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Abstract

Consider the hyperbolic system of conservation lawsut +F(u)x = 0. Letu be
the unique viscosity solution with initial conditionu(0, x) = ū(x), and letuε be
an approximate solution constructed by the Glimm scheme, corresponding to the
mesh sizes1x, 1t = O(1x). With a suitable choice of the sampling sequence,
we prove the estimate∥∥uε(t, ·)− u(t, ·)∥∥L1 = o(1) ·

√
1x
∣∣ ln(1x)∣∣.

1. Introduction

The aim of this paper is to investigate the rate of convergence of approximate
solutions obtained by the Glimm scheme, in connection with the Cauchy problem

ut +
[
F(u)

]
x
= 0, (1.1)

u(0, x) = ū(x), (1.2)

for a nonlinearN × N system of conservation laws in one space dimension. We
assume that the system is strictly hyperbolic and that each characteristic field is
either linearly degenerate or genuinely nonlinear [14].

Following [4], we assume that the system (1.1) generates astandard Riemann
semigroup. In other words, there exists a continuous semigroup

{
St ; t = 0

}
, defined

on some domainD ⊂ L1 containing all integrable functions with sufficiently small
total variation, with the following properties:

(i) For some Lipschitz constantL,∥∥St ū− St v̄∥∥L1 5 L · ‖ū− v̄‖
L1 ∀ ū, v̄ ∈ D , t = 0. (1.3)
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(ii) If ū ∈ D is piecewise constant, then fort > 0 sufficiently smallSt ū coincides
with the solution of (1.1), (1.2), which is obtained by piecing together the
standard self-similar solutions of the corresponding Riemann problems.

The existence of a standard Riemann semigroup was proved in [1, 3] for certain
N ×N systems with coinciding shock and rarefaction curves and in [7] for general
2× 2 systems. The construction of a standard Riemann semigroup in the general
N ×N case is outlined in the survey paper [5]. Details will appear in [6].

If a standard Riemann semigroup exists, then it is necessarily unique (up to
the domainD ) and its trajectories can be characterized asviscosity solutions,
according to the definition introduced in [4]. Moreover, any weak solution of (1.1),
(1.2) obtained in the limit by a wave-front-tracking algorithm, or by the Glimm
scheme, coincides with the corresponding semigroup trajectoryt 7→ St ū.

We now give a brief description of the scheme ofGlimm [8]. Consider an
open set� ⊆ RN containing the origin, and letF : � 7→ RN be a smooth
map whose Jacobian matrixA(u)

.= DF(u) hasN real and distinct eigenvalues
λ1(u) < · · · < λN(u). By possibly performing a linear change of coordinates in
the(t, x) plane where the solution of (1.1) is defined, it is not restrictive to assume
that

0< λi(u) < 1 ∀ i = 1, . . . , N, u ∈ �. (1.4)

To construct an approximate solutionuε of the Cauchy problem (1.1), (1.2), choose
mesh lengths1t = 1x = ε, and let(θl)l=0 be a sequence of numbers within the
interval [0, 1]. On the initial strip 05 t < ε, the functionuε is the exact solution
of (1.1) with initial condition

uε(0, x) = ū((j + θ0)ε
)

if jε < x < (j + 1)ε.

Now assume thatuε has been constructed for 05 t < lε. Then, on the strip
lε 5 t < (l + 1)ε, uε is the exact solution of (1.1) with starting condition

uε(lε, x) = uε(lε−, (j + θl)ε) if jε < x < (j + 1)ε.

By induction, using suitable a-priori bounds on the total variation, the approximate
solutionuε can be defined for allt = 0.

Repeating this construction with the same valuesθl but letting the mesh sizeε
tend to zero, one obtains a sequence of approximate solutions(uν)ν=1. By com-
pactness, there exists a subsequence which converges to some limit functionu in
L1

loc. If the valuesθl are uniformly distributed, it was proved in [11] thatu is a weak
solution of (1.1), (1.2). We recall that the sequence(θl)l=0 is uniformly distributed
on [0, 1] if

lim
n→∞

∣∣∣∣∣λ− 1

n

n−1∑
l=0

χ
[0,λ]

(θl)

∣∣∣∣∣ = 0 ∀ λ ∈ [0, 1], (1.5)

whereχ
[0,λ]

denotes the characteristic function of the interval [0, λ]. In order to

obtain estimates on the convergence rate of approximate solutions, we now intro-
duce an assumption on the rate at which the limits in (1.5) are attained, uniformly
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with respect toλ. Following [13], for 0 5 m < n, the discrepancyof the set
{θm, . . . , θn−1} is defined as

Dm,n
.= sup
λ∈[0,1]

∣∣∣∣∣λ− 1

n−m
∑
m5l<n

χ
[0,λ]

(θl)

∣∣∣∣∣. (1.6)

In Section 3 we explicitly construct a sequence(θl)l=0 such that

Dm,n 5 C · 1+ ln(n−m)
n−m ∀ n > m = 1 (1.7)

for some constantC. When these particular valuesθl are used in the Glimm scheme,
estimates can be given on the rate of convergence of approximate solutions in the
L1 norm.

Theorem 1.Let (θl)l=0 be a sequence of numbers in[0, 1] satisfying(1.7). Given
any initial conditionū with small total variation, letu(t, ·) = St ū be the unique
viscosity solution of(1.1), (1.2), and letuε be the corresponding Glimm approxi-
mation with mesh sizes1x = 1t = ε, generated by the sampling sequence(θl)l=0.
Then, for everyT = 0,

lim
ε→0

∥∥uε(T , ·)− u(T , ·)∥∥L1√
ε| ln ε| = 0. (1.8)

The limit(1.8)is uniform with respect tōu, as long asTot.Var.(ū) remains uniformly
small.

Remark 1.In the case of scalar conservation laws with random, uniformly dis-
tributed sampling,B. Lucier proved in [12] that the expected error inL1 satisfies

E
(∥∥uε(t)− u(t)∥∥

L1

)
= O(1) · √εt · Tot.Var.(ū). (1.9)

The estimate (1.8), on the other hand, corresponds to a deterministic choice of
the sampling valuesθl . With this same deterministic choice, similar results were
obtained in [10] in the case of scalar equations.

