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0. Introduction

Let G be a bounded, simply-connected smooth domaiR%ofz: 9G — Slia
smooth boundary function of degrdeand p(x) a smooth positive function of.
For eacte > 0 letu, be a minimizer for the functional

1 1
(0.2) Ec(u) = E/G”'V”'2+E/G(1"”'Z)z

of Ginzburg-Landau type on the set
Hy = {u e HG,o); u=goniG}.

In this paper we are interested in studying the asymptotic behavioy af
& — 0. In their fundamental work®83ETHUEL, BrREZIS & HELEIN have studied
the casep = 1 for boundary data satisfyingg = 0 [BBH1] andd + 0 [BBH2].

In this latter work only the case @ starshaped was treated. Lat&ITRUWE [S]
proposed a method which works for an arbitrary domain (recebtly. PiNo &
FeELMER [DPF1,2] gave a very simple argument for reducing the general case to
the starshaped case)..C. HAN & Y.Y. L1 [HL] have generalized the results
of [BBH1,2] to higher dimensions (when the Dirichlet energy is replaced by the
n-energy). The method ofSTRUWE is found to be very useful for the case of
a nonconstanp. In the casel = 0 the analysis of [BBH1] carries over without
any difficulty to the casg nonconstant and one can prove the® convergence

uy — ugase — 0,withug € C*(G, S1) asolution of- div(pVug) = p|Vuol?uo

in G. Hence, from now on we assume tliat: 0 and, without loss of generality,
thatd > 0.

Let us now give some motivation for studying the functional (0.1). The first mo-
tivation is a physical one. The functional (0.1) is related to the Ginzburg-Landau
energy in superconductivity. It should be noted that here, in contrast with the phys-
ical problem, we ignore the magnetic vector potentialMoreover, there are no
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boundary data in the physical problem. So from the physical point of view we can
consider our problem only as a “model problem”. In the usual mpdel 1. The
presence of a nonconstant weight function is motivated by the problem of pinning
of vortices, that is, of forcing the location of the vortices to some restricted sites.
One possible mechanism for modeling pinning was introduce®by& GunNz-
BURGER [DG]. They consider a thin (three-dimensional) film whose thickness in
the z-direction varies as a function of the two-dimensional variablend so it
equalsip(x) , with smallé for some positive smooth functign(x). By an averag-

ing process in the-direction, they are led to a functional of the type (0.1) (in fact,

in the resulting functionap (x) multiplies also the ternil — |«|2)2, but this does

not affect our analysis, which can be modified easily to cover this case too, see the
remark at the end of Section 2 in [ASh2]). As we shall see below, the zenas of
are indeed located near the minimapofor smalle. Another model for pinning is
obtained by introducing impurities into the material. This leads to the functional

1 1
0.2) Fe(u) = 3 /G 'V”'2+E /G (a(x)® — |u|®%;

seeRUBINSTEIN [R]. Here we assume thatx), describing the maximal density of
the superconducting electronstats a smooth function satisfyingQ a(x) < 1in
G. Asitturns out (see Appendix B) the study of the minimizer#pfs essentially
the same as that of the minimizersBf. The asymptotic behavior of minimizers
of the functionalF,, in the special case where the number of minima@f) in G

is greater than or equal th was studied independently biyAssouEeD [L].

Another motivation for introducing the weight functignis purely mathemati-
cal. One can view the results of [BBH2] as a way of realizing&walued harmonic
map with isolated singularities as a limit of minimizers of a relaxed problem, i.e.,
as a limit where — 0 of the minimizers:, of E, with p = 1. Now one may do
the same by introducing an arbitrary Riemannian metric on the domain. This leads
to the functional

du 9
03)  He(w) = / Zal,ma;’ — 4 / (L u??,

l

with A(x) = (a;;(x));, j a positive definite matrix with smooth entries. This remark,
due to S. AcMON, was communicated to us bjl. Brezis. The functionalE,

is thus a special case @f, corresponding to a metric which is conformal to the
Euclidean metric. Looking over the proofs of the present paper we see that they
can be generalized with simple adaptations to the more general funclipnahe
modification becomes easier if we use the classical result (see [W]) which states
that any smooth metri_ a; ;(x)dx;dx; can be transformed by a suitable change

of variables, at least locally, to a metric of the fo;zmx)(dxf + dxzz). Hence all

the results we shall establish fér. are valid, with suitable modifications of the
statements, fof,. In particular, the zeros of the minimizers 8y are located, for
small enouglz, near the minima of dét; ;(x)). The results of [ASh2] also have
appropriate analogues for the minimizersHf (see [ASh2] for details).
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Now we describe the main results of this paper. We depgte min{p(x); x €
G} andA = p~Y(pg) = A; U A, whereA; = ANG andA, = ANJG. We set
K = cardA, K; = cardA; and K, = cardA,. Our first result, which is proved in
Section 1, is a general convergence result. It was provediyuLiEU & HADIJI
[BH1,2] for the caseX; > d andK = 1.

Theorem 1.u,, — u, in C,t’g(@\ {b1,...,by}) for a subsequence, — 0
for everya < 1, where theN distinct points{bs, ..., by} lie in A. The limit
uy € C¥(G\ {b1, ..., by}, ST is a solution of

—div(pVuy) = p|VusPus NG\ {b1,....by}, u,=gondG.

Finally, around eacl;, u, is of degreeD; > 0 and Zjvzl D; =d.

Inthis statement, fab; € A, the degree af, aroundb; is defined as the degree
ond(B(bj, R)NG) (forsmallR > 0) of the map which equajgon B(b;, R)NIG
andu, ondB(b;, R)NG.

Recall that wherK; = d, BEAuLIEU & Hapui1 [BH1,2] showed thav = d,

D; = 1forall j, and that the configuratidibs, . . ., bg} is minimizing for a certain
renormalized energy defined atf . The more interesting caseks < d since then
singularities of degree 1 must occur, and in some cases there are singularities on
the boundary.

We would thus like to understand the “selection process” for the points
{b1, ..., by} and the associated degred3,, ..., Dy} € ZN. As a first step in
this direction we establish in Secti® a precise description of,, for n large.
Namely, u., has its zeros located i discs of radius~ ¢, called “bad discs”.
Outside these disds,, | is close to 1. Using a result aBAUMAN, CARLSON &
PuILLIPS [BCP] we can show that for large each bad disc contains exactly one
zero. There are thus exactly, zeros approaching eaéh (asn — ©0). In case
Dy is bigger than 1 (this must be the case for at leastioifiek < d), we expect
to observe an “interaction energy” between zeros approaching the sameélimit
Similarly, for by € dG we expect an interaction energy between zeros and the
boundary to appear. In order to get estimates for the energy, at is essential
to study the mutual distances between bad discs approaching theégama, for
by € 0G, the distances between zeros and the boundary. It turns out that these
distances depend in a crucial way on the behavigrafound its minima pointg.

We will study this problem in detail in the second part of this work [ASh2] under
some particular assumptions on the behaviop ofear its minima. For general
in Section 2 we prove:

Theorem 2.Let {u,,} be a sequence of minimizers as in Theorem 1. Them for
large enoughy,, has exactly/ zer03z§”), e, zfi”). The degree ai,, around each
zl?") is equal tol. Moreover for allg € (0, 1), dist(zg"), 9G) = &P for everyi and

1z — z;”)| > ¢ for everyi + j.

