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Abstract

We construct rigorously a three-parameter family of self-similar, globally
bounded, and continuous weak solutions in two space dimensions for all positive
time to the Euler equations with axisymmetry for polytropic gases with a quadratic
pressure-density law. We use the axisymmetry and self-similarity assumptions to
reduce the equations to a system of three ordinary differential equations, from which
we obtain detailed structures of solutions besides their existence. These solutions
exhibit familiar structures seen in hurricanes and tornadoes. They all have finite
local energy and vorticity with well-defined initial and boundary values. These so-
lutions include the one-parameter family of explicit solutions reported in a recent
article of ours.

1. Introduction

We are interested in finding some solutions to the initial-value problem for
the two-dimensional Euler equations for compressible fluids. Our approach is to
generalize to two dimensions some of the results on Riemann problems for the one-
dimensional Euler equations for compressible fluids. One natural generalization is
to consider initial data which consist of four constant states, or any finite number
of constant states [10-12]. The well-known configurations of regular and Mach
reflections are special cases of such a generalization. However, no rigorous proofs
of existence of any nontrivial solutions to these problems have been established.

A more complete generalization is to consider initial data which depend only
on the polar angle in the two-dimensional space of positions. This generalization
certainly looks more formidable, if not impossible. However, it now contains a
special three-parameter family of data, namely, the axisymmetric initial data, which
allows us to reduce the initial-value problem of the partial differential equations to
a boundary-value problem for a system of ordinary differential equations. With this
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simplification we were able to construct in [13] a two-parameter family of solutions
corresponding to pure rotational initial data.

Our main task here is to study rigorously the resulting boundary-value problem
for the non-autonomous system of three ordinary differential equations, in the hope
of rigorously constructing all solutions for the three-parameter data. Singularity
points of the system consist of two-dimensional manifolds in the four-dimensional
phase space. These singularity points correspond to surfaces of characteristics in
physical space-time, where solutions may not be differentiable. A typical global
solution may consist of as many as three nontrivial connecting orbits chained to-
gether continuously. The complete construction of the three-parameter family of
solutions is described in the Conclusions at the end of the paper.

We find that our solutions capture some typical properties of swirling flows such
as hurricanes and tornadoes. For example, there are the eye structure near the center
with low rotational speeds and the wall region with high speeds (see Figure 8.1).
We refer the reader to our paper [13] for calculations of explicit particle trajectories
which clearly exhibit spiral structures.

We mention that our initial data in this paper will be restricted to the set of data
with nonnegative radial velocities (swirling outward), in addition to axisymmetry
and radial symmetry. Shock waves may arise if the initial radial velocities are
allowed to be negative (swirling inward). Also, in this paper we study only the
special case where the pressure is a quadratic function of density. For partial results
on non-quadratic pressure-density cases, we refer the reader to our paper [13] or
article [14]. Rigorous proofs for solutions constructed in [13] and more complete
constructions of the three-parameter family of solutions for non-square pressure-
density cases are forthcoming.

There is a great deal of related work, from which we mention only the most
pertinent. For general existence of weak solutions with axisymmetry for the two-
dimensional Euler equations for compressible fluids outside a core region, we refer
the reader to the recent work @HEN & GLiMM [4]. For some explicit solutions
of such Euler equations with spherical symmetry but without swirls(3@eRANT
& FRIEDRICHS [3]. For swirling motions of viscous fluids, we refer the reader to
BeELLAMY-KNIGHTS [1]; CoLoNIUS, LELE & MOIN[2]; MACK [6]; POWELL
[8] and SERRIN [9].

2. The Problem

We consider the two-dimensional Euler equations for a compressible and poly-
tropic gas:
o+ (pu)x + (pv)y = 0,
(pw)r + (pu? + p)x + (puv), =0, (2.1)
(pv): + (puv)x + (pv® + p)y =0,

wherep = p(p) is a given increasing function gf. Global existence of weak
solutions to its initial-value problem is open. Attempts have been made through
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considering special situations such as the diffraction of a planar shock at a wedge
or generalized Riemann problems with four different initial constant states. Here
we consider a situation which involves swirling motions.

We impose axisymmetry to the system. That is, we assume that our solutions
(u, v, p) have the property

p(t,r.0) = p(t,r,0),
u(t,r,0)\ _ (cosd —sing u(t,r,0) 2.2)
v(t,r,0) )] — \'sind coso v(t,r,0) '
forallz =2 0,0 € Randr > 0, where(r, 9) are the polar coordinates of tke, y)-

plane. With this symmetry, system (2.1) can be reduced for continuous solutions
to

ou
or + (pu)r + o= 0,

2
u,+uu,+ﬁ—v—=o, (2.3)
0

r
uv
vt+uvr+_=0’
r

wherep = p(t, r, 0), etc. Notice now that andv in (2.3) represent the radial and
pure rotational velocities in the flow, respectively.

We limit ourselves to Riemann-type initial data; that is, we require the initial
data to be independent of the radial variabte O:

(0(0,7,6),u(0,r,0),v(0,r,0) = (po(), uo(8), vo(®)). (2.4

We remark in passing that the initial-value problem of system (2.1) with the type of
data in (2.4) may justly be called the two-dimensional Riemann problem for (2.1).
It degenerates to the classical Riemann problem for the one-dimensional case; it is
simple and yet general enough to contain important waves such as swirling motions
as well as shock and rarefaction waves and slip lines (surfaces).

