

2
γ−1 is an upper bound for

the transitional Mach numberM(γ ). In fact, any solutionL(I) of (5.8), (5.9) with

datumM0 =
√

2
γ−1 starts as a decreasing function ofI = 0 till I = 1

γ
. In the interval

I ∈
[

1
γ
, 1

]
, the solution remains below the two curves on which the numerator

and denominator of the right-hand side of (5.8) vanish, respectively, and therefore
remains decreasing until the final stationary point(I, L) = (1, 0); see Figure 5.2,
whered = 1

2(γ − 1)2, f = M−2(γ ), andN andD are where the numerator and
denominator of the right-hand side of (5.8) respectively vanish.

This transitional solution yields a one-parameter family of smooth solutions in
terms of(r, u, v, ρ). We see from equation (5.5) that lns approaches infinity as the

solutions approach the point(I, K) =
(

1
γ
, 1√

2

(
1 − 1

γ

))
, since(1−I )2−K2 |= 0

at the point. Sos → +∞ and thusr → 0+. Also the solutions have the asymptotics

u(r) = 1

γ
r, p′(ρ)(r) = 1

2

(
1 − 1

γ

)2

r2

as r → 0+. These global transitional solutions are similar; one is sketched in
Figure 5.3.
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Figure 5.3. A zero-swirl transitional solution

We next show that the parameters approaches finite numbers when solutions
of (5.3)–(5.5) approach either the points(I, K) = (1, 0) or (0, 1).

We can linearize the two equations (5.3), (5.4) at(I, K) = (0, 1) to find

dI

dτ
= −I

d(K − 1)

dτ
= −γ + 3

2
I − 2(K − 1).

(5.10)

The eigenvalues of (5.10) areλ1 = −1, λ2 = −2. So solutions of (5.3), (5.4) near
(0, 1) approach(0, 1) exponentially asτ → +∞. From equation (5.5), we find

ln
s

s0
=

∫ τ

τ0

[
(1 − I )2 − K2

]
dτ

for some constantss0 > 0 andτ0. Sos approaches a finite number asτ → ∞ since
(1 − I )2 − K2 approaches zero exponentially.

Linearization at the point(I, K) = (1, 0) of the two equations (5.3), (5.4) yield
the trivial system with zero right-hand sides. We need a different approach. We
show that solutions near(1, 0) enter(1, 0) in the sector bounded byK = 0 and the
line

K = α(1 − I ) (5.11)

for some 0< α < 1√
2
, such thatα2 + γ−3

4 > 0. See Figure 5.4.

In fact, a vector in the normal direction of (5.11) is(α, 1). We calculate the inner
product of the vector field of (5.3), (5.4) with the direction(α, 1) to find

d

dτ
(I, K)·(α, 1) = −α

[
2I

(
α2 + γ − 3

4

)
− (1 − α2)(1 − I )

]
(1−I )2. (5.12)

The expression (5.12) is negative ifI is close to 1 andα is such thatα2 + γ−3
4 > 0.

So we conclude that every solution that ends at(1, 0) is such that

K < α(1 − I ) (5.13)

nearI = 1 for someα < 1√
2
, sinceγ > 1.
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I

K

K = 1 - I

(1, 0)

   K = α(1 − Ι)

b = 0

Figure 5.4. The parameters is finite near(1, 0)

Now we look at the equation (5.1) and use (5.13) to find that

s
dI

ds
> I

1 − 2α2

1 − α2

whenI is close to 1. Thus

s
dI

ds
> a positive constant

whenI is near 1. Therefores is finite at the end(1, 0) sinceI is bounded and the
geometric integral

∫ +∞
1

1
s
ds diverges.

We are now ready to construct global solutions for (5.1), (5.2). For each solution
ending at(I, K) = (0, 1), we continue the solution by the constant state(u, v, ρ) =
(0, 0, ρ∗∗) whereρ∗∗ is the value ofρ at the ending point. These are continuous
extensions. The relation between the densityρ∗∗ and the terminal values∗∗ is

p′(ρ∗∗) = s∗∗−2,

or equivalently
p′(ρ∗∗) = r∗∗2

whenr∗∗ is the radius of the circle of the constant state in the physical planet = 1.
We therefore have constructed global solutions in this case.

For each solution ending at the point(I, K) = (1, 0), we continue the solution
by the vacuum stateρ = 0. We do not need to specify the functionsu or v in the
vacuum since the Euler equations haveρ as a factor in every term. Each vacuum
occupies a circular region of radiusr∗∗ determined byr∗∗ = 1/s∗∗ = u∗∗ in the
physical plane att = 1, whereu∗∗ is the terminal radial velocity of the fluid at
the edge of the vacuum. In all, we have constructed global solutions to the reduced
system (5.1), (5.2), the special case of (4.3), (4.4) with zero swirl.
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6. General Solutions in the Intermediate Field

Now consider the casev0 > 0 andu0 = 0 for system (4.3). LetΩ3 ⊂ R
3 be

the set of points(I, J, K) satisfying 0< I < 1, J > 0, K > 0,

H = J 2 − I (1 − I ) < 0,

B ≡ (1 − I )[J 2 + I (1 − I )] − 2IK2 > 0 if
1

γ
5 I < 1,

A ≡ 2(1 − I )2 + (γ − 1)[J 2 − I (1 − I )] − 2K2 > 0 if 0 < I <
1

γ
.