The results of this paper were announced in [ASh1].
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1. Proof of Theorem 1

Our proof of Theorem 1 consists of two main ingredients. First we use the
method of STRUWE [S] in order to locate the “bad discs”, i.e., a finite collection
of discs of radiug (), or O (%), which cover the sefx; |u.(x)| < 3}. Then we
use some modifications of the results BREzIS, MERLE & RIVIERE [BMR]
in order to bound from below the energyof near the singularities by the energy

of a “reference map” of the form] (%)d This lower bound is used to get

an upper bound for the energy of awaS/ from the singularities, which in turn
implies the desired convergence. This method follows essentially the strategy of
[BBH2] and [S]. There is however a significant difference coming from the fact
here that we do not have aexplicit lower bound for the energy (in comparison
with E.(u.) = wd|loge| — C in the case = 1 for example). Indeed, a posteriori
we know that the asymptotic behavior Bf (u.) may be different for differenp’s.
What makes the method work after all is the “good behavior” of the reference map
away from the singularities. This idea will become clear in the sequel.

We start by quoting three lemmas. The first is a simple upper bound for the en-
ergy, which is proved in [BH2]. The next two lemmas require obvious modifications
of those of [S]. Hence, all three proofs are omitted.

Lemma 1.1.For everys > 0 there exists a constaxt(s) such that
E.(us) < (po+ 8)md|loge| + C(8) Ve > 0.

Lemma 1.2. There exists an integefy such thatJ, < Jy for any collection of
mutually disjoint discs{B(xf, £n1=j = Je, xj € G} with |ug(xj?)| < % for
all j. '

Lemma 1.3.For everya € (0, 1) there exists a constadt(«x) such that

1

= 1—|u]>?>< C@) Vx e€G, Ve > 0.

B(x,e*)NG

For eachs > 0 we can find by a simple recursive process a finite collection
of disjoint discs{B(x;, £), 1 < j < J;} such that(x € G; [u.(x)| < 3} C
U].J;l B(xj, ¢) (actuallyx; = xf but we omite for simplicity). By Lemma 1.2 we
know thatJ, < Jo uniformly in e. Starting with the collectiofiB(x;, s)}jjfz1 we
can obtain after a finite number of iterations (no more thigh each consisting
of multiplying all the radii by 9 and deleting some discs (see [BBH2, p. 50]), a
new collection of disc$B(x;, Ae)}]’.V;l (againx; = x; andNy = N¢ but we have
Ns < Je £ Jp, alsor = A, < 970) satisfying

Ny

11 {xeG: .l < 3} cB@j. re),
j=1

(1.2) Ixi —x;| = 8ke Vi j.
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Similarly, starting with the collectioiB(x;, l/2)} we obtain aftetk <
N; iterations, each consisting of multiplying all the radu by 9 and deletlng some
discs, a new collection of dis¢®(y;, ve/2)} ", with Ny < Ny, {y1, ..., yn,} C

{x1,...,xn,}, ande].V:f1 B(xj, he) C vaz”l B(y;, vel/?) satisfying
(1.3 lyi — yjl Z 8vet? Vi ).
By a possible further modification we can also assume that

(1.4 foralli either y; € 3G or dist(y;, 3G) = 2vel/?
(1.5) forall j either x; € 9G or dist(x;, 3G) = 2xe.

We call {B(y;, ve¥/2}"; the “big bad discs” (BBD'S) and B(x;, )}, t

“small bad discs” (SBD s). We recall that thg’s and they;’s all depend ore

and so dor andv but these last two are uniformly bounded independently of
¢. Relabeling the SBD’s we may assume we have the following situation: Each
BBD B(y;, ve/?) containsn; = 1 SBD's {B(x; . re)}jLy which are actually
contained inB(y;, 41)81/2) By our construction all the degreezs =
dequ., dB(yi, vel/?)), d;i; = df; = degue, dB(xij, he)) are well deflned

1

Moreover, as in [BBH2] we easily see that
(1.6) |dil, |dij| S« Ve, Vi, j,

for some constant. Passing to a subsequeng} we may assume that all the
quantitiesi, v, Ny, Ny, {n;}, {d;}, {d; ;} are independent of. Passing to a further

&n

subsequence, still denoted by, }, we may assume that = yl —1lieG, i=
1,...,Np. Lethy,..., by be the distinct points among tt{\b}i:l and set

L={ie{l,....Np}; y/" > b}, k=1...,N.

DenotingD;, = Z,.e,k di,k=1,..., N, weclearly havez,i\’:1 Dy =d.

Next, before continuing with the rigorous, and rather technical proof, let us give
some explanation of the (simple) basic idea behind it. For any subdainafrG
we use the notatiofi, (u|D) = 3 [, pIVul? + 482 [p(L—[ul®?. Asin [BBH2,
S], the main step toward provmg a converegence result like Theorem 1, is to get
an upper bound for the energy “away from the singularities”. More precisely, we
claim that for allp > 0,

(M Eq, (ug,|S2) = C(n) Vn Zn(n),

whereQ2, = G\ vazl B(b;, n). Once (i) is established, the convergenc@gf} in
C&;@‘(G\ {b1,...,bn}) can be deduced as in [BBH2]. Assume for simplicity that
all the pointshy, .. ., by lie in the interior ofG (of course, the case where some of
the points lie ordG must also be treated by the rigorous proof). Next, for each
we define a “reference map onG \ U  B(x; j, Aey) by
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d. .
Z— Xj i i,]
ug(z) = l_[ (—”) .
i+ Nz =il
JJ
Using a modification of a result oBrEzis, MERLE & RIVIERE [BMR], we
establish the lower bound

N 1 5
5 pIVug,|
i=1 B

i\, Bi.jren)
(i)
A |
> ZE/ pIVUl>—C.
iz1 < B\, Blxi j.hen)

In fact, we cannot get (i) directly, since a priori va® nothave the global
estimate

1
5 [a-wprsc
& JG

So in order to establish (ii) we have to proceed in two steps, using the BBD's. This
point is treated carefully in the detailed proof, but we ignore it for the moment.
Now we complete eaciy; to a competing map, for the infimum ofE,, ovengl.

So we first set

N
ity = upin U(B(bi, A\ B Aen)).
i=1 j

Then on each “hole’B(x; ;, Ae,), using polar coordinates around the point,

we define -

i (xi j + re'”) = —

ug(xij + rene'?).
n

It is easy to see that
(iii) Eq, (iiy|B(x; j, re,)) < C foralli and;.

Finally, since the tangential energies fofy} on eachoB(b;, n) are uniformly
bounded, it is clear that we can find for eacta mapw, : Q, — ST which
equalsg on oG, andug on eachy B(b;, n), and which satisfies

(i) 3 Jo, PIVWal? < C).

So we seti, = w, on ,. Sinceu,, is a minimizer, the inequalitg,, (u,,) <
E., (i) yields

N N
E,, (u| U B@:, n)) + Ec, (ug, 1) < E, (ﬁn| U B, n)) + Ec, (wn|Q).

i=1 i=1

But then (i) follows immediately from (ii), (iii) and (iv). This concludes the sketch
of the proof.
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Going back to the rigorous proof, we need two lemmas which generalize a result
of BREz1s, MERLE & RIVIERE [BMR, Th. 4]. The proof of Lemma 1.4 requires
an obvious modification of the proof in [BMR] and is omitted. The proof of Lemma
1.5is given in Appendix A.

Lemma 1.4.0n adomain = B(0, R) \ UA’/.”Zl B(aj, Ro) with

1.7 Ro £ %R,
(1.8) aj € BO,1R) Vj,
(1.9 laj —ax| =2 4Ro V) Fk,

a smooth positive functiap(x) is given. Assume that e HYQ,C)NnCHR,C)
satisfies

(1.10 O<a<ul £l inQ,
1
(L1 - [a-u? sk,
RO Q
(1.12) degu, 8B(aj. Ro) =d; , j=1,....m.
Then,

/QunFz/Q{q|wo|2+%qoa2|w|2+q|vm2}

—C(a, K, m, qo. |Iq]lcc: RIIVqlloos n}ax|dj|)»

— m 4
whereuo(z)w— 1_[.,':1 (|z—aj'\

)%, p = |ul, o = infaq(z) and y is defined by
u = |uluge'.

