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Abstract

Consider the hyperbolic system of conservation laws F (1), = 0. Letu be
the unique viscosity solution with initial conditian0, x) = i(x), and letu® be
an approximate solution constructed by the Glimm scheme, corresponding to the
mesh sizex\x, At = O(Ax). With a suitable choice of the sampling sequence,
we prove the estimate

|u@, ) = u@, )| 1 = oD - VAx|In(Ax)|.

1. Introduction

The aim of this paper is to investigate the rate of convergence of approximate
solutions obtained by the Glimm scheme, in connection with the Cauchy problem

u +[Fw], =0, (1.1

u(0, x) = u(x), 1.2

for a nonlinearN x N system of conservation laws in one space dimension. We
assume that the system is strictly hyperbolic and that each characteristic field is
either linearly degenerate or genuinely nonlinear [14].

Following [4], we assume that the system (1.1) generatgaradard Riemann
semigroupln other words, there exists a continuous semigr{(ﬂ,lpt > 0}, defined
on some domaif’ c L1 containing all integrable functions with sufficiently small
total variation, with the following properties:

(i) For some Lipschitz constauit,

Si—So|,SL-la—vl,, Vi, oeZ, t=0. (1.3)
L1 L
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(i) If & € & is piecewise constant, then for- 0 sufficiently smallS; i coincides
with the solution of (1.1), (1.2), which is obtained by piecing together the
standard self-similar solutions of the corresponding Riemann problems.

The existence of a standard Riemann semigroup was proved in [1, 3] for certain
N x N systems with coinciding shock and rarefaction curves and in [7] for general
2 x 2 systems. The construction of a standard Riemann semigroup in the general
N x N case is outlined in the survey paper [5]. Details will appear in [6].

If a standard Riemann semigroup exists, then it is necessarily unique (up to
the domainZ) and its trajectories can be characterizedvssosity solutions
according to the definition introduced in [4]. Moreover, any weak solution of (1.1),
(1.2) obtained in the limit by a wave-front-tracking algorithm, or by the Glimm
scheme, coincides with the corresponding semigroup trajecterysS;u.

We now give a brief description of the scheme 6fLimM [8]. Consider an
open set2 € RV containing the origin, and lef : € — RY be a smooth
map whose Jacobian matrik(u) = DF (1) hasN real and distinct eigenvalues
A(u) < --- < An(u). By possibly performing a linear change of coordinates in
the(z, x) plane where the solution of (1.1) is defined, it is not restrictive to assume
that

O<xu) <1 Vi=1...,N, ueQ. (1.4)

To construct an approximate solutiehof the Cauchy problem (1.1), (1.2), choose
mesh length&\r = Ax = ¢, and let(6;),>o be a sequence of numbers within the
interval [0, 1]. On the initial strip 0< ¢ < ¢, the functionu? is the exact solution
of (1.1) with initial condition

u®(0,x) =i ((j +6o)e) if je <x<(j+De.

Now assume that® has been constructed for § ¢+ < le. Then, on the strip
le £t < (I+ 1)e, u® is the exact solution of (1.1) with starting condition

u®(le,x) =u’(le—, (j +0)e) if je <x < (j+De.

By induction, using suitable a-priori bounds on the total variation, the approximate
solutionu® can be defined for atl = 0.

Repeating this construction with the same valgidsut letting the mesh size
tend to zero, one obtains a sequence of approximate soluiiQhs-1. By com-
pactness, there exists a subsequence which converges to some limit funiction
Llloc' If the value9); are uniformly distributed, it was proved in [11] thais a weak
solution of (1.1), (1.2). We recall that the seque®& >g is uniformly distributed
on [0, 1] if

' 1 n—1
lim |2 — - IZ; Xy @) =0 ¥i e[0.1], (1.5)

Where)([0 3 denotes the characteristic function of the interval\0 In order to

obtain estimates on the convergence rate of approximate solutions, we now intro-
duce an assumption on the rate at which the limits in (1.5) are attained, uniformly
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with respect tor. Following [13], for 0 £ m < n, the discrepancyof the set
{0, ...,6,_1} is defined as

1
Dy, ,, = sup (A — o). 1.6
= Sup D X ® (16)

m<l<n
In Section 3 we explicitly construct a sequeriég,>q such that

1+In(n—m)

n—m

Dyp,=C- Vn>m2=21 1.7

for some constar@. When these particular valuesare used in the Glimm scheme,
estimates can be given on the rate of convergence of approximate solutions in the
LY norm.

Theorem 1.Let (6;),>9 be a sequence of numberg[ih 1] satisfying(1.7). Given
any initial conditioniz with small total variation, let«(, -) = S;u be the unique
viscosity solution ofl1.1), (1.2) and letu® be the corresponding Glimm approxi-
mation with mesh size’sx = At = ¢, generated by the sampling seque®g >g.
Then, for evenf” = 0, -

e—0 \/E| In &l

The limit(1.8)is uniform with respect t@, as long adot.Var.(i) remains uniformly
small.

