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Asymptotic Behavior of Minimizers
for the Ginzburg-Landau Functional

with Weight. Part I

Nelly André & Itai Shafrir

Communicated byH.Brezis

0. Introduction

LetG be a bounded, simply-connected smooth domain ofR2, g : ∂G → S1 a
smooth boundary function of degreed andp(x) a smooth positive function onG.
For eachε > 0 letuε be a minimizer for the functional

(0.1) Eε(u) = 1

2

∫
G

p|∇u|2 + 1

4ε2

∫
G

(1 − |u|2)2

of Ginzburg-Landau type on the set

H 1
g = {u ∈ H 1(G, B); u = g on ∂G} .

In this paper we are interested in studying the asymptotic behavior ofuε as
ε → 0. In their fundamental worksBethuel, Brezis & Hélein have studied
the casep ≡ 1 for boundary data satisfyingd = 0 [BBH1] andd |= 0 [BBH2].
In this latter work only the case ofG starshaped was treated. Later,Struwe [S]
proposed a method which works for an arbitrary domain (recentlyDel Pino &

Felmer [DPF1,2] gave a very simple argument for reducing the general case to
the starshaped case).Z.C.Han & Y.Y. Li [HL] have generalized the results
of [BBH1,2] to higher dimensions (when the Dirichlet energy is replaced by the
n-energy). The method ofStruwe is found to be very useful for the case of
a nonconstantp. In the cased = 0 the analysis of [BBH1] carries over without
any difficulty to the casep nonconstant and one can prove theC1,α convergence
uε → u0 asε → 0, withu0 ∈ C∞(G, S1)a solution of− div(p∇u0) = p|∇u0|2u0
in G. Hence, from now on we assume thatd |= 0 and, without loss of generality,
thatd > 0.

Let us now give some motivation for studying the functional (0.1). The first mo-
tivation is a physical one. The functional (0.1) is related to the Ginzburg-Landau
energy in superconductivity. It should be noted that here, in contrast with the phys-
ical problem, we ignore the magnetic vector potentialA. Moreover, there are no
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boundary data in the physical problem. So from the physical point of view we can
consider our problem only as a “model problem”. In the usual modelp ≡ 1. The
presence of a nonconstant weight function is motivated by the problem of pinning
of vortices, that is, of forcing the location of the vortices to some restricted sites.
One possible mechanism for modeling pinning was introduced byDu & Gunz-

burger [DG]. They consider a thin (three-dimensional) film whose thickness in
the z-direction varies as a function of the two-dimensional variablex and so it
equalsδp(x) , with smallδ for some positive smooth functionp(x). By an averag-
ing process in thez-direction, they are led to a functional of the type (0.1) (in fact,
in the resulting functionalp(x) multiplies also the term(1 − |u|2)2, but this does
not affect our analysis, which can be modified easily to cover this case too, see the
remark at the end of Section 2 in [ASh2]). As we shall see below, the zeros ofuε
are indeed located near the minima ofp for smallε. Another model for pinning is
obtained by introducing impurities into the material. This leads to the functional

(0.2) Fε(u) = 1

2

∫
G

|∇u|2 + 1

4ε2

∫
G

(a(x)2 − |u|2)2;

seeRubinstein [R]. Here we assume thata(x), describing the maximal density of
the superconducting electrons atx, is a smooth function satisfying 0< a(x) 5 1 in
G. As it turns out (see Appendix B) the study of the minimizers ofFε is essentially
the same as that of the minimizers ofEε. The asymptotic behavior of minimizers
of the functionalFε, in the special case where the number of minima ofa(x) in G
is greater than or equal tod, was studied independently byLassoued [L].

Another motivation for introducing the weight functionp is purely mathemati-
cal. One can view the results of [BBH2] as a way of realizing anS1-valued harmonic
map with isolated singularities as a limit of minimizers of a relaxed problem, i.e.,
as a limit whenε → 0 of the minimizersuε of Eε with p ≡ 1. Now one may do
the same by introducing an arbitrary Riemannian metric on the domain. This leads
to the functional

(0.3) Hε(u) = 1

2

∫
G

n∑
i,j=1

ai,j (x)
∂u

∂xi

∂u

∂xj
+ 1

4ε2

∫
G

(1 − |u|2)2,

withA(x) = (aij (x))i,j a positive definite matrix with smooth entries. This remark,
due to S. Agmon, was communicated to us byH. Brezis. The functionalEε
is thus a special case ofHε corresponding to a metric which is conformal to the
Euclidean metric. Looking over the proofs of the present paper we see that they
can be generalized with simple adaptations to the more general functionalHε. The
modification becomes easier if we use the classical result (see [W]) which states
that any smooth metric

∑
ai,j (x)dxidxj can be transformed by a suitable change

of variables, at least locally, to a metric of the formp(x)(dx2
1 + dx2

2). Hence all
the results we shall establish forEε are valid, with suitable modifications of the
statements, forHε. In particular, the zeros of the minimizers forHε are located, for
small enoughε, near the minima of det(ai,j (x)). The results of [ASh2] also have
appropriate analogues for the minimizers ofHε (see [ASh2] for details).
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Now we describe the main results of this paper. We denotep0 ≡ min{p(x); x ∈
G} andΛ = p−1(p0) = Λi ∪Λb whereΛi = Λ ∩G andΛb = Λ ∩ ∂G. We set
K = cardΛ, Ki = cardΛi andKb = cardΛb. Our first result, which is proved in
Section 1, is a general convergence result. It was proved byBeaulieu & Hadiji

[BH1,2] for the casesKi = d andK = 1.

Theorem 1. uεn → u∗ in C1,α
loc (G \ {b1, . . . , bN }) for a subsequenceεn → 0

for everyα < 1, where theN distinct points{b1, . . . , bN } lie in Λ. The limit
u∗ ∈ C∞(G \ {b1, . . . , bN }, S1) is a solution of

− div(p∇u∗) = p|∇u∗|2u∗ in G \ {b1, . . . , bN } , u∗ = g on ∂G.

Finally, around eachbj , u∗ is of degreeDj > 0 and
∑N
j=1Dj = d.

In this statement, forbj ∈ Λb the degree ofu∗ aroundbj is defined as the degree
on∂(B(bj , R)∩G) (for smallR > 0) of the map which equalsg onB(bj , R)∩∂G
andu∗ on ∂B(bj , R) ∩G.

Recall that whenKi = d, Beaulieu & Hadiji [BH1,2] showed thatN = d,
Dj = 1 for all j , and that the configuration{b1, . . . , bd} is minimizing for a certain
renormalized energy defined onΛd . The more interesting case isK < d since then
singularities of degree> 1 must occur, and in some cases there are singularities on
the boundary.

We would thus like to understand the “selection process” for the points
{b1, . . . , bN } and the associated degrees{D1, . . . , DN } ∈ ZN . As a first step in
this direction we establish in Section 2 a precise description ofuεn for n large.
Namely,uεn has its zeros located ind discs of radius∼ εn called “bad discs”.
Outside these discs|uεn | is close to 1. Using a result ofBauman, Carlson &

Phillips [BCP] we can show that forn large each bad disc contains exactly one
zero. There are thus exactlyDk zeros approaching eachbk (asn → ∞). In case
Dk is bigger than 1 (this must be the case for at least onek if K < d), we expect
to observe an “interaction energy” between zeros approaching the same limitbk.
Similarly, for bk ∈ ∂G we expect an interaction energy between zeros and the
boundary to appear. In order to get estimates for the energy ofuεn it is essential
to study the mutual distances between bad discs approaching the samebk and, for
bk ∈ ∂G, the distances between zeros and the boundary. It turns out that these
distances depend in a crucial way on the behavior ofp around its minima pointsΛ.
We will study this problem in detail in the second part of this work [ASh2] under
some particular assumptions on the behavior ofp near its minima. For generalp
in Section 2 we prove:

Theorem 2.Let {uεn} be a sequence of minimizers as in Theorem 1. Then, forn

large enough,uεn has exactlyd zerosz(n)1 , . . . , z
(n)
d . The degree ofuεn around each

z
(n)
i is equal to1. Moreover for allβ ∈ (0, 1), dist(z(n)i , ∂G) = ε

β
n for everyi and

|z(n)i − z
(n)
j | = ε

β
n for everyi |= j .

The results of this paper were announced in [ASh1].
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1. Proof of Theorem 1

Our proof of Theorem 1 consists of two main ingredients. First we use the
method of Struwe [S] in order to locate the “bad discs”, i.e., a finite collection
of discs of radiusO(ε), orO(εα), which cover the set

{
x; |uε(x)| < 1

2

}
. Then we

use some modifications of the results ofBrezis, Merle & Rivière [BMR]
in order to bound from below the energy ofuε near the singularities by the energy

of a “reference map” of the form
∏( x−xε

i

|x−xε
i
|
)di . This lower bound is used to get

an upper bound for the energy ofuε away from the singularities, which in turn
implies the desired convergence. This method follows essentially the strategy of
[BBH2] and [S]. There is however a significant difference coming from the fact
here that we do not have anyexplicit lower bound for the energy (in comparison
with Eε(uε) = πd| logε| −C in the casep ≡ 1 for example). Indeed, a posteriori
we know that the asymptotic behavior ofEε(uε)may be different for differentp’s.
What makes the method work after all is the “good behavior” of the reference map
away from the singularities. This idea will become clear in the sequel.

We start by quoting three lemmas. The first is a simple upper bound for the en-
ergy, which is proved in [BH2]. The next two lemmas require obvious modifications
of those of [S]. Hence, all three proofs are omitted.