When the axisymmetry condition (2.2) is imposed onto (2.4), we find that our
data are limited to

u(0,r,0) = ugcosh — vg sing,
v(0,r,0) = ugsind + vg cosy, (2.5)
p(0,r,0) = po,

wherepo > 0, (1o, vo) € R? are arbitrary constants. Hence our data for system
(2.3) are
p0,r,00 =pg, u(O,r,0 =ug, v(0,r 0 =vo. (2.6)

Since the problem (2.3), (2.6) is invariant under self-similar transformations,
we look for self-similar solutiongp, u, v) which depend only o = r/¢. We thus
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have the following boundary-value problem for a system of ordinary differential
equations:

_12 uv
T ral

U, = V= — (2.7)

pr rAT T T rr—u)

lim (p,u, v) = (po, uo, vo) (2.8)
——+00

r

where

A=p(p)—(u—r)
O = vz—u(r—u),
= —-u)® —ud =’ —u) —up'(p),

andr is used in place of for notational convenience.

We construct global continuous solutions or establish their existence for problem
(2.7), (2.8) for anypg > 0,10 = 0,v9 € R andp(p) = Ap? whereA, > Ois a
constant. We can assume thgt= 0 because the casg < 0 can be transformed
byv — —vtothe caseg > 0. It can be verified that these solutions are also global
continuous solutions to the original Euler equations.

3. Far-Field Solutions

We show that problem (2.7), (2.8) has a local solution mear +oc for any

datum(pg, 1o, vo) with pg > 0. Lets = 1/r. Then (2.7), (2.8) can be written as
do  plu(l—us)— 51

ds — s2p'(p) — (L — us)?’

du  sup’(p) — v3(1— us)

— = 3.1
ds s2p'(p) — (L —us)?’ 1)
dv _ uv

ds ~  1l—us’

(0, u, v)|s=0 = (po, 1o, vo). 3.2

Problem (3.1), (3.2) is a classically well-posed problem which has a unique local
solution for any initial datum withpg > O.
We find thatv = 0 and

svz—u(l—us) =0 3.3)

are invariant surfaces in the four-dimensiotal u, v, s) space. It can be verified
that

(1 — 3su)sp’ + u(1— su)?

2 — —
A—swls?p —A—sw -y~ duol

%[sv2 —u(l—us)] =
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Explicit SolutionsIn the special casgg = 0, we find from the invariant surface
(3.3) a set of explicit solutions near= +oco:

v Vo
» = po, u:TO, UZT rZ—vg, rzr* (3.4

1
= (o 4+ V) @9

The functions in (3.4) are defined fer= vg, but we cannot use them up tg
with absolute certainty since (3.1) has a singularity at the poiat-* on the curve
(3.4). In fact, we find that the position the radial velocity:, and the sound speed
v p'(p) atr* along (3.4) have the relation

r* =u(r*) ++/p'(po),

which is to say that* is the radial characteristic speed; that is, the distance that a
small disturbance generated from the origin at time zero can travel radially in time
t=1.

where

4. Intermediate Field Equations

We can simplify system (3.1) by assuming the relation

p(p) = A2p” (4.1
for someA, > 0 andy > 1, and introducing the variables
I =su, J=sv, K=syp(p). 4.2

Then system (3.1) can be put into the form

dl  2IK?—1-D[J?2+1Q1-1D)]

Sds K2—(1—1)2 ’
dJ 1-21
— =J—, 4.3

s 11 (4.3)

dK  K2K?2—-2(1—-1)2—(y —D[J2—1(1-1)]

Yds T 2 K2—(1—1)2 '
Corresponding to the initial data (3.2), we look for solutions of (4.3) with the initial
condition

(I, J, K) ~ s(uo, vo, v p'(p0)) (4.9

ass — 0+. We note that (4.3) is now autonomous for/, K with respect to the
new variables’ = In s.
The invariant surfaces of (4.3) are the surfdce- 0, the surfacek = 0, and
the surface
H=J?-I11-1)=0 (4.5)
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since
d (1—2D[2K? - 31— 1)
s—H =
ds 1-D[K2—-(1-1)7?

Scaling SymmetnSystem (4.3) is invariant under the coordinate transformation
s — as for any constantr > 0. In particular, we can take = 1/./p’(po). Thus

we may assume thaty > 0 is such that/p’(po) = 1. Hence the structure of
any solution of problem (4.3), (4.4) depends only on the raii§)s/p’(00) and

vo/+/ P’ (00)-

5. Solutions Without Swirls

Let us first determine the distribution of integral curves on the invariant surface
J=0.

Assume thatg = 0. We look for solutions to problem (4.3), (4.4) with= 0.
Hence we have a subsystem {ér K):

dl 121{2—(1—1)2

Sg = —KZ — (1 — 1)2 s (51)
K2—-1-D2+%5 -1
G _ K- A- DTy H A= h (5.2)
ds K2—1-1)?2
Introducing a new parameter we can rewrite (5.1), (5.2) as
al 2 P
E_I[(l—l) —21<], (5.3)
K _kla-n-xk2-r=tia_pl. (5.4)
dt 2
ds _ 2 2
= =sla-n?-«7. (5.5)

Note that (5.3), (5.4) form an autonomous subsystemy Hlso vanishes, then we
have a trivial solutiorp = pg, u = v = 0.

Suppose theg > 0. It can be verified that our far-field solutions starting at
s = 0+ enter the regiom2 c R? in the (I, K)-phase space given by

I >0, K>0,
—1 _ 1
Py aE(l—I)Z—KZ—yTI(l—I)>O in0<7<=,
y
1
b=(1-1)?-2K?>0 in =<7I<1
y

See Figure 5.1.
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Figure 5.1. Phase portrait of solutions without swirls

We show that solutions starting in the clos@2edo not leave2 ass increases.
Notice first thats > 0 is an increasing function afin £2 by equation (5.5) so we
show that solutions of the two equations (5.3), (5.4) starting in the claSude
not leaves2 ast increases. The stationary points of (5.3),(5.452rmre the points