See Figure 6.1. It can be verified that all far-field solutions withu0 |= 0, v0 >

0, ρ0 > 0 enter the regionΩ3 in s > 0. Far-field solutions withu0 = 0 enter the
sideH = 0 of Ω3. We omit these tedious verifications.

K

A = 0 

H = 0

B = 0 

1/γ

Ω3

I

J

Figure 6.1. The regionΩ3
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We find that it is convenient to introduce a new variableτ , as in Section 5, to
write the system (4.3) in the form

dI

dτ
= (1 − I )B, (6.1)

dJ

dτ
= J (1 − 2I )[(1 − I )2 − K2], (6.2)

dK

dτ
= 1

2
K(1 − I )A, (6.3)

ds

dτ
= s(1 − I )[(1 − I )2 − K2]. (6.4)

This is an autonomous system for(I, J, K, s), and the first three equations (6.1)–
(6.3) form an autonomous subsystem for(I, J, K).

The stationary points of the system (6.1)–(6.3) contained in the closureΩ̄3 are
given by the edge

K = 1 − I, J 2 = I (1 − I ), ∀ I ∈ [0, 1], (6.5)

and the point

(I, J, K) =
(

1

γ
, 0,

1√
2

(
1 − 1

γ

))
(6.6)

in the caseγ |= 2. For the caseγ = 2, the stationary points of (6.1)–(6.3) are given
by edge (6.5) and the curve

I = 1
2, K2 = 1

2

(
J 2 + 1

4

)
, 0 5 J < 1

2, (6.7)

which is the intersection ofA = 0 with B = 0. Hence there is no stationary point
in the open regionΩ3; all the stationary points are on the boundary ofΩ3.

Assertion.Solutions insideΩ3 do not leaveΩ3 from its sides (excluding possibly
edges or corners) as s increases whenγ = 2.

Proof. First note that the sides ofΩ3 in the surfacesK = 0, orJ = 0 or H = 0
are invariant regions. We need only to prove that no solution leavesΩ3 from the
top two adjoining sidesA = 0 andB = 0 whenγ = 2.

Consider first the top side given by

B = I (1 − I )2 + (1 − I )J 2 − 2IK2 = 0 in
1

γ
< I < 1. (6.8)

In the coordinate order(I, J, K) an outward normal is given by

(2K2 − (1 − I )2 + 2I (1 − I ) + J 2, −2(1 − I )J, 4IK) ≡⇀
nB.

We calculate the inner product of the normal
⇀
nB with the tangent vector of an

integral curve of (6.1)–(6.3) on the surface (6.8) to yield

⇀
nB · d

dτ
(I, J, K) = −(1− I )2[(1− I )I −J 2][(γ −2)J 2 + (γ I −1)(1− I )] < 0



The Euler Equations for Polytropic Gases 265

when 1
γ

< I < 1 andγ = 2. Notice thatds
dτ

> 0 in Ω3. Thus no solution leaves
Ω3 from this side ass increases.

Now consider the top side given by

A = 2(1 − I )2 + (γ − 1)[J 2 − I (1 − I )] − 2K2 = 0, 0 < I <
1

γ
.

An outward normal is given by

(4(1 − I ) + (γ − 1)(1 − 2I ), −2(γ − 1)J, 4K) ≡⇀
nA

in the order(I, J, K). We similarly calculate the inner product of the normal
⇀
nA

with the tangent of the integral curves on this surface to yield

⇀
nA · d

dτ
(I, J, K)

= H {[γ + 3 − 2(γ + 1)I ](1 − I )(1 − γ I) + (γ − 1)2J 2(1 − 2I )} < 0

in 0 < I < 1
γ

becauseJ 2 < I (1 − I ) andγ + 3 − 2(γ + 1)I > 0 andγ = 2.
Hence no solution leavesΩ3 from this side either. ut

We need to study the local structure of solutions near stationary points given
in formula (6.5). It is helpful to first describe solutions of (6.1)–(6.4) with data
u0 = 0, v0 > 0, ρ0 > 0. Our far-field solutions (3.4), (3.5) can be written in terms
of I, J, K as

I = s2v2
0,

J = sv0

√
1 − s2v2

0,

K = s
√

p′(ρ0),

(6.9)

valid for s ∈ [0, s∗] wheres∗ = 1/r∗. These solutions are all in the surfaceH = 0,
and they all start from the origin(I, J, K) = (0, 0, 0) and end at points of the
stationary edge given by (6.5). As the initial Mach number

M0 ≡ |v0|√
p′(ρ0)

varies in(0, ∞), the ending points of the solutions cover all the interior points of
the stationary edge (6.5) exactly once. See Figure 6.1.