Lemma 1.1.For everyδ > 0 there exists a constantC(δ) such that

Eε(uε) 5 (p0 + δ)πd| logε| + C(δ) ∀ε > 0.

Lemma 1.2.There exists an integerJ0 such thatJε 5 J0 for any collection of
mutually disjoint discs{B(xεj , ε5); 1 5 j 5 Jε , x

ε
j ∈ G} with |uε(xεj )| < 1

2, for
all j .

Lemma 1.3.For everyα ∈ (0, 1) there exists a constantC(α) such that

1

ε2

∫
B(x,εα)∩G

(1 − |uε|2)2 5 C(α) ∀x ∈ G, ∀ε > 0.

For eachε > 0 we can find by a simple recursive process a finite collection
of disjoint discs{B(xj , ε5), 1 5 j 5 Jε} such that{x ∈ G; |uε(x)| < 1

2} ⊂⋃Jε
j=1B(xj , ε) (actuallyxj = xεj but we omitε for simplicity). By Lemma 1.2 we

know thatJε 5 J0 uniformly in ε. Starting with the collection{B(xj , ε)}Jεj=1 we
can obtain after a finite number of iterations (no more thanJ0), each consisting
of multiplying all the radii by 9 and deleting some discs (see [BBH2, p. 50]), a
new collection of discs{B(xj , λε)}Nsj=1 (againxi = xεi andNs = Nε

s but we have

Ns 5 Jε 5 J0, alsoλ = λε 5 9J0) satisfying

(1.1)
{
x ∈ G ; |uε(x)| < 1

2

} ⊂
Ns⋃
j=1

B(xj , λε),

(1.2) |xi − xj | = 8λε ∀ i |= j.
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Similarly, starting with the collection{B(xj , ε1/2)}Nsj=1 we obtain afterk 5
Ns iterations, each consisting of multiplying all the radii by 9 and deleting some
discs, a new collection of discs{B(yi, νε1/2)}Nbi=1 with Nb 5 Ns , {y1, . . . , yNb } ⊂
{x1, . . . , xNs }, and

⋃Ns
j=1B(xj , λε) ⊂ ⋃Nb

i=1B(yi, νε
1/2) satisfying

(1.3) |yi − yj | = 8νε1/2 ∀ i |= j.

By a possible further modification we can also assume that

(1.4) for all i either yi ∈ ∂G or dist(yi, ∂G) = 2νε1/2,

(1.5) for all j either xj ∈ ∂G or dist(xj , ∂G) = 2λε.

We call {B(yi, νε1/2}Nbi=1 the “big bad discs” (BBD’s) and{B(xj , λε)}Nsj=1 the
“small bad discs” (SBD’s). We recall that thexj ’s and theyi ’s all depend onε
and so doλ and ν but these last two are uniformly bounded independently of
ε. Relabeling the SBD’s we may assume we have the following situation: Each
BBD B(yi, νε

1/2) containsni = 1 SBD’s {B(xi,j , λε)}nij=1 which are actually
contained inB(yi, 1

4νε
1/2). By our construction all the degreesdi = dεi =

deg(uε, ∂B(yi, νε1/2)), di,j = dεi,j = deg(uε, ∂B(xi,j , λε)) are well defined.
Moreover, as in [BBH2] we easily see that

(1.6) |di |, |di,j | 5 κ ∀ ε, ∀ i, j,
for some constantκ. Passing to a subsequence{εn} we may assume that all the
quantitiesλ, ν,Nb,Ns, {ni}, {di}, {di,j } are independent ofn. Passing to a further
subsequence, still denoted by{εn}, we may assume thatyi = y

εn
i → li ∈ G, i =

1, . . . , Nb. Let b1, . . . , bN be the distinct points among the{li}Nbi=1 and set

Ik = {
i ∈ {1, . . . , Nb}; yεni → bk

}
, k = 1, . . . , N.

DenotingDk = ∑
i∈Ik di , k = 1, . . . , N, we clearly have

∑N
k=1Dk = d.

Next, before continuing with the rigorous, and rather technical proof, let us give
some explanation of the (simple) basic idea behind it. For any subdomainD of G
we use the notationEεn(u|D) = 1

2

∫
D
p|∇u|2 + 1

4ε2
n

∫
D
(1 − |u|2)2. As in [BBH2,

S], the main step toward proving a converegence result like Theorem 1, is to get
an upper bound for the energy “away from the singularities”. More precisely, we
claim that for allη > 0,

(i) Eεn(uεn |�η) 5 C(η) ∀n = n(η),

where�η ≡ G\⋃N
i=1B(bi, η). Once (i) is established, the convergence of{uεn} in

C
1,α
loc (G \ {b1, . . . , bN }) can be deduced as in [BBH2]. Assume for simplicity that

all the pointsb1, . . . , bN lie in the interior ofG (of course, the case where some of
the points lie on∂G must also be treated by the rigorous proof). Next, for eachn

we define a “reference map”un0 onG \⋃i,j B(xi,j , λεn) by
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un0(z) =
∏
i,j

(
z− xi,j

|z− xi,j |
)di,j

.

Using a modification of a result ofBrezis, Merle & Rivière [BMR], we
establish the lower bound

N∑
i=1

1

2

∫
B(bi ,η)\

⋃
j
B(xi,j ,λεn)

p|∇uεn |2

(ii )

=
N∑
i=1

1

2

∫
B(bi ,η)\

⋃
j
B(xi,j ,λεn)

p|∇un0|2 − C .

In fact, we cannot get (ii) directly, since a priori wedo not have the global
estimate

1

ε2
n

∫
G

(1 − |uεn |2)2 5 C.

So in order to establish (ii) we have to proceed in two steps, using the BBD’s. This
point is treated carefully in the detailed proof, but we ignore it for the moment.
Now we complete eachun0 to a competing map̃un for the infimum ofEεn overH 1

g .
So we first set

ũn = un0 in
N⋃
i=1

(
B(bi, η) \

⋃
j

B(xi,j , λεn)

)
.

Then on each “hole”B(xi,j , λεn), using polar coordinates around the pointxi,j ,
we define

ũn(xi,j + reiθ ) = r

λεn
un0(xi,j + λεne

iθ ).

It is easy to see that

(iii ) Eεn(ũn|B(xi,j , λεn)) 5 C for all i andj.

Finally, since the tangential energies of{un0} on each∂B(bi, η) are uniformly
bounded, it is clear that we can find for eachn a mapwn : �η → S1 which
equalsg on ∂G, andun0 on each∂B(bi, η), and which satisfies

(iv) 1
2

∫
�η
p|∇wn|2 5 C(η).

So we setũn = wn on�η. Sinceuεn is a minimizer, the inequalityEεn(uεn) 5
Eεn(ũn) yields

Eεn

(
uεn |

N⋃
i=1

B(bi, η)

)
+ Eεn(uεn |�η) 5 Eεn

(
ũn|

N⋃
i=1

B(bi, η)

)
+ Eεn(wn|�η).

But then (i) follows immediately from (ii), (iii) and (iv). This concludes the sketch
of the proof.
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Going back to the rigorous proof, we need two lemmas which generalize a result
of Brezis, Merle & Rivière [BMR, Th. 4]. The proof of Lemma 1.4 requires
an obvious modification of the proof in [BMR] and is omitted. The proof of Lemma
1.5 is given in Appendix A.

Lemma 1.4.On a domain� = B(0, R) \⋃m
j=1B(aj , R0) with

(1.7) R0 5 1
4R,

(1.8) aj ∈ B(0, 1
4R) ∀j,

(1.9) |aj − ak| = 4R0 ∀j |= k,

a smooth positive functionq(x) is given. Assume thatu ∈ H 1(�,C) ∩ C(∂�,C)
satisfies

(1.10) 0< a 5 |u| 5 1 in �,

(1.11)
1

R2
0

∫
�

(1 − |u|2)2 5 K,

(1.12) deg(u, ∂B(aj , R0)) = dj , j = 1, . . . , m.

Then, ∫
�

q|∇u|2 =
∫
�

{
q|∇u0|2 + 1

2q0a
2|∇ψ |2 + q|∇ρ|2}

−C(a,K,m, q0, ||q||∞, R||∇q||∞,max
j

|dj |),

whereu0(z) = ∏m
j=1

( z−aj
|z−aj |

)dj , ρ = |u|, q0 = inf� q(z) andψ is defined by
u = |u|u0e

iψ .

We denote byR2+ the upper half space{Im z > 0}.

Lemma 1.5.Let the domain�+ = R2+ ∩B(0, R) \⋃m
j=1B(aj , R0) be given with

R,R0 and{aj }mj=1 ⊂ �+ satisfying(1.7)–(1.9)and also

Im aj = 2R0, j = 1, . . . , L,
(1.13)

Im aj = 0, j = L+ 1, . . . , m (0 5 L 5 m).

Let q be a smooth positive function on�+ and letω ∈ C∞((−R,R); S1) be
given. (−R,R) is identified withB(0, R) ∩ {Im z = 0}. Consider a mapu ∈
H 1(�+; C) ∩ C(∂�+,C) which satisfies

(1.14) u = ω on (−R,R).
Assume also that(1.10)–(1.12)are satisfied(� is replaced by�+ in (1.10), (1.11)
and∂B(aj , R0) by ∂(B(aj , R0) ∩ R2+) for j = L+ 1 in (1.12)). Then,∫

�+
q|∇u|2 =

∫
�+

{
q|∇u0|2 + 1

2q0a
2|∇ψ |2 + q|∇ρ|2}− C,
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withC = C(a,K,m,ω, q0, ||q||∞, R||∇q||∞,maxj |dj |), u0(z) = ∏m
j=1

( z−aj
|z−aj |

)dj( z−āj
|z−āj |

)dj , ρ = |u|, q0 = inf�+ q, ψ is defined byu = |u|u0e
iψ , and āj is the

complex conjugate ofaj .