Remark 2.Let S : D × [0,∞[ 7→ D be a standard Riemann semigroup for (1.1).
Let uε : [0, T ] 7→ D be a piecewise continuous approximate solution, with jumps
at the times 0= t0 < t1 < · · · < tn 5 T . In view of (1.3), the difference between
uε(T ) and the exact solutionu(T )

.= S
T
ū of (1.1), (1.2) can be estimated by

∥∥uε(T )− u(T )∥∥
L1 5 L ·

n∑
l=0

∥∥uε(tl+)− uε(tl−)∥∥L1

+L ·
∫ T

0

(
lim sup
η→0+

∥∥uε(t + η)− Sηuε(t)∥∥L1

η

)
dt,

(1.10)
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with the convention thatuε(0−) = ū. In [4], bounds of the form (1.10) were
effectively used to estimate the convergence rate of approximate solutions generated
by wave-front tracking. For solutionsuε generated by the Glimm scheme, however,
the bound (1.10) is of little help. Indeed, in this case the integral term vanishes
identically, but the quantity

n∑
l=0

∥∥uε(tl+)− uε(tl−)∥∥L1

=
T/ε∑
l=0

∥∥uε(lε+)− uε(lε−)∥∥
L1

=
T/ε∑
l=0

∞∑
j=−∞

∫ (j+1)ε

jε

∣∣∣uε(lε−, x)− uε(lε−, (j + θl)ε)∣∣∣ dx
does not approach zero asε→ 0.

The proof of Theorem 1 is based on the analysis ofT.-P. Liu [11]. We first
subdivide the interval [0, T ], inserting points 0= t0 < t1 < · · · < tν = T . On
each subintervalJi

.= [ti , ti+1], a key lemma in [11] shows that the elementary
waves in an approximate solution can be partitioned so that their speeds and sizes
can be traced. OnJi , the error

Ei
.= ∥∥uε(ti+1)− Sti+1−ti u

ε(ti)
∥∥

L1

comes from two different sources:

(i) Errors in the speeds assigned to wave fronts.
(ii) Errors due to the interactions and cancellations of waves.

If ti = mε, ti+1 = nε, then the difference between the exact speed and the average
speed assigned to a wave front by the Glimm scheme is estimated by (1.6). To
reduce the size of errors of type (i), it is thus convenient to choose the intervals
Ji suitably large. On the other hand, the new waves generated by interactions and
the waves which disappear due to cancellations cannot be traced over the whole
time interval [ti , ti+1]. The size of these errors of type (ii) can be reduced only by
choosing the intervalsJi suitably small.

As ε → 0, it is convenient to choose the asymptotic size of the intervalsJi
in such a way that the errors in (i) and (ii) have approximately the same order of
magnitude. In particular, the estimate (1.8) will be obtained by choosing|Ji | ≈√
ε · ln | ln ε|.

2. Equidistributed Sequences

The aim of this section is to explicitly construct certain equidistributed se-
quences of points in [0, 1] whose discrepancies, defined at (1.6), approach zero
sufficiently fast.
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Proposition 1.For every integerr = 2 there exists a sequence(θk)k=0 such that

Dm,n 5 2r − 2

n−m
[
1+ ln(n−m)

ln r

]
∀ n > m = 1. (2.1)

The proof is given in several steps.

1. Let r = 2 be given. Every integerk = 0 can be uniquely written as a sum of
powers ofr:

k = k0 + k1r + · · · + kMrM, 0 5 ki 5 r − 1. (2.2)

In connection with (2.2) we then define

θk
.= k0

r
+ k1

r2
+ · · · + kM

rM+1
∈ [0, 1]. (2.3)

We claim that the sequence(θk)k=0 defined by (2.2), (2.3) satisfies (2.1).

2. For any integersl0 = m 5 l1 5 · · · 5 lp = n,

Dm,n 5
p−1∑
j=0

lj+1− lj
n−m ·Dlj ,lj+1. (2.4)

Indeed, for everyλ ∈ [0, 1] we have∣∣∣∣λ− 1

n−m
∑
m5l<n

χ
[0,λ]

(θl)

∣∣∣∣
5
p−1∑
j=0

{
lj+1− lj
n−m ·

∣∣∣∣λ− 1

lj+1− lj
∑

lj5r<lj+1

χ
[0,λ]

(θr )

∣∣∣∣
}

5
p−1∑
j=0

lj+1− lj
n−m ·Dlj ,lj+1.

3. As the integerk ranges over the half-open interval [irα, (i + 1)rα[ , the set of
the corresponding valuesθk has the form{

j

rα
+ kα

rα+1
+ · · · + kM

rM+1
; j = 0, . . . , rα − 1

}
, (2.5)

for suitable integerskα, . . . , kM ∈ {0, . . . , r − 1}.
Let λ ∈ [0, 1] be given. Observe that, by (2.5),∑

irα5k<(i+1)rα

χ
[0,λ]

(θk) = q

if and only if
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λ ∈
[
q − 1

rα
+ β, q

rα
+ β

[
,

(
β = kα

rα+1
+ · · · + kM

rM+1

)
.

Hence, ∣∣∣∣λ− q

rα

∣∣∣∣ 5 1

rα
.

Sinceλ was arbitrary, this yields

Dirα,(i+1)rα 5 1

rα
. (2.6)

4. Now letn > m = 0 be given. Letα = 0 be the largest integer such that

Ii,α
.= [irα, (i + 1)rα[ ⊆ [m, n[ (2.7)

for somei. Clearly,

α 5 logr (n−m) =
ln(n−m)

ln r
. (2.8)

Denote bySα
.= {Ii,α; i ∈ Jα

}
the family of all intervals for which (2.7) holds.

By the maximality ofα, there can be at most 2r − 2 such intervalsIi,α.
Next, callSα−1

.= {Ii,α−1; i ∈ Jα−1
}

the family of all intervals of the form
Ii,α−1

.= [irα−1, (i + 1)rα−1[ which are contained inside the set

[m, n[ \
⋃
i∈Jα

Ii,α .