We denote b)RfL the upper half spacgm z > 0}.
Lemma 1.5.Let the domair2, = Ri N B0, R)\ U}":l B(a;j, Ro) be given with
R, Ro and{a;}i_; C Q, satisfying(1.7)—(1.9)and also
Imaj 2 2Ro, j=1,...,L,
Ima; =0, j=L+1....,mOZL=m).

Let ¢ be a smooth positive function a2, and letw € C®((—R, R); 1) be
given. (—R, R) is identified withB(0, R) N {Imz = 0}. Consider a map: €
H(Q,4;C) N C(Q, C) which satisfies

(1.13)

(1.14) u=won(—R, R).

Assume also thdfL..10)—(1.12)pre satisfied 2 is replaced by2, in (1.10), (1.11)
anddB(a;, Ro) by d(B(aj, Ro) NR2) for j > L + 1in (1.12)). Then,

/ q|w|2§/ {qIVuol?® + 1g0a?|Vy 12 + qIVpl?} - C,
Q4 Q4
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d.
WithC = C(a, K, m, », go, lgllcos RIIVqlleo, Max; |d;1), uo(z) = [172q (i=a5)”

lz—aj|

(= 9 ) 7, p = lul, qo = infg, q, ¥ is defined byt = |uluge'”, andaJ is the

|z— a}‘
complex conjugate af;.

Relabeling if necessary, we may assumebhat. ., by € G whilebyy1, ...,
by € 3G (note that 0 M < N, so we may have all thg’s in G or all of them
on dG). SinceG is a smooth simply-connected domain, we may choose a point
Xoo € G\ {b1,...,by} and get by the Riemann mapping theorem a smooth (up
to the boundary) conformal map: G \ {xs} — Ri sendingr, to co. We then
define a “reflection’ on G by r(z) = h~1(h(z)). We mention in passing that all
our results can be generalized easily to multiply connected domains by using local
conformal coordinates. We fix a positiyg satisfying

no < 3 min{min{lb; — b;|; i # j}, min{dist(b;, 3G); i =1,..., M}},

and such that for alk the domainG N B(b, no) is a connected domain with
dG N B(bg, no) andG N 3 B(b, no) both homeomorphic to a segment. Our main
tool in proving Theorem 1 is

Proposition 1.1.For everyn € (0, no)

5/1 Mgn

G\ U B(x, ) < 7| Iogm{Zp(bk)Dk +2 Z p(bi) D}

k=M+1
+C(G,g,p) forn = no(n).

Almost all the rest of Section 1 is devoted to the proof of Proposition 1.1.
It is based on a comparison of the energyugf around eactb; with that of a
suitable “reference map” We start with, k = 1,..., M. For everyi € I; we
define on™ = B(y;, vex' )\U"' 1 B(xij, hen) the mapuo,;(z) = ug)(z) =
]'[7’:1( Lt ) 7, Applying Lemma 1.4 (note that Lemma 1.3 ensures ¢hat1)

|foi.1|
is satisfied) we get

(L15) [ p1Vue 22 [ 190l = Cp. V.0,
Q" Q"

On A(”) B(bi, n) \ U,elk B(yi, 21)8,/ ) we define the mapo x(z) = v(”) (z) =

d;
[Tics, (I;;il) . By Lemma 1.1 we have

1
—/ (L |ug, 1*)? < 4 Ee, (ug,) < Coylloge,| < C,
&n A;(")

hence we may apply Lemma 1.4 to infer that

(L16) /< IV, 1?2 /<  PIVvoil? = C(p.N.x).
Al Al
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Next we deal with the cas®f +1 < k < N, i.e. whenb; € 9G. Fori € I},
we have eithep; € G, in which casg1.15) continues to hold, op; € 3G. In the
latter case, fon large, withcy = |4 (by)|, we have

Q" = By (h(y), %Vckgrlz/z) \UjLy B(h(xi,}), 2hcken)
(1.17)

C @) C By (h(y), veen’) \ ULy B(h(xi j), Frcken),

whereszf”) = GNB(y;, vs,}/z) \ U;.“:l B(x;,j, A&n). Here and in the sequel we use
the notationBy = BN Ri for any discB. Setting

n; d: ; — \d;
5 = —hxi ) \“( z—hxi )\~
vo,i (z) = vé’f,?(z) = l_[ (Z—('1)> (M) onQ™,

jo1 N2~ A |z — h(xi )l

we have by Lemma 1.5, applieddg, (x) = ue, (h~2(x)) with g(x) = p(h~1(x)),
that

(L18) [( qwﬁsnﬁzﬁ q|Vio,|* = C(p,N.G. g.x).
an) Q{n)

Looking for a “cleaner form” for the reference map on the original domain, we

define . 1 d 1 d
o (N ) — X ) i‘f< h™(2) —r(x ;) ) "
U, (z) l_[ (|h—1(z) — x| |h=1(z) — r(x; ;) .

j=1
Clearlyiio, (2) = L™ 0, 2) with
Yuo,i (z) = |F,-(n)(z)\ v0,i (Z
F_(n)(z) _ ﬁ <h1(z) — x,-’j)di,j (hl(z) . r(xi,j))dﬂ./
i -1 77— h(xi,j) 7 — m .

Using the fact that is a one-to-one smooth conformal map Grwith a nonva-
nishing derivative we see easily that the possible singularitiégxat;), W,,) ,
j=1...,n;, are removable. It follows thdfl.(") is a smooth conformal map on
]RTZF with no zeros. Using the Taylor expansion/of! we see that

(1.19 ||VF,'(n)||L°°(h(GﬂB(bk,no))) < C(G, N, k).
We claim that

(120 ’ /Q (Vi [? = [Viig; )| £ C(N, k. p, G, g).

The estimatg1.20) follows immediately from

Lemma 1.6.Let 4, R, Ro, {g; };”:l, {dj};n:y up andg be as in Lemma 1.5. Let
¥ € CL(Q) be given, and set = uge’¥. Then,
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/ q(IVul® = [Vuol?)| £ C(m, mjax|dj|, l1g1locs RIIVGlloos RIIVYloo)-
Q4

Proof. We may writeug = ¢'%° locally in ©,; henceu = ¢!0t¥) We then have
locally
q|Vul® = q{|Vuol® + 2(Vo, V) + |V |2}

The proof of Lemma 1.5 (in particular the estimate ) shows (see Appendix
A) that |fg+q(V¢o, V¢)| < C(m, max |d;il, |qlloo, » RIIVGlloos RIIVY|loo),
which clearly implies the result.o

From the particular form ofg; it follows immediately that
(1.21) / Vs < C(p. N, G, g, %),
h@"MNa"

Returning to the original domain, we obtain fr@h18), (1.20) and(1.21) that for

i s \ i _ . di j
uo,i(z) = ug,lz?(z) = l_[ ( LT ) ( 2 —rxij) )

o1 |z — xi,jl |z — r(xi ;)

we have the inequality
(1.22) f p|w5n|zz/ pIVuoil* — C(p, N, G, g, 1).
o o

Next, there exists a constaht= ¢(G) such that
By (h(by),n/c) C h(G N B(bx,n)) C By(h(bx),cn) forallk .

Using a similar argument, we conclude that

(123) /( , p|Vu5n|2 z /( ) p|VU0,k|2 - C(pﬂ N’ Gv gvK)’
AV Al
with -
A" =GN Blb, )\ U B(yi, 2vey'?),
iely

d; d;

2=y \"( z—r() \"

UO,k(Z):H< Yi ) ( Yi ) .