Relabeling if necessary, we may assume thatb1, . . . , bM ∈ GwhilebM+1, . . . ,

bN ∈ ∂G (note that 05 M 5 N , so we may have all thebi ’s in G or all of them
on ∂G). SinceG is a smooth simply-connected domain, we may choose a point
x∞ ∈ G \ {b1, . . . , bN } and get by the Riemann mapping theorem a smooth (up
to the boundary) conformal maph : G \ {x∞} → R2+ sendingx∞ to ∞. We then
define a “reflection”r onG by r(z) = h−1(h(z)). We mention in passing that all
our results can be generalized easily to multiply connected domains by using local
conformal coordinates. We fix a positiveη0 satisfying

η0 <
1
2 min

{
min{|bi − bj |; i |= j}, min{dist(bi, ∂G); i = 1, . . . ,M}},

and such that for allk the domainG ∩ B(bk, η0) is a connected domain with
∂G ∩ B(bk, η0) andG ∩ ∂B(bk, η0) both homeomorphic to a segment. Our main
tool in proving Theorem 1 is

Proposition 1.1.For everyη ∈ (0, η0)

Eεn
(
uεn
∣∣G \

N⋃
k=1

B(bk, η)
)

5 π | logη|
{
M∑
k=1

p(bk)D
2
k + 2

N∑
k=M+1

p(bk)D
2
k

}

+C(G, g, p) for n = n0(η).

Almost all the rest of Section 1 is devoted to the proof of Proposition 1.1.
It is based on a comparison of the energy ofuεn around eachbk with that of a
suitable “reference map”. We start withbk, k = 1, . . . ,M. For everyi ∈ Ik we
define on�(n)i = B(yi, νε

1/2
n ) \ ⋃ni

j=1B(xi,j , λεn) the mapu0,i (z) = u
(n)
0,i (z) =∏ni

j=1

( z−xi,j
|z−xi,j |

)di,j . Applying Lemma 1.4 (note that Lemma 1.3 ensures that(1.11)

is satisfied) we get

(1.15)
∫
�
(n)

i

p|∇uεn |2 =
∫
�
(n)

i

p|∇u0,i |2 − C(p,N, κ).

OnA(n)k = B(bk, η) \⋃i∈Ik B(yi, 2νε
1/2
n ) we define the mapv0,k(z) = v

(n)
0,k(z) =∏

i∈Ik
(
z−yi
|z−yi |

)di
. By Lemma 1.1 we have

1

εn

∫
A
(n)

k

(1 − |uεn |2)2 5 εnEεn(uεn) 5 Cεn| logεn| 5 C,

hence we may apply Lemma 1.4 to infer that

(1.16)
∫
A
(n)

k

p|∇uεn |2 =
∫
A
(n)

k

p|∇v0,k|2 − C(p,N, κ).
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Next we deal with the caseM + 1 5 k 5 N , i.e. whenbk ∈ ∂G. For i ∈ Ik
we have eitheryi ∈ G, in which case(1.15) continues to hold, oryi ∈ ∂G. In the
latter case, forn large, withck = |h′(bk)|, we have

�̃
(n)
i = B+

(
h(yi),

1
2νckε

1/2
n

) \⋃ni
j=1B(h(xi,j ), 2λckεn)

⊂ h(�
(n)
i ) ⊂ B+(h(yi), 2νckε

1/2
n ) \⋃ni

j=1B(h(xi,j ),
1
2λckεn),

(1.17)

where�(n)i = G∩B(yi, νε1/2
n )\⋃ni

j=1B(xi,j , λεn). Here and in the sequel we use

the notationB+
.= B ∩ R2+ for any discB. Setting

ṽ0,i (z) = ṽ
(n)
0,i (z) =

ni∏
j=1

(
z− h(xi,j )

|z− h(xi,j )|
)di,j( z− h(xi,j )

|z− h(xi,j )|

)di,j
on �̃(n)i ,

we have by Lemma 1.5, applied toũεn(x) = uεn(h
−1(x)) with q(x) = p(h−1(x)),

that

(1.18)
∫
�̃
(n)

i

q|∇ũεn |2 =
∫
�̃
(n)

i

q|∇ṽ0,i |2 − C(p,N,G, g, κ).

Looking for a “cleaner form” for the reference map on the original domain, we
define

ũ0,i (z) =
ni∏
j=1

(
h−1(z)− xi,j

|h−1(z)− xi,j |
)di,j( h−1(z)− r(xi,j )

|h−1(z)− r(xi,j )|
)di,j

.

Clearlyũ0,i (z) = F
(n)

i
(z)

|F (n)
i
(z)| ṽ0,i (z) with

F
(n)
i (z) =

ni∏
j=1

(
h−1(z)− xi,j

z− h(xi,j )

)di,j(h−1(z)− r(xi,j )

z− h(xi,j )

)di,j
.

Using the fact thath is a one-to-one smooth conformal map onG with a nonva-

nishing derivative we see easily that the possible singularities ath(xi,j ), h(xi,j ) ,

j = 1, . . . , ni , are removable. It follows thatF (n)i is a smooth conformal map on

R2+ with no zeros. Using the Taylor expansion ofh−1 we see that

(1.19) ||∇F (n)i ||L∞(h(G∩B(bk,η0))) 5 C(G,N, κ).

We claim that

(1.20)

∣∣∣∣ ∫
�̃
(n)

i

q(|∇ṽ0,i |2 − |∇ũ0,i |2)
∣∣∣∣ 5 C(N, κ, p,G, g).

The estimate(1.20) follows immediately from

Lemma 1.6.Let�+, R,R0, {aj }mj=1, {dj }mj=1, u0 and q be as in Lemma 1.5. Let

ψ ∈ C1(�+) be given, and setu = u0e
iψ . Then,
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∣∣∣∣∫
�+
q(|∇u|2 − |∇u0|2)

∣∣∣∣ 5 C(m,max
j

|dj |, ||q||∞, R||∇q||∞, R||∇ψ ||∞).

Proof. We may writeu0 = eiφ0 locally in�+; henceu = ei(φ0+ψ). We then have
locally

q|∇u|2 = q
{|∇u0|2 + 2(∇φ0,∇ψ)+ |∇ψ |2}.

The proof of Lemma 1.5 (in particular the estimate forX3) shows (see Appendix
A) that

∣∣ ∫
�+ q(∇φ0,∇ψ)

∣∣ 5 C(m,maxj |dj |, ||q||∞, , R||∇q||∞, R||∇ψ ||∞),
which clearly implies the result.ut

From the particular form of̃u0,i it follows immediately that

(1.21)
∫
h(�

(n)

i
)\�̃(n)

i

q|∇ũ0,i |2 5 C(p,N,G, g, κ).

Returning to the original domain, we obtain from(1.18), (1.20) and(1.21) that for

u0,i (z) = u
(n)
0,i (z) =

ni∏
j=1

(
z− xi,j

|z− xi,j |
)di,j ( z− r(xi,j )

|z− r(xi,j )|
)di,j

we have the inequality

(1.22)
∫
�
(n)

i

p|∇uεn |2 =
∫
�
(n)

i

p|∇u0,i |2 − C(p,N,G, g, κ).

Next, there exists a constantc̄ = c̄(G) such that

B+(h(bk), η/c̄) ⊂ h(G ∩ B(bk, η)) ⊂ B+(h(bk), c̄η) for all k .

Using a similar argument, we conclude that

(1.23)
∫
A
(n)

k

p|∇uεn |2 =
∫
A
(n)

k

p|∇v0,k|2 − C(p,N,G, g, κ),

with
A
(n)
k = G ∩ B(bk, η) \

⋃
i∈Ik

B(yi, 2νε
1/2
n ),

v0,k(z) =
∏
i∈Ik

(
z− yi

|z− yi |
)di( z− r(yi)

|z− r(yi)|
)di
.

Next we are looking for a lower bound for the energy ofuεn onDη = G ∩(⋃N
k=1B(bk, η)

)
using a mapwn that will be constructed in the sequel. We first

definewn = u
(n)
0,i on�(n)i for all i = 1, . . . , Nb. Thenwn = v

(n)
0,k onA(n)k , k =

1, . . . , N . We need to extend the definition ofwn to the domainsD(n)i = G ∩
B(yi, 2νε

1/2
n ) \B(yi, νε1/2

n ) , i = 1, . . . , Nb. Assume first thatyi ∈ G; henceD(n)i
is an annulus. From our definition ofwn outsideD(n)i the following estimate for
the tangential energy follows:
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∫
∂D

(n)

i

∣∣∣∂wn
∂τ

∣∣∣2 dτ 5 C(N, κ)

ε
1/2
n

∀i, ∀n.

Hence we may extendwn as anS1-valued map insideD(n)i in such a way that

(1.24)
∫
D
(n)

i

|∇wn|2 5 C(N, κ).

Actually, the same conclusion still holds in caseyi ∈ ∂Gsince from our construction
|∂wn/∂τ | 5 C(N, κ,G) on ∂D(n)i ∩ ∂G.

