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Abstract

It is known that the Van der Waals-Cahn-Hilliard (W-C-H) dynamics can
be approximated by a Quasi-static Stefan problem with surface tension. It turns
out that the Stefan problem has a manifold of equilibria equal in dimension to
that of the domair2: any sphere of fixed radius with interface contained in
the domain is an equilibrium (indistinguishable from the point of view of the
perimeter functional). We resolve this degeneracy by showing that at the W-C-H
level this manifold is replaced by a quasi-invariant stable manifold, on which the
typical solution preserves its “bubble” like shape until it reaches the boundary.
Moreover, we show that the “bubble” moves superslowly. We also obtain an
equation that determines those special spheres that correspond to equilibria at
the W-C-H level. Our work establishes the phenomenon of superslow motion in
higher space dimensions in the class of single interface solutions.
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1. Introduction

A. General Remarks

The Cahn-Hilliard equation

u = —A(E2Au — F'(u)), X € Q,
(1.1) ou_ 0 ,, ,
%—%(E AU—F(U))—O, XE(()Q

is a known model describing the phase separation and subsequent coarsening
of binary alloys [C1, C2, C3, C-H, F1, F2, F3, E, E-Z, Gul, Gu2, Gu3, B-E1,
B-E2, Ca, Ca-F, P-F, Pe]. Hefe c RN is a smooth bounded domain which
represents the containar,is the concentration of one of the species, &1d)
is the bulk free energy per unit volumE. is assumed smooth with two equal
nondegenerate minima, at= £1. A typical example i (u) = 3(u? — 1)2. The
constantas = +1 are stable solutions of (1.1), and model the situation resulting
when two different stable phases having two different concentrations (conven-
tionally assumed to be = +1) coexist at thermodynamical equilibrium. The
term containing the singular parametein (1.1) models the effect of interfa-
cial energy on the separation phenomenon, whegea measure of the relative
importance of surface energy to bulk free energy.

As was observed b¥ire [F4], the Cahn-Hilliard equation can be realized
as the gradient flow for the free-energy functional

(1.2) J.(u) :/Q {522|Vu|2+F(u)] dx

on the Hilbert spacd&-l(;l (the closed subspace 6f ~1 of functions with zero
average):

(1.3) du = —gra%o_lJE(u).

dt
Consequentlyl.(-) is nonincreasing along solutions and therefore one can expect
that, fore <« 1, solutions of (1.1) stay mostly near = —1 or u = +1, the
minima of F(u). There is ample numerical evidence [E-Fr, McK, Eyl, Ey2]
supported by some theoretical work [G1] that the typical initial condition for
0 < £ <« 1 evolves into a layered function in space. Because of this, as soon
as this initial stage is completed, we can think{bas split into subdomains on
which u.(-,t) takes approximately the constant valuek and 1, with boundaries
e-localized about an interfack (t). In agreement with the physical situation the
Cahn-Hilliard equation (1.1) preserves the mass of each component:

(1.49) / u dx = constant along the evolution.
Q

This puts a constraint on the relative size of the regions —1 andu ~ 1
corresponding to the two phases, and therefore also on the dynamics of the thin
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zone aboutl.(t) separating these regions. The initial separation can happen in
two ways, depending on whether the initial datum is a perturbation of a constant
state in thespinodalregions [B-F1, E-Fr, G1], or in themetastableregionm
[B-F2] (see Fig.1).

I/
/. |

Fig. 1.

This paper deals with fully layered solutions and is focused on a special stage
in the evolution of.(t). Formal analysis performed byeEco [Pe], recently
supported by rigorous work ddToTH [St] and ALIKAKOS, BATES & CHEN
[A-B-Ch] in general, establishes the following geometric evolution law of the
fronts I'. in the limit ¢ — O:

ou
(1.5) v=D> []
on re

where

Ap =0, x € Q/I'(t),

ou
— = Q
n 0, X € 09,

u=caK x e I(t).

Problem (1.5) will be referred to as tiMdullins-Sekerka problemHere I'(t) =
lim I'.(t) is the interface at timg; a, b are constant¥K is the mean curvature of

) atx; [g—ﬂ is the jump of% acrossI’(t); andv is the normal component
of the velocity of I"(t). We note that by switching to the slow time scale «t,

¢ can be scaled out from (1.5) confirming its geometric character. It is easy to
see that formally (1.5) is a perimeter-shortening volume-preserving law; these
facts reflect the monotonicity of.(u(t)) and the conservation (1.4). Rigorous
results on the well-posedness of (1.5) are due t€XEN and his collaborators
[Ch1, Ch-H-Y]. There is also related work 6fonsTANTIN & PucH [C-Pu] and
EscHER & SIMONETT [E-Si] on the one-phase Hele-Shaw problem. Numerics



4 N.D. ALikakos & G. Fusco

suggest that certain initial curves may pinch off and subsequently decompose
into many components [B, Ch2].

It is easy to see that a sphere, or more generally a (disconnected) surface,
consisting of a finite number of equal non-overlapping spheres contain@d in
is an equilibrium for (1.5). This paper is concerned with the degeneracy of
(1.5) —the existence of a continuum of spherical equilibria—and it carries out
a resolution via (1.1). First considered is the manifold of equilibria of (1.5)
constructed as follows: A radius > 0 is fixed such that the s€, = {¢ €
Q/d(&, 082) — p > 0} is nonempty. Each poirgt in this set can be identified with
the center of a sphere having radjusThe set of single spheres with radips
and center if2,.5, 0 < § < 1 a fixed number, is denoted By,. The following
related questions are now addressed (see Fig. 2):

(1) Is there an invariant manifolf; for (1.1), 0< ¢ < 1, which corresponds
to M,?

(2) Which equilbria orM,, correspond to equilibria at the> 0 level?

(3) What is the stability oM 77

More generally one could consider the manifold of equilibria obtained by moving
N spheres of the same radius aroty] with the condition that they stay distance

¢ apart. Unlike the single sphere case, the corresponding invariant manifold at the
e-level is highly unstable, and for this reason it is not considered in this paper.

CH

MS

Fig. 2.

1 v
Fig. 3.
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We remark that here lies an important difference between one and more space
dimensions: In one dimension the analog of the multisphere manifold is stable
(seeBATES & XUN [B-X1, B-X2]. To put our results in perspective, we feel it is
useful to give an idea of the whole evolution of a typical layered initial condition
for (1.1), from the beginning of time to the end. The picture put forward has been
only partially justified and so it should be taken, on the whole, as a speculation.
In Fig. 3, four easily distinguishable stages in the evolutiore & <« 1 are
depicted. Stage | persists for a time of ordee;lsee ALIKAKOS, BATES &

CHEN [A-B-Ch]. The transition from | to Il is speculative. So is the transition
from Il to Il which is also suggested in part by the instability of the multisphere
manifold mentioned above. Stage Il persists for a time of the oefiér. The
“bubblé retains its shape until it reaches the boundafy,, and it does so with

a speed that is exponentially small. The motion is directed, roughly, towards the
point on the boundary() that is closest to the bubble. Stage Ill is studied in
the present paper. The transitions from Il to IV should be abrupt, similar to the
disappearance of layers for (1.1) in one space dimendibol{INNEY [McK]).

On stage |V there is related rigorous work Af.ikAkos, CHEN & Fusco
[A-Ch-F]. It is established in that work (for a related equation) that tieglet
shape, when sufficiently small, persists and crawls on the bourddarpwards
points where the curvature attains a local maximum. More precisely, the center
s(t) € 992 of the “droplet” moves, approximately, according to

B =% (s
where c is a constant independent efand K is the mean curvature a2

with the sign conventiolk > 0 for a sphere. A corresponding result has been
established for the evolution law (1.5) [A-B-Ch-F]. For the equilibrium theory
we refer toMobIcA [M1-2], to KOHN & STERNBERG [K-Ste], STERNBERG

[Ste] and toCHEN & KowaLczYk [Ch-K].

Why is the “bubble” drawn to the boundary? This can be understood at
various levels with the free energy offering the most direct explanation: Recall
that the evolution happens so thiafu(t)) is monotone irt, and that for smalt,

J. registers the perimeter of the interface lying insfdeTherefore spheres are
the favored intermediate states, while interfaces intersecting the boundary are the
favored asymptotic states (Fig. 4).

N
o
A

(1.6)

Fig. 4.
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For a deeper comprehension of this phenomenon, understanding of the “con-
nections” leading to the final state is required. This approach has been carried
out to completion only in the one-dimensional case; Se&r & PEGO [C-Pe]
and Fusco & HALE [F-Ha] for the second-order equation ard.IKAKOS,
BaTEs & Fusco [A-B-F], and BATES & Xun [B-X1-2] for the Cahn-Hilliard
equation.

The phenomenon of exponentially slow motion, in one space dimension, was
first pointed out iNNEU [N]. BRONSARD & KoOHN [Bro-K1-2] have intro-
duced an energy approach for justifying slow motion of layers in one dimension
that later was implemented for the Cahn-Hilliard equation ByONSARD &
HiLHORST [Bro-H]. GRANT [G2] later succeeded in refining and extending the
results in [Bro-H] to a vector analogue of the Cahn-Hilliard equation known as
Cahn-Moral system. The Bronsard-Kohn idea is elegant and relatively simple.
However, it does not establish persistence of shape until the layers come together.
For a refinement which allows that conclusion, and which can be applied also to
higher space dimensions, sA@1KAKOS, BRONSARD & Fusco [A-Bro-FJ.

1.1. B. Description of the Contents of the Paper and of Its Structure

As said before, the present work utilizes the Cahn-Hilliard equation for re-
solving a certain type of degeneracy of the limiting geometric problem (1.5).
Specifically, it shows that when the singular parameter 0 is sufficiently
small, the Cahn-Hilliard equation (1.1) admits solutions which exhibit an (al-
most) spherical interface, which persists and either remains in equilibrium inside
Q, or migrates towards the boundady) at a very slow speed. These solutions
as functions ofx are very close to step functions, with a steep transition from
—1 to 1 across a spherical interface, and represent the physical “bubble” of a
homogeneous phase that slowly moves inside another homogeneous phase with a
different concentration. We estimate the tim&eeded for reaching the boundary
to be transcendentally large in

(1.7) T > Constanie®/¢

wherec > 0 is a constant independent gfandd? is the distance of the bubble
from the boundary)() : d¢ = d(¢, 09Q) — p. We show that, when & ¢ < 1, the
dynamics of the centef € 2 is determined to a very high degree of accuracy
by an ordinary differential equation (cf. Theorem 7.2)

(1.8) £=ct.

Here¢& — c¢ is a vector field (defined of,.s) which is transcendentally small
ine

(1.9) cf| =0 (e*cdf/f)
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and can, in principle, be computed and used to detect those special points in
2,+s which can be the centers of spherical interfaces corresponding to station-
ary solutions of (1.1). We establish the following estimate for the funcgioh
determining the location of the center of the bubble (cf. Theorem 7.2):

(110) 5(]:) = Cf(t) + O(e_C/E‘CE(t)D.

From this it follows that¢ is the center of a bubble remaining at equilibrium
inside( if and only if

(1.11) ct=0

(see Theorem 5.1 for a precise statement). A careful analysis of (1.11) is outside
the scope of the present work and will appear in a forthcoming paper, but the
expression focé derived in the proof of Theorem 5.1 indicates that the bubble
moves towards the closest points on the bound#y as if it were attracted

to its mirror image with respect to the boundary. This leads to the conjecture
(backed up by formal calculations based on the forne%fthat the bubble can
remain in equilibrium insid&) only if its center¢ is inside the convex hull of

the points ofo€) having distance fron§ equal tod(¢, 0Q?) (cf. Fig. 5). Recently

M. WARD [Wa] has done the complete asymptotics for a related equation. His
work provides more evidence in favor of the speculation above.

=

Fig. 5.

From the general theory of semilinear equations [H] and from the gradient
nature of equation (1.1) it follows that (1.1) generates a semiflow in a suitable
Sobolev space X and that this semiflow admits a global attractet [Hal].

This is a compact connected invariant set which attracts bounded. sttss
expected to depend anin a singular way as — 0 (see [A-B-F]) and therefore

in general one cannot hope to derive a limit problem, a system of differential
equations which could capture the global limit behavior do& 1. In such a
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situation, when studying the limit as— O, it is preferable instead of focusing

on the global attractor, to concentrate on certain “slices” of it. These are invariant
subsets of the attractor of complexity bounded uniformly #ind therefore with
meaningful limits ass — 0. Regions I, lll, and IV in Fig.3 correspond to
different energy slices of the attractor. We surmise that the set of step functions
M, mentioned above is the limit, as— 0, of an invariant manifoIch5 of (1.1)
which is made up of functions with approximately spherical interface. Strictly
speaking, a proof of the existenceMf is not presented here although a related

manifold I\7Ip6 is constructed which contains the equilibria of (1.1) with almost
spherical interface contained in and which is approximately invariant in the
sense that solutions starting near it stay near it (cf. Theorem 7.2). The construction
of |\7Ip5 is basic in the derivation of the results presented hgrﬁ.would be,
clearly, a very good approximation to the invariant maniflg.