Now we study the structure of solutions near the stationary edge (6.5). More
precisely, letE denote the open set

E ≡ {(I, J, K) ⊂ R
3|J =

√
I (1 − I ), K = 1 − I, 0 < I < 1} (6.10)

which contains the interior points of the curve (6.5). Apparently the solutions of
(6.9) give one set of directions of integral curves for (6.1)–(6.3). The second set
of integral directions is given by the tangent directions of the stationary edgeE

(6.10). By linearization, we find the third set of directions to be
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⇀
n3≡

(
2(1 − I )[2(γ − 1)I − 1], −2(γ + 1)J (2I − 1),

−(1 − I )[2(3γ − 1)I − (γ + 3)]
) (6.11)

whereJ = √
I (1 − I ) and 0< I < 1. Along this direction (6.11), we calculate

⇀
n3 · ⇀

nA

∣∣
E

= 2(1 − I )[4(3γ − 1)I2 − 4(2γ + 1)I + γ + 3], (6.12)

⇀
n3 · ⇀

nB

∣∣
E

= −2(1 − I )2[4(γ − 1)I2 − 2γ I + 1], (6.13)

⇀
n3 · ⇀

nH

∣∣
E

= 2(1 − I )(1 − 2I )(1 + 4I ), (6.14)

where
⇀
nH is used to denote an outward normal to the surfaceJ 2 = I (1 − I ).

From now on we restrict ourselves to the caseγ = 2, and leave the other cases
γ |= 2 to a forthcoming paper. The formulae (6.11)–(6.13) can be simplified to

⇀
n3 = (2I − 1)(2(1 − I ), −6J, −5(1 − I )), (6.15)

⇀
n3 · ⇀

nA

∣∣
E

= 10(1 − I )(2I − 1)2, (6.16)

⇀
n3 · ⇀

nB

∣∣
E

= −2(1 − I )2(2I − 1)2. (6.17)

So we find that
⇀
n3 points intoΩ3 for I ∈ (1

2, 1
)
, and− ⇀

n3 points intoΩ3 for
I ∈ (

0, 1
2

)
.

Now we can depict the integral curves insideΩ3; see Figure 6.1. First we observe
that s is an increasing function ofτ insideΩ3, while J is an increasing function
of τ if 0 < I < 1

2, but changes to decreasing whenI ∈ (1
2, 1

)
. There are three

kinds of integral curves: the first kind consists of integral curves which go to the
stationary point(1, 0, 0). Each of the second kind goes to a stationary point on the
curve given in (6.7). Each of the third kind goes to a stationary point on the curve
E with I ∈ (

0, 1
2

)
given in (6.10). We mention in particular that no integral curve

from insideΩ3 goes to a point ofE between1
2 < I < 1 becauseI is an increasing

function ofτ and
⇀
n3 is pointing towards(1, 0, 0) for 1

2 < I < 1. See the proof of
Lemma A.1 of the Appendix for a complete proof. Also there is no integral curve
from insideΩ3 which goes to the point(0, 0, 1) becauseJ is an increasing function
of τ for I ∈ (

0, 1
2

)
.

We now show how to continue each of the first and second kinds of solutions
further to construct global solutions for alls ∈ (0, ∞).

First we consider the second kind of integral curves insideΩ3 which end on
the stationary curve (6.7). SinceK < 1 − I on (6.7), we find that the right hand
side of (6.4) does not vanish on (6.7). Thuss → ∞ as the integral curves approach
(6.7) withτ → ∞. Hence these integral curves are already solutions in the entire
domains ∈ (0, ∞), i.e.,r ∈ (0, ∞).

For the first kind of integral curves which end at(1, 0, 0), we show thats
approaches finite values althoughτ → ∞. Since the proof is long and tedious, we
put it in the Appendix to avoid interruption of our construction. We use the natural
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continuation of vacuumρ = 0 to extend our solutions tills = ∞. The values of
u, v do not need to be specified in the vacuum.

We comment that solutions on the surfaceJ 2 = I (1 − I ) starting from the
origin and ending on a point ofE with 1

2 < I < 1 can be continued through the
direction (6.15) intoΩ3, and they go toward(1, 0, 0) with finite terminals values.
The Appendix can be adapted trivially for this case and the further extension by
vacuum is valid also. It is interesting to note that for the initial data(u0, v0, ρ0)

with u0 = 0 andM0 >
√

2, the corresponding solutions always end onE with
I > 1

2. The critical valueM0 = √
2 yields a special solution that ends at the point

(I, J, K) = (1
2, 1

2, 1
2

)
with final s value given bys∗ = 1/r∗. This solution can be

continued by the constant solution(I, J, K) = (1
2, 1

2, 1
2

)
to s = ∞. Thus, we find

an explicit solution given by

u = 1
2r, v = 1

2r,
√

p′(ρ) = 1
2r for 0 < r < r∗, (6.18)

for γ = 2 and datau0 = 0 andM0 = √
2. It can be seen from the relationK = 1−I

that a point ofE with 1
2 < I < 1 is a state whose radial velocityu is greater than

the sound speed, and may be calledradially supersonic. Similarly, a point ofE
with 0 < I < 1

2 is a state whose radial velocityu is less than the sound speed, and
may be calledradially subsonic. We have foundM0 = √

2 to be a critical value in
the study of instability of vortex sheets; seeMajda [7], and references therein.

