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Abstract

It is known that the Van der Waals-Cahn-Hilliard (W-C-H) dynamics can
be approximated by a Quasi-static Stefan problem with surface tension. It turns
out that the Stefan problem has a manifold of equilibria equal in dimension to
that of the domainΩ: any sphere of fixed radius with interface contained in
the domain is an equilibrium (indistinguishable from the point of view of the
perimeter functional). We resolve this degeneracy by showing that at the W-C-H
level this manifold is replaced by a quasi-invariant stable manifold, on which the
typical solution preserves its “bubble” like shape until it reaches the boundary.
Moreover, we show that the “bubble” moves superslowly. We also obtain an
equation that determines those special spheres that correspond to equilibria at
the W-C-H level. Our work establishes the phenomenon of superslow motion in
higher space dimensions in the class of single interface solutions.
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1. Introduction

A. General Remarks

The Cahn-Hilliard equation

ut = −∆(ε2∆u − F ′(u)), x ∈ Ω,
∂u
∂n

=
∂

∂n
(ε2∆u − F ′(u)) = 0, x ∈ ∂Ω

(1.1)

is a known model describing the phase separation and subsequent coarsening
of binary alloys [C1, C2, C3, C-H, F1, F2, F3, E, E-Z, Gu1, Gu2, Gu3, B-E1,
B-E2, Ca, Ca-F, P-F, Pe]. HereΩ ⊂ RN is a smooth bounded domain which
represents the container,u is the concentration of one of the species, andF (u)
is the bulk free energy per unit volume.F is assumed smooth with two equal
nondegenerate minima, atu = ±1. A typical example isF (u) = 1

4(u2 − 1)2. The
constantsu = ±1 are stable solutions of (1.1), and model the situation resulting
when two different stable phases having two different concentrations (conven-
tionally assumed to beu = ±1) coexist at thermodynamical equilibrium. The
term containing the singular parameterε in (1.1) models the effect of interfa-
cial energy on the separation phenomenon, whereε is a measure of the relative
importance of surface energy to bulk free energy.

As was observed byFife [F4], the Cahn-Hilliard equation can be realized
as the gradient flow for the free-energy functional

Jε(u) =
∫

Ω

[
ε2

2
|∇u|2 + F (u)

]
dx(1.2)

on the Hilbert spaceH −1
0 (the closed subspace ofH −1 of functions with zero

average):

du
dt

= −gradH −1
0

Jε(u).(1.3)

ConsequentlyJε(·) is nonincreasing along solutions and therefore one can expect
that, for ε � 1, solutions of (1.1) stay mostly nearu = −1 or u = +1, the
minima of F (u). There is ample numerical evidence [E-Fr, McK, Ey1, Ey2]
supported by some theoretical work [G1] that the typical initial condition for
0 < ε � 1 evolves into a layered function in space. Because of this, as soon
as this initial stage is completed, we can think ofΩ as split into subdomains on
which uε(·, t) takes approximately the constant values−1 and 1, with boundaries
ε-localized about an interfaceΓε(t). In agreement with the physical situation the
Cahn-Hilliard equation (1.1) preserves the mass of each component:∫

Ω
u dx = constant along the evolution.(1.4)

This puts a constraint on the relative size of the regionsu ' −1 and u ' 1
corresponding to the two phases, and therefore also on the dynamics of the thin
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zone aboutΓε(t) separating these regions. The initial separation can happen in
two ways, depending on whether the initial datum is a perturbation of a constant
state in thespinodal region s [B-F1, E-Fr, G1], or in themetastableregion m
[B-F2] (see Fig. 1).

m

s

m

F'

Fig. 1.

This paper deals with fully layered solutions and is focused on a special stage
in the evolution ofΓε(t). Formal analysis performed byPego [Pe], recently
supported by rigorous work ofStoth [St] and Alikakos, Bates & Chen

[A-B-Ch] in general, establishes the following geometric evolution law of the
frontsΓε in the limit ε → 0:

v = b

[
∂µ

∂n

]
Γ (t)

(1.5)

where

∆µ = 0, x ∈ Ω/Γ (t),

∂µ

∂n
= 0, x ∈ ∂Ω,

µ = εaK, x ∈ Γ (t).

Problem (1.5) will be referred to as theMullins-Sekerka problem. HereΓ (t) =
lim Γε(t) is the interface at timet ; a, b are constants;K is the mean curvature of

Γ (t) at x;
[

∂µ
∂n

]
is the jump of ∂µ

∂n acrossΓ (t); andv is the normal component

of the velocity ofΓ (t). We note that by switching to the slow time scaleτ = εt ,
ε can be scaled out from (1.5) confirming its geometric character. It is easy to
see that formally (1.5) is a perimeter-shortening volume-preserving law; these
facts reflect the monotonicity ofJε(u(t)) and the conservation (1.4). Rigorous
results on the well-posedness of (1.5) are due to X.Chen and his collaborators
[Ch1, Ch-H-Y]. There is also related work ofConstantin & Pugh [C-Pu] and
Escher & Simonett [E-Si] on the one-phase Hele-Shaw problem. Numerics
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suggest that certain initial curves may pinch off and subsequently decompose
into many components [B, Ch2].

It is easy to see that a sphere, or more generally a (disconnected) surface,
consisting of a finite number of equal non-overlapping spheres contained inΩ,
is an equilibrium for (1.5). This paper is concerned with the degeneracy of
(1.5) — the existence of a continuum of spherical equilibria — and it carries out
a resolution via (1.1). First considered is the manifold of equilibria of (1.5)
constructed as follows: A radiusρ > 0 is fixed such that the setΩρ = {ξ ∈
Ω/d(ξ, ∂Ω)−ρ > 0} is nonempty. Each pointξ in this set can be identified with
the center of a sphere having radiusρ. The set of single spheres with radiusρ
and center inΩρ+δ, 0< δ � 1 a fixed number, is denoted byMρ. The following
related questions are now addressed (see Fig. 2):

(1) Is there an invariant manifoldM ε
ρ for (1.1), 0< ε � 1, which corresponds

to Mρ?
(2) Which equilbria onMρ correspond to equilibria at theε > 0 level?
(3) What is the stability ofM ε

ρ ?

More generally one could consider the manifold of equilibria obtained by moving
N spheres of the same radius aroundΩρ, with the condition that they stay distance
δ apart. Unlike the single sphere case, the corresponding invariant manifold at the
ε-level is highly unstable, and for this reason it is not considered in this paper.

CH

MS

ε = 0

ε > 0

Fig. 2.

IΩ II

IVIII

Fig. 3.
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We remark that here lies an important difference between one and more space
dimensions: In one dimension the analog of the multisphere manifold is stable
(seeBates & Xun [B-X1, B-X2]. To put our results in perspective, we feel it is
useful to give an idea of the whole evolution of a typical layered initial condition
for (1.1), from the beginning of time to the end. The picture put forward has been
only partially justified and so it should be taken, on the whole, as a speculation.
In Fig. 3, four easily distinguishable stages in the evolution 0< ε � 1 are
depicted. Stage I persists for a time of order 1/ε; seeAlikakos, Bates &

Chen [A-B-Ch]. The transition from I to II is speculative. So is the transition
from II to III which is also suggested in part by the instability of the multisphere
manifold mentioned above. Stage III persists for a time of the orderec/ε. The
“bubble” retains its shape until it reaches the boundary∂Ωρ, and it does so with
a speed that is exponentially small. The motion is directed, roughly, towards the
point on the boundary∂Ω that is closest to the bubble. Stage III is studied in
the present paper. The transitions from III to IV should be abrupt, similar to the
disappearance of layers for (1.1) in one space dimension (McKinney [McK]).
On stage IV there is related rigorous work ofAlikakos, Chen & Fusco

[A-Ch-F]. It is established in that work (for a related equation) that the “droplet”
shape, when sufficiently small, persists and crawls on the boundary∂Ω towards
points where the curvature attains a local maximum. More precisely, the center
s(t) ∈ ∂Ω of the “droplet” moves, approximately, according to

ds(t)
dt

= cε
∂K
∂s

(s(t))(1.6)

where c is a constant independent ofε and K is the mean curvature of∂Ω
with the sign conventionK > 0 for a sphere. A corresponding result has been
established for the evolution law (1.5) [A-B-Ch-F]. For the equilibrium theory
we refer toModica [M1–2], to Kohn & Sternberg [K-Ste], Sternberg

[Ste] and toChen & Kowalczyk [Ch-K].
Why is the “bubble” drawn to the boundary? This can be understood at

various levels with the free energy offering the most direct explanation: Recall
that the evolution happens so thatJε(u(t)) is monotone int , and that for smallε,
Jε registers the perimeter of the interface lying insideΩ. Therefore spheres are
the favored intermediate states, while interfaces intersecting the boundary are the
favored asymptotic states (Fig. 4).

Fig. 4.
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For a deeper comprehension of this phenomenon, understanding of the “con-
nections” leading to the final state is required. This approach has been carried
out to completion only in the one-dimensional case; seeCarr & Pego [C-Pe]
and Fusco & Hale [F-Ha] for the second-order equation andAlikakos,

Bates & Fusco [A-B-F], andBates & Xun [B-X1–2] for the Cahn-Hilliard
equation.

