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Abstract

In this paper we present a new definition for the global-in-time propagation
(motion) of fronts (hypersurfaces, boundaries) with a prescribed normal velocity,
past the first time they develop singularities. We show that if this propagation satis-
fies a geometric maximum principle (inclusion-avoidance-type property), then the
normal velocity must depend only on the position of the front, its normal direc-
tion and principal curvatures. This new approach, which is more geometric and,
as it turns out, equivalent to the level-set method, is then used to develop a very
general and simple method to rigorously validate the appearance of moving inter-
faces at the asymptotic limit of general evolving systems like interacting particles
and reaction-diffusion equations. We finally present a number of new asymptotic
results. Among them are the asymptotics of (i) reaction-diffusion equations with
rapidly oscillating coefficients, (ii) fully nonlinear nonlocal (integral differential)
equations, and (iii) stochastic Ising models with long-range anisotropic interactions
and general spin-flip dynamics.
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1. Introduction

In this article we present: (i) a new definition for the generalized (weak) propa-
gation (motion) of fronts (hypersurfaces, boundaries of sef®}invith prescribed
normal velocity, which satisfies some geometric conditions, past the first time that
singularities develop, (ii) a simple and general method to establish the appear-
ance of such fronts in the asymptotic (singular) limit of evolving systems, like
reaction-diffusion equations and particle systems (stochastic Ising models), and (iii)
a number of completely new and, in our opinion, striking examples including the
asymptotics of reaction-diffusion equations with oscillating coefficients, non-local
equations, and stochastic Ising models with long-range anisotropic interactions and
general spin-flip dynamics.

The new definition is based on a few general geometric assumptions, namely,
locality and regularity, monotonicity, i.e., an avoidance-inclusion property of a
geometric maximum principle type, and local existence for smooth data. We show
that (i) the locality and monotonicity yield that the normal velocity must depend only
on the position in space and time, the normal direction and the principal curvatures
of the front, with the dependence on the curvatures being nondecreasing, and (ii)
the generalized evolution is equivalent, under the so-called no-interior condition,
to the one obtained by the level-set method.

This approach is motivated by and is related to the abstract approach to image
analysis by ALvAREZ, GUICHARD, LioNS & MOREL [AGLM]. It should be
noted at this point, however, that our goal here is not to give yet another definition
for the weak front propagation—there are already too many—but rather to develop
a powerful new method to study the appearance of moving interfaces.

This new general method relies on an abstract approach, which, roughly speak-
ing, looks like the classical formulation for the convergence of numerical schemes
introduced by us in [BS] to prove the convergence of stable, monotone and con-
sistent schemes. Our goal here is to show that the rigorous justification of the
appearance of interfaces is reduced to checking some consistency-type properties,
i.e., to proving a similar result but in the case where everything is smooth and for
small time intervals, in other words, to justifying the formal asymptotics under
the appropriate regularity assumptions. As a consequence we not only simplify
and unify a number of results already obtained in this context (see below for ref-
erences) but we also obtain new and, in our opinion, striking results of the type
already described above.

Interfaces inlRY moving with normal velocity

(1.1) V =v(Dn,n, x,t),

wheren andDn are the exterior normal vectors to the surface and its gradient, arise
in addition to the situations already talked about, in geometry, in image processing,
in turbulent flame propagation and combustion, in the phenomenological theory of
phase transitions in continuum mechanics, etc.

The most typical example of interface dynamics appearing in the aforemen-
tioned areas is the general anisotropic motion
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1.2) V = —tr[A(n, x, t)Dn] + c(n, x, t),

whereA(n, x, t) is a matrix and:(n, x, ¢) a scalar, a special case of which is the
motion by mean curvature

V=-trDn=«x1+ - +ky-1,

k1, ..., kny—1 being the principal curvatures of the interface, and the anisotropic
first-order motion

V=c,x,1).

The main characteristics of interface dynamics as in (1.1) are (i) the develop-
ment of singularities in finite time, independently of the smoothness of the initial
surface, and (ii) the fact that they satisfy a monotonicity, i.e., a geometric max-
imum principle-type avoidance and inclusion property; loosely speaking, if two
fronts moving by (1.1) are separated at some time, then they remain separated. A
great deal of work has been done during the last few years to find (i) a way to extend
and interpret the evolution past singularities so that this maximum principle-type
property is satisfied, and (ii) to use this weak interpretation to justify the appearance
of such interfaces in the asymptotic analysis of general systems.

The outcome of this effort has been the development of a weak (generalized)
notion of evolving fronts. The generalized evolutidn },>q with normal velocity

(1.1) starting with a given surfad& c R”" is defined for alt > 0, although it may
become extinct in finite time. Moreover, it agrees with the classical differential-
geometric flow, as long as the latter exists. The generalized motion may, on the
other hand, develop singularities, change topological type, and exhibit various other
pathologies.

The main mathematical tool to study the generalized motion has been the level-
set approach, which was introduced B)sHER & SETHIAN [OS] for numerical
calculations—see als®BARLES [B] for a first-order model for flame propagation.
The level-set approach, which is based on the idea of representing the evolving
front as the level set, for definiteness, the zero level set, of an auxiliary function
satisfying an appropriately defined nonlinear partial differential equation, has been
developed by Evans & Spruck [ES] for the mean curvature motion and by
CHEN, GI1GA & Goto [CGG]for (1.2) and later extended BB ARLES, SONER
& SoUuGANIDIS [BSS], who introduced some concepts and tools which are used
extensively in this paper, and bysuir & Soucanipis [IS], GoTto [G] and
others. A related approach using the properties of the (signed) distance to the front
was introduced bySONER [Son] and further developed in [BSS]. For a general
review of these theories, their relationship as well as other related facts, we refer to
SOUGANIDIS [Soul,2].

In spite of the peculiarities described earlier, the generalized mffign-o has
been proved to be the right way to extend the classical motion past singularities.
Some of the most definitive results in this direction were obtainedHyaNs,
SONER & SOUGANIDIS [ESS] (see also [BSS]) who proved that the generalized
motion by mean curvature governs the asymptotic behavior of solutions to semi-
linear reaction-diffusion equations with bistable nonlinearities. We again refer to
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[Soul,2] for a general overview as well as asymptotic results for reaction-diffusion
equations of a different type.

Another striking application of the generalized front propagation is the fact
that it governs the macroscopic behavior, for large times and in the context of grain
coarsening, of a number of stochastic interacting particle systems like the stochastic
Ising model with long-range interactions and general spin-flip dynamics or near-
est neighbor interaction and fast exchange dynamics. Such systems are standard
Gibbsian models used in statistical mechanics to describe phase transitions. As was
shown by KATSOULAKIS & SOUGANIDIS in [KS1,2,3], it turns out that the gen-
eralized front propagation not only describes the limiting behavior of such systems
but also provides a theoretical justification, from the microscopic point of view, of
several phenomenological sharp-interface models in phase transitions and of the
Monte-Carlo numerical methods widely used in the physics literature to calculate
moving fronts. It should also be noted that the generalized front propagation also
describes the behavior of general threshold dynamics (cellular autonomon-type
models) as was shown b¥ysHil, PIRES & SOUGANIDIS [IPS]. Once more we
refer to [Soul,2] for a general overview.

This paper is organized as follows: Section 2 is devoted to the development of
the new approach to the generalized front propagation. In Section 3 we describe the
general method to study the appearance of interfaces. In Section 4 we revisit the
results of [ESS] and [BSS] about the asymptotics of reaction-diffusion equations
and describe how the abstract method applies to them. Since these are relatively
simple cases, we present all the details here. Section 5 is devoted to some new results
regarding asymptotics of reaction-diffusion equations. In Section 6 we study the
asymptotics of reaction-diffusion equations with oscillating coefficients. Section 7
is devoted to the asymptotics of general nonlocal, fully nonlinear equations. Finally
in Section 8 we present asymptotic results about particle systems.

2. The New Definition

2.1. The General Framework

The aim of this section is to develop a new approach for defining the (weak)
geometric motion of hypersurfac€s;);c(,p) in RV with a prescribed normal
velocity past the first time that singularities develop. This new approach applies
to motions which satisfy certain geometric assumptions, namely, monotonicity,
locality and regularity.

Throughout this discussion we consider hypersurfaCese . ») in RN, which
are boundaries of open subs€&®s), ¢ (4, ») Of RY, and introduce the signed-distance

functiond (x, r) from x to I'; defined by
dx,T if x € @,
d(xj):{ (x,T't) X %

—d(x,T;) otherwise,

whered (x, I';) denotes the usual nonnegative distance fromR" to ;. If T'; is
a smooth hypersurface, thdnis a smooth function in a neighborhoodIof, and
forx € I'y, n(x,t) = —Dd(x, t) is the unit normal td", pointing away front;,.
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We begin considering smooth motions of smooth hypersurfdtes ) with
ageneral prescribed normal velocityTo this end we recall that the normal velocity
V (x, t) of such smoothly evolving hypersurfaces is defined atI"; by

V(x, 1) =n(x, 1) X (),

whereX : (a, b)) — R" is aC>-curve such thaX (s) € T, for all s € (a, b) and
X(t) = x, andp - ¢ denotes the usual inner product of the vectorg € RV,
Itis, by the way, easy to check that such cursesxist and that the definition is
independent of the particular choice of the curve.

The collection of smooth hypersurfacds )<, (or of smooth open subsets
(20):e(a,b)) is said to propagate with the prescribed normal velogitfyand only
if, forall x € I'; andt € (a, b),

Vx,t) =v(x,t, Iy).

In the same way, we say that the normal velocity is respectively larger or smaller
thanv if “ =" is replaced in the above equation b¢™* or “ <"

A priori one may consider normal velocitiesdepending orix, ) and on the
different characteristics df;. Here, however, we focus our attention on motions
which satisfy a number of assumptions, stated below.

To this end, letD*> be the set ofC*>°-jets, and, ifd is the signed distance to
(To)re(a.b), define ] : RN x (a, b) — D> by

[d](x,t) = (Dd(x, 1), D?d(x, 1), -, D*d(x,1), ).
Our first assumption is

(A1) Locality and Regularity. The normal velocity at x € I'; depends only
on x, ¢t and the fundamental forms @f, at x, i.e., there exists a function :
RY x (a,b) x D*® — R, such that the prescribed normal velocity is given by

Vx,t) =v(x,t,[d](x,1)).

Moreover, is a continuous function of, r andI’;, in the sense that, if, as - oo,
(X, ty) = (x,1) and D¥d, (x,, t,) — DKd(x,t) for all k € N, then

V(Xp, by, [dn] (Xn, 1)) = v(x, £, [d](x, 1)).

Note that if, as: — oo, D*d, — D*d, uniformly in a neighborhood df, for
allk € N, then(x,, t,) — (x, 1) yields thatD¥ (x,,, t,) — D*d(x, ) forall k € N.

The second assumption is

(A2) Motonicity. If (2/)¢e@,») and (fz,),e(a,b) are two collections ofC*°-open
subsets ofRY such thatl’, = 92, andI’, = 92, move smoothly with a normal
velocity smaller and larger, respectively, thaand if, ¢ Q; for some € (a, b),
then

Q, c Q, foranys € [t,b).
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To state the definition of (weak) geometric front propagation, it is necessary to
extend the domain af to functions which are not necessarily distance functions. A
natural way to understand this extension is to remark that, with the above notations,
the set2; = {x : d(x,t) > 0} can also be written a®; = {x : ¢(x, ) > 0} for
other suitable functiong such that D¢ (x, 1)| &= 0 ond ;. Then for allx € 3%,
one has

Dd(x,1) = D(x,1), D%d(x,1) = D(Dp(x,1)),---,

D*d(x,1) = D*"Y(Dg(x, 1)), -- -,

where, forp € RV\{0},
p=Ipltp.
We set
[](x, 1) = (D (x, 1), D(Dp(x, 1)), ---, DX (Dg(x, 1)), -- ),

and consider the extensiarof v given by

v(x, 2, [¢](x, ) = [DP(x, Dv(x, 1, [p](x, 1)).

Notice that since is defined oRY x (a, b) x D*, the right-hand side of this last
equality is well-defined at each point wheie¢ (x, t)| + 0. Moreover, if we fix
the functiong, thenv can also be seen as a continuous functiotxof), which is
defined on the open subdét, ¢) : |[D¢(x, t)| & 0}.

In order to simplify the presentation below, we assume throughout the paper
that, for each fixed smooth functiah o is locally bounded iRY x (a, b) in the
following sense.

(A3) Local BoundednessFor any compact subséf of RV x (a, b), there exists
a constantC(K) such that, for allC*°-functions¢ and for all (x, t) € {(y, s) :
|IDé(y, )l + 0} NK,

[v(x, 2, [p](x, )] = C(K).

This type of assumption is not satisfied when the normal velocity grows super-
linearly on the curvature tensor, as, for example, is the case of motion by Gaussian
curvature. We indicate in Remark 2.3 below how to remove this assumption at the
expense of a slightly more complicated definition.

Inwhatfollows itis also necessary to consider the upper- and lower-semicontinu-
ous envelopes of the locally bounded functioconsidered as a function efand
t, which we denote by* andu, respectively. Recall that for a locally bounded
function f : A — R, whereA is a subset of somR*, the upper- and lower-
semicontinuous envelopgs and f, of f are given by

fry) =limsupf().  fi(y) =liminf ().

=y

We have
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Definition 2.1. A family (2;);c(.») Of open subsets d&" is respectively called
a generalized super-flowr sub-flowwith normal velocityv if and only if for all
xo € RN, 1 € (a,b),r > 0,a > 0 and for all smooth functions : RN — R such
that{x € RV : ¢(x) = 0} C ,NB,(xp),0r{x € RN : ¢(x) < 0} C QN B, (x0)),
with |D¢| + 0 on{x € RN : ¢(x) = 0}, there existsig > 0 depending only on
o and theC*®-function¢ through the properties o8] in B, (xo) such that, for all
h € (0, hp),

{x e RY 1 ¢(x) + h[vi(x, 1, [¢](x)) — @] > O} N B,(x0) C Qi
or
{x e RV : ¢(x) + h[1*(x, 1, [¢](x)) + &] < O} N B, (x0) C Q).

Afamily (Q)re(a.») Of open subsets & is called ageneralized flow with normal
velocityw if it is both a sub- and super-flow.

The following remark is essential to better understand the definitions of sub-
and super-flow.

Remark 2.1.For smooth classical flows, if we change the orientation, i.e., if we
replaced by d = —d which, in other words, can be expressed by saying that
we consider the motion of the famimf),e(a,b) instead of(2/)/e(.5), then the
prescribed normal velocity has to be changed ntax, 7, [—c?]). This elementary
factis used in Definition 2.1. Indeed, we easily see (k&< is a generalized
sub-flow with normal velocity (x, ¢, [d]) if and only if(s'zg),e(a,b) is a generalized
super-flow with normal velocity-v(x, , [ — d]).

From now we always assume that the assumptions (A1)—(A3) are satisfied. We
prove that (i) if(2/)/e,») iS @ collection of open subsets which depends smoothly
on ¢, then (£2;);c.») iS respectively a generalized super-flow or sub-flow with
normal velocityv if and only if the collection(T';);e(4,»), Wherel'; = 9%, for
t € (a, b), propagates with normal velocity larger or smaller tha(ii) the mono-
tonicity assumption (A2) yields that there exists a continuous functieuch that
v(x, t, [¢]) is necessarily of the form

(2.1)  Ox, 1, [9](x, 1) = —|Dp(x,1)|G(D(D)(x, 1), Dp(x, 1), x, 1),

and (iii) G is nonincreasing, i.e., degenerate ellipticiA¢.

To formulate these results and to emphasize the dependeteni?2¢ and
D¢ we introduce the functio : .V x RVM\{0} x RN x [0, 00) — R,.¥V
being the space af x N symmetric matrices, given by

(2.2) F(X,p,x,0) =IpIG(IpI ™ (X = Xp® p), p, x,1).