(1K) = (0,0, (0.1, (1,0, (£, 2 (1-2)). The axisk =0in0 <1 <1,

Y’ /2
and the axig =0in 0 < K < 1 are trivial solutions. On the boundary= 0, i.e.,
K 1 1-1 1 I<1 (5.6)
=—1d-1), —=<I<] .
V2 1%

we find that4. = 0, 2% < 0. So solutions entef2 on (5.6). Finally on the

boundarya =0, i.e.,

—1 1
K2=(1-12— VTl(l— D, 0<l< (5.7)

we find thatdZ < 0, and4X = 0. So solutions ente® on (5.7) also.
Without showing further details we conclude that some solution® igo to
the point(1, 0), while others go to the poirfD, 1), with exactly one integral curve

going to the poin(%, % (1 - %))

To determine what dat@ug, po) yield the transitional solution leading to the
stationary poin(%, % (1 - %)) we first eliminater from (5.3), (5.4) by division
and introducd. = (K /I)? to find

dL (y=D@A-D-2IL

aL _ L 0<I<1 5.8
dl (1—1)2—212L == 5.8)

L=My%atl=0 (5.9
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0 Uy 1 I

2

Figure 5.2. Estimate of the transitional Mach numbg&(y ) < poa |

where
Mo = uo/+/ p’(p0)

denotes the Mach number of the initial states, O, pp). Problem (5.8), (5.9)
is well-posed for anyMgy > 0. The transitional solution goes from the point

(I, L) = (0, Mg?) to (% 3y — 1)2>. However, there does not seem to be an
explicit formula for the valueVfp which yields the transitional solution. We give
an estimate instead. For convenience wéléi’) denote the initial Mach number

for the transitional solution. It can be seen théj = yifl is an upper bound for
the transitional Mach numbe (y). In fact, any solutiorL. (1) of (5.8), (5.9) with

datumMg = VL_Zl starts as a decreasing function/o® O'till I = % In the interval

I e [% 1|, the solution remains below the two curves on which the numerator

and denominator of the right-hand side of (5.8) vanish, respectively, and therefore
remains decreasing until the final stationary pgihtL) = (1, 0); see Figure 5.2,
whered = 3(y — 1)2, f = M~2(y), andN andD are where the numerator and
denominator of the right-hand side of (5.8) respectively vanish.

This transitional solution yields a one-parameter family of smooth solutions in

terms of(r, u, v, p). We see from equation (5.5) thatdmpproaches infinity as the
solutions approach the poifit, K) = (% % (1 — %)) since(1—1)2—K2+0
atthe point. S — +oo and thug — 0+. Also the solutions have the asymptotics

1 1 1\?
ury==r,  pl(p)(r) =3 (1— —) re
4 4

asr — 0+. These global transitional solutions are similar; one is sketched in
Figure 5.3.
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v=0

Figure 5.3. A zero-swirl transitional solution

We next show that the parameteapproaches finite numbers when solutions
of (5.3)—(5.5) approach either the poirifs K) = (1, 0) or (0, 1).
We can linearize the two equations (5.3), (5.4)/atk) = (0, 1) to find

dl
- :_I
drt
(5.10)
d(iK —1 3
K- _ r+3, Lkx_1
dt 2

The eigenvalues of (5.10) akg = —1, A» = —2. So solutions of (5.3), (5.4) near
(0, 1) approach, 1) exponentially ag — +oco. From equation (5.5), we find

|nss—o=frr [(1—1)2—K2]dr

0
for some constantg > 0 andrg. Sos approaches a finite numberas-> oo since
(1 — 12 — K? approaches zero exponentially.
Linearization at the point/, K) = (1, 0) of the two equations (5.3), (5.4) yield
the trivial system with zero right-hand sides. We need a different approach. We
show that solutions neat, 0) enter(1, O) in the sector bounded by = 0 and the
line
K=a(1-1) (5.11)

for some O< o < iz such that? + Y52 > 0. See Figure 5.4.

In fact, a vector in the normal direction of (5.11)és 1). We calculate the inner
product of the vector field of (5.3), (5.4) with the directi@n 1) to find

%(1, K)(a,1) = —a [21 <a2 + VT_?’) —(1-adHA- 1)} (1-1)%. (5.12)

The expression (5.12) is negativd ifs close to 1 and is such that:? + }%3 > 0.
So we conclude that every solution that endgla0) is such that

K<a(l-1) (5.13

1

near! = 1 for somex < N sincey > 1.
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(1.0

Figure 5.4. The parameteis finite near(1, 0)

Now we look at the equation (5.1) and use (5.13) to find that

dl 1— 202
s— > ——
ds 1—a?

when! is close to 1. Thus
dl "
sd— > a positive constant
S

when/ is near 1. Therefore is finite at the end1, 0) since! is bounded and the
geometric integral;, > 1 ds diverges.
We are now ready to construct global solutions for (5.1), (5.2). For each solution
endingat/, K) = (0, 1), we continue the solution by the constant statey, p) =
(0, 0, p**) wherep** is the value ofp at the ending point. These are continuous
extensions. The relation between the dengityand the terminal valug** is
P/(/O**) — s**—Z’
or equivalently
[7/(,0**) — r**Z

whenr** is the radius of the circle of the constant state in the physical planég.
We therefore have constructed global solutions in this case.

For each solution ending at the poiidt K) = (1, 0), we continue the solution
by the vacuum state = 0. We do not need to specify the functian®r v in the
vacuum since the Euler equations havas a factor in every term. Each vacuum
occupies a circular region of radius* determined by** = 1/s** = u** in the
physical plane at = 1, whereu** is the terminal radial velocity of the fluid at
the edge of the vacuum. In all, we have constructed global solutions to the reduced
system (5.1), (5.2), the special case of (4.3), (4.4) with zero swirl.
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6. General Solutions in the Intermediate Field

Now consider the case) > 0 andug > 0 for system (4.3). Lef2z c R3 be
the set of pointsg/, J, K) satisfying0< I <1, J >0, K > 0,

H=J?>—11-1) <0,

1
B=QA-D[J?+IA-D]-2IK*’>0if =<I<1,
%

1
A=2A-1%4+ @ —-D[J°-IA-D]—2K?*>0if 0<1 < =.
%

See Figure 6.1. It can be verified that all far-field solutions wigh+= 0, vg >
0, po > 0 enter the regiom23 in s > 0. Far-field solutions witlkg = 0 enter the
side H = 0 of £23. We omit these tedious verifications.