The phenomenon of exponentially slow motion, in one space dimension, was
first pointed out inNeu [N]. Bronsard & Kohn [Bro-K1–2] have intro-
duced an energy approach for justifying slow motion of layers in one dimension
that later was implemented for the Cahn-Hilliard equation byBronsard &

Hilhorst [Bro-H]. Grant [G2] later succeeded in refining and extending the
results in [Bro-H] to a vector analogue of the Cahn-Hilliard equation known as
Cahn-Moral system. The Bronsard-Kohn idea is elegant and relatively simple.
However, it does not establish persistence of shape until the layers come together.
For a refinement which allows that conclusion, and which can be applied also to
higher space dimensions, seeAlikakos, Bronsard & Fusco [A-Bro-F].

1.1. B. Description of the Contents of the Paper and of Its Structure

As said before, the present work utilizes the Cahn-Hilliard equation for re-
solving a certain type of degeneracy of the limiting geometric problem (1.5).
Specifically, it shows that when the singular parameterε > 0 is sufficiently
small, the Cahn-Hilliard equation (1.1) admits solutions which exhibit an (al-
most) spherical interface, which persists and either remains in equilibrium inside
Ω, or migrates towards the boundary∂Ω at a very slow speed. These solutions
as functions ofx are very close to step functions, with a steep transition from
−1 to 1 across a spherical interface, and represent the physical “bubble” of a
homogeneous phase that slowly moves inside another homogeneous phase with a
different concentration. We estimate the timeT needed for reaching the boundary
to be transcendentally large inε:

T > Constantecdξ/ε(1.7)

wherec > 0 is a constant independent ofε, anddξ is the distance of the bubble
from the boundary∂Ω : dξ = d(ξ, ∂Ω) − ρ. We show that, when 0< ε � 1, the
dynamics of the centerξ ∈ Ω is determined to a very high degree of accuracy
by an ordinary differential equation (cf. Theorem 7.2)

ξ̇ = cξ.(1.8)

Hereξ → cξ is a vector field (defined onΩρ+δ) which is transcendentally small
in ε

|cξ| = O
(

e−cdξ/ε
)

(1.9)
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and can, in principle, be computed and used to detect those special points in
Ωρ+δ which can be the centers of spherical interfaces corresponding to station-
ary solutions of (1.1). We establish the following estimate for the functionξ(t)
determining the location of the center of the bubble (cf. Theorem 7.2):

ξ̇(t) = cξ(t) + O(e−c/ε|cξ(t)|).(1.10)

From this it follows thatξ is the center of a bubble remaining at equilibrium
insideΩ if and only if

cξ = 0(1.11)

(see Theorem 5.1 for a precise statement). A careful analysis of (1.11) is outside
the scope of the present work and will appear in a forthcoming paper, but the
expression forcξ derived in the proof of Theorem 5.1 indicates that the bubble
moves towards the closest points on the boundary∂Ω, as if it were attracted
to its mirror image with respect to the boundary. This leads to the conjecture
(backed up by formal calculations based on the form ofcξ) that the bubble can
remain in equilibrium insideΩ only if its centerξ is inside the convex hull of
the points of∂Ω having distance fromξ equal tod(ξ, ∂Ω) (cf. Fig. 5). Recently
M.Ward [Wa] has done the complete asymptotics for a related equation. His
work provides more evidence in favor of the speculation above.

Ω
Fig. 5.

From the general theory of semilinear equations [H] and from the gradient
nature of equation (1.1) it follows that (1.1) generates a semiflow in a suitable
Sobolev space Xα and that this semiflow admits a global attractorAε [Ha1].
This is a compact connected invariant set which attracts bounded sets.Aε is
expected to depend onε in a singular way asε → 0 (see [A-B-F]) and therefore
in general one cannot hope to derive a limit problem, a system of differential
equations which could capture the global limit behavior forε � 1. In such a
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situation, when studying the limit asε → 0, it is preferable instead of focusing
on the global attractor, to concentrate on certain “slices” of it. These are invariant
subsets of the attractor of complexity bounded uniformly inε and therefore with
meaningful limits asε → 0. Regions II, III, and IV in Fig. 3 correspond to
different energy slices of the attractor. We surmise that the set of step functions
Mρ mentioned above is the limit, asε → 0, of an invariant manifoldM ε

ρ of (1.1)
which is made up of functions with approximately spherical interface. Strictly
speaking, a proof of the existence ofM ε

ρ is not presented here although a related
manifold M̃ ε

ρ is constructed which contains the equilibria of (1.1) with almost
spherical interface contained inΩ and which is approximately invariant in the
sense that solutions starting near it stay near it (cf. Theorem 7.2). The construction
of M̃ ε

ρ is basic in the derivation of the results presented here.M̃ ε
ρ would be,

clearly, a very good approximation to the invariant manifoldM ε
ρ .

In this paper only the two-dimensional case is considered. However all ar-
guments and techniques apply to the general caseN > 2 with the following
modifications. First the logarithmic Green function has to be replaced by the ap-
propriate higher-dimensional Green function. This point is straightforward. The
second point involves the spectrum, specifically estimate (6.6) in Theorem 6.1,
the higher-dimensional analog of which has not yet been established. Instead the
seemingly suboptimal result

λξ
N+1 = C ′ε2

is available, which, however, is sufficient for the purposes of this paper. In fact
anything algebraic would do (see the Introduction in [A-F1]). In Section 2 we
construct bounded radial solutions to

∆(∆u − F ′(u)) = 0(1.12)

on the whole space, rescaled versions of which are used for constructing good
approximations for solutions to (1.1) with almost spherical interface. These radial
bounded solutions of (1.12) (Fig. 6) are used as the “building blocks” of the quasi-
invariant manifoldM̃ ε

ρ . Equation (1.12) is solved by a perturbation argument

U*

rρ

Fig. 6.
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which is of some independent interest but on the other hand is not essential in
understanding the rest of the paper. The reader mostly interested in the dynamics
of bubbles can skip the proofs of Propositions 2.1 and 2.4, keeping in mind the
statements and the definition of the bubbleuξ in Section 3. In Section 4 various
results concerning the operator

−ε2∆ + F ′′(uξ)(1.13)

in L2(R2) are collected. In particular, we prove an estimate (cf. Theorem 4.2) for
the generalized inverse of (1.13), which is then systematically employed in the
proof of Theorem 5.1. Knowledge of the proof of Theorem 4.2 is not essential
for the comprehension of the results in Sections 5 and 7. The reader mostly
interested in the main results of the paper needs to be only familiar with the
statements of Theorems 4.1 and 4.2. In Section 5, building on the results of
Sections 3 and 4 we construct the quasi-invariant manifoldM̃ ε

ρ , which has three
important properties:

(a) The elements of̃M ε
ρ are step-like functions ofx changing abruptly from−1

to 1 across a spherical cell of radiusρ and thicknessε.
(b) M̃ ε

ρ contains the equilibria of (1.1) with an almost spherical interface of
radiusρ.

(c) M̃ ε
ρ satisfies a quasi-invariance condition (5.2) and solutions starting near

M̃ ε
ρ remain nearM̃ ε

ρ for a very long time (Theorem 7.2).

The basic geometric ideas behind the construction ofM̃ ε
ρ can be summarized as

follows: We seek to determinevξ andc(ξ) satisfying the two conditions

L (uξ + vξ) = c(ξ) · uξ
ξ

(
= ci (ξ)

∂uξ

∂ξi

)
, vξ ⊥ uξ

ξ(1.14)

whereL is the Cahn-Hilliard vector field,

L (u) = ∆
(−ε2∆u + F ′(u)

)
,(1.15)

uξ a “bubble” function (see Section 3) and⊥ denotes orthogonality inH −1
0 .

The intuition behind (1.14) is based on the fact that the manifold of bubbles
M ε

ρ = {uξ/ξ ∈ Ωρ+δ} is already an excellent approximation of the true invariant
manifold. Indeed, if the manifold of bubbles were truly invariant, then the vector
field L would be tangent to it at every point:

L (uξ) ∈ Tuξ M ε
ρ .(1.16)

The tangent spaceTuξ M ε
ρ is spanned by∂uξ/∂ξi , i = 1, . . . ,N and therefore

the condition (1.16) can be stated equivalently in the form

L (uξ) = ci (ξ)
∂uξ

∂ξi
,(1.17)

for appropriatec’s. Although (1.17) is false in the sense that there are generally
noci ’s for which it holds, it can be amended by adding a small correctionvξ as an



10 N.D.Alikakos & G.Fusco

extra unknown. This correction gives rise to (1.14), which can be considered as a
global Liapunov-Schmidt reduction. In fact, once (1.14) is solved, the bifurcation
equation (1.11) can be utilized to determine the equilibria with almost spherical
interface. A linear version of the “v-equation” (1.14) was already introduced in
Alikakos, Bates & Fusco [A-B-F] and in Fusco & Hale [F-Ha]. Both
of these works however concern the one-dimensional case where equilibria can
be easily determined by phase-plane analysis.