The monotonicity ofG is expressed by saying that for all, Y ¢ .V and
(p,x,1) e RV\{0} x RN x (0, 00), F satisfies the ellipticity condition

(2.3) FX,p,x,t) SF{Y,p,x,t) ifX2>27Y.

Notice that (2.1)—(2.2) and the local boundedness assumption (A3) yield tilsat
itself locally bounded. As we did far, we extend the locally bounded functién
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to p = 0 by taking upper or lower semi-continuous envelopes. Finally we remark
that in the rest of the paper we use any of the symbpisand F to denote the
prescribed normal velocity.

The first result is

Theorem 2.1. Assume thaA1)—(A3) hold and that(2;),c,») is a collection of
smooth, open subsets & which depend smoothly enThe collection(€2;)e(a,b)
is a generalized super-flow or sub-flow with normal velocitfyand only if respec-
tively the collectionT;);e(4,»), Wherel', = 32, for all z € (a, b), propagates with
a normal velocity larger or smaller than.

Proof. 1. We prove the result only in the super-flow case. The other case follows
by either using similar arguments or by considering the colleatifi); c4.»)-

2. Assume thaf€2;);c(.p) is a generalized super-flow with normal velocity
Fort € (a,b), denote byp : RY — R a C*®-function which is equal to the
signed-distance tb, in a neighborhood of; and such tha®, = {y : ¢(y) > 0}.
It is clear that, without loss of generaliy,may be taken to be bounded.

3. The following lemma plays an important role not only in this proof but also
in the proof of Theorem 2.4 below. We state it here and present its proof after we
complete the proof of Theorem 2.1.

Lemma 2.1. Letg, x : RN — R beC>-functions such thap(x) = 0, D¢ (x) %
0 for somex € RY and x(0) = 0. Moreover, assume that is radially symmet-
ric, x > 0in RNY\{0} with Dx(y) - y = 2x(y) in a neighborhood” of 0 and
(x(y —x) 7 tp(y) - 0, as|y| — +oo. For eachk € R, define the function
o RN — Rbygi(y) = ¢ (y) + kx(y — x). Then, for|k| sufficiently large, the
setA; = {y € RV : ¢ (y) = O} is bounded and ¢y (y) & 0 on A;.

4. Sinceg is bounded, we can apply Lemma 2.1 for any I'; with a C*°-
function x with quadratic growth at infinity and such thaX x (0) = 0 for any
[ € N. Since®2; = {y : ¢(y) > 0}, it follows, for k < 0 and|k| large enough,
n > 0 small enough, and for sonre> 0, that

{y:ou(y)—n =20} C 2 NB-(x), Dige(y)—m) £0 on{y:¢i(y)—n=0}

5. That the family(€2/)/¢(.p) iS @ generalized super-flow with normal velocity
v, yields, fora > 0 and for sufficiently smalk, depending only ow, 7, r, « and
the properties ofdy — n] = [¢x] in B,(x) and not oy, that

{y 1 k(y) — 0+ hlve(y, 2, [ — n](») —a] > 0} N By (x) C Qyyh.
Lettingn — 0, we get
v k) + hlva(y, £, [$] () — @] > 0} N By (x) C Qi

6. LetX : (r,b) — RY be aC>®-curve such thak (r) = x and X (s) € T,
forallt € [s, b). SinceX (¢t + h) € I'ry, N B, (x) for sufficiently smallz > 0, it
follows thatX (r + h) ¢ ;4 and therefore
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(24)  d(X(t +h) + h[v(X (@ + 1), t, [pe] (X (& + 1)) —a] = 0.

7. Sinceg is equal to the signed-distance functiontoin a neighborhood of
I';, we haveD¢ (x) = —n(x, t). The smoothness @f, andX yields

t+h d
Se(X(t + 1)) = (X (1)) + / [rX(s))]ds
t

1+h .
= ¢r(x) + / Dy (X (s)) - X (s)ds
t

= ¢ (x) — hn(x, 1) - X (1) + o(h).

8. Substituting this last expression in (2.4) and recalling#hét) = 0, we get

hve(X (& +h), t, [ge](X (& +h)) —n(x, 1) - X(t) —a] +o(h) £ 0.

9. Dividing by, lettingh — 0, using the regularity af and the fact that every
derivative ofy vanishes at 0, we obtain, for any> 0,

vi(x, 1, [@]) —n(x, 1) - X(t) —a < 0.

Lettinga — 0, yields the desired inequality.

10. Assume that the collectiof;);c,») Propagates with a normal velocity
larger tharw and letxg € RY, ¢ € (a,b), r > 0,a > 0 and a smooth function
¢ : RY — Rbesuchthatxr € RN : ¢(x) = 0} C Q; N B, (xp), with | Dg| £ 0 on
{x € RN : ¢(x) = 0}). We need to prove the existencelef > 0, depending only
onxo, t, a, r and theC®-function¢, through the properties op] in B, (xg), such
that, for allz € (0, ko),

{x € RV 1 ¢ (x) + h[Du(x. 1, [#] (X)) — ] > 0} N B (x0) C Qi
11. This claim is a consequence of (A2) and

Lemma 2.2. For any smooth functiop : RN — R such that{x € RV : ¢(x)
> 0} C B,(xg), With [D¢| &= 0on{x € RN : ¢(x) = 0}, there existdig > O,
depending only omo, ¢, , r and theC*-function¢ through the properties d#]
in B, (xp), and a family of smooth open subsest},,lﬂ)se[o,ho) such that
() Q={xeR: ¢px =0},
(i) (89,1+S)se[o,ho) evolves smoothly with a normal velocity smaller than
(iii) {x € RN : ¢(x) + h[v,(x. 1, [](x)) — ] > 0} N B (x0) C 2},
(iv) QL. C B,(xo) fors € [0, ho) .
12. We continue with the proof of Theorem 2.1 and prove Lemma 2.2 next. It

follows from (A2) and the properties (i) and (ii) of the collectim}ﬂ)se[o,ho)
given by Lemma 2.2 that, far € [0, o),

1
Qt+h C Qt+h~



246 G. BARLES & P. E. SOUGANIDIS

Properties (iii) and (iv) of 2L, )se0,n0) also yield

{x e RN 1 ¢p(x) + h[Ds(x, 1, [$](x)) — @] > O} N B, (x0) C QL.
The result now follows from these last two inclusionsi
The following remark, we hope, clarifies the meaning of Lemma 2.2.

Remark 2.2.Lemma 2.2 gives a justification to the basic idea beyond the definition
of generalized sub- and super-flows. Indeed we have in mind that the boundary of
the setsx € RY : ¢(x) + h[vs(x, 1, [¢](x)) — ] > 0} should evolve (in some
weak sense) with a normal velocity which is smaller thahhis idea together with

(A2) leads to the inclusion required in the definition. On the other hand, since these
sets are not smooth, it is not possible to justify this idea directly. The few lines of
proof (Step 12) show how Lemma 2.2 allows us to do it.

We continue with the

Proof of Lemma 2.2.1. Since the majx, ¢) — v.(x, 1, [¢](x)) is bounded and
continuous in a neighborhood ¢t € RY : ¢(x) = 0}, there exists a smooth
functiony : RY — R such thaty > o, in B,(xo) and|y — v.| < 3o ina
neighborhoodZ” of the set{x € R" : ¢(x) = 0.

2. Define

QL ={x eRY 1 ¢(x) +s[¥(x) —a] > 0} N B,(x0).

The assumptions on the functiah easily yield that forh; > 0 small enough,
the family(Q,lﬂ)SE[o,hl) satisfies the properties (i), (iii) and (iv) of Lemma 2.2. It
remains to prove that (ii) holds for sufficiently smajy.

3. Consider &@>®—curveX : [t,t+h1) — RY suchthatforany e [z, t+hy),
X(r+h) € 9Q1,,, or, in other words,

t+h?
(X (t+h) + h[y (Xt + h)) —a] =0.
4. Differentiating this equality with respect g we obtain
[Dp(X(t + h)) +hDy (X (& +h)] - Xt +h) + (Xt +h) —a = 0.
5. Set
pn = Do(X(t + h)) + hDy (X (¢ + h)).

Forh small, it follows thatX (r + k) € 77, |py| £ 0andn(X (¢ +h), t +h) = —py,

is the unit normal vector t6§2}+h pointing away t052}+h. The last equality and
the property ofy in 7" yield

—n(X(t+h), t4+h)-XE+h) +|ppl 20X E+h), t +h, [¢p+h( —a)]) = 0.

1

6. The conclusion follows from the fact thatdif is the sign-distance 2, ,

then

pnl ™ 0L (X + 1), + h, [+ h(Y —@)]) = (X (1 +h), 1 + h, [d4]).0
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We continue with the

Proof of Lemma 2.1.1. Assume that there exist sequen¢es;cy and (y;)ien
such thatk;| — 400 asi — +o0, yi € Ay, and D¢y, (y;) = O. It is easy to see
thaty; — x asi — 400, and, thereforey; — x € @ for i sufficiently large.

2. The facts thapy, (y;) = 0 andD¢y, (y;) = 0 yield

(2.5) (i) +kix(yi —x) =0,

(2.6) D¢ (yi) +kiDx(y; —x) =0.

Taking the inner product of the expression in the left-hand side of (2.6) with
y; — x and subtracting (2.5) we get

kilDx(yi —x) - (yi =x) — x(vi = )] = [¢ (i) = Do (y;) - (vi —x)] =0.

3. Taylor’s expansion op atx and the fact thap (x) = O give

¢ (i) — Do (y) - (vi —x) = O(ly; — x?).
4. Sincey; — x € (7, the assumptions op yield

Dx(yi—x)-(yi—x)—x(yi—x) Z $Dx (yi—x)- (i —x) = 3IDx (yi —x)||yi —x|.,

the last equality being a consequence of the radial symmetyy of
5. Combining the above results yields
kil D (yi —x)| = O(lyi — x|),
and, in view of (2.6),
D¢ (yi)l = O(lyi — xI).
6. This leads to a contradiction folarge enough, sind®¢ (v;)| — |D¢(x)| +
OandO(|ly; —x|) > 0asi —> co. O

The next result is the

Theorem 2.2. Assume thatA1)—(A3) hold. Thenthere exists a continuous function
G such that, for all(x, 1) € RN x [0, oo) and for all smooth functiong,

U(x, 1, [¢]) = —|D¢(x)|G(D(D$)(x), Dd(x), x,1) on{x € RV : |Dg(x)|  0}.

Proof. 1. Following the proof of the analogous result of [AGLM], we want to
show that if¢ andy are C*°-functions such that, for somee RV, D¢ (x) % 0,
Dy (x) #0and

D¢(x) = Dy(x), D (Dp(x)) =D (DY (x)).
then
v(x, t, [9](x)) = v(x, 1, [¥](x)).
2. Changing if necessagyinto x1(¢) andys into x2(y), wherex1, x2 : R - R
are C*°-functions such thag;, x, > 0 in R, we may assume, without loss of
generality, that
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p(x) =¥ (x), D¢(x)=Dy(x), D%p(x)= D>y (x).

Notice that these changes ¢randy preserver(x, ¢, [¢]) andv(x, ¢, [¥]). More-
over, in the same way, we may assume thand+ are bounded.

3. We argue by contradiction assuming that

v(x, 1, [ (X)) > v(x, 1, [¥](x)),

which, in turn, implies the existence gfe R such that

v(x, t, [¢](x)) + B > 0> v(x,t, [¥](x)) + B.
4. We introduce the functions
d(») = ¢(y) —ely — x> = Kx(y — x),
V() =v () + Kx(y—x),

wherey is as in Lemma 2.1 with at least a quadratic growth at infinity and such
that D¥ x (0) = O for all k € N.
The assumptions op andys easily yield that, fork large enough,

p<y =y inRY
5. Lemma 2.1 yields, that, for some> 0,

P#{y:d(y)>0C{y:y¥() >0NB(x)
with |[D@(y)| + 0 on{y : ¢(y) = O},

BE{y: ¥ <0 Cly:y¥(») <0 NB(x)
with | Dy (y)] & 0 on{y : ¥ (y) = 0}.

6. Applying Lemma 2.2 tgp and—1, we find two families of smooth open sub-
sets(Q,%)he[o,ho) and(Qfl)he[o,ho) of RY evolving smoothly with normal velocities
smaller tharv(x, ¢, [d]) and—v(x, ¢, [—d]) respectively, and such that

B=1{y: ¢ >0, QB={y:—v() >0

Recall that, in view of Remark 2.1, the fam'(lmlf]“)he[oyho) moves smoothly with
a normal velocity larger than(x, ¢, [d]).
7. Step 5 yields )

Qg c [Q]°.

Hence, in view of Assumption (A2), for all € [0, 7o) we have
1 521¢

of c[af] .
and, therefore,
(2.7) Qin? =y.
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Lemma 2.2 also implies, for all € [0, k), that
{y 1) + h[v:(y, 1, [¢] () — a] > 0} C QF,
v+ a1 [P] () +e] <0} € Q2.
8. Consider the point, = x + hBD(x). SinceD¢ (x) = Dy (x), it follows
that $Cun) = hB +o(h).  §(xn) = hp +o(h).

Examining the quantities(x;, 1, [¢] (xx)) andv(x, ¢, [ ] (x»)), we deduce from
(A1) that )
v, 1, [@] (kn) = v(x, 1, [9](0)) + 0 (D) + 0. (D),

vxn, 1, [¥] (n)) = v(x, 1, [Y](x)) 4 on(D).

9. If we choosex > 0 sufficiently small, a simple computation gives, for
sufficiently smallz ande, that

G (xn) + h[Vs(xn, 1, [@] (xp)) — ]
= h[v4(x, 1,[] () + B — @ + 0n (1) + 0, (1] > 0,
Y (xp) + AV (xn, 1, [ ] en)) + &) = R[0*(x, 2, [¥] (%) + B + a4+ 0,(D] < O.

Hencex;, € Q% andxy, € Q,f which contradicts (2.7).

10. Thegtlove arguments show thaDip (x) + O, therv(x, ¢, [¢](x)) depends
onlyon(D(D¢)(x), Do(x), x, t) and, therefore, there exists a functi@rsuch that

v(x, 1, []) = —| DY (x)|G(D(D@)(x), DP(x), x, 1).

11. The continuity ofG just follows from the regularity assumption on
v. O

Finally, we have

Theorem 2.3. Assume thafA1)—(A3) hold. The functiorF defined by2.1), (2.2)
satisfies the ellipticity conditio(®.3).

Proof. 1. Since the proof is based on exactly the same ideas as the proof of Theo-
rem 2.2, we only present a sketch here.

2. We argue by contradiction, assuming that there eist§ € RV x (0, o),
p € RV\{0} andA, B € .V such that

A<B, F(A,p,x,t)<F(B,p,x,t).
It follows that there must exi#t € R such that
F(A,p,x,1) =B <0< F(B,p,x,1) — B.

Finally, notice that, in view of (2.2), we may assume without loss of generality that
lpl =1
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3. Consider the functions
P =p-(G—)+ 3By —x)-(y—x)— Kx(y —x),
Y =p -0+ 3A0 —x) (v —x)+ Kx(y —x),

wherey is as in Lemma 2.1 with cubic growth at infinity and such th&s (0) = 0
for all k € N. SinceA < B, we clearly have

¢Sy =<y inRV

4. Arguing as in the proof of Theorem 2.2, we use Lemma 2.2. It follows
that there exist two families of smooth open sub$&85).c[0.no) and(22)e[0,10)
of RV evolving smoothly with normal velocity smaller thar(x, , [d]) and
—v(x, t, [—d]) respectively and such that

Q=11 >0, QB=1{:-¥0) >0

5. Lemma 2.2 and the arguments in the proof of Theorem 2.2 yield that, for
h € [0, ho),
QN2 =g,

{6+ hlv(y, 1, [¢] (1)) —a] > 0} C 3,

PO +hE* 0 [P] 0)) +a] <0} C .
6. Letx, = x + hBp. Since|p| = 1, we have

¢(xn) = hB+oh),  ¥(xn) = hB +o(h).
7. The continuity ofF" at (A, p, x, t) and(B, p, x, t) yields
O 7, [@] (xn))
= —F(D*$(xp, 1), DG(xn, 1), xi, 1) = —F (A, p, x,1) + 05 (D),

0 (e 1, [W] Gon))
= —F(D*y (xp, 1), DY (xp, 1), xp, 1) = —F (B, p, x, 1) + o, (1).
8. Fora andh sufficiently small we have
¢ (xn) + hlUs(xn, 1, [@] (k1)) — ] = A[—F (A, p,x,1) + on(1) + B —a] > 0,
¥ (xn) + h[0"(xn. 2, [] xn)) + @] = A[-F(B, p.x. 1) + 0p(1) + B+ a] <O.