=0 (1.8)

Remark 1.n the case of scalar conservation laws with random, uniformly dis-
tributed sampling B. LUcCIER proved in [12] that the expected erronin satisfies

E(||u€(t) _ u(t)“Ll) = 0(1) - Ver - Tot.Var(a). (1.9)

The estimate (1.8), on the other hand, corresponds to a deterministic choice of
the sampling valueg;. With this same deterministic choice, similar results were
obtained in [10] in the case of scalar equations.

Remark 2Let S : & x [0, oo[ = & be a standard Riemann semigroup for (1.1).
Letu® : [0, T] — & be a piecewise continuous approximate solution, with jumps
atthetimesO=1 <1 <--- <t, < T.Inview of (1.3), the difference between
u®(T) and the exact solutiom(T) = S,u of (1.1), (1.2) can be estimated by

|uf (@) — ()| L S LY [uf @) —u )]
=0

T I3 — S u
+L-f (Iimsup |t ) = Sy (t)”'-l)dt,
0

n—0+ n

(1.10)
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with the convention that®(0—) = u. In [4], bounds of the form (1.10) were
effectively used to estimate the convergence rate of approximate solutions generated
by wave-front tracking. For solutiong generated by the Glimm scheme, however,

the bound (1.10) is of little help. Indeed, in this case the integral term vanishes
identically, but the quantity

n
Z |t (t14) — Ma(ll—)”Ll
1=0
T/e

=Y [uttet) —utte)| 4

=0

T/e oo

:Z Z /(j+l)s

=0 j=—00 /¢

ut (le—, x) — ut (le—, (j +91)8)‘ dx

does not approach zero as> 0.

The proof of Theorem 1 is based on the analysislofP. Liu [11]. We first
subdivide the interval [OT], inserting points 0=t < 1 < --- < t, = T.On
each subinterval; = [, t;+1], a key lemma in [11] shows that the elementary
waves in an approximate solution can be partitioned so that their speeds and sizes
can be traced. Ou;, the error

E, = ”us(fiJrl) - Sz,- _,l.“g(ti)HLl

+1
comes from two different sources:

(i) Errors in the speeds assigned to wave fronts.
(ii) Errors due to the interactions and cancellations of waves.

If t; = me, t;11 = ne, then the difference between the exact speed and the average
speed assigned to a wave front by the Glimm scheme is estimated by (1.6). To
reduce the size of errors of type (i), it is thus convenient to choose the intervals
J; suitably large. On the other hand, the new waves generated by interactions and
the waves which disappear due to cancellations cannot be traced over the whole
time interval ;, t;1+1]. The size of these errors of type (ii) can be reduced only by
choosing the intervalg; suitably small.

As ¢ — 0, it is convenient to choose the asymptotic size of the interyals
in such a way that the errors in (i) and (ii) have approximately the same order of
magnitude. In particular, the estimate (1.8) will be obtained by chodsing~

Je-In|lng|.
2. Equidistributed Sequences
The aim of this section is to explicitly construct certain equidistributed se-

quences of points in [A] whose discrepancies, defined at (1.6), approach zero
sufficiently fast.
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Proposition 1. For every integer = 2 there exists a sequend® ), >o such that

Dm,n g

2r—2 |:1+ In(n —m)

] VYn>m21 2.1
Inr

The proof is given in several steps.

1.Letr = 2 be given. Every integetr = 0 can be uniquely written as a sum of
powers ofr:

k=ko+kir+--+kyrM, 0<k <r—1 (2.2)
In connection with (2.2) we then define

. ko k1 ky
9k=7+r—2+"'+rM+l

€ [0, 1]. (2.3)

We claim that the sequencé);>o defined by (2.2), (2.3) satisfies (2.1).

2.Foranyintegerjg=m <[; < --- <[, =n,

Ly P

i1 —1;

Dm,n § Z ﬁ . Dlj,ljJrl' (24)
j=0

Indeed, for every. € [0, 1] we have

1
‘x - D Ko@)

nom m<l<n
p—1
liiq—1; 1
g ! L. ‘)\' - Z X[O Al (QV)
‘ n—m liy1—1; ,
j=0 liSr<ljy
p—1
li+1 =1
s n— "Dy
j=0

3. As the integetk ranges over the half-open intervatf, (i + 1)r*[, the set of
the corresponding valuég has the form

j kot kM . .
for suitable integers,,, ..., ky € {0,...,r — 1}.

LetA € [0, 1] be given. Observe that, by (2.5),

DY Xou® =4

ir“<k<(@i+1)rv

if and only if
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ke k
Ae[qr + 8, —+ﬂ[ (ﬂ=rd+1+---+rM—"il>.

Hence,
‘A_ |1
<=

ro

SinceA was arbitrary, this yields

1
Dire (i41)re = — . (2.6

r(X
4.Now letn > m = 0 be given. Letxr = 0 be the largest integer such that

Ly =[ir®, G+ Lr*[ C [m,n] 2.7

for somei. Clearly, Ing )
nn—m

Inr
Denote byS, = {l;.a; i € 7y} the family of all intervals for which (2.7) holds.
By the maximality ofx, there can be at most2- 2 such intervalg; .