In this paper only the two-dimensional case is considered. However all ar-
guments and techniques apply to the general ¢dase 2 with the following
modifications. First the logarithmic Green function has to be replaced by the ap-
propriate higher-dimensional Green function. This point is straightforward. The
second point involves the spectrum, specifically estimate (6.6) in Theorem 6.1,
the higher-dimensional analog of which has not yet been established. Instead the
seemingly suboptimal result

A, = C'e?

is available, which, however, is sufficient for the purposes of this paper. In fact
anything algebraic would do (see the Introduction in [A-F1]). In Section 2 we
construct bounded radial solutions to

(1.12) A(Au — F'(u)) =0

on the whole space, rescaled versions of which are used for constructing good
approximations for solutions to (1.1) with almost spherical interface. These radial
bounded solutions of (1.12) (Fig. 6) are used as theltling blocks of the quasi-
invariant manifoldl\?l;. Equation (1.12) is solved by a perturbation argument

U*

Fig. 6.
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which is of some independent interest but on the other hand is not essential in
understanding the rest of the paper. The reader mostly interested in the dynamics
of bubbles can skip the proofs of Propositions 2.1 and 2.4, keeping in mind the
statements and the definition of the bubbfein Section 3. In Section 4 various
results concerning the operator

(1.13) —2A+F"(u)

in L?(R?) are collected. In particular, we prove an estimate (cf. Theorem 4.2) for
the generalized inverse of (1.13), which is then systematically employed in the
proof of Theorem 5.1. Knowledge of the proof of Theorem 4.2 is not essential
for the comprehension of the results in Sections 5 and 7. The reader mostly
interested in the main results of the paper needs to be only familiar with the
statements of Theorems 4.1 and 4.2. In Section 5, building on the results of
Sections 3 and 4 we construct the quasi-invariant manrfb/fd which has three
important properties:

(a) The elements d\‘7lj are step-like functions of changing abruptly from-1
to 1 across a spherical cell of radipsand thickness.

(b) l\7lp5 contains the equilibria of (1.1) with an almost spherical interface of
radiusp.

(c) l\7lpE satisfies a quasi-invariance condition (5.2) and solutions starting near
M ¢ remain neaM ¢ for a very long time (Theorem 7.2).

The basic geometric ideas behind the constructioh?lgfcan be summarized as
follows: We seek to determing® andc(¢) satisfying the two conditions

3
(1.14) LUE+8) =c(€)-ué (=g (g)ai TNT):
3 & 3
where % is the Cahn-Hilliard vector field,

(1.15) L(u)= A (—*Au+F'(u)),

ué a “bubble” function (see Section 3) antl denotes orthogonality i, .

The intuition behind (1.14) is based on the fact that the manifold of bubbles
M= {u¢/¢ € Q,.s} is already an excellent approximation of the true invariant
manifold. Indeed, if the manifold of bubbles were truly invariant, then the vector
field £ would be tangent to it at every point:

(1.16) L(U°) € TyeM;;.
The tangent spac&;:M_ is spanned bypus/9¢, i = 1,...,N and therefore
the condition (1.16) can be stated equivalently in the form
3
(L.17) s =g,
0§

for appropriatec’s. Although (1.17) is false in the sense that there are generally
noc;’s for which it holds, it can be amended by adding a small correatices an
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extra unknown. This correction gives rise to (1.14), which can be considered as a
global Liapunov-Schmidt reduction. In fact, once (1.14) is solved, the bifurcation
equation (1.11) can be utilized to determine the equilibria with almost spherical
interface. A linear version of thev*equation” (1.14) was already introduced in
ALIKAKOS, BATES & Fusco [A-B-F] and in Fusco & HALE [F-Ha]. Both
of these works however concern the one-dimensional case where equilibria can
be easily determined by phase-plane analysis.

In Section 7, Theorem 7.2 is established. It contains the results on the dy-
namics of bubbles (cf. (1.9), (1.10)). The proof uses semigroup theory and is
based on the spectral estimates for the linearized Cahn-Hilliard operator

A(—e2AY +F"(Us)p) = =\, X € Q,
(1.18) Oy _ 0AY _

on on

that were derived in [A-F1] and are stated in Theorem 6.1, and on the “slow-
channel” ideas ofCARR & PEcO [C-Pe]. In Fig. 7 we show the quasi-invariant
manifold I\7I§ together with the “slow channel” around it. According to Theorem
7.2, if the initial condition is chosen in the inner neighborhood, then the solution
can leave the outer neighborhood, describecc@y wherec as in (1.14), only
from the top or from the bottom. This implies that in physical space either the
bubble stays i) forever or it persists until it reach&x?.

0, x €09,

C(&)

Fig. 7.

Some of the results in the present paper appeared without proof in the
Barcelona EQUADIFF proceedings [A-F2].

2. Radial Equilibria on the Whole Space

The equilibria of (1.5) contained entirely fa  R? are circles. This suggests
the existence of bounded radial stationary solutions to the Cahn-Hilliard equation
considered in the whole d&2. A functionu € C?(R?) is such a solution if, and
only if, it is radial and satisfies

(2.2) 2Au—F'(u)y=0, xecR?

for some constant.
The following proposition concerns the existence of radial solutions of the
rescaled version of (2.1)

(2.2) Au—F'(u)y=0, xecR2
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Proposition 2.1.There exists a number> 0 and smooth functions : (p, o) —
R, U*:[0,0) x (p,00) — R, such that for each € (p, oc), o(p) and ux, p) =
U *(|x|, p) satisfy equatior{2.2). Moreover, U*(r, p) is increasing in r and

(i) o(p)=2p t+0(p?),

(i) U*(p,p)=0(p7"),

(iii) 1+ U*(0,p) =0(p™ ")

(|V) Ilml’—»oo u *(r ) P) = Oé(p),

where.2" > 0is a constant and(p) is the root near 1 of the equation’f) +
a(p) =0.

V) alp) —U*(r,p) =0 =0) 1> p v(p) = (F"(alp)?,

and similar exponential estimates hold for the derivatives ¢f with respect
tor.

Proof. If o, U* as in the proposition exist, then the functidr(s) = U *(s—p, p)
satisfies

Ur+—U?”-F' (U =0(p), —p<S<oo.
p+s

Therefore we can expect that, as— oo, U” tends toU, the unique bounded
solution of

(2.3) U-F'(U)=0, Jim U(s)==+1, U©)=0

On the other hand, away from the interface, we can exgécto be close to one
of the roots ofF’. The proof is a perturbation argument based on this observation.

a. An equivalent problentix p > 0 and define

(24) U(r) i -1 +’w(|’), 0? r § %pa
u(p+s)=U(s)+u(s), —zp=s.

Seta = 5p and consider the problem

r=Yrw) — v2w = Lo [F'(—1 +w) — 72w + o] + aa =16,
r € (0,00)
i~ F/(U)0 = L amlF/(U +0) — F/(U) — F/(U)u
—(p+s) MU +i) +0)]+ B0 a, SER.
w(0) =0,
~1+w(a) =U(-a) +v(-a), w(@")=U(-a)+i(-a"),

oo .
/ vU =0,

where 1}, is the characteristic function of the interval [a,bf, = F”(1), and
04 is the Dirac function ata. If w: [0,00) — R, v: R — R, 0,a, 3 €

(2.5)
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R is a solution of (2.5) withw,v bounded, then the function defined by
(2.4) corresponds to a bounded radial solution of (2.2). On the other hand, if
corresponds to a bounded radial solution of (2.2), then the functionglefined

by (2.4) satisfy equations (2.5) in the intervals 4]} [—a, c0), and it can be
shown that they can be extended uniquely to>{Q) andR as solutions of (2.5)
for suitable values op, o, a, S.

Remark.We owe an explanation to the reader about the role of the distributions
05 andd_,. As we have mentioned, we split the problem onxdjnto two half-
interval problems and a matching condition. The distributions introduced allow
us to recast each of the half-interval problems into whole-space problems. The
idea is general and can be utilized for taking a Dirichlet problem on a bounded
domain and then modifying the equation so as to produce a problem on the
whole space whose solution, when restricted to the bounded domain, satisfies
the original Dirichlet problem. The advantage of the whole-space point of view
is that the relevant operations now have known inverses expressible in terms of
Green'’s functions on the whole space. The same idea is used again in the proof
of Theorem 5.1.

b. The map(w,v) — (o, ). For studying the solvability of the problem (2.5)
we need the following lemmata. The proofs are quite standard and are omitted.

Lemma 2.2.The problem

r=Y(rK ) — 2K =7715,, (r,7) € (0,00) x (0, 00),

(2.6) Ki(0,7) =0, rIim rKi(r,7)=0

has a unique solution K[0, cc)?> — R. The function K satisfies

> 1
2.7) K(r,7) <0, K(r,7)rdr = — =,
=
0 12
(2.8) K(r,7)7+i_e‘”_‘r‘7| < Le‘c“‘ﬂ r>o0, 7>0,
2v 1+7

for some constants,€ > 0. Similar estimates hold for derivatives of K.
Lemma 2.3.The problem

U (r)u
2z’

/ g(s, U (r)dr =0

— 00

Gss — FN(U )g = 6T - (S7 T) € Rza

(2.9)

has a unique solutiog : R? — R. The functiory satisfies

1 _
(2.10) ‘g(s, )+ ny_efu\sfﬂ <c e le=eBsl (s, 7) € R?,

for some constants & > 0. Similar estimates hold for derivatives gf
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Givenw € CY[0,a], v € C[-a,x),a, 3,0 € R set
(2.11) q(w) = F'(—1+w) — 2w
' p(v) =F'(U +v) —F'(U) —F"(U)v — (p+s) 10,

and define

a

ﬁ)(r):/o K(I’,7')[q(w)](7')7'd7'+U/O K(r,7)rdr +aK(r,a),

12 19=— [ gs7)2 2

pET

ar+ [ " g P dr

+o / " g(s, 7Y dr + By(s, —a).

By Lemma 2.2, the functiom Satisfiesib(O) =0 and is a solution of (8);
whenw in the right-hand side is considered a known function. By Lemma 2.2,
the functionv”is orthogonal toU and, provided the right-hand side of.§% is
also orthogonal tdJ, is a solution of (5), whenw in the right-hand side is
a known function. We now show that, & = 3p is sufficiently large, then the
numbersa, 3, o can be chosen so that this orthogonality condition is satisfied
together with the two matching conditionsain (2.5). We obtain the following
linear system

(2.13)
Jou 0 U(-a) o |
(= [Zg(-a,n)dr+ [}K(a,7)rdT) K(a,a) —g(—a,—a) al=|m
(= /= qa(—a,7)d7 + [FKi(a,7)7d7) Ki(a~,a) —ga(—a",—a) | |3 n

where the subscript 1 denotes differentiation with respect to the first variable and
I, m,n are given by the expressions

oo 112 o0 .
= Sder = [ e
m:1+U(—a)—/oog(—a,7-)U(T)

_a ptT

ey +| " gca, AP dr.

dT—/O K(a, n)[q(w)](r)rdr

n=U(-a) - / n(-an 2D /0 Ka(a, D[q(w))(r)r dr

—-a p+T

+ [" aa el dr

—a
Using the estimate
(2.15) U(s)| < Ce ™,

we see that
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(2.16) /WU:2+N€W@x|UeaFO@JW)

—a

On the other hand, Lemmata 2.2, 2.3 imply that the other two elements in the
first column of the matrix4;;) of system (2.13) are bounded uniformly grand
also imply the estimates

K(a, a) = —_i + O(p*z)’ g(_a’ _a) = _zi_+ 0(67;/2p)7
v v
(2.17) 1p . )
Kl(aia a) =_——+ O(p*Z)7 g]_(—a.+,a) - E + O(efl//Zp).
p

The determinand of A; is then given by

2
(2.18) d==+0(?),

vp
and we conclude that system (2.13) is solvabjeiff sufficiently large. Therefore,
under the conditiop > 1, o, «, and are uniquely determined by( v). In turn,
the functions defined by (2.12) are uniquely determineckbyy. It follows that
if we again denote by, their restrictions to the intervals [8] and [-a, —o0)
we have a mapi, v) —— (b, 9) from C9[0, a] x C[—a, o) into itself and from
the above discussion we see that fixed points of this map correspond to radial
solutions of (2.2).
c.p > limpliesthat T is a contractiarsing (2.8), (2.10) and the corresponding
estimates for the derivatives & and g, one obtains

Aor=0(p™"), Aa=1+0(p").

From this and previous estimates for the other coefficient$\pf (ve conclude
that

(219) o=1/2+---, a=Bgpl +---, [=Bjl +Bom+Bzn+---,
whereB;, i = 1,2, 3,4 are bounded functions ¢f > 1 and dots denote linear
combinations of , m, n with coefficient of ordeiO(e~°?) for somec > 0.

We now show thafl is a contraction on the closed subdebf C[0, a] x
C[—a, o) defined by

(2.20) X ={(w,v)] [[(w, v)l[x = maxX{][wlo, [[v]1} = n},
for a suitable choice of the numbgr> 0.
Definition (2.11) and %, v) € X imply that
[a(w)llo = Cnllwllo, la(w) — q(@)llo = Cnllw — wllo,
[P0 < C+p vl lIpE) ~p@)o < Cln+ p~ Yo —

whereC > 0 is a constant that does not always need to be the same.

