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Abstract

In this paper we present a new definition for the global-in-time propagation
(motion) of fronts (hypersurfaces, boundaries) with a prescribed normal velocity,
past the first time they develop singularities. We show that if this propagation satis-
fies a geometric maximum principle (inclusion-avoidance-type property), then the
normal velocity must depend only on the position of the front, its normal direc-
tion and principal curvatures. This new approach, which is more geometric and,
as it turns out, equivalent to the level-set method, is then used to develop a very
general and simple method to rigorously validate the appearance of moving inter-
faces at the asymptotic limit of general evolving systems like interacting particles
and reaction-diffusion equations. We finally present a number of new asymptotic
results. Among them are the asymptotics of (i) reaction-diffusion equations with
rapidly oscillating coefficients, (ii) fully nonlinear nonlocal (integral differential)
equations, and (iii) stochastic Ising models with long-range anisotropic interactions
and general spin-flip dynamics.
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1. Introduction

In this article we present: (i) a new definition for the generalized (weak) propa-
gation (motion) of fronts (hypersurfaces, boundaries of sets) inR

N with prescribed
normal velocity, which satisfies some geometric conditions, past the first time that
singularities develop, (ii) a simple and general method to establish the appear-
ance of such fronts in the asymptotic (singular) limit of evolving systems, like
reaction-diffusion equations and particle systems (stochastic Ising models), and (iii)
a number of completely new and, in our opinion, striking examples including the
asymptotics of reaction-diffusion equations with oscillating coefficients, non-local
equations, and stochastic Ising models with long-range anisotropic interactions and
general spin-flip dynamics.

The new definition is based on a few general geometric assumptions, namely,
locality and regularity, monotonicity, i.e., an avoidance-inclusion property of a
geometric maximum principle type, and local existence for smooth data. We show
that (i) the locality and monotonicity yield that the normal velocity must depend only
on the position in space and time, the normal direction and the principal curvatures
of the front, with the dependence on the curvatures being nondecreasing, and (ii)
the generalized evolution is equivalent, under the so-called no-interior condition,
to the one obtained by the level-set method.

This approach is motivated by and is related to the abstract approach to image
analysis by Alvarez, Guichard, Lions & Morel [AGLM]. It should be
noted at this point, however, that our goal here is not to give yet another definition
for the weak front propagation—there are already too many—but rather to develop
a powerful new method to study the appearance of moving interfaces.

This new general method relies on an abstract approach, which, roughly speak-
ing, looks like the classical formulation for the convergence of numerical schemes
introduced by us in [BS] to prove the convergence of stable, monotone and con-
sistent schemes. Our goal here is to show that the rigorous justification of the
appearance of interfaces is reduced to checking some consistency-type properties,
i.e., to proving a similar result but in the case where everything is smooth and for
small time intervals, in other words, to justifying the formal asymptotics under
the appropriate regularity assumptions. As a consequence we not only simplify
and unify a number of results already obtained in this context (see below for ref-
erences) but we also obtain new and, in our opinion, striking results of the type
already described above.

Interfaces inRN moving with normal velocity

V = v(Dn, n, x, t),(1.1)

wheren andDn are the exterior normal vectors to the surface and its gradient, arise
in addition to the situations already talked about, in geometry, in image processing,
in turbulent flame propagation and combustion, in the phenomenological theory of
phase transitions in continuum mechanics, etc.

The most typical example of interface dynamics appearing in the aforemen-
tioned areas is the general anisotropic motion
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V = −tr [A(n, x, t)Dn] + c(n, x, t),(1.2)

whereA(n, x, t) is a matrix andc(n, x, t) a scalar, a special case of which is the
motion by mean curvature

V = −trDn = κ1 + · · · + κN−1,

κ1, . . . , κN−1 being the principal curvatures of the interface, and the anisotropic
first-order motion

V = c(n, x, t).

The main characteristics of interface dynamics as in (1.1) are (i) the develop-
ment of singularities in finite time, independently of the smoothness of the initial
surface, and (ii) the fact that they satisfy a monotonicity, i.e., a geometric max-
imum principle-type avoidance and inclusion property; loosely speaking, if two
fronts moving by (1.1) are separated at some time, then they remain separated. A
great deal of work has been done during the last few years to find (i) a way to extend
and interpret the evolution past singularities so that this maximum principle-type
property is satisfied, and (ii) to use this weak interpretation to justify the appearance
of such interfaces in the asymptotic analysis of general systems.

The outcome of this effort has been the development of a weak (generalized)
notion of evolving fronts. The generalized evolution{0t }t=0 with normal velocity

(1.1) starting with a given surface00 ⊂ R
N is defined for allt = 0, although it may

become extinct in finite time. Moreover, it agrees with the classical differential-
geometric flow, as long as the latter exists. The generalized motion may, on the
other hand, develop singularities, change topological type, and exhibit various other
pathologies.

The main mathematical tool to study the generalized motion has been the level-
set approach, which was introduced byOsher & Sethian [OS] for numerical
calculations—see alsoBarles [B] for a first-order model for flame propagation.
The level-set approach, which is based on the idea of representing the evolving
front as the level set, for definiteness, the zero level set, of an auxiliary function
satisfying an appropriately defined nonlinear partial differential equation, has been
developed byEvans & Spruck [ES] for the mean curvature motion and by
Chen, Giga & Goto [CGG] for (1.2) and later extended byBarles, Soner
& Souganidis [BSS], who introduced some concepts and tools which are used
extensively in this paper, and byIshii & Souganidis [IS], Goto [G] and
others. A related approach using the properties of the (signed) distance to the front
was introduced bySoner [Son] and further developed in [BSS]. For a general
review of these theories, their relationship as well as other related facts, we refer to
Souganidis [Sou1,2].

In spite of the peculiarities described earlier, the generalized motion{0t }t=0 has
been proved to be the right way to extend the classical motion past singularities.
Some of the most definitive results in this direction were obtained byEvans,
Soner & Souganidis [ESS] (see also [BSS]) who proved that the generalized
motion by mean curvature governs the asymptotic behavior of solutions to semi-
linear reaction-diffusion equations with bistable nonlinearities. We again refer to
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[Sou1,2] for a general overview as well as asymptotic results for reaction-diffusion
equations of a different type.

Another striking application of the generalized front propagation is the fact
that it governs the macroscopic behavior, for large times and in the context of grain
coarsening, of a number of stochastic interacting particle systems like the stochastic
Ising model with long-range interactions and general spin-flip dynamics or near-
est neighbor interaction and fast exchange dynamics. Such systems are standard
Gibbsian models used in statistical mechanics to describe phase transitions. As was
shown byKatsoulakis & Souganidis in [KS1,2,3], it turns out that the gen-
eralized front propagation not only describes the limiting behavior of such systems
but also provides a theoretical justification, from the microscopic point of view, of
several phenomenological sharp-interface models in phase transitions and of the
Monte-Carlo numerical methods widely used in the physics literature to calculate
moving fronts. It should also be noted that the generalized front propagation also
describes the behavior of general threshold dynamics (cellular autonomon-type
models) as was shown byIshii, Pires & Souganidis [IPS]. Once more we
refer to [Sou1,2] for a general overview.

This paper is organized as follows: Section 2 is devoted to the development of
the new approach to the generalized front propagation. In Section 3 we describe the
general method to study the appearance of interfaces. In Section 4 we revisit the
results of [ESS] and [BSS] about the asymptotics of reaction-diffusion equations
and describe how the abstract method applies to them. Since these are relatively
simple cases, we present all the details here. Section 5 is devoted to some new results
regarding asymptotics of reaction-diffusion equations. In Section 6 we study the
asymptotics of reaction-diffusion equations with oscillating coefficients. Section 7
is devoted to the asymptotics of general nonlocal, fully nonlinear equations. Finally
in Section 8 we present asymptotic results about particle systems.

2. The New Definition

2.1. The General Framework

The aim of this section is to develop a new approach for defining the (weak)
geometric motion of hypersurfaces(0t )t∈(a,b) in R

N with a prescribed normal
velocity past the first time that singularities develop. This new approach applies
to motions which satisfy certain geometric assumptions, namely, monotonicity,
locality and regularity.

Throughout this discussion we consider hypersurfaces(0t )t∈(a,b) in R
N , which

are boundaries of open subsets(�t )t∈(a,b) of R
N , and introduce the signed-distance

functiond(x, t) from x to 0t defined by

d(x, t) =
{
d(x, 0t ) if x ∈ �t ,
−d(x, 0t ) otherwise,

whered(x, 0t ) denotes the usual nonnegative distance fromx ∈ R
N to0t . If 0t is

a smooth hypersurface, thend is a smooth function in a neighborhood of0t , and
for x ∈ 0t , n(x, t) = −Dd(x, t) is the unit normal to0t pointing away from�t .
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We begin considering smooth motions of smooth hypersurfaces(0t )t∈(a,b) with
a general prescribed normal velocityv. To this end we recall that the normal velocity
V (x, t) of such smoothly evolving hypersurfaces is defined atx ∈ 0t by

V (x, t) = n(x, t) · Ẋ(t),
whereX : (a, b) → R

N is aC∞-curve such thatX(s) ∈ 0s for all s ∈ (a, b) and
X(t) = x, andp · q denotes the usual inner product of the vectorsp, q ∈ R

N .
It is, by the way, easy to check that such curvesX exist and that the definition is
independent of the particular choice of the curve.

The collection of smooth hypersurfaces(0t )t∈(a,b) (or of smooth open subsets
(�t )t∈(a,b)) is said to propagate with the prescribed normal velocityv if and only
if, for all x ∈ 0t andt ∈ (a, b),

V (x, t) = v(x, t, 0t ).

In the same way, we say that the normal velocity is respectively larger or smaller
thanv if “ =” is replaced in the above equation by “=” or “ 5”.

A priori one may consider normal velocitiesv depending on(x, t) and on the
different characteristics of0t . Here, however, we focus our attention on motions
which satisfy a number of assumptions, stated below.

To this end, letD∞ be the set ofC∞-jets, and, ifd is the signed distance to
(0t )t∈(a,b), define [d] : R

N × (a, b) → D∞ by

[d](x, t) = (Dd(x, t),D2d(x, t), · · · ,Dkd(x, t), · · ·).
Our first assumption is

(A1) Locality and Regularity. The normal velocityv at x ∈ 0t depends only
on x, t and the fundamental forms of0t at x, i.e., there exists a functionv :
R
N × (a, b)×D∞ → R, such that the prescribed normal velocity is given by

V (x, t) = v(x, t, [d](x, t)).

Moreover,v is a continuous function ofx, t and0t , in the sense that, if, asn → ∞,
(xn, tn) → (x, t) andDkdn(xn, tn) → Dkd(x, t) for all k ∈ N, then

v(xn, tn, [dn](xn, tn)) → v(x, t, [d](x, t)).

Note that if, asn → ∞,Dkdn → Dkd, uniformly in a neighborhood of0t for
all k ∈ N, then(xn, tn) → (x, t) yields thatDkn(xn, tn) → Dkd(x, t) for all k ∈ N.

The second assumption is

(A2) Motonicity. If (�t )t∈(a,b) and (�̃t )t∈(a,b) are two collections ofC∞-open
subsets ofRN such that0t = ∂�t and 0̃t = ∂�̃t move smoothly with a normal
velocity smaller and larger, respectively, thanv and if�t ⊂ �̃t for somet ∈ (a, b),
then

�s ⊂ �̃s for anys ∈ [t, b).



242 G. Barles & P.E. Souganidis

To state the definition of (weak) geometric front propagation, it is necessary to
extend the domain ofv to functions which are not necessarily distance functions. A
natural way to understand this extension is to remark that, with the above notations,
the set�t = {x : d(x, t) > 0} can also be written as�t = {x : φ(x, t) > 0} for
other suitable functionsφ such that|Dφ(x, t)| |= 0 on∂�t . Then for allx ∈ ∂�t ,
one has

Dd(x, t) = D̂φ(x, t), D2d(x, t) = D
(
D̂φ(x, t)

)
, · · · ,

Dkd(x, t) = Dk−1(D̂φ(x, t)), · · · ,
where, forp ∈ R

N\{0},
p̂ = |p|−1p.

We set

[φ](x, t) = (D̂φ(x, t),D
(
D̂φ(x, t)

)
, · · · ,Dk−1(D̂φ(x, t)), · · ·),

and consider the extensionv̄ of v given by

v̄(x, t, [φ](x, t)) = |Dφ(x, t)|v(x, t, [φ](x, t)).

Notice that sincev is defined onRN × (a, b)×D∞, the right-hand side of this last
equality is well-defined at each point where|Dφ(x, t)| |= 0. Moreover, if we fix
the functionφ, thenv̄ can also be seen as a continuous function of(x, t), which is
defined on the open subset{(x, t) : |Dφ(x, t)| |= 0}.

In order to simplify the presentation below, we assume throughout the paper
that, for each fixed smooth functionφ, v̄ is locally bounded inRN × (a, b) in the
following sense.

(A3) Local Boundedness.For any compact subsetK of R
N × (a, b), there exists

a constantC(K) such that, for allC∞-functionsφ and for all (x, t) ∈ {(y, s) :
|Dφ(y, s)| |= 0} ∩K,

|v̄(x, t, [φ](x, t))| 5 C(K).

This type of assumption is not satisfied when the normal velocity grows super-
linearly on the curvature tensor, as, for example, is the case of motion by Gaussian
curvature. We indicate in Remark 2.3 below how to remove this assumption at the
expense of a slightly more complicated definition.

In what follows it is also necessary to consider the upper- and lower-semicontinu-
ous envelopes of the locally bounded functionv̄ considered as a function ofx and
t , which we denote bȳv∗ and v̄∗ respectively. Recall that for a locally bounded
function f : A → R, whereA is a subset of someRk, the upper- and lower-
semicontinuous envelopesf ∗ andf∗ of f are given by

f ∗(y) = lim sup
z→y

f (z), f∗(y) = lim inf
z→y

f (z).

We have
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Definition 2.1. A family (�t )t∈(a,b) of open subsets ofRN is respectively called
a generalized super-flowor sub-flowwith normal velocityv if and only if for all
x0 ∈ R

N , t ∈ (a, b), r > 0,α > 0 and for all smooth functionsφ : R
N → R such

that{x ∈ R
N : φ(x) = 0} ⊂ �t∩Br(x0), or{x ∈ R

N : φ(x) 5 0} ⊂ �̄ct ∩Br(x0)),
with |Dφ| |= 0 on {x ∈ R

N : φ(x) = 0}, there existsh0 > 0 depending only on
α and theC∞-functionφ through the properties of [φ] in B̄r (x0) such that, for all
h ∈ (0, h0),

{x ∈ R
N : φ(x)+ h[v̄∗(x, t, [φ](x))− α] > 0} ∩ B̄r (x0) ⊂ �t+h

or
{x ∈ R

N : φ(x)+ h[v̄∗(x, t, [φ](x))+ α] < 0} ∩ B̄r (x0) ⊂ �̄ct+h).

A family (�t )t∈(a,b) of open subsets ofRN is called ageneralized flow with normal
velocityv if it is both a sub- and super-flow.

The following remark is essential to better understand the definitions of sub-
and super-flow.

Remark 2.1.For smooth classical flows, if we change the orientation, i.e., if we
replaced by d̃ = −d which, in other words, can be expressed by saying that
we consider the motion of the family(�̄ct )t∈(a,b) instead of(�t )t∈(a,b), then the
prescribed normal velocity has to be changed into−v(x, t, [− d̃]). This elementary
fact is used in Definition 2.1. Indeed, we easily see that(�t )t∈(a,b) is a generalized
sub-flow with normal velocityv(x, t, [d]) if and only if (�̄ct )t∈(a,b) is a generalized
super-flow with normal velocity−v(x, t, [ − d̃

]
).

From now we always assume that the assumptions (A1)–(A3) are satisfied. We
prove that (i) if(�t )t∈(a,b) is a collection of open subsets which depends smoothly
on t , then (�t )t∈(a,b) is respectively a generalized super-flow or sub-flow with
normal velocityv if and only if the collection(0t )t∈(a,b), where0t = ∂�t for
t ∈ (a, b), propagates with normal velocity larger or smaller thanv, (ii) the mono-
tonicity assumption (A2) yields that there exists a continuous functionG such that
v̄(x, t, [φ]) is necessarily of the form

v̄(x, t, [φ](x, t)) = −|Dφ(x, t)|G(D(D̂φ)(x, t), D̂φ(x, t), x, t),(2.1)

and (iii)G is nonincreasing, i.e., degenerate elliptic, inD2φ.
To formulate these results and to emphasize the dependence ofG onD2φ and

Dφ we introduce the functionF : S N × R
N\{0} × R

N × [0,∞) → R, S N

being the space ofN ×N symmetric matrices, given by

F(X, p, x, t) = |p|G(|p|−1 (
X −Xp̂ ⊗ p̂

)
, p̂, x, t

)
.(2.2)

The monotonicity ofG is expressed by saying that for allX, Y ∈ S N and
(p, x, t) ∈ R

N\{0} × R
N × (0,∞), F satisfies the ellipticity condition

F(X, p, x, t) 5 F(Y, p, x, t) if X = Y.(2.3)

Notice that (2.1)–(2.2) and the local boundedness assumption (A3) yield thatF is
itself locally bounded. As we did for̄v, we extend the locally bounded functionF
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to p = 0 by taking upper or lower semi-continuous envelopes. Finally we remark
that in the rest of the paper we use any of the symbolsv, v̄ andF to denote the
prescribed normal velocity.

The first result is

Theorem 2.1. Assume that(A1)–(A3) hold and that(�t )t∈(a,b) is a collection of
smooth, open subsets ofR

N which depend smoothly ont . The collection(�t )t∈(a,b)
is a generalized super-flow or sub-flow with normal velocityv if and only if respec-
tively the collection(0t )t∈(a,b), where0t = ∂�t for all t ∈ (a, b), propagates with
a normal velocity larger or smaller thanv.