Lz =wil) \z=rol
3

Next we are looking for a lower bound for the energyugf on D, = G N
(U1 B(bx, n)) using a mapw, that will be constructed in the sequel. We first
definew, = ug} on Q" foralli = 1,..., Ny. Thenw, = vg; on A{”, k =
1,..., N. We need to extend the definition af, to the domainle.(”) =GN

B(yi, 2ve,}/2)\B(y,~, veY?y i =1,..., Np. Assume first thay; € G; henceDl.(”)
is an annulus. From our definition af, outsideDi(") the following estimate for
the tangential energy follows:
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dwy |2 C(N,
/ Onl®gr < % Vi, Va.
aDi(n) ot 8,1/

Hence we may extend, as ans-valued map inside)l.(") in such a way that
(1.24) /( ) |Vw, |2 < C(N, «).
D-I‘l

Actually, the same conclusion still holds in cages G since from our construction
|dw,/dt] < C(N,x, G) onaD!" NaG.

Next we need to complete the definitiomof in the “holes™{B(x; ;, Ae,) NG}.
Consider first the casg, ; € G. Using polar coordinates aroung; we define

wy (x; +re'?) = 4
e Agy

)Mo’,‘ (x,-,j + )»8n€i9).

30 |2 1 < C(N, k) /en, e easily find that

Using the estimat; ;. .,

(1.25 E,,(wn|B(xi,j, ken)) = C(N, k, p).

In the case; ; € 3G, we argue similarly. Using the fact that fey small enough,

G N B(x; j, Aey) is a star-shaped domain which is close to a half disc, we choose
a pointx;’j € G N B(x; j, ke,) such thatG N B(x; j, Ae,) is star-shaped with
respect toc] ; and distx; ;. 9(G N B(xi j, Aen))) = 1e,. Note that the rescaled
domains{é(G N B(x; j, xen))}:il have Lipschitz boundary with a uniform Lip-
schitz character. For anye G N B(x;, ;, Ae,) (different fromx[,j) there is a unique

z € (G N B(x; j, Aey)) such that lies on the segmenkl[’j, Z]. We then define

|Z - ,/j| -
wp(z) = ——— u0,i(2)-
|z — xi,j |
Again, a standard calculation leads to
(126) Esn(wn|GmB(xi,jv)\5n)) é C(N5K7 pv Gv g)

Summing up (1.15), (1.16), (1.22)—(1.26) we are led to
1
(1.27) 5/ p|Vue,? 2 Ee, (w,|Dy) — C(N, &, p, G, 8).
Dﬂ

Now in caseM < N, i.e., when at least orig. lies on the boundary, we further
modify the mapw, to a new magw,, which satisfiesv,, = g ond D, NdG. For this

purpose we consider far= M +1, ..., N asmooth map“k(") : GNB(by, no) —

st satisfyingfk(") = g/w, 0ndG N B(by, no). Since||Vw, |l Lo @6nBwen)) = C,

we can clearly find such a map WitIka(")Hoo < C(N, k, g, G). Next we define
w), by
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7 Wn OnB(bk,ﬂ), k=1,...,M,
w, =
n wnfk(”) onGNBWb,n, k=M+1,...,N.

Note that the energies af, andw;, on the “holes{B(x; j, Ae,) NG} are uniformly
bounded. Combining it with an argument similar to that which ledLt80) yields

(1.28) ‘ / p (V. > = [Vw,|>)| £ C(N, k, p, G, g).
DV}

If a modification ofw, has been made as above, we renarhasw,, and from
(1.27) and(1.28) we conclude that in all cases

(1.29 %/ p|Vue, > 2 Ee, (w,|D,) — C(N, i, p, G, g).
D’7

Foranyn > OletQ, = G \ U,’?’Zl B(by, n). We continue with

Lemma 1.7.For anyn € (0, no) there exists a map = v\ € C1(%,: $) such
thatv = w, ond(G N B(bg, n)) fork = 1, ..., N and such that for alh = n(n):

M N
1 / 2 3 2 5 2 1
— plVv| —JT[ pb)D; + 2 p(br) Dy log —
(2.30) ’2 2y k=1 k=M+1 g

Proof. On 2, we define S CN, &, p, G, g).

M px N 2D
; —b K h(z) —h(b K
v = e[| ( 4 bk ) I ( h(z) h(bk) ) ’
e Nz=od ) AL \hG) =kl

where g is a smooth function otz chosen so that = g on dG (we use the
elementary fact that fob, € dG the restriction of(%)wk t0 0G is a
smooths!-valued map of degreB; with a removable singularity &,). We easily
find that

M N
1/ 2 2 2 1
= pIVu|© — n{ E pby) D + 2 E p(bk) Dy ¢ log —

(1.31) ‘2 Q2 i1 k=M+1 g

S C(N.,k,p,G,g).

Finally, by an elementary direct construction we can extend the definitiortaf
each of the domaindy , = G N B(bk, 2n) \ B(bx, n) so that bothw = w, on
3(G N B(br, n)) and[Ak , |Vv|2 < C are satisfied. Here we use the fact thatfor

large we have by the definition af, that|Vw,| < C/n0ond(G N B(bx, n)). O

Proof of Proposition 1.1.Fix anyn € (0, no). We define a mag,, Hgl(G; (©))
by
_ wy, onD,,
u =
! Wi ong,.
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Recall thatD,, = G N Uy, B(bx, n) and2, = G \ D,,. Sinceu,, is a minimizer
for E,,, we have

(1.32) Es,, (ue,, |G) § Es,, (11 G).
Hence
(133 Eg, (g, |Qn) + Eg, (e, |Dy) < Ee, 00V |2) + Eo, (wa| Dy).

Using (1.29) we conclude that

(1.34) (1= lue, 2%+ Es, (15, 190) < Ee, (0S”127)+C(N. &, p. G, g).

2
4e n J Dy

Combining this with(1.30) we find

(L= |ue, |1?)? + Ex, (e, |2)
42 Jp,
(1.35)

M N 1
Z p(br)DE +2 Z p(br) D2 log =,
k=1 k=M+1 g

<C(N,«,p,G,g) —i—n{
and the result follows. O

We mention an important corollary to our previous results:
Lemma 1.8.For some constant independent of,

1
42

(1.36) / (- Jus, 2 < C.
G

Proof. Fix anyn < no and apply(1.35). O

Proof of Theorem 1. Once Proposition 1.1 has been proved, we can apply the
arguments of Theorem VI.1 in [BBH2] to obtain the convergencdugf} in

CE*(G \ (b1, ...,by)) toamapu, € C®(G \ {b1, ..., by)), satisfying
—div(pVuy) = p|Vus?ux NG\ {ba, ..., by}

Indeed, the proofs of [BBH1] for the cage= 0, which form the basis of the proof

of [BBH2, Th. VI.1], can be easily generalized to the casgonconstant. In order

to complete the proof of Theorem 1 we need to prove two more properties:

(1.37) Dy > 0 Vk,

(1.38 by € A Vk.

We shall use
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Lemma 1.9.For everyk andn < g,

1 2 . . n
- pIVue, | 2 e Dy min{p(x); x € GN B(b,n)} log| —
GNB(bk,n) €

2 n
_C(NaKa p7 Gvg)'
for n 2 n(n).