We use the superscript 0 to denote the valué, af, n, o, ... corresponding
to w = v = 0 and the superscript 1 to denote the remaining part. Making use of
(2.9)(ii) and of its consequence

(2.21)
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/ (s, V() d(r) =0

and observing that the quantity 1U{—a) is of orderO(e—°"), we obtain
o= [ 0Tsop Y,
I

o0

@22) M =0 )+ [ g-anU@dr+0( =04,

=0 )+ [ a-anlEdr+0p =04,
p

—a

On the other hand (2.14), (2.21) imply that
< C+p vl
=1 < C+p Yo -l
Im*| < C(n+p~)|(w, v)llx
Imt —m~Y < Cn+ ) (w, v) - (@, )]x

and similar estimates far'. Therefore, from (2.19) we conclude that

o= o [ U002+ (o Y, D)),
P J -0
(2.23) o] = C@A+pm+pI(w, v)]x),

1 _
e (GG lwolk).
Using (2.12), (2.21), (2.23) and Lemmata 2.2, 2.3 we finally get
(@, )lIx < Clp~+ @+ pHll(w, v)l|x),

(@, %) = (@, 0)|[x < C(y+p~ )| (w,v) — (@, V)l|x.

Under the assumption that= 2Cp~!, these estimates show thatifis larger
than somep > 0, thenT is a map fromX into itself and is a contraction.

For eachp larger than some > 0, the fixed point ¢*,v*) of T defines via
(2.4) a functionU * which is a bounded radial solution of (2.2). From (2.23) with
n=2Cp~tand @,v) = (w*,v*), and from

(2.24) (w*, v7)Ix < Const.pt

the estimate (i) follows with

(2.25) 1:/_O;u2//_o;u

Estimates (ii), (iii) follow from (2.4), (2.24).
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Once the existence of a radial bounded solutibh of (2.2), a perturbation
of U, is established, standard phase-plane analysis applied to the equation

*

—-F'(UH =0

U*+ v

r

implies thatU * is increasing inr and also implies the statements (iv) and (v).
The proof of Proposition 2.1 is complete.O

Proposition 2.4. There is a number C> 0, independent op, such that the
functionso, U * constructed in Proposition 2.1 satisfy the following estimates:

0] o'(p) =& p 2 +0(p~%),
Us(r,p) =U(r = p) +V (1 = p,p) +0(p~?), r—pe[-Cp, o),
Us(r,p) ==U(r —p)+V,(r —p,p)+0(p3), 1 —pe[-Cp,o0)

where

(2.26) V(r,p)z.%'p*/ g(r,s)ds, 1:/ UZ\/ uU.

(ii)

Moreover

(iii) /Oo F”(U)U%V =0.

—0o0

Proof. We drop the superscript and write (v, v) instead of {v*, v*).

1. We begin by noting that the contraction m@pconstructed in the proof of
Proposition 2.1 dependS>-smoothly onp. Indeed, given{,v) in X, o,«a, 3
are chosen so that the orthogonality condition (necessary for the solvability of the
second equation in (2.5)) and the matching conditions are satisfied, and therefore
the pair (v, ) produced by (2.12) depends smoothly pnBy a well-known
result (see for example Th. 3.2, Chapter 0 in [Ha2]), the fixed point depends
smoothly onp, and so does since it is a smooth function of, v).
2. Next we establish (ii) 1. If we set=V +R, whereV is the function defined
by (2.26), andR is a remainder, equation .&), can be rewritten in the form
R-F'(U)R=[p (& —U) -V +F"(U)V]
sU b

2.27 +1 F'(U+v)—F'U)-F'U)o+ —— — ——
(2.27) [—p/2.00) |F'(U +v) —F'(U) (U)v S+ p+s
_1(—00,—/)/2]p_1('%1 - U) + ﬁé—p/Z + o(p—Z)

where we have used the expression (i) o Proposition 2.1. Now observe
that the functiorp*l(.z' —U) is orthogonal tdJ and therefore/ is the unique
solution orthogonal tdJ to the equation

V —F"(U)V = p Y2 — V).

Moreover, from (2.24) the expression_},» - [---] on the right-hand side of
(2.27) isO (p=2). Then (2.27) implies that
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—p/2 ’ .
R=pt [ g(s,0)(2" - U)o+ fls. ~0/2)+ O ).

From this expression fdR, from Lemma 2.3 and the estimateZ3);, it follows
that for —Cp < s < o0,

-p/2  _ _
IR(s)] £ Constant ( / e 7694y + e st/ 2’) +0(p™?)

— 00

< Constante~(?/2-C)r + O(p~2),
which, providedC is chosen< v/2, implies that
R(s) =0(p~?).

3. To verify the second equation of (ii), we start by differentiating (2.11), (2.12)
(together with the derivative of (22), with respect ta), (2.13), (2.14) with re-
spect top. This gives a linear system for the unknowris o/, 3’ € R, (w’,v’) €
CO0, p/2] x CY[—p/2,0) (here’ denote differentiation with respect 1.

From (2.11) and (2.24) we see that

< Const.p~Hw!lo,

4t
p 0
(2.28)
d
|45t
p

< Const. (p~3+p~ oY1) .
0

These estimates and (2.14) imply that

o0
I’+i2/ u?
[ R

M| +[n'] < Const. (p=2+p~* ([[w'flo +[|v/[|1)) -

< Const. (p~2+ p7L|v'||1) ,
(2.29) ( ["]]2)

Differentiating (2.14) with respect tp yields

o’ o |’
(2.30) Ald | =-A|a|+|N
B B n’

One can show that
[O(e= %) O O(e=°")
(2.31) A=| 0O() O(p? O(e)
O(1) O(p~?) O(e=*)
From (2.30) and the estimates (2.23), (2.24), (2.29) and (2.31), it follows that

o' +.27p72 < Constp v/,
(2:32) o' £ Const.p 1L+ [[v']l),
8] < Const.p= (L +[|u[lo + [v/]|2).
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Next we consider the expressions ®f, v/, andv’ that one obtains by differ-
entiating equations (2.12) with respectgaand by differentiating (22), with
respect tor andp. Only the expression fov’ is written, the expressions @i’
andv’ being similar.

1 1 1 o d
@3y 2’ (=-2)2 (+(-2)) +/_p/zg(7’7)<<mp(”)>(7)d7
;[ 1 , 1 1 1
oo [ asars(Gre)o (s-30) - 00 (5. 30)

=i+l +lg+ls+lsg+ig+ly

where g, is the derivative ofg with respect to the second variable. Equation

(2.15) implies thatl; = O(e="). If s > —cp with ¢ < %17, then Lemma 2.3

implies that

(2.34) lg (s.—3p)| < Conste~Const.,,
This, (2.24), (2.23), and (2.32) imply that
|2 = O(p_3)7

l4 < Const. p=3+ p=1|v/[|1),
le < Const.e=Constr (p=L+|jw||o +[|v/]1),

O(e~°»).

(2.35)

I7

On the other hand, also using.82);, we have fors > —Cp that

(2.36) ls +.2p 2 / g(s,7)| S Const. (p~°+ p~|v'|[).

— 00

From equation (2.33), the above estimateslIfori = 1,...,7, and a similar
discussion for the terms appearing in the expressions’aind v’, we obtain
that

(2.37) [v'[ls = O(p~?),

which in turn implies via (232) and (2.36) that

(2.38) o' ==X p?+0(p7?),
(2.39) v'(s) = ,%‘,0_2/ g(s, 7)dT =V, (s, p).

4. Finally we verify (iii). We begin by deriving
U'—F"(U)U =F"(u)uZ

Then by multiplying this by and integrating over-{oo, co) we find
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/_: F”(U)U2V = /_O;(U'— F"(U)U)V

= /Oo UV —F"(U)Jv =/O;(\7 —F"(U)V)U

:/ p Y2 —U)U =0.

The proof of Proposition 2.4 is completed

3. The “Bubble” u(x)

By means of Propositions 2.1 and 2.4 we can associate withgead . =
{€]d(¢,09) — p > §} a functionu® : Q — R with the following properties:

(a) It is an almost stationary solution of the Cahn-Hilliard equation in the sense
that it fails to satisfy the equation, or the boundary conditions, by terms which
are of the ordeD(e—¢/¢);

(b) It jumps from near-1 to near 1 in a thin layer of size of orderaround the
circle of radiusp and centet.

Fore <« 1 we set

(3.1) us(x) = U <|X55| P aﬁ), x € 9,

£

where the numben® is chosen to be zero at some fixég € Q,+5 and is
determined for generi¢ € .5 by imposing that the “mass” ai® is constant
on Qs

(3.2) / us :/ u®, V€€ Qpus.
Q Q
We choos€ to be a point of maximal distance froff.

Lemma 3.1. The number & is uniquely determined by the conditi¢8.2) and
the assumption & = 0. Moreover

(3.3) 0<as < C e (/)

wherev, = v (@) (see notation in Proposition 2:1d¢ = d(¢, 9Q)— p. Similar
estimates hold for derivatives of avith respect ta;, i = 1,2.

Proof. We can write

o o (225 ) (225

On the other hand based on Propositions 2.1 and 2.4, we have
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/ngo /QU*(IX ¢l 5)

= oo (P o [ (P02 o
/QU*<X ol p>dx_/ﬂéu (IX €€o| g)dx
o (L e [ (P
[0 (F2) =0 (2]
[l (52 (0]

-0 (e—(vs/s)df) <0

whereQ, = {yly =x — £ +&o, x € Q}. From Proposition 2.4 we also obtain
1 X — +sat
7/ u; <5|,p) dx < —C < 0.
€ Ja € €

Therefore we see that, i > 0 is sufficiently small, then (3.1) can be uniquely
solved fora¢ and also the estimate f@¢ follows. The proof of Lemma 3.1 is
complete. O

From the definition ofu¢ it follows that u¢ satisfies the differential equa-
tion (1.1) withu = 0 and the second boundary condition. Furthermore, from
Proposition 2.1 it can be concluded that

(3.4) 55:15 O( ~1g —(VE/E)d5) .

4. The Operator —e?A + F”(u¢) on the Whole Space
In this section we collect some results on the operator defined, £orl, by
(4.1) Ap = —2Ap +F" (U)o,

on L%(R?) that are used systematically below. Heffeis the function defined as
in (3.1) withx € R?.

A. The Spectrum

Theorem 4.1.A is self-adjoint and there isy > 0 such that for0 < ¢ < ¢,
(i) A has a unique negative eigenvalugand
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—Ce? < g < —C'e?

with C,C’ > 0 independent of. The eigenvalug. is simple and the corre-
sponding eigenfunctiong\tan be chosen to be positive. Alsg,i¥ a function of
Ix —¢| and

Vo(p +8) — as 2U (s/e)| < Ce¥?, —p<s< oo

whereq is a constant of normalization.

(ii) 0 = u1 = pp is a double eigenvalue of A and the corresponding eigenspace is
oué ou¢
the span of V= — — , i=12
P v 0% / i ||,
(iii) If x> 0is in the spectrum of A, then

> Ce2

(iv) If ¢ : R? — R is Lipschitz continuous, then

/ LpVo=€1/2ﬁ./sﬁo(63/2),
R? Ve o uzr

/ BV
e VT o U2

wherel” = {x/|x — &| = p} and «;(x) is the angle between the vectorx¢ and
the x axis.

/ pcosy; +0(¥?3), i=1,2,
r

The proof of this theorem is a consequence of [A-F1] and [St], in particular
Lemma 2.5 in [A-F1]. We omit the details and refer the reader to [A-F1].

B. Mapping Properties of the Inverse

Theorem 4.2.The problem
Ap =1, &€ LAR?),

4.2) /Rz(bviz/szvizo, i=0,1,2,

has a unique solution. The solutigncan be represented in the form
43) 000= [ ot ywedy
through a functiory : R? x R? — R which satisfies

(4.4) /]RZ g, y)Vi(y)dy=0, i=012

Moreover,
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(i) there exist CC’,c, 3 > 0 such that, for0 < ¢ < &,

(4.5)|g(x,y) — g(x,y)| < Ce™ e~/ |x _¢| ly — ¢ > p+Cle.
where dx) = | |[X — ¢| — p| and g is the fundamental solution of

(4.6) — 2 Agg +2g = dy.

(i) If ¢ € CO(QY), then

@) ' [ [ stxypits dyas < c ol
(i) Ify e CO(QQ), then

~1
4.8) ‘ [ [ stxypaye < c=u

where| - ||o stands for the € norms.