Proof. 1. We prove the result only in the super-flow case. The other case follows
by either using similar arguments or by considering the collection(�̄ct )t∈(a,b).

2. Assume that(�t )t∈(a,b) is a generalized super-flow with normal velocityv.
For t ∈ (a, b), denote byφ : R

N → R a C∞-function which is equal to the
signed-distance to0t in a neighborhood of0t and such that�t = {y : φ(y) > 0}.
It is clear that, without loss of generality,φ may be taken to be bounded.

3. The following lemma plays an important role not only in this proof but also
in the proof of Theorem 2.4 below. We state it here and present its proof after we
complete the proof of Theorem 2.1.

Lemma 2.1. Letφ, χ : R
N → R beC∞-functions such thatφ(x) = 0,Dφ(x) |=

0 for somex ∈ R
N andχ(0) = 0. Moreover, assume thatχ is radially symmet-

ric, χ > 0 in R
N\{0} with Dχ(y) · y = 2χ(y) in a neighborhoodO of 0 and

(χ(y − x))−1φ(y) → 0, as |y| → +∞. For eachk ∈ R, define the function
φk : R

N → R byφk(y) = φ(y) + kχ(y − x). Then, for|k| sufficiently large, the
setAk = {y ∈ R

N : φk(y) = 0} is bounded andDφk(y) |= 0 onAk.

4. Sinceφ is bounded, we can apply Lemma 2.1 for anyx ∈ 0t with aC∞-
function χ with quadratic growth at infinity and such thatDlχ(0) = 0 for any
l ∈ N. Since�t = {y : φ(y) > 0}, it follows, for k < 0 and|k| large enough,
η > 0 small enough, and for somer > 0, that

{y : φk(y)− η = 0} ⊂ �t ∩Br(x), D(φk(y)− η) |= 0 on{y : φk(y)− η = 0}.
5. That the family(�t )t∈(a,b) is a generalized super-flow with normal velocity

v, yields, forα > 0 and for sufficiently smallh, depending only onx, t , r, α and
the properties of [φk − η] = [φk] in B̄r (x) and not onη, that

{y : φk(y)− η + h[v̄∗(y, t, [φk − η](y))− α] > 0} ∩ B̄r (x) ⊂ �t+h.

Lettingη → 0, we get

{y : φk(y)+ h[v∗(y, t, [φk](y))− α] > 0} ∩ B̄r (x) ⊂ �t+h.

6. LetX : (t, b) → R
N be aC∞-curve such thatX(t) = x andX(s) ∈ 0s

for all t ∈ [s, b). SinceX(t + h) ∈ 0t+h ∩ Br(x) for sufficiently smallh > 0, it
follows thatX(t + h) |∈ �t+h and therefore
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φk(X(t + h))+ h[v∗(X(t + h), t, [φk](X(t + h)))− α] 5 0.(2.4)

7. Sinceφ is equal to the signed-distance function to0t in a neighborhood of
0t , we haveDφ(x) = −n(x, t). The smoothness ofφk andX yields

φk(X(t + h)) = φk(X(t))+
∫ t+h

t

d

ds

[
φk(X(s))

]
ds

= φk(x)+
∫ t+h

t

Dφk(X(s)) · Ẋ(s)ds

= φk(x)− hn(x, t) · Ẋ(t)+ o(h).

8. Substituting this last expression in (2.4) and recalling thatφk(x) = 0, we get

h
[
v∗(X(t + h), t, [φk](X(t + h)))− n(x, t) · Ẋ(t)− α

] + o(h) 5 0.

9. Dividing byh, lettingh → 0, using the regularity ofv and the fact that every
derivative ofχ vanishes at 0, we obtain, for anyα > 0,

v∗(x, t, [φ])− n(x, t) · Ẋ(t)− α 5 0.

Lettingα → 0, yields the desired inequality.

10. Assume that the collection(0t )t∈(a,b) propagates with a normal velocity
larger thanv and letx0 ∈ R

N , t ∈ (a, b), r > 0, α > 0 and a smooth function
φ : R

N → R be such that{x ∈ R
N : φ(x) = 0} ⊂ �t ∩Br(x0), with |Dφ| |= 0 on

{x ∈ R
N : φ(x) = 0}. We need to prove the existence ofh0 > 0, depending only

onx0, t , α, r and theC∞-functionφ, through the properties of [φ] in B̄r (x0), such
that, for allh ∈ (0, h0),

{x ∈ R
N : φ(x)+ h[v̄∗(x, t, [φ](x))− α] > 0} ∩ B̄r (x0) ⊂ �t+h.

11. This claim is a consequence of (A2) and

Lemma 2.2. For any smooth functionφ : R
N → R such that{x ∈ R

N : φ(x)
= 0} ⊂ Br(x0), with |Dφ| |= 0 on {x ∈ R

N : φ(x) = 0}, there existsh0 > 0,
depending only onx0, t , α, r and theC∞-functionφ through the properties of[φ]
in B̄r (x0), and a family of smooth open subsets(�1

t+s)s∈[0,h0) such that

(i) �1
t = {x ∈ R

N : φ(x) = 0} ,

(ii) (∂�1
t+s)s∈[0,h0) evolves smoothly with a normal velocity smaller thanv,

(iii) {x ∈ R
N : φ(x)+ h[v̄∗(x, t, [φ](x))− α] > 0} ∩ B̄r (x0) ⊂ �1

t+h,

(iv) �1
t+s ⊂ Br(x0) for s ∈ [0, h0) .

12. We continue with the proof of Theorem 2.1 and prove Lemma 2.2 next. It
follows from (A2) and the properties (i) and (ii) of the collection(�1

t+s)s∈[0,h0)

given by Lemma 2.2 that, forh ∈ [0, h0),

�1
t+h ⊂ �t+h.
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Properties (iii) and (iv) of(�1
t+s)s∈[0,h0) also yield

{x ∈ R
N : φ(x)+ h[v̄∗(x, t, [φ](x))− α] > 0} ∩ B̄r (x0) ⊂ �1

t+h.

The result now follows from these last two inclusions.ut
The following remark, we hope, clarifies the meaning of Lemma 2.2.

Remark 2.2.Lemma 2.2 gives a justification to the basic idea beyond the definition
of generalized sub- and super-flows. Indeed we have in mind that the boundary of
the sets{x ∈ R

N : φ(x) + h[v̄∗(x, t, [φ](x)) − α] > 0} should evolve (in some
weak sense) with a normal velocity which is smaller thanv. This idea together with
(A2) leads to the inclusion required in the definition. On the other hand, since these
sets are not smooth, it is not possible to justify this idea directly. The few lines of
proof (Step 12) show how Lemma 2.2 allows us to do it.

We continue with the

Proof of Lemma 2.2.1. Since the map(x, t) 7→ v̄∗(x, t, [φ](x)) is bounded and
continuous in a neighborhood of{x ∈ R

N : φ(x) = 0}, there exists a smooth
functionψ : R

N → R such thatψ = v̄∗ in B̄r (x0) and |ψ − v̄∗| 5 1
2α in a

neighborhoodV of the set{x ∈ R
N : φ(x) = 0}.

2. Define

�1
t+s = {x ∈ R

N : φ(x)+ s[ψ(x)− α] > 0} ∩ Br(x0).

The assumptions on the functionψ easily yield that forh1 > 0 small enough,
the family(�1

t+s)s∈[0,h1) satisfies the properties (i), (iii) and (iv) of Lemma 2.2. It
remains to prove that (ii) holds for sufficiently smallh0.

3. Consider aC∞–curveX : [t, t+h1) → R
N such that for anyh ∈ [t, t+h1),

X(t + h) ∈ ∂�1
t+h, or, in other words,

φ(X(t + h))+ h[ψ(X(t + h))− α] = 0.

4. Differentiating this equality with respect toh, we obtain

[Dφ(X(t + h))+ hDψ(X(t + h))] · Ẋ(t + h)+ ψ(X(t + h))− α = 0.

5. Set
ph = Dφ(X(t + h))+ hDψ(X(t + h)).

Forh small, it follows thatX(t+h) ∈ V , |ph| |= 0 andn(X(t+h), t+h) = −p̂h
is the unit normal vector to∂�1

t+h pointing away to�1
t+h. The last equality and

the property ofψ in V yield

−n(X(t +h), t +h) · Ẋ(t +h)+ |ph|−1v̄∗(X(t +h), t +h, [φ+h(ψ −α)]) = 0.

6. The conclusion follows from the fact that, ifdh is the sign-distance to∂�1
t+h,

then

|ph|−1v̄∗(X(t + h), t + h, [φ + h(ψ − α)]) = v(X(t + h), t + h, [dh]).ut
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We continue with the

Proof of Lemma 2.1.1. Assume that there exist sequences(ki)i∈N and (yi)i∈N

such that|ki | → +∞ asi → +∞, yi ∈ Aki andDφki (yi) = 0. It is easy to see
thatyi → x asi → +∞, and, therefore,yi − x ∈ O for i sufficiently large.

2. The facts thatφki (yi) = 0 andDφki (yi) = 0 yield

φ(yi)+ kiχ(yi − x) = 0,(2.5)

Dφ(yi)+ kiDχ(yi − x) = 0.(2.6)

Taking the inner product of the expression in the left-hand side of (2.6) with
yi − x and subtracting (2.5) we get

ki [Dχ(yi − x) · (yi − x)− χ(yi − x)] − [φ(yi)−Dφ(yi) · (yi − x)] = 0.

3. Taylor’s expansion ofφ atx and the fact thatφ(x) = 0 give

φ(yi)−Dφ(yi) · (yi − x) = O(|yi − x|2).
4. Sinceyi − x ∈ O , the assumptions onχ yield

Dχ(yi−x)·(yi−x)−χ(yi−x) = 1
2Dχ(yi−x)·(yi−x) = 1

2|Dχ(yi−x)||yi−x|,
the last equality being a consequence of the radial symmetry ofχ .

5. Combining the above results yields

ki |Dχ(yi − x)| = O(|yi − x|),
and, in view of (2.6),

|Dφ(yi)| = O(|yi − x|).
6. This leads to a contradiction fori large enough, since|Dφ(yi)| → |Dφ(x)| |=

0 andO(|yi − x|) → 0 asi → ∞. ut
The next result is the

Theorem 2.2. Assume that(A1)–(A3)hold. Then there exists a continuous function
G such that, for all(x, t) ∈ R

N × [0,∞) and for all smooth functionsφ,

v̄(x, t, [φ]) = −|Dφ(x)|G(D(D̂φ)(x), D̂φ(x), x, t) on {x ∈ R
N : |Dφ(x)| |= 0}.

Proof. 1. Following the proof of the analogous result of [AGLM], we want to
show that ifφ andψ areC∞-functions such that, for somex ∈ R

N , Dφ(x) |= 0,
Dψ(x) |= 0 and

D̂φ(x) = D̂ψ(x), D
(
D̂φ(x)

) = D
(
D̂ψ(x)

)
,

then
v̄(x, t, [φ](x)) = v̄(x, t, [ψ ](x)).

2. Changing if necessaryφ intoχ1(φ) andψ intoχ2(ψ), whereχ1, χ2 : R → R

areC∞-functions such thatχ ′
1, χ ′

2 > 0 in R, we may assume, without loss of
generality, that
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φ(x) = ψ(x), Dφ(x) = Dψ(x), D2φ(x) = D2ψ(x).

Notice that these changes onφ andψ preservev(x, t, [φ]) andv(x, t, [ψ ]). More-
over, in the same way, we may assume thatφ andψ are bounded.

3. We argue by contradiction assuming that

v̄(x, t, [φ](x)) > v̄(x, t, [ψ ](x)),

which, in turn, implies the existence ofβ ∈ R such that

v̄(x, t, [φ](x))+ β > 0> v̄(x, t, [ψ ](x))+ β.

4. We introduce the functions

φ̄(y) = φ(y)− ε|y − x|2 −Kχ(y − x),

ψ̄(y) = ψ(y)+Kχ(y − x),

whereχ is as in Lemma 2.1 with at least a quadratic growth at infinity and such
thatDkχ(0) = 0 for all k ∈ N.

The assumptions onφ andψ easily yield that, forK large enough,

φ̄ 5 ψ 5 ψ̄ in R
N.

5. Lemma 2.1 yields, that, for somer > 0,

∅ |= {y : φ̄(y) > 0} ⊂ {y : ψ(y) > 0} ∩ Br(x)
with |Dφ̄(y)| |= 0 on{y : φ̄(y) = 0},

∅ |= {y : ψ̄(y) < 0} ⊂ {y : ψ(y) < 0} ∩ Br(x)
with |Dψ̄(y)| |= 0 on{y : ψ̄(y) = 0}.

6. Applying Lemma 2.2 tōφ and−ψ̄ , we find two families of smooth open sub-
sets(�1

h)h∈[0,h0) and(�2
h)h∈[0,h0) of R

N evolving smoothly with normal velocities
smaller thanv(x, t, [d]) and−v(x, t, [−d]) respectively, and such that

�1
0 = {y : φ̄(y) > 0}, �2

0 = {y : −ψ̄(y) > 0}.
Recall that, in view of Remark 2.1, the family([�̄2

h]
c)h∈[0,h0) moves smoothly with

a normal velocity larger thanv(x, t, [d]).

7. Step 5 yields
�1

0 ⊂ [�̄2
0]c.

Hence, in view of Assumption (A2), for allh ∈ [0, h0) we have

�1
h ⊂

[
�̄2
h

]c
,

and, therefore,

�1
h ∩�2

h = ∅.(2.7)
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Lemma 2.2 also implies, for allh ∈ [0, h0), that

{y : φ̄(y)+ h[v̄∗(y, t,
[
φ̄
]
(y))− α] > 0} ⊂ �1

h,

{y : ψ̄(y)+ h[v̄∗(y, t,
[
ψ̄

]
(y))+ α] < 0} ⊂ �2

h.

8. Consider the pointxh = x + hβD̂φ(x). SinceDφ(x) = Dψ(x), it follows
that φ̄(xh) = hβ + o(h), ψ̄(xh) = hβ + o(h).

Examining the quantitiesv(xh, t,
[
φ̄
]
(xh)) andv(xh, t,

[
ψ̄

]
(xh)), we deduce from

(A1) that
v(xh, t,

[
φ̄
]
(xh)) = v(x, t, [φ](x))+ oh(1)+ oε(1),

v(xh, t,
[
ψ̄

]
(xh)) = v(x, t, [ψ ](x))+ oh(1).

9. If we chooseα > 0 sufficiently small, a simple computation gives, for
sufficiently smallh andε, that

φ̄(xh)+ h[v̄∗(xh, t,
[
φ̄
]
(xh))− α]

= h[v̄∗(x, t, [φ] (x))+ β − α + oh(1)+ oε(1)] > 0,

ψ̄(xh)+ h[v̄∗(xh, t,
[
ψ̄

]
(xh))+ α] = h[v̄∗(x, t, [ψ ] (x))+ β + α + oh(1)] < 0.

Hencexh ∈ �1
h andxh ∈ �2

h which contradicts (2.7).

10. The above arguments show that, ifDφ(x) |= 0, thenv(x, t, [φ](x)) depends
only on(D(D̂φ)(x), D̂φ(x), x, t) and, therefore, there exists a functionG such that

v(x, t, [φ]) = −|Dφ(x)|G(D(D̂φ)(x), D̂φ(x), x, t).
11. The continuity ofG just follows from the regularity assumption on

v. ut
Finally, we have

Theorem 2.3. Assume that(A1)–(A3) hold. The functionF defined by(2.1), (2.2)
satisfies the ellipticity condition(2.3).

Proof. 1. Since the proof is based on exactly the same ideas as the proof of Theo-
rem 2.2, we only present a sketch here.

2. We argue by contradiction, assuming that there exists(x, t) ∈ R
N × (0,∞),

p ∈ R
N\{0} andA,B ∈ S N such that

A 5 B, F(A, p, x, t) < F(B, p, x, t) .

It follows that there must existβ ∈ R such that

F(A, p, x, t)− β < 0< F(B, p, x, t)− β.

Finally, notice that, in view of (2.2), we may assume without loss of generality that
|p| = 1.
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3. Consider the functions

φ̄(y) = p · (y − x)+ 1
2B(y − x) · (y − x)−Kχ(y − x),

ψ̄(y) = p · (y − x)+ 1
2A(y − x) · (y − x)+Kχ(y − x),

whereχ is as in Lemma 2.1 with cubic growth at infinity and such thatDkχ(0) = 0
for all k ∈ N. SinceA 5 B, we clearly have

φ̄ 5 ψ 5 ψ̄ in R
N.

4. Arguing as in the proof of Theorem 2.2, we use Lemma 2.2. It follows
that there exist two families of smooth open subsets(�1

h)h∈[0,h0) and(�2
h)h∈[0,h0)

of R
N evolving smoothly with normal velocity smaller thanv(x, t, [d]) and

−v(x, t, [−d]) respectively and such that

�1
0 = {y : φ̄(y) > 0}, �2

0 = {y : −ψ̄(y) > 0}.
5. Lemma 2.2 and the arguments in the proof of Theorem 2.2 yield that, for

h ∈ [0, h0),
�1
h ∩�2

h = ∅,

{y : φ̄(y)+ h[v̄∗(y, t,
[
φ̄
]
(y))− α] > 0} ⊂ �1

h,

{y : ψ̄(y)+ h[v̄∗(y, t,
[
ψ̄

]
(y))+ α] < 0} ⊂ �2

h.

6. Letxh = x + hβp. Since|p| = 1, we have

φ̄(xh) = hβ + o(h), ψ̄(xh) = hβ + o(h).

7. The continuity ofF at (A, p, x, t) and(B, p, x, t) yields

v̄∗(xh, t,
[
φ̄
]
(xh))

= −F(D2φ̄(xh, t),Dφ̄(xh, t), xh, t) = −F(A, p, x, t)+ oh(1),

v̄∗(xh, t,
[
ψ̄

]
(xh))

= −F(D2ψ̄(xh, t),Dψ̄(xh, t), xh, t) = −F(B, p, x, t)+ oh(1).