Proof. In caseby € G, we can apply the result of [HS] (or the method of [BBH2,
Th. V.2]) tou,, on the perforated domaiB (b, n) \ |J B(x;, j, A&,) to conclude

the result. Ifb; € 3G, then we can essentially reduce this case to the previous one
by smoothly extending and p to G’ \ G whereG’ > G without reducing the
minimum value ofp. O

Proof of (1.37) and (1.38). Fix anyn < no. By Lemma 1.9 fom large enough we
get

N
1 .
—f pIVue, 2= mlog - Y | Dyl min{p(x); x € G N B(bg. n)} — C.
2 G &n =1

Combining this with Lemma 1.1 and lettinmg— oo we obtain

N
> IDiImin{p(x); x € G N B(bg, n))
k=1

N
< po(d +8) = po (Z Dk+s) V8 > 0.
k=1

Sinces is arbitrary, we conclude that necessatiby,| = Dy, for all k, i.e., D = 0
and minp(x); GNB(by, n)} = poforall k. Sincen is arbitrary, we conclude that
p(by) = po for all k. Finally, the argument of [BBH2, p. 61] can be applied (now
that we know that1.36) holds) to infer thatD; = O for all k; hence both(1.37)
and(1.38) are established. o

2. Proof of Theorem 2

The proof of Theorem 2 requires a simplification of the configuration of the bad
discs associated with each minimizer. We begin by modifying further our BBD'’s
and SBD'’s. Starting with the collectidmB (y;, s,fo)}fvz"l with ag = % we can obtain
after a finite number of iterations (no more thap), each consisting of replacing
ag byoagir = %ak and deleting some discs, a new collection, which may be written
after relabeling a$B(y;, ef{)}fvz”l, satisfying

2.1 lyi — yil = 2627 Vi,

2.2) for all i either y; € 3G or disty;, 9G) = 262/ .
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Here N, < N, anda = 27" for somem < N, + 1. Of course, the regrouping

of the SBD’s is also affected by the above modification. By passing to a further
subsequence we may assume thad, and the regrouping of the SBD’s are all
independent of.. In any case, we are now going to modify the SBD’s too. Starting
from the original collectiof B(x; ;, 1¢,)} we carry out a finite number of iterations
(no more thanv,), each consisting of multiplying all radii by a constant, and
deleting some discs, until a new collection, which after relabeling may be written

as{B(x; j, Mey)}fori=1,..., Né j=1,...,n;,is obtained which satisfies
X+ —x
(23 i =%l oo, foralli and allj % ',
&n

(2.4)

. dist(x; ;, 0G

fori=1....N, j=1....n eitherx;; e 9G or 2 9G) o0,
En

(2.5) xij€GNB(y, %e%), i=1...,N,, j=1....n.

We may perform this construction so that= x; 1 if y; € G. Asin Section 1, we
set

di = deg(ue,, 3(G N B(yi, eY))), dij = deg(ug,, d(G N B(x; j, Xen))).

By passing to a further subsequence we may assume that all the quantities
o, N,;, {ni},{d;}, and{d; ;} are independent of. Recall that the);’s and thex; ;'s

do depend on but we do not indicate this for the sake of simplicity. As in Section
lwesetly = {i; y; — bi}. Inthe sequel we shall denote bydifferent constants
which do not depend om. Next we have

Lemma2.1.d; = 1forall ;.

Proof. Fix anyn < ng. For eachk, by the same proof as in Lemma 1.9 we have

1
(2.6) —/ , PIVue, 22 mpoDylog — — C.
2 Janswen\U,, Boie’ €n
The same argument yields
1 8a/2
2.7 -/ pIVue, > 2 wpod?log—— — C Vi€ I.
2 J6nB(i.e®\B(yi.e) ey

Finally, the same argument applied to edy;, %) \ /-

L1 B(x;,j, Mey) gives

o

1 €
(2.8) —/ p|Vug, |? = 7pold;|log — —C Vi
2 JGnB(i.e) Aen

Summing up (2.6)—(2.8) we conclude that
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N
1
Ee,(ue,1G) 2 ) —/ p|Vug, [?
= 2 JenBwim

(2.9) - .
T poc
2

b 1
2
df —d;) |098— - C(n).
i=1 n

1
= mpodlog — +
&n
Combining(2.9) with Lemma 1.1 we get thijfv:”l(di2 —d;) = 0; hence,
(2.10 di=0o0r1 Vi.

We only need to exclude the possibility thiat= 0. Looking for a contradiction,
assume thaf; = 0 for somei. We first claim that for this we have

(211 E,(us,|G N B(yi, &) = C.

Indeed, by Lemma 1.1 and the Fubini Theorem we may find (as in [S]) far all
somer, € (2, ¢%/?) such that

1 1 C
ey | {—p|wg,,|2+ 2(1—|uen|2>2}<—.
GNaB(y;r) L 2 4e; Fn

Using (2.12) we now construct a map, on G N B(y;, r,) which equals:,, on
3(G N B(yi, ry)) such thatE,, (v,|G N B(yi, 1)) < C. Sinceu,, is a minimizer,
this would certainly imply(2.11). We use an argument which is due to F. HiN
[Lin]. Look first at the case; € G. Since by assumptior; = 0 and|u,,| = %
onadB(y;, r»), we may write ord B(y;, r,) thatu,, = p,e'?, with p, = |u,,| and
miny g(y;.r,) $n € [0, 277). Since by(2.12) faB(vi,rn) 9n |2 < C/ry,, itfollows that

9t )
maX g(y;.r,) ¥n < C.Using polar coordinates aroumgdwe first definey, = e
on B(y;, ry) \ B(yi, rn — €,) where

. Fp—r Fp—r ~
Pn(r,0) = < )+<1— B )Pn(rnﬂ), On(r,0) = pp(ry, 0).

8}‘! n
Then, we extend the definition of to B(y;, r, — &,) by

r

Pu(r,0) =1,  ¢u(r,0) = Gn(ry, 0).

n— &n

A direct calculation shows that, satisfiesE,, (v,|G N B(yi, r,)) < C; hence
(2.11) holds in caseg; € G.

In casey; € 3G, we use a similar argument. This time the dom@in B(y;, r,,)
is close to a half disc. The only difference with respect to the above construction
is that for the extension along rays we use a pojneé G N B(y;, r,) satisfying
dist(y/, 9(G N B(yi.ma))) € [357757] as a center instead of. We leave the
details to the reader. As a result of the previous analysis we have estaliishibd
in all cases.
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Note that by our construction, each N B(y;, ) contains a point; with
lug, (zi)] < % A simple modification of the argument of [S] shows that there exists
a constanjg > 0 such that if

1 1
e {—p|wa,,|2 A |u8,1|2>2} <P
3B(x.rNG | 2 4ef; r

for somex € G andr € [&2, s,of/z], then|u, (x)| = % We claim that there exists
somer =r(n) € (&5, s,‘f/z) for which (2.13) is satisfied forx = z;. Indeed, if not,
we would have
E¢, (ug,|G N B(yi, 6%)) 2 Eg, (ue,1G N B(zi, 362))
/2
gVL

ds
gy()/ — — ooasg, — 0,
& S

a contradiction tq2.11). So we must havé,, (z;)| = % a contradiction. Hence
d; = 1is established in all casesno
Lemma2.2.y; e Gforalli =1,..., N;.

Proof. Looking for a contradiction, assume thate dG for somei. As in the proof
of (2.12) we see that there exists somec (¢4, 82‘/ 2) with
1 1 C
(2.14) / {—p|wg,,|2 +-—1- |us,,|2>2} <.
GNaB(yi.ra) | 2 Aep Tn
We choose; € G N B(y;, ry) satisfying distz;, 3(G N B(yi, ra))) € [257ns 757n]-
Forn large enoughGG N B(y;, ru) is star-shaped with respect tp Using polar
coordinates aroungs we may writeu., = p,e'“*¥») on (G N B(yi, ry)) with

on = lug,| andy, a smooth function, which by2.14) has an extensiog, in
G N B(y;, ry) satisfying

/ [Vy|> < C  uniformly in .
GNB(yi,rn)

Using this and2.14) we readily construct a map, on G N B(y;, r,) satisfying
vy = g, ONI(G N B(y;, r,)) and

(2.1 Eg, (va|G N B(yi, 1)) = mpolog(ra/en) + C.
Indeed, first we define, = ¢! @+ on