In Section 7, Theorem 7.2 is established. It contains the results on the dy-
namics of bubbles (cf. (1.9), (1.10)). The proof uses semigroup theory and is
based on the spectral estimates for the linearized Cahn-Hilliard operator

∆(−ε2∆ψ + F ′′(uξ)ψ) = −λψ, x ∈ Ω,
∂ψ

∂n
=
∂∆ψ
∂n

= 0, x ∈ ∂Ω,
(1.18)

that were derived in [A-F1] and are stated in Theorem 6.1, and on the “slow-
channel” ideas ofCarr & Pego [C-Pe]. In Fig. 7 we show the quasi-invariant
manifold M̃ ε

ρ together with the “slow channel” around it. According to Theorem
7.2, if the initial condition is chosen in the inner neighborhood, then the solution
can leave the outer neighborhood, described byc(ξ) wherec as in (1.14), only
from the top or from the bottom. This implies that in physical space either the
bubble stays inΩ forever or it persists until it reaches∂Ω.

ξ

C(ξ)

Fig. 7.

Some of the results in the present paper appeared without proof in the
Barcelona EQUADIFF proceedings [A-F2].

2. Radial Equilibria on the Whole Space

The equilibria of (1.5) contained entirely inΩ ⊂ R2 are circles. This suggests
the existence of bounded radial stationary solutions to the Cahn-Hilliard equation
considered in the whole ofR2. A function u ∈ C2(R2) is such a solution if, and
only if, it is radial and satisfies

ε2∆u − F ′(u) = σ, x ∈ R2,(2.1)

for some constantσ.
The following proposition concerns the existence of radial solutions of the

rescaled version of (2.1)

∆u − F ′(u) = σ, x ∈ R2.(2.2)
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Proposition 2.1.There exists a number̄ρ > 0 and smooth functionsσ : (ρ̄,∞) →
R, U ∗ : [0,∞) × (ρ̄,∞) → R, such that for eachρ ∈ (ρ̄,∞), σ(ρ) and u(x, ρ) =
U ∗(|x|, ρ) satisfy equation(2.2). Moreover, U∗(r , ρ) is increasing in r and

(i) σ(ρ) = X ρ−1 + O(ρ−2),
(ii) U ∗(ρ, ρ) = O(ρ−1),
(iii) 1 + U ∗(0, ρ) = O(ρ−1)
(iv) lim r →∞ U ∗(r , ρ) = α(ρ),

whereX > 0 is a constant andα(ρ) is the root near 1 of the equation F′(u) +
σ(ρ) = 0.

(v) α(ρ) − U ∗(r , ρ) = O(e−ν(ρ)(r −ρ)), r > ρ, ν(ρ) = (F ′′(α(ρ)))1/2,

and similar exponential estimates hold for the derivatives of U∗ with respect
to r.

Proof. If σ,U ∗ as in the proposition exist, then the functionU ρ(s) = U ∗(s−ρ, ρ)
satisfies

Ü ρ +
1

ρ + s
U̇ ρ − F ′(U ρ) = σ(ρ), −ρ < s < ∞.

Therefore we can expect that, asρ → ∞, U ρ tends toU , the unique bounded
solution of

Ü − F ′(U ) = 0, lim
s→±∞ U (s) = ±1, U (0) = 0.(2.3)

On the other hand, away from the interface, we can expectU ρ to be close to one
of the roots ofF ′. The proof is a perturbation argument based on this observation.

a. An equivalent problem.Fix ρ > 0 and define

u(r ) = −1 +w(r ), 0 5 r 5 1
2ρ,

u(ρ + s) = U (s) + v(s), − 1
2ρ 5 s.

(2.4)

Seta = 1
2ρ and consider the problem

r −1(r ẇ)· − ν̄2w = 1(0,a] [F ′(−1 +w) − ν̄2w + σ] + αa−1δa,

r ∈ (0,∞)

v̈ − F ′′(U )v = 1(−a,∞)[F ′(U + v) − F ′(U ) − F ′′(U )v

−(ρ + s)−1(U̇ + v̇) + σ)] + βδ−a, s ∈ R.
ẇ(0) = 0,

−1 +w(a) = U (−a) + v(−a), ẇ(a−) = U̇ (−a) + v̇(−a+),∫ ∞

−∞
vU̇ = 0,

(2.5)

where 1[a,b] is the characteristic function of the interval [a,b], ¯ν2 = F ′′(1), and
δa is the Dirac function ata. If w : [0,∞) → R, v : R → R, σ, α, β ∈
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R is a solution of (2.5) withw, v bounded, then the functionu defined by
(2.4) corresponds to a bounded radial solution of (2.2). On the other hand, ifu
corresponds to a bounded radial solution of (2.2), then the functionsw, v defined
by (2.4) satisfy equations (2.5) in the intervals [0, a], [−a,∞), and it can be
shown that they can be extended uniquely to [0,∞) andR as solutions of (2.5)
for suitable values ofρ, σ, α, β.

Remark.We owe an explanation to the reader about the role of the distributions
δa andδ−a. As we have mentioned, we split the problem on (0,∞) into two half-
interval problems and a matching condition. The distributions introduced allow
us to recast each of the half-interval problems into whole-space problems. The
idea is general and can be utilized for taking a Dirichlet problem on a bounded
domain and then modifying the equation so as to produce a problem on the
whole space whose solution, when restricted to the bounded domain, satisfies
the original Dirichlet problem. The advantage of the whole-space point of view
is that the relevant operations now have known inverses expressible in terms of
Green’s functions on the whole space. The same idea is used again in the proof
of Theorem 5.1.

b. The map(w, v) → (ŵ, v̂). For studying the solvability of the problem (2.5)
we need the following lemmata. The proofs are quite standard and are omitted.

Lemma 2.2.The problem

r −1(rKr )r − ν̄2K = τ−1δτ , (r , τ ) ∈ (0,∞) × (0,∞),

Kr (0, τ ) = 0, lim
r →∞ rKr (r , τ ) = 0

(2.6)

has a unique solution K :[0,∞)2 → R. The function K satisfies

K (r , τ ) < 0,
∫ ∞

0
K (r , τ )τdτ = − 1

ν̄2
,(2.7)

∣∣∣∣K (r , τ )τ +
1

2ν̄
e−ν̄|r −τ |

∣∣∣∣ 5 C
1 + τ

e−c|r −τ |, r > 0, τ > 0,(2.8)

for some constants C, c > 0. Similar estimates hold for derivatives of K .

Lemma 2.3.The problem

gss − F ′′(U )g = δτ − U̇ (τ )U̇

‖U̇ ‖2
, (s, τ ) ∈ R2,∫ ∞

−∞
g(s, τ )U̇ (τ ) dτ = 0

(2.9)

has a unique solutiong : R2 → R. The functiong satisfies∣∣∣∣g(s, τ ) +
1

2ν̄
e−ν̄|s−τ |

∣∣∣∣ 5 C e−c|τ |e−c|s|, (s, τ ) ∈ R2,(2.10)

for some constants C, c > 0. Similar estimates hold for derivatives ofg.
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Givenw ∈ C0[0, a], v ∈ C1[−a,∞), α, β, σ ∈ R set

q(w) = F ′(−1 +w) − ν̄2w

p(v) = F ′(U + v) − F ′(U ) − F ′′(U )v − (ρ + s)−1v̇,
(2.11)

and define

ŵ(r ) =
∫ a

0
K (r , τ )[q(w)](τ )τ dτ + σ

∫ a

0
K (r , τ )τ dτ + αK (r , a),

v̂(s) = −
∫ ∞

−a
g(s, τ )

U̇ (τ )
ρ + τ

dτ +
∫ ∞

−a
g(s, τ )[p(v)](τ ) dτ

+σ
∫ ∞

−a
g(s, τ ) dτ + βg(s,−a).

(2.12)

By Lemma 2.2, the function ˆw satisfies ˙̂w(0) = 0 and is a solution of (2.5)1
whenw in the right-hand side is considered a known function. By Lemma 2.2,
the function ˆv is orthogonal toU̇ and, provided the right-hand side of (2.5)2 is
also orthogonal toU̇ , is a solution of (2.5)2 when v in the right-hand side is
a known function. We now show that, ifa = 1

2ρ is sufficiently large, then the
numbersα, β, σ can be chosen so that this orthogonality condition is satisfied
together with the two matching conditions ata in (2.5). We obtain the following
linear system

(2.13)
∫∞

−a
U̇ 0 U̇ (−a)(

− ∫∞
−a

g(−a, τ ) dτ +
∫ a

0
K (a, τ )τdτ

)
K (a, a) −g(−a, −a)(

− ∫∞
−a

g1(−a, τ ) dτ +
∫ a

0
K1(a, τ )τdτ

)
K1(a−, a) −g1(−a+, −a)




σ

α

β

 =


l

m

n


where the subscript 1 denotes differentiation with respect to the first variable and
l ,m, n are given by the expressions

l =
∫ ∞

−a

U̇ 2(τ )
ρ + τ

dτ −
∫ ∞

−a
[p(v)]U̇ (τ ) dτ,

m = 1 + U (−a) −
∫ ∞

−a
g(−a, τ )

U̇ (τ )
ρ + τ

dτ −
∫ a

0
K (a, τ )[q(w)](τ )τ dτ

+
∫ ∞

−a
g(−a, τ )[ p(v)](τ ) dτ,

n = U̇ (−a) −
∫ ∞

−a
g1(−a, τ )

U̇ (τ )
ρ + τ

dτ −
∫ a

0
K1(a, τ )[q(w)](τ )τ dτ

+
∫ ∞

−a
g1(−a, τ )[p(v)](τ ) dτ.