8. Forα andh sufficiently small we have

φ̄(xh)+ h[v̄∗(xh, t,
[
φ̄
]
(xh))− α] = h[−F(A, p, x, t)+ oh(1)+ β − α] > 0,

ψ̄(xh)+ h[v̄∗(xh, t,
[
ψ̄

]
(xh))+ α] = h[−F(B, p, x, t)+ oh(1)+ β + α] < 0.

9. Hencexh ∈ �1
h ∩ �2

h, which contradicts the first assertion in Step 5
above. ut

We continue with a brief discussion, formulated as a remark, about how As-
sumption (A3) can be removed.
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Remark 2.3.If Assumption (A3) does not hold, we argue by replacing in Defini-
tion 2.1v̄∗ by inf(v̄∗, R) andv̄∗ by sup(v̄∗, R) and by requiring that the inclusions
have to hold for allh ∈ (0, h0), whereh0 may now also depend onR, and that
the assertion has to be true for allR > 0. It is worth remarking that ifφ is as in
Definition 2.1, then forR large enough,̄v∗ = inf (v̄∗, R) andv̄∗ = sup(v̄∗, R) in
a neighborhood of{x : φ(x) = 0}. The truncations are only effective away from
this set, to rule out difficulties at the points wherev̄ is unbounded. Finally, from
the technical point of view, truncating byR allows us, more or less, to come back
to the case where (A3) holds.

It turns out that it is occasionally more convenient to restate Definition 2.1 using
F in place ofv.

Definition 2.2. A family (�t )t∈(a,b) of open subsets ofRN is called respectively
a generalized super-flow or sub-flowwith normal velocity−F(D2d,Dd, x, t) if
and only if for allx0 ∈ R

N , t ∈ (a, b), r > 0, α > 0 and for all smooth functions
φ : R

N → R such that{x ∈ R
N : φ(x) = 0} ⊂ �t ∩ Br(x0), or {x ∈ R

N :
φ(x) 5 0} ⊂ �̄ct ∩ Br(x0), ) with |Dφ| |= 0 on{x ∈ R

N : φ(x) = 0}, there exists
h0 > 0 depending only onα andφ through itsC4-norm inB̄r (x0) such that, for all
h ∈ (0, h0),

{x ∈ R
N : φ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+ α] > 0} ∩ B̄r (x0) ⊂ �t+h

or

{x ∈ R
N : φ(x)− h[F∗(D2φ(x),Dφ(x), x, t)− α] < 0} ∩ B̄r (x0) ⊂ �̄ct+h).

A family (�t )t∈(a,b) of open subsets ofRN is called ageneralized flow with normal
velocity−F(D2d,Dd, x, t) if it is both a sub- and super-flow.

The next remark emphasizes an observation, which plays an important role in
this paper, stemming from our discussion above.

Remark 2.4.In view of Theorems 2.1, 2.2 and 2.3, any motion with prescribed
normal velocity which satisfies (A1)–(A3), locality, regularity and monotonicity
being the most important assumptions, reduces to a generalized evolution as in
Definition 2.2, i.e., the normal velocity must depend only on(x, t), n andDn and
must satisfy (2.3).

It is also worth remarking that the quantities

φ(x)− hF ∗(D2φ(x),Dφ(x), x, t), φ(x)− hF∗(D2φ(x),Dφ(x), x, t),

which appear in the definition, can be seen as the Euler approximation for solving
the partial differential equation

ut + F(D2u,Du, x, t) = 0 in R
N × (a, b),

with the initial datum
u = φ onR

N × {a}.
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Such equations, withF of the special form we are considering here, arise in the
so-called level-set approach to define weak motions of hypersurfaces with normal
velocity −F . We briefly present the level-set approach in the next subsection and
show the connections with our approach. Here we just want to point out that our
definition mixes ideas coming from the level-set approach and also from a more
geometric point of view, as it incorporates properties like (A2), inspired by what is
known as avoidance and inclusion properties in the literature. We refer toIlmanen
[Il] where properties of this type were remarked for the motion by mean curvature
without, however, being put forward as possible definition for such motions. The
notion of generalized flow we introduce here is closely related to the notion of
barriers introduced byDe Giorgi [DG], who proposed the use of some geometric
maximum principle-type ideas to define the propagation of manifolds inR

N (see
Bellettini & Paolini [BP] which expands on these ideas).

We conclude this part of Section 2 with the remark that with the appropriate
modifications the notion of the generalized flow introduced earlier can also be
used to study propagating fronts in bounded domains with appropriate boundary
conditions. Although we will use this fact later in the paper, we do not expand more
on it, since this is more or less a straightforward adaptation of the above.

2.2. The Generalized Level-Set Evolution

We begin with a brief description of the classical derivation of the level set
approach. To this end let(0t )t∈(a,b) be a collection of smooth hypersurfaces moving
with normal velocity−F and let(Dt )t∈(a,b) be a collection of smooth open subsets
of R

N such that0t = ∂Dt . Assume thatu : R
N × (a, b) → R is aC∞-function

such that

Dt = {x ∈ R
N : u(x, t) > 0}, 0t = {x ∈ R

N : u(x, t) = 0},
|Du| |= 0 on

⋃
t∈(a,b) 0t × {t}.

A straightforward computation (see for example [ES]) yields, under the addi-
tional assumption that all the smooth level sets ofu move with the same normal
velocity, thatu must satisfy the partial differential equation

ut + F(D2u,Du, x, t) = 0 in R
N × (a, b),(2.8)

whereF : S N × (RN\{0})× R
N × R → R is related to the normal velocity by

(2.2).

To justify and extend this approach to the case of non-smooth motions, one has
to use the notion of viscosity solutions for fully nonlinear elliptic and parabolic
partial differential equations. This theory provides the existence and uniqueness
of viscosity solutions of (2.8) under rather general assumptions. We refer to [ES,
CGG, BSS, IS and G] for such results and to the “User’s Guide” byCrandall,
Ishii & Lions [CIL] for a general overview of the theory of viscosity solutions.

The level-set approach can then be described in the following way. LetE be
the collection of triplets(0,D+,D−) of mutual disjoint subsets ofRN such that0
is closed andD± is open andRN = 0 ∪D+ ∪D−. For any(00,D

+
0 ,D

−
0 ) ∈ E ,
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first chooseu0 ∈ BUC(RN), the space of bounded uniformly continuous functions
defined onRN , so that

D+
0 = {x ∈ R

N : u0(x) > 0}, D−
0 = {x ∈ R

N : u0(x) < 0},
00 = {x ∈ R

N : u0(x) = 0},
and then consider the initial-value problem

(i) ut + F(D2u,Du, x, t) = 0 in R
N × [0,∞),

(ii) u = u0 onR
N × {0},(2.9)

whereF is defined by (2.2). In view of the existence and uniqueness theory of
[CGG, ES, BSS, IS, G], etc., under general assumptions onF , there exists, for
everyu0 ∈ UC(RN), a unique viscosity solutionu of (2.9) inUC(RN × [0, T ))
for all T > 0.

Finally set

0t ={x ∈ R
N : u(x, t) = 0} ,

D+
t = {x ∈ R

N : u(x, t) > 0}, D−
t = {x ∈ R

N : u(x, t) < 0}.
SinceF is geometric, i.e., it satisfies, for all(X, p, x, t) ∈ S N × (RN\{0})×

R
N × (0,∞), µ ∈ R andλ > 0,

F(λX + µp ⊗ p, λp, x, t) = λF(X, p, x, t),(2.10)

the collection{(0t ,D+
t , D

−
t )}t=0 ⊂ E is uniquely determined, independently

of the choice ofu0, by the initial triplet(00,D
+
0 ,D

−
0 ). We recall that the main

consequence of the property (2.10) is that the partial differential equation in (2.9) is
invariant under the changesu → ϕ(u) for all nondecreasing functionsϕ : R → R.

Next, for eacht > 0 we define the mappingEt : E → E by

Et(00,D
+
0 ,D

−
0 ) = (0t ,D

+
t , D

−
t ),

and notice that{Et }t=0 satisfies the propertiesE0 = idE andEt+s = Et ◦ Es for
all t, s = 0 (see, for example, [ES, CGG, IS, G]).

Definition 2.3. (i) The collection{Et }t=0 is called thegeneralized level-set evolu-
tion with normal velocity−F .

(ii) Given (00,D
+
0 ,D

−
0 ) ∈ E , the collection{0t }t=0 of closed sets is called

thegeneralized level-set front propagation of00 with normal velocity−F .

Notice that the level set propagation is determined not only by00 but also by the
choice ofD+

0 andD−
0 , which corresponds to fixing an orientation for the normal to

00. In particular, the evolution differs, in general, ifD+
0 andD−

0 are interchanged.
The properties of the generalized level evolution have been the object of ex-

tended study. One of the most intriguing issues is whether the so-calledno-interior
conditionholds, i.e., whether the set0t does not develop an interior. We say that
the no-interior condition holds if and only if
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{x, t) : u(x, t) = 0} = ∂{(x, t) : u(x, t) > 0} = ∂{(x, t) : u(x, t) < 0}.(2.11)

It turns out that there are general geometric conditions on00 yielding (2.11)
(see [BSS]) for such conditions as well as examples where (2.11) fails. [BSS] also
considered the issue of the existence and uniqueness of discontinuous solutions to
(2.9) withu0 = 1lD+

0
− 1lD−

0
, where, ifA is a subset of someRk, 1lA denotes the

characteristic function ofA, i.e., 1lA(x) = 1 if x ∈ A and 1lA(x) = 0 if x ∈ Ac.
Notice that in view of (2.10) one can expect that any such solution only takes the

values+1 and−1. In fact, this is true if and only if (2.11) holds (see [BSS]). Since
this plays some role in our analysis below, we state the relevant result of [BSS] in

Proposition 2.1. (i) The initial-value problem(2.9)with u0 = 1lD+
0

− 1lD−
0

has a

unique discontinuous solution if and only if the no interior condition(2.11)holds.
(ii) If (2.11) fails andu : R

N × [0,∞) → R is a discontinuous solution of
(2.9), then, for allt > 0,

D±
t ⊂ {x ∈ R

N : u(x, t) = ±1} ⊂ D±
t ∪ 0t ,

where(0t ,D
+
t , D

−
t ) = Et(00,D

+
0 ,D

−
0 ).

2.3. The Relationship Between the Generalized Flow and Level-Set Evolution

The next theorem is the main result of this section. As before, to simplify
the presentation we assume that (A3) holds, i.e., thatv and, hence,F are locally
bounded. This assumption can be removed using Remark 2.2 and the results of [IS],
which treats unboundedF ’s by changing the class of allowed test functions.

Theorem 2.4. Assume that(A1)–(A3) hold. A family{�t }t∈[0,T ] of open subsets
of R

N is a generalized flow or a super-flow or sub-flow with normal velocityv if
and only if the functionχ = 1l�t − 1l�̄ct is respectively a viscosity solution or a

super-solution or a sub-solution of(2.9)(i) in R
N × (0,∞).

Before we present the proof of Theorem 2.4 we state in the next proposition
the relationship between the generalized flow and the level-set evolution. Since its
proof is immediate from Proposition 2.1 and Theorem 2.4, we omit it.

Proposition 2.2. (i) Let {�t }t∈[0,T ] be a generalized flow with normal velocityv,
let (0t ,D

+
t , D

−
t )t∈[0,T ] be the generalized level-set evolution of(00,D

+
0 ,D

−
0 ),

whereD+
0 = �0 andD−

0 = �̄c0, and assume that the no-interior condition(2.11)
holds. Then, for allt > 0,

�t = D+
t .

(ii) If the no-interior condition(2.11)fails, then, for allt > 0,

D+
t ⊂ �t ⊂ D+

t ∪ 0t .



A New Approach to Front Propagation Problems: Theory and Applications 255

We now continue with the

Proof of Theorem 2.4.1. The fact that, ifχ = 1l�t − 1l�̄ct is a solution or a sub-
solution or super-solution of (2.9)(i), then{�t }t∈[0,T ] is respectively a generalized
flow or a sub-flow or a super-flow with normal velocityv, is an immediate conse-
quence of the definition and the comparison properties of (2.9). We leave the details
to the reader.

2. Next we show that if{�t }t∈[0,T ] is a generalized super-flow, thenχ is a
super-solution of (2.9)(i). The case of the generalized sub-flow is studied similarly.

3. Let (x, t) ∈ R
N × (0, T ) be a strict local minimum point ofχ∗ − ϕ where

ϕ ∈ C4(RN × [0, T ]). Changing if necessaryϕ toϕ−ϕ(x, t) we may assume that
ϕ(x, t) = 0. Moreover, sinceχ is bounded, we may also assume thatϕ is bounded.
We then need to show the inequality

ϕt (x, t)+ F ∗(D2ϕ(x, t),Dϕ(x, t), x, t) = 0.(2.12)

This inequality is obvious if(x, t) is in the interior of either{χ∗ = 1} or
{χ∗ = −1}. Indeed, in both cases,χ∗ is constant in a neighborhood of(x, t). Hence

ϕt (x, t) = 0, Dϕ(x, t) = 0, D2ϕ(x, t) = 0,

and (2.12) follows, since, in view of (2.10), we have

F ∗(0, 0, x, t) = 0.

4. Assume that(x, t) ∈ ∂({χ∗ = 1} ∪ {χ∗ = −1}). The lower semicontinuity
of χ∗ yields

χ∗(x, t) = −1.

Since(x, t) is a strict local minimum point ofχ∗ − ϕ, there exists somer > 0
such that, if 0< |y − x| + |t − s| < 2r, then

χ∗(x, t)− ϕ(x, t) = −1< χ∗(y, s)− ϕ(y, s).

Hence, if 0< |y − x| + |t − s| < 2r, then

−1 + ϕ(y, s) < χ∗(y, s).

It follows thatχ∗(y, s) = 1 if ϕ(y, s) > 0 and(y, s) |= (x, t), sinceχ∗ takes only
the values−1 and 1. For anyh ∈ (0, r) this implies that

{y : ϕ(y, t − h) = 0} ∩ Br(x) ⊂ �t−h.

5. Next consider the case|Dϕ(x, t)| |= 0 and introduce, fork > 0, the functions
ϕk : R

N × [0, T ] → R defined by

ϕk(y, s) = ϕ(y, s)− k|x − y|4.
All the previous arguments hold true forϕk. Moreover, in view of Lemma 2.1

and the smoothness ofϕ, there exist̄k > 0 andh̄ > 0 such that, for allh ∈ (0, h̄),
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(i) {y : ϕk̄(y, t − h) = 0} ⊂ �t−h ∩ Br(x),
(ii) |Dϕk̄(y, t − h)| |= 0 on{y : ϕk̄(y, t − h) = 0}(2.13)

6. Since the family{�t }t∈[0,T ] is a generalized super-flow with normal velocity
v and theC4-norms of the functionsϕk̄(·, t − h) are uniformly bounded in̄Br(x)
for h small, it follows that forα > 0 sufficiently small, we have

{y : ϕk̄(y, t − h)− h[F ∗(D2ϕk̄(y, t − h),

Dϕk̄(y, t − h), y, t − h)+ α] > 0} ∩ B̄r (x) ⊂ �t .

In particular, sincex |∈ �t ,
ϕk̄(x, t − h)− h[F ∗(D2ϕk̄(x, t − h),Dϕk̄(x, t − h), x, t − h)+ α] 5 0.

Next recall thatϕ(x, t) = 0 and, therefore,ϕk̄(x, t) = 0. Dividing the last
inequality byh, letting h → 0 and using the lower semicontinuity of−F ∗, we
obtain

−ϕk̄,t (x, t)− [F ∗(D2ϕk̄(x, t),Dϕk̄(x, t), x, t)+ α] 5 0.

But

ϕk̄,t (x, t) = ϕt (x, t), Dϕk̄(x, t) = Dϕ(x, t), D2ϕk̄(x, t) = D2ϕ(x, t).

Lettingα → 0 yields (2.12).

7. If |Dϕ(x, t)| = 0, we may assume without any loss of generality that
D2ϕ(x, t) = 0 (see, for example, Barles & Georgelin [BG]). Since
F ∗(0, 0, x, t) = 0, to conclude we only need to show that

ϕt (x, t) = 0.

Using once again the facts that(x, t) is a local minimum point ofχ∗ − ϕ and
thatϕ(x, t) = 0,Dϕ(x, t) = 0 andD2ϕ(x, t) = 0, we have, if|y − x| < r,

−1 + ϕ(x, t)− hφt (x, t)+O(|y − x|3)+ o(h) 5 χ∗(y, t − h).

8. If there exists a sequence(yn, t−hn) → (x, t) such thatχ∗(yn, t−hn) = −1
and|x − yn|3 = o(hn), then the proof is complete.

9. If not, for allC > 0, there existsh0 > 0 such that, for allh ∈ (0, h0) and
|y − x|2 5 Ch,

χ∗(y, t − h) = 1.

10. Consider the functionφ(y) = Ch − |y − x|2. It is clear that, forh small
enough,

{y : φ(y) = 0} ⊂ �t−h ∩ Br(x), |Dφ(y)| |= 0 on{y : φ(y) = 0}.
That the family{�t }t∈[0,T ] is a generalized super-flow with normal velocityv

yields that there existsh0, depending only onα and onφ through itsC4-norm in
B̄r (x) (which is independent ofh if, say,h 5 1), such that, forh < h0,

{y : φ(y)− h[F ∗(D2φ(y),Dφ(y), y, t)+ α] > 0} ∩ B̄r (x) ⊂ �t .
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But x |∈ �t . Hence

φ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+ α] 5 0,

i.e.,
h

[
C − F ∗(−2I, 0, x, t)− α

]
5 0,

which is a contradiction ifC is large enough, sinceF is locally bounded. ut

3. The Abstract Method

In most of the asymptotic problems we have in mind, we are given a family
(uε)ε>0 of functions bounded inRN×(0, T ), uniformly inε, typically the solutions
of a reaction-diffusion equation with a small parameterε or the total magnetization
of a stochastic system with interaction rangeε−1, etc. The goal is to prove that
there exists a generalized flow(�t )t=0 with normal velocityv determined by the
problem such that, asε → 0,

uε(x, t) → b if (x, t) ∈ � =
⋃

t∈(0,T )
�t × {t},

uε(x, t) → a if (x, t) ∈ �̄c,
wherea, b ∈ R are equilibrium states of this system.