Proof. The first part of the theorem is standard. Only the estimates (i), (ii), (iii)
are proved. We start from the observation that g — g satisfies the equation

2
(4.9) e Axy — F"(uS)y = (F"(U) = 12)g+ ) Vi)V,
i=0

and derive an estimate for tH& norm of . A standard computation shows
that the right-hand sida of (4.9) is orthogonal td/; andV,. Therefore, from
Theorem 4.1, we conclude that

2
(4.10) Y=Y (1 Vi)Vi +A T h
i=1

where(-,-) is the inner product in.?(R?) and A~! is the inverse of restricted
to the subspace orthogonal Y@ andV,. We need the following classical result:

Lemma 4.3.The functiong is given by

_ 1 Ve
(4.11) 70x,Y) = 55 Ko (L x —y)

e

Where%Ko is the fundamental solution of
(4.12) —Ap+ ¢ =9,
and satisfies the estimates
(4.13) Ko(r) = — (In% + C) +0(r), r <1 (C isthe Euler constat

(4.14) Ko(r) = %e‘r(l+0(r‘1))7 r> 1.
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To simplify the notation we také = 0, assuming G €2,. This can always
be achieved by a translation.

a. Estimating(v, Vi ). From (4.4) and the symmetry gf g we obtain

(4.15) (v, Vi) =— /]RZ gly,x)Vi(x)dx, i=12

From Theorem 4.1, and also Lemma 2.2 in [A-F1] (with> O a constank v,)
we obtain

(4.16) Vi (x)| < Ce~Y2e=(C/lxl=rl,
It follows that

@17) | W] £ 052 [ Ko (% —yl) e/l
Ce5/2

ey ! —(c/e)Ix|—pl
27r\y| // |x y|)e dx dy

1 e
CE_S/Z/RZ e—/a)X|—p] (M/S,KO (V;IX —y’l) dy’) dx

whereS, = {y’|ly’| = |y|}. Equations (4.13), (4.14) imply that for eachQo = %
there is a constant, > 0 such that

(4.18) Ko(r) < C,r—%e™",

and therefore

1 v Ce/?2 [ e e/x —y/|
— Ko (=Ix =V'|)dy < / dy’
Iyl/ °(e| yl) VST )y ke

< e Cam-pl L [ Y 1O
Iyl Js, X =y /2 = X[1/2

(4.19)

where we have made use of

1 dy 1 / dz - C
Yl Js X =y Y2 X2 = Yz x|

x _ by
Tk

The estimates (4.17), (4.19) imply that

(4.20) (v, Vi)| < (;572/0 e~ (C/lXI=plg=(c/lIXI=IIl|x|1/2d x|

< Cg—le—(c/a)uy‘_l)‘ .

b. Estimatingh = hy +hy = (F”(u%) — 12) g+ Y7, Vi (y)Vi. From (4.16) and the
normalization||Vi| = 1, it can be seen that

(4.21) 1| < Ce~1/2e= /NIl
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To estimate||h;|| we observe Proposition 2.1 and the definitionzof which
imply that

IF"(u0(x)) — 2| < Ce~C/alXI=rl x| > p,

IF7(u0(x)) — 12| < C (e +e~C/aAIXI=rl) = |x| < p.

(4.22)

This and (4.18) withr < 3 imply that

e—(z’/s/a)‘x _ y|

423) 2 <C 20—4/ o—(2/2)lIx|—pl
( ) || 1|| = € R? |X*y|20

e—(ZVs/g) X —
+C€20—2/ #dx = CEZI7 (E_4|1 +5_2|2) y
[x|<p |X - y‘

(4.24) e / e(2°/€>IIX|ple<2ua/e>||y||x|<1 / diy’/z >dx
2w R2 |y| 5y|X—y|U

A

o0
Cc / ei(zc/en|X|*P|e*(21’a/5)||Y|*|XH ‘X|172ad |X|
0
< Const e~ (Const/a)llyl—rl,

Similarly we obtain

I, < Ce2-% it ly| < p.

(425) |2 é Ce—(c/s)(w‘—P) if |y| > p,

and therefore from (4.21), (4.23), and (4.24),

Ih|| = Ce=2* if [yl <p,

4.26
( ) Ih| = Ce2tog—C/alyl-n) jf ly| > p.

From Theorem 4.1 it can be inferred that
(4.27) |L7Y¢|| S Ce7?|p| for ¢ such that(p, Vi) =0, =12

This and (4.10), in view of (4.20) and (4.26), yield the following estimate for
the L? norm of :

Iyl < Ce=* it [yl <p,

4.28
*.28) |7]| < Ce~*oe=CE/ayI=r) if |y| > p.

c. Local L? Estimates ofy. Letz : R> — R, 0 < z < 1, be aC® function.
Multiplying (4.9) by vz? and integrating oveR? yields *

1 We remark that it is not necessary forto have compact support for the integration
by parts below to be valid. It is enough that at infinityg and their derivatives decay
exponentially. See the remark after the proof.
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2 [ veaRs [ Frate
R2 R?

2
= /]RZ (V2 —F"(u%)) 722+ > _Vi(y) /}R2 V22V +€? /RZ ?|Vz|2.

i=0

(4.29)

It follows that

@ [R6aE+ [ Frafen? s /R V2P
(4.30) +{ [/]R ((v2 = F"(%) 572)1

+i0 vl [ [ @]} ([ o)

If we assume that suppis contained in the complement of the cir@®& = {x |
IX| < p}, then from (4.22) and (4.18) it can be concluded that

|(v2 — F" () gz

1/2

1/2

4.31 —(ve/e)ly—x|
(431) < Ce 2o @/a(xI-r)e L, X € suppz.
- ly — x|
Therefore, proceeding as in (4.24), we obtain
—\2
(02— Fr) )
]RZ
—(2v. /e —
4.32 < Ce / O LAY
(4.32) - X|—p>do [X|27

o0
§ C€74+20' / ef(zc/a)(sfp)ef(zys/a)‘ lyl—sl| S:I-72‘7'(::ls7
s=p+dy

whered, = d(suppz, B?).
Now we observe thgh < s < |y| implies that

s—p+|lyl=sl|=lyl—p >3z (lyl —p) +3(s—p),
while p < |y| < s implies that
s—p*|ly[=s[>s—p>3(lyl—p)+3(s—0p)

Therefore, if we letc’ be a positive constant satisfyirg < %min(c, ve), then
the estimate (4.32) yields

/ (12— F/(u%) 32)°
Rz

oo
(4.33) < C€74+20—e7(20’/5)(|)’|*ﬂ)/ e*(ZC'/E)(Sfp)Slfza'dS7
- s=p+do

< Ce2e ' /e)Iyl—p) g (Const/<) do
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which implies that

1/2
2} < Cemle-C/MI-A—(c/)d,

(4.34) [/]Rz (V2 = F"(%) g2)

From (4.16) we also obtain

2 1/2
@35 M) [ / (2\4)2] < Cele—(/Myl=rg—(c/) .
i=0 R?

Now we consider a sequence of domains defined by
(4.36) Qi ={x|d (x,B%) Zeni}, i=01,...,

wheren > 0 is a number to be chosen later. lzeti = 1,2, ..., be a correspond-
ing sequence o€ cut-off functions such that

suppz =Qi_1, z(X)=1forxeQ;, i=12,..., 05z (x) <1
(4.37)
We can also assume that
2 .
(4.38) |Vxz|<—, i=12....
ne
Let
(4.39) a?= / +2.

Then, from the definition of); andz, it follows that

s [ @ sat

4 4
2 2 2 2 2 2
e | rlvxal s / 7S S@ &)
/RZ | Vx 3l n? Q_1\Q n? A4

This, (4.30) and the estimates (4.34) and (4.35) imply that

(4.40)

(4.41) Ka? < ae™a_q + %(&2_1 - a’),

whereK > 0 is a fixed numbeK < ming, F”(u°(x)) and
(4.42) a=Cete=@alyl-r),
From (4.41) it can be concluded that

4N\ o e 4, N e 2.\
(K"'nz)ai < ae Cmaifl"'?aiflg <4ae e +5ai71 ;

which implies that
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2\ —1/2 2 _
(4.43) a g 1+ Ki a_1+ lae—cnl ,
4 8
and therefore -
(4.44) a < plag+prae Y (pe”),

j=0
wherep = (1 + Kn2/4)71/2. By choosingy large andc small we can obtain

pe’’ < 1.
Then

(4.45) a < e % (ay+Ca)

and accordingly, by recalling the expression (4.42)pfnd the estimate (4.28),
we obtain

1/2
(4.46) / 2) < Gt /a0,
X|—p>T; N

wherer; =d(¢;, BY).

d. Pointwise Estimates. From (4.16), (4.18), and (4.22), we infer th&t ffdy | >
p the right-hand sidé of (4.9) satisfies

€ /AW e/ ]

lh(x,y)|=C (e + 6—1e—(c/s>(d(x)+d(y»>

X —y[t/2
for some constant€, c. This and

d(x) + x —y[ = d(x) +[d(x) — d(y)| = 5 (d(x) +d(y))

imply that
—(c/e)(d(x)+d(y))

<ge3e® T T
(4.47) ooyl < G — 0
for some constant€, c > 0 and|x|, |y| > p. Definej by
(4.48) r =dx) Srj+en,
and let
(4.49) X(x) = Ce=%2e~C/a+dM) - §(x) = X |x — y[¥/2.
Then 1
4.50 Af=X——.
(4:50) x —y[t/?

From this, the equation
e2Ay =F"(%y+h

and Kato’s inequality
Aly| 2 signyAy,

it follows that
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1
2 0 H
(4.51) e“A(|y[+6) 2 F(W)y] + Xm +(signy)h.
By taking C large andcsmall in (4.49) we can make the sum of the last two
terms in (4.51) nonnegative. On the other hapd, > p + C’c implies that
F”(u% > 0. Consequently, from (4.51) we conclude that+ ¢ is subharmonic

for |x| > p+ C’e and therefore that

4
I1(x) + 6(x) < 22/’ (7| +6) dz
TEN™ J|z—x|<en/2

4 1/2 1/2
2 2
~|°dz + / 0°dz
VTEn </|z—x|<en/2| | ) < |z—x|<en/2

From this, the local? estimate ofy, and theL? estimate fors that one obtains
from (4.49) by using the fact that

A

X — y|3/2 < Const. (l + rJ.?’/2 + (d(y))B/Z) 7

statement (i) follows with3 = -5 +o.
Before completing the proof, for later reference, we note

Remark.From part (i) we can deduce information on the decay properties of
g(x,y) out of g(x,y). However, this is under a restriction any while below in
a number of places we need information on decay propertigé of), uniformly
for y in some arbitrary compact set. Such information can be deduced directly
as follows. Equation (4.9) can be written, by using obvious notation, in the form

P~ =h.

Fix y in some ball of radiuR. h is in L?(R?) and decays likee=(©/9)XI for
IX| 2 R > |y|. Utilizing the behavior of the potenti&’ at infinity and Lemma
1.7 in [Ag] we obtain the existence of & € C§°(R?), .#" = 0, such that
P, =P +.%2" satisfies

‘/@x@wif/fﬂz Vo € CEo(RD),
R2? R2

wherer? is a positive constant.
As in [Ag, p.26] set
v(x) = (1= z(x))(x)
wherez € C§°(R?), z =1 for |x| £ R+ 3, z=0 for |[x| 2 R+ 1. Also notice

2
thatw is in H1.(R?), v(x) = y(x) for |x| = R+1 and

P%n):h+q=ﬁ

whereq(x) = —2Vz-V~y+(%"(1—z) — Az)~. Notice thatqg has compact support
and that
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C
(4.52) Az = -

Applying Theorem 4.1 in [Ag] we obtain that for every Lipschifz with
|V (x)|? < v?/£? the following estimate holds:

V2 V2 -t
(4.53) = —|Vi]2) eT? < = —|Vi]2) €*fhZ
RZ €2 RZ 62

Taking into account thah decays likee=(/9)Ix| for |x| = R+ 1, by choosing
f ~ Z|x| we can easily deduce from (4.52), (4.53) that

£
/ e/ 2(x) < ©.
MELE €

From this we can obtain an exponential estimate fQ ;r)vz, where B(x;r)

is the ball with centex and radiusr, and then by using the subharmonicity
of v (hence ofv) for |x| large we can upgrade this to a pointwise estimate.
Analogous estimates can also be obtained for the derivativesarid hencey,

for x| 2R+1 O

To prove (ii) ay € C0(§_2) is taken and extended by zero ow®#/(. Then
the extended) is decomposed to

2

(4.54) b=+ aVi, Y1l Vo, ViV,
i=0

and, is further decomposed into its radial pdr_{ and the rest

. R . 2w
(4.55) 1=y +P1, Y1 = 2i P1(r, ©)do.
T Jo

Note that

(4.56) /QQ(X,YW(Y) dy = /RZ g(X,y)dNJl(y) dy + /Rzg(x’y)ﬂ;l(y) dy

= G(x) + p1(x),

which is a consequence of the definition of the projectisnand™ and of the
symmetry properties ofi(x,y). The functiong; is the solution of the problem
251, €+ 77
€ ¢?I_/ + T¢1 - F//(uo)¢l = 1/117 re (Oa OO),
(4.57) oo o
/ $1V0r dr = / 151V0r dr =0.
0 0

After changing variables te = (r —p) /e, (s) = 51(58+p), andv (s) = 1Zl(as+,o),
equation (4.57) becomes
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_aé
Do + c @s—F”(U*<s+p,p a))sﬁ:!&, —B<s<oo,
es+p € € €
(4.58)
oo (oo}
/ (es+ p)P(S)Vo(es + p)ds = / (es + p)¥(s)Vo(es + p) ds.
—(p/2) —(p/e)

Based on the estimate (ii) in Proposition 2.4 and the estimate (i) in Theorem 4.1,
problem (4.58) can be viewed as a perturbation of the problem

bss— F'(U)P =¥, —00<S< o0,

/ @Uds:/ wUds.