Ap =1{x € GNB(yi,r); |x —zi| Z &y, dist(x, d(G N B(yi, mn))) 2 &n}.
OnB, = {x € GNB(y;, ry); dist(x, 3(GNB(y;, rn))) < &,} we can easily extend

v, to a map which coincides witl,, andv,, respectively on the two components
of the boundary oB,,, and which satisfieg,, (v,|B,) < C. So far we have
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.
(2.16) Ee,(a|G N B(yi, ra) \ B(zi, €n)) < por Iogg—” + C.

n

77—z
vy | 2i + €&n .
|z — zil

By a direct computationE,, (v, |B(zi, €n)) < C. We combine this inequality with
(2.16) to prove(2.15).
On the other hand, we now show that

Finally on B(z;, &,) we define

(2.17) v (2) = ‘Z - &l

n

(2.18) Ee, (e, |G N B(yi. 1)) = 2por log ;— —c.
n
From the results of Section 1 it follows that
(219 f 1p|Vug, 2 2 %pof Vool — C.
GNB(i,rn) Q4
with
ni di : —\ 4ij
B z—h(x;-) 1] Z—h(x; )
i = [T (=50 hoip )
j=1 |z — h(xi )l |z — h(x; )l

n;
Qi =h(GNBGi, )\ | B j, 7en) ) CRE.
j=1

Letus se2 = Q, UQ_ U324 N{Im z = 0}) whereQ_ is the reflection of2,
in the real axis. It is clear by symmetry considerations that

(2.20 f Vi [2 = 1 f Vi, 2
oy )

Now 2 is a perforated domain with exterior boundary close to a circle, and with
holes close to discs. Moreover the degree@®f on the exterior boundary equals
2d; = 2 (by Lemma 2.1). We may enlarge the holes a little bit, so that they become
discs, and apply the lower bound of [BBH2, Ch. II] or [HS] to infer that

1
(2.21) -/ |Vio.i]? = 4n Iog( Tn ) —-C.
2Ja

MNe,

Now (2.18) clearly follows from (2.19)—(2.21). Combinin@.15) with (2.18) we
obtain (since,, is a minimizer) that

27 log <r—”> < rlog (r—"> +C.
En En

This leads to a contradiction farlarge enough. O

Lemma23.n; = 1foralli =1,..., N,.
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Proof. Fix anyi € {1,..., N;} andé > 0. By Lemma 2.2 we already know that
v; € G. By the same argument as in the proof@f12) it follows that there exists
somer, = r,(8) € (2, £ with

n’

1 1
(2.22) / {—pm P ,,|2)2}
3By | 2 - 4s2 °

Next we use the Poliaev identity fou,, , namely, we multiply the Euler-Lagrange
equation

< po( +9)

'n

i 1
—div(pVu,,) = ?(1 - |u5”|2)ug,,
n

by (x — yi) - Vu,, and integrate oveB(y;, r,). A direct calculation gives

1 1
(= 31, VP Vate, |2+ (1 — |u n|2>2}
/13(}’i~,rn) {2 ' i 281% °

(2.23) )
2 2_P 2 2,2
- 5 - 5 r 1-— .
n dB(yi,rn) { 2 |(u€”)r| 2 |(u5n) | + 48,21( |M8n| ) }
Note that
/ (= yi, V)|V, || < 85:/2||VP||00/ Vug, [2
(2.24) B(yi,rn) G

< Ce?’?|loge,| — O.

Hence from (2.22)—(2.24) we conclude that

(2.25) lim supizf (A — |ug, 1% < po( +6).
n—o00 £&5 JB(yi,ry)

On the other hand, around eagh; we may perform a “blow-up”, that is to define

iy (x) = ug, (x;,j + €xx) on B(0, R) for each fixedR > O (it is well defined fom

large enough). Note that, satisfies the equation div(5, Vii,) = (1 — |i,|2)in

with p,(x) = p(x;; + e,x). Using standard elliptic estimates we deduce the

convergencé, — uin C;.(B(0, R)) foreverym = 0. Taking a sequendg /oo

and passing to a diagonal subsequence we may assunig thaiz in Cl’gc(Rz) for

everym > 0. Itis easy to see thatis a solution of-Aii = p—lo(l— |i1|%)it onIR? with

Jr2(L—ii|?)? < oo (by (1.36)). Moreover, since by our constructid(x;, ;, 'e,)

contains a poink with |u,, (x)| < % it follows thatu is not identically constant.

Such solutions were studied in [BMR] (see also [Sh]) and it is shown there, in

particular, that

(2.26) [ a- ey = 2np.
]RZ
From(2.26) and(2.3), (2.5) it follows that

1
(2.27 lim inf —/ A — |ug, |H?% = npon;.
B(yi,rn)

n—o0 grzl
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Choosingé < m and combining(2.27) with (2.25 we see that necessarily
n;=1. 0O

From our previous analysis it follows that the configuration of the modified
bad discs is quite simple. Since each BBDy;, £5) contains exactly one SBD
B(x; 1,2'ey), and our construction ensures that = y;, we do not need the
BBD’s anymore. We now have most of the ingredients needed for the proof of
Theorem 2.

Proof of Theorem 2. That there are exactly bad discs each of degree 1 read-
ily follows from Lemmas 2.1-2.3. In order to see that for ev@rye (0, 1)
dist(y;, 0G) = eff for all i, and|y; — y;| 2 eff forall i + j, we may con-
tinue the modification procedure of the BBD's from the beginning of this section.
More precisely, for any givef € (0, 1) we arrive after a finite number of iterations
of the formay41 = a4 atana < B of the forma = (3)™ for which both(2.1)
and(2.2) hold. Then, for the resulting configuration of the bad discs we may apply
the same arguments as above.

Finally, itis left to show that each bad di&gy;, A'¢,,) contains exactly one zero
ofu,, (fornlarge enough). By Lemma 2.1 it follows th@gy;, A’e,) contains atleast
one zero; let us denote it by”. Next we apply a blow-up argument as in the proof
of Lemma 2.3. Namely, for each fixeRl > 0 we definei, (x) = u;, (z" + &,x)
on B(0, R). Using standard elliptic estimates we deduce the convergence (of a
diagonal subsequencdg) — uin Cl’gc(Rz) foreverym = 0. ais clearly a solution
of —Ail = p—lo(l — |@|?)ii on R? satisfyingii(0) = 0 and fz2(1 — |@]?)? < oo.
Moreover, it is easy to see thatis actually alocal minimizer that is, for every
R > 0 u is a minimizer, for its boundary data @B (0, R) of the energy

f {$polVul? + 21— [u»)?}.
B(O,R)

Looking for a contradiction, assume that a subsequence, still denoteq by
satisfiesue, () = ug, (") = 0 for somez{"” + z™ in B(y;, ¥'e,). For the
rescaled sequendd,} we geti, (") = ﬁn(Z(l")) = 0 for someZ&") + 700,
Since the origin is the only zero @f andi, — # in Cl’gc(Rz), it follows that
7, 2(1”) — 0. Passing to a further subsequence we may assume that

z(n) _ Z(”)
=" v for somev of norm 1 inRZ.
70 — 287

Passing to the limit a8 — oo we obtain thatvVi(0) - v = 0. In particular, it
follows that detVi(0) = 0. This contradicts Corollary 2.4 of [BCP], which states
that| detVi(0)| > 0. (The same argument as in [Sh, Th. 2] shows thaRftarge
enoughii = p(0)e'*® ondB(0, R) with p = 1 and%¢ > 1: hence, the result of
[BCP] is applicable.) O

We close this section with two more estimates which will be useful in the
second part of our study [ASh2]. Recall that = yf” — by for everyi € I,
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and that we are assuming thigt ..., by € G andby41, ..., N € 3G. Next, on
Q, = G\ UL, B, Ve,) we may define

r(yi)
w0 =i = | ErooT
k=licl lmmraien 1270
Then we may write
(229 U, (2) = pa(Duo(2)e’ @ onQ,,

with p,(2) = lue, (z)] andyr, (z) a smooth function of2,,. Next we prove

Proposition 2.1.The estimate
(2.29) [ vwi Vo <
holds uniformly im.