In this section we present an abstract formulation of a new general method for
proving such results. In the next sections, we will show how this method applies to
several concrete examples.

We assume that for allε > 0, t = 0 andh > 0, the family(uε)ε>0 satisfies
the following properties, whereB(RN) denotes the set of real-valued bounded
functions onRN :

(H1) Causality. There exists a family of mapsSεt,t+h : B(RN) → B(RN), such
that

uε(·, t + h) = Sεt,t+huε(·, t) in R
N.

(H2) Monotonicity. For all functionsu, v ∈ B(RN),
if u 5 v in R

N , thenSεt,t+hu 5 Sεt,t+hv.

(H3) Existence of equilibria.There existaε, bε, a, b ∈ R such that

a < b, Sεt,t+haε = aε, Sεt,t+hbε = bε, aε 5 uε 5 bε in R
N × {0},

and, asε → 0,
aε → a, bε → b.

(H4) Consistency.There exists a locally bounded functionF : S N × R
N\{0} ×

R
N × [0,∞) → R such that

(i) For all (x0, t) ∈ R
N × [0, T ), r > 0, α > 0 and for all smooth functionsφ :

R
N → R such that{x : φ(x) = 0} ⊂ Br(x0) and|Dφ(x)| |= 0 on {x : φ(x) = 0},
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there exists̄δ > 0andh0 > 0,h0 depending only onα andφ through itsC4-norm in
B̄r (x0), such that, ifδ 5 δ̄, x ∈ Br(x0) andφ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+
α] > 0 for h 5 h0, then

lim inf∗ (Sεt,t+h[(bε − δ)1l{φ=0} + aε1l{φ<0}])(x) = b.

(ii) For all (x0, t) ∈ R
N × [0, T ), r > 0, α > 0 and for all smooth functionsφ :

R
N → R such that{x : φ(x) 5 0} ⊂ Br(x0) and|Dφ(x)| |= 0 on {x : φ(x) = 0},

there exists̄δ′ > 0 andh′
0 > 0, h′

0 depending only onα andφ through itsC4-norm
in B̄r (x0) such that, ifδ′ 5 δ̄′, x ∈ Br(x0) andφ(x)−h[F∗(D2φ(x),Dφ(x), x, t)

− α] < 0 for h 5 h′
0, then

lim sup∗ (Sεt,t+h[b1l{φ>0} + (aε + δ′)1l{φ50}])(x) = a.

We recall that iff ε : A → R is a family of uniformly bounded functions, then

lim inf∗ f ε(y) = lim inf
z→y
ε→0

f ε(z), lim sup∗ f ε(y) = lim sup
z→y
ε→0

f ε(z).

The result is

Theorem 3.1. Assume that(H1)–(H4)hold for all ε > 0, t = 0 andh > 0. For
t > 0, set

�1
t = {x ∈ R

N: lim inf∗ uε(x, t) = b}, �2
t = {x ∈ R

N: lim sup∗ uε(x, t) = a},
and define�1

0 and�2
0 by

�1
0 =

⋂
t>0

( ⋃
0<h5t

�1
t

)
and �2

0 =
⋂
t>0

( ⋃
0<h5t

�2
t

)
.

If �1
0 or �2

0 respectively is not empty, then�1
t or �2

t is not empty for sufficiently
small t = 0, and the family(�1

t )t=0 or
(
(�̄2

t )
c
)
t=0 is a generalized super-flow

or sub-flow with normal velocity−F . Moreover,F is degenerate elliptic, i.e., it
satisfies(2.3).

An immediate consequence of Theorem 3.1 is

Corollary 3.1. Assume that the hypotheses of Theorem 3.1 hold and, in addition,
that�1

0 = (�̄2
0)
c. Let (0t ,�

+
t , �

−
t )t=0 be the generalized level set evolution of

(∂�1
0, �

1
0, �

2
0) with normal velocity−F .

(i) Then, for allt = 0,

�+
t ⊂ �1

t ⊂ �+
t ∪ 0t , �−

t ⊂ �2
t ⊂ �−

t ∪ 0t .
(ii) If the no-interior condition(2.11)holds, then, for allt = 0,

�1
t = �+

t , �2
t = �−

t .
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Before we present any proofs, we discuss the meaning of (H1)–(H4) as well
as what is involved in checking them. In most of the examples, (H1) is satisfied
by definition as a consequence of a semi-group-type property, while (H2) follows,
in general, from a maximum principle-type property and (H3) follows from the
structure of the problem. Checking (H4) is in general the only difficult step.

Verifying (H4) consists in proving a result similar to the one we want to derive
for uε but only for smooth data (as smooth as we want), for compact smooth fronts
and for small time (as small as we want). It is clear enough that these properties are
a priori far easier to obtain—although they are not completely trivial—than those
for the general case foruε. This reduction to an easier case is the main contribution
of this new method.

The additional assumption that�1
0 or�2

0 is not empty, which is used to initialize
the moving front, is checked, in general, exactly in the same way as (H4), i.e., by
studying the small-time behavior of solutions which, locally in time, generate a
smooth front. Finally, the reason for giving different definitions for�1

0 and�2
0 is

to take into account the boundary layer which may occur att = 0.
The intuitive idea here is that the mapSε defines some approximation to a

certain flow on sets and that (H4) amounts to finding the generator of this flow. It is
in this context that this approach resembles, as mentioned in the Introduction, the
formulation introduced in [BS] to study convergence of numerical schemes.

We now present the

Proof of Corollary 3.1. Theorem 3.1 yields that the families(�1
t )t=0 and

(�2
t )t=0 are generalized super- and sub-flows with normal velocity –F . The con-

clusion now follows from Proposition 2.1, in view of the assumption on�1
0 and

�2
0. ut

Now we turn to the

Proof of Theorem 3.1.1. ThatF satisfies (2.3) follows, once the rest of the theorem
is proved, as in Theorem 2.3. The key point here is that the fact that (H2) holds
yields for the evolving fronts a monotonicity property like (A2).

2. We only prove the result for(�1
t )t=0, the one for(�2

t )t=0 following similarly.

3. Let (x0, t) ∈ R
N × (0, T ), r > 0 and a smooth functionφ : R

N → R be
such that{x : φ(x) = 0} ⊂ �1

t ∩ Br(x0) and|Dφ(x)| |= 0 on{x : φ(x) = 0}. We
need to show that, for all sufficiently smallα > 0, there existsh0 > 0 depending
only onα, r and theC4-norm ofφ in B̄r (x0) such that, for all 0< h < h0 and for
α small enough,

{x : φ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+ α] > 0} ∩ B̄r (x0) ⊂ �t+h.

Since

aε = Sε0,t aε 5 Sε0,t uε(·, 0) = uε(·, t) 5 Sε0,t bε = bε in R
N,

assumption (H2) yields

aε 5 uε 5 bε in R
N × [0, T ],
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and, hence,

lim sup∗ uε 5 b in R
N × [0, T ].

4. Classical arguments from the theory of viscosity solutions yield that, as
ε → 0, uε → b, locally uniformly, in

⋃
t>0�

1
t × {t}. Therefore, forε small

enough andδ as in (H4), we have

uε(·, t) = bε − δ on {x : φ(x) = 0} ⊂ �1
t .

Hence

uε(·, t) = (bε − δ)1l{φ=0} + aε1l{φ<0} in R
N,

and, by (H2),

Sεt,t+huε(·, t) = Sεt,t+h[(bε − δ)1l{φ=0} + aε1l{φ<0}] in R
N.

5. Chooseα > 0 and apply (H4). There existδ̄ > 0 andh0 > 0 such that, ifδ 5 δ̄,
0< h 5 h0, x ∈ Br(x0) and

φ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+ α] > 0,

then

lim inf∗ uε(x, t + h) = lim inf∗ Sεt,t+huε(·, t)(x)
= lim inf∗ (Sεt,t+h[(bε − δ)1l{φ=0} + aε1l{φ<0}])(x) = b.

This yields that, for any 0< h 5 h0, whereh0 depends only onα andφ through
itsC4-norm onB̄r (x0),

{φ(x)− h[F ∗(D2φ(x),Dφ(x), x, t)+ α] > 0} ∩ B̄r (x0) ⊂ �1
t+h.

The proof is now complete.ut

In view of the discussion at the end of Subsection 2.2, it is clear that in the
definition of the generalized sub- and super-flows, we may replace “ifx ∈ Br(x0)

andφ(x) − h[F ∗(D2φ(x),Dφ(x), x, t) + α] > 0 for someα > 0” and “if x ∈
Br(x0) andφ(x) − h[F∗(D2φ(x),Dφ(x), x, t) − α] < 0 for someα > 0” in
(H4), respectively, by “ifx ∈ Br(x0) andφ+

α (x, t) > 0” and “if x ∈ Br(x0) and
φ−
α (x, t) < 0” whereφ+

α andφ−
α are solutions of

φ±
α,t + F(D2φ±

α ,Dφ
±
α , x, t)± α|Dφ±

α | = 0 in R
N × (0, T ),

φ±
α = φ onR

N × {0}.

Since we may assume without loss of generality thatφ is uniformly continuous in
R
N , these equations have a unique solution under general assumptions onF (see,

for example, [CGG, BSS, IS, G], etc.).
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4. The Asymptotics of Semilinear Reaction-Diffusion Equations

One of the most striking applications of the theory of the generalized front
propagation is the rigorous study of the asymptotics of solutions to semilinear
reaction-diffusion equations, which has been done in [ESS] and [BSS]. A canonical
example of such a problem is the study of the asymptotics of the reaction-diffusion
equation

ut −1u+ f (u) = 0 in R
N × (0,∞),(4.1)

wheref = W ′, W being a double-wells potential. A special case of (4.1) is the
so-called Allen-Cahn equation which corresponds to the choice of

f (u) = 2u(u2 − 1) (u ∈ R).(4.2)

The Allen-Cahn equation was introduced in [AC] to model the motion of the sharp
interface—the antiphase boundary—between regions of different phases of a mate-
rial. The conjecture of [AC], which was proved rigorously and for all times in [ESS]
(see also [BSS]), was that, if the wells ofW have equal depth, then the asymptotics
of

uεt −1uε + ε−2f (uε) = 0 in R
N × (0,∞),(4.3)

which is obtained from (4.1) by scaling(x, t) to (ε−1x, ε−2t), are controlled by the
(generalized) mean curvature flow. Here we revisit this result by presenting another
proof based on Theorem 3.1. Of course the main issue is to verify (H4).

Checking (H4) can be done in a number of different ways. The first possibility is
to use already existing results on the small-time behavior of the reaction-diffusion
equation for smooth data. In this case the asymptotics of (4.3) can be treated in a
straightforward way using the results ofChen [C]. As we already mentioned, the
fact that the method we propose transforms results on the small-time behavior of
the solutions of reaction-diffusion equations for smooth data into complete results
is one of its main interests.

The second possibility to check the consistency requirement is to follow ideas
introduced in [ESS] (see also [BSS]) to build suitable sub- and super-solutions to
(4.3) using the travelling-wave solution of (4.1) and the distance function to the
moving front. Our method simplifies this approach since we have to build such
sub- and super-solutions only for small time using the smooth distance function.

Here we want to describe a third possibility, which, although similar in spirit
to the second one, avoids the use of the distance function and allows us to treat the
more complicated problems we present later in this paper. This approach closely
follows the formal asymptotic analysis ofKeller, Rubinstein & Sternberg
[KRS] to study (4.3). As a matter of fact, the power of the method introduced here
is that we can make all these formal asymptotics rigorous.

In order to emphasize the main new ideas, we concentrate on (4.3) although our
arguments work for second-order operators more general than the Laplacian1 and
for nonlinearities which also depend on(x, t). We refer to [BSS] for such results.

As far as the reaction termf : R → R goes, throughout the paper, we assume
that
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f ∈ C2(R) has exactly three zeroesm− < m0 < m+,
f (s) > 0 in (m−, m0), f (s) < 0 in (m0, m+),
f ′(m±) > 0, f ′′(m−) < 0, f ′′(m+) > 0.

(4.4)

We also assume that for eache ∈ SN−1, (4.1) admits travelling-wave solutions
connectingm− andm+, i.e., solutions of the form

u(x, t) = q(x · e − ct),

whereq : R → R is such thatq(±∞) = m±. Indeed, we assume that there exists
a unique pair(c, q) such that

cq̇ + q̈ = f (q) onR, q̇ > 0 onR, q(0) = m0,

q(s) → ±m± exponentially fast ass → ±∞,

sups∈R
[(1 + |s|)q̇(s)+ (|s| + s2)|q̈|] < ∞.

(4.5)

The existence and the properties of such pairs(c, q) are studied, for example, in
Aronson & Weinberger [AW], where we refer for details.

In the case where the wells of the potentialW have the same depth, i.e.,

W(m+)−W(m−) = 0,(4.6)

it follows thatc = 0 in (4.5) andq satisfies

q̈ = f (q) in R.(4.7)

(Recall thatW : R → R is such thatf = W ′.)
Linearizing aroundq the equation satisfied by the travelling wave leads to the

unbounded, self-adjoint operatorA : L2(R) → L2(R) defined by

Ap = cṗ + p̈ − f ′(q)p.

Moreover a straightforward computation shows thatq̇ ∈ kerA = kerA∗. In
the sequel we assume that

kerA∗ = q̇R.(4.8)

In our analysis below we will need to solve, for appropriate functions
χ : R × R

N × [0,∞) → R, the equation

Ap = χ onR.(4.9)

We assume that for any compact subset ofK of R
N × [0,∞), and any smooth

χ : R ×K → R, such that, for all(s, x, t) ∈ R ×K and for someB > 0,∫ ∞

−∞
χ(s, x, t)q̇(s)ds = 0, ‖χ(s, ·, ·)‖C2(K) 5 B [q̇(s)+ |sq̈(s)|] ,

there exists a solutionp ∈ C2(R ×K)of (4.9) such that

p(s) → 0 exponentially fast as|s| → ∞,

sup
s∈R

‖p(s, ·, ·)‖C2(K) < ∞,

sup
(s,x,t)∈R×K

[ṗ(s, x, t), |Dxṗ(s, x, t)|, (1 + |s|)|p̈|(s, x, t)] < ∞.

(4.10)
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This last assumption is, of course, rather technical but also essential to our
analysis. Given (4.8) it is immediate that at least the integral condition onχ is a
consequence of Fredholm’s alternative applied toA.

In the special case of the Allen-Cahn equation, whenf satisfies (4.2), it follows
that

q(s) = tanh(s)

and that (4.8) and (4.10) are satisfied. As a matter of fact, a straightforward calcu-
lation yields that in this case the solutionp of (4.9) has the form

p(s, x, t) = q(s)

∫ s

0
(q̇(τ ))−1

( ∫ τ

−∞
χ(η, x, t)q̇(η)dη

)
dτ

and satisfies the conditions in (4.10).
To state the main result of this section we recall that, for allu0 ∈ UC(RN), the

initial-value problem

ut − tr
[
(I − D̂u⊗ D̂u)D2u

] = 0 in R
N × (0,∞),

u = u0 onR
N × {0},(4.11)

admits a unique viscosity solutionu ∈ UC(RN × [0, T ]) for all T > 0.

Theorem 4.1. Assume that(4.4)–(4.6), (4.8) and (4.10) hold and letuε be the
solution of(4.3) associated with the initial datumuε = g on R

N × {0}, where
g : R

N → [m−, m+] is such that00 = {x : g(x) = m0} is a non-empty subset of
R
N . Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(4.11)with u0 = d0 the signed distance
to 00 which is positive in the set{g > m0} and negative in the set{g < m0}.

If, in addition, the no-interior condition(2.11)holds, then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u < 0} =

(
{u > 0}

)c }
.

Proof. 1. In view of Theorem 3.1, we only need to check assumptions (H1)–(H4).
2. LetT ε be the semigroup associated with (4.3). It is immediate that (H1)–(H3)

are satisfied witha = aε = m− andb = bε = m+.
3. Below we check only “half” of (H4), i.e., the part about the lim inf∗. Since the

other “half”, i.e., the lim sup∗ part, can be checked similarly, we leave the details
to the reader. The proof is then complete if we prove Theorem 4.2 below.

Theorem 4.2. For all x0 ∈ R
N , r > 0, α > 0 and all smooth functionsφ : R

N →
R such that{x : φ(x) = 0} ⊂ Br(x0) and|Dφ(x)| |= 0 on{x : φ(x) = 0}, and for
all 0< δ < m+ −m0, there exists̄h > 0 depending only onφ through itsC4-norm
in B̄r (x0) such that, for allh ∈ (0, h̄],
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lim inf∗ (Tε(h)[(m+ − δ)1l{φ=0} +m−1l{φ<0}])(x) = m+,

if φ(x)− h[F ∗(D2φ(x),Dφ(x))+ α] > 0 andx ∈ B̄r (x0), where

F ∗(X, p) =
{−tr

[
(I − p̂ ⊗ p̂)X

]
if |p| |= 0,

−tr (X)+ λmax if p = 0,

λmax being the largest eigenvalue ofX.

It is worth mentioning that Theorem 4.2 yields a bit more information than
the consistency requirement (H4). Indeed, the assertion is valid for any 0< δ <

m+−m0, while (H4) only requires this result to be valid for some 0< δ < m+−m0.
This stronger formulation is in fact necessary to initialize the front.

Proving Theorem 4.2 (and of any such results in the other examples we present
later) consists of two main steps. The first step, roughly speaking, initializes the
front, while the second one is about its propagation.