9. Hencex, € Q1 N Q2, which contradicts the first assertion in Step 5
above. O

We continue with a brief discussion, formulated as a remark, about how As-
sumption (A3) can be removed.
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Remark 2.3.If Assumption (A3) does not hold, we argue by replacing in Defini-
tion 2.1%, by inf(v,, R) andv* by sugv*, R) and by requiring that the inclusions
have to hold for all: € (0, hp), wherehg may now also depend oR, and that
the assertion has to be true for &> 0. It is worth remarking that i is as in
Definition 2.1, then forR large enoughy, = inf(v,, R) andv* = sup(v*, R) in

a neighborhood ofx : ¢ (x) = 0}. The truncations are only effective away from
this set, to rule out difficulties at the points wherés unbounded. Finally, from
the technical point of view, truncating k¥ allows us, more or less, to come back
to the case where (A3) holds.

Itturns outthat it is occasionally more convenient to restate Definition 2.1 using
F in place ofv.

Definition 2.2. A family (£2);e..») Of Open subsets @&" is called respectively
ageneralized super-flow or sub-flomith normal velocity— F (D?d, Dd, x, t) if
and only if for allxg € R, r € (a, b), r > 0, > 0 and for all smooth functions
¢ : RV — R such thattx € RN : ¢(x) = 0} C € N By(xp), or {x € RN :
¢(x) <0} C QN By(x0),) with [Dg| & 0 on{x € RV : ¢(x) = 0}, there exists
ho > 0 depending only orr andg through itsC*-norm in B, (xg) such that, for all
h € (0, ho),

(x e RN : ¢ (x) — h[F*(D?p(x), Dp(x), x, 1) +a] > 0} N By (x0) C Rt
or
xeRY:px) — h[F*(Dqu(x), D¢ (x),x,1) —a] < 0}y N B,(xg) C Q?—;—h)-

Afamily (). Of Open subsets @ " is called ageneralized flow with normal
velocity— F(D?d, Dd, x, 1) if it is both a sub- and super-flow.

The next remark emphasizes an observation, which plays an important role in
this paper, stemming from our discussion above.

Remark 2.4.In view of Theorems 2.1, 2.2 and 2.3, any motion with prescribed
normal velocity which satisfies (A1)—(A3), locality, regularity and monotonicity
being the most important assumptions, reduces to a generalized evolution as in
Definition 2.2, i.e., the normal velocity must depend only(en), n» and Dn and

must satisfy (2.3).

It is also worth remarking that the quantities
¢(x) — hF*(D?p(x), Dp(x). x.1), ¢(x) — hF(D%p(x), Dp(x), x.1),

which appear in the definition, can be seen as the Euler approximation for solving
the partial differential equation

u + F(D?u, Du,x,t) =0 inRY x (a,b),

with the initial datum
u=¢ onR" x {a}.
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Such equations, witl' of the special form we are considering here, arise in the
so-called level-set approach to define weak motions of hypersurfaces with normal
velocity — F. We briefly present the level-set approach in the next subsection and
show the connections with our approach. Here we just want to point out that our
definition mixes ideas coming from the level-set approach and also from a more
geometric point of view, as it incorporates properties like (A2), inspired by what is
known as avoidance and inclusion properties in the literature. We refertaNeEN
[I] where properties of this type were remarked for the motion by mean curvature
without, however, being put forward as possible definition for such motions. The
notion of generalized flow we introduce here is closely related to the notion of
barriers introduced bt Giorci [DG], who proposed the use of some geometric
maximum principle-type ideas to define the propagation of manifold‘ir(see
BELLETTINI & PAoLINI [BP] which expands on these ideas).

We conclude this part of Section 2 with the remark that with the appropriate
modifications the notion of the generalized flow introduced earlier can also be
used to study propagating fronts in bounded domains with appropriate boundary
conditions. Although we will use this fact later in the paper, we do not expand more
on it, since this is more or less a straightforward adaptation of the above.

2.2. The Generalized Level-Set Evolution

We begin with a brief description of the classical derivation of the level set
approach. Tothis end I€L;);<(4,1) be a collection of smooth hypersurfaces moving
with normal velocity— F and let(D; );c(,,») be a collection of smooth open subsets
of RN such thatl; = 9D,. Assume that : RY x (a, b)) — R is aC>®-function
such that

Di={xeRY :u(x,1) >0}, I ={x eRY :u(x,1) =0},
[Dul £0  onU,;cip e x {1}

A straightforward computation (see for example [ES]) yields, under the addi-
tional assumption that all the smooth level sets ahove with the same normal
velocity, thatu must satisfy the partial differential equation

(2.8) ur + F(D?u, Du,x,t) =0 inRY x (a,b),

whereF .V x (RM\{0}) x R¥ x R — R is related to the normal velocity by
(2.2).

To justify and extend this approach to the case of nhon-smooth motions, one has
to use the notion of viscosity solutions for fully nonlinear elliptic and parabolic
partial differential equations. This theory provides the existence and uniqueness
of viscosity solutions of (2.8) under rather general assumptions. We refer to [ES,
CGG, BSS, IS and G] for such results and to the “User’s GuideUrANDALL,

Isuir & Lions [CIL] for a general overview of the theory of viscosity solutions.

The level-set approach can then be described in the following way?Lie¢
the collection of triplet§T", DT, D~) of mutual disjoint subsets &" such that"
is closed and* is open an®RY = I' U DT U D~. For any(T'o, Dg, Dy) € &,
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first choosep € BUC(RY), the space of bounded uniformly continuous functions
defined orR”, so that

D§ = {x e RN tug(x) > 0}, Dy = {x € RN ug(x) < 0},
o= {x € RN : ug(x) = 0},

and then consider the initial-value problem

() u;+ F(D?u, Du,x,1) =0 inRN x [0, 00),

2.9
29) (if) U =ug onRY x {0},

where F is defined by (2.2). In view of the existence and uniqueness theory of
[CGG, ES, BSS, IS, G], etc., under general assumptiong othere exists, for
everyugp € UC(RY), a unique viscosity solution of (2.9) inUC®R"Y x [0, T))
forall T > O.

Finally set

Ii={x eR" :u(x, 1) =0},
Df ={x eRY :u(x,t) >0}, D ={xeR :ux, 1 <0}

SinceF is geometric, i.e., it satisfies, for dlk, p, x, 1) € .Y x RV \{0}) x
RN x (0, 00), u € Randa > 0,

(2.10) FAX 4+ up® p,Ap,x,t) = AF(X, p, x, 1),

the collection{(I';, D;', D;)},>o C & is uniquely determined, independently
of the choice ofug, by the initial triplet (T, Da“, Dy). We recall that the main
consequence of the property (2.10) is that the partial differential equation in (2.9) is
invariant under the changes— ¢(u) for all nondecreasing functions: R — R.

Next, for eaclr > 0 we define the mapping; : & — & by

E;(To, Dg . Dy) = (Ty, D, D),

and notice thatE, },>q satisfies the propertigsy = id ¢ andE; s = E; o E; for
all¢,s = 0 (see, for example, [ES, CGG, IS, G]).

Definition 2.3. (i) The collection{E;},>q is called thegeneralized level-set evolu-
tion with normal velocity- F'. -

(i) Given (o, Dar, Dy) € &, the collection{I';},>¢ of closed sets is called
thegeneralized level-set front propagationlof with normal velocity— F.

Notice that the level set propagation is determined not onlyddyut also by the
choice ofDJ and Dy, , which corresponds to fixing an orientation for the normal to
Io. In particular, the evolution differs, in generalmar andD, are interchanged.

The properties of the generalized level evolution have been the object of ex-
tended study. One of the most intriguing issues is whether the so-callederior
conditionholds, i.e., whether the s&} does not develop an interior. We say that
the no-interior condition holds if and only if
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(2.112) {x,0) s u(x,t) =0} = o{(x,1) s u(x,t) > 0} = a{(x,1) : u(x,t) <O0}.

It turns out that there are general geometric condition§'@gielding (2.11)
(see [BSS]) for such conditions as well as examples where (2.11) fails. [BSS] also
considered the issue of the existence and uniqueness of discontinuous solutions to
(2.9) withug = ]IDO+ - ]lDO-, where, ifA is a subset of som&F, 1,4 denotes the
characteristic function of, i.e., Iy(x) = 1if x € Aand Iy(x) =0 if x € A°.

Notice thatin view of (2.10) one can expect that any such solution only takes the
values+1 and—1. In fact, this is true if and only if (2.11) holds (see [BSS]). Since
this plays some role in our analysis below, we state the relevant result of [BSS] in

Proposition 2.1. (i) The initial-value problenf2.9) with ug = ]ng — ]IDS has a
unigue discontinuous solution if and only if the no interior condit{@ril)holds.

(i) If (2.11)fails andu : RN x [0, 00) — R is a discontinuous solution of
(2.9), then, for allz > 0,

DF c{x eRY :u(x,1)=+1) c DFUT,,

where(T';, D;", D) = E;(To, D§. D).

2.3. The Relationship Between the Generalized Flow and Level-Set Evolution

The next theorem is the main result of this section. As before, to simplify
the presentation we assume that (A3) holds, i.e., d#retd, hencefF are locally
bounded. This assumption can be removed using Remark 2.2 and the results of [I1S],
which treats unboundefi’s by changing the class of allowed test functions.

Theorem 2.4. Assume thafA1)—(A3) hold. A family{2;};c[0,7] Of open subsets
of RV is a generalized flow or a super-flow or sub-flow with normal velogitfy
and only if the functiony = 1, — :“Qlc is respectively a viscosity solution or a

super-solution or a sub-solution (.9)(i) in RY x (0, o).

Before we present the proof of Theorem 2.4 we state in the next proposition
the relationship between the generalized flow and the level-set evolution. Since its
proof is immediate from Proposition 2.1 and Theorem 2.4, we omit it.

Proposition 2.2. (i) Let {€2;};c[o0,7] be a generalized flow with normal velocity
let (T, D;", D; )iefo,7] be the generalized level-set evolution(86, D, D),
whereDa“ =QoandD, = Qg, and assume that the no-interior conditi¢11)
holds. Then, for alt > 0,

Qt == Dt+
(i) If the no-interior condition2.11)fails, then, for allz > 0,

DY c @ CcD}UTy.
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We now continue with the

Proof of Theorem 2.4.1. The fact that, ify = 1o, — I is a solution or a sub-
solution or super-solution of (2.9)(i), thé&, };c[,7] is re[spectively a generalized
flow or a sub-flow or a super-flow with normal velocityis an immediate conse-
quence of the definition and the comparison properties of (2.9). We leave the details
to the reader.
2. Next we show that if2},¢[0,7] iS a generalized super-flow, thenis a
super-solution of (2.9)(i). The case of the generalized sub-flow is studied similarly.
3. Let(x, 1) € RN x (0, T) be a strict local minimum point of, — ¢ where
¢ € CHRN x [0, T]). Changing if necessagyto ¢ — ¢(x, t) we may assume that
¢(x, ) = 0. Moreover, sincg is bounded, we may also assume thé bounded.
We then need to show the inequality

(2.12) @i (x, 1) + F*(D%p(x, 1), Do(x, 1), x,1) = 0.

This inequality is obvious if(x, r) is in the interior of eithe{yx, = 1} or
{x+ = —1}. Indeed, in both caseg, is constant in a neighborhood @f, 7). Hence

¢i(x,1) =0, Dg(x,1)=0, D3(x,1) 20,
and (2.12) follows, since, in view of (2.10), we have
F*(0,0,x,7) 2 0.

4. Assume thatx, t) € d({xx = 1} U {x« = —1}). The lower semicontinuity
of x, yields
X*(xa Z‘) = _l

Since(x, t) is a strict local minimum point of. — ¢, there exists some > 0
such that, if O< |y — x| + |t — 5| < 2r, then

X*(xa t) _w(xv t) = _1 < X*(y7 S) - @(y,s)
Hence, if O< |y — x| + |t — 5| < 2r, then
_1+(p(y7s) < X*(yvs)

It follows that y.(y, s) = 1if ¢(y,s) > 0 and(y, s) + (x, 1), sincey, takes only
the values-1 and 1. For any: € (0, r) this implies that

{yioG,t—h) 201N B (x) C Q-

5. Next consider the ca$Po(x, ¢)| & 0 and introduce, fok > 0, the functions
o - RY x [0, T] — R defined by

(v, 8) = 9(y, ) — klx — y[*.

All the previous arguments hold true fpg. Moreover, in view of Lemma 2.1
and the smoothness of there exisk > 0 andk > 0 such that, for alk € (0, &),



256 G. BARLES & P. E. SOUGANIDIS

() {y:eg(y,t—h) 20} C QN B(x),
(i) [Deg(y,t—h)|£0  on{y:gz(y,t —h)=0}

6. Since the family$2; };<[o,7] is @ generalized super-flow with normal_velocity
v and theC#-norms of the functiong; (-, r — h) are uniformly bounded iB, (x)
for h small, it follows that fore > 0 sufficiently small, we have

{y :@p(y.t — h) — R[F*(D?gp(y. t — h),
Dop(y,t —h), y,t —h) +a] > 0} N B, (x) C .

(2.13)

In particular, sincer ¢ ;,
@p(x, 1 — h) — h[F*(D%pp(x,t — h), Dgg(x,t —h), x,t —h) +a] < 0.

Next recall thatp(x, t) = 0 and, thereforep;(x, r) = 0. Dividing the last
inequality byh, lettingh — 0 and using the lower semicontinuity efF*, we
obtain

—gp, (x, 1) = [F*(D?@p(x, 1), Dgp(x, 1), x,1) + ] < 0.
But
0 (1) =@ (x, 1), Dgp(x,1) = Do(x.1), D3pp(x,1) = D%p(x,1).

Lettingw — 0O yields (2.12).

7. If |[De(x,t)] = 0, we may assume without any loss of generality that
D?p(x,1) = 0 (see, for example, BARLES & GEORGELIN [BG]). Since
F*(0,0, x, t) Z 0, to conclude we only need to show that

(pl(xs t) Z O‘

Using once again the facts that, ) is a local minimum point of¢, — ¢ and
thate(x, 1) = 0, D(x, 1) = 0 andD?%p(x, t) = 0, we have, ify — x| < r,

—14 @, 1) —hi(x, 1) + Oy — x> + o(h) £ xu(y, 1 — h).

8. Ifthere exists asequen¢g,, r —h,) — (x, t) suchthat,(y,,t—h,) = —1
and|x — y,|® = o(h,), then the proof is complete.

9. If not, for all C > 0, there existd&o > 0 such that, for alh € (0, hg) and
ly — x| < Ch,
X«(y,t —h)y=1
10. Consider the functiop(y) = Ch — |y — x|2. It is clear that, for: small
enough,

{y:1¢(») 20 CQ-nNB(x), [Dp(»I+0 on{y:¢(y) =0k

That the family{<2;};¢[0,7] is a generalized super-flow with normal velocity
yields that there existso, depending only o and ong through itsC*-norm in
B, (x) (which is independent df if, say,n < 1), such that, foh < ho,

[y :o(y) — A[F*(D?¢(y), Do (), y, 1) + ] > 0} N B, (x) C Q.
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Butx ¢ Q,. Hence
¢ (x) — h[F*(D?¢p(x), D¢ (x), x,1) +a] £ 0,

i.e.,
h[C — F*(-=21,0,x,1) —a] £ 0,

which is a contradiction i€ is large enough, sincE is locally bounded. O

3. The Abstract Method

In most of the asymptotic problems we have in mind, we are given a family
(ug)e=0 Of functions bounded iRY x (0, T), uniformly ine, typically the solutions
of a reaction-diffusion equation with a small parameter the total magnetization
of a stochastic system with interaction rargé’, etc. The goal is to prove that
there exists a generalized fla;),>q with normal velocityv determined by the
problem such that, as— 0, -

u(x.) > b if x.neQ= J @ xh
1€(0,T)

ug(x,t) > a if (x,1) € Q°,

wherea, b € R are equilibrium states of this system.