Next we need to complete the definition ofwn in the “holes”{B(xi,j , λεn)∩G}.
Consider first the casexi,j ∈ G. Using polar coordinates aroundxi,j we define

wn(xi,j + reiθ ) =
(
r

λεn

)
u0,i (xi,j + λεne

iθ ).

Using the estimate
∫
∂B(xi,j ,λεn)

∣∣ ∂u0,i
∂τ

∣∣2 dτ 5 C(N, κ)/εn, we easily find that

(1.25) Eεn(wn|B(xi,j , λεn)) 5 C(N, κ, p).

In the casexi,j ∈ ∂G, we argue similarly. Using the fact that forεn small enough,
G ∩ B(xi,j , λεn) is a star-shaped domain which is close to a half disc, we choose
a pointx′

i,j ∈ G ∩ B(xi,j , λεn) such thatG ∩ B(xi,j , λεn) is star-shaped with

respect tox′
i,j and dist(x′

i,j , ∂(G ∩ B(xi,j , λεn))) = 1
4λεn. Note that the rescaled

domains
{ 1
εn

(
G∩B(xi,j , λεn)

)}∞
n=1 have Lipschitz boundary with a uniform Lip-

schitz character. For anyz ∈ G∩B(xi,j , λεn) (different fromx′
i,j ) there is a unique

z̃ ∈ ∂(G ∩ B(xi,j , λεn)) such thatz lies on the segment [x′
i,j , z̃]. We then define

wn(z) =
|z− x′

i,j |
|z̃− x′

i,j |
u0,i (z̃).

Again, a standard calculation leads to

(1.26) Eεn(wn|G ∩ B(xi,j , λεn)) 5 C(N, κ, p,G, g).

Summing up (1.15), (1.16), (1.22)–(1.26) we are led to

(1.27)
1

2

∫
Dη

p|∇uεn |2 = Eεn(wn|Dη)− C(N, κ, p,G, g).

Now in caseM < N , i.e., when at least onebk lies on the boundary, we further
modify the mapwn to a new mapw′

n which satisfiesw′
n = g on∂Dη∩∂G. For this

purpose we consider fork = M+1, . . . , N a smooth mapf (n)k : G∩B(bk, η0) →
S1 satisfyingf (n)k = g/wn on∂G∩B(bk, η0). Since||∇wn||L∞(∂G∩B(bk,η0)) 5 C,

we can clearly find such a map with||∇f (n)k ||∞ 5 C(N, κ, g,G). Next we define
w′
n by
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w′
n =

{
wn onB(bk, η), k = 1, . . . ,M,

wnf
(n)
k onG ∩ B(bk, η), k = M + 1, . . . , N.

Note that the energies ofwn andw′
n on the “holes”{B(xi,j , λεn)∩G} are uniformly

bounded. Combining it with an argument similar to that which led to(1.20) yields

(1.28)

∣∣∣∣∫
Dη

p (|∇w′
n|2 − |∇wn|2)

∣∣∣∣ 5 C(N, κ, p,G, g).

If a modification ofwn has been made as above, we renamew′
n aswn, and from

(1.27) and(1.28) we conclude that in all cases

(1.29) 1
2

∫
Dη

p|∇uεn |2 = Eεn(wn|Dη)− C(N, κ, p,G, g).

For anyη > 0 let�η = G \⋃N
k=1B(bk, η). We continue with

Lemma 1.7.For anyη ∈ (0, η0) there exists a mapv = v
(n)
η ∈ C1(�η; S1) such

thatv = wn on∂(G∩B(bk, η)) for k = 1, . . . , N and such that for alln = n(η):∣∣∣∣12
∫
�η

p|∇v|2 − π

{
M∑
k=1

p(bk)D
2
k + 2

N∑
k=M+1

p(bk)D
2
k

}
log

1

η

∣∣∣∣
5 C(N, κ, p,G, g).

(1.30)

Proof. On�2η we define

v(z) = eiψ0

M∏
k=1

(
z− bk

|z− bk|
)DK N∏

k=M+1

(
h(z)− h(bk)

|h(z)− h(bk)|
)2DK

,

whereψ0 is a smooth function onG chosen so thatv = g on ∂G (we use the
elementary fact that forbk ∈ ∂G the restriction of

(
h(z)−h(bk)
|h(z)−h(bk)|

)2Dk to ∂G is a

smoothS1-valued map of degreeDk with a removable singularity atbk). We easily
find that ∣∣∣∣12

∫
�2η

p|∇v|2 − π

{
M∑
k=1

p(bk)D
2
k + 2

N∑
k=M+1

p(bk)D
2
k

}
log

1

η

∣∣∣∣
5 C(N, κ, p,G, g).

(1.31)

Finally, by an elementary direct construction we can extend the definition ofv to
each of the domainsAk,η = G ∩ B(bk, 2η) \ B(bk, η) so that bothv = wn on
∂(G ∩ B(bk, η)) and

∫
Ak,η

|∇v|2 5 C are satisfied. Here we use the fact that forn

large we have by the definition ofwn that|∇wn| 5 C/η on ∂(G ∩ B(bk, η)). ut
Proof of Proposition 1.1.Fix anyη ∈ (0, η0). We define a map̃un ∈ H 1

g (G; C)
by

ũn =
{
wn onDη,

v
(n)
η on�η.
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Recall thatDη = G ∩⋃N
k=1B(bk, η) and�η = G \Dη. Sinceuεn is a minimizer

for Eεn , we have

(1.32) Eεn(uεn |G) 5 Eεn(ũn|G).

Hence

(1.33) Eεn(uεn |�η)+ Eεn(uεn |Dη) 5 Eεn(v
(n)
η |�η)+ Eεn(wn|Dη).

Using(1.29) we conclude that

(1.34)
1

4ε2
n

∫
Dη

(1−|uεn |2)2+Eεn(uεn |�η) 5 Eεn(v
(n)
η |�η)+C(N, κ, p,G, g).

Combining this with(1.30) we find

1

4ε2
n

∫
Dη

(1 − |uεn |2)2 + Eεn(uεn |�η)

5 C(N, κ, p,G, g)+ π

{
M∑
k=1

p(bk)D
2
k + 2

N∑
k=M+1

p(bk)D
2
k

}
log

1

η
,

(1.35)

and the result follows. ut
We mention an important corollary to our previous results:

Lemma 1.8.For some constantC independent ofn,

(1.36)
1

4ε2
n

∫
G

(1 − |uεn |2)2 5 C.

Proof. Fix anyη < η0 and apply(1.35). ut
Proof of Theorem 1. Once Proposition 1.1 has been proved, we can apply the
arguments of Theorem VI.1 in [BBH2] to obtain the convergence of{uεn} in
C

1,α
loc (G \ {b1, . . . , bN }) to a mapu∗ ∈ C∞(G \ {b1, . . . , bN }), satisfying

− div(p∇u∗) = p|∇u∗|2u∗ in G \ {b1, . . . , bN }.

Indeed, the proofs of [BBH1] for the cased = 0, which form the basis of the proof
of [BBH2, Th. VI.1], can be easily generalized to the casep nonconstant. In order
to complete the proof of Theorem 1 we need to prove two more properties:

(1.37) Dk > 0 ∀k,
(1.38) bk ∈ Λ ∀k.

We shall use
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Lemma 1.9.For everyk andη < η0,

1

2

∫
G∩B(bk,η)

p|∇uεn |2 = πDk min{p(x); x ∈ G ∩ B(bk, η)} log

(
η

εn

)
−C(N, κ, p,G, g).

for n = n(η).

Proof. In casebk ∈ G, we can apply the result of [HS] (or the method of [BBH2,
Th. V.2]) to uεn on the perforated domainB(bk, η) \ ⋃B(xi,j , λεn) to conclude
the result. Ifbk ∈ ∂G, then we can essentially reduce this case to the previous one
by smoothly extendingg andp to G′ \ G whereG′ ⊃ G without reducing the
minimum value ofp. ut
Proof of (1.37) and (1.38). Fix anyη < η0. By Lemma 1.9 forn large enough we
get

1

2

∫
G

p|∇uεn |2 = π log
η

εn

N∑
k=1

|Dk| min{p(x); x ∈ G ∩ B(bk, η)} − C.

Combining this with Lemma 1.1 and lettingn → ∞ we obtain

N∑
k=1

|Dk| min{p(x); x ∈ G ∩ B(bk, η)}

5 p0(d + δ) = p0

(
N∑
k=1

Dk + δ

)
∀δ > 0.

Sinceδ is arbitrary, we conclude that necessarily|Dk| = Dk for all k, i.e.,Dk = 0
and min{p(x); G∩B(bk, η)} = p0 for all k. Sinceη is arbitrary, we conclude that
p(bk) = p0 for all k. Finally, the argument of [BBH2, p. 61] can be applied (now
that we know that(1.36) holds) to infer thatDk |= 0 for all k; hence both(1.37)
and(1.38) are established.ut

2. Proof of Theorem 2

The proof of Theorem 2 requires a simplification of the configuration of the bad
discs associated with each minimizer. We begin by modifying further our BBD’s
and SBD’s. Starting with the collection{B(yi, εα0

n )}Nbi=1 with α0 = 1
2 we can obtain

after a finite number of iterations (no more thanNb), each consisting of replacing
αk byαk+1 = 1

2αk and deleting some discs, a new collection, which may be written

after relabeling as{B(yi, εαn )}
N ′
b

i=1, satisfying

(2.1) |yi − yj | = 2εα/2n ∀ i |= j,

(2.2) for all i either yi ∈ ∂G or dist(yi, ∂G) = 2εα/2n .
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HereN ′
b 5 Nb andα = 2−m for somem 5 Nb + 1. Of course, the regrouping

of the SBD’s is also affected by the above modification. By passing to a further
subsequence we may assume thatα, N ′

b and the regrouping of the SBD’s are all
independent ofn. In any case, we are now going to modify the SBD’s too. Starting
from the original collection{B(xi,j , λεn)} we carry out a finite number of iterations
(no more thanNs), each consisting of multiplying all radii by a constant, and
deleting some discs, until a new collection, which after relabeling may be written
as{B(xi,j , λ′εn)} for i = 1, . . . , N ′

b j = 1, . . . , ni , is obtained which satisfies

(2.3)
|xi,j − xi,j ′ |

εn
→ ∞, for all i and allj |= j ′,

(2.4)

for i = 1, . . . , N ′
b, j = 1, . . . , ni eitherxi,j ∈ ∂G or

dist(xi,j , ∂G)

εn
→ ∞,

(2.5) xi,j ∈ G ∩ B(yi, 1
4ε
α
n

)
, i = 1, . . . , N ′

b, j = 1, . . . , ni .