Observe that no more than 2r − 2 such intervals exist.
By induction onβ ∈ {α, α − 1, . . . ,1, 0}, let

Sβ
.= {Ii,β; i ∈ Jβ

}
be the family of all intervals of the form

Ii,β
.= [irβ, (i + 1)rβ [

which are contained inside the set

[m, n[ \
α⋃

β ′=β+1

⋃
i∈Jβ′

Ii,β ′ .

Once again, observe that no more than 2r − 2 such intervals can exist.

5. CallD(Ii,β) the discrepancy of the set{θl; l ∈ Ii,β}. By (2.6) we haveD(Ii,β)
5 r−β . From (2.4) and (2.8) it now follows that

Dm,n 5
α∑
β=0

∑
i∈Jβ

rβ

n−m ·D(Ii,β) 5
α∑
β=0

(2r − 2)
rβ

n−m ·
1

rβ

5
(

1+ ln(n−m)
ln r

)
2r − 2

n−m ,

proving (2.1).
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3. Some Basic Notations

In the following, we callA(u) = DF(u) theN × N Jacobian matrix ofF at
u, and denote byλi(u), li (u), ri(u), i = 1, . . . , N , its eigenvalues and left and
right eigenvectors, respectively. The parametrizedi-shock andi-rarefaction curves
through a stateω ∈ � are denoted by

σ 7→ Si(σ )(ω), σ 7→ Ri(σ )(ω).

Given two nearby statesu−, u+ ∈ RN , the Riemann problem with initial data

u(0, x) =
{
u− if x < 0,

u+ if x > 0
(3.1)

is solved by determining the intermediate statesω0, . . . , ωN and wave sizes
σ1, . . . , σN such that

ω0 = u−, . . . , ωi = ψi(σi)(ωi−1), . . . , ωN = ψN(σN)(ωN−1) = u+. (3.2)

Here the functionsψi are defined as

ψi(σ ) =
{
Si(σ ) if σ < 0,

Ri(σ ) if σ = 0.
(3.3)

Let nowu : R 7→ RN be a piecewise constant function, with jumps at the points
xα. Call σi,α the size of thei-th wave generated by the Riemann problem atxα.
The total strength of waves inu and the potential for future wave interactions are
defined respectively as

V (u)
.=
∑
i,α

|σi,α|, Q(u)
.=

∑
((i,α),(j,β))∈A

|σi,ασj,β |,

where the second sum ranges over all pairs of approaching waves.
If uε = uε(t, x) is an approximate solution generated by the Glimm scheme

with step sizes1t = 1x = ε, for everyt = 0 we write

V (t)
.= V (uε(t, ·)), Q(t)

.= Q(uε(t, ·)).
A fundamental estimate ofGlimm [8, 14] shows that there exists a constantC0
independent ofε such that the function

t 7→ V (t)+ C0Q(t)
.= Υ (t) (3.4)

is non-increasing, for all approximate solutions with sufficiently small total varia-
tion. Moreover, for any givenτ < τ ′, the total amount of interaction and cancellation
taking place on the interval [τ, τ ′] can be estimated asO(1) · [Υ (τ)− Υ (τ ′)].
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4. Piecewise Constant Approximations

Throughout this paper we are concerned with an approximate solutionuε con-
structed by the Glimm scheme, with mesh sizes1t = 1x = ε, corresponding to
the sampling sequence(θl)l=0. It is convenient to redefineuε inside the open strips
]iε, (i + 1)ε[×R as follows:

u(t, x) =
 u

ε(iε, x) if t ∈ [iε, (i + 1)ε
[
, x ∈ ]jε + t − iε, (j + 1)ε

]
,

uε
(
(i + 1)ε, x

)
if t ∈ [iε, (i + 1)ε

[
, x ∈ ]jε, jε + t − iε],

(4.1)

wherei = m, . . . , n andj ∈ Z. Observe that the functionu is piecewise constant
in the(t, x)-plane, and all of its jumps travel with speed 0 or 1. Moreoveru = uε
at all timest = iε, i ∈ Z.

For fixed integers 05 m < n, we consider the time interval [τ, τ ′] .= [mε, nε]
and seek an estimate on the difference∥∥uε(τ ′, ·)− S

τ ′−τ u
ε(τ, ·)∥∥

L1. (4.2)

According to Remark 2, this quantity cannot be directly estimated by the formula
(1.10). We thus need to introduce an auxiliary piecewise constant functionw =
w(t, x), with w(τ, ·) = u(τ, ·), and split (4.2) as the sum of two terms:∥∥u(τ ′, ·)− w(τ ′, ·)∥∥

L1 +
∥∥w(τ ′, ·)− S

τ ′−τw(τ, ·)
∥∥

L1. (4.3)

The idea behind the construction ofw comes from [11]. In the solutionu obtained
by the Glimm scheme, at every node(i1t, j1x) the outgoing waves can be parti-

tioned into primary waves̃vhk (i, j) and secondary waves˜̃vhk (i, j). A primary wave
originates at timeτ and can be traced all the way up toτ ′. The changes in its size
and speed can be carefully estimated. On the other hand, secondary waves are those
produced by interactions occurring after timeτ , or waves which disappear before
timeτ ′ due to cancellations. Their total strength can be bounded in terms of the total
amount of interaction and cancellation occurring within the time interval [τ, τ ′].

Relying on this decomposition, we construct a piecewise constant approximate
solutionw = w(t, x) on the strip [τ, τ ′] × R with the following basic property.
For every primary wave inu, there exists a corresponding wave front ofw with
the same initial and final position, having constant strength and travelling with
constant speed (see Fig. 1). This construction implies that the first term in (4.3) is
small, because it only accounts for the strengths of secondary waves. The second
is estimated by using (1.10).

After a brief overview, we now turn to details. CallR+k (ω), S
−
k (ω) respectively

the positivek-rarefaction curve and the negativek-shock curve through the state
ω. Consider again the approximate solutionu in (4.1) determined by the Glimm
scheme with mesh sizes1t = 1x = ε. Suppose that the pair of states(uk−1, uk)

determines a shock or a rarefaction wave in thek-th characteristic family, at the node
(iε, jε). In case of a shock, we choose any vectorsy0, y1, . . . , yl ∈ S−k (uk−1),
with y0 = uk−1, yl = uk, λk(yh) 5 λk(yh−1) for everyh = 1, 2, . . . , l, and set
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Fig. 1.

vhk (i, j) = yh − yh−1, λhk (i, j) = λk(uk−1, uk).