Next, call S,_1 = {Il-’o,_l; i€ (%,_1} the family of all intervals of the form
Iig—1=T[ir*"t, (i + 1)r*~[ which are contained inside the set

[m’ I’l[ \ U Ii,ot .
i€ Ty

Observe that no more tham 2 2 such intervals exist.
By inductionong € {a,« — 1, ..., 1,0}, let

Sp={lip: i€ T}
be the family of all intervals of the form

lig= [lrﬁ i+ 1)r’3[
which are contained inside the set

[m,n[ \ U U Iig.

B'=p+1 ie 75/

a Slog,(n —m) = (2.8)

Once again, observe that no more than-22 such intervals can exist.

5. Call D(1; g) the discrepancy of the s@; I € I; g}. By (2.6) we haveD(I; )
< r~P. From (2.4) and (2.8) it now follows that

mnfz Z— D(Ilﬂ)<2(2r_

B=0ie 7
< <1+ In(n—m)> 2r—2’
Inr n—m

proving (2.1).
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3. Some Basic Notations

In the following, we callA(x) = DF(u) the N x N Jacobian matrix of at
u, and denote by, (u), I;(w), r;(u),i = 1,..., N, its eigenvalues and left and
right eigenvectors, respectively. The parametrizelock and-rarefaction curves
through a state € Q are denoted by

o Si(o)(w), o Ri(o)(w).
Given two nearby states™, u™ € R", the Riemann problem with initial data

u- if x <O,

3.1
ut if x>0 S

u(0,x) = {

is solved by determining the intermediate stai®s..., oy and wave sizes
o1, ..., oy such that

wo=u",...,0; = ¥ (@) (@i-1), ..., o8 = Yn(oN)(@N-1) =uT. (3.2)
Here the functiong; are defined as

Si (o) if o <O,

Ri(o) if o >0. 3.3

1Pi(G):{

Let nowu : R — R" be a piecewise constant function, with jumps at the points
xy. Call 0; o the size of the-th wave generated by the Riemann problemyat
The total strength of waves mand the potential for future wave interactions are
defined respectively as

V) =Y loial, Q= Y oiaojl,
ha ((i,@),(j,B)E 2

where the second sum ranges over all pairs of approaching waves.
If u® = u®(t, x) is an approximate solution generated by the Glimm scheme
with step sizes\r = Ax = ¢, for everyr = 0 we write

V) =V (@), 0m =0 ).

A fundamental estimate of5LiMMm [8, 14] shows that there exists a constéiat
independent of such that the function

t=>V(@)+CoQ@) =7() (3.9
is non-increasing, for all approximate solutions with sufficiently small total varia-

tion. Moreover, forany given < 7/, the total amount of interaction and cancellation
taking place on the intervat[z’] can be estimated a8(1) - [Y'(r) — T ()]
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4. Piecewise Constant Approximations

Throughout this paper we are concerned with an approximate soltfticon-
structed by the Glimm scheme, with mesh sizgs= Ax = ¢, corresponding to
the sampling sequence);>q. It is convenient to redefing inside the open strips
lie, (i + e[ xR as follows:

ut(ie, x) if r € [ie, (i +De[, x€]je+1—ie (j+De],
ult ) = uf((i + De,x) ift €[ie, ( +De[, x€]je, je+1—ic],
4.1)
wherei = m, ...,n andj € Z. Observe that the functianis piecewise constant

in the (¢, x)-plane, and all of its jumps travel with speed 0 or 1. Moreavef u®
atall timest = ie,i € Z.

For fixed integers & m < n, we consider the time intervat [ t'] = [me, ns]
and seek an estimate on the difference

|ut @',y =S, __u(@ ), (4.2)

According to Remark 2, this quantity cannot be directly estimated by the formula
(1.10). We thus need to introduce an auxiliary piecewise constant funetien
w(t, x), with w(z, -) = u(z, -), and split (4.2) as the sum of two terms:

Jue’, ) —w@, )|+ w@' ) =S, __w@ ), (4.3)

The idea behind the constructionwfcomes from [11]. In the solutiom obtained
by the Glimm scheme, at every no@e&\r, j Ax) the outgoing waves can be parti-

tioned into primary waveﬁ,’j (i, j) and secondary wave:g (i, j). A primary wave
originates at time and can be traced all the way up#o The changes in its size
and speed can be carefully estimated. On the other hand, secondary waves are those
produced by interactions occurring after timeor waves which disappear before
timet’ due to cancellations. Their total strength can be bounded in terms of the total
amount of interaction and cancellation occurring within the time intervak(].

Relying on this decomposition, we construct a piecewise constant approximate
solutionw = w(z, x) on the strip f, /] x R with the following basic property.
For every primary wave im, there exists a corresponding wave frontupfvith
the same initial and final position, having constant strength and travelling with
constant speed (see Fig. 1). This construction implies that the first term in (4.3) is
small, because it only accounts for the strengths of secondary waves. The second
is estimated by using (1.10).