Figure 6.1. The regiot;
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We find that it is convenient to introduce a new variabjeas in Section 5, to
write the system (4.3) in the form

dl

—=a-D5, (6.1)
a _ JA-2D[A-1D?-K2, (6.2)
dt

dK 1

- = EK(l — DA, (6.3)
s _ s(L— D[ - D)% - K32. (6.4)
dt

This is an autonomous system f@r, J, K, s), and the first three equations (6.1)—
(6.3) form an autonomous subsystem brJ, K).

The stationary points of the system (6.1)—(6.3) contained in the clo2sieze
given by the edge

K=1—1,J°=11-1), VIe[0,1], (6.5)
and the point
11 1
(1,J,K) = (-, 0, — (1— —>) (6.6)
v V2 1%

inthe case’ + 2. For the casg = 2, the stationary points of (6.1)—(6.3) are given
by edge (6.5) and the curve

1=3 Kk2=3(2+3), 0=J <43 (6.7)

which is the intersection o = 0 with B = 0. Hence there is no stationary point
in the open regiom23; all the stationary points are on the boundaryf

Assertion. Solutions inside2; do not leave2; from its sides (excluding possibly
edges or corners) as s increases wheg 2.

Proof. First note that the sides @23 in the surface = 0,orJ =00orH =0
are invariant regions. We need only to prove that no solution le@¢eflsom the
top two adjoining sidegt = 0 andB = 0 wheny > 2.

Consider first the top side given by

1
B=I1-D%+1-01J?-2IK?’=0 in=-<1<L1 (6.8)
4
In the coordinate ordgl, J, K) an outward normal is given by
QK2 —(1-D2+21(1— 1)+ J% —2(1—1)J, 4IK) =np.

We calculate the inner product of the normaj with the tangent vector of an
integral curve of (6.1)—(6.3) on the surface (6.8) to yield

ng -%(1, JLKy=—-1-D’[A-DI-J[(y =2 J°+ (I -1)(1-D] <0
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whenl < 7 < 1andy > 2. Notice that? > 0 in £25. Thus no solution leaves
£23 from this side as increases.
Now consider the top side given by

1
A=20-D’+@ -D[J2—IA-D]-2K?*=0, 0<1I < —.
%

An outward normal is given by
@GA—D+ @ —DA—=2I), =2y —1)J, 4K) =n 4

in the order(Z, J, K). We similarly calculate the inner product of the norrﬁa{
with the tangent of the integral curves on this surface to yield

P (1,7, K)
n —— bl b
A dt

=H{[y+3-2y +DIJA-DA—yD + (y —1?J?°A-2D)} <0

in0 <1 < % because/? < I(1— 1) andy +3—2(y + 1)I > O andy > 2.
Hence no solution leavels from this side either. O

We need to study the local structure of solutions near stationary points given
in formula (6.5). It is helpful to first describe solutions of (6.1)—(6.4) with data
uo =0, vo > 0, po > 0. Our far-field solutions (3.4), (3.5) can be written in terms
of I, J,K as

2,2
I = 5%vg,

J =svgy/1— szvg, (6.9)
K = sy p'(po),

valid fors € [0, s*] wheres* = 1/r*. These solutions are all in the surfade= 0,
and they all start from the origi/, J, K) = (0,0, 0) and end at points of the
stationary edge given by (6.5). As the initial Mach number

varies in(0, 0o), the ending points of the solutions cover all the interior points of
the stationary edge (6.5) exactly once. See Figure 6.1.

Now we study the structure of solutions near the stationary edge (6.5). More
precisely, letE denote the open set

E={UJK)CR}J=/I1-1), K=1-1,0<1<1 (610

which contains the interior points of the curve (6.5). Apparently the solutions of
(6.9) give one set of directions of integral curves for (6.1)—(6.3). The second set
of integral directions is given by the tangent directions of the stationary &dge
(6.10). By linearization, we find the third set of directions to be
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na= (21— D[2(y — DI — 1], —2(y + DJ (2l - 1),

(6.11)
—(1-D[2@y — DI — (v +3)])

whereJ = /I(1—I) and O< I < 1. Along this direction (6.11), we calculate

N

n3-nalp=20-DBGy —DI>— 42y + DI +y +3],  (6.12)

N

ns-np |y =—20—DY4y — DI?—2y1 +1], (6.13)

N

ns-np |, =20 DA 201+ 4D, (6.14)

Where;H is used to denote an outward normal to the surféce- (1 — I).
From now on we restrict ourselves to the case 2, and leave the other cases
y = 2 to a forthcoming paper. The formulae (6.11)—(6.13) can be simplified to

ns= @I — 1)1 -1),—6J, —5(1— 1)), (6.15)
ng-na |, =101 1)@l - 12 (6.16)
ny-np |y =-201- D2 - 12 (6.17)

So we find that:73 points into§23 for I € (% 1), and— 23 points into £23 for

I € (0, 5.

I\Eow2v)ve candepictthe integral curves insidg see Figure 6.1. Firstwe observe
thats is an increasing function aof inside £23, while J is an increasing function
oftif0 < I < % but changes to decreasing where (% 1). There are three
kinds of integral curves: the first kind consists of integral curves which go to the
stationary point1, 0, 0). Each of the second kind goes to a stationary point on the
curve given in (6.7). Each of the third kind goes to a stationary point on the curve
E with I € (O, %) given in (6.10). We mention in particular that no integral curve

from insides23 goes to a point o between% < I < 1 becausd is an increasing

function oft andﬁg is pointing towardg1, 0, 0) for % < I < 1. See the proof of
Lemma A.1 of the Appendix for a complete proof. Also there is no integral curve

from insides23 which goes to the poin®, 0, 1) becaus# is an increasing function
of rfor7 € (0, 3).