If (uk−1, uk) is a k-rarefaction wave, we choose vectorsy0, y1, . . . , yl ∈
R+k (uk−1), with y0 = uk−1, yl = uk, λk(yh) > λk(yh−1) for everyh = 1, 2, . . . , l,
and set

vhk (i, j) = yh − yh−1, λhk (i, j) = λk(yh−1).

In this second case we require that∣∣λk(yh)− λk(yh−1)
∣∣ 5 ε (4.4)

and, to make sure that{vhk (i, j)} is not partitioned further att = (i + 1)ε, we also
require that

θi+1 6∈
]
λk(yh−1), λk(yh)

[
, h = 1, 2, . . . , l. (4.5)

The strengthσhk of elementary wavevhk is defined as follows. If(uk−1, uk) is a
k-shock andyh = Sk(sh)(uk−1), h = 1, . . . , l, we set

σhk = sh − sh−1. (4.6)

The same definition (4.6) is valid if(uk−1, uk) is a k-rarefaction andyh =
Rk(sh)(uk−1). For 05 m < n we write

1Υm,n
.= V (u(mε, ·))+ C0Q

(
u(mε, ·))− V (u(nε, ·))− C0Q

(
u(nε, ·)). (4.7)

We recall that, with a suitable choice of the constantC0, the total amount of wave
interaction and cancellation on the time interval [mε, nε] can be estimated as
O(1) ·1Υm,n.

Proposition 2. There exists a partition of elementary waves
{
vhk (i, j), λ

h
k (i, j)

}
which satisfies(4.4)–(4.6)and, moreover,

{
vhk (i, j), λ

h
k (i, j)

}
is a disjoint union
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of
{
ṽhk (i, j), λ̃

h
k (i, j)

}
and

{ ˜̃vhk (i, j), ˜̃λhk (i, j)}, so that, for everyi ∈ {m,m +
1, . . . , n}, ∑

h,j,k

∥∥ ˜̃vhk (i, j)∥∥ = O(1) ·1Υm,n, (4.8)

and there is a one-to-one correspondence between
{
ṽhk (m, j), λ̃

h
k (m, j)

}
and{

ṽhk (i, j), λ̃
h
k (i, j)

}
:{

ṽhk (m, j), λ̃
h
k (m, j)

} ←→ {
ṽhk (i, l(i,j,h,k)), λ̃

h
k (i, l(i,j,h,k))

}
(4.9)

such that the strengths̃σhk and the speeds̃λhk of the corresponding waves satisfy∑
h,j,k

(
max
m5i5n

∣∣σ̃ hk (m, j)− σ̃ hk (i, l(i,j,h,k))∣∣) = O(1) ·1Υm,n, (4.10)

∑
h,j,k

(∣∣σ̃ hk (m, j)∣∣ · max
m5i5n

∣∣λ̃hk (i, l(i,j,h,k)) −λ̃hk (m, j)∣∣)
= O(1) ·1Υm,n.

(4.11)

Roughly speaking, the correspondence (4.9) means that the portionṽhk (m, j) of the
k-wave issuing from the node(mε, jε) travels along an approximate characteristic
(see [9]) and reaches the node(iε, l(i,j,h,k)ε) at timet = iε.

The construction of the elementary waves and of the bijection (4.9) was carried
out in the proof of Lemma 3.2 in [11]. Retracing the argument in [11], we see that
the elementary waves̃vhk have the additional properties:

(P1) If at the node(mε, jε) the wave(uk, uk−1) is a shock, then there exists at
most one primary wavẽvhk (m, j) issuing from this node.

(P2) The map(4.9)is order-preserving. More precisely, among thek-waves present
at a fixed timet = iε, define the ordering

vhk (i, j) ≺ vh
′
k (i, j

′) if and only if j < j ′ or j = j ′ andh < h′. (4.12)

Then the correspondence(4.9), mapping the primaryk-waves at timet = mε
onto the primaryk-waves at timet = iε, preserves the ordering(4.12).

On the strip [τ, τ ′] × R we now construct a piecewise constant functionw =
w(t, x)with the following properties. At the initial timeτ we havew(τ, ·) = u(τ, ·).
For each primary wavẽvhk (m, j) originating from the node(mε, jε) and eventually
reaching the node(nε, l(n,j,h,k)ε), the functionw has a jump along the segment
joining these two nodes. The left and right states across this jump determine a
k-wave of constant strength̃σhk (m, j). Let {0α} be the collection of all segments
constructed above, and let

{
(t̄β , x̄β)

}
be the set containing all points where two of

the segments0α intersect, together with all nodes(mε, jε), with j integer. The set
of jumps ofw consists of the segments0α together with the lines

0β
.= {(t, x); t ∈ [ t̄β , τ ], x = x̄β + 2(t − t̄β )

}
.
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Fig. 2.

In analogy with the wave-front tracking algorithm [2], we refer to the segments0α
and0β as wave fronts of order 1 and of order 2, respectively.