After a brief overview, we now turn to details. Cﬂ]f(w), S, (w) respectively
the positivek-rarefaction curve and the negativeshock curve through the state
. Consider again the approximate solutioin (4.1) determined by the Glimm
scheme with mesh sizest = Ax = . Suppose that the pair of stateg_1, uz)
determines a shock or a rarefaction wave inkttle characteristic family, at the node
(ie, je). In case of a shock, we choose any vectaysys, ..., v € S, (uk-1),
with yo = ur_1, yi = ug, AMc(yn) < Ax(yp—1) foreveryh =1,2,...,1, and set
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t=T’
........... u£
— W
At
t=t
Fig. 1.
hye oo\ hye oo\
v, j) =yn —yn—1, A, J) = Ap(ug—1, ug).
If (ux—1,ux) is a k-rarefaction wave, we choose vectors, y1, ..., y €

R (ug—1), With yo = ug—1, yi = uk, e (yn) > Ai(yp—1) foreveryh = 1,2, ..., 1,
and set
VG, ) = vh = Y-t MG ) = A (n-)-

In this second case we require that
|Ae(yn) — n-1)| S & (4.4)

and, to make sure that,’j (i, j)} is not partitioned further at= (i + 1)e, we also

require that
biv1 & JMOn-1), O, h=12,...,L (4.5)

The strengtho]' of elementary wavey is defined as follows. Ifui_1, uy) is a
k-shock andy;, = Sg(sp)(uxk—1),h =1,...,1, we set

olf‘ =Sy — Sh—1. (4.6)

The same definition (4.6) is valid ifuz—1, ur) is a k-rarefaction andy, =
Ri(sp)(ug—1). For 0SS m < n we write

AYypn = V(u(ms, -)) + COQ(u(me, ~)) — V(u(ns, ~)) — CoQ(u(ne, -)). 4.7

We recall that, with a suitable choice of the const@gtthe total amount of wave
interaction and cancellation on the time intervals[ ne] can be estimated as
O) - ATy

Proposition 2. There exists a partition of elementary wa»{eé? @, j, kZ(i, j)}
which satisfieg4.4)—(4.6)and, moreover{v (i, j), A7 (i, j)} is a disjoint union
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~ ~ :h
of {3G, j), AtG, j)} and {ﬁZ(i,j),Ak(i,j)}, so that, for evenyi € {m,m +

1,...,n},

> ||5Z(i,j)“ =01) - AT yn, (4.8)
h,j.k

and there is a one-to-one correspondence betwfgtim, j), A¥(m, j)} and
[0k, j), MG, )
{Bm, ). A, )} <= TG i) MG L)} (4.9)

such that the strengthii’ and the speedis”k of the corresponding waves satisfy

3 ( max |5/ (m. j) — &G, l(i,j,h,k))|) = 01) - ATy, (4.10)

<<
hjk M=

~h N “h,. o _Th .
%(imm,m max (3G L) 3 om. )]) .
=0() ATpn.

Roughly speaking, the correspondence (4.9) means that the pﬁ)}('mnj) of the
k-wave issuing from the nodeie, je) travels along an approximate characteristic
(see [9]) and reaches the node, I; j ;. k) e) attimer = is.

The construction of the elementary waves and of the bijection (4.9) was carried
outin the proof of Lemma 3.2 in [11]. Retracing the argument in [11], we see that
the elementary wave”#j have the additional properties:

(P1) If at the node(me, je) the wave(uy, ux—1) is a shock, then there exists at
most one primary wavé’,j (m, j) issuing from this node.

(P2) The maf4.9)is order-preserving. More precisely, among the/aves present
at a fixed time = i¢, define the ordering

v, j) < vl G, j) ifandonlyif j < j or j=j andh <h'. (412

Then the corresponden¢£.9), mapping the primarg-waves at time = me
onto the primaryk-waves at time = i¢, preserves the orderin@.12)

On the strip £, /] x R we now construct a piecewise constant function=
w(z, x) with the following properties. Atthe initial timewe havew(z, 1) = u(z, -).
For each primary wavé,f (m, j) originating from the nodénce, je) and eventually
reaching the nodéns, [(,,j n.1)€), the functionw has a jump along the segment
joining these two nodes. The left and right states across this jump determine a
k-wave of constant strengﬁf(m, j). Let{I',} be the collection of all segments
constructed above, and Iftig, x5)} be the set containing all points where two of
the segmentE,, intersect, together with all nodése, j¢), with j integer. The set
of jumps ofw consists of the segmeniy, together with the lines

Tp={t,x); telip tl, x=3x+21—1ip)
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________________________

AX 2A X X
Fig. 2.

In analogy with the wave-front tracking algorithm [2], we refer to the segnigpnts
andI'g as wave fronts of order 1 and of order 2, respectively.