The proof we provide below for the second step in particular is clearly far from
being the simplest one we could give. We take, however, this opportunity to describe
a new general argument which allows us to treat more complicated examples. We
refer the reader to the end of this section where we make more comments about
this point.

The two steps of the proof of Theorem 4.2 are described in the following two
lemmas.

Lemma 4.1. (Initialization of the Front).Under the assumptions of Theorem4.2,
for anyβ > 0, there exist a constantτ > 0 such that, iftε = τε2|ln ε|, then, for all
sufficiently smallε,

T ε(tε)[(m+ − δ)1l{φ=0} +m−1l{φ<0}] = (m+ − βε)1l{φ=β} +m−1l{φ<β}.

This result, which is due toChen [C], describes the “very small-time” behavior
of the solutions of (4.3), which is essentially controlled by the reaction termf .
Roughly speaking, Lemma 4.1 reduces the proof of Theorem 4.2 to the case where
δ = βε for some sufficiently smallβ > 0.

The second step is

Lemma 4.2. (Propagation of the Front).For all sufficiently smallα > 0 there
existsh̄ > 0, depending only onφ through itsC4-norm in B̄r (x0), such that, if
β 5 β̄(α, φ) andε 5 ε̄(α, β, φ), then there exists a subsolutionwε,β of (4.3) in
R
N × (0, h̄) such that

wε,β(·, 0) 5 (m+ − βε)1l{φ=β} +m−1l{φ<β} in R
N.

Moreover, if for(x, t) ∈ Br(x0)×(0, h̄),φ(x)−t [F ∗(D2φ(x),Dφ(x))+α] > 2β,
then

lim inf∗ wε,β(x, t) = m+.
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Assuming for the moment Lemmas 4.1 and 4.2 we may proceed with the

Proof of Theorem 4.2. 1. Letuε : R
N × [0,∞) → R be defined by

uε(x, t) = Tε(t)[(m+ − δ)1l{φ=0} +m−1l{φ<0}](x).

2. Lemmas 4.1 and 4.2 yield that

wε,β(·, 0) 5 uε(·, tε) in R
N,

and, by the maximum principle,

wε,β 5 uε(·, · + tε) in R
N × (0, h̄).

It follows that, if t ∈ (0, h̄), x ∈ B̄r (x0) andφ(x)− t [F ∗(D2φ(x),Dφ(x))+α] >
2β, then

m+ 5 lim inf∗ uε(x, t).

3. Sinceβ is arbitrary and does not depend onh̄, the result follows. ut
We continue with the sketch of the proof of Lemma 4.1 borrowed from [C], to

which we refer for all the details.

Sketch of Proof of Lemma 4.1. 1. Standard arguments from the theory of ordinary
differential equations and (4.4) yield the existence of a unique solutionχ ∈ C2(R×
[0,∞)) of

χ̇ + f (χ) = 0 in [0,∞) with χ(0) = ξ ∈ R,(4.12)

satisfying, in addition,

χξ (ξ, s) > 0 in R × [0,+∞),(4.13)

for every 0< δ < m+ −m0, there existsa > 0 such that

χ(ξ, s) = m+ − βε

for s = a| ln ε| andξ = 2−1(m+ +m0 − δ),

(4.14)

for everya > 0, there existsM(a) ∈ R

such that, forε small enough,

(χξ (ξ, s))
−1|χξξ (ξ, s)| 5 ε−1M(a) for 0< s 5 a| ln ε|.

(4.15)

2. Letψ be a smooth function such that

m− 5 ψ 5 m+ − δ in R
N, ψ = m− in {φ < 0}, ψ = m+ − δ on {φ = β}.

It is now clear that

ψ 5 (m+ − δ)1l{φ=0} +m−1l{φ<0} in R
N.

3. Definew̄ : R
N × [0,∞) → R by

w̄(x, t) = χ(ψ(x)− ε−1Kt, ε−2t).
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It follows that, forK > 0 large enough,̄w is a subsolution of (4.3) inRN ×
(0, aε2| ln ε|), wherea is as in (4.14). Indeed, a simple calculation yields

w̄t −1w̄ + ε−2f (w̄) = −χξε−1K + ε−2χ̇ − χξ1ψ − χξξ |Dψ |2 + ε−2f (χ)

= −χξ
[
ε−1K −1ψ − (χξ )

−1χξξ |Dψ |2].
Given (4.15) and the fact that, by definition, the functionsψ ,1ψ andDψ have

compact supports, it is now clear that, forK large enough, the quantity inside the
brackets above is positive.

4. Since the definitions of̄w andψ yield

w̄ 5 uε in R
N × {0},

Step 3 and the maximum principle imply that

w̄ 5 uε in R
N × (0, aε2| ln ε|).

5. Evaluating this last inequality fort = aε2|lnε| and forx such thatφ(x) > β

yields
χ(m+ − δ −Kaε| ln ε|, a| ln ε|) 5 uε(x, aε2| ln ε|).

But since forε small enough

m+ − δ +Kaε| ln ε| = 2−1(m+ +m− − δ),

it follows from (4.14) that

m+ − βε 5 uε(x, aε2| ln ε|).
This last inequality, together with the fact thatm− 5 uε in R

N × (0,∞), finally
gives

(m+ − βε)1l{φ=β} +m−1l{φ<β} 5 uε(·, aε2| ln ε|) in R
N.

6. The conclusion now follows forτ = a. ut
It is worth pointing out that the proof of Lemma 4.1 relies entirely on the proper-

ties of the ordinary differential equation (4.12). This is related to the aforementioned
fact that, for very small time, the reaction effects dominate the diffusion ones.

We now turn to the

Proof of Lemma 4.2.1. Since|Dφ(x)| |= 0 on the compact set{φ = 0}, it follows
that|Dφ(x)| |= 0 on the set{|φ| 5 γ } for someγ > 0 small enough.

2. Chooseβ small compared toγ and consider the function

ϕ(x, t) = φ(x)− t [F ∗(D2φ(x),Dφ(x))+ α] − 2β.(4.16)

Notice that one of the main points for arguing in{|φ| < γ } is that the functionsφ
andF ∗(D2φ,Dφ) are smooth in this domain. Moreover, by choosingh sufficiently
small, we have

|Dϕ(x, t)| |= 0, ϕt + F ∗(D2ϕ,Dϕ) 5 −1
2α in {|φ| < γ } × (0, h).
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3. Next we construct a subsolutionv of (4.3) in{|φ| < γ } × (0, h) of the form

v(x, t) = Q
(
ε−1ϕ(x, t), x, t

) + ε
[
P

(
ε−1ϕ(x, t), x, t

) − 2β
]
,(4.17)

whereQ andP are smooth functions to be chosen below. Since the idea is to mimic
the formal asymptotic expansion ofuε in ε (cf. [KRS]), subsolutions of this form
are rather natural.

Substitutingv in (4.3), performing the needed algebraic manipulations, using

f (v) = f (Q)+ εf ′(Q)(P − 2β)+O(ε2)(P − 2β)2,

and dropping the arguments ofQ andP for the sake of notational clarity, we obtain

vt −1v + ε−2f (v) = ε−2Iε + ε−1II ε + III ε,
where

Iε = −Q̈|Dϕ|2 + f (Q),

II ε = Q̇(ϕt −1ϕ)− 2(DxQ̇·Dϕ)− P̈ |Dϕ|2 + f ′(Q)(P − 2β),

III ε = Qt −1Q+O(1)(P − 2β)2 + ε(Pt −1P)+ Ṗ (ϕt −1ϕ)− 2(DxṖ ·Dϕ).
4. The first goal is to chooseQ so thatIε = 0. Indeed ifq is the travelling-wave

solution of (4.1), which in the case at hand satisfies (4.7), we set

Q(s, x, t) = q(|Dϕ(x, t)|−1s)

for s ∈ R and(x, t) ∈ {|φ| < γ } × (0, η)}. Notice that, in view of (4.5),Q is a
smooth function ofs, x andt . It is now immediate that Iε = 0 with this choiceQ.

5. We rewrite IIε as IIε = ĪI ε − 2βf ′(q) and continue with the analysis of

ĪI ε = Q̇(ϕt −1ϕ)− 2(DxQ̇ ·Dϕ)− P̈ |Dϕ|2 + f ′(Q)P.

Our aim is to chooseP so that, forε sufficiently small,

ε−1II ε + III ε 5 0.

This is exactly the place where (4.10) comes into play.

6. Using the form ofQ in Step 4 above and choosingP such that

P(s, x, t) = p(|Dϕ(x, t)|−1s, x, t),

we can rewrite the equalitȳII ε = 0 as

p̈ − f ′(q)p = χ(s, x, t),(4.18)

where

χ(s, x, t) = |Dϕ|−1q̇(λ)[ϕt −1ϕ]

−2|Dϕ|−3(q̇ + λq̈)(λ)(D2ϕDϕ ·Dϕ).
(4.19)

In this expression,ϕ,Dϕ andD2ϕ are evaluated at(x, t) andq is evaluated at
λ = |Dϕ(x, t)|−1s.
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7. In view of (4.10), there existsp satisfying (4.18), provided that∫ ∞

−∞
χ(s, x, t)q̇(s)ds = 0.

It is straightforward to check, using the elementary fact that

2
∫ ∞

−∞
λq̈(λ)q̇(λ)dλ = −

∫ ∞

−∞
|q̇(λ)|2dλ,

that this last condition leads to

ϕt −1ϕ + (D2ϕD̂ϕ · D̂ϕ) = 0,

which is the formal justification of the connection with the mean curvature equation.
Here, however,ϕ does not exactly satisfy the mean curvature equation. To

overcome this difficulty, we solve (4.18) replacing theχ of (4.19) byχ̃ given by

χ̃(s, x, t) = χ(s, x, t)− |Dϕ|−1q̇(λ)[ϕt −1ϕ + (D2ϕDϕ ·Dϕ)].
Indeedχ̃ satisfies the right orthogonality condition required in (4.10). Of course
we have a remainder which helps us to control the order-1 terms in the expansion.

8. Making this choice ofp and using the definition ofϕ we find that

II ε = Q̇[ϕt −1ϕ +D2ϕD̂ϕ · D̂ϕ] + 2f ′(Q)β 5 −2−1αQ̇+ 2f ′(Q)β.

9. To conclude we need Lemma 4.3 which we now state, postponing its proof.

Lemma 4.3. If β is small compared toα, then there existsν(α, β) < 0 such that,
for all s ∈ R and(x, t) ∈ {|φ| < γ } × [0, η],

−1
2αQ̇(s)+ 2f ′(Q(s))β 5 ν(α, β) < 0.

10. We continue with the analysis of IIIε. Given (4.4)–(4.6), (4.8) and (4.10),
tedious but straightforward computations show that all terms of IIIε are bounded,
independently ofε. This allows us to conclude the proof of the assertion of Step 3,
since Lemma 4.3 yields that, in{|φ| < γ } × [0, η],

vt −1v + ε−2f (v) 5 ε−1ν(α, β)+O(1),

with the right-hand side negative forε small enough.

11. Next we need to extend the subsolutionv to the whole domainRN × [0, η].
We do so in a series of lemmas below. The first is about extendingv to {φ 5
γ } × [0, η].

Lemma 4.4. If η andβ are so small that

η
[

max
|φ(x)|5γ

|F ∗(D2φ(x),Dφ(x))| + α
]

+ 2β 5 1
4γ,(4.20)

then, forε sufficiently small, the function̄v defined on{φ 5 γ } × [0, η] by

v̄(x, t) =
{

sup(v(x, t),m−) if φ(x) > −γ ,

m− if φ(x) 5 −γ ,

is a viscosity subsolution of(4.3) in {φ < γ } × (0, η).
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Proof. 1. Since the constantm− is a solution of (4.3) inRN × (0,+∞), the result
is clear in{−γ < φ < γ } × (0, η), v̄ being the supremum of two subsolutions.

2. Now we examine the functionv in the domain{x : φ(x) 5 −1
2γ }. In view

of (4.20), it follows that in this domain

ϕ(x, t) 5 −1
4γ.

The asymptotic behavior ofq andp near−∞ then yields, for some constantc > 0,

v(x, t) 5 m− + exp
( − (4ε)−1cγ

) + ε(oε(1)− 2β).

It is therefore clear that, forε sufficiently small,

v(x, t) < m− if φ(x) 5 −1
2γ.

Hence,
v̄(x, t) = m− if φ(x) 5 −1

2γ,

and the result follows. ut
12. To complete the construction, we introduce a smooth functionψ : R → R

such thatψ ′ 5 0 in R, ψ = 1 in (−∞, 1
2γ ), 0 < ψ < 1 in (1

2γ,
3
4γ ), ψ = 0 in

(3
4γ,+∞), and, finally,ψ ′′ 5 0 in a neighborhood of12γ .

13. We need

Lemma 4.5. Assume that(4.20)holds, setC = max|1φ| + 1 on {|φ| < γ } and
denote byχ the function defined, for(x, t) ∈ R

N×[0,∞), byχ(x, t) = φ(x)−Ct .
The functionw : R

N × [0, η] → R defined by

w(x, t) =
{
ψ(χ(x, t))v̄(x, t)+ (1 − ψ(χ(x, t)))(m+ − βε) if φ(x) < γ ,

m+ − βε otherwise

is a viscosity subsolution of(4.3) in R
N × [0, η], if ε andη are sufficiently small.

Moreover,
w(·, 0) 5 (m+ − βε)1l{φ=β} +m−1l{φ<β} in R

N .

Proof. 1. Chooseη small enough in order to haveCη < 1
8γ . If φ(x) > 7

8γ , then
w(x, t) = m+ − βε. Sincef (m+ − βε) < 0 for ε small enough, it is clear thatw
is a subsolution of (4.3) forφ(x) > 7

8γ as well as in{φ(x) − Ct < 1
2γ }, where

w = v̄.

2. It is enough to check the subsolution property in the set where{1
2γ < φ < γ }.

We have

wt −1w + ε−2f (w) = ψ(v̄t −1v̄)+ [ψ ′(−C −1φ)

−ψ ′′|Dφ|2](v̄ − (m+ − βε))

+ ε−2f (ψv̄ + (1 − ψ)(m+ − βε)) ,

(4.21)
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where once again we have dropped the arguments of the functionψ for the sake of
clarity.

Using (4.20) and the asymptotic behavior ofq andp at +∞, we obtain, for
some constant̃c > 0, that

v̄(x, t) = m+ − exp
(
−(4ε)−1c̃γ

)
+ ε(oε(1)− 2β) = m+ − 2βε + εo(1),

and, hence, forε small enough,

v̄(x, t)− (m+ − βε) = −βε + εo(1) 5 0.

Sinceψ ′ 5 0 in R and−1φ 5 C, we also have

ψ ′(−C −1φ)(v̄ − (m+ − βε)) 5 0.

But f is convex in a neighborhood ofm+. Therefore, ifε is sufficiently small,

f (w) 5 ψf (v̄)+ (1 − ψ)f (m+ − βε).

Substituting all this information in (4.21) yields

wt −1w+ ε−2f (w) 5 −ψ ′′|Dφ|2(v̄− (m+ − βε))+ (1−ψ)ε−2f (m+ − βε).

3. Sinceψ ′′(s) 5 0 if s 5 1
2γ + ν for someν > 0, the right-hand side of this

inequality is negative forφ(x)− Ct 5 ν + 1
2γ .

If s > ν + 1
2γ , then 1− ψ(s) = c(ν) > 0 and, hence,

wt −1w + ε−2f (w) 5 O(ε)+ c(ν)ε−2f (m+ − βε).

The right-hand side of this last inequality is negative forε small enough since,
f (m+) = 0 andf ′(m+) > 0.

4. It remains to examinew(·, 0). To this end, we first consider

v(x, 0) = Q
(
ε−1(φ(x)− 2β), x,0

) + ε
[
P

(
ε−1(φ(x)− 2β), x,0

) − 2β
]
.

SinceP(s, x, t) → 0 when|s| → +∞ uniformly with respect to(x, t) in
{|φ| < γ } × [0, η], there exists̄c > 0 such that

|P(s, x, t)| 5 β if |s| = c̄.

In particular, ifφ(x) 5 2β − c̄ε, we have

v(x, 0) 5 Q
(
ε−1(φ(x)− 2β), x,0

) − εβ.

From now on, we assume thatε is such that 2̄cε 5 β.

5. If φ(x) 5 3
2β 5 2(β − c̄ε), it follows that forε sufficiently small,

v(x, 0) 5 Q
( − 2ε−1β, x,0

) − εβ < m−.

Thereforev̄(x, 0) = m− and if, in addition,32β <
1
2γ , then
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w(x, 0) = v̄(x, 0) = m−,

which yields the result forφ(x) 5 3
2β.

6. If φ(x) = 2β + c̄ε, a similar argument yields

v(x, 0) 5 Q
(
ε−1(φ(x)− 2β), x,0

) − εβ 5 m+ − εβ,

which implies that

w(x, 0) 5 m+ − εβ if φ(x) = 2β + c̄ε.

7. If φ(x) 5 2β + c̄ε, we use the fact that there existsν(c̄) > 0 such that, for
s 5 ν(c̄) and|φ(x)| < γ ,

Q(s, x,0) 5 m+ − ν(c̄).

It follows, for ε sufficiently small, that

v(x, 0) 5 m+ − ν(c̄)+ ε(‖P ‖∞ + β) 5 m+ − βε.

Therefore
w(x, 0) 5 m+ − βε if φ(x) 5 2β + c̄ε,

and the proof is complete.ut

We conclude this section with the

Proof of Lemma 4.3.Since

−1
2αQ̇(s, x, t)− 2f ′(Q(s, x, t))β = −1

2|Dϕ(x, t)|−1αq̇(λ)− 2f ′(q(λ))β,

whereλ = s|Dϕ(x, t)|−1, it is enough to show that forλ ∈ R and(x, t) ∈ {|φ|
< γ } × [0, η],

−(1
2|Dϕ(x, t)|)−1αq̇(λ)− 2f ′(q(λ))β 5 ν(α, β) < 0.