The construction ofw goes as follows (Fig. 2). At the initial timet = mε we set
w(mε, x) = u(mε, x). To definew in a neighborhood of a given node(mε, jε), for
eachh, k we consider the primary wavẽvhk (m, j) issuing from(mε, jε) and look
at the corresponding node(nε, l(n,j,h,k)ε) reached by this wave at timet = nε. The
slope of the segment joining these two nodes, given by

λ̄hk (j)
.= l(n,j,h,k) − j

n−m , (4.13)

can be regarded as the average speed of the wave front. Callu−(m, j) andu+(m, j)
respectively the values ofu(τ, ·) on the left and on the right of(mε, jε). Define the
auxiliary state

u∗(m, j) .= ψN
(∑

h

σ̃ hN(m, j)

)
◦ · · · ◦ψ1

(∑
h

σ̃ h1 (m, j)

)(
u−(m, j)

)
, (4.14)

whereσ̃ hk are the strengths of the primary waves, defined as in (4.6). In a neighbor-
hood of the node(mε, jε), the functionw has wave fronts with strengthsσ̃ hk (m, j),
travelling with the speeds̄λhk (j) in (4.13). These fronts connect the stateu− with u∗.
In turn, the statesu∗ andu+ are connected by a non-physical wave front travelling
with speed 2, located on the linex = jε+ 2(t −mε). Observe that the strength of
this jump can be estimated by∣∣u∗(m, j)− u−(m, j)∣∣ 5 C1

∑
h,k

∣∣ ˜̃σhk (m, j)∣∣, (4.15)
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for some constantC1. The piecewise constant functionw can now be prolonged
up to the first time where two wave fronts interact. At a timeτ > mε where an
interaction occurs, the new Riemann problem is solved without changing the size
and the speed of any wave front of order 1. This can be accomplished by introducing
an artificial wave front of order 2, travelling with speedẋ = 2. More precisely, let
(t̄ , x̄) be a point in the(t, x)-plane where two incoming fronts interact. Callu[,
u\ andu] respectively the left, middle and right states before the interaction time.
Assume that the jumps(u[, u\) and(u\, u]) have strengthsσ ′, σ and travel with
speedsλ′, λ, respectively.

Case 1:Both incoming waves have order 1.
The Riemann problem is then solved in terms of three outgoing wave fronts. If

u\ = ψk′(σ ′)u[ andu] = ψk(σ )u\, then fort > t̄ the solutionw contains the four
states

u[, u∗ .= ψk(σ )u[, u∗∗ .= ψk′(σ ′)u∗, u].

The three jumps separating these states travel with speedsλ′, λ,2, respectively. The
strength of the jump(u∗∗, u]) is estimated by

|u∗∗ − u]| 5 C2|σσ ′|. (4.16)

Case 2:One of the incoming waves has order 2.
The Riemann problem is then solved in terms of two outgoing wave fronts.

If u] = ψk(σ )u
\, then for t > t̄ the solutionw contains the three statesu[,

u∗ .= ψk(σ )u[, u]. The two jumps separating these states travel with speedsλ, 2,
respectively. The size of the jump(u∗, u]) is estimated by

|u∗ − u]| 5 C3|σ |
∣∣u[ − u\∣∣. (4.17)

Remark 3.In the above construction, it may happen that two primary (rarefaction)
wavesvhk , vh

′
k start from the same node(m, j) at timet = mε and reach the same

node(n, jn) at time t = nε, with jn = l(n,j,h,k) = l(n,j,h′,k). One should thus
consider also the case where two or more elementary waves inu correspond to the
same front ofw. To avoid this additional technicality, we change the speed of some
of the wave fronts inw by an arbitrarily small amount, so that this situation does
not happen. In the same way, we can assume that, in the construction ofw, every
interaction involves exactly two incoming wave fronts. All these interactions then
fall within the two cases described above. Indeed, all waves of order 2 travel with
the same speeḋx = 2 and never interact with each other.

We conclude this section with some estimates, for later use. Referring to the
decomposition in elementary waves described in Proposition 2, we say that the
two primary waves̃vhk (m, j), ṽ

h′
k′ (m, j

′) cross each otherduring the time interval
]mε, nε] if j < j ′, k > k′ andl(n,j,h,k) = l(n,j ′,h′,k′). By CW we denote the set of
all pairs of crossing waves. Moreover, we say that two negative waves of the same
family σ̃ hk (m, j), σ̃

h′
k (m, j

′) join togetherduring the time interval ]mε, nε] (thus
forming a single shock) ifj < j ′ andl(n,j,h,k) = l(n,j ′,h′,k). By JS we denote the
set of all pairs of joining shocks. Observing that the total amount of interaction
during the interval ]mε, nε] is O(1) ·1Υm,n, from (4.10) we deduce that
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∑
CW

∣∣σ̃ hk (m, j)σ̃ h′k′ (m, j ′)∣∣ = O(1) ·1Υm,n, (4.18)∑
JS

∣∣σ̃ hk (m, j)σ̃ h′k (m, j ′)∣∣ = O(1) ·1Υm,n. (4.19)

For bookkeeping purposes, it is convenient to relabel the various jumps inw.
We denote by

{
xα(·); α ∈R∪S

}
the set of first-order wave fronts. Each front is

classified as a rarefaction or a shock depending on its sizeσα. Its speed is̄λα
.= ẋα.

The set of second-order (non-physical) wave fronts is written
{
xβ(·); β ∈ N

}
.

By construction, all these fronts travel with speedẋβ = 2. Their strength is defined
as

σβ(t)
.= ∣∣1w(t, xβ(t))∣∣ .= ∣∣w(t, xβ(t)+ )− w(t, xβ(t)− )∣∣ .

Lemma 1.At every timet ∈ [τ, τ ′], the total strength of waves inw of order2 is˜̃V (t) .= ∑
β∈N

∣∣1w(t, xβ(t))∣∣ = ∑
β∈N

σβ(t) = O(1) ·1Υm,n. (4.20)

Proof. For eachβ ∈ N , let (t̄β , x̄β) be the initial location and letσβ(t̄β) be the
initial strength of the corresponding wave front. Fort > t̄β , it follows from (4.17)
that

σβ(t) 5 σβ(t̄β) · exp
{
C3

∑
|σα|

}
,

where the summation extends to all wave frontsxα (of order 1) which cross the front
xβ during the interval ]̄tβ , t ]. Since the total strength of all such waves is uniformly
bounded, for some constantC4 we have∑

β∈N
σβ(t) 5 C4 ·

∑
β∈N

σβ(t̄β) ∀ t ∈ [τ, τ ′]. (4.21)

We now split the sum on the right-hand side of (4.21), considering separately those
waves which originate at timeτ and those which are generated by the interaction
of two (first-order) wave fronts at some timet̄β > τ . Recalling (4.15) and (4.16),
then (4.8) and (4.18) we conclude that∑

t̄β=τ
σβ(t̄β)+

∑
t̄β>τ

σβ(t̄β)

5 C1

∑
h,j,k

∣∣ ˜̃σhk (m, j)∣∣+ C2

∑
CW

∣∣σ̃ hk (m, j)σ̃ h′k′ (m, j ′)∣∣ (4.22)

= O(1) ·1Υm,n.
Together, (4.21) and (4.22) yield (4.20).ut

From (4.18) and (4.20) we also obtain

Lemma 2. For eachα ∈ R ∪ S , call Qα the total amount of waves inw that
cross the linexα(·) over the interval]τ, τ ′]. Then∑

α ∈R∪S

|σα|Qα = O(1) ·1Υm,n. (4.23)
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5. The Key Estimates

We begin this section by estimating the second term in (4.3), forτ = mε,
τ ′ = nε.