Lemma 2.3 implies that this problem has a unique solution, which satisfies the
estimate
[2]lo = Const.[[¥]lo.

Based on this, we can show that this estimate also holds for the perturbed problem
(4.58) too and therefore for problem (4.57),

Iéallo < Const. [ lo-
From this and the inequality

I91]lo < Const. |14 o,

which is a consequence of the definition of the projecticand of the inequalities
(4.16) and

(4.59) ai| = IIwIIo/ Vi| < Const.e"/?|[4]o,
Q
it follows that

(4.60) l|é1]lo < Const|4)]fo.

Next $1 is estimated. From (4.54) and (4.55) it follows that outside a big ball
B D Q,

2
g1 =—agVo, 1= —Zaivi-
i=1
Also,
(4.61) / $1(x) dx = 0.
RZ

Consequently

[ ooz [ Gwac=— [ [ oyimaye

2
(4.62) /R . /R 5 ) (Zavi (y)) dy dx

i=1

= /R » /Eg(w)«ﬁl(y) dy dx+O (e7/%) 420
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where the estimate (4.16) fof;, the estimatga;| < Const. ||4[| 2), and part
(i) above have been used. Now

/ /Ag(x,y)%(y) dy dx
R2/Q JB

< / / g%, Y)da(y)dy dx
R2/Q JB

whereB is a ball of radiusy> p contained in2. Using the definition of); and
the decay properties @f established in (i), we see that the first intedsabn the
right of (4.63) can be estimated by

(4.63)

=+

/A g0 Y)Pa(y) dy dx,
B/B

R2/Q

(4.64) I, < Conste™©/9)||y|lo, ¢ < dist(R?/Q, B)v..

To estimate the second integial part (i) and the last Remark are used; they
imply that

I = + Conste™/9|jy||o

/ /A,g_(w)%(y) dy dx
r2/Q JB/B

<clulo (e 9+ [ [ Fxyayax) < clul
R? JB

where the fact thag is a positive function and

(4.65)

(4.66) /]RZ g(x,y)dx =1

has been employed. Putting together these estimates, we obtain (ii). The proof
of (iii) is similar and is omitted. The proof of Theorem 4.2 is complete

5. The Quasi-Invariant Manifold I\7I; and Equilibria

This section is devoted to the construction of a manifal,ﬂ of “bubbles” of
the form¢ — ué +0¢ (v is a very small perturbation) which is an approximate
invariant manifold for equation (1.1). The constructionl\bg is made in such
a way that stationary solutions to (1.1) with approximately circular interface are
in I\7I§ and can be detected by the vanishing of a vector field c¢ that, as
we show in the next section, describes to a very high degree of accuracy the
dynamics of the centef of a bubble.

Theorem 5.1.Assume thap > 0 is such that?, = {¢€ € Q : d(&,00) > p} is
non-empty and lef > O be a fixed small number. Then there issn> 0 such
that, for any0 < ¢ < g there exist C functions

(5.1) =t eCHQ), ¢—ct= (cf,cg) € R?

defined inQ2,.5 and such thatf,, v* = 0, for which
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(i) [|vS]lo < Ce2e~(e/ad*,
(i) |cf| £ Ce—te—2ve/e)dS

(iii) Similar estimates with C replaced by=C¥, with k the order of differentia-
tion, hold for the derivatives af¢, c¢ with respect to x¢.

(iv) The functionii®¢ = ué + v%, where ¢ is defined in Section 3 satisfies the
boundary conditions irf1.1) and

(5.2) L(0) = cfu +csu,

where % (¢) = A(—e2A¢ + F'(¢)) and LF, is the derivative of & with respect to
G, i=12
(v) Letl\7|,§ C C°(§_2) be the two-dimensional manifold
MS={u=105 ¢ € Qs
and let. /" Co(ﬁ) be the open neighborhood ﬂfj defined by
A7 ={U]3€ € Qpus, w e CUQ), |wllo < Ce", u =0 +w},

where|| - ||o stands for the € norm. Then there ig§ > 0 such that uc ../ is an
equilibrium of(1.1) if and only if

(5.3) u=a¢, cf=0
for someg € Q5.

Remark.From the estimate (ii) it follows that on the manifolapf the Cahn-
Hilliard vector field is exponentially small in:

(5.4) £ (@)||o < Ce3e2we/e)¢,

Moreover, the manifold has the property that({i¢) is almost tangent to it at
G¢ (if it were exactly tangent, then the manifold would be invariant). Indeed,
Theorems 4.1, 5.1 imply that

< Ce /94 US| 2 = CeE

’ <u,§17 U7€2>|_2

@) - el - el _ 1) - cid - Gl

S @ 2@
_ ||C§U,§1+C§U,§2||o <} ||Cf71?1+c§“,£2“0

lctug +csudlly — llcfug +csuylee
c 1§ [l lo + 165 10l

(c5)2 + (c5)>2

A

< Ce(ve/e)de
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Remark.Theorem 5.1 gives a criterion for deciding which circular curf/es 2
can be “continued” into true equilibria of (1.1) for positige in the sense that
there is a familyu® of equilibria of (1.1) such that

... _ | -1 insider,
(5.5) e“Lnou (X)_{+1 outsiderl”.

Proof of Theorem 5.1.Consider the problem
Ap=cul+cuy, X €Q,

M+O—+F£(U)+ﬁ5897 Xeﬁv
Av =

(5.6) x € R?\ Q,

0,
v=0,/vVi:07 i =12,
Q R2

ou __ Ov _ ou¢

ain - 5 ain - _%7 X E QQ’
wherec,, ¢, 3, 1, andv are to be considered unknowns witha continuous
function defined or)Q?; dsq is a unitary distribution or92; A is the second-
order operator defined in (4.1y, is the Lagrange multiplier in (2.1) an@? is
defined by

(5.7) Fé(v) = —F/(ué +v) + F'(u) + F"(u%)o.

From (5.6), (5.7) and the definition (3.1) of it follows that, given a solution
of problem (5.6), the functiom® = u¢ + v satisfies the boundary conditions in
(1.1) and equation (5.2). Therefore, aside from the “only if” part of (v), in order
to establish Theorem 5.1 it is sufficient to show that (5.6) has a solution satisfying
the estimates (i) and (ii).

The strategy of the proof is to construct a map- v by assuming that
is a given function in the right-hand side of (5.6) and by showing that (5.6) can
be solved, yielding a new valuefor v. The mapv — ¢ is then shown to be a
contraction fore > 0 sufficiently small.

From (3.2) it is inferred that

(5.8) / uj=0, i=12

Q
Therefore (56); with Neumann boundary conditions is solvable and
69 n=c [ hecyuimdy e [ hooyusmdy+

wherey is a constant antl is the Green'’s function for the problem

Ap=1, Xe€Q,
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/Qqs:/ﬂwzo,
26

8—n:0, X € 09.

We remark that equation (5.9) defingsas a functionu(c, i) of the constants
1, C2, and u. If we assume that the right-hand side of equatio)Ssatisfies
the orthogonality conditions

(5.10) /Q(u+cr+F§(v))Vi +/m5vi =0, i=12,

then equation (B), is solvable and the solutiomcan be represented in the form
100= [ sty a+Fia)ay+ [ty sas

(5.11)
ot ([ o v Femoay+ [ ovods ) vato

Q o0
where po is the principal eigenvalue ok and g is Green's function folA (see
(4.3)). The functionv"defined by (5.11) depends ghv and oncy, cy, and
throughp. The functionv”automatically satisfies the condition of being orthog-
onal toV;, i =1,2. We now show hows is determined by the requirement that
o + u¢ satisfy Neumann boundary conditions. In order to do that, we need to
study the operator fror€°(9£2) into itself defined by

0 _ oV,
909~ . [ 00305 +5* ([ iveas ) 2o
. d _ oV,
612 = jm o[ sxrsnysds et ([ sveds) S0

wheren is the outward normal t&2 at x.

Lemma 5.2. Assume thaf3 € C%0Q). Then there issp > 0 such that, for
0< e < ey,

1o} oV,

= 222000 + (KAK)

(5.13)

where K is an integral operator such that
(5.14) IKBllo = Ce™*(|Bllo-
Therefore, forz: < C~1, the equation

(5.15) 3e2B+KB =~y

has a unique solution and
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(5.16) [18ll0 < Conste?||v]lo.

Proof. By Theorem 4.2(i), foix € 92 we have the estimate

9 7 -(e/9)
oo |y = ) B) 8| < ce /3]

Accordingly, it suffices to prove the lemma withreplaced byg. The analysis

of the first term in (5.13) is then reduced to standard potential theory estimates
(cf. e.g. [FO]) and is omitted. The analysis of the second term in (5.13) which is
part of the operatoK is done by using the estimate implied in Theorem 4.1:

Vo(X)| £ Ce /9, x € 90,

and similar estimates for the partial derivativesvgftogether with the estimate
for uo given in Theorem 4.1(i). O

From Lemma 5.2 it is seen that the equation
o0 __out
on on
uniquely determines3 (and thereforev) as a functiong = S(c,v) of ¢ =

(Co, €1, C2), andw, wherecy stands for the sungy = 1 + 0. We now show that
equations (5.10) withg = 5(c, v), together with the condition

(5.17) / i(c,v) =0
Q

make up a linear system in= (cp, €1, C2), Which ultimately determines as a
function of v and therefore gives meaning to the map- v. In what follows

we carry out the analysis of this linear system for establishing solvability. We
also obtain estimates that will be needed for computing the norm of the map. We
begin by studying the coefficienB = (B, B1, B,) of ¢, 1, ¢, in 5(c,v). The
estimates oB, and other estimates needed later, are collected in the following
lemma:

Lemma 5.3. The solutions(c, v) of the equationg—; = —%—‘f can be represented
in the form

(5.18) f(c,v) =BT+ %+ fY(v),

where 31(0) = 0 and the functions?®® : 9Q — R, ' : 99 x C%(Q) — R,
B : 09 — RS satisfy, for0 < ¢ < 1,

BoX) = —c—— + O(e?),
TV,
Bi(x):—257:/ /h(x,~)cos,ai +0(?), =12,
(5.19) =Jr
out out
O(y) = _ o294 3||9Y
BO(X) = —2¢ an(x)+0(5 o 0>,

) == @) +O (ZIFS)]o).
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whereq; (X) is the angle of the vector x ¢ with the x axis and

20 (z,n)>0 |Z|
with Kq the function defined in Lemma 4.3. Moreover, frgg19)it follows that

—\Ve /€ §
(520) |Bllo=Ce, [0 = Cee /9% |5Yw)[lo < Cellulls.

Proof. Let the known terms in equation (5.17), that is, the terms which do not
containg3, be denoted byy(c, v); then

(e, v) =D e+~ +4Y(v),
whereD = (Do, Dy, D5) is given by

0000 =~ 5o [ .~ i ([ Vo) 520 =: D8 + D300
D/ =~ [ stz ( | o2 (z)dz) dy

62 5| [ Vo) ( [ nov2wi@iz) ay] 200 =i + D700

1200 = - 2,

P00 =~ [ ox <) - ( / voFﬁ(v)) Mo,

To estimateD} we write

0§09 = g L) = 5o [ ot

whereB is a ball of radiusp > p contained inQ2. Using the decay properties of

g (see the Remark in the proof of Theorem 4.2) we see that the first integral is
of order O(e—¢/¢). Similarly, from Theorem 4.2(i), we see that replacindpy

g in the second integral changes the integral by a term which is again of order
O(e—(¢/9). Therefore we can write

9 —c/e
(5.22) Di(x) = o g(x, )+0 (e ) .
Therefore by (4.11),

0 Ve Ve (X—y, n)
— K¢ ( X — ) ——d
any Joss g(x, ") = 272 Joss ol 2 x =yl X —y] Yy

1 (z,n)
= >’ d
2nv e /Ex

Z,
|
whereE, = {z|z = lv.(x — y), y € Q/B}.

(5.23)
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From (5.22), (5.23), the smoothness{ofand the exponential decay &f, at
infinity it is understood that

1) —
(5.24) Do(x) = — T + no(X),
where
(5.25) k= lim / k(12 2 gy = / k(22N gy,
=0 Jg, Z| (2,n)>0 rd
(5.26) [mollo = C.
From Theorem 4.1(i) (see also Lemma 2.2 in [A-F1]) it follows that
(5.27) ID&llo < Ce°/.
To estimateD!, i = 1,2, we start by observing that, as— 0, u5i approaches a

distribution supported o’ with density —2 cosw; (X), «;(X) beihg the angle of
the vectorx — ¢ with the x; axis. This is derived from the definition of, from
Proposition 2.1 and from the fact thﬁfoOO U = 2. Setting

209 = [ o s,
Q
we deduce by this observation that
(5.28) Iimogo(x) = —2/ h(x, -) cosq;,
g— I

where " = {yly — &| = p}. By the same arguments used for estimatyyand
D¢ we see that

v, Ve X —Vy,n Cele
0100 = 55 [ ks (b—v1) Rty ote /)

(5.29)

=K [ ntx.ycosan +1 0.