2. We first recall thatf ′(m±) > 0. Sinceq(λ) → m±, whenλ → ±∞, and
q̇ = 0 onR, it follows that there exists a constantC > 0 such that, for|λ| > C,

f ′(q(λ)) = k = 1
2 min(f ′(m+), f ′(m−)),

−(2|Dϕ(x, t)|)−1αq̇(λ)− 2f ′(q(λ))β 5 −2βk < 0.

3. If |λ| 5 C, then there existsK = K(C) > 0 such thaṫq(λ) = K. Using the
fact thatf ′ is bounded on [m−, m+], we obtain

−(2|Dϕ(x, t)|)−1αq̇(λ)− 2f ′(q(λ))β 5 −(2|Dϕ(x, t)|)−1αK(C)+ 2‖f ′‖∞β.

The right-hand side of this inequality is negative ifβ is small compared toα in
{|φ| < γ } × [0, η]. ut

As mentioned earlier, the proof of Theorem 4.2 we presented above is not only
intuitive, since it closely follows the formal asymptotics, but also “wrong”, in the



272 G. Barles & P.E. Souganidis

sense that it is obviously rather complicated and relies on very special properties
of the travelling wave.

The fact is that we can actually provide a much easier proof, which allows
for far more flexibility and less reliance on very particular properties ofq. Such a
proof is based on using as a building block towards constructing subsolution and
super-solutions of (4.3) the function

v(x, t) = q(ε−1(d(x, t)− 2β))

instead of the one given by (4.17), whered is the signed-distance function to the
set

0t = {x : φ(x)− t [F ∗(D2φ(x),Dφ(x))+ α] = 0},
which is normalized to have the same signs asφ − [F ∗(D2φ,Dφ) + α] in R

N .
Since everything is smooth, classical arguments yield the existence ofγ̄ , h̄ > 0
such that

d is smooth in the setQγ̄ ,h̄ = {(x, t) : |d(x, t)| < γ̄ , 0 5 t 5 h̄},

dt + F ∗(D2d,Dd) = dt −1d 5 − α

4|Dϕ| in Qγ̄ ,h̄,(4.22)

whereϕ is defined by (4.16) (recall that we may assume that|Dϕ| |= 0 inQγ̄ ,h̄)
and, in addition,

|Dd| = 1, D2dDd = 0 inQγ̄ ,h̄.(4.23)

Essentially replacingϕ by d − 2β in the proof of Lemma 4.2 leads to far easier
arguments, since now we can takeP = 0, and to far easier computations, since
(4.23) hold.

TheP -term in the proof of Lemma 4.2 is needed to control the remainders which
arise when, by using|Dϕ|−1ϕ instead ofd in theQ-term, we create additional terms.
These terms, which, in view of (4.23), do not appear whend is used, can be handled
whenϕ is used by using some special identities about the travelling wave.

In more complicated problems, like those discussed in Sections 6 and 7 below,
theP -term is important to balance additional terms arising in the asymptotic anal-
ysis of the solutions. Usingd instead of|Dϕ|−1ϕ simplifies and, in some cases,
makes the proofs possible. Indeed, (4.23) eliminates a number of perturbation terms,
which at least, we were unable to handle in the more complicated cases. We refer
the reader to Sections 6 and 7 where this remark is used in an essential way.

5. Other Results Related to the Reaction-Diffusion Equations

In this section we present two new results about the asymptotics of solutions to
semilinear reaction-diffusion equations. The first is about the initial-value problem

(i) uε,t − tr(A(x, D̂uε)D2uε)+ ε−2f (uε) = 0 in R
N × (0,∞),

(ii) uε = g onR
N × {0}.

(5.1)
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Here the matrixA = ((aij )) ∈ C2(RN × R
N,S N) is such that for alli, j, k ∈

{1, . . . , N},
aij , aij,xk , aij,pk

are uniformly continuous onRN × R
N,

(5.2)

for eachR > 0 there existsCR > 0 such that for allp ∈ R
N ,

A(·, p) ∈ W2,∞(RN,S N), sup
|p|5R

‖A(·, p)‖W2,∞ 5 CR,(5.3)

and, finally, there existsν > 0 such that for all(x, p, q) ∈ R
N × R

N\{0} × R
N ,

A(x, p̂)q · q = ν|q|2.(5.4)

Note that because of the special dependence of the matrixA onDuε (recall that
p̂ = |p|−1p), the initial-value problem (5.1) must be interpreted in the viscosity
sense.

To state the result about the asymptotics of (5.1) we need to recall that, for every
u0 ∈ UC(RN), the initial-value problem

ut + F(D2u,Du, x) = 0 in R
N × (0,∞),

u = u0 onR
N × {0},(5.5)

with

F(X, p, x) = −tr{A(x, p̂)X[
I − (A(x, p̂)p · p)−1(Ap ⊗ p)]}

+ (2A(x, p̂)p · p)−1tr
{
A(x, p̂)p ⊗ [DxA(x, p̂)p · p

+ (X −Xp̂ ⊗ p̂)DpA(x, p̂)p · p]
}
,

has a unique viscosity solutionUC(RN×[0, T ]) for allT > 0. The proof of this fact
is a tedious, but nevertheless straightforward, adaptation of the usual uniqueness
proofs for geometric equations—see, for example, [CIL, CGG, IS, G], etc. We leave
the details to the reader.

The result is

Theorem 5.1. Let (4.4)–(4.6), (4.8), (4.10), (5.2)–(5.4)and letuε be the solution
of (5.1) with g : R

N → [m−, m+] such that the set00 = {x : g(x) = m0} is a
nonempty subset ofR

N . Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{
{u > 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(5.5)with u0 = d0, the signed distance
to 00 such thatd0 > 0 in {g > m0} andd0 < 0 in {g < m0}.

If, in addition, the no-interior condition(2.11)holds, then, asε → 0,

uε(x, t) →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u > 0}c

}
.
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Proof. 1. The proof here follows closely the one given in Section 4 except for a
minor additional argument that we give below.

2. In view of our assumptions onA and, in particular, on the way it depends
onp, the termF(D2φ(x),Dφ(x), x) is not of classC2. This difficulty is resolved
by a standard regularization argument. We refer to the next section where such a
strategy is presented for a more complicated situation.

3. To prove the existence of subsolutionswε,β , we set, as in Section 4,

v(x, t) = Q
(
ε−1ϕ(x, t), x, t

) + ε
(
P

(
ε−1ϕ(x, t), x, t

) − 2β
)

where

Q(s, x, t) = q
([
A(x, D̂ϕ)Dϕ ·Dϕ]−1/2

s
)
,

P (s, x, t) = p
([
A(x, D̂ϕ)Dϕ ·Dϕ]−1/2

s
)
,

ϕ(x, t) = φ(x)− t
[
Fα(D

2φ(x),Dφ(x), x)+ α
] − 2β,

whereFα is a suitable regularization ofF , or alternatively, following the discussion
at the end of Section 4 we set

v(x, t) = q(ε−1(d(x, t)− 2β))

whered is the signed-distance from the set{ϕ = 0}, whereϕ is given by (4.16).

4. All the computations of Section 4 extend easily to this more complicated
case. ut

The second result is about the asymptotic behavior of the usual reaction-
diffusion equation (4.3), which is now set in a bounded domain with Neumann
boundary conditions, i.e., the initial-boundary-value problem

uε,t −1uε + b(x) ·Duε + ε−2f (uε) = 0 in�× (0,∞),

Duε · n = 0 on∂�× (0,∞),

uε = g on�× {0},
(5.6)

where

b : R
N → R

N is a bounded Lipschitz continuous vector field,(5.7)

f is as in Theorem 4.1 and� ⊂ R
N is a bounded subset ofR

N . The asymptotics
of (5.6) were studied byKatsoulakis, Kossioris & Reitich [KKR] and
Chen [C] under the assumption that the resulting interface is smooth and by [KKR]
globally in time but for convex domains�.

The front evolution associated with the asymptotics of (5.6) is motion by mean
curvature transported byb with Neumann boundary conditions. The corresponding
geometric partial differential equation, which was studied byGiga & Sato [GS],
is
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ut − tr[(I − D̂u⊗ D̂u)D2u] + b(x) ·Du = 0 in�× (0,∞),

Du · n = 0 on∂�× (0,∞),

u = u0 on�× {0}.
(5.8)

Our result is

Theorem 5.2. Let (4.4), (4.5), (4.6), (4.8), (4.10)and(5.7)hold and letuε be the
solution of(5.8)with g : � → [m−, m+] such that the set00 = {x : g(x) = m0}
is a nonempty subset of�. Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {> 0},
{u < 0{u < 0}

}
,

whereu is the unique viscosity solution of(5.7)with u0 = d0 the signed distance
to 00 which is positive on the set{g > m0} and negative on the set{g < m0}.

If, in addition, the no-interior condition(2.11)holds, then, asε → 0,

uε →
{
m+
m0

}
locally uniformly in

{ {u > 0}
{u > 0}c

}
.

The proof of Theorem 5.2 is based on Theorem 3.1 and the short-time analysis
performed in [C] and [KKR]. We leave the details to the reader.

6. Reaction-Diffusion Equations with Oscillatory Coefficients

In this section we study the asymptotic behavior, asε → 0, of reaction-
diffusion equations of the form

uε,t − εL ε
(
x,
x

ε

)
uε + ε−1f (uε) = 0 in R

N × (0,∞),(6.1)

uε,t − L ε
(
x,
x

ε

)
uε + ε−1f (uε) = 0 in R

N × (0,∞),(6.2)

with initial datum

uε = g in R
N,(6.3)

where, as usual,f = W ′,W being a double-well potential, and

L ε
(
x,
x

ε

)
v = div

[
A

(x
ε

)
Dv

]
+ 1

ε

(
b

(x
ε

)
+ εB

(x
ε

))
·Dv.(6.4)

The matrixA = ((aij )) : R
N → S N and the transport coefficientsb : R

N →
R
N andB : R

N → R
N are assumed to satisfy, for some compact subsetΠ of R

N ,

A ∈ C2(RN,S N) is positive-definite and periodic inΠ,(6.5)

b andB are Lipschitz continuous and periodic inΠ .(6.6)

Asymptotic problems like (6.1) and (6.2) arise in the study of the behavior for
largex andt of the solution of the reaction-diffusion equation
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ut − div(A(x)Du)− (b(x)+εB(x)) ·Du+f (u) = 0 in R
N × (0,∞).(6.7)

To study the asymptotics of (6.1) and (6.2), as in the previous sections, we as-
sume thatf satisfies (4.4) and that (6.7) admits travelling-wave solutions. The main
difficulty as well as novelty here are that these travelling waves depend nontrivially
onx and the directione. More precisely, we assume that

for eache ∈ SN−1, there exists a unique pair(c(e), q(·, ·, e))
wherec(e) ∈ R andq : R × R

N × SN−1 → R are such that

c(e)q̇ + (Dy + e∂s)
T (A(y)(Dy + e∂s))q

+ b · (Dy + e∂s)q = f (q) in R ×Π ,

q(0, y, e) = m0, q̇(·, y, e) > 0 onR ×Π ,

y → q(s, y, e) periodic inΠ for eachs ∈ R,

and, as|s| → ±∞, q(s, y, e) → m±, exponentially fast

with rate depending one and uniformly onSN−1 ×Π .

(6.8)

The existence, uniqueness and properties of such pairs(c, q) have been studied,
under some additional assumptions onA, b andf , by Xin [X1,2,3,4], to which we
refer for the details. In what follows we take the point of view that (6.8) is satisfied
and proceed with the study of the asymptotics of (6.1) and (6.2). To this end we
also assume that

q ∈ C2(R × R
N × SN−1), c ∈ C(SN−1),

c depends continuously onf ,
(6.9)

sup
(s,y,e)∈

R×R
N×SN−1

[|s|q̇(s, y, e)+ (|s| + s2)|q̈(s, y, e)|] < ∞,

sup
(s,y,e)∈

R×R
N×SN−1

[|Deq(s, y, e)|
+(1 + |s|)[|Dyq(s, y, e)| + |Deq̇(s, y, e)|]

]
< ∞,

sup
(s,y,e)∈

R×R
N×SN−1

[|D2
e q(s, y, e)| + |D2

y,eq(s, y, e)|
]
< ∞.

(6.10)

To state the result about the asymptotics of (6.1) we recall that, for allu0 ∈
UC(RN), the initial-value problem

ut + F(Du) = 0 in R
N × (0,∞),

u = u0 onR
N × {0},(6.11)

whereF : R
N → R is the continuous function given by

F(p) =
{
c(p̂)|p|, p |= 0,

0, p = 0,
(6.12)

has a unique viscosity solutionu ∈ UC(RN × [0, T ]) for all T > 0.

We have
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Theorem 6.1. Let (4.4), (6.5), (6.6), (6.8)–(6.10)hold and letuε be the solution of
(6.1), (6.3)with g : R

N → [m−, m+] such that the set00 = {x : g(x) = m0} is a
nonempty subset ofR

N . Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{
{> 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(6.11), withu0 = d0 the signed distance
to 00 which is positive in the set{g > m0} and negative in the set{g < m0}.

If, in addition, the no-interior condition(2.11)holds, then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u > 0}c

}
.

Proof.1. The proof follows exactly by using the same strategy as the one we adopted
for the proof of Theorem 4.1.

2. If T ε is the semigroup associated with (6.1), that (H1)–(H3) are satisfied.
Again we only have to check (H4) and the initialization of the front. Changingf (u)

to f (m+ +m− − u) shows that we only have to prove “half” of these properties.
3. The main step in the proof is

Theorem 6.2. For all x0 ∈ R
N , r > 0, α > 0 and for any smooth functionφ :

R
N → R such that{x : φ(x) = 0} ⊂ Br(x0) and|Dφ(x)| |= 0 on {x : φ(x) = 0}

and for any0< ν < m+ −m0, there exists̄h > 0 depending only onφ through its
C4-norm inB̄r (x0) such that

lim inf∗
(
Tε(h)[(m+ − ν)1l{φ=0} +m−1l{φ<0}]

)
(x) = m+

if φ(x)− h[F(Dφ(x))+ α] > 0 andx ∈ Br(x0) for 0 < h 5 h̄, withF given by
(6.12).

4. As for Theorem 6.2, its proof consists of two steps given by the following
two lemmas.

Lemma 6.1. (Initialization of the front).Under the assumptions of Theorem 6.1
and for anyβ > 0, there exists a constantτ > 0 such that, iftε = τε, then forε
sufficiently small,

T ε(tε)[(m+ − ν)1l{φ=0} +m−1l{φ<0}] = (m+ − β)1l{φ=β} +m−1l{φ<β}.

Lemma 6.2. (Propagation of the front). If α is small enough, there exists̄h > 0
depending only onφ through itsC4-norm inB̄r (x0) such that for0< β 5 β̄(α, φ)

andε 5 ε̄(α, β, φ), there exists a subsolutionwε,β of (6.1)in R
N×(0, h̄) satisfying

wε,β(·, 0) 5 (m+ − β)1l{φ=β} +m−1l{φ<β} in R
N,

and, for any(x, t) ∈ Br × (0, h̄) such thatφ(x)− t [F(Dφ(x))+ δ] > 2β,

lim inf∗ [wε,β(x, t)] = m+ − oβ(1).
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5. By using these two lemmas, the proof of Theorem 6.2 is again a straightfor-
ward adaptation of the proof of Theorem 4.2.ut

The proof of Lemma 6.1 follows along the lines of the proof of the analogous
result in Section 4. We therefore leave it up to the reader to fill in the details. We
continue with the

Proof of Lemma 6.2.1. To simplify the presentation, throughout the proof we
assume thatA = I , the identity matrix. The general case follows by similar but a
bit more tedious arguments.

2. Since|Dφ(x)| |= 0 on the compact set{φ = 0}, we may chooseγ > 0 such
that|Dφ(x)| |= 0 on{|φ| 5 γ } ⊂ B̄r (x0).

3. As in Section 4, we first build a subsolutionwε,β in�γ,h̄ = {|φ| 5 γ }×(0, h̄),
whereh̄ is to be chosen below.

4. The first additional difficulty we encounter here is that, in view of (6.8) and
(6.9),F is not a smooth function ofDu. To overcome this difficulty, we consider
aC2-approximationFα of F such that

F(Dφ(x))− 1
4α 5 Fα(Dφ(x)) 5 F(Dφ(x)) on {|φ| 5 γ }.

5. Chooseβ small compared toγ and introduce the functionϕ : �γ,h̄ → R

defined by
ϕ(x, t) = φ(x)− t [Fα(Dφ(x))+ α] − 2β.

Choosingh̄ small enough, we may assume that

|Dϕ(x, t)| |= 0 in�γ,h̄, ϕt + F(Dϕ) 5 −1
2α in �γ,h̄.

6. Next we build a subsolution of (6.1) of the form

v(x, t) = Q
(
ε−1ϕ(x, t),

x

ε
, x, t

)
,(6.13)

whereQ(s, y, x, t) is a smooth function to be chosen below.

7. Substitutingv into (6.1) yields

vt − ε1v −
(
b
(x
ε

)
+ εB

(x
ε

))
·Dv + ε−1f (v) = 0 = ε−1Iε + II ε,

with

Iε = Q̇(ϕt − ε1ϕ − b ·Dϕ)+ b ·DyQ
−Q̈|Dϕ|2 − 2DyQ̇ ·Dϕ −1yQ+ f (Q),

II ε = Qt − ε1xQ− b ·DxQ− B ·DyQ− 2DxQ̇ ·Dϕ − 21x,yQ,

where1x,yQ = ∑N
i=1Qxiyi andy stands for the argumentx/ε. Once again for the

sake of notational simplicity we suppress the explicit dependence on the arguments.