In this section we present an abstract formulation of a new general method for
proving such results. In the next sections, we will show how this method applies to
several concrete examples.

We assume that for al > 0,7 = 0 andh > 0, the family (u.).-0 satisfies
the following properties, wher&(R") denotes the set of real-valued bounded
functions onR” :

(H1) Causality. There exists a family of mag#,,, : BRY) — B(R"), such
that
ug(-,t+h) = Sit+hu8(-, #) inRYN,

(H2) Monotonicity. For all functionsu, v € B(RY),
ifu <vinRY, thensS;,  ,u = 87, ,v.
(H3) Existence of equilibria. There existi,, b,, a, b € R such that
a<b, 8,0 =ae, Sithg =by, a.Zu; <b, InRN x {0},

and, ass — 0,
a. — a, b, — b.

(H4) Consistency.There exists a locally bounded functiéh: .V x RV\{0} x
RN x [0, o0) — R such that

(i) Forall (xo,7) € RN x [0, T),r > 0,« > 0and for all smooth functions :
RY — Rsuch that{x : ¢(x) = 0} C B,(xo) and|D¢(x)| & 0on{x : ¢(x) = 0},
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there exist§ > 0andho > 0, ho depending only om andg through itsC4-norm in
B, (x0), such that, i < 8, x € B.(xg) and¢ (x) — h[F*(D%¢p(x), D$(x), x, 1) +
a] > 0for h < ho, then

liminf, (Sit+h[(bg — 5):“{(1530} + ag]l{¢<0}])(x) =b.

(i) Forall (xo, 1) € RN x[0, T),r > 0,a > 0and for all smooth function :
RN — Rsuchthatx : ¢(x) < 0} C B,(xg) and|D¢(x)| &= 0on{x : ¢(x) = O},
there exists’ > 0andhy, > 0, h depending only orr and through itsC4-norm
in B, (xo) suchthat, i’ < &, x € B,(xo) and¢ (x) — h[ Fx(D%p (x), D (x), x, 1)
—a] < O0forh < hg, then

lim SUﬂ< (Sts,t+h[b:“{¢>0} + (Clg + 5/):“{¢§0}])(x) =a.

We recall that if /¢ : A — R is a family of uniformly bounded functions, then

liminf, f%(y) = lim inf i), limsug f%(y) = lim svupfs(z).

£—0 e—0

The result is

Theorem 3.1. Assume thagH1)—(H4)hold for alle > 0, =2 Oandh > 0. For
t > 0, set

Qtl = {x € RV: liminf, uz(x, 1) = b}, Q,Z = {x e RV: limsup ug(x, 1) = a)},
and defineQ} and Q2 by

szé:ﬂ( U Q,l> and Q§=ﬂ< U Qf).

t>0 “0<h<rt t>0 “0<h<rt

If @3 or Q2 respectively is not empty, thxﬁ_zjL or Q2 is not empty for sufficiently
smallz = 0, and the family(}),>o or ((§2,2)")IZO is a generalized super-flow
or sub-flow with normal velocity- F. Moreover,F is degenerate elliptic, i.e., it
satisfieq2.3).

An immediate consequence of Theorem 3.1 is

Corollary 3.1. Assume that the hypotheses of Theorem 3.1 hold and, in addition,
that Qf = (29)°. Let(I';, @, ;7),>0 be the generalized level set evolution of

(993, 23, Q@2) with normal velocity- F.
(i) Then, for allr = 0,

Qfcelcoiur, Q@ cQco ur,.
(i) If the no-interior condition2.11)holds, then, for alk = 0,

Ql=qf, Q?=q .
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Before we present any proofs, we discuss the meaning of (H1)—(H4) as well
as what is involved in checking them. In most of the examples, (H1) is satisfied
by definition as a consequence of a semi-group-type property, while (H2) follows,
in general, from a maximum principle-type property and (H3) follows from the
structure of the problem. Checking (H4) is in general the only difficult step.

Verifying (H4) consists in proving a result similar to the one we want to derive
for u, but only for smooth data (as smooth as we want), for compact smooth fronts
and for small time (as small as we want). It is clear enough that these properties are
a priori far easier to obtain—although they are not completely trivial—than those
for the general case far,. This reduction to an easier case is the main contribution
of this new method.

The additional assumption th@% or Q% is not empty, which is used to initialize
the moving front, is checked, in general, exactly in the same way as (H4), i.e., by
studying the small-time behavior of solutions which, locally in time, generate a
smooth front. Finally, the reason for giving different definitionsﬁﬁandfzg is
to take into account the boundary layer which may occur=at0.

The intuitive idea here is that the m&d defines some approximation to a
certain flow on sets and that (H4) amounts to finding the generator of this flow. It is
in this context that this approach resembles, as mentioned in the Introduction, the
formulation introduced in [BS] to study convergence of numerical schemes.

We now present the

Proof of Corollary 3.1. Theorem 3.1 yields that the familiem})@o and
(9,2)@0 are generalized super- and sub-flows with normal velocify Fhe con-
clusion now follows from Proposition 2.1, in view of the assumptiorﬂéﬁand
Q2. o

0

Now we turn to the

Proof of Theorem 3.1.1. ThatF satisfies (2.3) follows, once the rest of the theorem
is proved, as in Theorem 2.3. The key point here is that the fact that (H2) holds
yields for the evolving fronts a monotonicity property like (A2).

2. We only prove the result fcm}),zo, the one fOI(QrZ),ZO following similarly.

3. Let(xg, 1) € RY x (0, T), r > 0 and a smooth functiop : R¥Y — R be
suchthafx : ¢(x) = 0} C Q} N B, (xg) and| D¢ (x)| £ 0 on{x : ¢(x) = 0}. We
need to show that, for all sufficiently small> 0O, there exist&g > 0 depending
only one,  and theC#-norm of$ in B, (xo) such that, for all 0< & < hg and for
a small enough,

{x 1 ¢ (x) — h[F*(D?p(x), Dp(x), x,1) + ] > 0} N B, (x0) C Q-
Since
ag = 8§ a5 < S ue(-,0) = ue(-, 1) < S§,be =b, INRY,
assumption (H2) yields

as Sug, <b, InRY x [0, 7],
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and, hence,
limsug u, <b InRYN x [0, T].

4. Classical arguments from the theory of viscosity solutions yield that, as
e — 0,u; — b, locally uniformly, in{J,.q Q} x {t}. Therefore, fors small
enough and as in (H4), we have

ue(-,1) 2 be —8 onfx:¢(x) =0} c QL

Hence
ue (- 1) Z (b — ) Niy0) + ac U<y INRY,

and, by (H2),

Si;.;,_hua(', r) 2 S§;+h[(ba - 8):“{¢20} + aaj]{¢<0}] in RV,

5. Chooser > 0 and apply (H4). There exidt> 0 andhg > 0 such that, i < §,
0 <h £ hg, x € B,(xp) and

¢(x) — h[F*(D?p(x), Dp(x), x,1) +a] > 0,
then
liminf, ue(x, ¢+ h) =liminf. S, u:(, 1) (x)
2 liminf, (8¢, [(be — 8)Ug>0) + aclig<)])(x) = b.

This yields that, for any G< & < ho, whereho depends only oa and¢ through
its C4-norm onB, (xo),

{¢(x) — h[F*(D?p(x), D$(x), x, 1) +a] > 0} N B, (x0) C QL.
The proof is now complete. O

In view of the discussion at the end of Subsection 2.2, it is clear that in the
definition of the generalized sub- and super-flows, we may replage<ifB, (xo)
and¢ (x) — h[F*(D%¢(x), D (x), x,t) + «] > 0 for somex > 0” and “if x €
B, (x0) and ¢ (x) — h[F.(D%¢(x), D¢ (x), x,1) — a] < O for somex > 0”in
(H4), respectively, by “ifx € B, (xo) and¢; (x, 1) > 0" and “if x € B, (xo) and
¢, (x,1) < 0" whereg] andg, are solutions of

bar + F(D?$F, Doz, x, 1) £a|DGF| =0 inRN x (0,T),
¢ =¢ onRY x {0}.

Since we may assume without loss of generality ¢hiet uniformly continuous in
R¥, these equations have a unique solution under general assumptidh&en,
for example, [CGG, BSS, IS, G], etc.).
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4. The Asymptotics of Semilinear Reaction-Diffusion Equations

One of the most striking applications of the theory of the generalized front
propagation is the rigorous study of the asymptotics of solutions to semilinear
reaction-diffusion equations, which has been done in [ESS] and [BSS]. A canonical
example of such a problem is the study of the asymptotics of the reaction-diffusion
equation
(4.1) u — Au+ f(u) =0 inRY x (0, 00),

where f = W', W being a double-wells potential. A special case of (4.1) is the
so-called Allen-Cahn equation which corresponds to the choice of

4.2) fw) =2uw?®-1  (ueR).

The Allen-Cahn equation was introduced in [AC] to model the motion of the sharp
interface—the antiphase boundary—between regions of different phases of a mate-
rial. The conjecture of [AC], which was proved rigorously and for all times in [ESS]
(see also [BSS]), was that, if the wells@fhave equal depth, then the asymptotics

of

(4.3) ué — Auf + e 2fw) =0 inRN x (0, 00),

which is obtained from (4.1) by scalifg, 1) to (¢ "1x, e ~2¢), are controlled by the
(generalized) mean curvature flow. Here we revisit this result by presenting another
proof based on Theorem 3.1. Of course the main issue is to verify (H4).

Checking (H4) can be done in a number of different ways. The first possibility is
to use already existing results on the small-time behavior of the reaction-diffusion
equation for smooth data. In this case the asymptotics of (4.3) can be treated in a
straightforward way using the results 6fHEN [C]. As we already mentioned, the
fact that the method we propose transforms results on the small-time behavior of
the solutions of reaction-diffusion equations for smooth data into complete results
is one of its main interests.

The second possibility to check the consistency requirement is to follow ideas
introduced in [ESS] (see also [BSS]) to build suitable sub- and super-solutions to
(4.3) using the travelling-wave solution of (4.1) and the distance function to the
moving front. Our method simplifies this approach since we have to build such
sub- and super-solutions only for small time using the smooth distance function.

Here we want to describe a third possibility, which, although similar in spirit
to the second one, avoids the use of the distance function and allows us to treat the
more complicated problems we present later in this paper. This approach closely
follows the formal asymptotic analysis ®fELLER, RUBINSTEIN & STERNBERG
[KRS] to study (4.3). As a matter of fact, the power of the method introduced here
is that we can make all these formal asymptotics rigorous.

In order to emphasize the main new ideas, we concentrate on (4.3) although our
arguments work for second-order operators more general than the Laphaaiah
for nonlinearities which also depend én 7). We refer to [BSS] for such results.

As far as the reaction terrfi : R — R goes, throughout the paper, we assume
that
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f € C2(R) has exactly three zeroes_ < mq < m.,
(4.4) f(@)>0in(m_,mpg), f(s)<0in(mg, my),
flmg) >0, f"(m-) <0, f"(my)>0.

We also assume that for eaete SV~1, (4.1) admits travelling-wave solutions
connectingn_ andm 4, i.e., solutions of the form

u(x,t) =q(x-e—ct),

whereg : R — R is such thay (+00) = m. Indeed, we assume that there exists
a unique pailc, g) such that

cg+4=f(@onR, ¢>00nR, ¢(0) =mo,
(4.5) q(s) — +tmy exponentially fast as — +oo0,
SUR (14 [sDg(s) + (Is] + s2)1G] < oo.

The existence and the properties of such pairg) are studied, for example, in
ARONSON & WEINBERGER [AW], where we refer for details.
In the case where the wells of the potentialhave the same depth, i.e.,

(4.6) W(imy) —Wim-) =0,
it follows thatc = 0 in (4.5) andy satisfies
4.7) Gg=f(g inR.

(Recall that : R — R is such thatf = W’.)
Linearizing around; the equation satisfied by the travelling wave leads to the
unbounded, self-adjoint operato?, : L2(R) — L?(R) defined by

Ap=cp+p— f(@p.

Moreover a straightforward computation shows that ker. 4 = ker. 2*. In
the sequel we assume that
(4.8) ker. 4* = gR.

In our analysis below we will need to solve, for appropriate functions
x 1R x RN x [0, 0c0) — R, the equation
(4.9 A4p=yx onR.

We assume that for any compact subsekadf RV x [0, oo), and any smooth
x : R x K — R, such that, for alls, x, ) € R x K and for someB > 0,

/ x(s,x,0)¢()ds =0, |Ix(s, - ez = Blgls) + sG],

—0Q0
there exists a solutiop € C2(R x K)of (4.9) such that
(4.10) p(s) — 0 exponentially fast ag| — oo,

supllp(s, -, ey < 00,
seR

sup  [p(s,x, 1), [Dep(s, x, )], (L+IsDIpl(s, x,1)] < oo.
(s,x,1)eERxK
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This last assumption is, of course, rather technical but also essential to our
analysis. Given (4.8) it is immediate that at least the integral conditiop @na
consequence of Fredholm’s alternative applied#o

In the special case of the Allen-Cahn equation, wliesatisfies (4.2), it follows
that

q(s) = tanh(s)

and that (4.8) and (4.10) are satisfied. As a matter of fact, a straightforward calcu-
lation yields that in this case the solutiprof (4.9) has the form

pexn=q6) [ @ [
0

—00

T

x(n, x, t)c}(n)dn)dr

and satisfies the conditions in (4.10).
To state the main result of this section we recall that, forge UC(RV), the
initial-value problem

uy —tr[(l — Du® Du)D?] =0 inRN x (0, 00),

4.11
(4.11) u = ug onRYN x {0},

admits a unique viscosity solutione UC@R" x [0, T]) forall T > 0.

Theorem 4.1. Assume thaf4.4)—(4.6) (4.8) and (4.10) hold and letu. be the
solution of(4.3) associated with the initial datum, = g on R x {0}, where
g : RN — [m_,my]is such tha"g = {x : g(x) = mo} is a non-empty subset of
RN. Then, ag — 0,

ut — {Z“L } locally uniformly in { tu > 0} } ,

{u < 0}

whereu is the unique viscosity solution ¢f.11)with ug = dop the signed distance
to I'g which is positive in the s¢g > mg} and negative in the s¢t < mo}.
If, in addition, the no-interior conditioif2.11)holds, then, as — 0,

P "+ U locally uniformly i =9 ¢
‘ *{m }°C""y””'°rmy'” <0 =(w>0) |

Proof. 1. In view of Theorem 3.1, we only need to check assumptions (H1)—(H4).
2. LetT? be the semigroup associated with (4.3). Itis immediate that (H1)—(H3)
are satisfied witlh = a, = m_ andb = b, = m..
3. Below we check only “half” of (H4), i.e., the part about the lim,in&ince the
other “half”, i.e., the lim sup part, can be checked similarly, we leave the details
to the reader. The proof is then complete if we prove Theorem 4.2 below.

Theorem 4.2. For all xo € R, r > 0,« > 0and all smooth functiong : RY —
R such thatf{x : ¢(x) = 0} C B, (xp) and|D¢(x)| & 0on{x : ¢(x) = 0}, and for
all 0 < § < m4 —my, there exist& > 0depending only og through itsC#-norm
in B, (xo) such that, for allk € (0, ],
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liminf, (Te(W)[(m4 — ) Vg0 +m-_Niyq]) (x) = m,
if ¢(x) — h[F*(D?$(x), D$p(x)) + ] > 0andx € B, (xo), where

—tr [ — p® pX]if Ip| +0,

F*(X,p) = _
—tr (X) + )\.ma)( if p = O,

Amax being the largest eigenvalue &f.