Proposition 3.The mapt 7→ w(t, ·) from [mε, nε] into L1 is Lipschitz continuous.
Moreover,∥∥S(n−m)ε w(mε, ·)− w(nε, ·)∥∥L1

= O(1) ·
[
1Υm,n + 1+ ln(n−m)

n−m + ε
]
(n−m)ε.

(5.1)

Proof. The first assertion clearly holds becausew has bounded variation and all of
its jumps travel with speed5 2. Using (1.10) we deduce that∥∥S(n−m)ε w(mε, ·)− w(nε, ·)∥∥L1

5 L ·
∫ nε

mε

lim sup
η→0

∥∥Sηw(t, ·)− w(t + η, ·)∥∥L1

η
dt.

(5.2)

Denote byxα(·) the lines of discontinuity ofw and letS , R, N (shock, rarefac-
tion, non-physical) be respectively the set of indicesα corresponding to waves of
negative strength, positive strength and to second-order waves. The constant speeds
of these fronts are written̄λα

.= ẋα(t).
Assume that at timet no interaction takes place. Then, as in [4, p. 214], we can

find ρ > 0 such that

lim sup
η→0+

∥∥Sηw(t, ·)− w(t + η, ·)∥∥L1

η

= lim sup
η→0+

∑
α ∈S ∪R∪N

1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx.(5.3)

Call w(xα−) andw(xα+) respectively the left and right limits ofw(t, ·) at x =
xα(t). Concerning the non-physical wave fronts ofw, by (4.20) forη > 0 small we
have ∑

α∈N

1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx
=

∑
α∈N

O(1) · ∣∣w(xα+)− w(xα−)∣∣ = O(1) ·1Υm,n. (5.4)

Next, consider the caseα ∈ S ∪R. For somekα, σα we thus havew(xα+) =
ψkα (σα)w(xα−). Assume that the jumpxα(·) ofw corresponds to the primary wave
ṽhk (m, j) in u, having strength̃σhk (m, j) = σα. Of course, we must havek = kα,
jε = xα(mε). By construction, the speed̄λα = ẋα satisfies
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λ̄α =
#
{
i ∈ N ; m < i 5 n, θi 5 λ̃hk (i, l(i,j,h,k))

}
n−m , (5.5)

where # denotes the cardinality of a set. By the assumption (1.7),

λ̄α = min
m<i5n

λ̃
hα
kα
(i, l(i,j,h,k))− C · 1+ ln(n−m)

n−m ,

λ̄α 5 max
m<i5n

λ̃
hα
kα
(i, l(i,j,h,k))+ C · 1+ ln(n−m)

n−m .

(5.6)

From (4.11) and (5.6) we deduce that∑
α ∈S ∪R

|σα|
∣∣λ̄α − λ̃hkα (m, j)∣∣ = O(1) · [1Υm,n + 1+ ln(n−m)

n−m
]
. (5.7)

If the statesw−, w+ are joined by ak-shock, we denote byλk(w−, w+) the speed
of this shock, determined by the Rankine-Hugoniot equations. As usual,λk(w)

denotes thek-th characteristic speed at the pointw. Recalling the definition ofQα

in Lemma 2, by construction we have the estimates∣∣∣λ̃hkα (m, j)− λkα (w(xα−), w(xα + ))∣∣∣
= O(1) ·

(∑
h

∣∣ ˜̃σhkα (m, j)∣∣+Qα

)
, (5.8)

∣∣∣λ̃hkα (m, j)− λkα (w(xα−))∣∣∣ = O(1) ·Qα, (5.9)

valid for α ∈ S and forα ∈R, respectively. In the caseα ∈ S we now have

1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx
= O(1) · |σα|

∣∣λkα (w(xα−), w(xα+))− λ̄α∣∣
= O(1) · |σα|

{∣∣λkα (w(xα−), w(xα+))
− λ̃hkα (m, j)

∣∣+ ∣∣λ̃hkα (m, j)− λ̄α∣∣}.
Therefore, from (5.8) and (5.7), using (4.8) and (4.23) we deduce

∑
α ∈S

1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx
= O(1) ·

[
1Υm,n + 1+ ln(n−m)

n−m
]
.

(5.10)

Finally, in the caseα ∈R, we have
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1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx
= O(1) · ∣∣σα|{∣∣λkα (w(xα−))− λ̄α∣∣+ |σα|}
= O(1) · |σα|

{∣∣λkα (w(xα−))− λ̃hkα (m, j)∣∣+ ∣∣λ̃hkα (m, j)− λ̄α∣∣+ |σα|}.
Recalling that|σα| 5 ε, from (5.9) and (5.7), using (4.23) we deduce∑

α ∈R

1

η

∫ xα(t)+ρ

xα(t)−ρ

∣∣Sηw(t)(x)− w(t + η, x)∣∣ dx
= O(1) ·

[
1Υm,n + 1+ ln(n−m)

n−m + ε
]
.