The construction ofv goes as follows (Fig. 2). At the initial time= me we set
w(me, x) = u(me, x). To definew in a neighborhood of a given nodes, je¢), for
eachh, k we consider the primary wavl{f(m, j) issuing from(me, je) and look
atthe corresponding nodes, [, ; n.1)¢) reached by this wave at time= ne. The
slope of the segment joining these two nodes, given by

Ay = M (4.13)
n—m
can be regarded as the average speed of the wave front. Gadl j) andu™ (m, j)
respectively the values af(z, -) on the left and on the right d@fne, je). Define the
auxiliary state

w*(m, j) = wN(Z&x(m, j)) o-- -owl(z&f(m, j)) (u=0m, j)), (414
h h

Where&,f are the strengths of the primary waves, defined as in (4.6). In a neighbor-
hood of the nodéme, j¢), the functiorw has wave fronts with strengtlﬁ$ (m, j),
travelling with the speed@j (j) in (4.13). These fronts connect the statewith u*.

In turn, the states* andu™ are connected by a non-physical wave front travelling
with speed 2, located on the line= je + 2(t — me). Observe that the strength of
this jump can be estimated by

[ m. j) —u=m, | £ 1Y |G pm. ), (4.15)

h.k
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for some constanf;. The piecewise constant functian can now be prolonged

up to the first time where two wave fronts interact. At a time- me where an
interaction occurs, the new Riemann problem is solved without changing the size
and the speed of any wave front of order 1. This can be accomplished by introducing
an artificial wave front of order 2, travelling with speéd= 2. More precisely, let

(7, %) be a point in the, x)-plane where two incoming fronts interact. Call,

u® andu® respectively the left, middle and right states before the interaction time.
Assume that the jumpg:’, u") and (1%, u*) have strengths’, o and travel with
speeds., A, respectively.

Case 1Both incoming waves have order 1.

The Riemann problem is then solved in terms of three outgoing wave fronts. If
u® = Y (o")u” andu® = Y (o)u?, then forr > 7 the solutionw contains the four
states

W, ut = Yo, wt =y (eHut,  ub
The three jumps separating these states travel with speed<?, respectively. The
strength of the jumpu**, %) is estimated by

™ — u®| < Coloa’). (4.16)

Case 20ne of the incoming waves has order 2.

The Riemann problem is then solved in terms of two outgoing wave fronts.
If u* = yr(o)u®, then forr > 7 the solutionw contains the three states,
u* = Y. (o)u’, u®. The two jumps separating these states travel with spee2is
respectively. The size of the junip*, u*) is estimated by

lu* —uf| < C3|U||ub — u”’. (4.17)

Remark 3In the above construction, it may happen that two primary (rarefaction)
wavesv,i’, v,ﬁ" start from the same node:, j) at timet = me and reach the same
node (n, j,) at timet = ne, With j, = Iy jnk) = Lo, jw .- One should thus
consider also the case where two or more elementary wavesdrrespond to the
same front ofw. To avoid this additional technicality, we change the speed of some
of the wave fronts inv by an arbitrarily small amount, so that this situation does
not happen. In the same way, we can assume that, in the constructigreeéry
interaction involves exactly two incoming wave fronts. All these interactions then
fall within the two cases described above. Indeed, all waves of order 2 travel with
the same speetl= 2 and never interact with each other.

We conclude this section with some estimates, for later use. Referring to the
decomposition in elementary waves described in Proposition 2, we say that the
two primary wavesif' (m, j), 9 (m, j') cross each otheduring the time interval
Ime, nelif j < j', k> k' andl, jnxy 2 L, jr, 0. ky- By CW we denote the set of
all pairs of crossing waves. Moreover, we say that two negative waves of the same
family 6 (m, j), 5} (m, j') join togetherduring the time intervalie, ne] (thus
forming a single shock) i < j andi(, j n.x) = L, j".i.1)- By JS we denote the
set of all pairs of joining shocks. Observing that the total amount of interaction
during the intervalihe, ne] is O(1) - AT, ,, from (4.10) we deduce that
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> |6t em, & m, jH| = 0Q) - ATy, (4.18)
cw
> |6k, HEl m, j)| = 0Q) - ATy (4.19)
JS

For bookkeeping purposes, it is convenient to relabel the various jumps in
We denote by x, (-); « € .22U.7 } the set of first-order wave fronts. Each front is
classified as a rarefaction or a shock depending on itssiziés speed i, = xq.
The set of second-order (non-physical) wave fronts is wri{tag(-); B e N }
By construction, all these fronts travel with spegd= 2. Their strength is defined

op(1) = |Aw(r, xg(0)| = |w(t, xp(t) +) — w(t, xp(t) — )| .