It is worth mentioning that Theorem 4.2 yields a bit more information than
the consistency requirement (H4). Indeed, the assertion is valid for any O<
m. —mo, While (H4) only requires this result to be valid for some® < m —mpo.

This stronger formulation is in fact necessary to initialize the front.

Proving Theorem 4.2 (and of any such results in the other examples we present
later) consists of two main steps. The first step, roughly speaking, initializes the
front, while the second one is about its propagation.

The proof we provide below for the second step in particular is clearly far from
being the simplest one we could give. We take, however, this opportunity to describe
a new general argument which allows us to treat more complicated examples. We
refer the reader to the end of this section where we make more comments about
this point.

The two steps of the proof of Theorem 4.2 are described in the following two
lemmas.

Lemma 4.1. (Initialization of the Front)Under the assumptions of Theordn2,
foranyp > 0, there exist a constant > 0 such that, if, = r¢?|In¢|, then, for all
sufficiently smalk,

T*(t)[(my — ) WUig>0p + m-_Yig<q)] = (my — Be)Uiy>p +m_ip<p).

This result, which is due t€HEN [C], describes the “very small-time” behavior
of the solutions of (4.3), which is essentially controlled by the reaction teérm
Roughly speaking, Lemma 4.1 reduces the proof of Theorem 4.2 to the case where
8 = Be for some sufficiently smaj$ > 0.

The second step is

Lemma 4.2. (Propagation of the Frontfor all sufficiently smalle > 0 there
existsh > 0, depending only o through itsC#-norm in B, (xo), such that, if
B < B(a, ¢) ande < E(, B, ¢), then there exists a subsolutiasrf-# of (4.3)in
RN x (0, h) such that

ws,ﬁ(.’ 0) < (my — ,38):“{45219} + m_]l{¢<}3} in RV,
Moreover, if for(x, t) € B, (xg) x (0, E),zp(x)—t[F*(Dzzp(x), D¢ (x))+a] > 28,

then
liminf, w®f(x,1) =my.
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Assuming for the moment Lemmas 4.1 and 4.2 we may proceed with the
Proof of Theorem 4.2 1. Letu® : RN x [0, co) — R be defined by
ut (x, 1) = To(O[(my — ) Lg>0) + m—Ljp<0)] (x).
2. Lemmas 4.1 and 4.2 yield that
w®P(,0) Su(-,1;) InRV,
and, by the maximum principle,
WP <uf(,-+1) inRN x (0, h).

It follows that, ifr € (0, i), x € B, (xg) andg (x) — t[ F*(D?¢(x), D (x)) +a] >
28, then
my S liminf, u®(x,r).

3. Sinceg is arbitrary and does not depend iorthe result follows. O

We continue with the sketch of the proof of Lemma 4.1 borrowed from [C], to
which we refer for all the details.

Sketch of Proof of Lemma 4.1 1. Standard arguments from the theory of ordinary
differential equations and (4.4) yield the existence of a unique solutiorC2(R x
[0, 00)) of

(4.12) X+ f(x)=0 in[0,00)with x(0) =¢ € R,
satisfying, in addition,

(4.13) xe(€,5) >0 inR x [0, 4+00),
for every O< § < m4 — mg, there exists: > 0 such that

(4.14) x(&,s) Zmy — Be
fors > allnel andé = 271 (my + mg — 8),

for everya > 0, there exist¥ (a) € R
(4.15) such that, foe small enough,
(e ) Hxee €, )| Se7M(a) for0<s <allnel.

2. Lety be a smooth function such that
m_ <y <my—8 inRY, y=m_in{p <0, ¥=my—5onip=p).
It is now clear that
Y S (my —8)Uy>o +m_Tygop  InRV.
3. Definew : RN x [0, 0c0) — R by

wix, 1) = x(¥x) —e 1Kt e720).
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It follows that, for K > 0 large enoughwy is a subsolution of (4.3) ilRY x
(0, ag?|In¢|), wherea is as in (4.14). Indeed, a simple calculation yields

W — A+ 2f(0) = —xee 1K + 725 — xe AV — xee|DYI? + 72 £ (%)

= —xe[e7TTK — AY — (xe) Lxee | DY)

Given (4.15) and the fact that, by definition, the functighsA v and D+ have
compact supports, it is now clear that, #rlarge enough, the quantity inside the
brackets above is positive.

4. Since the definitions af andv yield
w<u® inRYN x {0},
Step 3 and the maximum principle imply that
w<u® inRN x (0,ae?|In¢l).

5. Evaluating this last inequality for= a<?|Ing| and forx such thai (x) >
yields
x(my —8 — Kag|lne|,allng)) < u’(x,ac’|Ine)).

But since fors small enough
my —8+ Kae|lng| =227 Xmy +m_ —9),
it follows from (4.14) that
my — Be < uf(x, ag?|Inel).

This last inequality, together with the fact that. < u? in RV x (0, c0), finally
gives
(my — Be)liyzpy +m_Jigp) < u’(,ae’|Inel) inRV.

6. The conclusion now follows for = a. O

Itis worth pointing out that the proof of Lemma 4.1 relies entirely on the proper-
ties of the ordinary differential equation (4.12). This is related to the aforementioned
fact that, for very small time, the reaction effects dominate the diffusion ones.

We now turn to the

Proof of Lemma 4.2.1. Since| D¢ (x)| = 0 on the compact s¢p = 0}, it follows
that| D¢ (x)| & 0 on the sef|¢| < y} for somey > 0 small enough.

2. Chooses small compared ter and consider the function
(4.16) e(x, 1) = ¢(x) — t[F*(D?¢(x), D$(x)) + o] — 2.

Notice that one of the main points for arguing{igg| < y} is that the functiong
andF*(D?%¢, D¢) are smooth in this domain. Moreover, by choosirsyfficiently
small, we have

|Dp(x, )| %0, ¢ + F*(D%, Dg) < —3ain{|¢| < y} x (0, h).
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3. Next we construct a subsolutierof (4.3) in{|¢| < ¥} x (0, k) of the form
@.17)  wvx, 1) = 0(e ro(x, 1), x,1) + e[ P(e Yp(x, 1), x, 1) — 28],

whereQ andP are smooth functions to be chosen below. Since the idea is to mimic
the formal asymptotic expansion of in ¢ (cf. [KRS]), subsolutions of this form
are rather natural.

Substitutingv in (4.3), performing the needed algebraic manipulations, using

f@) = F(Q) +f(Q(P —28) + 0D (P - 28)°,
and dropping the arguments @fand P for the sake of notational clarity, we obtain

uw—Av+e 2fW) =2+ M, + 11,
where

le = —0IDgl* + £(Q),
lle = Q(¢gr — Ap) — 2(Dy Q-Dy) — P|Dg|? + f'(Q)(P — 28),
Me=Q,—AQ+ OL)(P —2B)2+&(P, — AP) + P(¢s — Ap) — 2(Dyx P-Dy).

4. The first goal is to choos@ so thatl, = 0. Indeed ifg is the travelling-wave
solution of (4.1), which in the case at hand satisfies (4.7), we set

Qs, x,1) = q(|Dg(x, )| Ls)

fors € Rand(x, ) € {|¢| < y} x (0, n)}. Notice that, in view of (4.5)Q is a
smooth function of, x ands. It is now immediate that.|= 0 with this choiceQ.

5. We rewrite I} as Il, = Il — 28f’(¢) and continue with the analysis of
. = O(¢ — Ag) — 2D 0 - D) — PIDgl* + f'(Q)P.
Our aim is to choos@® so that, fore sufficiently small,
e M, +1, <o0.

This is exactly the place where (4.10) comes into play.
6. Using the form ofQ in Step 4 above and choosiiysuch that

P(s,x,1) = p(IDo(x, )|t x, 1),
we can rewrite the equality, = 0 as
(4.18) p=f@p=x(s x0),
where

x(s,x,1) = [Do|Yg(M)[e — Ag]

(4.19) 5. ) )
—2|D¢|™>(q + A2g)(AM) (D @ D¢ - D).

In this expressiony, Dy and D2y are evaluated atr, 1) andg is evaluated at
A= |Do(x, 0|~ Ls.
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7. In view of (4.10), there existg satisfying (4.18), provided that

/ X(s3xst)q.(s)d»s=0.

—0o0

It is straightforward to check, using the elementary fact that

2 / AGO)G(Mdr = — / g (A)|2d .,

—0o0 —00

that this last condition leads to
¢ — Ap + (D?¢Dg - Do) = 0,

which is the formal justification of the connection with the mean curvature equation.
Here, howeverp does not exactly satisfy the mean curvature equation. To
overcome this difficulty, we solve (4.18) replacing thef (4.19) by x given by

X(s,x,1) = x(s,x,1) — Dol 2g(M)[@r — Ap 4+ (D*9 Dy - Dy)].

Indeedy satisfies the right orthogonality condition required in (4.10). Of course
we have a remainder which helps us to control the order-1 terms in the expansion.
8. Making this choice op and using the definition af we find that

e = Qo — Ap + D?pDg - D] +2f'(Q)B = =27 Q +2f'(Q)B.
9. To conclude we need Lemma 4.3 which we now state, postponing its proof.

Lemma 4.3. If 8 is small compared ta, then there exists(«, 8) < 0 such that,
forall s e Rand(x,t) € {|¢| < y} x [0, n],

—20Q(s) + 2f"(Q(s))B < v(a, B) < O.

10. We continue with the analysis of JIIGiven (4.4)—(4.6), (4.8) and (4.10),
tedious but straightforward computations show that all terms pfallé bounded,
independently of. This allows us to conclude the proof of the assertion of Step 3,
since Lemma 4.3 yields that, {fip| < y} x [0, 5],

v— Av+e2f @) < e v, B) + O(D),

with the right-hand side negative fersmall enough.

11. Next we need to extend the subsoluticio the whole domaifR" x [0, n].
We do so in a series of lemmas below. The first is about extendittg{¢ =

v} x [0, n].
Lemma 4.4. If n and 8 are so small that

(4200 n| max |F'(D?*(), D)l +a|+28 < by,
gy

then, fore sufficiently small, the functiondefined on{¢ < y} x [0, 5] by
_ suplv(x,t),m_) if ¢(x) > —y,
v(x,t) = .
m_ if ¢(-x) g -V
is a viscosity subsolution ¢#.3)in {¢ < y} x (0, n).
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Proof. 1. Since the constani_ is a solution of (4.3) iRY x (0, +00), the result
is clearin{—y < ¢ < y} x (0, ), v being the supremum of two subsolutions.

2. Now we examine the functiomin the domainix : ¢(x) < —%y}. In view
of (4.20), it follows that in this domain

p(x,0) < —1y.
The asymptotic behavior gfandp near—oo then yields, for some constant- 0,
v(x, 1) £ m- +exp(— (4e)"tey) + #(0: (1) — 28).
It is therefore clear that, far sufficiently small,

v(x,t) <m_ ifopx) = —%y.

Hence,
i, ) =m_ ifp(x) £ -3y,

and the result follows. O

12. To complete the construction, we introduce a smooth fungtiol® — R
suchthaty’ < 0inR, ¢ = 1in(—o00,3y),0< ¢ < 1in(3y,3y), ¥ =0in
3y, +00), and, finally,y” < 0 in a neighborhood o}y .

13. We need

Lemma 4.5. Assume thaf4.20) holds, setC = max|A¢|+ 1 on{|¢| < y} and
denote by the function defined, far, 1) € RY x [0, 00), by x (x, 1) = ¢(x)—Ct.
The functionw : RN x [0, n] — R defined by

Y(x(x, 0o, 1) + A =Y (xx,0))(mg — Be) if px) <,

w(x, 1) = ,
my — Be otherwise

is a viscosity subsolution ¢4.3)in RV x [0, »], if ¢ andn are sufficiently small.
Moreover,

w(-,0) £ (my — Be)liy>p +m_ligp INRY.

Proof. 1. Choose; small enough in order to haven < 3y. If ¢(x) > Ly, then
w(x,t) = my — Be. Sincef(m4 — Be) < 0 fore small enough, it is clear thait
is a subsolution of (4.3) fop (x) > %y as well as inf¢(x) — Ct < %V}, where
w="v.

2. Itis enoughto check the subsolution property in the setvx{l%re< ¢ <y}
We have

wr — Aw + e 2 f(w) = Y (¥, — AD) + [/ (—=C — A¢)
(4.21) — " |D¢|?)(v — (m4 — Be))
+e2f (Yo 4+ (L —y)(my — Be)),



270 G. BARLES & P. E. SOUGANIDIS

where once again we have dropped the arguments of the fungtionthe sake of
clarity.

Using (4.20) and the asymptotic behaviorgofind p at +oco, we obtain, for
some constarit > 0, that

50x, 1) = my. — exp(—(4e) 2y ) + £(0:(1) — 28) = m. — 2 + £o(D),

and, hence, fos small enough,
v(x,t) — (my — Be) = —Pe +eo(1) = 0.
Sincey’ £ 0inR and—A¢ < C, we also have
Y'(=C — Ap)(0 — (my — Be)) = 0.
But f is convex in a neighborhood of_.. Therefore, ife is sufficiently small,
Fw) =Y f@) + Q=) fimy — Be).

Substituting all this information in (4.21) yields
w— Aw+e 2 f(w) £ =Y |DPP( — (my — &) + (L= Y)e "2 (my — Pe).

3. Sincey”’(s) £ 0if s < %y + v for somev > 0, the right-hand side of this
inequality is negative fop (x) — Ct < v + 1y.

If s > v+ 2y, then 1- y(s) = c(v) > 0 and, hence,

w— Aw +& 72 f(w) £ 0(e) + c()e ™ f (my. — Be).

The right-hand side of this last inequality is negative §osmall enough since,
f(my)=0andf'(my) > 0.

4. It remains to examine (-, 0). To this end, we first consider
v(x,0) = 0(e H@(x) — 28),x,0) + e[ P(e 7X@ (x) — 2B), x, 0) — 28].

SinceP (s, x,t) — 0 when|s| — +oo uniformly with respect tdx, ) in
{lo| < v} x [0, n], there existg > 0 such that

|P(s,x, )] = p if|s| =2 ¢.
In particular, ifg(x) < 28 — ce, we have
v(x,0) £ Q(e M@ (x) — 28), x,0) — B
From now on, we assume thats such that 2c < 8.

5.1 p(x) < 38 < 2(8 — ¢e), it follows that fore sufficiently small,
v(x,00 < Q(—2e718,x,0) —ef <m_.

Thereforei(x, 0) = m_ and if, in addition 38 < 1y, then
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wx,0) =0v(x,0=m_,
which yields the result fop (x) < 3.
6. If ¢(x) = 28 + ce, a similar argument yields
v(x,0) £ Qs M@ (x) — 28),x,0) — 6B < my — e,
which implies that
wx,0 <my —eB if p(x) =28+ ce.

7.1f ¢(x) < 28 + ce, we use the fact that there exist§€) > 0 such that, for
s S v(e)andlp(x)| <y,

Q(S, X, 0) é my — ])(5)
It follows, for ¢ sufficiently small, that
v(x,0 = my —v(©@) +e([|Plloc + B) = my — Be.

Therefore
w(x,0) Smy —Be if p(x) < 2B+ ce,

and the proof is complete.o

We conclude this section with the

Proof of Lemma 4.3.Since
—%aQ(s, x,1) = 2f"(Q(s, x, 1) = —%IDw(x, D1 tag () — 2f'(q(W)B.

wherex = s|Dy(x, )|, it is enough to show that for € R and(x, 7) € {||
<y} x[0,n],

— (31D (x, DD "ag () — 2f(g())B < v(e, ) <O.