TVeE J
(5.30) [Imllo < C,
(5.31) IDA(x)| < Ce™°/,
(5.32) P)X) =~ FEw)(x) + O(1).

2nv.€

From (3.4) it follows that
(5.33) 1%l < Ce~le~ /24",

We also have
(5.34) @)l < Ce™Julf3.
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From the definition ofy, the above estimates and Lemma 5.2 the lemma
follows. O

We now begin the discussion of the linear system determia{iny

Lemma 5.4. The linear system of the three equatidigsl7) and (5.10) (with
(8 = (c, v)) in the three unknowns s (¢, €1, C2) can be written in the form

(5.35) Hc=p

where H= (Hj), i,j =0,1,2, isa3x3 matrix and p is &-vector. Furthermore,

1 8mp
— 1
Hoo = —€ ffooo UZ +O(1),
_ 1 87 i =
Hoi = —&e '—— h(x,y) cosai(y)dydx+O(1), =12
LUz Jrlr
(5.36) Hip= O (El/ze*(us/ddf) L i=12
Hi = 51/22\@_/ / h(x, y) cosq (y) cosa (x) dy dx
Ve[S v/l
+0(e%?), i,j=12,

po=0 (5—1e—(ug/s)d€ + 8_1”7)”%) ,
(5.37) .
p =0 (M2 @ /% 4+ 2 3) =12

Proof. By inserting (5.9) and (5.18) into (5.11) and by writing equations (5.17)
and (5.10) explicitly we obtain the following expressions Forp:

oo = ,uo_l[ </sz VO) 2 ' (/asz BOVO) /sz VO} * /Q /sz glx,y) dxdy
+ /Q /a 906 )Boly)
Hos =?| [ [ nocymsonaeaayaxs [ s [ v

¢
* /sz /Q /Q 9(x, y)h(y, z)u;(z) dz dy dx
+fQ faQ g(x,y)Bi(y)dydx, =12,

Hio = /vi+/ BoVi, =12,
Q oN

Hy = / / h(x, y)uS (y)Vi (x) dx dy + / BV, i.j=12,
QJQ oN

(5.38)
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Po = pJ + Po(v),

= ([ ) [vo— [ [ stxy)sayex

(5.39)
Po(v) = izt {dstfﬂ FE(u)Vo + / ﬂl(v)Vo} / Vo
o0 Q

- / / 906, Y)FE()(y) dy dx / / 9(%,y)B*(w)(y) dy dx
QJQ Q JoQ

pi = pP + pi(v),

pl=— [ B%, i=12
(5.40) i 0o

pi(0) = — /Q FE@)V; — /8 AV

The main contribution taHgy is the first term in (88). This term can be
estimated by using Theorem 4.1(i),(iv). The second term is of ofer /<)
becauseVy is exponentially small ire on 992 (cf. (4.16) and Lemma 2.2 in
[A-F1]). The third and fourth terms are handled by Theorem 4.2(ii) and (iii) and
Lemma 5.3 and are of ordéd(1). The estimates in (5.36) are obtained in a
similar way from (5.38), by keeping in mind that

(5.41) u
with af = 0O(e~°/¢) by Lemma 3.1 and by using Theorem 4.2(ii), (iii) with

o(x) = /S U, 60 = B G0,

The estimates (5.37) are obtained from (5.39) and (5.40) by similar arguments
utilizing Lemma 2.2 in [A-F1], Lemma 5.3, and Theorem 4.2 (ii), (iii).O

Lemma 5.5. There exists a humbety > 0 such that for any, 0 < ¢ < &g,
equation(5.35) has a unique solution(e) and

cofw)| < C (e7¢+/29 + o)),

@] < C (e @</ 4 ), i=12

2

(5.42)

Proof. For e small, the matrixd is nonsingular because Lemma 5.4 implies that
IHoo| > Ce™1, for someC > 0, Hig =0(e~%/%), i = 1,2, Hj =0(e¥/?),i,j =
1,2 and, furthermore, this 2 submatrix is a negative-definite matrix because
A with Neumann boundary conditions defines a negative operatog(t), the
subspace of ?(Q) of the functions with zero average. From this and from the
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estimates fopg, p; in Lemma 5.4 solvability follows together with the estimates
(5.42). O

Substituting the functiorc(v) given by Lemma 5.5 into the expression for
B(c,v) in Lemma 5.3 and that in turn into (5.11) yields a map— v from
CO(9) into itself. We denote this map bl and show thaf is a contraction on
a suitable closed subset 6°(12).

Lemma 5.6. There exist numbers Ko, £q > 0, such that for any, 0 < ¢ < ¢y,

the map T: Bs — Bs, with Bs = {v € Co(Q)| ||v|lo < § = Ke*}, is a contraction.
The fixed point¢ satisfies the estimate

(5.43) [0¢]|o < Ce—2e~(ve/a)d*,

Proof. By standard elliptic regularity theory we obtain from (4.9) the gross
estimate

C

”g('aY)”lez(Q) < .

uniformly fory € Q. From this and the symmetry gfx,y) we deduce that

C C
/ lg(x,Y)[dS = —, / lgx,y)ldy = —,
o0 € Q €

and by utilizing the second of these estimates we obtain far € B; that

‘ JRERE0
Q

‘ [ ot (Fé - Ff(w))‘ < Ce5llo - wlo.

< Ce 162,

(5.44)

Now, from Lemma 5.3, fow, w € Bs we have
(5.45) 18*@)]lo £ Ce6%,  [|84(v) — B1(w)llo < Cedlv — wllo.
From (5.42) it follows that
Co(v)| £ Ce= (/99 +52),
(5.46) | | .
lGi(v)| £ C(e= @</ +52) =12

From Lemma 5.4 and in particular from (5.35) and the expressiorns oy, p; (v),
it follows that

(5.47) |c(v) — c(w)| £ Cé|lv — w]o.

Using these estimates, Theorem 4.2, Lemma 5.3 and the estimateahmve,
we obtain
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’/QQ(X7 @) +o)| < Ce ! (ef(ya/g)dg N 52> ’

\ [ o) — )] £ S~ il
(5.48) “

[ stxysto)| 0t (0 1 g2).

‘/BQ 9(x,) (B(v) — Bw))| < Ce™*6]|v — wllo,

where u(v) is the function obtained by inserting(v), C(v), u = co(v) — o
into (5.9), and3(v) is obtained by inserting(v) into (5.18). Taking into account
Theorem 4.1 we also obtain

’ Mo [/ (ue) — (Vo Vo|| < G20 — wll
Q i 0

o' U (B(0) — BwVo| Vo|| < Ce2e- /295y ],
b5le) - 0

o[ nd

(5.50) HM01 {/Q (Fg(v) i Fg(w)) VO} . 0

Therefore, from (5.11) we obtain

po [/ (1(v) +o)Vo| Vo|| S Ce2 (e‘(”fds/s) + 52) ;
Q 1o

(5.49)

ot {/ B()Vo| Vo|| < Ce2e=(ve/e)de (ef(l’f/f)dE +52> ,
o0 i 0

< Ce252,

< Ce~26|jv — wlo-
0

IT)o £ Ce2(e~ /4% + 52),

(5.51)
IT@®) = T(w)llo < Ce28[lv —wllo,

which show thafl is a contraction omBs for § = Ke* with o« > 2, K > 0 and
0 < ¢ < 1. To derive the estimate (5.43) we observe that if we set

(5.52) § = 4Ce 2~ W=/9)d*

then fore > 0 sufficiently small, the estimates (5.51) imply

(5.53) IT@)llo <6, IT() — T@w)llo < nllv — wllo

for somen < 1 and therefore the fixed point satisfies|v¢||o < J, that is,
(5.43). O
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We are now in the position to completing the proof of Theorem 5.1: Part
(ii) follows by inserting (i) in (5.42)(ii). Part (iii) is straightforward but requires
some computations. We restrict ourselves to a few words. First, for obtaining
estimates for the derivatives of with respect tox;, one can use the equation
(5.2) to obtain estimates ofiv, and then by interpolation, estimates gn For
higher derivatives, one needs to differentiate (5.2), and this requires smoothness
of F. For obtaining estimates on derivativeswfind ¢ with respect tas, one
has to argue differently. First, we note the smooth dependenceonfv. Next,
by differentiating (5.2) with respect t§, we obtain an equation involving the
linearized operatoA. It is not difficult to see that the orthogonality condition
Jz>vVidx = 0 is almost preserved under differentiation with respect {since

JgeveVidx = — [, vViedx = 0 and v is exponentially small) and therefore
we can invert and obtain the desired estimatesvgnSimilarly, we can treat
higher derivatives ir¢. Part (iv) is a straightforward consequence of the above
constructions. The “if” part of (v) is obvious. To prove the “only if” part of (v)
one need to show that, given € ./, a stationary solution of (1.1), there exist
£€,, p=pu, B:00 — R and a continuous function: R? — R that satisfy
(5.6) with c; = ¢, = 0 andv |,= u — ué. To do this, we define® = u, — u¢

for any ¢ € Q, and extend the function® = ue — u‘ to a continuous bounded
function defined in the whole dk? by imposing that

Avé =0 inRA\Q.

Clearly,
/ vt =0,
Q

ové out

— = Q.

on an ' X € 0
Then we choosé by imposing the conditions

/ utVv, =0, i=12

R2

Once¢ is fixed, 3 is determined by the jump of the normal derivative «6f
acrossof) and = —oe Where

£?AUs — F'(Ug) = 0e. O

6. The Linearized Cahn-Hilliard Operator
We begin by stating a theorem concerning the linearized Cahn-Hilliard
operator
(6.1) LS = A(—£2A + F"(01%)),

whereu? = u¢+v¢, with v¢ the function constructed in Theorem 5.1. We consider
L¢ with the boundary conditions as an operatorrebng, the subspace of the
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Sobolev spaced ~! consisting of functions with zero average. We {et) be
the standard inner product i?(2) and ¢, -) the inner product irH ~1. In the
subspacéd, ! we have

(6.2) (,9) = (=A)2¢, (=A) M2y,

where —A is the self-adjoint positive operator defined 3(Q) = {¢ €
L2(Q)] [, ¢ = O} by the negative Laplacian with Neumann boundary conditions.
In this section| - || denotes thed —1 norm

(6.3) o]l = v/ (¢, 9)-

Theorem 6.1.

(i) The operator E can be extended to a self-adjoint operator ogTche sub-
space of the Sobolev space Hconsisting of functions with zero averagelL¢
is bounded below.

(i) Let A < A5 < )5 < --- be the eigenvalues of
A(—2A + F"(€))) = —\ip, x € Q,

% - aT - 0, X € 59,

and let§ > 0 be fixed. Then there isy > 0 and constants @C,C’ > 0 inde-
pendent of such that, for0 < ¢ < g and¢ € Q with d¢ > 6, the following
estimates hold:

(6.5) —Ce s <A <A <ce e,

(6.6) A= Cle.

(iii) In the two-dimensional subspace* ldorresponding to the small eigenvalues
A%, S there is an orthonormal basign H ~1) 45, 45 such that

2 ~E
us
(6.7) EDIE ”;g ] +0(e %), i=12
- us
j=1 )]

where the matri>(afj) is nonsingular and a smooth function &fand ij is the
derivative ofti¢ with respect tc; . Moreoverwf is a smooth function of and

(6.8) 451 =0E™Y), i.j=12

wherey ; is the derivative of) with respect tct;.

Proof. Statement (i) is standard and is omitted. Statement (ii) is proved in
[A-F1] with u¢ instead ofu®. Since the difference betwearf and u¢ is of
order O(e°%/¢), it is not difficult to see that replacingé with (i¢ changes the
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eigenvalues by a quantity of ord€@(e—°/¢). To prove (iii) we start from the
equations

2 2
(6.9) LGS =) chius +> ctuy, =12
=1 =1

which are obtained by differentiating equation (5.2) with respect td =1, 2.
In equation (6.9)¢’; stands for the derivative af* with respect to§ andu
for the second derivative af¢ with respect togj, £;. From equation (6.9) and
Theorem 5.1 it follows that

(6.10) ILSG5 | =07, i=12
Furthermore, since Theorem 5.1(i),(iii), and (5.41) imply that
oué
11 5= ——+0(e %
(6.11) 0§ = 55 *OE ™),
ous  Qut ous  out
012 (50 50) = L [ non G eofe oy

we obtain that

N
which together with (5.36)(iv) and the fact th&t;() is a negative-definite matrix,

imply that the matrix(ﬁﬂ Uﬂ approaches a nonsingular limit wher- 0. This,

the estimate (6.10) and the fact that (6.5), (6.6) imply the existence of a gap of
order ¢ between); and A5 allow for the application of a basic perturbation
result (Lemma A.1 in [A-F1]). It follows that the distance betwééh and span
{65,05) is of orderO(e~%/¢). By using this fact and the fact thats~1/?(H;)

is a nonsingular matrix which depends smoothlyéon is possible to construct

the coefficientsaij5 as claimed. Equation (6.8) follows from (6.7), Proposition 2.4
and Theorem 5.1. O

(6.13) (gﬁ ,gf_) = e 12H, + O(e),

7. The Dynamics of Bubbles

In this section we discuss the dynamics of approximately circular interfaces
and show that, if the initial condition is sufficiently close to the gquasi-invariant
invariant manifold l\7|§ constructed in§5, then the interface keeps its almost
circular shape and drifts very slowly acrd3sWe show that the dynamics of its
center is determined to a very high degree of accuracy by the system of ordinary
differential equations . _

(7.1) G=cf, &=¢
wherect = (cf,cf) is the vector field determined in Theorem 5.1. To show

this we use a technique similar to the one developed in [A-B-F] for the one-
dimensional case. We justify equations (7.1) by proving the existence of a set
which is similar to the slow channel considered in [C-Pe] for the one-dimensional
Allen-Cahn equation and in [B-X1, B-X2] for the one-dimensional Cahn-Hilliard
equation.
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A. The Equations for the New Variablé&s v)

The following proposition deals with the possibility of constructing a tubular
neighborhood oM in Hy™.