(2.14)

Using the estimate

|U̇ (s)| 5 Ce−ν̄s,(2.15)

we see that
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∫ ∞

−a
U̇ = 2 + O(e−ν̄/2ρ), |U̇ (−a)| = O(e−ν̄/2ρ).(2.16)

On the other hand, Lemmata 2.2, 2.3 imply that the other two elements in the
first column of the matrix (Aij ) of system (2.13) are bounded uniformly inρ and
also imply the estimates

K (a, a) = − 1
ν̄ρ

+ O(ρ−2), g(−a,−a) = − 1
2ν̄

+ O(e−ν̄/2ρ),

K1(a−, a) = −1
ρ

+ O(ρ−2), g1(−a+, a) =
1
2

+ O(e−ν̄/2ρ).
(2.17)

The determinantd of Aij is then given by

d =
2
ν̄ρ

+ O(ρ−2),(2.18)

and we conclude that system (2.13) is solvable ifρ is sufficiently large. Therefore,
under the conditionρ � 1, σ, α, andβ are uniquely determined by (w, v). In turn,
the functions defined by (2.12) are uniquely determined by (w, v). It follows that
if we again denote by ˆw, v̂ their restrictions to the intervals [0, a] and [−a,−∞)

we have a map (w, v)
T−→ (ŵ, v̂) from C0[0, a]×C1[−a,∞) into itself and from

the above discussion we see that fixed points of this map correspond to radial
solutions of (2.2).

c.ρ � 1 implies that T is a contraction. Using (2.8), (2.10) and the corresponding
estimates for the derivatives ofK andg, one obtains

A21 = O(ρ−1), A31 = 1 + O(ρ−1).

From this and previous estimates for the other coefficients of (Aij ) we conclude
that

σ = l /2 + · · · , α = B0ρl + · · · , β = B1l + B2m + B3n + · · · ,(2.19)

whereBi , i = 1, 2, 3, 4 are bounded functions ofρ � 1 and dots denote linear
combinations ofl ,m, n with coefficient of orderO(e−cρ) for somec > 0.

We now show thatT is a contraction on the closed subsetX of C0[0, a] ×
C1[−a,∞) defined by

X = {(w, v)| ‖(w, v)‖X = max{‖w‖0, ‖v‖1} 5 η},(2.20)

for a suitable choice of the numberη > 0.
Definition (2.11) and (w, v) ∈ X imply that

‖q(w)‖0 5 Cη‖w‖0, ‖q(w) − q(w̄)‖0 5 Cη‖w − w̄‖0,

‖p(v)‖0 5 C(v + ρ−1)‖v‖1, ‖p(v) − p(v̄)‖0 5 C(η + ρ−1)‖v − v̄‖1

(2.21)

whereC > 0 is a constant that does not always need to be the same.
We use the superscript 0 to denote the value ofl ,m, n, σ, . . . corresponding

to w = v = 0 and the superscript 1 to denote the remaining part. Making use of
(2.9)(ii) and of its consequence
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∫ ∞

−∞
g1(s, τ )U̇ (τ ) d(τ ) = 0

and observing that the quantity 1 +U (−a) is of orderO(e−cρ), we obtain

l 0 =
1
ρ

∫ ∞

−∞
U̇ 2 + O(ρ−2),

m0 = O(e−cρ) +
1
ρ

∫ ∞

−a
g(−a, τ )U̇ (τ ) dτ + O(ρ−2) = O(ρ−2),

n0 = O(e−cρ) +
1
ρ

∫ ∞

−a
g1(−a, τ )U̇ (τ ) dτ + O(ρ−2) = O(ρ−2).

(2.22)

On the other hand (2.14), (2.21) imply that

|l 1| 5 C(η + ρ−1)‖v‖1,

|l 1 − l̄ 1| 5 C(η + ρ−1)‖v − v̄‖1

|m1| 5 C(η + ρ−1)‖(w, v)‖X

|m1 − m̄−1| 5 C(η + ρ̄)−1‖(w, v) − (w̄, v̄)‖X

and similar estimates forn1. Therefore, from (2.19) we conclude that

σ =
1

2ρ

∫ ∞

−∞
U̇ 2 + O(ρ−2 + (η + ρ−1)‖(w, v)‖X ),

|α| 5 C(1 +ρ(η + ρ−1)‖(w, v)‖X ),

|β| 5 C

(
1
ρ

+ (η + ρ−1)‖(w, v)‖X

)
.

(2.23)

Using (2.12), (2.21), (2.23) and Lemmata 2.2, 2.3 we finally get

‖(ŵ, v̂)‖X 5 C(ρ−1 + (η + ρ−1)‖(w, v)‖X ),

‖(ŵ, v̂) − ( ˆ̄w, ˆ̄v)‖X 5 C(η + ρ−1)‖(w, v) − (w̄, v̄)‖X .

Under the assumption thatη = 2Cρ−1, these estimates show that ifρ is larger
than some ¯ρ > 0, thenT is a map fromX into itself and is a contraction.

For eachρ larger than some ¯ρ > 0, the fixed point (w∗, v∗) of T defines via
(2.4) a functionU ∗ which is a bounded radial solution of (2.2). From (2.23) with
η = 2Cρ−1 and (w, v) = (w∗, v∗), and from

‖(w∗, v∗)‖X 5 Const.ρ−1(2.24)

the estimate (i) follows with

X =
∫ ∞

−∞
U̇ 2

/∫ ∞

−∞
U̇ .(2.25)

Estimates (ii), (iii) follow from (2.4), (2.24).
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Once the existence of a radial bounded solutionU ∗ of (2.2), a perturbation
of U , is established, standard phase-plane analysis applied to the equation

Ü ∗ +
U̇ ∗

r
− F ′(U ∗) = σ

implies thatU ∗ is increasing inr and also implies the statements (iv) and (v).
The proof of Proposition 2.1 is complete.ut
Proposition 2.4. There is a number C> 0, independent ofρ, such that the
functionsσ,U ∗ constructed in Proposition 2.1 satisfy the following estimates:

σ′(ρ) = X ρ−2 + O(ρ−3),(i)

U ∗(r , ρ) = U (r − ρ) + V (r − ρ, ρ) + O(ρ−2), r − ρ ∈ [−Cρ,∞),

U ∗
ρ (r , ρ) = −U̇ (r − ρ) + Vρ(r − ρ, ρ) + O(ρ−3), r − ρ ∈ [−Cρ,∞)

(ii)

where

V (r , ρ) = X ρ−1
∫ ∞

−∞
g(r , s) ds, X =

∫ ∞

−∞
U̇ 2 \

∫ ∞

−∞
U̇ .(2.26)

Moreover ∫ ∞

−∞
F ′′′(U )U̇ 2V = 0.(iii)

Proof. We drop the superscript∗ and write (w, v) instead of (w∗, v∗).

1. We begin by noting that the contraction mapT constructed in the proof of
Proposition 2.1 dependsC∞-smoothly onρ. Indeed, given (w, v) in X, σ, α, β
are chosen so that the orthogonality condition (necessary for the solvability of the
second equation in (2.5)) and the matching conditions are satisfied, and therefore
the pair (ŵ, v̂) produced by (2.12) depends smoothly onρ. By a well-known
result (see for example Th. 3.2, Chapter 0 in [Ha2]), the fixed point depends
smoothly onρ, and so doesσ since it is a smooth function of (w, v).

2. Next we establish (ii) 1. If we setv = V + R, whereV is the function defined
by (2.26), andR is a remainder, equation (2.5)2 can be rewritten in the form

R̈ − F ′′(U )R =
[
ρ−1(X − U̇ ) − V̈ + F ′′(U )V

]
+ 1[−ρ/2,∞)

[
F ′(U + v) − F ′(U ) − F ′′(U )v +

sU̇
ρ(ρ + s)

− v̇

ρ + s

]
(2.27)

−1(−∞,−ρ/2]ρ
−1(X − U̇ ) + βδ−ρ/2 + O(ρ−2)

where we have used the expression (i) forσ in Proposition 2.1. Now observe
that the functionρ−1(X − U̇ ) is orthogonal toU̇ and thereforeV is the unique
solution orthogonal toU̇ to the equation

V̈ − F ′′(U )V = ρ−1(X − U̇ ).