(5.11)

Using (5.2) and estimating the right-hand side of (5.3) by means of (5.4), (5.10)
and (5.11), we finally obtain (5.1).ut

In the remainder of this section we seek an estimate on the first term in (4.3).
The basic strategy is as follows. For everyy, to estimate the difference

∣∣u(τ ′, y)−
w(τ ′, y)

∣∣ we look at the behavior of the functionsu andw along the segment

0y
.= {(t, x); x = y + 2(t − τ ′), t ∈ [τ, τ ′]

}
. (5.12)

By construction,u = w at the initial point of0y , i.e., whent = τ . Since bothu and
w are piecewise constant in the(t, x)-plane, we can evaluate the quantitiesu(τ ′, y),
w(τ ′, y) by keeping track of the wave fronts which cross the segment0y during
the interval [τ, τ ′]. Observing that no wave front ofw of order 2 ever crosses the
line 0y , setting

ω̄
.= u(τ, y − 2(τ ′ − τ)) = w(τ, y − 2(τ ′ − τ))

and recalling (3.3) we can write

u(τ ′, y) = ψp(µ)(σµ) ◦ · · · ◦ ψp(1)(σ1)(ω̄),

w(τ ′, y) = ψq(ν)(σ ′ν) ◦ · · · ◦ ψq(1)(σ ′1)(ω),
(5.13)

for suitable wave strengthsσα, σ ′α, and indicesp(α), q(α) ∈ {1, . . . , N}.

In order to compare the two quantities in (5.13), two technical lemmas are
needed:

Lemma 3.Letω,ω′ be connected to a given stateω̄ by a sequence of waves:

ω = ψp(µ)(σµ) ◦ . . . ◦ ψp(1)(σ1)(ω̄)
.= ©µ

i=1ψp(i)(σi)(ω̄),

ω′ = ψq(ν)(σ ′ν) ◦ . . . ◦ ψq(1)(σ ′1)(ω̄) .= ©ν
j=1ψq(j)(σ

′
j )(ω̄).

(5.14)

Assume that there exists a nondecreasing, surjective mapφ : {1, . . . , µ} 7→
{1, . . . , ν} such thatp(i) = q(φ(i)) for all i. Then
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|ω − ω′| = O(1) ·
ν∑
j=1

(∣∣∣σ ′j − ∑
φ(i)=j

σi

∣∣∣+ ∑
i |=l

φ(i)=φ(l)=j

|σiσl |
)
, (5.15)

provided that the total strength of waves, measured by
∑ |σi | +∑ |σ ′j |, remains

uniformly bounded.

Proof. For j = 1, . . . , ν, consider the intermediate states

ωj
.=
(
©φ(i)>j ψp(i)(σi)

)
◦
(
©j

l=1 ψq(l)(σ
′
l )
)
(ω̄).

Clearly,ω0 = ω, ων = ω′. Hence

|ω − ω′| 5
ν∑
j=1

|ωj − ωj−1|. (5.16)

To estimate each term on the right-hand side of (5.16), define

ω∗j
.=
(
©j−1
l=1 ψq(l)(σ

′
l )
)
(ω̄).

Assume thatφ(i) = j for those indicesi such thatα(j) 5 i 5 β(j). By assump-
tion, p(i) = q(j) for all such indices. Therefore, standard interaction estimates
yield

|ωj − ωj−1| 5 C ·
∣∣∣ψq(j)(σ ′j )(ω∗j )− (©β(j)

i=α(j) ψq(j)(σi)
)
(ω∗j )

∣∣∣
5 C′ ·

{∣∣∣σ ′j − β(j)∑
i=α(j)

σi

∣∣∣+ ∑
α5i<i′5β

|σiσi′ |
}
,

(5.17)

for some constantsC,C′, as long as the total strength of waves remains uniformly
bounded. Using (5.17) in (5.16) we obtain (5.15).ut

Lemma 4.Letφ be a permutation of the set of indices{1, . . . , ν}. Assume that

ω = ψp(ν)(σν) ◦ · · · ◦ ψp(1)(σ1)(ω̄),

ω′ = ψp(φ(ν))(σφ(ν)) ◦ · · · ◦ ψp(φ(1))(σφ(1))(ω̄).
(5.18)

Then, as long as the total amount of waves remains uniformly bounded, the following
estimate holds:

|ω − ω′| = O(1) ·
∑

(i,j)∈E
|σiσj |, (5.19)

where
E .= {(i, j); i < j, φ(i) > φ(j)

}
.

Proof. We construct a chain of permutationsφ0, . . . , φh with h = #E , φ0 = Id,
φh = φ, such that eachφl is obtained fromφl−1 by switching the position of two
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adiacent elements. More precisely, we choose the intermediate permutationsφl so
that, setting

El
.= {(i, j); i < j, φl(i) > φl(j)

}
,

we have
El = El−1 ∪

{
(il, jl)

}
, l = 1, . . . , h,

for some pair of indices(il, jl). Calling

ωl
.= ψp(φl(ν))(σφl(ν)) ◦ · · · ◦ ψp(φl(1))(σφl(1))(ω̄),

we now have

|ω′ − ω| = |ωh − ω0| 5
h∑
l=1

|ωl − ωl−1| 5
h∑
l=1

C · |σil σjl |,

for some constantC. This yields (5.19). ut

Proposition 4.The first term in(4.3)satisfies the estimate∥∥u(nε, ·)− w(nε, ·)∥∥
L1 = O(1) ·1Υm,n(n−m)ε. (5.20)

Proof. Recall that the functionu, defined at (4.1), is piecewise constant in the(t, x)-
plane, and all its jumps travel with speed 0 or 1. More precisely, the elementary wave
vhk (i, j) issuing from the node(iε, jε) reaches either

(
(i+1)ε, jε

)
or
(
(i+1)ε, (j+

1)ε
)
, depending on whether its speedλhk (i, j) is< θi+1 or = θi+1, respectively.

Consider any pointy ∈ R, not coinciding with one of the nodesjε or with a
point reached at timeτ ′ by a second-order wave front inw. By our construction,
there is a one-to-one correspondence between the primary wave fronts inu that
cross0y and the fronts (of order 1) inw that cross0y on the interval [τ, τ ′].
Denote byC(y) the set of all wave fronts ofw which cross0y . The strengthσα of
any such front is constant in time. By construction, it coincides with the strength
σ̃ hk (m, j) of the corresponding wave front ofu at the initial timet = τ = mε. Call
σ̃
y
α = σ̃ hk (i, l(i,j,h,k)) the strength of the corresponding wave front ofu at the time
t ∈ [iε, (i + 1)ε[ when it crosses0y . Set

ω
.= w(τ ′, y), ω′ .= u(τ ′, y),

ω̄
.= u(τ, y − 2(τ ′ − τ)) = w(τ, y − 2(τ ′ − τ)).