For the third kind of integral curves which end on the upper half ofE with
I ∈ (

0, 1
2

)
, we show thats approaches finite values also. The proof is easy because

we have
ds

dJ
= s

J

1 − I

1 − 2I
(6.19)

from the second equation of system (4.3). The right-hand side of (6.19) is nonsin-
gular for (I, J, K) ∈ E with 0 < I < 1

2. Thuss is finite around any point ofE
with 0 < I < 1

2.
So we have constructed all solutions globally except those which end onE with

0 < I < 1
2.

7. Inner-Field Solutions

We extend solutions that end onE with 0 < I < 1
2 in this section. We find that

these solutions go along the directions
⇀
n3 given in (6.15) into the region between

A = 0 andB = 0 in 0 < I < 1
2 andJ 2 > I (1 − I ), and eventually go to infinity.

The scaled variablesI, J , andK are not suitable for this portion of the solutions.
We restart from system (2.7) with data(u, v, ρ, r) satisfying the relationsE :

K = 1 − I andJ 2 = I (1 − I ) for I ∈ (
0, 1

2

)
. In terms of(u, v, ρ, r), these data

are in the form

u
∣∣
r=α

= β, v
∣∣
r=α

=
√

β(α − β),
√

p′(ρ)
∣∣
r=α

= α − β, (7.1)

whereα > 0 andβ ∈ (
0, 1

2α)
)

are arbitrary.
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We show that problem (2.7), (7.1) has solutions(u(r), v(r), ρ(r)) which also
vanish asr → 0+. An asymptotic analysis can be performed a priori to determine
the orders at which(u, v, ρ) vanish asr → 0+. This asymptotic analysis also
suggests using the scaled variables

R = r√
p′(ρ)

, U = u√
p′(ρ)

, V = v√
p′(ρ)

. (7.2)

For polytropic gasesp(ρ) = A2ρ
γ , we can rewrite system (2.7) into a new form

du

dτ
= r − u

w3
Σ,

dv

dτ
= uv

w3
∆,

dr

dτ
= r(r − u)

w3
∆,

dw

dτ
= γ − 1

2

r − u

w2
Θ

(7.3)

wherew ≡ √
p′(ρ) andτ is a parameter. In terms of the variables in (7.2), we find

that
dU

dτ
= (R − U)Σ̃ − γ − 1

2
U(R − U)Θ̃ ≡ A1,

dV

dτ
= UV ∆̃ − γ − 1

2
V (R − U)Θ̃ ≡ C1, (7.4)

dR

dτ
= R(R − U)∆̃ − γ − 1

2
R(R − U)Θ̃ ≡ B1

where∆̃ ≡ 1 − (U − R)2, Θ̃ ≡ V 2 − U(R − U) andΣ̃ ≡ (R − U)Θ̃ − U∆̃.
System (7.4) is autonomous for(U, V, R). We find that the last equation in (7.3)
can be written as

dw

wdτ
= γ − 1

2
(R − U)Θ̃. (7.5)

So w can be integrated from (7.5) once(U, V, R) are obtained from (7.4). The
corresponding data of (7.1) for (7.4) and (7.5) are given by any stationary point
(U∗, V ∗, R∗, w∗) satisfying

R∗ − U∗ = 1, V ∗2 = U∗, 0 < 2U∗ < R∗, (7.6)

w∗ > 0. (7.7)

After (7.4)–(7.7) are solved, we use the third equation in (7.3) to show thatr is
an increasing function ofτ ∈ R andr → 0 andα ∈ (0, +∞) asτ goes to∓∞
respectively.

We now study the problem (7.4) and (7.6). We claim that there exists a one-to-
one correspondence between the data (7.6) and the set

F = {(U, V, R)| U = 0, 0 < V <
√

2, R = 0}. (7.8)

The integral curves of (7.4) that connect the two sets provide the natural correspon-
dence. The setF consists of stationary points of (7.4) and corresponds to the point
(u, v,

√
p′(ρ), r) = (0, 0, 0, 0).

We consider the domainΩ4 of points(U, V, R) in R
3 given by

C1 < 0, B1 > 0, U > 0, R > 0, V > 0.

The domain is depicted in Figure 7.1 forγ = 2. We find thatΩ4 lies in 0 <

R − U < 1 andR > 2U .
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C 1 = 0

R = U+1

R = 2U

V

B1
= 0

1.41

R

U

Figure 7.1. The domainΩ4

We first find all stationary points of (7.4) in the closureΩ̄4. They are given in
(7.6), (7.8) and the set

G = {(U, V, R)|R = 2U, V 2 = 2 − U2, 0 < U < 1}. (7.9)

Then we observe thatA1 > 0 in Ω4. The regionΩ4 has five edges, three of them
are stationary points given in (7.6), (7.8) and (7.9). The fourth edgeU = 0, V =
0, 0 < R < 1 is a solution to (7.4). The fifth edge is ordinary:U = 0, V 2 =
2(1 − R2), 0 < R < 1.