We may perform this construction so thatyi = xi,1 if yi ∈ G. As in Section 1, we
set

di = deg
(
uεn, ∂(G ∩ B(yi, εαn ))

)
, di,j = deg

(
uεn, ∂(G ∩ B(xi,j , λ′εn))

)
.

By passing to a further subsequence we may assume that all the quantities
α,N ′

b, {ni},{di}, and{di,j } are independent ofn. Recall that theyi ’s and thexi,j ’s
do depend onn but we do not indicate this for the sake of simplicity. As in Section
1 we setIk = {i ; yi → bk}. In the sequel we shall denote byC different constants
which do not depend onn. Next we have

Lemma 2.1.di = 1 for all i.

Proof. Fix anyη < η0. For eachk, by the same proof as in Lemma 1.9 we have

(2.6)
1

2

∫
G∩B(bk,η)\

⋃
i∈Ik B(yi ,ε

α/2
n )

p|∇uεn |2 = πp0Dk log
η

ε
α/2
n

− C.

The same argument yields

(2.7)
1

2

∫
G∩B(yi ,εα/2n )\B(yi ,εαn )

p|∇uεn |2 = πp0d
2
i log

ε
α/2
n

εαn
− C ∀ i ∈ Ik.

Finally, the same argument applied to eachB(yi, ε
α
n ) \⋃ni

j=1B(xi,j , λ
′εn) gives

(2.8)
1

2

∫
G∩B(yi ,εαn )

p|∇uεn |2 = πp0|di | log
εαn

λ′εn
− C ∀ i.

Summing up (2.6)–(2.8) we conclude that
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Eεn(uεn |G) =
N∑
k=1

1

2

∫
G∩B(bk,η)

p|∇uεn |2

= πp0d log
1

εn
+ πp0α

2

N ′
b∑

i=1

(d2
i − di) log

1

εn
− C(η).

(2.9)

Combining(2.9) with Lemma 1.1 we get that
∑N ′

b

i=1(d
2
i − di) = 0; hence,

(2.10) di = 0 or 1 ∀i.

We only need to exclude the possibility thatdi = 0. Looking for a contradiction,
assume thatdi = 0 for somei. We first claim that for thisi we have

(2.11) Eεn(uεn |G ∩ B(yi, εαn )) 5 C.

Indeed, by Lemma 1.1 and the Fubini Theorem we may find (as in [S]) for alln

somern ∈ (εαn , εα/2n ) such that

(2.12)
∫
G∩∂B(yi ,rn)

{
1

2
p|∇uεn |2 + 1

4ε2
n

(1 − |uεn |2)2
}

5 C

rn
.

Using (2.12) we now construct a mapvn onG ∩ B(yi, rn) which equalsuεn on
∂(G ∩ B(yi, rn)) such thatEεn(vn|G ∩ B(yi, rn)) 5 C. Sinceuεn is a minimizer,
this would certainly imply(2.11). We use an argument which is due to F. H.Lin

[Lin]. Look first at the caseyi ∈ G. Since by assumption,di = 0 and|uεn | = 1
2

on∂B(yi, rn), we may write on∂B(yi, rn) thatuεn = ρne
iφn , with ρn = |uεn | and

min∂B(yi ,rn) φn ∈ [0, 2π). Since by(2.12)
∫
∂B(yi ,rn)

∣∣ ∂φn
∂τ

∣∣2 5 C/rn, it follows that

max∂B(yi ,rn) φn 5 C. Using polar coordinates aroundyi we first definevn = ρ̃ne
iφ̃n

onB(yi, rn) \ B(yi, rn − εn) where

ρ̃n(r, θ) =
(
rn − r

εn

)
+
(

1 − rn − r

εn

)
ρn(rn, θ), φ̃n(r, θ) = φn(rn, θ).

Then, we extend the definition ofvn toB(yi, rn − εn) by

ρ̃n(r, θ) = 1, φ̃n(r, θ) = r

rn − εn
φn(rn, θ).

A direct calculation shows thatvn satisfiesEεn(vn|G ∩ B(yi, rn)) 5 C; hence
(2.11) holds in caseyi ∈ G.

In caseyi ∈ ∂G, we use a similar argument. This time the domainG∩B(yi, rn)
is close to a half disc. The only difference with respect to the above construction
is that for the extension along rays we use a pointy′

i ∈ G ∩ B(yi, rn) satisfying
dist(y′

i , ∂(G ∩ B(yi, rn))) ∈ [ 1
20rn

1
10rn

]
as a center instead ofyi . We leave the

details to the reader. As a result of the previous analysis we have established(2.11)
in all cases.
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Note that by our construction, eachG ∩ B(yi, ε
α
n ) contains a pointzi with

|uεn(zi)| 5 1
2. A simple modification of the argument of [S] shows that there exists

a constantγ0 > 0 such that if

(2.13)
∫
∂B(x,r)∩G

{
1

2
p|∇uεn |2 + 1

4ε2
n

(1 − |uεn |2)2
}

5 γ0

r

for somex ∈ G andr ∈ [εαn , εα/2n

]
, then|uεn(x)| = 2

3. We claim that there exists

somer = r(n) ∈ (εαn , εα/2n ) for which (2.13) is satisfied forx = zi . Indeed, if not,
we would have

Eεn(uεn |G ∩ B(yi, εαn )) = Eεn
(
uεn |G ∩ B(zi, 1

2ε
α
n

))
= γ0

∫ ε
α/2
n

εαn

ds

s
→ ∞ asεn → 0,

a contradiction to(2.11). So we must have|uεn(zi)| = 2
3, a contradiction. Hence

di = 1 is established in all cases.ut
Lemma 2.2.yi ∈ G for all i = 1, . . . , N ′

b.

Proof. Looking for a contradiction, assume thatyi ∈ ∂G for somei. As in the proof
of (2.12) we see that there exists somern ∈ (εαn , εα/2n ) with

(2.14)
∫
G∩∂B(yi ,rn)

{
1

2
p|∇uεn |2 + 1

4ε2
n

(1 − |uεn |2)2
}

5 C

rn
.

We choosezi ∈ G∩B(yi, rn) satisfying dist(zi, ∂(G∩B(yi, rn))) ∈ [ 1
20rn,

1
10rn

]
.

For n large enough,G ∩ B(yi, rn) is star-shaped with respect tozi . Using polar
coordinates aroundzi we may writeuεn = ρne

i(θ+ψn) on ∂(G ∩ B(yi, rn)) with
ρn = |uεn | andψn a smooth function, which by(2.14) has an extensioñψn in
G ∩ B(yi, rn) satisfying∫

G∩B(yi ,rn)
|∇ψ̃n|2 5 C uniformly in n.

Using this and(2.14) we readily construct a mapvn onG ∩ B(yi, rn) satisfying
vn = uεn on ∂(G ∩ B(yi, rn)) and

(2.15) Eεn(vn|G ∩ B(yi, rn)) 5 πp0 log(rn/εn)+ C.

Indeed, first we definevn = ei(θ+ψ̃n) on

An = {x ∈ G ∩ B(yi, rn); |x − zi | = εn, dist(x, ∂(G ∩ B(yi, rn))) = εn}.
OnBn = {x ∈ G∩B(yi, rn); dist(x, ∂(G∩B(yi, rn))) 5 εn} we can easily extend
vn to a map which coincides withuεn andvn, respectively on the two components
of the boundary ofBn, and which satisfiesEεn(vn|Bn) 5 C. So far we have
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(2.16) Eεn(vn|G ∩ B(yi, rn) \ B(zi, εn)) 5 p0π log
rn

εn
+ C.

Finally onB(zi, εn) we define

(2.17) vn(z) =
∣∣∣∣z− zi

εn

∣∣∣∣ vn (zi + εn
z− zi

|z− zi |
)
.

By a direct computation,Eεn(vn|B(zi, εn)) 5 C. We combine this inequality with
(2.16) to prove(2.15).

On the other hand, we now show that

(2.18) Eεn(uεn |G ∩ B(yi, rn)) = 2p0π log
rn

εn
− C.

From the results of Section 1 it follows that

(2.19)
∫
G∩B(yi ,rn)

1
2p|∇uεn |2 = 1

2p0

∫
�̃+

|∇ṽ0,i |2 − C,

with

ṽ0,i (z) =
ni∏
j=1

(
z− h(xi,j )

|z− h(xi,j )|
)di,j ( z− h(xi,j )

|z− h(xi,j )|

)di,j
,

�̃+ = h
(
G ∩ B(yi, rn) \

ni⋃
j=1

B(xi,j , λ′εn)
) ⊂ R2

+.