We now show how to continue each of the first and second kinds of solutions
further to construct global solutions for alke (0, co).

First we consider the second kind of integral curves ingddewvhich end on
the stationary curve (6.7). Sindé < 1 — I on (6.7), we find that the right hand
side of (6.4) does not vanish on (6.7). Thus> oo as the integral curves approach
(6.7) witht — oo. Hence these integral curves are already solutions in the entire
domains € (0, c0), i.e.,r € (0, c0).

For the first kind of integral curves which end @t 0, 0), we show thats
approaches finite values although- oo. Since the proof is long and tedious, we
put it in the Appendix to avoid interruption of our construction. We use the natural
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continuation of vacuunmp = 0 to extend our solutions til = co. The values of
u, v do not need to be specified in the vacuum.

We comment that solutions on the surfate = I(1 — I) starting from the
origin and ending on a point df with % < I < 1 can be continued through the
direction (6.15) inta23, and they go towardl, 0, 0) with finite terminals values.
The Appendix can be adapted trivially for this case and the further extension by
vacuum is valid also. It is interesting to note that for the initial data vo, o)
with ug = 0 andMgy > +/2, the corresponding solutions always end®vith
I > . The critical valueMo = +/2 yields a special solution that ends at the point
(1, J,K) = (3. 3. 3) with final s value given by* = 1/r*. This solution can be
continued by the constant solution J, K) = (3, 3, ) tos = co. Thus, we find
an explicit solution given by

u:%r’ U:%‘r, W:%r for 0 <r < r*, (618)

fory = 2anddatag = 0 andMq = /2. Itcan be seen from the relatidgh= 1— I
that a point ofE with % < I < 1lis a state whose radial velocityis greater than
the sound speed, and may be caltadially supersonic Similarly, a point ofE
withO < I < % is a state whose radial velocityis less than the sound speed, and

may be calledadially subsonicWe have found/g = +/2 to be a critical value in
the study of instability of vortex sheets; s&éaipa [7], and references therein.
For the third kind of integral curves which end on the upper halEofith
I e (0, %) we show that approaches finite values also. The proof is easy because

we have J 17
S S —
a7~ T2 (619
from the second equation of system (4.3). The right-hand side of (6.19) is nonsin-
gularfor(I,J,K) € Ewith0 < I < % Thuss is finite around any point of/
with0 < I < %
So we have constructed all solutions globally except those which eRdwth

1
0<1I<s3.

7. Inner-Field Solutions

We extend solutions that end @hwith0 < I < % in this section. We find that
these solutions go along the directiofmg given in (6.15) into the region between
A=0andB=0in0<1 < % andJ? > I(1— I), and eventually go to infinity.
The scaled variableks J, andK are not suitable for this portion of the solutions.

We restart from system (2.7) with data, v, p, r) satisfying the relation& :
K=1-TandJ?2=1@1—1)forl e (0, %) In terms of(u, v, p, r), these data
are in the form

ul,_, =8 v, =vVBa—-pB). V| _,=a—8 (1.1

wherea > 0 andg € (0, 3)) are arbitrary.
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We show that problem (2.7), (7.1) has solutigngr), v(r), p(r)) which also
vanish ag- — 0+. An asymptotic analysis can be performed a priori to determine
the orders at whicliu, v, p) vanish as= — 0+. This asymptotic analysis also
suggests using the scaled variables

r u v
R=—\ U=—n, V=—u—.
VD' (p) VD' (p) VD' (p)

For polytropic gasep(p) = A2pY, we can rewrite system (2.7) into a new form

(7.2)

du r—u dv uv dr  r(r—u) dw y—-1r—u
— = Y, —=-—A, —= A, —=t"—00
dt w3 dr w3 dt w3 dt 2 w?

(7.3)

wherew = ,/p’(p) andr is a parameter. In terms of the variables in (7.2), we find
that

dUu . y—1 -
— =(R-U)Y —T—UR-U)O = Ay,

dt 2

v - -1 -
C_uvi-YCvR-ub =0y, (7.4)
dt 2

dR -~ y-1 -

— =R(R-U)A—"—-R(R-U)O =B,

dt 2

whereA =1—(U—-R)?2 6 =V2-UR-U)and¥ = (R-U)O — UA.
System (7.4) is autonomous feU/, V, R). We find that the last equation in (7.3)
can be written as

dw y—1 ~

— =1 _(R-U)6. (7.5)

wdt 2

Sow can be integrated from (7.5) on¢#, V, R) are obtained from (7.4). The
corresponding data of (7.1) for (7.4) and (7.5) are given by any stationary point
(U*, V*, R*, w*) satisfying

R —U*=1 V¥ =U* 0<2U"<R" (7.6)

w* > 0. (7.7)
After (7.4)—(7.7) are solved, we use the third equation in (7.3) to showrtigat
an increasing function of € R andr — 0 anda € (0, +00) ast goes toFoo
respectively.
We now study the problem (7.4) and (7.6). We claim that there exists a one-to-
one correspondence between the data (7.6) and the set

F={U,V,R|U=0, 0<V <+/2 R=0. (7.8)

The integral curves of (7.4) that connect the two sets provide the natural correspon-
dence. The sef consists of stationary points of (7.4) and corresponds to the point

(u,v,/p'(p),r) = (0,0,0,0).
We consider the domaif24 of points(U, V, R) in R2 given by

C1<0, B1>0, U>0, R>0 V=>0.