Moreover, from (2.24) the expression 1[−ρ/2,∞) [· · ·] on the right-hand side of
(2.27) isO

(
ρ−2
)
. Then (2.27) implies that
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R = ρ−1
∫ −ρ/2

−∞
g(s, σ)(X − U̇ ) dσ + βg(s,−ρ/2) + O(ρ−2).

From this expression forR, from Lemma 2.3 and the estimate (2.23)3, it follows
that for −Cρ < s < ∞,

|R(s)| 5 Constant

(∫ −ρ/2

−∞
e−ν̄(s−σ)dσ + e−ν̄(s+ρ/2)

)
+ O(ρ−2)

5 Constante−(ν̄/2−C)ρ + O(ρ−2),

which, providedC is chosen< ν̄/2, implies that

R(s) = O(ρ−2).

3. To verify the second equation of (ii), we start by differentiating (2.11), (2.12)
(together with the derivative of (2.12)2 with respect tor ), (2.13), (2.14) with re-
spect toρ. This gives a linear system for the unknownsσ′, α′, β′ ∈ R, (w′, v′) ∈
C0(0, ρ/2] × C1[−ρ/2,∞) (here′ denote differentiation with respect toρ).

From (2.11) and (2.24) we see that∥∥∥∥ d
dρ

[q(w)]

∥∥∥∥
0

5 Const.ρ−1‖w1‖0,∥∥∥∥ d
dρ

[p(v)]

∥∥∥∥
0

5 Const.
(
ρ−3 + ρ−1‖v1‖1

)
.

(2.28)

These estimates and (2.14) imply that∣∣∣∣l ′ +
1
ρ2

∫ ∞

−∞
U̇ 2

∣∣∣∣ 5 Const.
(
ρ−3 + ρ−1‖v′‖1

)
,

|m′| + |n′| 5 Const.
(
ρ−2 + ρ−1

(‖w′‖0 + ‖v′‖1
))
.

(2.29)

Differentiating (2.14) with respect toρ yields

A

σ′

α′

β′

 = −A′

σα
β

 +

 l ′

m′

n′

 .(2.30)

One can show that

A′ =

O(e−cρ) 0 O(e−cρ)

O(1) O(ρ−2) O(e−cρ)

O(1) O(ρ−2) O(e−cρ)

 .(2.31)

From (2.30) and the estimates (2.23), (2.24), (2.29) and (2.31), it follows that

|σ′ + X ρ−2| 5 Const.ρ−1‖v′‖1,

|α′| 5 Const.ρ−1(1 + ‖v′‖1),

|β′| 5 Const.ρ−1(1 + ‖w′‖0 + ‖v′‖1).

(2.32)
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Next we consider the expressions ofw′, v′, and v̇′ that one obtains by differ-
entiating equations (2.12) with respect toρ and by differentiating (2.12)2 with
respect tor andρ. Only the expression forv′ is written, the expressions ofw′

and v̇′ being similar.

v′(s) = −ρ−1g

(
s,−1

2
ρ

)
U̇

(
−1

2
ρ

)
+
∫ ∞

−ρ/2
g(s, τ )

U̇ (τ )
(ρ + τ )2

dτ

+
1
2
g

(
s,−1

2
ρ

)
p

(
v

(
−1

2
ρ

))
+
∫ ∞

−ρ/2
g(τ, τ )

(
d

dρ
p(v)

)
(τ ) dτ

+σ′
∫ ∞

−ρ/2
g(s, τ ) dτ +

(
1
2
σ + β′

)
g

(
s,−1

2
ρ

)
− 1

2
βg2

(
s,−1

2
ρ

)
= I1 + I2 + I3 + I4 + I5 + I6 + I7

(2.33)

where g2 is the derivative ofg with respect to the second variable. Equation
(2.15) implies thatI1 = O(e−cρ). If s > −cρ with c < 1

2 ν̄, then Lemma 2.3
implies that ∣∣g (s,− 1

2ρ
)∣∣ < Const. e−Const.ρ.(2.34)

This, (2.24), (2.23), and (2.32) imply that

I2 = O(ρ−3),

I4 < Const. (ρ−3 + ρ−1‖v′‖1),

I6 < Const.e−Const. ρ
(
ρ−1 + ‖w′‖0 + ‖v′‖1

)
,

I7 = O(e−cρ).

(2.35)

On the other hand, also using (2.32)1, we have fors > −Cρ that∣∣∣∣I5 + X ρ−2
∫ ∞

−∞
g(s, τ )

∣∣∣∣ 5 Const.
(
ρ−3 + ρ−1‖v′‖1

)
.(2.36)

From equation (2.33), the above estimates forIi , i = 1, . . . , 7, and a similar
discussion for the terms appearing in the expressions ofw′ and v̇′, we obtain
that

‖v′‖1 = O(ρ−2),(2.37)

which in turn implies via (2.32)1 and (2.36) that

σ′ = −X ρ−2 + O(ρ−3),(2.38)

v′(s) = X ρ−2
∫ ∞

−∞
g(s, τ )dτ = Vρ(s, ρ).(2.39)

4. Finally we verify (iii). We begin by deriving
....
U − F ′′(U )Ü = F ′′′(U )U̇ 2.

Then by multiplying this byV and integrating over (−∞,∞) we find
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∫ ∞

−∞
F ′′′(U )U̇ 2V =

∫ ∞

−∞
(
....
U − F ′′(U )Ü )V

=
∫ ∞

−∞
Ü V̈ − F ′′(U )Ü V =

∫ ∞

−∞
(V̈ − F ′′(U )V )Ü

=
∫ ∞

−∞
ρ−1(X − U̇ )Ü = 0.

The proof of Proposition 2.4 is complete.ut

3. The “Bubble” uξ(x )

By means of Propositions 2.1 and 2.4 we can associate with eachξ ∈ Ωρ+δ =
{ξ|d(ξ, ∂Ω) − ρ > δ} a functionuξ : Ω → R with the following properties:

(a) It is an almost stationary solution of the Cahn-Hilliard equation in the sense
that it fails to satisfy the equation, or the boundary conditions, by terms which
are of the orderO(e−c/ε);

(b) It jumps from near−1 to near 1 in a thin layer of size of orderε around the
circle of radiusρ and centerξ.

For ε � 1 we set

uξ(x) = U ∗
( |x − ξ|

ε
,
ρ− aξ

ε

)
, x ∈ Ω,(3.1)

where the numberaξ is chosen to be zero at some fixedξ0 ∈ Ωρ+δ and is
determined for genericξ ∈ Ωρ+δ by imposing that the “mass” ofuξ is constant
on Ωρ+δ ∫

Ω
uξ =

∫
Ω

uξ0, ∀ ξ ∈ Ωρ+δ.(3.2)

We chooseξ0 to be a point of maximal distance from∂Ω.

Lemma 3.1. The number aξ is uniquely determined by the condition(3.2) and
the assumption aξ0 = 0. Moreover

0 5 aξ < C e−(νε/ε) dξ

,(3.3)

whereνε = ν
(

ρ−aξ

ε

)
(see notation in Proposition 2.1); dξ = d(ξ, ∂Ω)−ρ. Similar

estimates hold for derivatives of aξ with respect toξi , i = 1, 2.

Proof. We can write∫
Ω

uξ =
∫

Ω
U ∗
( |x − ξ|

ε
,
ρ

ε

)
dx +

aξ

ε

∫ 1

0

∫
Ω

U ∗
ρ

( |x − ξ|
ε

,
ρ− saξ

ε

)
dx ds.

On the other hand based on Propositions 2.1 and 2.4, we have
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∫
Ω

uξ0 −
∫

Ω
U ∗
( |x − ξ|

ε
,
ρ

ε

)
dx

=
∫

Ω
U ∗
( |x − ξ0|

ε
,
ρ

ε

)
dx −

∫
Ω

U ∗
( |x − ξ|

ε
,
ρ

ε

)
dx

=
∫

Ω
U ∗
( |x − ξ0|

ε
,
ρ

ε

)
dx −

∫
Ωξ

U ∗
( |x − ξ0|

ε
,
ρ

ε

)
dx

=
∫

Ω\Ωξ

U ∗
( |x − ξ0|

ε
,
ρ

ε

)
dx −

∫
Ωξ\Ω

U ∗
( |x − ξ0|

ε
,
ρ

ε

)
dx

=
∫

Ω\Ωξ

[
U ∗
( |x − ξ0|

ε
,
ρ

ε

)
− α

(ρ
ε

)]
dx

−
∫

Ωξ\Ω

[
U ∗
( |x − ξ0|

ε
,
ρ

ε

)
− α

(ρ
ε

)]
dx

= O
(

e−(νε/ε)dξ
)
< 0

whereΩξ = {y|y = x − ξ + ξ0, x ∈ Ω}. From Proposition 2.4 we also obtain

1
ε

∫
Ω

U ∗
ρ

( |x − ξ|
ε

,
ρ + saξ

ε

)
dx < −C < 0.