We then have a representation of the form (5.13). Observe that, in this case, the two
quantities in (5.13) may differ because:

(i) The strengths of the wavesσα, σ̃ yα may be different.
(ii) The order in which two primary wave fronts ofu andw cross0y may be

inverted.
(iii) Two primary shocks inumay first collapse into a single shock, then cross0y .
(iv) The secondary wave fronts inu which cross0y have no counterpart inw.
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The cases (ii) and (iii) are shown in Fig. 3. Using Lemma 4 to estimate the contri-
butions due to (ii), and Lemma 3 to estimate the contributions due to (i), (iii) and
(iv), we obtain

∣∣u(τ ′, y)− w(τ ′, y)∣∣ 5 C ·
{∑
C(y)

∣∣σα − σ̃ yα ∣∣+ ∑
CW(y)

|σασα′ |

+
∑
JS(y)

|σασα′ | +
∑
C′(y)

∣∣ ˜̃σhk (i, j)∣∣
}
.

(5.21)

In (5.21), the first sum is over all waves inw which cross0y , the second is over all
pairs of waves inw that cross each other and also cross0y . The third sum ranges
over all pairs of negative primary waves inu that join together and also cross0y ,
while the fourth sum ranges over all secondary waves inu that cross0y during the
interval [τ, τ ′]. We now observe that

• For any waveα ∈ S ∪R, the set of pointsy for which the linexα(·) crosses
0y during the interval [mε, nε] is an interval of length5 2(n−m)ε.
• If ˜̃vhk (i, j) is any secondary wave front inu, issuing from the node(iε, jε), then

it can reach either
(
(i + 1)ε, jε

)
or
(
(i + 1)ε, (j + 1)ε

)
. In both cases, the set

of pointsy ∈ R such that0y crosses such a wave front is an interval of length
5 2ε.

Integrating (5.21), we thus obtain
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∫ ∞
−∞

∣∣u(τ ′, y)− w(τ ′, y)∣∣dy
5 C ·

{
2(n−m)ε

∑
h,j,k

(
max
m5i5n

∣∣σ̃ hk (m, j)− σ̃ hk (i, l(i,j,h,k))∣∣)
+ 2(n−m)ε

∑
CW

|σασα′ | + 2(n−m)ε
∑
JS

|σασα′ |

+ 2ε
∑
i,j,h,k

∣∣ ˜̃σhk (i, j)∣∣}.
(5.22)

Because of (4.10), (4.18), (4.19) and (4.8), each of the above terms is estimated by
O(1) ·1Υm,n(n−m)ε. This yields (5.20). ut

6. Proof of Theorem 1

Let T , ε > 0 be given, say withT = m̄ε + ε′ for some integerm̄ and some
ε′ ∈ [0, ε[ . In connection with a constantδ > 2ε (whose precise value will be
specified later), we construct a partition of the interval [0, m̄ε] into finitely many
subintervalsJi

.= [ti , ti+1], inserting the pointsti = miε inductively as follows.
Setm0 = 0. If the integersm0 < m1 < · · · < mi < m̄ have already been defined,
then

(i) If Υ (miε)− Υ
(
(mi + 1)ε

)
5 δ, letmi+1 be the largest integer5 m̄ such that

(mi+1−mi)ε 5 δ andΥ (miε)− Υ
(
mi+1ε

)
5 δ.

(ii) If Υ (miε)− Υ
(
(mi + 1)ε

)
> δ, definemi+1

.= mi + 1.

HereΥ is the function in (3.4). Clearly,mν = m̄ for some integerν 5 m̄.
Call I ,I ′ respectively the set of indicesi for which the alternative (i), (ii) holds.
Observe that, for some constantC5, the cardinalities of these sets can be bounded
by

#I 5 C5

δ
, #I ′ 5 C5

δ
. (6.1)

On each subintervalJi , i ∈ I , we construct the auxiliary functionw as in the
previous sections. Using Propositions 3 and 4 with [τ, τ ′] = [miε,mi+1ε], we
obtain an estimate of the form∥∥u(mi+1ε) −S(mi+1−mi)εu(miε)

∥∥
L1

5 C6

{
1Υmi,mi+1 +

1+ ln(mi+1−mi)
mi+1−mi + ε

}
(mi+1−mi)ε.

(6.2)

On the other hand, on each intervalJi with i ∈ I ′, the Lipschitz continuity of
u : [0, T ] 7→ L1 implies that∥∥u(mi+1ε)− S(mi+1−mi)εu(miε)

∥∥
L1 5 C7(ti+1− ti ) = C7ε. (6.3)
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In view of the Lipschitz property (1.3) of the semigroup, the bounds (6.2) and (6.3)
yield∥∥u(m̄ε) −Sm̄εu(0)∥∥L1

5
ν−1∑
i=0

∣∣∣S
(m̄−mi+1)ε

u(mi+1ε)− S(m̄−mi)εu(miε)
∣∣∣

5 L ·
ν−1∑
i=0

∣∣∣u(mi+1ε)− S(mi+1−mi)εu(miε)
∣∣∣

5 LC6 ·
∑
i∈I

{
1Υmi,mi+1 +

1+ ln(mi+1−mi)
mi+1−mi + ε

}
ε(mi+1−mi)

+LC7

∑
i∈I ′

ε.

(6.4)

By (6.1) and the choice ofmi+1 wheni ∈ I , from (6.4) we deduce that∥∥uε(T ) −ST ū∥∥L1

5 LC6 · C5

δ

{
δ2+ ε

(
1+ ln

δ

ε

)
+ εδ

}
+ LC7 · C5

δ
ε

5 C8

{
δ + ε

δ
ln

(
δ

ε

)
+ ε

(
1+ 1

δ

)}
,

(6.5)

for a suitable constantC8. Since (6.5) is valid for everyδ > 2ε, choosingδ =
δ(ε)

.= √ε · ln | ln ε| we finally obtain (1.8). ut
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