Let us set�̃ = �̃+ ∪ �̃− ∪ (∂�̃+ ∩ {Im z = 0}) where�̃− is the reflection of̃�+
in the real axis. It is clear by symmetry considerations that

(2.20)
∫
�̃+

|∇ṽ0,i |2 = 1
2

∫
�̃

|∇ṽ0,i |2.

Now �̃ is a perforated domain with exterior boundary close to a circle, and with
holes close to discs. Moreover the degree ofṽ0,i on the exterior boundary equals
2di = 2 (by Lemma 2.1). We may enlarge the holes a little bit, so that they become
discs, and apply the lower bound of [BBH2, Ch. II] or [HS] to infer that

(2.21)
1

2

∫
�̃

|∇ṽ0,i |2 = 4π log

(
rn

λ′εn

)
− C.

Now (2.18) clearly follows from (2.19)–(2.21). Combining(2.15) with (2.18) we
obtain (sinceuεn is a minimizer) that

2π log

(
rn

εn

)
5 π log

(
rn

εn

)
+ C.

This leads to a contradiction forn large enough. ut
Lemma 2.3.ni = 1 for all i = 1, . . . , N ′

b.
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Proof. Fix any i ∈ {1, . . . , N ′
b} andδ > 0. By Lemma 2.2 we already know that

yi ∈ G. By the same argument as in the proof of(2.12) it follows that there exists
somern = rn(δ) ∈ (εαn , εα/2n ) with

(2.22)
∫
∂B(yi ,rn)

{
1

2
p|∇uεn |2 + 1

4ε2
n

(1 − |uεn |2)2
}

5 p0(π + δ)

rn
.

Next we use the Pohožaev identity foruεn , namely, we multiply the Euler-Lagrange
equation

− div(p∇uεn) = 1

ε2
n

(1 − |uεn |2)uεn
by (x − yi) · ∇uεn and integrate overB(yi, rn). A direct calculation gives∫

B(yi ,rn)

{
1

2
(x − yi,∇p)|∇uεn |2 + 1

2ε2
n

(1 − |uεn |2)2
}

= rn

∫
∂B(yi ,rn)

{
p

2
|(uεn)τ |2 − p

2
|(uεn)r |2 + 1

4ε2
n

(1 − |uεn |2)2
}
.

(2.23)

Note that ∣∣∣∣∫
B(yi ,rn)

(x − yi,∇p)|∇uεn |2
∣∣∣∣ 5 ε

α/2
n ||∇p||∞

∫
G

|∇uεn |2

5 Cε
α/2
n | logεn| → 0.

(2.24)

Hence from (2.22)–(2.24) we conclude that

(2.25) lim sup
n→∞

1

2ε2
n

∫
B(yi ,rn)

(1 − |uεn |2)2 5 p0(π + δ).

On the other hand, around eachxi,j we may perform a “blow-up”, that is to define
ũn(x) = uεn(xi,j + εnx) onB(0, R) for each fixedR > 0 (it is well defined forn
large enough). Note thatũn satisfies the equation− div(p̃n∇ũn) = (1 − |ũn|2)ũn
with p̃n(x) = p(xi,j + εnx). Using standard elliptic estimates we deduce the
convergencẽun → ũ inCmloc(B(0, R)) for everym = 0. Taking a sequenceRl↗∞
and passing to a diagonal subsequence we may assume thatũn → ũ inCmloc(R

2) for
everym = 0. It is easy to see thatũ is a solution of−1ũ = 1

p0
(1−|ũ|2)ũonR2 with∫

R2(1−|ũ|2)2 < ∞ (by (1.36)). Moreover, since by our constructionB(xi,j , λ′εn)
contains a pointx with |uεn(x)| 5 1

2, it follows that ũ is not identically constant.
Such solutions were studied in [BMR] (see also [Sh]) and it is shown there, in
particular, that

(2.26)
∫

R2
(1 − |ũ|2)2 = 2πp0.

From(2.26) and(2.3), (2.5) it follows that

(2.27) lim inf
n→∞

1

2ε2
n

∫
B(yi ,rn)

(1 − |uεn |2)2 = πp0ni.
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Choosingδ < π and combining(2.27) with (2.25) we see that necessarily
ni = 1. ut

From our previous analysis it follows that the configuration of the modified
bad discs is quite simple. Since each BBDB(yi, εαn ) contains exactly one SBD
B(xi,1, λ

′εn), and our construction ensures thatxi,1 = yi , we do not need the
BBD’s anymore. We now have most of the ingredients needed for the proof of
Theorem 2.

Proof of Theorem 2.That there are exactlyd bad discs each of degree 1 read-
ily follows from Lemmas 2.1–2.3. In order to see that for everyβ ∈ (0, 1)
dist(yi, ∂G) = ε

β
n for all i, and |yi − yj | = ε

β
n for all i |= j , we may con-

tinue the modification procedure of the BBD’s from the beginning of this section.
More precisely, for any givenβ ∈ (0, 1)we arrive after a finite number of iterations
of the formαk+1 = 1

2αk at anα < β of the formα = (1
2)
m for which both(2.1)

and(2.2) hold. Then, for the resulting configuration of the bad discs we may apply
the same arguments as above.

Finally, it is left to show that each bad discB(yi, λ′εn) contains exactly one zero
ofuεn (forn large enough). By Lemma 2.1 it follows thatB(yi, λ′εn)contains at least
one zero; let us denote it byz(n). Next we apply a blow-up argument as in the proof
of Lemma 2.3. Namely, for each fixedR > 0 we defineũn(x) = uεn(z

(n) + εnx)

on B(0, R). Using standard elliptic estimates we deduce the convergence (of a
diagonal subsequence)ũn → ũ inCmloc(R

2) for everym = 0. ũ is clearly a solution
of −1ũ = 1

p0
(1 − |ũ|2)ũ on R2 satisfyingũ(0) = 0 and

∫
R2(1 − |ũ|2)2 < ∞.

Moreover, it is easy to see thatũ is actually alocal minimizer, that is, for every
R > 0 ũ is a minimizer, for its boundary data on∂B(0, R) of the energy∫

B(0,R)

{1
2p0|∇u|2 + 1

4(1 − |u|2)2}.
Looking for a contradiction, assume that a subsequence, still denoted by{uεn},

satisfiesuεn(z
(n)) = uεn(z

(n)
1 ) = 0 for somez(n)1 |= z(n) in B(yi, λ′εn). For the

rescaled sequence{ũn} we get ũn(z̃(n)) = ũn(z̃
(n)
1 ) = 0 for somez̃(n)1 |= z̃(n).

Since the origin is the only zero of̃u and ũn → ũ in Cmloc(R
2), it follows that

z̃(n), z̃
(n)
1 → 0. Passing to a further subsequence we may assume that

z̃(n) − z̃
(n)
1

|z̃(n) − z̃
(n)
1 |

→ v for somev of norm 1 inR2.

Passing to the limit asn → ∞ we obtain that∇ũ(0) · v = 0. In particular, it
follows that det∇ũ(0) = 0. This contradicts Corollary 2.4 of [BCP], which states
that| det∇ũ(0)| > 0. (The same argument as in [Sh, Th. 2] shows that forR large
enoughũ = ρ(θ)eiφ(θ) on ∂B(0, R) with ρ = 1

2 and dφ
dθ

= 1
2; hence, the result of

[BCP] is applicable.) ut
We close this section with two more estimates which will be useful in the

second part of our study [ASh2]. Recall thatyi = y
εn
i → bk for every i ∈ Ik,
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and that we are assuming thatb1, . . . , bM ∈ G andbM+1, . . . , N ∈ ∂G. Next, on

�n
.= G \⋃d

i=1B(yi, λ
′εn) we may define

u0(z) = u
(n)
0 (z) =

N∏
k=1

∏
i∈Ik

z− yi

|z− yi |
N∏

k=M+1

∏
i∈Ik

z− r(yi)

|z− r(yi)| .

Then we may write

(2.28) uεn(z) = ρn(z)u0(z)e
iψn(z) on�n,

with ρn(z) = |uεn(z)| andψn(z) a smooth function on�n. Next we prove

Proposition 2.1.The estimate

(2.29)
∫
�n

|∇ψn|2 + |∇ρn|2 5 C

holds uniformly inn.

Proof. From the results of Section 1 (using the full statements of Lemmas 1.4 and
1.5) it follows that

(2.30)
∫
�n

1
2p|∇uεn |2 =

∫
�n

1
2p(|∇u0|2 + |∇ρn|2)+ p0

16

∫
�n

|∇ψn|2 − C.

Next we can definewn = u0e
iφn on�n, with φn uniquely determined (modulo 2π )

by the requirement thatwn = g on ∂G. The arguments of Section 1 show that

(2.31)

∣∣∣∣ ∫
�n

p|∇wn|2 −
∫
�n

p|∇u0|2
∣∣∣∣ 5 C.

Finally, we can extend the definition ofwn to each of the “holes”{B(yi, λ′εn)}di=1
(as in the proof of(1.25)) so that

(2.32) Eεn(wn|B(yi, λ′εn)) 5 C ∀i.
Using(2.31), (2.32) and the minimality ofuεn we find that

(2.33) Eεn(uεn) 5
∫
�n

1
2p|∇u0|2 + C .