We show that all integral curves of (7.4) on the surface ofΩ4 enterΩ4 asτ

increases. The surfaceC1 = 0 is given more explicitly by

(R − U)V 2 − U [2 − (R − U)2] = 0. (7.10)

An outward normal may be found to be

⇀
nC1= (V 2 + 2− (R − U)2 + 2U(R − U), −2V (R − U), −V 2 − 2U(R − U)).

(7.11)

The components of the vector are in the order(U, V, R). We calculate the inner

product of
⇀
nC1 with the tangent vector of any integral curve on the surfaceC1 = 0

to yield

⇀
nC1 · d

dτ
(U, V, R) = A1[V 2+2−(R−U)2+2U(R−U)]+B1[−V 2−2U(R−U)].
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OnC1 = 0 we find

A1 = (R − U)[(R − U)Θ̃ − U∆̃] − 1
2UΘ̃

= 1
2(R − U)(R − 2U)Θ̃,

B1 = R(R − U)
[
∆̃ − 1

2Θ̃
]

= 1

2U
R(R − U)(R − 2U)Θ̃,

and so
B1

A1
= R

U
onC1 = 0. (7.12)

Thus
⇀
nC1 · d

dτ
(U, V, R) = −(R − U)(R − 2U)Θ̃ (R − U)2 < 0

since

Θ̃ = V 2 − U(R − U) = 1

R − U
[2U − U(R − U)2 − U(R − U)]

= U

R − U
[2 − (R − U)2 − (R − U)] > 0

onC1 = 0. So integral curves of (7.4) on the surfaceC1 = 0 enterΩ4 asτ increases.
The surfaceB1 = 0 is given more explicitly by

V 2 + 2(U − R)2 − U(R − U) − 2 = 0. (7.13)

Its outward normal is
⇀
nB1= (6U − 5R, 2V, 4R − 5U). (7.14)

We calculate the inner product of the outward normal
⇀
nB1 with the tangent vector

of any integral curve on the surfaceB1 = 0:

⇀
nB1 · d

dτ
(U, V, R) = A1(6U − 5R) + 2C1V.

OnB1 = 0, i.e., where∆̃ = 1
2Θ̃, we find that

A1 = (R − U)(R − 2U)Θ̃, C1 = V
(
U − R

2

)
Θ̃,

Θ̃ = V 2 − U(R − U) = 2[1 − (R − U)2] > 0.

Thus

⇀
nB1 · d

dτ
(U, V, R) = (R − 2U)Θ̃[(R − U)(6U − 5R) − V 2]

= (R − 2U)Θ̃[−3(R − U)2 − 2]

= −(R − 2U)Θ̃[3(R − U)2 + 2] < 0.

So integral curves do not exitΩ4 from B1 = 0.
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Integral curves on the surfaceU = 0 enterΩ4 asτ increases since

A1
∣∣
U=0 = R2V 2 > 0 for R > 0, V > 0.

We have thus proved that any integral curve that starts insideΩ4 remains inΩ4 for
all positiveτ .

We now linearize the system (7.14) at its stationary points ofF . For any point
(U, V, R) = (0, V0, 0) of F from (7.8), we find

∂(A1, C1, B1)

∂(U, V, R)

∣∣
(0,V0,0)

=
[ 0 0 0

V0 + 1
2V 3

0 0 −1
2V 3

0
0 0 0

]
. (7.15)

But (7.15) has no nonzero eigenvalue so that the Center Manifold Theorem [5]
yields only the trivial conclusion. By introducing the new variables

X = U

R
(7.16)

andτ ′ such that
dτ ′ = Rdτ, (7.17)

we can rewrite (7.4) as

dX

dτ ′ = (1 − X)[V 2(1 − X) − 2X + X(1 − X)2R2], (7.18)

dV

dτ ′ = XV [1 − (1 − X)2R2] − 1

2
V (1 − X)[V 2 − X(1 − X)R2], (7.19)

dR

dτ ′ = R(1 − X){1 − (1 − X)2R2 − 1

2
[V 2 − X(1 − X)R2]}. (7.20)

We are interested only in stationary points of (7.18)–(7.20) given in the form

R = 0, V 2(1 − X) = 2X, (7.21)

or more explicitly:

R = 0, X = a

1 + a
, V =

√
2a (0 < a < 1), (7.22)

which correspond to points ofF from (7.8) on theV axis with directions pointing
into the regionΩ4. We find that the linearization of (7.18)–(7.20) at any point
(X, V, R) = (X0, V0, 0) of (7.22) has the matrix form


−2 2V0(1 − X0)

2 0

V0 + 1
2V 3

0 −2X0 0

0 0 (1 − X0)

(
1 − V 2

0

2

)






X − X0

V − V0

R


 . (7.23)

We compute the eigenvalues to yield

λ1 = 0, λ2 = −2(1 + X0), λ3 = (1 − X0)
(
1 − 1

2V 2
0

)
. (7.24)
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So the linearized system has a solution along the direction(X, V, R) = (0, 0, 1)

corresponding to the eigenvalueλ3 > 0. We conclude that our system (7.18)–
(7.20) also has a solution which goes along the direction(X, V, R) = (0, 0, 1) as
τ ′ increases fromτ ′ = −∞, by the Center Manifold Theorem [5]. From (7.16),
(7.17), we further conclude that there exists a solution from any point of (7.8) which
goes along the directionU

R
= a

1+a
on the planeV = √

2a, 0 < a < 1, asτ leaves
−∞. It can be verified by direct computation (which we omit) that those solutions
all go intoΩ4.