2. We first recall thatf’(m+) > 0. Sinceg(A) — m4, wheni — +o0, and
g = 0 onR, it follows that there exists a constafit> 0 such that, foir| > C,

@) = k = $min(f'(my), f'(m-)),

—(2IDg(x, D) rag(h) — 2" (q()B < —2Bk <O,
3. If |A] £ C, then there exist& = K(C) > 0 such thagj(A) = K. Using the
fact that f’ is bounded on/i_, m ], we obtain
—@2IDp(x, ) rag(M) — 2 (q(W)B £ —(2De(x, ) K (C) + 2| flloo -
The right-hand side of this inequality is negativeifis small compared te in
{lo <y} x[0,n]. O

As mentioned earlier, the proof of Theorem 4.2 we presented above is not only
intuitive, since it closely follows the formal asymptotics, but also “wrong”, in the
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sense that it is obviously rather complicated and relies on very special properties
of the travelling wave.

The fact is that we can actually provide a much easier proof, which allows
for far more flexibility and less reliance on very particular propertieg.@uch a
proof is based on using as a building block towards constructing subsolution and
super-solutions of (4.3) the function

v(x, 1) = qe Hdx, 1) — 2B))

instead of the one given by (4.17), whetés the signed-distance function to the
set

Iy ={x: ¢p(x) — t[F*(D?*p(x), Dp(x)) + ] = 0},

which is normalized to have the same signspas [F*(D?%¢, D¢) + o] in RN .
Since everything is smooth, classical arguments yield the existengehof> 0
such that

dis smoothinthe seD; ; = {(x,1) : |d(x,1)| <y, 01 < hl,

% 2 . o . ~
(4.22) di + F*(D%d, Dd) = d; — Ad £ ~ADg| inQj 7.
whereg is defined by (4.16) (recall that we may assume tibat| & 0 in Qw])
and, in addition,
(4.23) |Dd| =1, D?Dd =0 inQ,;.

Essentially replacing by d — 28 in the proof of Lemma 4.2 leads to far easier
arguments, since now we can taRe= 0, and to far easier computations, since
(4.23) hold.

The P-term in the proof of Lemma 4.2 is needed to control the remainders which
arise when, by usingd¢| g instead of/ in the O-term, we create additional terms.
These terms, which, in view of (4.23), do not appear wihérused, can be handled
wheng is used by using some special identities about the travelling wave.

In more complicated problems, like those discussed in Sections 6 and 7 below,
the P-term is important to balance additional terms arising in the asymptotic anal-
ysis of the solutions. Using instead of| Dy| 1y simplifies and, in some cases,
makes the proofs possible. Indeed, (4.23) eliminates a number of perturbation terms,
which at least, we were unable to handle in the more complicated cases. We refer
the reader to Sections 6 and 7 where this remark is used in an essential way.

5. Other Results Related to the Reaction-Diffusion Equations

In this section we present two new results about the asymptotics of solutions to
semilinear reaction-diffusion equations. The first is about the initial-value problem

(i) ues —tr(A(x, Dug)D2ug) + e 2f(ue) =0 inRY x (0, 00),

(5.1)
(i) us =g onRN x {0}.



A New Approach to Front Propagation Problems: Theory and Applications 273

Here the matrixA = ((a;j)) € C?(RY x RV,.¥V) is such that for alf, j, k €
{1’ ceey N}l

(5.2)

Aij, Qijxes Qij,py
are uniformly continuous oRY x R¥,

for eachR > 0 there exist€'z > 0 such that for alp € RV,
(5.3) AG, p) e W2RRN,.7N), sup A, p)llyas < Chr,
IPISR

and, finally, there exists > 0 such that for al(x, p, ¢) € RY x R¥\{0} x RY,
(5.4) AGx, p)g - q Z vl

Note that because of the special dependence of the miatixDu, (recall that
p = |pI~tp), the initial-value problem (5.1) must be interpreted in the viscosity
sense.

To state the result about the asymptotics of (5.1) we need to recall that, for every
ug € UC(RY), the initial-value problem

5:5) us + F(D%u, Du,x) =0 inRY x (0, 00),
. u=ug onRN x {0},
with
F(X, p,x) = —tr{A(x, p)X[I — (A(x, p)p - p)""(Ap ® p)]}
+QA(x, p)p- p) Mtr{A(x, p)p ® [DiAlx, p)p - p
+(X —Xp® p)DpA(x, p)p - pl},
has a unique viscosity soluti@ahC (R¥ x[0, T]) forall T > 0. The proof of this fact
is a tedious, but nevertheless straightforward, adaptation of the usual uniqueness

proofs for geometric equations—see, for example, [CIL, CGG, IS, G], etc. We leave
the detalils to the reader.

The result is

Theorem 5.1. Let (4.4)—(4.6), (4.8), (4.10), (5.2)—(5.4nd letu, be the solution
of (5.1)with g : RY — [m_,m,] such that the selfp = {x : g(x) = mg}is a
nonempty subset &". Then, ag — 0,

{u <0}

my . | {u>0}
Ug —> locally uniformly in ,
m

whereu is the unique viscosity solution (8.5) with ug = do, the signed distance
to I'g such thatdg > 0in {g > mo} anddp < 0in {g < mo}.

If, in addition, the no-interior conditiof2.11)holds, then, ag — 0,

{u > 0}
{u > 0} ’

my

ug(x,t) - {
m

} locally uniformly in {



274 G. BARLES & P. E. SOUGANIDIS

Proof. 1. The proof here follows closely the one given in Section 4 except for a
minor additional argument that we give below.

2. In view of our assumptions oA and, in particular, on the way it depends
on p, the termF (D?%¢ (x), D¢ (x), x) is not of classC2. This difficulty is resolved
by a standard regularization argument. We refer to the next section where such a
strategy is presented for a more complicated situation.

3. To prove the existence of subsolutians?, we set, as in Section 4,

v(x,t) = Q(s_lw(x, 1), x, t) + 8(P(8_lgp(x, 1), x, t) — 2,3)

where

0Gs, x.1) = q([A(x, Dp) D¢ - Dp] %),
P(s,x, 1) = p([A(x, Dp)Dg - Dg] %),
9(x, 1) = ¢ (x) — t[Fo(D*p(x), D (x), x) + o] — 28,

whereF, is a suitable regularization @, or alternatively, following the discussion
at the end of Section 4 we set

v(x, 1) = qe Hd(x, 1) — 28))

whered is the signed-distance from the $et= 0}, whereg is given by (4.16).

4. All the computations of Section 4 extend easily to this more complicated
case. O

The second result is about the asymptotic behavior of the usual reaction-
diffusion equation (4.3), which is now set in a bounded domain with Neumann
boundary conditions, i.e., the initial-boundary-value problem

e — Attg +b(x) - Dug +£72f(ue) =0 inQ x (0, 00),
(5.6) Du, -n=0 onaQ2 x (0, 00),
Ug =g on x {0},

where
(5.7) b: RN — RV is a bounded Lipschitz continuous vector field,

fis asin Theorem 4.1 an@d c RY is a bounded subset &". The asymptotics

of (5.6) were studied byKaTsouLakis, Kossioris & REeiTicH [KKR] and
CHEN [C] under the assumption that the resulting interface is smooth and by [KKR]
globally in time but for convex domairg.

The front evolution associated with the asymptotics of (5.6) is motion by mean
curvature transported liywith Neumann boundary conditions. The corresponding
geometric partial differential equation, which was studieddag:A & SATO [GS],
is
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uy —tr[(I — Du ® Du)D?u] + b(x) - Du=0 inQ x (0, 00),
(5.8) Du-n=0 onaQ x (0, 00),
U =ug onQ x {0}.
Our resultis

Theorem 5.2. Let(4.4), (4.5), (4.6), (4.8), (4.1®nd(5.7) hold and letu, be the
solution of(5.8)with g : @ — [m_, m4] such that the sdfy = {x : g(x) = mg}
is a nonempty subset &f. Then, ag — 0,

my . i {> 0}9
ue =y locally uniformly in (<O <0 [

whereu is the unique viscosity solution 8.7) with ug = dop the signed distance
to I'p which is positive on the st > mg} and negative on the st < mg}.
If, in addition, the no-interior conditiof2.11)holds, then, as — 0,

{u > 0} }

{u > 0}

m+ - .
Uy —> mo locally uniformly in

The proof of Theorem 5.2 is based on Theorem 3.1 and the short-time analysis
performed in [C] and [KKR]. We leave the details to the reader.

6. Reaction-Diffusion Equations with Oscillatory Coefficients

In this section we study the asymptotic behavior,cas> 0, of reaction-
diffusion equations of the form

(6.1) Uesr —5° (x, f) Ug + 8_1f(u8) =0 inRY x (0, 00),
&

(6.2) Uy — ¢ (x, f) e + 6 1f ) =0 RN x (0, 00),
&

with initial datum

(6.3) ug =g inRY,

where, as usualf = W’, W being a double-well potential, and

64 7 (v D)v=av[a(X)po]+ (6 (%) +e8 (X)) Do

The matrixA = ((a;;)) : RY — .’V and the transport coefficients RY —
RY andB : RY — RY are assumed to satisfy, for some compact suliset R",

(6.5) A € C2(RN,.#Nyis positive-definite and periodic if,
(6.6) b andB are Lipschitz continuous and periodicin.

Asymptotic problems like (6.1) and (6.2) arise in the study of the behavior for
largex andr of the solution of the reaction-diffusion equation
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(6.7)  u; — div(A(x)Du) — (b(x) +eB(x))- Du+ f(u) =0 inRY x (0, c0).

To study the asymptotics of (6.1) and (6.2), as in the previous sections, we as-
sume thayf satisfies (4.4) and that (6.7) admits travelling-wave solutions. The main
difficulty as well as novelty here are that these travelling waves depend nontrivially
onx and the directiore. More precisely, we assume that

for eache € S¥—1, there exists a unique pdi(e), ¢ (-, -, €))
wherec(e) € Randg : R x RN x $¥-1 — R are such that
c(e)g + (Dy + eds)T (A(y)(Dy + edy))q
6.8) +b-(Dy +eds)g = f(q) iNR x I,
. Q(O»y»e):mo’ C}(',y,€)>0 OI’]RXH,
y — q(s, y, e) periodic inIT for eachs € R,
and, ags| — £00, ¢(s, y, e) — m+, exponentially fast
with rate depending oaand uniformly ons¥ =1 x I7.

The existence, uniqueness and properties of such@aiy$ have been studied,
under some additional assumptions4arb and f, by Xin [X1,2,3,4], to which we
refer for the details. In what follows we take the point of view that (6.8) is satisfied

and proceed with the study of the asymptotics of (6.1) and (6.2). To this end we
also assume that

geC2R xRN x SN, cec(sN Y,

(6.9) .
¢ depends continuously ofy,

sup  [Islg(s, y, e) + (Is| + 591G (s, v, )] < o0,
(s,y,e)€
RxRN x sN-1
( SU[? [|Deq(s, v, e)|
s,y,e)e .
(6.10) | DN @+ IsDIIDyg(s, . €)l + 1D (s, v, )] < oo,

sup  [ID2q(s. v, )| +1D? .q(s, v, e)|] < oo.
(s,y,e)e :
RxRN x V-1

To state the result about the asymptotics of (6.1) we recall that, forpad

UC®RN), the initial-value problem
us+ F(Du) =0 inRY x (0, 00),
(6.11) ¢ (Du) (0, )
U =up onR¥ x {0},

whereF : RV — R is the continuous function given by

cPlpl, p*0,
12 F(p) =
(6.12) (p) 0 b—0.

has a unique viscosity solutione UC(R" x [0, T]) forall T > 0.
We have
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Theorem 6.1. Let(4.4), (6.5), (6.6), (6.8)—(6.1®)old and let, be the solution of
(6.1), (6.3)with g : RN — [m_, m.] such that the sefg = {x : g(x) = mo}isa
nonempty subset &" . Then, ag — 0,

Ug —> locally uniformly in ,
m {u < 0}

whereu is the unique viscosity solution (@.11), withug = do the signed distance
to I'p which is positive in the s¢g > mg} and negative in the s¢t < mg}.

If, in addition, the no-interior conditiof2.11)holds, then, as — 0,

my ] . {u > 0}
Ug —> locally uniformly in .
m

- {u > 0}
Proof. 1. The proof follows exactly by using the same strategy as the one we adopted
for the proof of Theorem 4.1.

2. If T¢ is the semigroup associated with (6.1), that (H1)—(H3) are satisfied.
Again we only have to check (H4) and the initialization of the front. Changi@g
to f(m4+ + m_ — u) shows that we only have to prove “half” of these properties.

3. The main step in the proof is

Theorem 6.2. For all xg € R, r > 0, > 0 and for any smooth functiog :
RY — R such that{x : ¢(x) = 0} C B,(xo) and|D¢(x)| = 0on{x : ¢(x) = 0}
and for any0 < v < m — mo, there exist& > 0 depending only op through its
C*-norm in B, (xo) such that

liminf, (Tg(h)[(m_l’_ — v):“{q@o} + m_]l{¢<o}])(x) =my

if ¢(x) —h[F(D¢(x)) +«] > 0andx € B, (xg) for 0 < h < h, with F given by
(6.12)

4. As for Theorem 6.2, its proof consists of two steps given by the following
two lemmas.

Lemma 6.1. (Initialization of the front).Under the assumptions of Theorem 6.1
and for anyg > 0, there exists a constamt > 0 such that, ift, = t¢, then fore
sufficiently small,

Te(t)[(my —v)Ag>0p +m-_Jig<0)] = (my — B)Up>p, +m-_Tippy.

Lemma 6.2. (Propagation of the front)f « is small enough, there exi§k73> 0
depending only og through itsC#-norm in B, (xo) such that fol0 < B < B(a, @)
ande < &(a, B, ¢), there exists a subsolutiant-# of (6.1)in RV x (0, 1) satisfying

wg,,s(_’ 0) < (my — ,3):“{(;);/3} + m_:“{¢<,3} in RN,
and, for any(x, t) € B, x (0, h) such thaip (x) — t{[F(D$ (x)) + 8] > 28,

liminf, [w®?(x, )] = my — o0p(2).
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5. By using these two lemmas, the proof of Theorem 6.2 is again a straightfor-
ward adaptation of the proof of Theorem 4.1

The proof of Lemma 6.1 follows along the lines of the proof of the analogous
result in Section 4. We therefore leave it up to the reader to fill in the details. We
continue with the

Proof of Lemma 6.2.1. To simplify the presentation, throughout the proof we
assume thatt = I, the identity matrix. The general case follows by similar but a
bit more tedious arguments.

2. Sincel D¢ (x)| # 0 on the compact s¢p = 0}, we may choosg > 0 such
that| D¢ (x)| & 0 on{|¢| = y} C B (x0).

3.Aisin Section 4, we firstbuild asubsolution? inQ,, ; = {|¢| < y}x (0, ),
wherer is to be chosen below.

4. The first additional difficulty we encounter here is that, in view of (6.8) and
(6.9), F is not a smooth function abu. To overcome this difficulty, we consider
aC?-approximationF, of F such that

F(D¢(x)) — Ja < Fy(Dp(x)) < F(D$(x)) on{|p| < y}.

5. Chooses small compared tgr and introduce the function : Q, ;> R
defined by

p(x, 1) = ¢(x) — t[Fo(DP(x)) + ] — 2.
Choosing: small enough, we may assume that
IDp(x, 0l £0iNQ, 5. ¢+ F(Dg) < —3¢inQ, ;.

6. Next we build a subsolution of (6.1) of the form
(6.13) v = 0 (e 0, Soxor))
&

whereQ(s, y, x, t) is a smooth function to be chosen below.
7. Substitutingy into (6.1) yields

X X
vy — AV — (b(;) +8B<g)> - Dv +£_lf(v) =0=c¢"t, +1l,,
with
le = Q(¢s —eAp —b-Dp)+b-DyQ
—0|Dg|> = 2D, Q - Dp — A, Q + f(Q),
le=Q;—eAyQ—b-DyQ—B-Dy,Q—2D,Q Dy —2A,,0,

whereA, , 0 = >N 0x,;y; andy stands for the argumeny . Once again for the
sake of notational simplicity we suppress the explicit dependence on the arguments.