8. Next we observe that sincef satisfies (4.4), there exists̄δ > 0 such that,
for all δ ∈ [−δ̄, δ̄], the functionf δ = f + δ also satisfies (4.4). Moreover, for
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eachδ ∈ [−δ̄, δ̄], there exist pairs(cδ, qδ) satisfying (6.8)–(6.10) with constants
depending onδ. Finally, it follows thatcδ(e) → c(e) asδ → 0 for all e ∈ SN−1.

9. For a suitableδ ∈ [−δ̄, δ̄], we chooseQ of the form

Q(s, y, x, t) = qδ
(|Dϕ(x, t)|−1s, y, D̂ϕ(x, t)

)
.

Denoting bye(x, t) the vector̂Dϕ(x, t), we may rewrite Iε as

Iε = |Dϕ|−1q̇δ [ϕt − ε1ϕ]− q̇δ(b ·e)−b ·Dyqδ− q̈δ−2Dyq
δ ·e−1yqδ+f (qδ).

Substituting the equation satisfied byqδ into the last expression, we obtain

Iε = |Dϕ|−1q̇δ
[
ϕt − ε1ϕ + cδ(e)|Dϕ|] + δ.

10. It remains to estimate the quantity inside the bracket in this last expression.
The properties ofcδ, Fα andϕ now yield the estimate

|Dϕ|−1q̇δ
[−ε1ϕ − F(Dϕ)− α

2 + |Dϕ|cδ(e)] + δ

5 q̇δ
[
cδ(e)− c(e)− (2|Dϕ|)−1(α + 2ε1ϕ)

] + δ.

It is then clear that, for|δ| small enough compared toα > 0, the quantity inside
the bracket is negative forε small enough, since, for fixedα, the function1ϕ is
bounded—note that the bound may depend onα. Sinceq̇δ > 0, choosingδ < 0
small, we conclude thatε−1Iε 5 ε−1δ.

Finally, using the assumptions onqδ and carrying out some tedious computa-
tions, we can show that there is some constantK̃δ. Such that IIε can be estimated
by

vt − ε1v −
(
b

(x
ε

)
+ εB

(x
ε

))
·Dv + ε−1f (v) 5 ε−1δ + K̃δ in �γ,h̄.

Hence, for any fixedδ, v is a subsolution of (6.1), provided thatε is sufficiently
small.

11. Next, ifβ is small enough compared toα, we claim that we can chooseδ
so that

v(·, 0) 5 (m+ − β)1l{φ=β} +m−1l{φ<β} on {|φ| 5 γ }.
Indeed, we first remark that the assumption thatf ′(m±) yieldsmδ− 5 m− + dδ

andmδ+ 5 m+ + dδ for some constantd > 0. And, ifβ is small enough compared
to α, we can choose−δ̄ 5 δ < 0 satisfying the requirements of Step 10 such that
dδ = −β. It is then clear that

v(x, 0) 5 mδ+ 5 m+ + dδ 5 m+ − β on {|φ| 5 γ }
and the above inequality obviously holds on{φ > β}.

12. On the set{φ 5 β}, we have

v(x, 0) = qδ
(
ε−1(φ(x)− 2β), ε−1x,Dϕ(x, t)

)
5 qδ

(−ε−1β, ε−1x,Dϕ(x, t)
)

5 m− − β − oε(1),
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where theoε(1) is uniform inx in view of (6.10). Hence, forε small enough, the
initial data satisfy the desired inequality and the proof of this step is complete.

13. To conclude, we need to extend the functionv to be a subsolution defined on
R
N × (0, h̄). This can be done exactly as in the previous section by first extending

sup(v,m−) to {φ 5 γ } × (0, h̄) and then by proving a result analogous to Lemma
4.2 wherem+ −βε is replaced bym+ −β. Since this extension is a straightforward
adaptation of the argument of Section 4, we leave it to the reader.ut

Before we continue it is worth remarking that the proof of Lemma 6.2 can be
considerably simplified, if, as in the discussion at the end of Section 4, instead of
thev in (6.13), we use

v(x, t) = q
(
ε−1(dα(x, t)− 2β),

x

ε
,Ddα(x, t)

)
wheredα is the signed distance to the set

0α,t = {x ∈ R
N : φ(x)− t [Fα(Dφ(x))+ α] = 0},

which is normalized to have the same sign asφ − t [Fα(Dφ)+ α] in R
N .

We now discuss the asymptotics of (6.2). To this end, we assume that

if (4.6) holds and if(c, q) is as in (6.8),

thenc(e) = 0 for all e ∈ SN−1,
(6.14)

and note that the fact thatc(e) = 0 can be easily verified ifb = 0, but is an
assumption in general.

Next we need assumptions similar to (4.8) and (4.10). To this end, observe
that, for eache ∈ SN−1, linearizing aroundq(·, ·, e) the equation satisfied by the
travelling wave leads to the unbounded operatorA(e) : L2(R×Π) → L2(R×Π)
given by

A(e)p = (Dy + e∂s)
T [A(y)(Dy + e∂s)]p + b · (Dy + e∂s)p − f ′(q)p,

which, unlessb = 0, is not self-adjoint.
As before, forχ : R × R

N × SN−1 × R
N × [0,∞) → R we need to find

solutionsp : R × R
N × SN−1 × RN × [0,∞) → R of the equation

A(e)p = χ(s, y, e, x, t) in R × R
N(6.15)

such thatp ∈ C2(R × R
N × SN−1 × RN × [0,∞)) and, for all compact subsets

K of R
N × [0,∞),

p → 0 as|s| → ∞, exponentially fast and uniformly inΠ × SN−1 ×K,

sup
(s,y,e,x,t)∈

R×R
N×SN−1×K

[(|p| + |Dxp| + |Dep| + |D2
ep| + |D2

y,ep|)(s, y, e, x, t)

+ (1 + |s|)[(ṗ + |s||p̈| + |Dxṗ| + |Deṗ|)(s, y, e, x, t)]] < ∞.

(6.16)

We next assume that
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there exists a solutionX : R × R
N × SN−1 → R of

A∗(e)X = (Dy + e∂s)
T [A(y)(Dy + e∂s)]X

−(Dy + e∂s)
T (bX)− f ′(q)X = 0 in R × R

N

(6.17)

such that

Xs > 0 onΠ , y 7→ X(s, y, e) is periodic inΠ for eachs ∈ R,

as|s| → ∞,X(s, y, e) → 0 exponentially fast

and uniformly inΠ × SN−1,

(6.18)

and that

kerA∗(e) = XR.(6.19)

Note that ifA is self-adjoint, i.e., ifb = 0, we may chooseX = q̇, in which
case (6.19) becomes

kerA∗(e) = q̇R.

Our next assumption is that

for any compact subsetK of R
N × [0,∞) and for any smooth

χ : R × R
N × SN−1 ×K → R such that for all(s, y) ∈ R ×Π

and all(x, t) ∈ K and for someC > 0,∫ ∫ ∞

−∞
χ(s, y, e, x, t)X(s, y, e)dsdy = 0,

‖χ(s, y, e, ·, ·)‖C2(K) 5 C
[
q̇ + |sq̈| + |qe| + |q̇e| + |qye|

]
(s, y, e),

there exists a solutionp of (6.15) satisfying (6.16).

(6.20)

Next for eache ∈ SN−1 define the scalar

µ(e) =
( ∫

R

∫
Π

q̇(s, y, e)X(s, y, e)dsdy
)−1

,(6.21)

the symmetric matrix

Ā(e) =
∫

R

∫
Π

X(s, y, e)
[
q̇(s, y, e)A(y)

+A(y)e ⊗Deq̇(s, y, e)+Deq̇(s, y, e)⊗ A(y)e + 2A(y)D2
y,eq(s, y, e)(6.22)

+1
2(Deq(s, y, e)⊗ (b + Ã)+ (b + Ã)⊗Deq(s, y, e))

]
dsdy,

whereÃ(y) is the vector whoseith component is
∑N
j=1 Dyi aij (y), the vector

B̄1(e) =
∫

R

∫
Π

[X(s, y, e)q̇(s, y, e)B(y)]dsdy,(6.23)
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the scalar

B̄2(e) =
∫

R

∫
Π

[X(s, y, e)B(y) ·Dyq(s, y, e)]dsdy,(6.24)

and, finally, for each(X, p) ∈ S N × R
N\{0}, the function

F(X, p) = −µ(p̂) {tr[Ā(p̂)X(I − p̂ ⊗ p̂)] + B1(p̂) · p + B̄2(p̂)|p|} .(6.25)

SinceF is bounded, as usual, we may extend the definition ofF atp = 0 by
considering lower and upper semi-continuous envelopes. Note also that it is easy
to check thatF is geometric, i.e., that it satisfies (2.10), but it is not clear a priori,
or at least it is not clear to us, that it is elliptic, i.e., that it satisfies (2.3).

Consider next the initial-value problem

ut + F(D2u,Du) = 0 in R
N × (0,∞),

u = u0 onR
N × {0}.(6.26)

If F is elliptic, it turns out (cf. [CGG, BSS, IS, G], etc.) that, for everyu0 ∈
UC(RN), there exists a unique viscosity solutionu ∈ UC(RN × [0, T ]) for all
T > 0.

The result about the asymptotic behavior of (6.2) is:

Theorem 6.3. Assume that(4.4), (4.6), (6.5), (6.8)–(6.10), (6.14),and (6.17)–
(6.20)hold. Then

(i) The functionF defined by(6.25)is degenerate-elliptic, i.e., it satisfies(2.3).
(ii) Let uε be the solution of(6.2), (6.3) with g : R

N → [m−, m+] being a
function such that the set00 = {x ∈ R

N : g(x) = m0} is a nonempty subset of
R
N . Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(6.26), withu0 = d0 the signed distance
to 00, which is positive in the set{g > m0} and negative in the set{g < m0}.

If the no-interior condition(2.11)holds, then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

 {u > 0}
{u < 0} =

(
{u > 0}

)c
 .

Theorem 6.3 is proved as Theorem 4.1, provided we show that the assumptions
of Theorem 3.1 are satisfied, as usual (H4) being the most important one. Instead
of reproducing all the details here, we choose to show only the formal expansion
argument, which explains the result. As we hope we have made clear so far, the
actual proof is nothing else than a justification of these asymptotics.

An important point is, however, that here we need to argue as discussed at the
end of Section 4, i.e., it is essential to consider expansions using the signed-distance
function. Contrary to the situation in Section 4, here we need to go up to orderε in
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the expansion, i.e., to have aP -term, in order to control the additional terms which
exist due to the oscillating coefficients.

To this end we write

uε(x, t) = Q
(
ε−1d(x, t),

x

ε
, x, t

)
+ εP

(
ε−1d(x, t),

x

ε
, x, t

)
+O(ε2),

whered is the signed distance to a smooth front, andP andQ are to be chosen
and substituted in (6.2). The goal, of course, is to identify an equation satisfied by
d which, in turn, leads to an expression for the normal velocity of the front.

It is a simple calculation to see that

uε,t − div
(
A

(
x
ε

)
Duε

) − ε−1
(
b

(
x
ε

) + εB
(
x
ε

)) ·Duε + ε−2f (uε)

= ε−2Iε + ε−1II ε +O(1),
where

Iε = −[(Dy +Dd(x, t)∂s)
T (A(y)(Dy +Dd(x, t)∂s))

+b(y) · (Dy +Dd(x, t)∂s)]Q+ f (Q),

II ε = −[(Dy +Dd(x, t)∂s)
T [A(y)(Dy +Dd(x, t)∂s)]

+ b · (Dy +Dd(x, t)∂s)]P + f ′(Q)P

+ Q̇[dt − tr (A(y)D2d)] − 2A(y)Dd ·DxQ̇− 2tr
(
A(y)D2

x,yQ
)

−(b + Ã) ·DxQ− B · (DyQ+ Q̇Dd(x, t)).

To simplify these expressions as usual we do not exhibit the arguments of the
functions unless it is necessary to avoid confusion and we denote byy the x/ε
argument.

Choosing
Q(s, y, x, t) = q(s, y,Dd(x, t)),

whereq is as in (6.8) fore = Dd(x, t), we immediately see that Iε = 0.
Moreover, if

P(s, y, x, t) = p(s, y,Dd(x, t), x, t),

a simple calculation shows that IIε = 0 is equivalent top satisfying (6.15) with
e = Dd(x, t) and

χ(s, y,Dd(x, t), x, t) = −q̇[dt − tr A(y)D2d] + 2A(y)Dd ·D2dDeq̇

+ 2tr(A(y)D2dD2
y,eq)+ (b(y)+ Ã(y)) ·D2dDeq

+B(y) · (q̇Dd(x, t)+Dyq).

In view of (6.20) such ap exists provided that∫ ∫
χ(s, y,Dd(x, t), x, t)X(s, y,Dd(x, t))dsdy = 0,

with X as in (6.17), (6.18) fore = Dd(x, t).
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By the periodicity ofA, the compatibility condition leads to

dt =
(∫ ∫

q̇(s, y,Dd)X(s, y,Dd)dsdy

)−1

∫ ∫
X(s, y,Dd)

{
tr
[
q̇(s, y,Dd)A(y)D2d + (A(y)Dd ⊗D2dDeq̇(s, y,Dd)

+D2dDeq̇(s, y,Dd)⊗ A(y)Dd)+ 2A(y)D2dD2
y,eq(s, y,Dd)

+ 1
2

(
(b(y)+ Ã(y))⊗Deq(s, y,Dd)

+Deq(s, y,Dd)⊗ (b(y)+ Ã(y))
)
D2d

]
+B(y) · (

Dyq(s, y,Dd)+ q̇(s, y,Dd)Dd
) }
dsdy

which, of course, justifies the claim at least formally.

7. Asymptotics of Nonlocal Equations

In this section we study the asymptotics of two very general nonlocal fully
nonlinear integral-differential equations which arise in the theory of stochastic Ising
models with ferromagnetic long-range interactions and general spin-flip dynamics,
which is briefly described in the next section.

The two equations we consider are

ut +Φ(β(J ∗ u))[u− tanh(β(J ∗ u))] = 0 in R
N × (0,∞),(7.1)

ut + (u− J ∗ u)+ f (u) = 0 in R
N × (0,∞).(7.2)

Hereβ is a positive constant,Φ is a continuous positive function,f = W ′,W
being a double-well potential, andJ ∈ C1(RN,R) is assumed to be nonnegative,
even, and to have compact support, i.e.,

J (r) = J (−r) = 0, and J (r) = 0 if |r| > R for someR > 0.(7.3)

The assumption thatJ has compact support is made only to simplify the arguments
and can be easily removed by specifying appropriate growth and integrability con-
ditions onJ at infinity. We leave this task to the reader. ThatJ is nonnegative is,
however, very important both from the physical and analytical point of view.

Before we make precise assumptions about the rest of the terms in (7.1) and (7.2),
we remark that since we are interested in the asymptotic behavior of the solutions
for large(x, t), it is appropriate to introduce the scaling(x, t) 7→ (ε−1x, ε−2t). To
this end, we define

uε(x, t) = u(ε−1x, ε−2t),

and observe that, ifu satisfies (7.1), thenuε satisfies the equation

uε,t − ε−2Φ(β(J ε ∗ uε))[uε − tanh
(
β(J ε ∗ uε)

)
] = 0 in R

N × (0,∞),(7.4)

and, ifu is a solution of (7.2), thenuε satisfies
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uε,t + ε−2[uε − J ε ∗ uε] + ε−2f (uε) = 0 in R
N × (0,∞),(7.5)

where, forx ∈ R
N ,

J ε(x) = ε−NJ (ε−1x).

We are going to consider the equations (7.4) and (7.5) together with the initial
data

uε(x, 0) = g(x) in R
N .(7.6)

This section is divided into three parts. The first two are about the asymptotics
of (7.4) and (7.5), while in the third part we discuss the meaning of the results.

7.1. The Asymptotics of(7.4)

In addition to (7.3) here we assume that

βJ̄ = β

∫
J (x)dx > 1.(7.7)

It turns out that (7.1) and, therefore (7.4), admits three steady-state solutions
−mβ, 0 andmβ , withmβ > 0, i.e., solutions of the algebraic equation

s = tanh
(
βJ̄ s

)
,

which are, by the way, independent ofΦ.
The precise assumptions onΦ : R → R are

Φ > 0, Φ ∈ C(R), and for allm ∈ [−mβ,mβ ]

andr ∈ [−βJ̄mβ, βJ̄mβ ],

r 7→ Φ(r)(m− tanhr) is nonincreasing inr.

(7.8)

An immediate consequence of (7.8) is that (7.1) and (7.4) satisfy a comparison
principle. Since this is more or less straightforward, we leave it up to the reader to
fill in the details.

We need to assume that (7.1) admits, for all directionse ∈ SN−1, travelling-
(standing-) wave solutions connecting−mβ andmβ , i.e., solutions of the form

u(x, t) = q(x · e, e),
whereq : R × SN−1 → R is such thatq(±∞, e) = ±mβ .

We assume that

for all e ∈ SN−1, there existsq : R × SN−1 → R such that

q(ξ, e) = tanh
[
β

∫
RN
J (y)q(ξ + e · y, e)dy] ,

q(0, e) = 0 and q̇(·, e) > 0 onR,

and, asξ → ±∞, q(ξ, e) → ±mβ exponentially fast with the

rate depending one andq ∈ C2(R × SN−1) ∩W2,∞(R × SN−1).

(7.9)
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The existence of suchq ’s, which is by no means trivial, is discussed inBates,
Fife, Ren & Wang [BFRW], Katsoulakis & Souganidis [KS3], and
Orlandi & Triolo [OT], to which we refer for details. In the isotropic case, i.e.,
whenJ (r) = J (|r|), the standing-wave solutions are independent of the directione.
For a detailed study of such solutions we refer to the paper ofDe Masi, Gobron
& Presutti [DGP].