Our final purpose is to show that for each point on (7.6), there exists a point on
F of (7.8) from which a solution originates and goes intoΩ4 to end at the point
of (7.6). We can show easily that if the point onF is close to the origin, then the
solution remains close to theR-axis and ends at a point on (7.6); this is becauseV

is a decreasing function ofR.
We now show that the ratioU/R along a solution inΩ4 is an increasing function

of R. In fact we know that any solution originating fromF goes intoΩ4. We can
estimate the derivative

dU

dR
= A1

B1
(7.25)

in Ω4. Notice thatA1 > 0, B1 > 0 in Ω4, and

dU

dR
= (R − U)Θ̃ − u∆̃ − 1

2UΘ̃

R
(
∆̃ − 1

2Θ̃
)

=
Θ̃

∆̃
(2R − 3U) − 2U

R
(
2 − Θ̃

∆

) .

(7.26)

The last expression is an increasing function ofΘ̃/∆̃ for fixed R, U , such that
R = 2U . Observe that inΩ4 we haveC1 < 0, i.e.,

Θ̃

∆̃
= 2U

R − U
. (7.27)

We use (7.27) in (7.26) to derive

dU

dR
= UR

which yields
d

dR

(
U

R

)
= 0. (7.28)

If initially U
R

∣∣
R=0 = a

1+a
, anda → 1, the final point of the solution cannot

be on (7.6) withR∗ < 2, sinceU∗
R∗ = R∗−1

R∗ = 1
R∗ < 1

2. So the solutions from
points ofF (close to the end point(U0, V0, R0) = (0,

√
2, 0)) will end up either at

(U, R∗) = (1, 1, 2) or a point ofG. By the same token, no solutions fromG can
go intoΩ4 and end up on (7.6) becauseU∗

R∗ = 1
2 onG.

We omit the proof that solutions originating fromF change continuously inΩ4.
Thus each point on (7.6) has a solution going to a point ofF throughΩ4.
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8. Conclusions

We summarize our results. By a weak solution to the two-dimensional Euler
equations (2.1) we mean a bounded vector function(u, v, ρ)satisfying the equations
in the sense of distributions. Since we deal with only continuous weak solutions in
this paper, we do not mention any other requirements such as the Rankine-Hugoniot
relation or entropy conditions. Set

M0 ≡
√

u2
0 + v2

0√
p′(ρ0)

which is consistent with previous versions ofM0.

Theorem. For any datum(u0, v0, ρ0) with u0 = 0 andρ0 > 0, there exists a weak
solution(u, v, ρ) to the initial-value problem(2.1) and (2.5) whenp(ρ) = A2ρ

2

for any constantA2 > 0. The solution is continuous fort > 0 and is self-similar
and axisymmetric. It takes on initial data almost everywhere and inL

q

loc for any
q > 1 ast → 0+. Furthermore,

(i) If v0 = 0, then the solution exists even for the more general pressure-density
relation p(ρ) = A2ρ

γ for anyγ > 1 and is such thatv = 0 for all time t > 0.
There exists a critical valueM(γ ) such that the solution isC1-smooth for allt > 0
if M0 = M(γ ); see Figure 5.3.

If M0 > M(γ ), then the densityρ and the radial componentu of the velocity are
increasing functions of the spatial radiusr for fixed timet > 0. The solution has a
vacuum regionρ = 0 near the spatial origin for allt > 0. It is smooth beyond the
vacuum and continuous everywhere. The edge of the cone of the vacuum is given
by r = u∗t whereu∗ is the speed of radial velocity at the edge andu∗ < u0.

If M0 < M(γ ), then the densityρ and the radial componentu of the velocity
are also increasing functions of the spatial radiusr for any fixed timet > 0. The
solution has a cone near the spatial origin where the densityρ = ρ∗ = constant
andu = 0. The side of the cone is given byr = √

p′(ρ∗)t. The solution is smooth
except at the edge of the cone, where it is only continuous.

v

u

0 x

ρ

v o

ρ o

r *

u**

u*

r

u
v
ρ
r

Figure 8.1. A solution(u, v, ρ) vs. the x-axis at time t = 1 when u0 = 0 and
M0 >

√
2.
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The critical valueM(γ ) has an upper bound

M(γ ) <

√
2

γ − 1
.