The conclusion of the lemma follows by combining(2.33) with (2.30). ut
Combining(2.30), (2.33) and the estimateEεn(uεn |B(yi, λ′εn)) 5 C (which

follows from ||∇uεn ||∞ 5 C
εn

) we immediately get an important corollary:

Proposition 2.2.

(2.34)

∣∣∣∣Eεn(uεn)−
∫
�n

1
2p|∇u0|2

∣∣∣∣ 5 C uniformly in n.
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From Proposition 2.2 it follows that in order to approximate the energy ofuεn ,
up to anO(1) error, it is enough to calculate the energy of the reference map
u0 = u

(n)
0 . This, in turn, requires the knowledge of the mutual distances between

theyi ’s and their distances from the boundary. These distances depend in a crucial
manner on the particular weight functionp. In [ASh2] we study this problem under
some concrete assumptions onp.

Appendix A. Proof of Lemma 1.5

Recall thatu = ρu0e
iψ withψ globally defined on�+, andρ = |u|. Moreover,

sinceu0 ≡ 1 on(−R,R), we haveeiψ = ω on (−R,R). In the sequel we denote
byC different universal constants. Forj = 1, . . . , Lwe use Lemma 3 of [BMR] to
extendψ in eachB+(aj , R0) (= B(aj , R0) in this case) to a function̄ψ such that∫

B+(aj ,R0)

|∇ψ̄ |2 5 C

∫
B(aj ,2R0)\B(aj ,R0)

|∇ψ |2 5 C

∫
�+

|∇ψ |2 = C||∇ψ ||22 ,

with C a universal constant. Forj = L + 1, . . . , m we may find by a standard
construction an extension̄ψ satisfyingeiψ̄ = ω on (aj − R0, aj + R0) and∫

B+(aj ,R0)

|∇ψ̄ |2 5 C

(∫
B+(aj ,2R0)\B(aj ,R0)

|∇ψ |2 + R2
0||∇ω||2∞

)
.

Hence,

(A.1)
∫
B+(0,R)

|∇ψ̄ |2 5 C
(||∇ψ ||2 + √

mR0||∇ω||∞
)2
.

We may writeu0 = eiφ0 locally in �+, with |∇u0| = |∇φ0| and

∇φ0(z) =
∑
j

dj

(
Vj (z)

|z− aj | + V̄j (z)

|z− āj |
)

where

Vj (z) =
(

− Im (z− aj )

|z− aj | ,
Re(z− aj )

|z− aj |
)
, V̄j (z) =

(
− Im (z− āj )

|z− āj | ,
Re(z− āj )

|z− āj |
)
.

Next we have|∇u|2 = |∇ρ|2 + ρ2(|∇φ0|2 + 2∇φ0 · ∇ψ + |∇ψ |2); hence

(A.2)
∫
�+
q|∇u|2 =

∫
�+
q(|∇ρ|2 + a2|∇ψ |2)+

∫
�+
q|∇u0|2 −X,

with

X =
∫
�+
q(1 − ρ2)|∇u0|2 +

∫
�+

2q(1 − ρ2)∇φ0∇ψ −
∫
�+

2q∇φ0∇ψ

= X1 +X2 +X3.



Minimizers for the Ginzburg-Landau Functional I 67

We estimateX1 andX2 exactly as in [BMR]. SettingD
.= maxj |dj | we get

(A.3) |X1| 5 ||q||∞(πK)1/2D2(2m)2.

ForX2 we find

(A.4) |X2| 5 4||q||∞K1/2mD||∇ψ ||2.

since|∇φ0| 5 2mD/R0. Only the estimate ofX3 requires some modifications of
the argument in [BMR]. We have

(A.5)
∫
�+
q∇φ0 · ∇ψ =

∑
j

dj

∫
�+
q

(
Vj · ∇ψ
|z− aj | + V̄j · ∇ψ

|z− āj |
)
.

Now,∫
�+
q
Vj · ∇ψ
|z− aj | =

∫
B+(0,R)\B(aj ,R0)

q
Vj · ∇ψ̄
|z− aj | −

∑
k |=j

∫
B+(ak,R0)

q
Vj · ∇ψ̄
|z− aj | .

By the Cauchy-Schwarz inequality and (A.1),∣∣∣∣∑
k |=j

∫
B+(ak,R0)

q
Vj · ∇ψ̄
|z− aj |

∣∣∣∣ 5 ||q||∞
R0

∑
k |=j

∫
B+(ak,R0)

|∇ψ̄ |

(A.6)
5 C||q||∞

√
m(||∇ψ ||2 + √

mR0||∇ω||∞).

Denotingρj = R − |aj | we write∫
B+(0,R)\B(aj ,R0)

q
Vj · ∇ψ̄
|z− aj |

=
∫
B+(0,R)\B(aj ,ρj )

q
Vj · ∇ψ
|z− aj | +

∫
B+(aj ,ρj )\B(aj ,R0)

q
Vj · ∇ψ̄
|z− aj | .

Note first that∣∣∣∣ ∫
B+(0,R)\B(aj ,ρj )

q
Vj · ∇ψ
|z− aj |

∣∣∣∣ 5 ||q||∞
ρj

∫
�+

|∇ψ | 5 C||q||∞||∇ψ ||2.

If 1 5 j 5 L, we find for everyr ∈ (R0, ρj ) (using
∫
Sr (aj )

Vj · ∇ψ̄ = ∫
Sr (aj )

∂ψ̄
∂τ

= 0) that∣∣∣∣ ∫
Sr (aj )

q
Vj · ∇ψ̄
|z− aj |

∣∣∣∣ =
∣∣∣∣1r
∫
Sr (aj )

(q − q(aj ))Vj · ∇ψ̄
∣∣∣∣ 5 ||∇q||∞

∫
Sr (aj )

|∇ψ̄ |.

If L+ 1 5 j 5 m, we have (denotingS+
r (aj ) = Sr(aj ) ∩ R2+)
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∫
S+
r (aj )

q
Vj · ∇ψ̄
|z− aj | = q(aj )

r

∫
S+
r (aj )

Vj · ∇ψ̄ + 1

r

∫
S+
r (aj )

(q − q(aj ))Vj · ∇ψ̄

= q(aj )

r
(ψ̄(aj − r)− ψ̄(aj + r))

+ 1

r

∫
S+
r (aj )

(q − q(aj ))Vj · ∇ψ̄.

Hence ∣∣∣∣ ∫
S+
r (aj )

q
Vj · ∇ψ̄
|z− aj |

∣∣∣∣ 5 2||q||∞||∇ω||∞ + ||∇q||∞
∫
S+
r (aj )

|∇ψ̄ |.

It follows that for everyj = 1, . . . , m,∣∣∣∣ ∫
B+(0,R)\B(aj ,R0)

q
Vj · ∇ψ̄
|z− aj |

∣∣∣∣ 5 C‖q‖∞‖∇ψ‖2 + 2R‖q‖∞‖∇ω‖∞

(A.7) +CR||∇q||∞(||∇ψ ||2 + √
mR0||∇ω||∞).

Combining (A.6) and (A.7) we are led to

(A.8)

∣∣∣∣ ∫
�+
q
Vj · ∇ψ
|z− aj |

∣∣∣∣ 5 C
√
m||q||∞||∇ψ ||2 + CR||∇q||∞||∇ψ ||2

+ 2R||q||∞||∇ω||∞ + C
√
mR0||∇ω||∞(

√
m||q||∞

+R||∇q||∞).
Forj = L+ 1, . . . , m the estimate (A.7) clearly continues to hold if we replaceVj
by V̄j (sinceāj = aj ), i.e.,

(A.9)∣∣∣∣ ∫
B+(0,R)\B(aj ,R0)

q
V̄j · ∇ψ̄
|z− āj |

∣∣∣∣ 5 C||q||∞||∇ψ ||2 + CR||q||∞||∇ω||∞
+CR||∇q||∞(||∇ψ ||2 + √

mR0||∇ω||∞).
We will show in the sequel that (A.9) continues to hold also for 15 j 5 L. First
notice that, since Imaj = R0,

(A.10)

∣∣∣∣ ∫
B+(aj ,R0)

q
V̄j · ∇ψ̄
|z− āj |

∣∣∣∣ 5 ||q||∞
R0

∫
B+(aj ,R0)

|∇ψ̄ |

5 C||q||∞(||∇ψ ||2 + R0||∇ω||∞).
As above (note that by(1.8) {a1, . . . , am} ∩ B+(0, R) \ B(āj , ρj ) = ∅)

(A.11)

∣∣∣∣ ∫
B+(0,R)\B(āj ,ρj )

q
V̄j · ∇ψ
|z− āj |

∣∣∣∣ 5 C||q||∞||∇ψ ||2.

Finally, note that for eachr ∈ (R0, ρj )we have eitherSr(āj )∩R2+ = ∅ orSr(āj )∩
{Im z = 0} = {b − α, b + α} for someb ∈ [ − 1

4R,
1
4R
]

andα ∈ (0, r). In the
latter case we have
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∣∣∣∣ ∫
S+
r (āj )

q
V̄j · ∇ψ̄
|z− āj |

∣∣∣∣ =
∣∣∣∣q(aj )r (ψ̄(b − α)− ψ̄(b + α))

+ 1
r

∫
S+
r (āj )

(q − q(aj ))V̄j · ∇ψ̄
∣∣∣∣

5 2||q||∞||∇ω||∞ + C||∇q||∞
∫
S+
r (āj )

|∇ψ̄ |,

and this inequality is valid for everyr ∈ (R0, ρj ). Integrating this inequality and
using (A.11), (A.1) we are led to

(A.12)

∣∣∣∣ ∫
B+(0,R)

q
V̄j · ∇ψ̄
|z− āj |

∣∣∣∣ =
∣∣∣∣ ∫B+(0,R)\B(āj ,R0)

q
V̄j ·∇ψ̄
|z−āj |

∣∣∣∣
5 C||q||∞||∇ψ ||2 + 2R||q||∞||∇ω||∞

+CR||∇q||∞(||∇ψ ||2 + √
mR0||∇ω||∞).