The domain is depicted in Figure 7.1 for = 2. We find thats2,4 lies in 0 <
R—-U <1landR > 2U.
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Figure 7.1. The domaire,

We first find all stationary points of (7.4) in the closug. They are given in
(7.6), (7.8) and the set

G={U,V,RR=2U, V>°=2-U? 0<U < 1}. (7.9)

Then we observe that; > 0 in £24. The regions24 has five edges, three of them
are stationary points given in (7.6), (7.8) and (7.9). The fourth édge 0, V =
0, 0 < R < 1is a solution to (7.4). The fifth edge is ordinaty: = 0, V2 =
2(l—R%,0<R <1

We show that all integral curves of (7.4) on the surface2afenter2, ast
increases. The surfac® = 0 is given more explicitly by

(R—U)V2—U2—(R-U)] =0. (7.10)

An outward normal may be found to be
ne= (V242 (R—U)>+2U(R-U), —2V(R—U), —V2—2U(R - U)).
(7.11)

The components of the vector are in the ordér V, R). We calculate the inner

product ofﬁcl with the tangent vector of any integral curve on the surface- 0
to yield

ey - j—T(U, V, R) = A1[V2+2—(R—U)?+2U(R—U)]+B1[-V?—2U (R-U)].
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OnC1 = 0 we find
Ar=R-D[(R-U)O —UA] - 3U6
=1(R-U)R -20)6,

B1=R(R-U)[A - }6]

= iR(R —U)(R - 20)0,

2U
and so B R
2= Zoncy=0. (7.12)
A1 U
Thus d
ney (U, V, R) = —(R = U)(R - 20)6 (R —U)?> <0
since
& =V2—UR-U)= = U[2U—U(R—U)2—U(R—U)]
- 2-(R-U?—-(R-U)]>0
T R-U

onC1 = 0. Sointegral curves of (7.4) on the surf#te= 0 enter2,4 ast increases.
The surfaceB; = 0 is given more explicitly by

V242U - R?>-UR-U)—-2=0. (7.13)
Its outward normal is

n p,= (6U —5R, 2V, 4R — 5U). (7.14)

We calculate the inner product of the outward nonﬁ@i with the tangent vector
of any integral curve on the surfad = O:

- d
npy (U, V. R) = A1(8U — 5R) +2C1V.

OnB; = 0, i.e., whered = 6, we find that
~ RN\ -~
Ar=(R—U)R—-2U0)0, Cyi= V(U _ E)@’
O@=V?>—UR-U)=2[1—(R-U)] > 0.
Thus
N d -
ny (U V.R) = (R = 20)O[(R — U)(BU — 5R) - V2]
T
= (R —2U)O[-3(R — U)? - 2]
= —(R-2U)O[B(R-U)’+2] <O0.

So integral curves do not exi24 from By = 0.
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Integral curves on the surfaéé = 0 enterf24 ast increases since
A1l ,_o=R?*V?>0 forR>0, V>0

We have thus proved that any integral curve that starts in@idemains in2,4 for
all positiver.

We now linearize the system (7.14) at its stationary point8.dfor any point
(U, V,R) = (0, Vp, 0) of F from (7.8), we find

0 0 0
9(A1, C1, B1) . 1,3 1,3
W‘(O’ Yo.00 |:V0 +0§ VO g _ZOVO . (19

But (7.15) has no nonzero eigenvalue so that the Center Manifold Theorem [5]
yields only the trivial conclusion. By introducing the new variables

U
X=— 7.16
R (7.16)
andt’ such that
dt’ = Rdr, (7.17)
we can rewrite (7.4) as
dXx
== X)[V2(1—-X)—2X + X(1 - X)?R?, (7.18)
dv 1
- = XV[1—(1-X)°R? — SVa- X)[V2 - X1 - X)R?, (7.19)
T
R 1
% =RA1-X){1-(1-X)°R?>— E[VZ—X(l—X)RZ]}. (7.20)
T
We are interested only in stationary points of (7.18)—(7.20) given in the form
R=0, V%1-X)=2X, (7.2
or more explicitly:
R=0 X=-2" v=v2a (0<a<1, (7.22)
1+a

which correspond to points d@f from (7.8) on theV axis with directions pointing
into the regions24. We find that the linearization of (7.18)—(7.20) at any point
(X, V,R) = (Xo, Vo, 0) of (7.22) has the matrix form

-2 2Vo(1 — Xo)? 0 X — Xo
Vo+ 3V¢ —2Xo 0 , V= Vo (7.23
1%
0 0 (1— Xo) (1 — 7‘)) R

We compute the eigenvalues to yield

A =0, A2 = —2(1+ Xo), k3= (1— Xo)(1— 3V2). (7.24)
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So the linearized system has a solution along the dire¢tigrv/, R) = (0, 0, 1)
corresponding to the eigenvalug > 0. We conclude that our system (7.18)—
(7.20) also has a solution which goes along the direatdonV, R) = (0,0, 1) as
7’ increases from’ = —oo, by the Center Manifold Theorem [5]. From (7.16),
(7.17), we further conclude that there exists a solution from any point of (7.8) which
goes along the directiol} = 1%~ onthe plane/ = +/2a, 0 < a < 1, ast leaves
—o0. It can be verified by direct computation (which we omit) that those solutions
all go into £24.

Our final purpose is to show that for each point on (7.6), there exists a point on
F of (7.8) from which a solution originates and goes ii2g to end at the point
of (7.6). We can show easily that if the point éhis close to the origin, then the
solution remains close to the-axis and ends at a point on (7.6); this is becalise
is a decreasing function d@t.