(ii) If u0 = 0, the first piece of the solution is given explicitly by the formula(3.4)
near r = ∞. If M0 >

√
2, the second piece is given by the ordinary differential

equation(4.3)with direction(6.11); see Figure 8.1. The radial and pure rotational
components and the density function of the solution are increasing functions of the
spatial radiusr in the regionu∗∗t < r < r∗t wherer∗ is given by(3.5)andu∗∗ > 0
is the radial velocity at the inner end of the second piece. The third piece is the
vacuumρ = 0 with domain0 5 r < u∗∗t . There is no pure rotation at the edge of
the vacuum.

If M0 = √
2, the second piece is given explicitly by formula(6.18); see Figure

8.2.
If M0 <

√
2, the second piece is given by the ordinary differential equation

(7.4), (7.5)with two-point boundary values(7.6)and(7.8); see Figure 8.3.

0 r * x

u*
vo

ρo
u

ρ
v
u

r

Figure 8.2. A solution(u, v, ρ) vs. thex-axis at timet = 1, whenM0 = √
2, u0 = 0. It

is an explicit solution.

0 x*

u

v

u
*

vo

o
ρ

ρ

r

u
v
ρ

Figure 8.3. A solution(u, v, ρ) vs. thex-axis at timet = 1 whenu0 = 0 andM0 <
√

2.
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(iii) For the caseu0 > 0, ρ0 > 0 andv0 |= 0, depending on the parameters(
u0√
p′(ρ0)

,
v0√
p′(ρ0)

)
, the solution can be globally smooth, contain a region of vac-

uum as in case(ii) with M0 >
√

2, or contain an inner piece of solutions of(ii)
with M0 <

√
2.

Appendix. Finiteness of the Parameters at Point (1, 0, 0)

We show that the parameters approaches a finite value as an integral curve
approaches the stationary point(1, 0, 0) in Ω3 defined in Section 6.

Lemma A.1. For any integral curve that ends at(1, 0, 0) of the system(6.1)–(6.4)
from inside the domainΩ3, there exists anε ∈ (0, 1) such that the integral curve
is inside the cylinder

Cε ≡ J 2 − εI (1 − I ) < 0 (A.1)

when itsI component is in
(1

2, 1
)
.

Proof. We chooseε ∈ (0, 1) such that the integral curve is inside the cylinder
J 2 < εI (1− I ) at the special pointI = 1

2. For thisε, we show that integral curves
on the surface of the cylinderJ 2 = εI (1 − I ) insideΩ3 in the portionI ∈ (1

2, 1
)

are all going into the cylinderJ 2 < εI (1−I ). We first calculate an outward normal
to the cylinderJ 2 = εI (1 − I ) to be

⇀
nε= (−ε(1 − 2I ), 2J, 0).

We then calculate the inner product of the normal
⇀
nε with the tangent direction of

any integral curve on the cylinderJ 2 = εI (1 − I )

⇀
nε · d

dτ
(I, J, K)

∣∣
J 2=εI (1−I )

= −ε(1 − 2I )(1 − I )[I (1 − I )2(1 + ε) − 2IK2]

+ 2εI (1 − I )(1 − 2I ) · [(1 − I )2 − K2]

= εI (1 − 2I )(1 − I ){−(1 + ε)(1 − I )2 + 2K2 + 2(1 − I )2 − 2K2}
= ε(1 − ε)I (1 − I )3(1 − 2I ) < 0 for I ∈ (1

2, 1
)
.

Hence the chosen integral curve remains inside the cylinderJ 2 < εI (1 − I ) in
I ∈ (1

2, 1
)
. This completes the proof of Lemma A.1.

Lemma A.2.For any integral curve that ends at(1, 0, 0) of the system(6.1)–(6.4)
in the domainΩ3, there are three numbersε ∈ (0, 1), β ∈ (2, ∞), andĨ ∈ (1

2, 1
)

such that the integral curve is inside the cylinderCε < 0 and below the surface

Bβ ≡ (1 − I )J 2 + I (1 − I )2 − βIK2 = 0 (A.2)

whenI ∈ (Ĩ , 1).
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Proof. We first compute an outward normal
⇀
nβ to the surfaceBβ = 0:

⇀
nβ= (βK2 − (1 − I )2 + 2I (1 − I ) + J 2, −2(1 − I )J, 2βIK).

We calculate the inner product of this
⇀
nβ with the tangent vector of any integral

curve on the surfaceBβ = 0:

⇀
nβ · d

dτ
(I, J, K)

∣∣
Bβ=0

= [βK2 − (1 − I )2 + 2I (1 − I ) + J 2]

· (1 − I ){(1 − I )2I + (1 − I )2 − 2IK2}
− 2(1 − I )J 2(1 − 2I )[(1 − I )2 − K2] + βIK2(1 − I )

· [(γ − 1)J 2 − (γ − 1)I (1 − I ) + 2(1 − I )2 − 2K2]

=
[
2I (1 − I ) + 1

I
J 2

]
(1 − I )2

(
1 − 2

β

)
[J 2 + I (1 − I )]

+ 2(1 − I )2(1 − 2I )J 2 1

βI
[J 2 − (β − 1)I (1 − I )]

+ (1 − I )2[J 2 + I (1 − I )]
1

I

·
{ [

(γ − 1)I − 2

β
(1 − I )

]
J 2 − (γ − 1)I2(1 − I )

+ 2

(
1 − 1

β

)
I (1 − I )2

}
.