Lemma 1.At every time € [z, 7], the total strength of waves in of order2 is

V= S |aw(txs0)] = Y opt) = OL) - ATy, (4.20)
Be N Be A"

Proof. For eachg € .7, let (13, xg) be the initial location and leig (73) be the
initial strength of the corresponding wave front. FFos 1g, it follows from (4.17)
that

0(1) < op(ip) - exp{Ca Y loul}.
where the summation extends to all wave frontgof order 1) which cross the front
xg during the intervali, r]. Since the total strength of all such waves is uniformly
bounded, for some constafif we have

D opt) S Ca Y oplip) Vielr 7). (4.21)
Be N Be N

We now split the sum on the right-hand side of (4.21), considering separately those
waves which originate at time and those which are generated by the interaction
of two (first-order) wave fronts at some time > 7. Recalling (4.15) and (4.16),
then (4.8) and (4.18) we conclude that

Z og(tp) + Z og(1p)

1=t tg>1
zh . - o~ R .
<C1 Y |6rm D+ C2Y ][5 m, & m, jH|  (4.22)
h,j.k cw
=0Q) - ATmn-

Together, (4.21) and (4.22) yield (4.20)a
From (4.18) and (4.20) we also obtain

Lemma 2. For eacha € .22 U.¥, call Q, the total amount of waves i that
cross the linex, (-) over the intervalz, t’]. Then

> 10ulQa = O) - ATy, (4.23)
o€ RU.S
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5. The Key Estimates

We begin this section by estimating the second term in (4.3)z fet me,
v/ = ne.

Proposition 3. The mag — w(, -) from[me, ne] into L1 is Lipschitz continuous.
Moreover,

ISt—mye wime, ) = wine, )|,

14+ In(n —m) (5.1

n—m

=0@1)- [ATm,n + + 8](11 —m)e.

Proof. The first assertion clearly holds becawsbas bounded variation and all of
its jumps travel with speed 2. Using (1.10) we deduce that

|Str—mye wime, ) —wne, )|

lim sup
e n—0 n

gL'fM H&wmo—wa+mohlm_ (5.2)

Denote byx, (-) the lines of discontinuity ofv and let¥;.72, ./ (shock, rarefac-
tion, non-physical) be respectively the set of indieesorresponding to waves of
negative strength, positive strength and to second-order waves. The constant speeds
of these fronts are writteky, = x4 (7).

Assume that at timeno interaction takes place. Then, as in [4, p. 214], we can
find p > 0 such that

lim sup “ Sﬁw(t* ) —w(t + i .)HLl
n—0+ n

) 1 X (1) +p
=limsup ) —f |S,w(t)(x) — w(t + n, x)| dx.
=0+ e upu g T EO=p

(5.3)

Call w(xq—) andw(x,+) respectively the left and right limits ab(z, -) atx =
xq (). Concerning the non-physical wave frontaugfby (4.20) forp > 0 small we
have

Xo (1) +p

2:%/‘ |Syw()(x) — w(t + 1, x)| dx

a(t)—p

=Y 0 [wet) — wa—)| = O1) - ATy .

ae N

ae N

(5.4)

Next, consider the case € . U.#2. For somek,, o, we thus havev(x,+) =
Vi, (04)w(xq—). Assume that the jump, (-) of w corresponds to the primary wave
U (m, j) in u, having strengtls/" (m, j) = o,. Of course, we must have= kg,
je = xq(me). By construction, the speéq, = x, satisfies
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_ #lie i <n, 6; <AG LG
Fu = {1 m<isn, 0; S (G (l'j’h’k))}, 55)

n—m

where # denotes the cardinality of a set. By the assumption (1.7),

_ Lo 1+In(n—
Fu 2 min 3Gl ) — € 2
m<i<n ¢ n—m
1+ In( ) (56)
_ ~ nn-—m
he S max )»Z“ @l jni) +Cr ——.
m<iln ¢ n—m
From (4.11) and (5.6) we deduce that
- ~ ) 1+In(n —m)
Y loallhe =R (m, = 0)- [Mm,n | 67

ae S U2

If the statesw™, w™ are joined by &-shock, we denote by, (w~, w™) the speed
of this shock, determined by the Rankine-Hugoniot equations. As usuab,)
denotes thé-th characteristic speed at the pointRecalling the definition 06,
in Lemma 2, by construction we have the estimates

‘ii’a(m, Jj)— kka(w(xa—), w(xq + ))‘

=0()- (Z |§Za(m,j)| + Qa), (5.8)
h

32, n. ) =, ()| = O - Qa (5.9)
valid for @ € . and fora € .72, respectively. In the case e . we now have

1 Xa(1)+p
_/ 1S, w(t) @) — wit + 7, x)| dx
n Xa(t)—p

=0 - oal| M, (w(xa—), w(xa+)) — Aq|
= 0V - [oal {2, (w(xam), w(xab))
=3 on P+ [ on ) = e}
Therefore, from (5.8) and (5.7), using (4.8) and (4.23) we deduce
X (1)+p

1
> —/ |S,w(@®)(x) — w(t +n, x)| dx
wesr T/ xa®=p (5.10)

= 0() - |:ATm,n + w} )

n—m

Finally, in the caser € .72, we have
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1 [*a®O+p
—/ |Syw(®)(x) — w(t +n, x)| dx
n Xq(t)—p

= 0 - [oul{ [, (wxa =) = T + ol
=0()- |oa|{|xka(w(xa—)> — X m, )|+ AL (m, ) — R + |aa|}.