Proposition 7.1. Let 05,I\7I§,Qp be as in Theorem 5.1; then, for > 1, the
condition
(7.2) inf |lu— @ <é”,

5€Qp+26

implies the existence of unigges Q,+5, v € HO_1 such that
u=as+v

(7.3)

(v,9)=0, =12
wherewf as in Theorem 6.1. Moreover, the map-u (¢, v) defined by(7.3) is a
smooth map together with its inverse.

The proof is a quite standard argument based on the implicit function theorem
and on Theorem 6.1(iii), and is omitted (see [A-Bro-F]).

Let u(t) be a solution of (1.1) with initial condition(0) satisfying (7.2). Then
there is a time interval where the change of variahles: (£, v) introduced in
Propositon 7.1 is well defined and (1.1) is equivalent to

dv ;e ice - oot
(7.4) at +& 05 + 605 = Z(0° +v),
which is obtained by setting = ¢ +v in (1.1). On the other hand, differentiating
(7.3), yields

@5 (Gout)ra (o) i (i) =0 112

From Theorem 6.1(iii) the matrix;Lf, Gf) is nonsingular and approaches a con-
stant ase — 0. On the other hand, as long agt) remains in the tubular
neighborhood of\7lp6 defined by Proposition 7.1, we have from the estimate (6.8)
in Theorem 6.1 that

(7.6) (0,08 )] < L

Therefore, if we multiply equation (7.4) hyf and eliminate the term containing
‘é—’; by means of (7.5), we obtain a linear system §oré, which is solvable for
¢ > 0 sufficiently small, and we can write

(% (G +v), w§>
( (@ +v), vf)

whereZ, = (Z?) andZ'(v) = (Z(v)) are 2x 2 matrices defined by

(7.8) 20 = (uf.05). Zw)=—(v.0f;).

(7.7) El] = (z°+zl(v))’l { ] =1 9%(v),
2
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Let V¢ be the orthogonal complement of in HO‘1 (see Theorem 6.1(iii)). If
¢ € Hy b, we havep = ¢~ + ¢+ with ¢~ € U, ¢+ € V&, From (7.5), and the
fact thati$, 5 are orthonormal, we obtain

dv\~ . :
(7.9) (m) == 3574 (0wt ) v =K,
i
Moreover, we can write
(7.10) L0 +v) = L£(0%) + L + NS(v),

whereN¢(v) is the nonlinear part ofZ (i€ + v). Therefore projecting equation
(7.4) on the subspacé? yields

(7.11) ith] = L&y + K& Wy + hé(v),
whered¢(v) stands for the right-hand side of (7.7) and

—~ D p e~ ~ ~ L
(7.12) hé(v) = (/ (66) + N€(v) — 9 (v)§ — ﬂg(u)ujfz) .

Equations (7.7) and (7.11) make a system which in the tubular neighborhood
defined by Proposition 7.1 is equivalent to (1.1), and which is basic for the
rigorous justification of (7.1), stated in Theorem 7.2 below.

B. The Main Result

In the next theorena$, (¢, M£, 2, andV ¢ are defined as before (cf. Theorem
6.1 and Proposition 7.1%%,0 < « < 1, is the fractional-power space of order
associated with the sectorial operateké on H(;1 = X0 (cf. [H]). The operator
L depends o, but the spaces corresponding to different choices afincide.
We assume, as we can, thats so large that the imbedding® — C(Q2) holds.
The norm inX® is denoted by|| - ||,

Theorem 7.2.Letn > 0 be fixed and let/;; C X*, with « so large that X* —
C(Q), W?2(1), be the set defined for small> 0 by

(7.13) Ay ={u=0°+0|€ € Qpuas, v EVENXY, v]la < mlc]}.

Let u: [0,00) — X“ be a solution to the Cahn-Hilliard equation with initial
condition @ € .//1. Then there igg > 0 such that, for0 < ¢ < &g,
[o(®)]la < 2|tV

7.14) u(t) =0 +ut) e Js= .
(7.14) u(t) o(t) € N3 £t) = ¢SO + 0 (|ct0] e=/%),
where ¢> 0 is a constant independent of

Remark We note that the estimate (ii) in Theorem 5.1 and Proposition 7.1 imply
that the set/;is well defined fore > 0 small.. J; is something like a tubular
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neighborhood 01?\7IpE but not exactly so becausé;; shrinks to zero whenever
c¢ vanishes (Fig. 7).

Remark Before proving Theorem 7.2 we note the implication of (7.14) ti(&}

can leave. /5 only if £(t) € 0€,+2s and that as long ag(t) is in .5, the
evolution of ¢, the center of the bubble, is determined to an extremely high
degree of accuracy by (7.1). These observations imply that

(a) The interface keeps its almost circular shape at least g(jilreaches the
boundary ofof2,+25. In fact, all functions in/5 are very small perturbations of
functions which have an exact circular interface.

(b) The motion of the bubble is extremely slow. Typical speeds are exponentially
small ine.

Proof of Theorem 7.2.The main point in the proof is to show that solutions
starting neaM ¢ remain neaM¢ for a very long time. To show this we use a
kind of variation-of-constants argument applied to equation (7.11). To implement
the argument, we need estimates for the nonlinear funct#(s), h*(v) and a
careful analysis of the homogenous equation

dv

(7.15) il K€y

whereK £€ is defined in (7.9) and is considered as a known function of
Lemma 7.3.Let~y be a number satisfying

1v° min d°.

<
’Y EEQp-HS

Then there igg > 0 such that, for0 < ¢ < ¢p, the condition

(7.16)  u € {u=0+v|€ € Qpuas, v EVENX?, ||v]lo < €77/¢}

implies that

(7.17) 9E(v) = (| +0(e—°/6)) € +0 (e_°/5||v||a),
(7.18) Ih€)]l0 < e7¢/%|cf],

(7.19) Ih¢(w) = h*(Q)]| < e~%/< v, ,

where | is the identity matrix ilR? and c is a positive constant independent
of .

Proof. Theorem 5.1(i),(iv), together with the definition (7.8) &f, imply that
(£ @), wf)]
(£ (@), v5)

Therefore, if we insert equation (7.10) into the expression (7.7F @f) and note
that

(7.20) ct = (zO + O(efc/ﬁ)) - [
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(7.21) (Lfmpf) =0, i=12

(becausey € V¢ andV¢ is invariant undelL$), we obtain
(Nf(v),wi)D

(NS(v), v5)

On the other hand, the definition 8f(v), estimate (6.8), and the condition (7.16)
imply, for e > 0 small and some > 0, that

(7.22) 9(v) = (2°+ zl(v))’1 ((zO +0(e /%))t + [

(7.23) Z'(v) = O(e Y|v])) = O(e™/%).

Moreover, taking into account thBi (v) = A (—F/(TG¢ +v) + F/(G) + F/(0¢)v),
and using Theorem 6.1(iii) for estimating thé norm ofwf, we find that

720 (NE@), 9f) = (—A)"Y2AFE (v), (—A)Y24) = —(Fé(v), ¥f)
' = O(2||v|[3) = O(e~%/%[|v]l.),

whereF¢(v) = —F/({i€ +v) + F/(i€) + F”(@i¢€)v and || ||o denotes the sup norm.
In the last equality in (7.24) we have used the imbeddrig— C°(2) and the
fact that on the subspace® NV¢,

lvllo = Ce™Pl[vlla,

for some numbep. The estimate (7.17) is obtained from (7.22)—(7.24). From
(7.12) it follows that

2 2
(7.25) he@)= Y- (of = o)) (@) + D cfus — 8" + (N,
i=1 i=1

From Theorem 6.1, and its proof (cf. equation (6.10)), we have
(7.26) @)™ =0(e™%), |[LS@S)* || = Oe™*/*).

On the other hand, Theorem 5.1(i),(iii) implies that

(7.27)  uf - 6§ =0/, |LE(uf ~ 6f)] = Oe /).

The estimate (7.18) follows from (7.25), by also using (7.22), which implies
that

(7.28) |c¢ — ¥5(0)| < Const/c*

by means of the first estimate (7.27), and by observing Xi#g0) = 0.
To prove the last estimate, we note that for 0 small,

b

[(NS@)[12 < INS@)[I? = ((—A)"Y2AFE(v), (—A)~Y2AFS(v))
(7.29) = (F€(v), AF¢(v)) < Const.||v||
< e % |vla,

2 _
oR(V)]
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where we have performed an integration by parts, and also employed the imbed-
ding X® — C(Q) and the condition (7.16). From the above estimate, and (7.22),
(7.23) (sincect = O(e~%/¢) it follows that

(7.30) |95 (v) — 95(0)| = O(e™%%||v]|a).

We note that this estimate is not a direct consequence of (7.17), because the
coefficient ofcé in (7.17) is actually a function oé.

The estimate (7.19) follows from this, the estimate (7.29) and (7.26),
(7.27). O

RemarkThe estimates (7.17), (7.18), and (7.19) holdia. In fact, the definition
in Lemma 7.4 ofy implies that. /5 is contained in the set defined by (7.16).

We now begin the study of the homogeneous equation (7.15). We follow
an approach very similar to that of [A-B-F]. We assume that [a,b] —
2, is a given smooth function. Equation (7.15) can be considered as a linear
nonautonomous differential equation. Since the principal part of the operator
is independent of, the theory for nonautonomous parabolic equations in [H]
applies and implies the existence of a bounded linear opegtor, &) : X* —
X% S(t, 7, &) =1, such thatS(t, 7, £)v is a smooth function of, 7. As we shall
see, the special structure of the linear operator in equation (7.15), in particular the
presence of the operathrs-¢, implies that (7.15) preserves the fibratioa- V<.
Sincel¢ is a sectorial operator, and the spectrum of the restriction ab V¢
is bounded below by a positive constant, we can expect exponential decay in
t for S(t, r,&)v whenv € V&), To prove this, and related facts, we start by
analyzing the operatdf &<,

Lemma 7.4.Let¢ : [a,b] — €, be a smooth function. Then
(i) The problem

(731) 0= KOO, o) =6 e Hg

has a unique solutio(t) = &(t, 7, 5)(;? € Hgl which is a smooth function of

(t5 7—5 57 ¢))
(ii)

B(t, 7€) : VEO v EO,

lo(t, 7. O]l = l|g]| Vo € V.
Furthermore, for t= 7 and some number b independentpf

t .
(i) |(t, 7, )] < (1 +Ce / EDI6] L6 € Hy ™
(IV) H@(t,T, £)¢_ (;5”04

t S .
e[ [l (rece 1) s 1ol 6 emg™

and the same is true with thek(¥2) norm replacing the X norm.
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The adjoint of®(t, 7, £) can be identified with the solution operatdt (7, t, &)
of the equation

do _ .
(7.32) 3 Z jzg,- (CRTD
and
t .
) 19 (t, 7. 65|y < C2 (1 +e? [ / |€D

Proof. Statement (i) follows from the definition (7.9), which implies tha"-¢®
is a bounded linear operator dﬂb‘l and a smooth function dfand¢ : [a,b] —
2,. To prove (ii), we observe that (7.31) and (7.9) imply that

733) S = (K0.u) + Y06 (0.05) =0 o)
i
Therefore,

(7.34) (¢, ¥F) = Const,

and in particular ¢, 77[;{5) = 0if itis zero att = 7. This shows tha#(t, 7, £) maps
VWO jnto VO,
A solution ¢(t) of (7.31) satisfies
d .
el = 319
(7.35) (0.0 =2(K,9).

From this, if¢ € V¢, it follows that%(qb, ¢) = 0 and thereford|{¢|| = Const.
In order to prove (iii), we decomposeas

(7.36) ¢=> o) +o, oeVE

We have seen in (7.34) that for a generic solutigt) of (7.31),a; = (¢, qpf) is
a constant quantity; therefore differentiating (7.36) and also using (7.9) yields

(7.37) K& -3 3" Y ag (wﬁ ¢ﬁ,;)wh=zz@€i¢f,j+f’v
i hoj i

whereq; is the value ofo; fort = 7.
From this, and the orthonormality of the baﬁi%, 1/;5, which implies that

S6 (wisvf) == D04 (v o)),
j i
it follows that

(7.38) b= K& +]

where
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e Ve,

l=-> > aig [1/45,1' _Z@ﬁi’wﬁ) U
i h

From this expression fdr and from the estimate (6.8) @fffj we derive

(7.39) Il £ Ce~Yal [¢].