Proof. From the results of Section 1 (using the full statements of Lemmas 1.4 and
1.5) it follows that

(2.30) fg%mwgnﬁz/ %p(|w0|2+|m|>+ﬁf IVl — C

n

Next we can define,, = uge!? on,, with ¢, uniquely determined (modulo
by the requirement that, = g ondG. The arguments of Section 1 show that

2.31) ‘ / pIVanl? — f
Qn Q)l

Finally, we can extend the definition of, to each of the “holes{B(y;, Nan)};l:l
(as in the proof 0f1.25)) so that

(232 Ee, (wa| B(yi, M'en)) = C Vi

Using (2.31), (2.32) and the minimality ofz,, we find that
(233 Eey(us,) < f LpIVuol? + C .
Q

The conclusion of the lemma follows by combinit®33) with (2.30). 0O

Combining(2.30), (2.33) and the estimat&,, (u.,|B(yi, 2'e,)) < C (which
follows from || Vug, || < & =) we immediately get an important corollary:

Proposition 2.2.

(2.34) ‘Egn(ug”)—/ : 2l < ¢ uniformly in .
Qy
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From Proposition 2.2 it follows that in order to approximate the energy, of

up to an0 (1) error, it is enough to calculate the energy of the reference map

ug = ug'). This, in turn, requires the knowledge of the mutual distances between

they;’s and their distances from the boundary. These distances depend in a crucial
manner on the particular weight functipnin [ASh2] we study this problem under
some concrete assumptions en
Appendix A. Proof of Lemma 1.5
Recall that: = puge'¥ with  globally defined o2, andp = |u|. Moreover,
sinceug = 1 on(—R, R), we havee’¥ = w on (—R, R). In the sequel we denote

by C different universal constants. Fpr= 1, ..., L we use Lemma 3 of [BMR] to
extendy in eachB, (a;, Ro) (= B(aj, Ro) in this case) to a functiotr such that

/ |v¢|2§c/ |vw|2§c/ vy [? = ClIvy|2,
B (aj,Ro) B(a;j,2R0)\B(a;j,Ro) Q4

with C a universal constant. Fgr = L + 1,...,m we may find by a standard
construction an extensiaf satisfyinge’ = » on (a; — Ro, a; + Ro) and

/ |V1/?|2§C(/ |Vw|2+RS||Vw||§o>.
By.(aj, Ro) B4(aj,2R0)\B(a;, Ro)

Hence,
- 2
A1) f V2 < C(IIVY |12+ V1 Rol[Voolloo) .
B, (O,R)

We may writeug = ¢!%0 locally in ., with |Vug| = |V¢o| and

V¢o(z)=2d,~<|Vj(Z) N Vj(Z))
J

Z — aj| |z — ajl
where

Im(z —aj) Rez —aj)> V(e — (_Im (z—a;) Re(z— ap)
P ] - :

V(Z) = (_ ) _ ) -
/ lz—ajl " |z —ajl lz—al |z —ajl
Next we haveVu|2 = |Vp|2 + p2(|Vo|2 + 2Veo - Vi + |V¥/|?); hence
(A.2) / qIVul? ;/ q<|Vp|2+a2|vw|2)+/ q|Vuol? - X,
Qp Qy Qp

with

X = / q(1— p?)|Vuol® + f 2q(1— p?)VeoVyy — / 2qV oV

Qp Qy Qy

= X1+ Xo + X3.
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We estimateX; and X exactly as in [BMR]. Settind = max; |d;| we get
(A3) 1X1] £ llgllooGr K)Y2D?(2m)?.

For X» we find

(A.4) |X2| £ 4llgllocKY2mDIIVY 2.

since|Vgo| < 2mD/Rp. Only the estimate oKz requires some maodifications of
the argument in [BMR]. We have

(A.5) /quo vy = Zd,/ (v--vl/ijvj.v_w).

|z — ajl |z — ajl

Now,

[ Sy e
o, 1z2=ail  JBLOR\B@.Ry 24l Bi(aw.Ro) 12— 4l

k+j

By the Cauchy-Schwarz inequality and (A.1),

Sf L
ke Y BrlaRo) 12— gl

_ llglleo

m Zf VY|
0 kj B (ak,Ro)

= Cllglloo/m (V¥ l2 + v/mRol Vol o).

(A.6)

Denotingp; = R — |a;j| we write

e
B+(O,R)\B(j.Rp) 12— ajl
_ V- vy Vv
= q——+ q :
BLO.R\BGj.pp) 12—l JB (@j.p)\B@;.Ry) " 12— 3l
Note first that
ViV | Nl

/ IVl = Cligllc VI l2.
Q4

q
/B+(0,R)\B(a_,,p,-) lz — ajl Pj

If1 < j = L, wefind for every € (Ro, pj) (Using fg ., Vj - V= [y 3—"’

=0) that

=
r(aj Z aJ

If L+ 1< j <m,we have (denoting; (a;) = S,(a;) NR2)

(aj j )

1 _ _
—/ e —q(a,»))vj.w' < ||Vq||oof V.
Sr(aj) Sr(aj)
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Vi-Vy  q(a)) 1 -
/ g Ll—="L Vi Vi + = / (@ —q@)V;-Vy
St (a S (aj) St (aj)

e—al 7

q(a,)

W(aj —r) —y(aj +71))

1 -
by [l @y v

Lot
q
st 12— 4l

It follows that for everyj =1, ..., m,

T =

BL(O,R)\B(aj.Ry) 12— ajl

(A7) + CR|IVq|loo([IVY¥ 12 + v/mRo|| Vol 0o).
Combining (A.6) and (A.7) we are led to

Vi-V
q
Q. lz—ajl

Hence

= 2/|gllc|IVolloo + 1Vglloo /+ V.

S; (a_])

= CliglloolV¥ iz + 2RI gl Vol o

< Cv/mllqllol V¥ I2 + CRIIVGlol VY2

A8 +2Rlgl ool Vel loo + C/m RolI Vool oo (v/1 g 1o
+ R[[Vqlloo).
Forj = L+1,...,mthe estimate (A.7) clearly continues to hold if we replage
by V; (sincea; = a;), i.e.,
(A.9)

J e
By (0.R)\B(a;.Ro) 12— djl

= Cllgllool VY12 + CRIgllool Vol

+ CRIIVglloc(IVY|I2 + V/mRol Vel |oo).

We will show in the sequel that (A.9) continues to hold also fof i < L. First
notice that, since Ina; = Ro,
IV
Ro f13+<aj,Ro)

/ /R4
Bi(aj.Ro) 12—l
= Cllgllee([IV¥l2 + Rol[Vollso).-

As above (note that b§1.8) {a1, ..., an} N B+ (0, R) \ B(aj, p;) =)

J—
BL(O.R\B@;.pp) 12— djl

< llglls

(A.10)

(A.11)

= Cllgllool VY l2.

Finally, note that for each € (Rg, p;) we have eithes, (a;) ﬂRi =@orS.(a)nN
{Imz =0} ={b—ab+a)forsomeb € [ - 3R, R] anda € (0,r). In the
latter case we have
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=
s+(a, |z —ajl

= “’(f")(wb — o) — ¥ b+ a))

+ % fs:r(aj)(q - q(a]))‘_/] ' Vlﬁ‘

é2||qIIooIIVw||oo+CIIVq||oo/ IV,
SF@j)
and this inequality is valid for eveny € (Rq, p;). Integrating this inequality and
using (A.11), (A.1) we are led to
JOIE
BL(O,R) 12— ajl

i V-V
B4 (0.R\BG;.Ro) 1 o2 1

(A.12)
< Cliglloc VY112 + 2RIg 0ol Vol oo

+ CR[IVqlloc(IVY 12 + v/mRo| [ Vol| o).