Recalling thato,| < ¢, from (5.9) and (5.7), using (4.23) we deduce

1 Xq (£)+p
Z —f |S,w(@®)(x) — w(t +n, x)| dx
wer | Jra®=p (5.11)

—0()- |:ATm,n + 1+InG —m) + 8] .

n—m

Using (5.2) and estimating the right-hand side of (5.3) by means of (5.4), (5.10)
and (5.11), we finally obtain (5.1).0

In the remainder of this section we seek an estimate on the first term in (4.3).
The basic strategy is as follows. For everyto estimate the differenqa(r’, y) —
w(t/, y)| we look at the behavior of the functionsandw along the segment

ry={@x); x=y+20-1), rel 71} (5.12)

By constructiony = w at the initial point ofl", i.e., wherr = 7. Since both: and

w are piecewise constant in tfe x)-plane, we can evaluate the quantiti€s’, y),
w(t’, y) by keeping track of the wave fronts which cross the segriigrduring
the interval f, t']. Observing that no wave front a# of order 2 ever crosses the
line Iy, setting

o=u(t,y—2(t' =) =w(r,y —2t' — 1))
and recalling (3.3) we can write

u(t', y) = Ypuy (o) 0 - - - 0 Yp1y (01) (@),
() Op rD) /l (5.13)
w(t’, y) = Yyw)(0y) o - 0 Yy (o) (@),
for suitable wave strengths,, o/, and indicegp (), g(«) € {1,..., N}.

In order to compare the two quantities in (5.13), two technical lemmas are
needed:

Lemma 3.Letw, o’ be connected to a given staleby a sequence of waves
0 = Ypu) (1) 0 ... 0 Yp) (o) (@) = Ol V(i) (01) (@),
@ =Yg (0y) 0. 0 Yg) (0D(@) = Of_1¥q(j) (0))(D).

Assume that there exists a nondecreasing, surjective gnap{1,..., u} —
{1, ..., v} suchthatp(i) = g(¢(i)) for all i. Then

(5.14)
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oj — E or

¢@)=j

w—a/|=0(1).z<

j=1

+ ) |o~,-m|>, (5.15)

il
P(H)=¢p()=j

provided that the total strength of waves, measured biy;| + > |oj/|, remains
uniformly bounded.

Proof. For j =1, ..., v, consider the intermediate states
0; = (Optr-5 Yo ) o ( Ofy Yy @))) @),
Clearly,wo = w, w, = o’. Hence
%
o —o'| £ lwj — w1l (5.16)
j=1
To estimate each term on the right-hand side of (5.16), define
. j—1 _
o = (O vy (@) @)

Assume that (i) = j for those indice$ such thatx(j) < i < B(j). By assump-
tion, p(i) = ¢(j) for all such indices. Therefore, standard interaction estimates
yield

o = wj-11 £ C - Yy @@ — ( OLL ) g (@0 @)

B()) (5.17)

IS IEAEY |Ui0i’|},

i=a(j) ali<i'<p

<c|

for some constants, C’, as long as the total strength of waves remains uniformly
bounded. Using (5.17) in (5.16) we obtain (5.155

Lemma 4.Let¢ be a permutation of the set of indicfs . . ., v}. Assume that

w = wp(v)(av) 0:-+0 Iﬂp(l) (01)(®), (5.18)

" = Ypp) (Opm) 0+ 0 Upp ) (0p1) (@)

Then, aslong as the total amount of waves remains uniformly bounded, the following
estimate holds:

lo—o'|=01)- Y  loigjl, (5.19)
(i.j)e®
where
&={G. 0 i<j. ¢G>}

Proof. We construct a chain of permutatiogs, . .., ¢, with h = #&, ¢ = Id,
¢n = ¢, such that eachy, is obtained fromp;_1 by switching the position of two
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adiacent elements. More precisely, we choose the intermediate permutatims
that, setting

& = {(i, BDyoi<j, éi@) > ¢1(j)},
we have
G =&-1U G ), =1

for some pair of indices;, j;). Calling

@1 = Yp(gr(v) (O v) © -+ + © Yp(gy (1)) (g (1) (@),

we now have

h h
o' — o] =l — w0l £ |or — -1l £ C oy,
=1 =1

for some constant. This yields (5.19). O
Proposition 4. The first term in(4.3) satisfies the estimate

|une, ) — w(ne, -)||L1 =01 - AYyn(n —m)e. (5.20)

Proof. Recall that the function, defined at (4.1), is piecewise constant inther)-

plane, and all its jumps travel with speed 0 or 1. More precisely, the elementary wave

v (i, j)issuing fromthe nodée, je) reaches eithe(i +1)e, je) or ((i+1e, (j+

1)¢), depending on whether its spekf;ii, J)is < 0;41 0r = 0,41, respectively.
Consider any poiny € R, not coinciding with one of the nodegg or with a

point reached at time’ by a second-order wave front in. By our construction,

there is a one-to-one correspondence between the primary wave franthian

crossT", and the fronts (of order 1) i that crossI'y on the interval {, t'].

Denote byC (y) the set of all wave fronts ab which crosd",. The strengtla, of

any such front is constant in time. By construction, it coincides with the strength

6,5’ (m, j) of the corresponding wave front ofat the initial timer = t = me. Call

&) = 6,? (i, I, j,n.K)) the strength of the corresponding wave fronk it the time

t € [ie, (i + De[when it crosse§’,. Set

o=w(y), o =uly),

o=u(r, y—2'—1)=w(r, y—2(t' - 1)).