From the variation-of-constants formula, applied to (7.38) it followstfar
that

t
(7.40) lo®)]| < |8t 7, )] + / |t s, )l (5) s,

with o = o(7).
This and (ii), sincer € V&M andl(s) € V&©®), imply that

t t
@4 o)< 15+ [ Nlds < 7] +c=tal [ 1
where in the last inequality we have used the estimate (7.39). Therefore, we have

t o\ 2
617 = a7 + o] < 1@+ (171 + el | 1)

o\ 2
< oI (1+Csl / |5|> .

The differential equation (7.31) implies that

(7.42)

t .
(7.43) o) — () =~ / >3 40 (¢(s), qpff’) Yt 9ds.
T i

From this, (7.42) witht = s, the estimate (6.8) and the fact that
(7.44) 145 [lo £ Ce™®

for some numbeb independent o, it follows that

t i s |
(7.45) [|6(t) — 6(7)]lo < Ceb [ [ éoarc [ |§|)} o

that is, (iv). With a different value ob, the estimate (7.44) is also valid for the
CX(©) norm. Therefore in (7.45) th&X* norm can be replaced by th@*(Q2)
norm.

To see (7.32), let*(,t, &) be the adjoint ofd(t, 7, £). Then by definition,

(7.46) (@(t,7,€)$,2) = (¢,D*(7,1,)2) Yo,z € Hy ™.

Differentiating this identity with respect tg settingt = 7 and using the definition
of K&¢ and equation (7.31) yield

(7.47) <¢, —ZZéj(z,wF)wﬁj) = (qs, % (¢*(77t7§)z)t27> :
i
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From this identity it follows thatb*(t, r,£) can be identified with the solution
operator of the equation

d .
(7.48) d—f=§ > & @ U
i

which is (7.32).
To derive the estimate (v) we write = ) «; ¢f + o with (o, wf) =0 as
before. Then (7.48) implies that

(7.49) > @i+ =0,

From this, and 4, wf) = 0, which implies that
(6.05) + 228 (o) =0,
j

it follows that

(7.50) & =Y §lo ),
j
and therefore _ _
(7.51) 0==2 ) §lo.uf)uf =K 0.
i

This and (i) imply ||o(t)|| = ||o(7)|| and thus from (7.50), and (7.51), we obtain

t .
(7.52) a® -l <= ([ 18) 1oL

t .
(753) o)~ oo < =72 [ 11) 1ol

From these estimates, since tHg* norm is bounded by th€® norm: |z|| <
Clizllcoy. it follows that

t .
75 20leom =€ [1rce ([ 18)| Izt)com,
Applying this inequality toy;§{” and using the fact that

(7.55) 145 llcoy = O(=™2)
(which was already used in (7.53)) yields (v).O

Lemma 7.5.Assume thag : [a, b] — €,+5 is a smooth function and let(§ s, &) :
X* — X% with « as in statement of Theorem 7.2, be the solution operator of
equation(7.15). Then
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veVE® = gt s, v e VD,
Moreover, there exist numbeasc > O such thatd < e <&, a > a and
(7.56) [EM)] < Ce?, tela,b],
imply that the operator 8, s, ¢) : V& — VO satisfies

S(t, S, Ev||a £ e P90,

(ren o A G,
where M, 5 > 0 are independent of, a.
Proof. From (7.15), and the definition (7.9) &f¢, it is seen that

d , .
asg  ar V) = Cu ) K00+ 5 60, u)
= (Lgy, wf) = 07

which proves (i). Now, we regard (7.15) as a differential equation on the fibration
¢ — V¢, and transform it into an equation on a fixed fidef®. We do this

by introducing a new variable) € V¢©® through the time-dependent change of
variables

(7.59) u(t) = 2(t, s, Huw(t),
where® is the operator discussed in Lemma 7.4. The equationu{by is

(7.60) wy = LSOy + Bw
with
(7.61) B = &(s,t, £)LEO@(t, s, £) — LE©),

To simplify the notation we writé(s, t), L' andK! instead ofb(s, t, ¢), LE®
andK¢0:£0  etc. By definition® satisfies

t
#(t, 7)o = 6(r) + | Kea(s, 1jo(r) ds
therefore from (7.61) we get, assumingis sufficiently smooth, that

S
Bw = L'&(t, s)w +/ K'®(r, t)L'd(t, s) wdr — LSw
t

t S
(7.62) =(Lt—LS)w+Lt/ Kr@(r,s)wdr+/ K"&(r,t)L'wdr

S t

S t
+/ K'(r,t)L' (/ KT@(T,s)wdT> ds.
t S

We estimate only the third term, which is the most singular; the remaining terms
can be estimated by the same method and satisfy similar estimatdgul)dbe
the third term in (7.62); then recalling the definition (7.9)kof-¢ we have
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(7.63) I (w) = / > D &)@ L w, Yl )y dr,
i j
which implies that

Il (w)]| < C€]lo

/ISZZ ’@(r’t)LtwaW,J)’dr
i

/tszz ‘(Ltw’é*(t>r)¢ir,1')‘dr
|

(7.64)
=Clillo

where||¢lo = Maxea b £(S)]-
From (6.2) it follows that

(7.65) (L'w, &*(t, 1) ;) = —(e?Aw — F"(@)w, &*(t,r)yf ;).
From this, the assumptiod® — W?22(Q) which implies that
le?Aw — F"(@)w2 £ Ce™®w]la
for some real numbdp, and the estimates (v) in Lemma 7.4, it follows that

(7.66)  |(L'w, & (t,r)yf;)| < Ce=®2 (1 +£72||E|olt — 1) Jw]a-

S
[ wriar ) wlla.

As mentioned above, the other terms in (7.62) satisfy similar estimates, and as a
result we can conclude that there is a numivesuch that
) ol

S
/\t—r\dr
t

Next, we note that the invariance ¥ underL¢ implies thatL¢ can be con-
sidered as a self-adjoint operator Wd. For the restricted operator we have by
Theorem 6.1 that

Therefore (7.64) yields

@.67) @)l £ C==*é]o (t s+ 2o

(7.68) [Bul < Ce o (|t sl €l

o(L8) < —C'e.

It follows that LS generates an analytic semigroup \6& and
(7.69)  [le"wla S e fuwla, [ wlla £ Mt u

for some constari¥l’ independent of.

We only prove the estimate .&§7),. The proof of the other estimate is similar.
To prove (757), it suffices to consider the case- s < 1. In fact, the general
case follows from this special case and the semigroup property of the operator
S.If t—s < 1 and (7.56) holds witla > b’, the estimate (7.68) far sufficiently
small yields
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(7.70) IBuw| < Ce [t =] w]la,
for somea’ > 0.
From this, the variation-of-constants formula applied to (7.60) and the esti-
mates (7.69) it follows fot > s that
[w(t)lo < €= I w(s)|la

(7.71) ot /
+Ce / e~ (t — r)=(r — 8)[|w(r)]|odr.
S

This inequality implies the existence of an intervalg+h] such thatl|w(r)||. <
2||w(s)||o forr € [s,s+h] ande < &. Fort < s+h we have

t
—eC/(t— —a 2 —a
J A R G e e O ey
s —
and therefore (7.71) implies f@<t < s+h that

a’ 2(t — S)Zia

(7.72) [wt)||o £ [e°C 9 +¢ T

[w(S)|a-

We can takér so small (depending of) that the coefficient ofjw(s)||. in (7.72)
satisfies

2—
e—<C'(t-9) 4 &’ 2t — )« < g==(C'/2)t-9)

— a -
fort € [s,s+h]. Therefore (7.72) implies that
(7.73) [w(t)]|la £ e €729 u(s)|q , t €[s,5+h]

for someh > 0.

If ain (7.56) is taken sufficiently large, then fer> 0 small, the estimate
(iv) in Lemma 7.4 (sincdt — s| < 1) implies that
(7.74) |B(t, s, w(t) — wt)]lo < Ce|t = sfw(t)]

for somea’ > 0. From this estimate, (7.73), and the definition (7.59)uoft
follows that

[o(®)l[a = [2(t, s, Yw(t) — w®)|a + [[w®)]|a
(7.75) < @+Cet —sPfw®)]a
<(@+Ce¥|t —s)eC /A9 ||y(s)||,, tels,s+h],

where in the last inequality we have useds) = v(s). By takinga sufficiently
large in (7.56), we can assume tlet> 1. Then, fore > 0 small, we obtain

(1 +C€a’|t o S|)efe(c’/2)(tfs) < efa(C'/4)(tfs)’ te[s,s+n],

for someh’ > 0 depending orx. Therefore we conclude that under the same
assumptions,
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lo®)lla < eI u(E)]a, tels,s+h].

As remarked earlier, a repeated application of this argument proves the first of
the estimates (7.57) with = %C’. The proof of Lemma 7.5 is complete.O

We can now complete the proof of Theorem 7.2. By assumption,
(7.76) u(t) = GO + (1)
is the solution to the Cahn-Hilliard equation with initial condition
Up = G%° +vg € 7.
From this and Theorem 5.1(ii) it follows that, fersmall,
—3v/2

lvolle < [c%°] <&

with v the number defined in Lemma 7.3. Therefore, there exists a numbed
such that
[v®)]. <€ 7%, telo,r].

Fort € [0, 7] we have from the variation-of-constants formula applied to equation
(7.11) and from the estimates in Lemmata 7.3 and 7.5 (cf. (7.18), (7.19), (7.57))

t
[v®)]|« < e volla +e—°/5/ e—Eﬁ(t—5)|Cf(S)| ds
(7.77) t 0
rerels [ 0 g o) ds,
0

which is equivalent to
t t

(7.78)  p(t) < |lvollo +€7°/° / e7|ct®| ds+e %/ / (t —s)"*p(s)ds
0 0

with p(t) = eP!|ju(t)| . Equation (7.78) is valid fot € [0, 7]. If we restrict our
attention tot < 1, then (7.78) implies that

t
(7.79)  p() £ [lvollo +e~/=7 max || +e7¢/* / (t—s) “p(s)ds.
se(0, 0

Therefore, recalling thatvo||, < e=%/%, we have

(7.80) [[volla +€~€/===" max [c®)| < e=C'/ce=7/®

se[0,1]
for £ small and some numbef > 0 independent of. Therefore (7.79) implies
that

t
p(t) < e ¢/eem/e + e—C/E/ (t —s)~p(s)ds
0
t
(7.81) < e=¢/cg/e + =%/ (1) /O (t —s)~“ds

e

, c/e
<e ©/ee/e 4 p(t),
- 1-«
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wherep(t) = maxceo 1 p(S). From (7.81) it follows that

efc'/s e
(7.82) p(t) = p(t) = ]._ﬁe /e,
1-«
and therefore
(7.83) [o(t)]o < e e /e " tefo,r], t<1

This inequality proves that we can, in fact, assume thatl and therefore
that [[u(t)| . < e/¢ for all t € [0,1]. Thus the inequality (7.79) is also valid
for t € [0,1]. By arguing as we have done in deducing (7.82), we see that the
inequality (7.79) implies that

—ef3t
_ < +ev/e s@)) € .
7:88) 1ol = (ool +e " max 09]) 15 teo.l

The assumptiofjuo||, < |c*| implies the existence of a number> 0 such that
lo@®)llo =2V, teo,r].

It follows that fort € [0,r] the estimate (7.17) in Lemma 7.3 and (7.7) imply

(7.85) Et)] < C|ct®), telo.r].

From this, and Theorem 5.1(iii), it is seen that

(7.86) ST SIS TS CY N TIE L el S e/ect).
i j

Therefore, fort € [0,r]
(7.87) (1—e %<t)|c| < |c*0] < (1 +e */et)|c®),

where we have also used the assumption thatl. From these inequalities and
(7.84) it follows that

lv@®)lla < (1+e7°/%) e7=P|c%]

7.88
e < (L+e /(L +e e e,

which is valid fort < 1 andt € [0, r].
If ¢ is sufficiently small, this inequality implies that

2
(7.89) lo®lla < (1+e7/%) eV < 200,

with the sign of strict inequality it¢® # 0. This implies that we can take= 1

and that the inequalities (7.88), (7.89) hold in the interval [0,1]. Therefore, we
haveu(t) € .47 for t € [0,1] and u(t) in the interior of. /47 if ug is not an
equilibrium. From equation (7.7), the inequality (7.89) and Lemma 7.3 it also
follows that fort € [0, 1]



58 N.D. ALikakos & G. Fusco

§(t) = 0+ 0(e/#|c1).

Having established all this, we complete the proof if we showli&} is actually
in 1. In fact, the theorem then follows from an obvious induction argument.
From (7.88) we obtain

[o(D)]la < (1+e%%)2e<F|cED)]

which implies that
[o(D)]|a < 5@

providede > 0 is sufficiently small. The proof of Theorem 7.2 is complete
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