We now show that the ratid/ R along a solution inf24 is an increasing function
of R. In fact we know that any solution originating fromgoes intos24. We can

estimate the derivative
du _ A1

i 7.2
dR B1 (7.29)
in £24. Notice thatdA1 > 0, By > 0in £24, and
dU  (R-U)0 —uA—-3iU6
dR " R(A-36)
(7.26)

%:(ZR —3U)-2U

5
r(2-%)
The last expression is an increasing function®fA for fixed R, U, such that
R = 2U. Observe that if24 we haveC1 < 0, i.e.,

2] 2U
-2 . 7.2
iZR_U (1.27)
We use (7.27) in (7.26) to derive
dUu
— 2 UR
dR ~
which yields
d (U
—(=]=z0. (7.28
dR \ R
If initially %|R:0 = 1o and*a — } the final point of the solution cannot
be on (7.6) withR* < 2, since’s = £-1 = L < 1. So the solutions from

points of F (close to the end poiril/p, Vo, Ro) = (O, V2, 0)) will end up either at
(U, R*) = (1, 1, 2) or a point of G. By the same token, no solutions fraéhcan
go into£24 and end up on (7.6) becau%é = % onG.

We omit the proof that solutions originating fromchange continuously if24.
Thus each point on (7.6) has a solution going to a poirft dfiroughs2,.
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8. Conclusions

We summarize our results. By a weak solution to the two-dimensional Euler
equations (2.1) we mean abounded vector fungtion, p) satisfying the equations
in the sense of distributions. Since we deal with only continuous weak solutions in
this paper, we do not mention any other requirements such as the Rankine-Hugoniot

relation or entropy conditions. Set
N

v P'(po)

which is consistent with previous versionsif.

Mo

Theorem. For any datum(ug, v, po) Withug = 0andpg > 0, there exists a weak
solution (u, v, p) to the initial-value problen{2.1) and (2.5)whenp(p) = Ap?
for any constantd, > 0. The solution is continuous fer> 0 and is self-similar
and axisymmetric. It takes on initial data almost everywhere andﬁjp for any
g > last — 0+. Furthermore,

(i) If vo = 0, then the solution exists even for the more general pressure-density
relation p(p) = A2p? foranyy > 1 and is such thabt = O for all time¢ > 0.
There exists a critical valug/ (y) such that the solution i€*-smooth for alk > 0
if Mo = M(y); see Figure 5.3.

If My > M(y),thenthe density and the radial componemntof the velocity are
increasing functions of the spatial radiudor fixed timer > 0. The solution has a
vacuum regiorp = 0 near the spatial origin for alt > 0. It is smooth beyond the
vacuum and continuous everywhere. The edge of the cone of the vacuum is given
byr = u*t whereu™ is the speed of radial velocity at the edge arfd< uo.

If Mg < M(y), then the density and the radial component of the velocity
are also increasing functions of the spatial radiugor any fixed timg > 0. The
solution has a cone near the spatial origin where the density p* = constant
andu = 0. The side of the cone is given by= ,/p’(p*)t. The solution is smooth
except at the edge of the cone, where it is only continuous.

0 * X

Figure 8.1. A solution(u, v, p) vs. the x-axis at timet = 1 whenu, = 0 and

M0>«/§.
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The critical valueM (y) has an upper bound

NZ
-1

(i) If ug = 0, thefirst piece of the solution is given explicitly by the forn{Gld)
nearr = oo. If My > /2, the second piece is given by the ordinary differential
equation(4.3)with direction(6.11) see Figure 8.1. The radial and pure rotational
components and the density function of the solution are increasing functions of the
spatial radius in the regionu™*t < r < r*t wherer* is given by(3.5)andu** > 0
is the radial velocity at the inner end of the second piece. The third piece is the
vacuump = 0 with domain0 < r < u**z. There is no pure rotation at the edge of
the vacuum.

If Mo = +/2, the second piece is given explicitly by form(8al8) see Figure
8.2.

If Mo < +/2, the second piece is given by the ordinary differential equation
(7.4), (7.5)with two-point boundary valugd.6) and(7.8); see Figure 8.3.

M(y) <
14

u
v
p 7
r L
7/
7/
, Vo
7 *
’ u
7/
7/ 1
7/
7/
7/
p M
// u
0 r* X

Figure 8.2. A solutior(u, v, p) vs. thex-axis at timer = 1, whenMy = /2, up = O. It
is an explicit solution.

u
%
p
p
Po
Vo
! v
: *
L u
u
*
0 r X

Figure 8.3. A solutior(x, v, p) vs. thex-axis at timer = 1 whenu, = 0 andM, < /2.
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(i) For the casaip > 0, pp > 0 andvg + O, depending on the parameters
1o Lo ) the solution can be globally smooth, contain a region of vac-

< 1P (0)” AP (o)

uum as in caséii) with Mo > /2, or contain an inner piece of solutions ()
with Moy < v/2.

Appendix. Finiteness of the Parametes at Point (1, 0, 0)
We show that the parameterapproaches a finite value as an integral curve
approaches the stationary poidt O, 0) in £23 defined in Section 6.

Lemma A.1. For any integral curve that ends &t, O, 0) of the systen(6.1)—(6.4)
from inside the domaits, there exists am € (0, 1) such that the integral curve
is inside the cylinder

Co=J2—¢I(1-1)<0 (A1)

when itsI component is n(% 1).

Proof. We chooses € (0, 1) such that the integral curve is inside the cylinder

J? < eI(1— 1) atthe special point = % For thise, we show that integral curves

on the surface of the cylinde® = 1 (1 — I) inside$23 in the portion/ € (% 1)
are all going into the cylindef? < 1 (1—I). We first calculate an outward normal
to the cylinder/2 = ¢1(1— I) to be

Ne= (—e(1—2I),2J,0).

We then calculate the inner product of the norrﬁalwith the tangent direction of
any integral curve on the cylindeg = eI (1 — 1)

~ d
ne .E(], J, K)|12:81(1—1)

=—e(1-2N)1—D[IL-1)21A+¢e) — 21K

+2eI1— D=2 -[1—1)?—K?
=el(1-2D)1—D{—Q+e)A—D?+2K?+2(1—1)>—2K?)
=e(l—e)I(1-D31-2I) <0forl e (3,1).