We then have a representation of the form (5.13). Observe that, in this case, the two
guantities in (5.13) may differ because:

() The strengths of the waves,, 5, may be different.

(i) The order in which two primary wave fronts of and w crossI', may be
inverted.

(iit) Two primary shocks int may first collapse into a single shock, then crbgs

(iv) The secondary wave fronts inwhich crosd”, have no counterpart iw.



Error Bounds for a Deterministic Version of the Glimm Scheme 173

t=mAt

D> keo----a,

X 2A X X

Fig. 3.

The cases (ii) and (iii) are shown in Fig. 3. Using Lemma 4 to estimate the contri-
butions due to (i), and Lemma 3 to estimate the contributions due to (i), (iii) and
(iv), we obtain

u@',y) —w@ | 2C- 1D |ow =&+ D loaow|

C) CW(y)
(5.22)
zh . .
+ Z |owoy | + Z |O’k(l,])| .
JS(y) (edY)

In (5.21), the first sum is over all wavesinwhich crosd", the second is over all
pairs of waves inw that cross each other and also crbss The third sum ranges
over all pairs of negative primary wavesiirthat join together and also croks,
while the fourth sum ranges over all secondary wavesthmat crosd", during the
interval [, ']. We now observe that

* For any waver € . U.%, the set of points for which the linex, (-) crosses
I'y during the intervaliie, ne] is an interval of lengthe 2(n — m)e.

~h _ L
* If 9, (i, j) is any secondary wave front i issuing from the nod€@e, j¢), then
it can reach eithef(i + 1)e, je) or ((i + De, (j + De). In both cases, the set
of pointsy € R such thatl", crosses such a wave front is an interval of length
< 2e.

Integrating (5.21), we thus obtain
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f (e, y) — w(@', y)|dy

<cC- {Z(n —m)e Z‘ ( max |6 (m, j) — [ (i, l(i,.,,h,k))|)

ik m<i<n
- (5.22)
+2(n —m)e Z |owoy | +2(n — m)e Z |owoy|
cw JS
zh, . .
+ 2¢ Z |O’k(l,J)|}.

i,Jh.k

Because of (4.10), (4.18), (4.19) and (4.8), each of the above terms is estimated by
O) - ATy n(n — m)e. This yields (5.20). O

6. Proof of Theorem 1

Let T, e > 0 be given, say witll'" = me + ¢’ for some integern and some
¢’ € [0, ¢[. In connection with a constart > 2¢ (whose precise value will be
specified later), we construct a partition of the interval#@] into finitely many
subintervals/; = [, t;11], inserting the points; = m;¢ inductively as follows.
Setmg = 0. If the integersng < m1 < --- < m; < m have already been defined,
then

(i) If Y(mie) — T ((m; + De) < 8, letm;41 be the largest integef /m such that
(mix1—mj)e < sandY (mie) — Y (miy16) < 6.
(i) If T (m;e) — T((mi + 1)8) > §, definem; 1 = m; + 1.

Here 7 is the function in (3.4). Clearlyn, = m for some integen < m.
Call.7, .7’ respectively the set of indicédor which the alternative (i), (ii) holds.
Observe that, for some constary, the cardinalities of these sets can be bounded
by

C C
w7 <2 47 <=2, (6.1)
1) 1)
On each subinterval;, i € .7, we construct the auxiliary functiom as in the
previous sections. Using Propositions 3 and 4 withe[] = [m;&, m;11€], we
obtain an estimate of the form

|uGmisie) =S u(mie) |, 1

(mjt1—m;)e

14 In(miy1 —m;) (6.2

miy1 —mi

g Cs {ATmi,mH_l + + 8} (mjt1 —mj)e.

On the other hand, on each intend&lwith i € .77, the Lipschitz continuity of
u : [0, T] — LT implies that

|uGmisie) =S u(mie)| , < C7ltiyr — 1) = Cre.  (6.3)

(mjt1—m;j)e
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In view of the Lipschitz property (1.3) of the semigroup, the bounds (6.2) and (6.3)
yield

|utne) =Sau©] ,

v—1
< j - .
hS Z ‘S(,;,—m,-ﬂ)su(szrlE) S(M_mi)gu(m,e)‘
i=0

v—1
g L- Z )u(mi+18) - S(m[_,_l—m,-)au(mig)‘ (64)
i=0
1+ In(mjyrr — m;
<LCs- Yy {A'fm,,mm+ (nivs = mi) +s}e(m,~+1—mi)
ie7 Mit1 = mi
+ LC7 Z E.
ie7’

By (6.1) and the choice ofi; 1 wheni € .7, from (6.4) we deduce that

|u®(T) =S,

C 5 C
SLCG-?S{SZ—i—e(l—Hng)—i-SB}+LC7-?58 65)

el in() (e )

for a suitable constantg. Since (6.5) is valid for every > 2¢, choosings =
8(¢) = /e -In|In¢| we finally obtain (1.8). O
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