8. Next we observe that sincg satisfies (4.4), there exisés> 0 such that,
for all § € [—36, 8], the function f® = f + § also satisfies (4.4). Moreover, for
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eachs e [—$, §], there exist pairgc®, ¢°) satisfying (6.8)—(6.10) with constants
depending om. Finally, it follows thatc? (e) — c(e) asé — Oforalle € V-1,

9. For a suitablé € [—3§, 5], we chooseQ of the form
0G5, y,x, 1) = ¢* (ID(x, )| s, y, Do (x, 1)).
Denoting bye(x, ) the vectorﬁ&(x, 1), we may rewrite J as
le = 1Dp| ™44’ [¢r — eA¢] =G° (b-€)=b-Dyq’ —° —2Dyq"-e = Ayq" + f (¢°).
Substituting the equation satisfied §¥into the last expression, we obtain
le = 1Dp| 4’ [¢r — Mg + * ()| Dgl] + 6.

10. It remains to estimate the quantity inside the bracket in this last expression.
The properties of®, F, andg now yield the estimate

|Dg| 714’ [—eAp — F(Dg) — % + |Dolc® ()] +
< §[c®(e) — c(e) — 2IDg|) " L(a + 2 Ap)] + 6.

Itis then clear that, fors| small enough compared éo> 0, the quantity inside
the bracket is negative far small enough, since, for fixaed, the functionAg is
bounded—note that the bound may dependroSince® > 0, choosings < 0
small, we conclude that ™I, < ¢~1s.

Finally, using the assumptions @f and carrying out some tedious computa-
tions, we can show that there is some consf&ntSuch that I} can be estimated

by
w—edv—(b(3)+eB(2)) - Dvtetrm Se 4Ky inQ,

Hence, for any fixed, v is a subsolution of (6.1), provided thats sufficiently
small.

11. Next, if 8 is small enough compared ¢q we claim that we can choosge
so that
v(-,0) = (my — B)p>p +m-_dipp onflg| = y}.

Indeed, we first remark that the assumption tHain ) yieldsm® < m_ +ds
andm‘fF < m, +dé for some constant > 0. And, if 8 is small enough compared
to o, we can choose-§ < § < 0 satisfying the requirements of Step 10 such that
dé = —B. Itis then clear that

v(x,0 S mS <my+ds <my—p onf{lp| < y)

and the above inequality obviously holds @ah> g}.
12. On the setp < B}, we have

v(x,0) = ¢’ ("X (x) — 2B), e71x, Do(x, 1))
< ¢ (—e7 1B, e7Ix, Do(x, 1)) Sm_ — B — 0. (D),
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where theo, (1) is uniform inx in view of (6.10). Hence, fot small enough, the
initial data satisfy the desired inequality and the proof of this step is complete.

13. To conclude, we need to extend the funciida be a subsolution defined on
RN x (0, h). This can be done exactly as in the previous section by first extending
sup(v, m_) to {¢ < y} x (0, h) and then by proving a result analogous to Lemma
4.2 wheren — e is replaced by, — 8. Since this extension is a straightforward
adaptation of the argument of Section 4, we leave it to the reader.

Before we continue it is worth remarking that the proof of Lemma 6.2 can be
considerably simplified, if, as in the discussion at the end of Section 4, instead of
thev in (6.13), we use

v 1) =g (7dalx, 1) = 28), 2, Dda(x. 1))
&€
whered,, is the signed distance to the set
To; = f{x € RN 1 ¢(x) — 1[Fa(D(x)) +a] =0},

which is normalized to have the same sigrpas t[ F, (D) + o] in RV,
We now discuss the asymptotics of (6.2). To this end, we assume that

if (4.6) holds and ific, ¢) is as in (6.8)

6.14
6.19) thenc(e) =0 foralle e V-1,

and note that the fact thale) = 0 can be easily verified ib = 0, but is an
assumption in general.

Next we need assumptions similar to (4.8) and (4.10). To this end, observe
that, for eache € S¥—1, linearizing around; (., -, ¢) the equation satisfied by the
travelling wave leads to the unbounded opera#fe) : L%(R x IT) — L?(R x IT)
given by

Ae)p = (Dy +ed) T[AD)(Dy + eds)]p + b - (Dy +ed)p — f'(@)p,

which, unles$ = 0, is not self-adjoint.
As before, fory : R x RY x S¥=1 x RN x [0, 00) — R we need to find
solutionsp : R x RY x §¥=1 x RN x [0, c0) — R of the equation

(6.15) Ae)p = x(s,y,e,x,t) INR xRN

such thatp € C2(R x RY x S¥=1 x RN x [0, 00)) and, for all compact subsets
K of RN x [0, 00),

p — 0 as|s| — oo, exponentially fast and uniformly iff x SV¥—1 x K,

su (1p| + |Dx p| + |Dep| + |D%p| + |D? . p|)(s, v, e, x, 1)
(616) (s,y,e,xp,t)e [|P| | xP' | ep| | ep| | y,epl y

RxRY xSN-1xk
+ @+ [sDI(p + Islpl + |Dx pl + | Dep)(s, y, €, x, 1)]] < 00.

We next assume that
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there exists a solutioX : R x RN x S¥=1 — R of
(6.17) ¥ (@)X = (Dy + ed;)T[A(y)(Dy + €35)]1X
—(Dy +ed)T(bX) — f' (@)X =0 inR x RY
such that
X, >0o0nIl, y+— X(s,y,e)is periodic inIT for eachs € R,
(6.18) as|s| — oo, X (s, y, ¢) — 0 exponentially fast

and uniformly infT x SV—1,

and that
(6.19) ker. 4*(e) = XR.

Note that if. 4 is self-adjoint, i.e., ifb = 0, we may choos& = ¢, in which
case (6.19) becomes
ker. 4*(e) = ¢R.

Our next assumption is that

for any compact subséf of RV x [0, co) and for any smooth
x iR xRN x $¥-1 x K — R such that for alls, y) € R x IT
and all(x, t) € K and for someC > 0,

(6.20) o
// x(s,y,e,x,0)X (s, y,e)dsdy =0,
—0Q

X (s, v, e Mezy S C G+ 15G1+ 1gel + el + gyel ] (5, v, €),
there exists a solutiop of (6.15) satisfying (6.16)

Next for eacte € SV—1 define the scalar
. -1
(6.21) n(e) = (// q(s,y,e)X(s,y,e)dsdy> ,
RJIT
the symmetric matrix
Afe) = // X(s,y,)[q(s, y, )A(y)
RJIT

(6.22) +A(y)e ® Ded(s.y.€) + Ded(s. y.€) ® A(y)e + 2A(y)D2 ,q(s. y. e)
+3(Deq(s,y,e) ® (b+ A) + (b + A) ® D.q(s, y, €)|dsdy,

whereA(y) is the vector whoséh component iszj’-\'=l Dy.a;;(y), the vector

(6.23) Bl(e)=//H[X(s,y,e)él(s,y,e)B(y)]dsdy,
R
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the scalar

(6.24) Ba(e) = / f [X(s,y,e)B(y) - Dyq(s, y, e)ldsdy,
R
and, finally, for eachiX, p) € .V x RV \{0}, the function

(6.25) F(X, p) = —u(d) {tTA(P)XU — p® P)] + B1(D) - p + B2(p)Ipl}-

SinceF is bounded, as usual, we may extend the definitioR @it p = 0 by
considering lower and upper semi-continuous envelopes. Note also that it is easy
to check thatF' is geometric, i.e., that it satisfies (2.10), but it is not clear a priori,
or at least it is not clear to us, that it is elliptic, i.e., that it satisfies (2.3).

Consider next the initial-value problem

u; + F(D?%u, Du) =0 inRY x (0, 00),

6.26
( ) U =up onRY x {0}.

If F is elliptic, it turns out (cf. [CGG, BSS, IS, G], etc.) that, for every <
UCRN), there exists a unique viscosity solutione UC®RY x [0, T]) for all
T > 0.

The result about the asymptotic behavior of (6.2) is:

Theorem 6.3. Assume that4.4), (4.6), (6.5), (6.8)—(6.10), (6.14and (6.17)—
(6.20)hold. Then
(i) The functionF defined by(6.25)is degenerate-elliptic, i.e., it satisfi€2.3).
(i) Letu, be the solution 0{6.2), (6.3)with ¢ : RN — [m_, m4] being a
function such that the séty = {x € RY : g(x) = mo} is a nonempty subset of
RY. Then, ag — 0,

Ue =y locally uniformly in <o [

whereu is the unique viscosity solution (@.26) withug = dp the signed distance
to I'g, which is positive in the st > mg} and negative in the s¢t < mg}.
If the no-interior condition(2.11)holds, then, as — 0,

m+ {I/L > 0}
¢ locall iformly i —_\C -
Ug —> {m_ } OocCally unirormiy in {u - 0} _ ({u = O})

Theorem 6.3 is proved as Theorem 4.1, provided we show that the assumptions
of Theorem 3.1 are satisfied, as usual (H4) being the most important one. Instead
of reproducing all the details here, we choose to show only the formal expansion
argument, which explains the result. As we hope we have made clear so far, the
actual proof is nothing else than a justification of these asymptotics.

An important point is, however, that here we need to argue as discussed at the
end of Section 4, i.e., itis essential to consider expansions using the signed-distance
function. Contrary to the situation in Section 4, here we need to go up to oider
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the expansion, i.e., to havePaterm, in order to control the additional terms which
exist due to the oscillating coefficients.
To this end we write

ue(x, 1) = Q (e*ld(x, 0, %‘,x, r) tep (e*1d<x, 0. E,x, r) +0(e?),

whered is the signed distance to a smooth front, @hénd Q are to be chosen
and substituted in (6.2). The goal, of course, is to identify an equation satisfied by
d which, in turn, leads to an expression for the normal velocity of the front.

Itis a simple calculation to see that

e, — div (A (£) Dug) —e 2 (b (£) + eB (£)) - Dug + 72 f (us)

=2, +e U, 4+ 0,
where

le = —[(Dy + Dd(x,1)3;)T (A(y)(Dy + Dd(x, 1)dy))
+b(y) - (Dy + Dd(x,1)95)]Q + f(Q),
lle = —[(Dy 4 Dd(x, 1)35) [A(y)(Dy + Dd(x, 1)d;)]
+b - (Dy+ Dd(x,1)3)]P + f(Q)P
+ Old; —tr (A(y) D?d)] — 2A(y)Dd - D Q — 2tr(A(y) D} , Q)
—(b+A)-DyQ—B-(DyQ+ QDd(x,1)).

To simplify these expressions as usual we do not exhibit the arguments of the
functions unless it is necessary to avoid confusion and we denoiethg x /e
argument.

Choosing

Q(s,y,x,t) =q(s,y, Dd(x, 1)),

whereg is as in (6.8) fore = Dd(x, t), we immediately see that k= 0.
Moreover, if

P(s,y,x,t) = p(s,y, Dd(x,1),x,1),

a simple calculation shows that I= 0 is equivalent tgp satisfying (6.15) with
e = Dd(x,r)and

x(s,y, Dd(x,1), x,1) = —g[d; — tr A(y)D?d] 4+ 2A(y)Dd - D*dD.q
+2t(A(») D2 D? ,q) + (b(y) + A(y)) - D?dD.q
+B(y) - (¢Dd(x, 1) + Dyq).

In view of (6.20) such @ exists provided that

// x(s,y,Dd(x,t),x,t)X (s, y, Dd(x,t))dsdy = 0O,

with X asin (6.17), (6.18) foe = Dd(x, t).
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By the periodicity ofA, the compatibility condition leads to

-1
d; = <// q(s,y, D)X (s, y, Dd)dsdy)

// X (s, y, Dd){tr[g(s, y, Dd)A(y)D?d + (A(y)Dd ® D?dD.q (s, y, Dd)
+ D?dD.q (s, y. Dd) ® A(y)Dd) + 2A(y) D?d D% ,q(s. y. Dd)
+3((0) + A() ® Deg(s, y, Dd)

+ Deq(s, y, Dd) ® (b(y) + A(y))) D?d]
+ B(y) - (qu(s, v, Dd)+q(s,y, Dd)Dd) }dsdy

which, of course, justifies the claim at least formally.

7. Asymptotics of Nonlocal Equations

In this section we study the asymptotics of two very general nonlocal fully
nonlinear integral-differential equations which arise in the theory of stochastic Ising
models with ferromagnetic long-range interactions and general spin-flip dynamics,
which is briefly described in the next section.

The two equations we consider are

(7.1)  u + DB xu)[u —tanh(B(J *u))] =0 inRY x (0, 0),

(7.2) i+ w—Jxu)+ fw)=0 inRN x (0, 00).

Hereg is a positive constant® is a continuous positive functiorf, = W', W
being a double-well potential, antle C1(RV, R) is assumed to be nonnegative,
even, and to have compact support, i.e.,

(7.3) Jor)=J(-r)=20, and J(@#)=0 if|r| > R forsomeR > 0.

The assumption that has compact support is made only to simplify the arguments
and can be easily removed by specifying appropriate growth and integrability con-
ditions onJ at infinity. We leave this task to the reader. Thais nonnegative is,
however, very important both from the physical and analytical point of view.

Before we make precise assumptions aboutthe restofthetermsin (7.1) and (7.2),
we remark that since we are interested in the asymptotic behavior of the solutions
for large(x, 1), it is appropriate to introduce the scalifig 1) — (¢ ~1x, e=2¢). To
this end, we define

ug(x,t) = u(s_lx, 8_2t),

and observe that, if satisfies (7.1), then, satisfies the equation
(7.4) ue; — e 2P (B * up))us — tanh(B(J¢ xu,))] = 0 iINRN x (0, 00),

and, ifu is a solution of (7.2), then, satisfies
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(75)  wes+e ue — I wug] +e2f(ue) =0 inRN x (0, 00),
where, forx € RV,
Je) = e Ny ty).

We are going to consider the equations (7.4) and (7.5) together with the initial
data

(7.6) ug(x,0) = g(x) in RV,

This section is divided into three parts. The first two are about the asymptotics
of (7.4) and (7.5), while in the third part we discuss the meaning of the results.

7.1. The Asymptotics ¢7.4)

In addition to (7.3) here we assume that

(7.7) ﬁi:ﬁfjumx>1

It turns out that (7.1) and, therefore (7.4), admits three steady-state solutions
—mg, 0 andmg, withmg > 0, i.e., solutions of the algebraic equation

s = tanh(ﬂfs),

which are, by the way, independent®df

The precise assumptions @n: R — R are

@ >0 @eCMR), andforallm e [—mg, mg]
(7.8) andr € [—,BJ_m,g, ,BJ_m,g],
r = @ (r)(m — tanhr) is nonincreasing im.

An immediate consequence of (7.8) is that (7.1) and (7.4) satisfy a comparison
principle. Since this is more or less straightforward, we leave it up to the reader to
fill in the details.

We need to assume that (7.1) admits, for all directiors SV, travelling-
(standing-) wave solutions connectirgng andmg, i.e., solutions of the form

ux,t) =qx-e,e),

whereg : R x S¥~1 — Ris such thay (00, ) = +mjg.
We assume that

foralle € SV—1, there existg : R x S¥~1 — R such that
q(&, e) =tanh[B v J(V)g(E + ey, e)dy],
(7.9) q(0,e) =0 and 4(-,e) >0 onR,
and, ag — +o00, (&, ¢) — £mg exponentially fast with the
rate depending omandg € C2(R x SV =1 N W2>®R x S¥N-1).
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The existence of sugjis, which is by no means trivial, is discussedBATES,
Fire, REN & WanG [BFRW], KATSOULAKIS & SOUGANIDIS [KS3], and
ORLANDI & TRrI0LO [OT], to which we refer for details. In the isotropic case, i.e.,
whenJ (r) = J(|r]), the standing-wave solutions are independent of the diregtion
For a detailed study of such solutions we refer to the pap&mwoiMasi, GOBRON
& PrEsuTTI [DGP].