Combining (A.10) and (A.12) we see that (A.9) holds also forj = 1, . . . , L.
Now for k = 1, . . . , m different fromj we have|z − āj | = |z − aj | = R0 for

z ∈ B+(ak, R0) and so we get as above that

(A.13)

∣∣∣∣∑
k |=j

∫
B+(ak,R0)

q
V̄j · ∇ψ̄
|z− āj |

∣∣∣∣ 5 C||q||∞
√
m(||∇ψ ||2 + √

mR0||∇ω||∞).

Combining (A.9) and (A.13) we are led to

(A.14)

∣∣∣∣ ∫
�+
q
V̄j · ∇ψ
|z− āj |

∣∣∣∣
5 C

√
m||q||∞||∇ψ ||2 + CR||∇q||∞||∇ψ ||2 + CR||q||∞||∇ω||∞

+C√
mR0||∇ω||∞(

√
m||q||∞ + R||∇q||∞).

By (A.5), (A.8) and (A.14) we finally conclude that

|X3| 5 CmD
{√
m||q||∞||∇ψ ||2 + R||∇q||∞||∇ψ ||2

(A.15) +R||q||∞||∇ω||∞ + √
mR0||∇ω||∞(

√
m||q||∞ + R||∇q||∞)

}
.

Combining (A.15) with (A.3) and (A.4) we get

(A.16)
|X| 5 C1

(
m,D,K, ||q||∞, R||∇q||∞

)||∇ψ ||2
+C2(m,D,K, ||q||∞, R||∇q||∞, R||∇ω||∞).

By the Cauchy-Schwarz inequality we conclude that for anyε > 0,

(A.17) |X| 5 ε2

2

∫
�+

|∇ψ |2 + C2
1

2ε2
+ C2.

Choosingε = a
√
q0 in (A.17) and returning to (A.2) we get the desired con-

clusion. ut
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Appendix B. Minimizers of Fε(x)

In this appendix we show how to modify our methods in order to study the
asymptotic behavior of minimizers of the functional

Fε(u) = 1

2

∫
G

|∇u|2 + 1

4ε2

∫
G

(a(x)2 − |u|2)2, ε > 0.

See [R] and the Introduction for motivation. We assume thata(x) is a smooth
function onG which satisfies 0< a(x) 5 1 for all x ∈ G and that a smooth
boundary functiong : ∂G → C of degreed > 0 is given with|g(x)| = a(x) for
all x ∈ ∂G. For all ε > 0 we denote byuε a minimizer forFε overH 1

g (G,C).
In analogy with our previous notations we definea0 ≡ min{a(x); x ∈ G} and
Λ = a−1(a0). We first sketch the proof of the following analogue of Theorem 1.

Proposition B.1.uεn → u∗ in C1,α
loc (G \ {b1, . . . , bN }) for a subsequenceεn → 0

for everyα < 1, where theN distinct points{b1, . . . , bN } lie in Λ. The limitu∗
can be written asu∗ = av∗ wherev∗ ∈ C∞(G \ {b1, . . . , bN }, S1) is a solution of

− div(a2∇v∗) = a2|∇v∗|2v∗ in G \ {b1, . . . , bN } , v∗ = g/a on ∂G.

Around eachbj , u∗ is of degreeDj > 0 and
∑N
j=1Dj = d.

For the proof we first notice that the two basic estimates

(B.1) ||uε||L∞(G) 5 1, ||∇uε||L∞(G) 5 C

ε

are proved in a way similar to that for the casea(x) ≡ 1 (i.e., the case treated in
[BBH1, BBH2]). Also, the analogue of Lemma 1.1, namely,

(B.2) Fε(uε) 5 πd(a0 + δ)2| logε| + C(δ) ∀ε > 0,

can be easily verified. For the proof of (B.2) and for our further analysis it is useful
to introducevε = uε/a. A simple calculation shows thatFε(uε) = Gε(vε) where
(B.3)

Gε(v) =
∫
G

{
1

2

(
a2|∇v|2 + |v|2|∇a|2 + 1

2
(∇a2,∇|v|2)

)
+ a4

4ε2
(1 − |v|2)2

}
.

From (B.3) we are led to conjecture that the asymptotic behavior of{vε} is essentially
the same as that of the minimizers{wε} overH 1

g/a(G,C) for the functional

(B.4) G̃ε(v) =
∫
G

{
1

2
a2|∇v|2 + a4

4ε2
(1 − |v|2)2

}
.

We shall see later that this is indeed the case. The main obstruction for show-
ing it a priori comes from the fact that we do not know in advance whether∣∣ ∫
G
(∇a2,∇|vε|2)

∣∣ remain bounded asε → 0.
In any case, using (B.1), (B.2) we can apply the methods of Section 1 to locate the

BBD’s {B(yi, νεβ)}Nbi=1, for someβ ∈ (0, 1) and the SBD’s{B(xi,j , λε)}nij=1, i =
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1, . . . , Nb which cover the setSε = {x ∈ G ; |vε(x)| < 1
2}. Passing to a subse-

quence{uεn} we denote again byb1, . . . , bN the distinct limit points of theyi ’s,
the firstM points lying inG and the rest on∂G. As is the case for the functional
Eε, the main point is to establish an upper bound for the energy away from the
singularities, as in Proposition 1.1. More precisely, we want to show that for any
smallη there existsn(η) such that forn = n(η) we have

(B.5)

Fεn(uεn |�η) 5 π | logη|
{
M∑
k=1

a2(bk)D
2
k + 2

N∑
k=M+1

a2(bk)D
2
k

}
+ C(G, g, p),

where�η
.= G \ ⋃N

k=1B(bk, η). Once the estimate (B.5) is established we can
easily modify the methods of [BBH1] to deduce the convergence of{uεn} in
C

1,α
loc (G \ {b1, . . . , bN }). In order to prove the estimate (B.5) we bound from below

the Dirichlet energy ofvεn on perforated domains (like�(n)i andA(n)k in the proof
of Proposition 1.1) by the energy of reference maps as in Section 1, using Lemmas
1.4 and 1.5. For a typical perforated domain� we obtain by using these lemmas
that

(B.6)
∫
�

a2|∇vεn |2 =
∫
�

a2(|∇u0|2 + ∣∣∇|vεn |
∣∣2)− C.

Hereu0 is a reference map as in Section 1. Actually from (B.6) we may infer that

(B.7) Gεn(vεn |�) = Gεn(u0|�)− C.

Indeed estimates analogous to (B.7) enabled us to prove Proposition 1.1. Here, at
first glance, it is not clear that (B.6) implies (B.7) since it might be the case that∫

�

(∇a2,∇|vεn |2) → −∞ as εn → 0.

However, we can make use of the additional term on the right-hand side of (B.6),
namely,

∫
�
a2|∇|vεn ||2. Using the Cauchy-Schwarz inequality we get

(B.8)

∣∣∣∣ ∫
�

(∇a2,∇|vεn |2)
∣∣∣∣ 5 C

∫
�

∣∣∇|vεn |
∣∣ 5

a2
0

2

∫
�

∣∣∇|vεn |
∣∣2 + C2

2a2
0

|�|.

Using (B.8) we see easily that (B.6) does imply (B.7). As explained above, the
estimate (B.7) enables us to prove (B.5), which in turn is the main step towards
proving Proposition B.1. The other parts of Proposition B.1, namely, thatDk > 0
for all k and{b1, . . . , bN } ⊂ Λ are proved by using the arguments of Section 1.
This completes the sketch of the proof of Proposition B.1.

Using the above arguments we can also obtain the estimate∫
G

∣∣∇|vεn |
∣∣2 5 C, uniformly in n,

which implies of course that
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∫
G

∣∣(∇a2,∇|vεn |2)
∣∣ 5 C, uniformly in n.

It follows easily that

(B.9) Fεn(uεn) = G̃εn(wεn)+O(1)

(recall that{wε} is a minimizer overH 1
g/a(G,C) for the functionalG̃ε given in

(B.4)). In particular, we immediately get an analogue of Theorem 1 of [ASh2].
Indeed, assume in the sequel that

(B.10) Λ = {a1, . . . , aK} ⊂ G with K = Ki < d,

and that there existK positive-definite quadratic formsQ1, . . . ,QK such that

(B.11)
a(x) = a0 +Qj(x − aj )+ o(|x − aj |2)

in a neighborhood ofaj , 1 5 j 5 K.

By (B.9) and Theorem 1 in [ASh2] (and its proof) it follows that under these
assumptions

Fεn(uεn) = πa2
0{d| logεn| + 1

2(F (d, k)− d) log(| logεn|)} +O(1) asεn → 0,

{b1, . . . , bN } = {a1, . . . , aK} and the configuration of degrees(D1, . . . , DK) as-
sociated with(a1, . . . , aK) attains the minimum forF(d,K), where

F(d, k) = min

{
k∑

j=1

d2
j ; (d1, . . . , dk) ∈ (Z+)k ,

k∑
j=1

dj = d

}
.

Analogues to Theorems 2 and 3 of [ASh2] can be obtained too.
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