Therefore we see that, ifε > 0 is sufficiently small, then (3.1) can be uniquely
solved foraξ and also the estimate foraξ follows. The proof of Lemma 3.1 is
complete. ut

From the definition ofuξ it follows that uξ satisfies the differential equa-
tion (1.1) with ut = 0 and the second boundary condition. Furthermore, from
Proposition 2.1 it can be concluded that

∂uξ

∂n
= O

(
ε−1e−(νε/ε) dξ

)
.(3.4)

4. The Operator −ε2∆ + F ′′(uξ) on the Whole Space

In this section we collect some results on the operator defined, forε � 1, by

Aφ = −ε2∆φ + F ′′(uξ)φ,(4.1)

on L2(R2) that are used systematically below. Hereuξ is the function defined as
in (3.1) with x ∈ R2.

A. The Spectrum

Theorem 4.1.A is self-adjoint and there isε0 > 0 such that for0< ε < ε0,

(i) A has a unique negative eigenvalueµ0 and
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−Cε2 < µ0 < −C ′ε2

with C,C ′ > 0 independent ofε. The eigenvalueµ0 is simple and the corre-
sponding eigenfunction V0 can be chosen to be positive. Also, V0 is a function of
|x − ξ| and

|V0(ρ + s) − αε−1/2U̇ (s/ε)| < Cε1/2, −ρ < s < ∞
whereα is a constant of normalization.

(ii) 0 = µ1 = µ2 is a double eigenvalue of A and the corresponding eigenspace is

the span of Vi =
∂uξ

∂xi

/∥∥∥∥∂uξ

∂xi

∥∥∥∥
L2

, i = 1, 2.

(iii) If µ > 0 is in the spectrum of A, then

µ > Cε2.

(iv) If ϕ : R2 → R is Lipschitz continuous, then∫
R2

ϕV0 = ε1/2

√
2√

πρ
∫∞

−∞ U̇ 2

∫
Γ

ϕ + O
(
ε3/2

)
,

∫
R2

ϕVi = ε1/2 2√
πρ
∫∞

−∞ U̇ 2

∫
Γ

ϕ cosαi + O(ε3/2), i = 1, 2,

whereΓ = {x/|x − ξ| = ρ} andαi (x) is the angle between the vector x− ξ and
the xi axis.

The proof of this theorem is a consequence of [A-F1] and [St], in particular
Lemma 2.5 in [A-F1]. We omit the details and refer the reader to [A-F1].

B. Mapping Properties of the Inverse

Theorem 4.2.The problem

Aφ = ψ, φ, ψ ∈ L2(R2),∫
R2

φVi =
∫

R2

ψVi = 0, i = 0, 1, 2,
(4.2)

has a unique solution. The solutionφ can be represented in the form

φ(x) =
∫

R2

g(x, y)ψ(y) dy(4.3)

through a functiong : R2 × R2 → R which satisfies∫
R2

g(x, y)Vi (y) dy = 0, i = 0, 1, 2.(4.4)

Moreover,
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(i) there exist C,C ′, c, β > 0 such that, for0< ε < ε0,

|g(x, y) − ḡ(x, y)| 5 Cε−βe−(c/ε)(d(x)+d(y)), |x − ξ|, |y − ξ| > ρ + C ′ε.(4.5)

where d(x) = | |x − ξ| − ρ| and ḡ is the fundamental solution of

− ε2∆x ḡ + ν2
ε ḡ = δy.(4.6)

(ii) If ψ ∈ C0(Ω̄), then∣∣∣∣∫
Ω

∫
Ω
g(x, y)ψ(y) dy dx

∣∣∣∣ 5 C‖ψ‖0.(4.7)

(iii) If ψ ∈ C0(∂Ω), then∣∣∣∣∫
Ω

∫
∂Ω
g(x, y)ψ(y) dy dx

∣∣∣∣ 5 Cε−1‖ψ‖0,(4.8)

where‖ · ‖0 stands for the C0 norms.

Proof. The first part of the theorem is standard. Only the estimates (i), (ii), (iii)
are proved. We start from the observation thatγ = g − ḡ satisfies the equation

ε2∆xγ − F ′′(uξ)γ = (F ′′(uξ) − ν2
ε)ḡ +

2∑
i =0

Vi (y)Vi ,(4.9)

and derive an estimate for theL2 norm of γ. A standard computation shows
that the right-hand sideh of (4.9) is orthogonal toV1 and V2. Therefore, from
Theorem 4.1, we conclude that

γ =
2∑

i =1

〈γ,Vi 〉Vi + A−1h(4.10)

where〈·, ·〉 is the inner product inL2(R2) andA−1 is the inverse ofA restricted
to the subspace orthogonal toV1 andV2. We need the following classical result:

Lemma 4.3.The functionḡ is given by

ḡ(x, y) =
1

2πε2
K0

(νε

ε
|x − y|

)
(4.11)

where 1
2π K0 is the fundamental solution of

− ∆φ + φ = δ,(4.12)

and satisfies the estimates

K0(r ) = −
(

ln
r
2

+ C
)

+ O(r ), r � 1 (C is the Euler constant),(4.13)

K0(r ) =

√
π

2r
e−r (1 + O(r −1)), r � 1.(4.14)
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To simplify the notation we takeξ = 0, assuming 0∈ Ωρ. This can always
be achieved by a translation.

a. Estimating〈γ,Vi 〉. From (4.4) and the symmetry ofg, ḡ we obtain

〈γ,Vi 〉 = −
∫

R2

ḡ(y, x)Vi (x) dx, i = 1, 2.(4.15)

From Theorem 4.1, and also Lemma 2.2 in [A-F1] (withc > 0 a constant< νε)
we obtain

|Vi (x)| 5 Cε−1/2e−(c/ε)‖x|−ρ|.(4.16)

It follows that

|〈γ,Vi 〉| 5 Cε−5/2
∫

R2

K0

(νε

ε
|x − y|

)
e−(c/ε)‖x|−ρ|dx(4.17)

=
Cε−5/2

2π|y|
∫

Sy

∫
R2

K0

(νε

ε
|x − y′|

)
e−(c/ε)‖x|−ρ|dx dy′

= Cε−5/2
∫

R2

e−(c/ε)‖x|−ρ|
(

1
|y|
∫

Sy

K0

(νε

ε
|x − y′|

)
dy′
)

dx,

whereSy = {y′||y′| = |y|}. Equations (4.13), (4.14) imply that for each 0< σ 5 1
2

there is a constantCσ > 0 such that

K0(r ) < Cσr −σe−r ,(4.18)

and therefore

1
|y|
∫

Sy

K0

(νε

ε
|x − y′|

)
dy′ <

Cε1/2

|y|
∫

Sy

e−(νε/ε)|x − y′|
|x − y′|1/2

dy′

< Cε1/2e−(c/ε)‖x|−|y‖ 1
|y|
∫

Sy

dy′

|x − y′|1/2
5 Cε1/2 e−(c/ε)‖x|−|y‖

|x|1/2
,

(4.19)

where we have made use of

1
|y|
∫

Sy

dy′

|x − y′|1/2
=

1
|x|1/2

∫
|z|=1

dz∣∣∣ x
|x| − |y|

|x|z
∣∣∣1/2

<
C

|x|1/2
.

The estimates (4.17), (4.19) imply that

|〈γ,Vi 〉| < Cε−2

∫ ∞

0
e−(c/ε)||x|−ρ|e−(c/ε)||x|−|y|||x|1/2d|x|

< Cε−1e−(c/ε)||y|−ρ|.
(4.20)

b. Estimatingh = h1 +h2 =
(
F ′′(u0) − ν2

ε

)
ḡ +
∑2

i =0 Vi (y)Vi . From (4.16) and the
normalization‖Vi ‖ = 1, it can be seen that

‖h2‖ < Cε−1/2e−(c/ε)||y|−ρ|.(4.21)
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To estimate‖h1‖ we observe Proposition 2.1 and the definition ofνε, which
imply that

|F ′′(u0(x)) − ν2
ε | < Ce−(c/ε)||x|−ρ|, |x| > ρ,

|F ′′(u0(x)) − ν2
ε | < C

(
ε + e−(c/ε)||x|−ρ|) , |x| < ρ.