For notational simplicity below we rewrite the equation satisfied lag

q(§,e) =tanh[B(J * q)(§, e)] ,

where, for all(&, e) € RN x §V-1,

(7.10) (Jxq) (. e) = / JONgE +y e e)dy'.

Finally we need some assumptions which play the role of (4.8) and (4.10). The
linearization, the equation satisfied by the travelling wave arguna) for each
e € SV~1, leads to the unbounded, self-adjoint operator
~ep=(1—q*E ) Tp— B *p).

Notice that we writg1— ¢2)~1p — B(J  p) instead ofp — B(1— ¢?)J = p exactly
in order for. - to be self-adjoint (the operatgr — J x p is self-adjoint since/
is even). Itis now a straightforward exercise to check ffiat-¢) € ker.Z(e) for
alle e SN-1,

We assume that, for eaehe SV-1,

(7.11) ker. 4(e) = 4(-, -, e)R.
In our analysis below we need to solve, for appropriate functions
x Rx SV x RN x[0,00) > R,
the equation
(7.12) Ae)p=x(,e,x,t) onR.
We assume that
for all compact subset& of RV x [0, co) and for all smooth
functiony : R x S¥~1 x K — R, such that
forall (£,e,x,1) € R x S¥~1 x K and for someB > 0,
o0
/ x& e, x,1)q (&, e)d§ =0,
(7.13) —00
Ix (& e o, < B [[(|y|21) £ G1(E. )+ [(y1Y) * 1gell &, e>|],
there exists a solutiop € C?(R x SV¥~1 x K) of (7.12) such that
”p”WZ.OO(Rst—lXK) < o0 andp(é, e, x,t) —> 0
exponentially fast ag| — oo.
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To state our result about the asymptotics of (7.4) we need to introduce the scalar
w: SV=1 5 R and the matrixA(e) : S¥-1 — .V given by

-1

- (4(&. €))?
(714wl =4 U DB *q)(E, €)1 —q%E, e) dé} ’

Ae) = ;// JOiE [E+r-e.0t®r)
(7.15)
+DeqE+r-e,e)@r+r®Deq(& +r-e e)]drdk.

Notice that if J is radially symmetric, thery is independent ot and, hence,
A(e) = 61 for the obvious choice of the constaht
Next define the functio : .V x RV\{0} — R given by

(7.16) F(X,p)=—up)tr[APX(1-p®p)].

It is straightforward to check that is geometric, i.e., that it satisfies (2.10) but
it is not clear a priori (at least to us) whether it is elliptic, i.e., whether it satisfies
(2.3). Finally as usual we extend to p = 0 by considering upper- and lower-
semicontinuous envelopes.

Consider next the initial-value problem

u; + F(D?%u, Du) =0 inRY x (0, 00),

7.17
( ) U =ug onRY x {0},

and recall (cf. [BSS, CGG, IS, G], etc.) that, under the above assumptions&nd if
is degenerate-elliptic, it admits, for alh € UC(R"), a unique viscosity solution
ue UCRN x[0,T]) forall T > 0.

Our result about the asymptotics of (7.4) is

Theorem 7.1. Assume tha{7.3), (7.8), (7.9nd(7.13)hold. Then:

(i) The functionF defined by(7.16)is degenerate-elliptic.

(i)) Letu, be the solution of7.4)—(7.6)with g : RY — [—mg, mg] being a
function such that the s&l = {x : g(x) = 0} is a nonempty subset Bf¥. Then,
ase — 0,

{u > 0}
u<0|’

mg . .
Uy —> locally uniformly in
—mg

whereu is the unique viscosity solution (f.16)with ug = dop the signed distance
to I'p, which is positive if{g > 0} and negative irfg < 0}.
If, in addition, the nonempty conditidq@.11)holds, then, as — 0,

mg ) | {u >0}
Uy —> locally uniformly in .
—mg {u >0}
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Theorem 7.1 is proved by using the general abstract method of Theorem 3.1
along the lines described earlier in previous sections. As before, the main issue is
to check (H4). This follows by a combination of the results of [DGP], who studied
the initialization of the front for the isotropic case although their results can be
adapted for our situation, and the results of [KS3], who studied Theorem 7.1 under
the assumption that the propagating front is smooth.

7.2. The Asymptotics ¢7.5)

We begin with an assumption about the existence, for eaeh S¥—1, of
travelling-wave solutions of (7.2) connectimg_ andm ., i.e., solutions of the
form

ux,t) =q(x-e,e),

whereg : R x S¥~1 — R is such thaty(+o0, ¢) = m.. The existence of such
solutions whery satisfies (4.4) and (4.6) is studied in [BFRW].

With the same notations as in (7.9) we assume that

for eache € SV 1, there exists a unique solutign: R x SN~ — R of
Jxq—q=f(@ InR
(7.18) such thay (0, ¢) = mog, ¢(-,e¢) > 00OnR,

g€ C’R x SN Hnw2>*R x S¥-1) and, ag — oo,
q(&, e) — my exponentially fast and with a rate dependingeon

Linearizing the equation of the standing wave arogtide), for eache € S¥-1
leads to the unbounded self-adjoint operator

A@p=Jxp—p—f(@p.
Itisimmediatetha (-, e) € ker. 4(¢). Belowwe assume that, foralle SV-1,
(7.19) ker.Z(e) = q(-, e)R.
As before, we need to find solutions to the equation
(7.20) A@p=Jxp—p—f@p=xGEex1) InR,

for appropriate functiong : R x S¥=1 x RN x [0, co) — R. We assume that
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for all compact subset& of R x [0, co) and for all
smooth functiory : R x S¥~1 x K — R, such that, for all
(€,e,x,1) € R x $¥-1 x K and for some&” > 0,
/oo x(&, e x,1)q (&, e)dg =0,
—0
(7.21) Ix (&, e, Illezksv-1
< CLUUYIPT) % @) (E. ) + (1) * |ge)) &, o],
there exists a solutiop € C2(R x S¥~1 x K) of (7.20) such that
[ Pllwzoomxsv-1xk) < OO,
and, ag¢| — oo, p(&,e,x,1) > 0
exponentially fast and uniformly isV =1 x K.

Finally, we define the functiod : SV x R¥\{0} — R by
(7.22) FOX, p) = () [AGXUT - p@ p),

where, for eacly € RV\{0},

(7:23) nip) = ([ e prae)

A(X, p) = %ff JMGE PIGE+p-y, PO Y)
(7.24)

+Deq6+y P, p)®y+Y®Deq+y- p, p)ldyds.

SinceF is bounded, as usual, we extend itte= 0, by using semicontinuous
envelopes. Again it is immediate that the nonlineafitys geometric, i.e., that it
satisfies (2.10), but it is not clear a priori thfais also degenerate-elliptic, i.e., that
it satisfies (2.3).

Consider next the initial-value problem

u; + F(D%u, Du) =0 in RY x (0, 00),

7.25
( ) U =up on RY x {0},

and recall that if the above assumptionsgoandJ hold and if F is degenerate-
elliptic, then (7.25) admits, for alkg € UC(R"), a unique viscosity solution
ueUCMRN x[0,T]) forall T > 0.

We have
Theorem 7.2. Assume thaf satisfieq4.4)and(4.6)and that there exists@such

that(7.18)and(7.21)hold. Then
(i) The functionF defined by(7.22)is degenerate-elliptic.
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(ii) Letu, be the solution of7.5), (7.6)with g : RN — [m_, m] such that the
setl'g = {x : g(x) = mo} is a nonempty subset B . Then, as — 0,

{u>0}}

my
locally uniformly in
e Y me y y {u <0}

whereu is the unique viscosity solution ¢¥.25)with ug = dg the signed distance
to I'p which is positive in the s¢g > mg} and negative in the s¢t < mg}.
If, in addition, the no-interior conditiof2.11)holds, then, ag — 0,

my . | {u >0}
Uy —> locally uniformly in .
m— {u > 0)¢

Theorem 7.2 follows from the general abstract method as soon as (H4) is
checked. This is done by proving two lemmas, one about initializing the front
and the other about its propagation as long as it remains smooth. The first lemma
is proved along the lines of the corresponding lemma in Section 4. The proof of
the second lemma, which is, as always, more complicated, follows along the lines
of the discussion at the end of Section 4, as soon as the correct asymptotics are
identified. Since we have repeated this argument several times so far, we only show
the formal asymptotics. It is worth mentioning, however, that here we can derive
the necessary information to present a proof for the second lemma along the lines
of the formal asymptotics. Since this takes a number of pages, even at the formal
level, we choose not to present them here.

To this end we look for an expansion f of the form

(7.26) ue(x,t) = Qe Yd(x, 1), x, 1) + eP(e Yd(x, 1), x, 1) + O(?),

whered is the signed-distance to the front a@dand P are to be chosen.
Substituting in (7.5) and rearranging terms we find

ot 4 & 2(us — JE % up) + e 2 f (us) = e 2l + 7, + 0,
with

=0~ [J00E+Dd-y.x.0dy + £(Q)
e = 0d, —/J(y)[%Q(s+Dd-y,x,r>D2dy-y+DxQ<s+Dd.y,x,t)-y]dy

+P—/J(y)P(E+Dd~y,x,t)dy+f’(Q)P,

whered and its derivatives are evaluated.ats) and¢ stands for the~1d argument.
It is now clear that, ifQ is chosen so that

QE.x,1) =q(&, Dd(x,1)),
with ¢ as in (7.17), then,I= 0.
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With this Q, if we also choose

P&, x, 1) =p@, Dd(x,1),x,1),

the equation U = 0 takes the form

Jxp—p—f@p=xE Ddx,1),x,1),

where, fore = Dd(x, t),
X(sa e, x, t) = _q(gs e, X, t)dl

+%/J@M@+w-y@0%yym
+fJ@ﬂFﬂ»ﬂs+«ywyy@«

In view of (7.21) such @ exists provided that

/x@wwﬁh@wﬂé=&

which leads to
d, + F(D%d, Dd) = 0,

with F as given by (7.22).
We leave the details to the reader.

7.3. A Few Comments

One may simplify (7.4) and (7.5) by substitutisg Am —m) for the convolution
termJ s m (see, for examplePENROSE [P]), whereJ, = i J(r))|r|%dr, or even
additionally linearize the hyperbolic tangent, thus obtaining a Ginzburg-Landau
equation like (4.1). It is known (see, for example, [J, ESS, and BSS]) that, in the
isotropic case, both simplified models have the same qualitative asymptotic behavior
as (4.3) with different scalar coefficients for the curvature. In the anisotropic case,
however, this picture is no longer true. The second-order approximations described
earlier still give, in the limite — 0, isotropic motion by mean curvature with a
constant transport coefficient, while (7.4) and (7.5), according to our analysis, yield
the anisotropic equations (7.17) and (7.25) respectively, witthed A given by
the Green-Kubo formulae (7.14) and (7.15) and (7.23) and (7.24) respectively. It
appears that anisotropy is a higher-order effect which cannot be accounted for only
with second-order approximating equations. This phenomenon is also pointed out
by CaciNnaLP & FIFE [CF], where depending on the type of anisotropy expected,
they “correct” (4.1) by suitably adding higher-order derivatives.
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8. Stochastic Ising Models

In this section we use the results of Section 7 to obtain some new results regard-
ing hydrodynamic (macroscopic) limits of ferromagnetic stochastic Ising models
with long-range interactions and general spin-flip dynamics, which in the sequel we
will call IPS (interacting particle systems) for short. Stochastic Ising models are the
canonical Gibbsian models used in statistical physics to describe phase transitions.
Below we briefly recall the basic facts about IPS. For a more detailed discussion
we refer, for example, tdE Masi, ORLANDI, PRESUTTI & TRIOLO [DOPT],
SPOHN [Sp], etc.

Ising models are interacting-particle (spin) systems on the laftiteA spin
configurationo is an element of the state (configuration) spate= {—1, 1}ZN.

We writeo = {0 (x) : x € ZV} and callo (x) the spin atx.

The energyH of the system, evaluated @t is given by

H(o) =Y J,(x, oo +hY o),
xFy
wherer is attributed to an external magnetization field z—ﬂg)dy‘l
interaction range, is the Kepotential defined by

> 0 being the

(8.1) S, =yNIyx—y)  (x,yezV).

HereJ : RY — R is assumed to be nonnegative, even, and to have compact
support, i.e., to satisfy (7.3). We refer to Section 7 for a discussion of the meaning
of these assumptions.

The dynamics of the model consist of a sequence of flipsidthe configuration
before a flip atc, then after the flip at the configuration is

—o(x) if y=x,
a(y) if y+x.

We assume that a flip occurs at when the configuration is, with a rate
¢y (x, 0), given by

ot (y) =

(8.2) ¢y (x,0) = ¥(=phy (x)o(x)),

whereg > 0 is identified with the inverse temperature,

(8.3) hy(¥) =h+ Y Jy(x, 9o (),
yax

and¥ = ¥ (r) > 0 satisfies the detailed balance law

(8.4) U(r)=¥(-r)e’”  (r eR).
It follows easily from the above that

hy, = AyH = H(0™) — H(0),

i.e., the change in the energy due to a flipat
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The underlying process is a jump procesd.i¥(X; R) with generator given

by
Lyf(@)= Y cy(x,0)f(@c™) = f(o)].
xezZN

Such processes leave the Gibbs measures, associated with the Hamiltonian
H and the inverse temperatuge invariant. Typical choices o¥'’s are¥ (r) =
(14 ")~ (Glauber dynamicsy (r) = e~"/? (Arrhenius dynamics) o¥ (r) =
e~ (Metropolis dynamics).

A very basic question in the theory of stochastic Ising models with p@
tentials is the behavior of the system as the interaction range tends to infinity, i.e.,
y — 0. The passage in the limit — 0, which in the physics literature is identi-
fied with grain coarsening, of quantities like the thermodynamical pressure, total
magnetization, etc., is known as the Lebowitz-Penrose limit (see, for example, [DP;
K1,2,3], etc.).

Along these lines we study the asymptoticsyas- 0, of the averaged magne-
tization
(8.5) m,(x, 1) =Epoi(x)  ((x,1) € ZV x [0, 00))
of the system, wher,,» denotes the expectation of the IPS starting from a measure
u¥. The relevant mesoscopic mean-field equation is

(8.6) m; +@(B(J xm))[m —tanhp(J *m)] =0 inRYN x [0, 00),

where
(8.7) D) =¥ (=2r)L+e ?).

Indeed the following theorem is proved IKATSOULAKIS & SOUGANIDIS
[KS3], where we refer for a discussion about its history, relevance, etc.

Theorem 8.1. Assume that the IPS defined earlier has as initial measure a product
measurew” such that

Ew (0(0) =mo(yx)  (x €ZV),
wheremy is Lipschitz continuous and thé8.4) holds. Then, for each € Z*+,
lim sup |]EMy (no,(xi)> - Hm(yxi, t)| =0,
r=0xezy i=1 i=1

wherem is the unique solution dB.6) with initial datumm.
In the above statement for each
ZY ={x=(1..ox) €ZV ixa o F ).

To state our result for the IPS ifis the solution of (2.10), for > 0, we define
the sets

P,y ={xe zN: u(ye(y)x,t) > 0}, Nty ={xe zN: u(ye(y)x,t) < 0},
M}, ={xeZ):xi e P/ UN/}.

The result is
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Theorem 8.2. Assume thafJ > 1. Under the assumptions of Theorem 7.1 on the
initial measure, there exists@ > 0such that for any(y) withy " e(y) — +o0
asy — 0, and forallr > 0,

lim sup |Epr [ [ore0-2) —mly [T (=D] =0.

V—>O§eM;, i=1 l.ele
with the limit local uniform iry.

Theorem 8.2 follows from Theorem 7.1 the same way as the analogous theorem
in [KS2]; we therefore do not present its proof here.
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