Hence the chosen integral curve remains inside the cyliddet /(1 — I) in
Ie (% 1). This completes the proof of Lemma A.1.

Lemma A.2. For any integral curve that ends &t, 0, 0) of the systen(6.1)—(6.4)
in the domain2s, there are three numbetse (0, 1), 8 € (2, oo), and[ € (% 1)
such that the integral curve is inside the cylind&r < 0 and below the surface

Bs=(1—-DJ2+1(1-1)?-BIK>=0 (A.2)

whenI € (I, 1).
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Proof. We first compute an outward normﬁlg to the surfaceBg = 0:
np= (BK2— (1 —D?+2I1(1—1)+ J? —2(1—1)J, 2BIK).

We calculate the inner product of th'?s,g with the tangent vector of any integral
curve on the surfacBg = 0:

~ d
ng .d_T(I, J, K)|Bﬁ:o

=[BK?— Q- D?>+2[1—1)+J?
A=D{A-D’T+ 1 -1)?-2IK?
—2Q-DJ*A-2D[A-D?— K’ +BIK’(1-1)
Ty =DJI? =y —DIA-1)+ 21— 1)?> - 2K?]

= [21(1 D+ %12}(1 —1)? (1 - %) [J2+1(1-1)]
+2(1- D21 - 21)1213—1][12 —(B-DIA-1)]
+A-D?[J2+11- 1)];
: { [(y -~ %(1— 1)} 72—y -Dra-n
+2 (1— %) I(1— 1)2}.
Rewriting the last expression in the form of a polynomialofive obtain

~ d
ng .E(I, J, K)]Bﬁ=o

= 14{%(1 —1)? <1— %) + ﬂ—z}(l — D% -2I)

(1-1)? 2
+— [(y—l)[—ﬁ(l—l)}}

2 2
12{21 1—13(1——> 1_13<1__>
+ a-n 3 +@-1 5

- 2’6Tf1(1 —-D31-2na-1)3 [(y -1 — E(1 — 1)}

B

+2(1—%) (1—1)4—<y—1>1<1—1)3} +
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+21%1-D* (1 - %) —(y=DI’A-D*+2 (1 — %) I(1—1)°

1—1)?
BTGNP [B(y — 1) —2]1}

Bl
121—13[41<1—5> 1—5}
+ J( ) B + 8

+1(1—1)4[21 (1-%) —(y—l)I—l—Z(l—%) (1—1)].

We find that both coefficients of* and J2 are positive wherg > 2, y > 2, and
I e (% 1). Hence in the regiof’; < 0, we find that

~ d
ng .E(L Ja K)|B,e:0’cﬁ<0

2
< %1(1— DMB -2+ [B(y — 1) — 211

1 4
11—14[41(1——> 1——]
+¢el( ) 5 + 5

21 1
+1 1—14[——— —11+2(1——)}
( ) 5 (y—D 5

:](1—1)4{82 [1—§+<y—1—§) 1:|+481 <1—%)+e—%

2 1
—\=-+y-1)I+2(1--
(ﬂ v > ( ﬂ>}
=I1(1-D*F(e, B, 1,y)

whereF denotes the expression in the braces.

We needF to be negative nedr = 1 for somes > 0, 8 > 2, andy = 2. For
any fixed integral curve that goes to the paiit0, 0), we first choose € (0, 1)
so that the integral curve lies inside < O for 7 > % Fix thise. We calculate the

value of F at the extreme poing = 2:
F(e,2,1,2) = 2] —1)e+1—2I
=@ -1E-1) <0 forle(31).

SinceF is a continuous function afg, 1) near the point2, 1), we conclude that
there exists ai € (3, 1) such thatF (e, 8, 1,2) < Oforall I € [I, 1) wheng is
close to 2. Sincé8g = 0 is close toB = 0, we can choose & > 2 such that the
integral curve lies belowBg = 0 at/ = I. This integral curve remains under the
surfaceBg = O for all I > I because of the sigh < 0. This completes the proof
of Lemma A.2.
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Theorem A.3.The parametes is finite for any integral curve of6.1)—(6.4)that
goes to the pointl, 0, 0) inside £23.

Proof. We find from the first equation of (4.3) that

I I1l-1)—J?
sd—:21—(1—1)( ) —J

s aA-n2-&% A9

The right-hand side of (A.3) is a decreasing functionkdt in 3. Any integral
curve that goes t¢l, 0, 0) remains inC, < 0 andBg > 0 for I close to 1. So for
I close to 1 we find that

IA-1)—J?
(1— %) 1A-12-1a-nJ2

dl
s— > 2 —(1— DI
ds

1A-D-J> BB —2I%1-1)
B-—DIA-1)—J2 =2 =Bl B-—DIA-1)—J2
(A.4)

=2I—1IB

The very last expression of (A.4) is an increasing functioigfso we further find
by usingJ?2 > 0 that

BB -2
-1

Thus it can only take a finite amount ofor I to reach 1.

dl g —2
_> - =
s Z@= Pl + 1l

Acknowledgemenie appreciate helpful discussions witfni-PinG Liu and SHIH

HsieN Yu. This work of Yuxi ZHENG is supported by NSF DMS-9303414 and the
Alfred P. Sloan Research Fellows award and the workofkG ZHANG is supported by

the National Fundamental Research Program of State Commission of Science and Tech-
nology of China and NSFC.

Note added in proof-or polytropic gases with non-quadratic pressure-density laws, shock
wave solutions as well as continuous solutions have since been constructed; see the book
Two-dimensional Riemann Problems for Systems of ConservationtdyaWsxi ZHENG

to be published by Birk&user in 1999 or 2000.
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