(4.22)

This and (4.18) withσ < 1
2 imply that

‖h1‖2 5 Cε2σ−4
∫

R2

e−(2c/ε)||x|−ρ| e−(2νε/ε)|x − y|
|x − y|2σ

dx(4.23)

+ Cε2σ−2
∫

|x|<ρ

e−(2νε/ε)|x − y|
|x − y|2σ

dx = Cε2σ
(
ε−4I1 + ε−2I2

)
,

I1 5 1
2π

∫
R2

e−(2c/ε)||x|−ρ|e−(2νε/ε)||y|−|x||
(

1
|y|
∫

Sy

dy′

|x − y′|2σ

)
dx(4.24)

5 C
∫ ∞

0
e−(2c/ε)||x|−ρ|e−(2νε/ε)||y|−|x|||x|1−2σd|x|

5 Const. e−(Const./ε)||y|−ρ|.

Similarly we obtain

I2 5 Cε2−2σ if |y| < ρ,

I2 5 Ce−(c/ε)(|y|−ρ) if |y| > ρ,
(4.25)

and therefore from (4.21), (4.23), and (4.24),

‖h‖ = Cε−2+σ if |y| < ρ,

‖h‖ = Cε−2+σe−(c/ε)(|y|−ρ) if |y| > ρ.
(4.26)

From Theorem 4.1 it can be inferred that

‖L−1φ‖ 5 Cε−2‖φ‖ for φ such that〈φ,Vi 〉 = 0, i = 1, 2.(4.27)

This and (4.10), in view of (4.20) and (4.26), yield the following estimate for
the L2 norm of γ:

‖γ‖ < Cε−4+σ if |y| < ρ,

‖γ‖ < Cε−4+σe−(c/ε)(|y|−ρ) if |y| > ρ.
(4.28)

c. Local L2 Estimates ofγ. Let z : R2 → R, 0 5 z 5 1, be aC∞ function.
Multiplying (4.9) by γz2 and integrating overR2 yields 1

1 We remark that it is not necessary forz to have compact support for the integration
by parts below to be valid. It is enough that at infinityg, ḡ and their derivatives decay
exponentially. See the remark after the proof.
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ε2

∫
R2

|∇(γz)|2 +
∫

R2

F ′′(u0)(γz)2

=
∫

R2

(
ν2

ε − F ′′(u0)
)
ḡγz2 +

2∑
i =0

Vi (y)
∫

R2

γz2Vi + ε2
∫

R2

γ2|∇z|2.
(4.29)

It follows that

ε2

∫
R2|∇(γz)|2 +

∫
R2

F ′′(u0)(γz)2 5 ε2
∫

R2

γ2|∇z|2

+

{[∫
R2

((
ν2

ε − F ′′(u0)
)
ḡz
)2
]1/2

+
2∑

i =0

|Vi (y)|
[∫

R2

(zVi )
2

]1/2}(∫
R2

(γz)2

)1/2

.

(4.30)

If we assume that suppz is contained in the complement of the circleB0 = {x |
|x| 5 ρ}, then from (4.22) and (4.18) it can be concluded that∣∣(ν2

ε − F ′′(u0)
)
ḡz
∣∣

5 Cε−2+σe−(c/ε)(|x|−ρ)e
e−(νε/ε)|y−x|

|y − x|σ , x ∈ suppz.
(4.31)

Therefore, proceeding as in (4.24), we obtain∫
R2

((
ν2

ε − F ′′(u0)
)
ḡz
)2

5 Cε−4+2σ
∫

|x|−ρ>d0

e−(2c/ε)(|x|−ρ) e−(2νε/ε)||y|−|x||

|x|2σ
dx

5 Cε−4+2σ
∫ ∞

s=ρ+d0

e−(2c/ε)(s−ρ)e−(2νε/ε)||y|−s|s1−2σds,

(4.32)

whered0 = d(suppz, B0).
Now we observe thatρ < s < |y| implies that

s − ρ+ | |y| − s | = |y| − ρ > 1
2

(|y| − ρ
)

+ 1
2(s − ρ),

while ρ < |y| < s implies that

s − ρ+ | |y| − s |> s − ρ > 1
2

(|y| − ρ
)

+ 1
2(s − ρ).

Therefore, if we letc′ be a positive constant satisfyingc′ < 1
4 min(c, νε), then

the estimate (4.32) yields∫
R2

((
ν2

ε − F ′′(u0)
)
ḡz
)2

5 Cε−4+2σe−(2c′/ε)(|y|−ρ)
∫ ∞

s=ρ+d0

e−(2c′/ε)(s−ρ)s1−2σds,

5 Cε2e−(2c′/ε)(|y|−ρ)e−(Const./ε) d0

(4.33)
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which implies that[∫
R2

((
ν2

ε − F ′′(u0)
)
ḡz
)2
]1/2

5 Cε−1e−(c/ε)(|y|−ρ)−(c/ε) d0.(4.34)

From (4.16) we also obtain

2∑
i =0

|Vi (y)|
[∫

R2

(zVi )
2

]1/2

5 Cε−1e−(c/ε)(|y|−ρ)e−(c/ε) d0.(4.35)

Now we consider a sequence of domains defined by

Ωi = {x|d (x,B0
)

= εηi }, i = 0, 1, . . . ,(4.36)

whereη > 0 is a number to be chosen later. Letzi , i = 1, 2, . . ., be a correspond-
ing sequence ofC∞ cut-off functions such that

suppzi = Ωi −1, zi (x) = 1 for x ∈ Ωi , i = 1, 2, . . . , 0 5 zi (x) 5 1.
(4.37)
We can also assume that

| 5x zi | < 2
ηε
, i = 1, 2, . . . .(4.38)

Let

a2
i =

∫
Ωi

γ2.(4.39)

Then, from the definition ofΩi andzi , it follows that

a2
i 5

∫
R2

γ2z2
i 5 a2

i −1,

ε2
∫

R2

γ2| 5x zi |2 5 4
η2

∫
Ωi −1\Ωi

γ2 5 4
η2

(a2
i −1 − a2

i ).
(4.40)

This, (4.30) and the estimates (4.34) and (4.35) imply that

Ka2
i 5 αe−cηi ai −1 +

4
η2

(a2
i −1 − a2

i ),(4.41)

whereK > 0 is a fixed numberK < minΩ1 F ′′(u0(x)) and

α = Cε−1e−(c/ε)(|y|−ρ).(4.42)

From (4.41) it can be concluded that(
K +

4
η2

)
a2

i 5 αe−cηi ai −1 +
4
η2

a2
i −1 5

(
η

4
αe−cηi +

2
η

ai −1

)2

,

which implies that
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ai 5
(

1 +
Kη2

4

)−1/2(
ai −1 +

η2

8
αe−cηi

)
,(4.43)

and therefore

ai 5 pi a0 + p
η2

8
αe−cηi

i −1∑
j =0

(pecη) j ,(4.44)

wherep =
(
1 + Kη2/4

)−1/2
. By choosingη large andc small we can obtain

pecη < 1.
Then

ai 5 e−cηi (a0 + Cα)(4.45)

and accordingly, by recalling the expression (4.42) ofα, and the estimate (4.28),
we obtain (∫

|x|−ρ>ri

γ2

)1/2

5 Cε−4+σe−(c/ε)(ri +d(y)),(4.46)

whereri = d(Ωi , B0).

d. Pointwise Estimates. From (4.16), (4.18), and (4.22), we infer that for|x|, |y| >
ρ the right-hand sideh of (4.9) satisfies

|h(x, y)| 5 C

(
ε−3/2 e−(c/ε)d(x)e−(c/ε)|x−y|

|x − y|1/2
+ ε−1e−(c/ε)(d(x)+d(y))

)
for some constantsC, c. This and

d(x) + |x − y| = d(x) + |d(x) − d(y)| = 1
2 (d(x) + d(y))

imply that

|h(x, y)| 5 Cε−3/2 e−(c/ε)(d(x)+d(y))

|x − y|1/2
(4.47)

for some constantsC, c > 0 and|x|, |y| > ρ. Define j by

rj 5 d(x) 5 rj + εη,(4.48)

and let

X(x) = C̄ε−3/2e−(c̄/ε)(rj +d(y)), δ(x) = 4
3X|x − y|3/2.(4.49)

Then

∆δ = X
1

|x − y|1/2
.(4.50)

From this, the equation
ε2∆γ = F ′′(u0)γ + h

and Kato’s inequality
∆|γ| = sign γ∆γ,

it follows that
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ε2∆(|γ| + δ) = F ′′(u0)|γ| + X
1

|x − y|1/2
+ (signγ)h.(4.51)

By taking C̄ large and ¯c small in (4.49) we can make the sum of the last two
terms in (4.51) nonnegative. On the other hand,|x| > ρ + C ′ε implies that
F ′′(u0) > 0. Consequently, from (4.51) we conclude that|γ| + δ is subharmonic
for |x| > ρ + C ′ε and therefore that

|γ|(x) + δ(x) 5 4
πε2η2

∫
|z−x|<εη/2

(|γ| + δ) dz

5 4√
πεη

(∫
|z−x|<εη/2

|γ|2dz

)1/2

+

(∫
|z−x|<εη/2

δ2dz

)1/2
 .

From this, the localL2 estimate ofγ, and theL2 estimate forδ that one obtains
from (4.49) by using the fact that

|x − y|3/2 5 Const.
(

1 + r 3/2
j + (d(y))3/2

)
,

statement (i) follows withβ = −5 +σ.
Before completing the proof, for later reference, we note

Remark.From part (i) we can deduce information on the decay properties of
g(x, y) out of ḡ(x, y). However, this is under a restriction onx, y while below in
a number of places we need information on decay properties ofg(·, y), uniformly
for y in some arbitrary compact set. Such information can be deduced directly
as follows. Equation (4.9) can be written, by using obvious notation, in the form

Pγ = h.