Combining (A.10) and (A.12) we see that (A.9) holds alsoffes 1, ..., L
Now fork = 1, ..., m different from;j we havelz — a;| = |z — aj| = Ro for
z € By (ax, Rp) and so we get as above that

(A.13

Z/ W < Cllglloov/m (V¥ |12 + v/mRol | Vol |oo).-
B (ax., Ro)

K 'Z -
Combining (A.9) and (A.13) we are led to
Vi - Vy
lz — ajl
< CVmllgllool VY112 + CRIIVGllool VY112 + CRIIg ol [Vl

+ Cv/mRol|Volleo (Vmllglloo + RIIVG|loo)-

By (A.5), (A.8) and (A.14) we finally conclude that

1X3| < CmD{V/mllqlleo[V¥Il2 + RIIVqllcol [V II2
(A.15) + Rl|qllocl I V@lloo + v/mRol| Vool oo (v/mlIg|loc + RIIVglloc) |-
Combining (A.15) with (A.3) and (A.4) we get
|X| £ C1(m, D, K, lIgllco, RIIVqlloo)[IV¥]l2
+Ca(m, D, K, [|q]loc, RIIVqlloo, RIIV®||o0).

(A.14)

(A.16)

By the Cauchy-Schwarz inequality we conclude that for any 0,

&2 C2
A.l X| £ — \Y C
(A.1D) ||_2/Q+|I/f|+22+2

Choosinge = a,/qo in (A.17) and returning to (A.2) we get the desired con-
clusion. O
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Appendix B. Minimizers of F(x)

In this appendix we show how to modify our methods in order to study the
asymptotic behavior of minimizers of the functional

1 1
Fe(u) = Eff;'v”'er@/G(“(x)z_ u|?)?, &> 0.

See [R] and the Introduction for motivation. We assume thab is a smooth
function onG which satisfies O< a(x) < 1 for all x € G and that a smooth
boundary functiory : dG — C of degread > 0 is given with|g(x)| = a(x) for
all x € 3G. For alle > 0 we denote by:;. a minimizer for F, over Hgl(G, O).

In analogy with our previous notations we defing= min{a(x); x € G} and

A = a~Y(ag). We first sketch the proof of the following analogue of Theorem 1.

Proposition B.1.u,, — us in Clé’g(é\ {b1, ..., by}) for a subsequencsg, — 0
for everya < 1, where theN distinct point§{b1, ...,by} liein A. The limitu,
can be written as,, = av, wherev,, € C®(G \ {b1, ..., by}, S1) is a solution of

—div(@®Vuy) = a®|Vui?vs  inG\{b1,...,bxn}, vs=g/aondG.
Around eaclb;, u, is of degreeD; > 0 and Z,N=1 Dj =d.

For the proof we first notice that the two basic estimates
C
(B.1) luellLo) =1, [[VuellL=@G) = .

are proved in a way similar to that for the caga) = 1 (i.e., the case treated in
[BBH1, BBHZ2]). Also, the analogue of Lemma 1.1, namely,

(B.2) Fe(ue) < md(ag + 8)%|loge| + C(8) Ve > 0,

can be easily verified. For the proof of (B.2) and for our further analysis it is useful
to introducev, = u./a. A simple calculation shows th# (u.) = G.(v.) where
(B.3)

1 1 a*
Ge(v) = / {é(azwz + [vI?Val? + 5 (Va?, V|v|2>) it |v|2)2}.
G £

From (B.3) we are led to conjecture that the asymptotic behavieg pis essentially
the same as that of the minimiz€us,} ovengé,L ,(G, C) for the functional

(B.4) é(v>=/ 1a2|w|2+“_4<1_|v|2)2
’ ¢ cl2 42 '

We shall see later that this is indeed the case. The main obstruction for show-
ing it a priori comes from the fact that we do not know in advance whether
| [ (Va?, V]ve|?)| remain bounded as— O.

Inany case, using (B.1), (B.2) we can apply the methods of Section 1 to locate the

BBD’s {B(y;, vsﬁ)}ﬁv:”l, for someg < (0, 1) and the SBD'YB(x; ;, As)};?i:l, i=
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1,..., N, which cover the sef, = {x € G; |v.(x)| < %}. Passing to a subse-
quence{u,, } we denote again by, ..., by the distinct limit points of they;’s,

the firstM points lying inG and the rest 0ldG. As is the case for the functional
E., the main point is to establish an upper bound for the energy away from the
singularities, as in Proposition 1.1. More precisely, we want to show that for any
smalln there existsi (n) such that for: > n(n) we have

(B.5)

M N
Fe, (e, 192y) < wllognl{ Y " a?(br)Df+2 Y a®(b)Df t + C(G. g. p).
k=1 k=M+1

whereQ, = G \ U,’(Vzl B(by, n). Once the estimate (B.5) is established we can
easily modify the methods of [BBH1] to deduce the convergencéugf} in
C&;@‘(G\ {b1,...,bn}).Inorder to prove the estimate (B.5) we bound from below

the Dirichlet energy ob,, on perforated domains (Iik@lf”) andA,((”) in the proof

of Proposition 1.1) by the energy of reference maps as in Section 1, using Lemmas
1.4 and 1.5. For a typical perforated dom&rwe obtain by using these lemmas
that

(B.6) /a2|wgn|zgfa2(|w0|2+|V|v5n| 2)—c.
Q Q

Hereug is a reference map as in Section 1. Actually from (B.6) we may infer that
(B.7) Ge, (0, |R2) = Ge, (uo|2) — C.

Indeed estimates analogous to (B.7) enabled us to prove Proposition 1.1. Here, at
first glance, it is not clear that (B.6) implies (B.7) since it might be the case that

/(Vaz, V|v5n|2) — —00 as g, —> 0.
Q

However, we can make use of the additional term on the right-hand side of (B.6),
namely, [, a?|V v, |%. Using the Cauchy-Schwarz inequality we get

ag
§C/ |V]vs, || < 7/ V],
Q Q

Using (B.8) we see easily that (B.6) does imply (B.7). As explained above, the
estimate (B.7) enables us to prove (B.5), which in turn is the main step towards
proving Proposition B.1. The other parts of Proposition B.1, namely,that O
for all k and{b1, ..., by} C A are proved by using the arguments of Section 1.
This completes the sketch of the proof of Proposition B.1.

Using the above arguments we can also obtain the estimate

/ |V|vs"|
G

which implies of course that

(B.8) ‘ / (Va?, Vv, 1)
Q

2 (2
+ .
2a5

2 < C, uniformlyinn,
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/ |(Va?, V|v,,1%)| < €, uniformly inn.
G

It follows easily that
(B.9) Fe,(ts,) = G, (we,) + O(1)

(recall that{w,} is a minimizer ovengl/a(G, C) for the functionalG, given in
(B.4)). In particular, we immediately get an analogue of Theorem 1 of [ASh2].
Indeed, assume in the sequel that

(B.10) A={a1,...,ag} CGwithK = K; <d,
and that there exist positive-definite quadratic form@1, ..., Ok such that

a(x) =ao+ Q;j(x —aj) +o(|x — aj|2)

(B.11) - ]
in a neighborhood ofz;, 1= j = K.

By (B.9) and Theorem 1 in [ASh2] (and its proof) it follows that under these

assumptions

F., (us,) = mad{d|loge,| + 3(F(d, k) — d)log(|loge,|)} + O(1) ase, — O,

{b1,...,bn} = {a1, ..., ag} and the configuration of degreéby, ..., Dk) as-
sociated with(aq, . . ., ax) attains the minimum foF'(d, K), where

k k
Fd.ky=min] Y d?: (d1.....dp) e @H*. Y dj=djy.
j=1 j=1

Analogues to Theorems 2 and 3 of [ASh2] can be obtained too.
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