Rewriting the last expression in the form of a polynomial ofJ , we obtain

⇀
nβ · d

dτ
(I, J, K)

∣∣
Bβ=0

= J 4
{

1

I
(1 − I )2

(
1 − 2

β

)
+ 2

βI
(1 − I )2(1 − 2I )

+ (1 − I )2

I

[
(γ − 1)I − 2

β
(1 − I )

] }

+ J 2
{

2I (1 − I )3
(

1 − 2

β

)
+ (1 − I )3

(
1 − 2

β

)

− 2
β − 1

β
(1 − I )3(1 − 2I )(1 − I )3

[
(γ − 1)I − 2

β
(1 − I )

]

+ 2

(
1 − 1

β

)
(1 − I )4 − (γ − 1)I (1 − I )3

}
+
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+ 2I2(1 − I )4
(

1 − 2

β

)
− (γ − 1)I2(1 − I )4 + 2

(
1 − 1

β

)
I (1 − I )5

= J 4 (1 − I )2

βI
{β − 2 + [β(γ − 1) − 2]I }

+ J 2(1 − I )3
[
4I

(
1 − 1

β

)
+ 1 − 4

β

]

+ I (1 − I )4
[
2I

(
1 − 2

β

)
− (γ − 1)I + 2

(
1 − 1

β

)
(1 − I )

]
.

We find that both coefficients ofJ 4 andJ 2 are positive whenβ > 2, γ = 2, and
I ∈ (1

2, 1
)
. Hence in the regionCε < 0, we find that

⇀
nβ · d

dτ
(I, J, K)

∣∣
Bβ=0,Cε<0

<
ε2

β
I (1 − I )4{β − 2 + [β(γ − 1) − 2]I }

+ εI (1 − I )4
[
4I

(
1 − 1

β

)
+ 1 − 4

β

]

+ I (1 − I )4
[
−2I

β
− (γ − 1)I + 2

(
1 − 1

β

)]

= I (1 − I )4
{
ε2

[
1 − 2

β
+

(
γ − 1 − 2

β

)
I

]
+ 4εI

(
1 − 1

β

)
+ ε − 4ε

β

−
(

2

β
+ γ − 1

)
I + 2

(
1 − 1

β

) }

≡ I (1 − I )4F(ε, β, I, γ )

whereF denotes the expression in the braces.
We needF to be negative nearI = 1 for someε > 0, β > 2, andγ = 2. For

any fixed integral curve that goes to the point(1, 0, 0), we first chooseε ∈ (0, 1)

so that the integral curve lies insideCε < 0 for I > 1
2. Fix thisε. We calculate the

value ofF at the extreme pointβ = 2:

F(ε, 2, I, 2) = (2I − 1)ε + 1 − 2I

= (2I − 1)(ε − 1) < 0 for I ∈ (1
2, 1

)
.

SinceF is a continuous function of(β, I ) near the point(2, 1), we conclude that
there exists añI ∈ (1

2, 1
)

such thatF(ε, β, I, 2) < 0 for all I ∈ [Ĩ , 1) whenβ is
close to 2. SinceBβ = 0 is close toB = 0, we can choose aβ > 2 such that the
integral curve lies belowBβ = 0 atI = Ĩ . This integral curve remains under the
surfaceBβ = 0 for all I > Ĩ because of the signF < 0. This completes the proof
of Lemma A.2.
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Theorem A.3.The parameters is finite for any integral curve of(6.1)–(6.4)that
goes to the point(1, 0, 0) insideΩ3.

Proof. We find from the first equation of (4.3) that

s
dI

ds
= 2I − (1 − I )

I (1 − I ) − J 2

(1 − I )2 − K2
. (A.3)

The right-hand side of (A.3) is a decreasing function ofK2 in Ω3. Any integral
curve that goes to(1, 0, 0) remains inCε < 0 andBβ > 0 for I close to 1. So for
I close to 1 we find that

s
dI

ds
= 2I − (1 − I )I

I (1 − I ) − J 2(
1 − 1

β

)
I (1 − I )2 − 1

β
(1 − I )J 2

= 2I − Iβ
I (1 − I ) − J 2

(β − 1)I (1 − I ) − J 2
= 2I − βI + β(β − 2)I2(1 − I )

(β − 1)I (1 − I ) − J 2
.

(A.4)

The very last expression of (A.4) is an increasing function ofJ 2, so we further find
by usingJ 2 = 0 that

s
dI

ds
= (2 − β)I + β(β − 2)

β − 1
I = β − 2

β − 1
I.

Thus it can only take a finite amount ofs for I to reach 1.
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Note added in proof.For polytropic gases with non-quadratic pressure-density laws, shock
wave solutions as well as continuous solutions have since been constructed; see the book
Two-dimensional Riemann Problems for Systems of Conservation Lawsby Yuxi Zheng
to be published by Birkḧauser in 1999 or 2000.
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