For notational simplicity below we rewrite the equation satisfied byq as

q(ξ, e) = tanh[β(J ∗ q)(ξ, e)] ,
where, for all(ξ, e) ∈ R

N × SN−1,

(J ∗ q) (ξ, e) =
∫
J (y′)q(ξ + y′ · e, e)dy′.(7.10)

Finally we need some assumptions which play the role of (4.8) and (4.10). The
linearization, the equation satisfied by the travelling wave aroundq(·, e) for each
e ∈ SN−1, leads to the unbounded, self-adjoint operator

A(e)p = (1 − q2(ξ, e))−1p − β(J ∗ p).
Notice that we write(1−q2)−1p−β(J ∗p) instead ofp−β(1−q2)J ∗p exactly
in order forA to be self-adjoint (the operatorp 7→ J ∗ p is self-adjoint sinceJ
is even). It is now a straightforward exercise to check thatq̇(·, ·e) ∈ kerA(e) for
all e ∈ SN−1.

We assume that, for eache ∈ SN−1,

kerA(e) = q̇(·, ·, e)R.(7.11)

In our analysis below we need to solve, for appropriate functions

χ : R × SN−1 × R
N × [0,∞) → R,

the equation

A(e)p = χ(·, e, x, t) onR.(7.12)

We assume that

for all compact subsetsK of R
N × [0,∞) and for all smooth

functionχ : R × SN−1 ×K → R, such that

for all (ξ, e, x, t) ∈ R × SN−1 ×K and for someB > 0,∫ ∞

−∞
χ(ξ, e, x, t)q̇(ξ, e)dξ = 0,

‖χ(ξ, e, ·, ·)‖C2(K) 5 B
[
[(|y|2J ) ∗ q̇](ξ, e)+ [(|y|J ) ∗ |qe|](ξ, e)|

]
,

there exists a solutionp ∈ C2(R × SN−1 ×K) of (7.12) such that

‖p‖W2,∞(R×SN−1×K) < ∞ andp(ξ, e, x, t) → 0

exponentially fast as|ξ | → ∞.

(7.13)



A New Approach to Front Propagation Problems: Theory and Applications 287

To state our result about the asymptotics of (7.4) we need to introduce the scalar
µ : SN−1 → R and the matrixA(e) : SN−1 → S N , given by

µ(e) = β

[∫
(q̇(ξ, e))2

Φ(β(J ∗ q)(ξ, e))(1 − q2(ξ, e))
dξ

]−1

,(7.14)

Ã(e) = 1
2

∫∫
J (r)q̇(ξ, e)

[
q̇(ξ + r · e, e)(r ⊗ r)

+Deq(ξ + r · e, e)⊗ r + r ⊗Deq(ξ + r · e, e)]drdξ.(7.15)

Notice that if J is radially symmetric, thenq is independent ofe and, hence,
Ã(e) = θI for the obvious choice of the constantθ .

Next define the functionF : S N × R
N\{0} → R given by

F(X, p) = −µ(p̂) tr
[
Ã(p̂)X(I − p̂ ⊗ p̂)

]
.(7.16)

It is straightforward to check thatF is geometric, i.e., that it satisfies (2.10) but
it is not clear a priori (at least to us) whether it is elliptic, i.e., whether it satisfies
(2.3). Finally as usual we extendF to p = 0 by considering upper- and lower-
semicontinuous envelopes.

Consider next the initial-value problem

ut + F(D2u,Du) = 0 in R
N × (0,∞),

u = u0 onR
N × {0},(7.17)

and recall (cf. [BSS, CGG, IS, G], etc.) that, under the above assumptions and ifF

is degenerate-elliptic, it admits, for allu0 ∈ UC(RN), a unique viscosity solution
u ∈ UC(RN × [0, T ]) for all T > 0.

Our result about the asymptotics of (7.4) is

Theorem 7.1. Assume that(7.3), (7.8), (7.9)and(7.13)hold. Then:
(i) The functionF defined by(7.16)is degenerate-elliptic.
(ii) Let uε be the solution of(7.4)–(7.6)with g : R

N → [−mβ,mβ ] being a
function such that the set00 = {x : g(x) = 0} is a nonempty subset ofR

N . Then,
asε → 0,

uε →
{
mβ

−mβ

}
locally uniformly in

{
{u > 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(7.16)with u0 = d0 the signed distance
to 00, which is positive in{g > 0} and negative in{g < 0}.

If, in addition, the nonempty condition(2.11)holds, then, asε → 0,

uε →
{
mβ

−mβ

}
locally uniformly in

{ {u > 0}
{u > 0}c

}
.
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Theorem 7.1 is proved by using the general abstract method of Theorem 3.1
along the lines described earlier in previous sections. As before, the main issue is
to check (H4). This follows by a combination of the results of [DGP], who studied
the initialization of the front for the isotropic case although their results can be
adapted for our situation, and the results of [KS3], who studied Theorem 7.1 under
the assumption that the propagating front is smooth.

7.2. The Asymptotics of(7.5)

We begin with an assumption about the existence, for eache ∈ SN−1, of
travelling-wave solutions of (7.2) connectingm− andm+, i.e., solutions of the
form

u(x, t) = q(x · e, e),

whereq : R × SN−1 → R is such thatq(±∞, e) = m±. The existence of such
solutions whenf satisfies (4.4) and (4.6) is studied in [BFRW].

With the same notations as in (7.9) we assume that

for eache ∈ SN−1, there exists a unique solutionq : R × SN−1 → R of

J ∗ q − q = f (q) in R

such thatq(0, e) = m0, q̇(·, e) > 0 onR,

q ∈ C2(R × SN−1) ∩W2,∞(R × SN−1) and, asξ → ±∞,

q(ξ, e) → m± exponentially fast and with a rate depending one.

(7.18)

Linearizing the equation of the standing wave aroundq(·, e), for eache ∈ SN−1

leads to the unbounded self-adjoint operator

A(e)p = J ∗ p − p − f ′(q)p.

It is immediate thaṫq(·, e) ∈ kerA(e). Below we assume that, for alle ∈ SN−1,

kerA(e) = q̇(·, e)R.(7.19)

As before, we need to find solutions to the equation

A(e)p = J ∗ p − p − f ′(q)p = χ(ξ, e, x, t) in R,(7.20)

for appropriate functionsχ : R × SN−1 × R
N × [0,∞) → R. We assume that
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for all compact subsetsK of R
N × [0,∞) and for all

smooth functionχ : R × SN−1 ×K → R, such that, for all

(ξ, e, x, t) ∈ R × SN−1 ×K and for someC > 0,∫ ∞

−∞
χ(ξ, e, x, t)q̇(ξ, e)dξ = 0,

‖χ(ξ, e, ·, ·)‖C2(K×SN−1)

5 C[((|y|2J ) ∗ q̇)(ξ, e)+ ((|y|J ) ∗ |qe|)(ξ, e)],
there exists a solutionp ∈ C2(R × SN−1 ×K) of (7.20) such that

‖p‖W2,∞(R×SN−1×K) < ∞,

and, as|ξ | → ∞, p(ξ, e, x, t) → 0

exponentially fast and uniformly inSN−1 ×K.

(7.21)

Finally, we define the functionF : SN × R
N\{0} → R by

F(X, p) = −µ(p̂) tr
[
Ã(p̂)X(I − p̂ ⊗ p̂)

]
,(7.22)

where, for eachp ∈ R
N\{0},

µ(p̂) =
( ∫

R

q̇2(ξ, p̂)dξ
)−1

,(7.23)

Ã
(
X, p̂

) = 1
2

∫ ∫
J (y)q̇(ξ, p̂)[q̇(ξ + p̂ · y, p̂)(y ⊗ y)

+Deq(ξ + y · p̂, p̂)⊗ y + y ⊗Deq(ξ + y · p̂, p̂)]dydξ.
(7.24)

SinceF is bounded, as usual, we extend it top = 0, by using semicontinuous
envelopes. Again it is immediate that the nonlinearityF is geometric, i.e., that it
satisfies (2.10), but it is not clear a priori thatF is also degenerate-elliptic, i.e., that
it satisfies (2.3).

Consider next the initial-value problem

ut + F(D2u,Du) = 0 in R
N × (0,∞),

u = u0 on R
N × {0},(7.25)

and recall that if the above assumptions onq andJ hold and ifF is degenerate-
elliptic, then (7.25) admits, for allu0 ∈ UC(RN), a unique viscosity solution
u ∈ UC(RN × [0, T ]) for all T > 0.

We have

Theorem 7.2. Assume thatf satisfies(4.4)and(4.6)and that there exists aq such
that (7.18)and(7.21)hold. Then

(i) The functionF defined by(7.22)is degenerate-elliptic.
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(ii) Letuε be the solution of(7.5), (7.6)with g : R
N → [m−, m+] such that the

set00 = {x : g(x) = m0} is a nonempty subset ofR
N . Then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{
{u > 0}
{u < 0}

}
,

whereu is the unique viscosity solution of(7.25)withu0 = d0 the signed distance
to 00 which is positive in the set{g > m0} and negative in the set{g < m0}.

If, in addition, the no-interior condition(2.11)holds, then, asε → 0,

uε →
{
m+
m−

}
locally uniformly in

{ {u > 0}
{u > 0}c

}
.

Theorem 7.2 follows from the general abstract method as soon as (H4) is
checked. This is done by proving two lemmas, one about initializing the front
and the other about its propagation as long as it remains smooth. The first lemma
is proved along the lines of the corresponding lemma in Section 4. The proof of
the second lemma, which is, as always, more complicated, follows along the lines
of the discussion at the end of Section 4, as soon as the correct asymptotics are
identified. Since we have repeated this argument several times so far, we only show
the formal asymptotics. It is worth mentioning, however, that here we can derive
the necessary information to present a proof for the second lemma along the lines
of the formal asymptotics. Since this takes a number of pages, even at the formal
level, we choose not to present them here.

To this end we look for an expansion ofuε of the form

uε(x, t) = Q(ε−1d(x, t), x, t)+ εP (ε−1d(x, t), x, t)+O(ε2),(7.26)

whered is the signed-distance to the front andQ andP are to be chosen.
Substituting in (7.5) and rearranging terms we find

uε,t + ε−2(uε − J ε ∗ uε)+ ε−2f (uε) = ε−2Iε + ε−1II ε +O(1),

with

Iε = Q−
∫
J (y)Q(ξ +Dd · y, x, t)dy + f (Q),

II ε = Q̇dt −
∫
J (y)

[
1
2Q̇(ξ +Dd · y, x, t)D2dy · y +DxQ(ξ +Dd · y, x, t) · y

]
dy

+P −
∫
J (y)P (ξ +Dd · y, x, t)dy + f ′(Q)P,

whered and its derivatives are evaluated at(x, t)andξ stands for theε−1d argument.
It is now clear that, ifQ is chosen so that

Q(ξ, x, t) = q(ξ,Dd(x, t)),

with q as in (7.17), then Iε = 0.
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With thisQ, if we also choose

P(ξ, x, t) = p(ξ,Dd(x, t), x, t),

the equation IIε = 0 takes the form

J ∗ p − p − f ′(q)p = χ(ξ,Dd(x, t), x, t),

where, fore = Dd(x, t),

χ(ξ, e, x, t) = −q̇(ξ, e, x, t)dt

+ 1
2

∫
J (y)q̇(ξ + e · y, e)D2dy · ydy

+
∫
J (y)D2dDeq(ξ + e · y, e) · ydy.

In view of (7.21) such ap exists provided that∫
χ(ξ, e, x, t)q̇(ξ, e)dξ = 0,

which leads to

dt + F(D2d,Dd) = 0,

with F as given by (7.22).
We leave the details to the reader.

7.3. A Few Comments

One may simplify (7.4) and (7.5) by substitutingJ2(1m−m) for the convolution
termJ ∗m (see, for example,Penrose [P]), whereJ̄2 = ∫

J (|r|)|r|2dr, or even
additionally linearize the hyperbolic tangent, thus obtaining a Ginzburg-Landau
equation like (4.1). It is known (see, for example, [J, ESS, and BSS]) that, in the
isotropic case, both simplified models have the same qualitative asymptotic behavior
as (4.3) with different scalar coefficients for the curvature. In the anisotropic case,
however, this picture is no longer true. The second-order approximations described
earlier still give, in the limitε → 0, isotropic motion by mean curvature with a
constant transport coefficient, while (7.4) and (7.5), according to our analysis, yield
the anisotropic equations (7.17) and (7.25) respectively, with theµ andÃ given by
the Green-Kubo formulae (7.14) and (7.15) and (7.23) and (7.24) respectively. It
appears that anisotropy is a higher-order effect which cannot be accounted for only
with second-order approximating equations. This phenomenon is also pointed out
by Caginalp & Fife [CF], where depending on the type of anisotropy expected,
they “correct” (4.1) by suitably adding higher-order derivatives.
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8. Stochastic Ising Models

In this section we use the results of Section 7 to obtain some new results regard-
ing hydrodynamic (macroscopic) limits of ferromagnetic stochastic Ising models
with long-range interactions and general spin-flip dynamics, which in the sequel we
will call IPS (interacting particle systems) for short. Stochastic Ising models are the
canonical Gibbsian models used in statistical physics to describe phase transitions.
Below we briefly recall the basic facts about IPS. For a more detailed discussion
we refer, for example, toDe Masi, Orlandi, Presutti & Triolo [DOPT],
Spohn [Sp], etc.

Ising models are interacting-particle (spin) systems on the latticeZN . A spin
configurationσ is an element of the state (configuration) spaceΣ = {−1, 1}ZN .
We writeσ = {σ(x) : x ∈ ZN } and callσ(x) the spin atx.

The energyH of the system, evaluated atσ , is given by

H(σ) =
∑
x |=y

Jγ (x, y)σ (x)σ (y)+ h
∑

σ(x),

whereh is attributed to an external magnetization field andJγ , γ−1 > 0 being the
interaction range, is the Kač potential defined by

Jγ (x, y) = γNJ (γ (x − y)) (x, y ∈ ZN).(8.1)

HereJ : R
N → R is assumed to be nonnegative, even, and to have compact

support, i.e., to satisfy (7.3). We refer to Section 7 for a discussion of the meaning
of these assumptions.

The dynamics of the model consist of a sequence of flips. Ifσ is the configuration
before a flip atx, then after the flip atx the configuration is

σx(y) =
{

−σ(x) if y = x,

σ(y) if y |= x.

We assume that a flip occurs atx, when the configuration isσ , with a rate
cγ (x, σ ), given by

cγ (x, σ ) = Ψ (−βhγ (x)σ (x)),(8.2)

whereβ > 0 is identified with the inverse temperature,

hγ (x) = h+
∑
y |=x

Jγ (x, y)σ (y),(8.3)

andΨ = Ψ (r) > 0 satisfies the detailed balance law

Ψ (r) = Ψ (−r)e−r (r ∈ R).(8.4)

It follows easily from the above that

hγ = 1xH = H(σx)−H(σ),

i.e., the change in the energy due to a flip atx.
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The underlying process is a jump process inL∞(6; R) with generator given
by

Lγ f (σ) =
∑
x∈ZN

cγ (x, σ )[f (σ
(x))− f (σ)].

Such processes leave the Gibbs measures, associated with the Hamiltonian
H and the inverse temperatureβ, invariant. Typical choices ofΨ ’s areΨ (r) =
(1 + er)−1 (Glauber dynamics),Ψ (r) = e−r/2 (Arrhenius dynamics) orΨ (r) =
e−r+ (Metropolis dynamics).

A very basic question in the theory of stochastic Ising models with Kač po-
tentials is the behavior of the system as the interaction range tends to infinity, i.e.,
γ → 0. The passage in the limitγ → 0, which in the physics literature is identi-
fied with grain coarsening, of quantities like the thermodynamical pressure, total
magnetization, etc., is known as the Lebowitz-Penrose limit (see, for example, [DP;
K1,2,3], etc.).

Along these lines we study the asymptotics, asγ → 0, of the averaged magne-
tization

mγ (x, t) = Eµγ σt (x) ((x, t) ∈ ZN × [0,∞))(8.5)

of the system, whereEµγ denotes the expectation of the IPS starting from a measure
µγ . The relevant mesoscopic mean-field equation is

mt +Φ(β(J ∗m))[m− tanhβ(J ∗m)] = 0 in R
N × [0,∞),(8.6)

where
Φ(r) = Ψ (−2r)(1 + e−2r ).(8.7)

Indeed the following theorem is proved inKatsoulakis & Souganidis
[KS3], where we refer for a discussion about its history, relevance, etc.

Theorem 8.1. Assume that the IPS defined earlier has as initial measure a product
measureµγ such that

Eµγ (σ (x)) = m0(γ x) (x ∈ ZN),

wherem0 is Lipschitz continuous and that(8.4)holds. Then, for eachn ∈ Z+,

lim
γ→0

sup
x∈ZNn

∣∣Eµγ ( n∏
i=1

σt (xi)

)
−

n∏
i=1

m(γ xi, t)
∣∣ = 0,

wherem is the unique solution of(8.6)with initial datumm0.

In the above statement for eachn,

ZNn = {x = (x1, . . . , xn) ∈ ZN : x1 |= · · · |= xn}.
To state our result for the IPS, ifu is the solution of (2.10), fort > 0, we define

the sets

P
γ
t = {x ∈ ZN : u(γ ε(γ )x, t) > 0}, N

γ
t = {x ∈ ZN : u(γ ε(γ )x, t) < 0},

Mn
γ,t = {x ∈ ZNn : xi ∈ Pγt ∪Nγ

t }.
The result is
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Theorem 8.2. Assume thatβJ̄ > 1. Under the assumptions of Theorem 7.1 on the
initial measure, there exists aρ∗ > 0such that for anyε(γ )withγ−ρ∗

ε(γ ) → +∞
asγ → 0, and for all t > 0,

lim
γ→0

sup
x∈Mn

γ,t

∣∣Eµγ n∏
i=1

σtε(γ )−2(xi)−mnβ

∏
i∈Nγt

(−1)
∣∣ = 0,

with the limit local uniform int .

Theorem 8.2 follows from Theorem 7.1 the same way as the analogous theorem
in [KS2]; we therefore do not present its proof here.
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