Fix y in some ball of radiusR. h is in L2(R2) and decays likee−(c/ε)|x| for
|x| = R > |y|. Utilizing the behavior of the potentialF ′′ at infinity and Lemma
1.7 in [Ag] we obtain the existence of aX ∈ C∞

0 (R2), X = 0, such that
PX = P + X satisfies∫

R2

(PX ϕ)ϕ = ν2
∫

R2

|ϕ|2 ∀ ϕ ∈ C∞
0 (R2),

whereν2 is a positive constant.
As in [Ag, p. 26] set

v(x) = (1 − z(x))γ(x)

wherez ∈ C∞
0 (R2), z = 1 for |x| 5 R + 1

2, z = 0 for |x| = R + 1. Also notice
that v is in H 1

loc(R2), v(x) = γ(x) for |x| = R + 1 and

PX v = h + q = h̃

whereq(x) = −2∇z ·∇γ+(X (1−z)−∆z)γ. Notice thatq has compact support
and that
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‖q‖L2(R2) 5 C
ε
.(4.52)

Applying Theorem 4.1 in [Ag] we obtain that for every Lipschitzf with
|∇f (x)|2 < ν2/ε2 the following estimate holds:∫

R2

(
ν2

ε2
− |∇f |2

)
e2 f v2 5

∫
R2

(
ν2

ε2
− |∇f |2

)−1

e2 f h̃2.(4.53)

Taking into account that̃h decays likee−(c/ε)|x| for |x| = R + 1, by choosing
f ≈ c

2ε |x| we can easily deduce from (4.52), (4.53) that∫
|x|=R+1

e(c/ε)|x|v2(x) <
C
ε
.

From this we can obtain an exponential estimate for
∫

B(x;r ) v
2, where B(x; r )

is the ball with centerx and radiusr , and then by using the subharmonicity
of γ (hence ofv) for |x| large we can upgrade this to a pointwise estimate.
Analogous estimates can also be obtained for the derivatives ofv, and henceγ,
for |x| = R + 1. ut

To prove (ii) aψ ∈ C0(Ω̄) is taken and extended by zero overR2/Ω. Then
the extendedψ is decomposed to

ψ = ψ1 +
2∑

i =0

ai Vi , ψ1 ⊥ V0,V1,V2,(4.54)

andψ1 is further decomposed into its radial partψ̃1 and the rest

ψ1 = ψ̃1 + ψ̂1, ψ̃1 =
1

2π

∫ 2π

0
ψ1(r , Θ)dΘ.(4.55)

Note that∫
Ω
g(x, y)ψ(y) dy =

∫
R2

g(x, y)ψ̃1(y) dy +
∫

R2

g(x, y)ψ̂1(y) dy

= φ̃1(x) + φ̂1(x),

(4.56)

which is a consequence of the definition of the projections∼ and̂ and of the
symmetry properties ofg(x, y). The functionφ̃1 is the solution of the problem

ε2φ̃′′
1 +

ε2

r
φ̃′

1 − F ′′(u0)φ̃1 = ψ̃1, r ∈ (0,∞),∫ ∞

0
φ̃1V0r dr =

∫ ∞

0
ψ̃1V0r dr = 0.

(4.57)

After changing variables tos = (r −ρ)/ε, Φ(s) = φ̃1(εs+ρ), andΨ (s) = ψ̃1(εs+ρ),
equation (4.57) becomes
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Φss +
ε

εs + ρ
Φs − F ′′

(
U ∗
(

s +
ρ

ε
,
ρ− aξ

ε

))
Φ = Ψ, −ρ

ε
< s < ∞,

∫ ∞

−(ρ/ε)
(εs + ρ)Φ(s)V0(εs + ρ) ds =

∫ ∞

−(ρ/ε)
(εs + ρ)Ψ (s)V0(εs + ρ) ds.

(4.58)

Based on the estimate (ii) in Proposition 2.4 and the estimate (i) in Theorem 4.1,
problem (4.58) can be viewed as a perturbation of the problem

Φss − F ′′(U )Φ = Ψ , −∞ < s < ∞,∫ ∞

−∞
ΦU̇ ds =

∫ ∞

−∞
Ψ U̇ ds.

Lemma 2.3 implies that this problem has a unique solution, which satisfies the
estimate

‖Φ‖0 5 Const.‖Ψ‖0.

Based on this, we can show that this estimate also holds for the perturbed problem
(4.58) too and therefore for problem (4.57),

‖φ̃1‖0 5 Const.‖ψ̃1‖0.

From this and the inequality

‖ψ̃1‖0 5 Const.‖ψ‖0,

which is a consequence of the definition of the projection∼ and of the inequalities
(4.16) and

|ai | 5 ‖ψ‖0

∫
Ω

|Vi | 5 Const.ε1/2‖ψ‖0,(4.59)

it follows that

‖φ̃1‖0 5 Const‖ψ‖0.(4.60)

Next φ̂1 is estimated. From (4.54) and (4.55) it follows that outside a big ball
B̂ ⊃ Ω,

ψ̃1 = −a0V0, ψ̂1 = −
2∑

i =1

ai Vi .

Also, ∫
R2

φ̂1(x) dx = 0.(4.61)

Consequently∫
Ω
φ̂1(x) dx = −

∫
R2/Ω

φ̂1(x) dx = −
∫

R2/Ω

∫
B̂
g(x, y)ψ̂1(y) dy dx

∫
R2/Ω

∫
R2/B̂

g(x, y)

(
2∑

i =1

ai Vi (y)

)
dy dx

= −
∫

R2/Ω

∫
B̂
g(x, y)ψ̂1(y) dy dx+ O

(
e−c/ε

)
‖ψ‖L2(Ω),

(4.62)
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where the estimate (4.16) forVi , the estimate|ai | 5 Const.‖ψ‖L2(Ω), and part
(i) above have been used. Now∣∣∣∣ ∫

R2/Ω

∫
B̂
g(x, y)ψ̂1(y) dy dx

∣∣∣∣
5
∣∣∣∣ ∫

R2/Ω

∫
B̄
g(x, y)ψ̂1(y)dy dx

∣∣∣∣ +

∣∣∣∣ ∫
R2/Ω

∫
B̂/B̄

g(x, y)ψ̂1(y) dy dx

∣∣∣∣,
(4.63)

whereB̄ is a ball of radius ¯ρ > ρ contained inΩ. Using the definition of̂ψ1 and
the decay properties ofg established in (i), we see that the first integralI1 on the
right of (4.63) can be estimated by

I1 5 Const.e−(c/ε)‖ψ‖0, c < dist (R2/Ω, B̄)νε.(4.64)

To estimate the second integralI2, part (i) and the last Remark are used; they
imply that

I2 5
∣∣∣∣ ∫

R2/Ω

∫
B̂/B̄

ḡ(x, y)ψ̂1(y) dy dx

∣∣∣∣ + Const.e−(c/ε)‖ψ‖0

5 C‖ψ‖0

(
e−(c/ε) +

∫
R2

∫
B̂
ḡ(x, y) dy dx

)
5 C ′‖ψ‖0

(4.65)

where the fact that ¯g is a positive function and∫
R2

ḡ(x, y) dx = 1(4.66)

has been employed. Putting together these estimates, we obtain (ii). The proof
of (iii) is similar and is omitted. The proof of Theorem 4.2 is complete.ut

5. The Quasi-Invariant Manifold M̃ ε
ρ and Equilibria

This section is devoted to the construction of a manifoldM̃ ε
ρ of “bubbles” of

the formξ → uξ + vξ (vξ is a very small perturbation) which is an approximate
invariant manifold for equation (1.1). The construction ofM̃ ε

ρ is made in such
a way that stationary solutions to (1.1) with approximately circular interface are
in M̃ ε

ρ and can be detected by the vanishing of a vector fieldξ → cξ that, as
we show in the next section, describes to a very high degree of accuracy the
dynamics of the centerξ of a bubble.

Theorem 5.1.Assume thatρ > 0 is such thatΩρ = {ξ ∈ Ω : d(ξ, ∂Ω) > ρ} is
non-empty and letδ > 0 be a fixed small number. Then there is anε0 > 0 such
that, for any0< ε < ε0 there exist C1 functions

ξ → vξ ∈ C4(Ω̄), ξ → cξ =
(

cξ
1 , c

ξ
2

)
∈ R2(5.1)

defined inΩρ+δ and such that
∫
Ω v

ξ = 0, for which
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(i) ‖vξ‖0 5 Cε−2e−(νε/ε) dξ

,

(ii) |cξ| 5 Cε−4e−2(νε/ε) dξ

.

(iii) Similar estimates with C replaced by Cε−k, with k the order of differentia-
tion, hold for the derivatives ofvξ, cξ with respect to x, ξ.

(iv) The functionũξ = uξ + vξ, where uξ is defined in Section 3 satisfies the
boundary conditions in(1.1) and

L (ũξ) = cξ
1uξ

,1 + cξ
2uξ

,2,(5.2)

whereL (φ) = ∆(−ε2∆φ + F ′(φ)) and uξ
,i is the derivative of uξ with respect to

ξi , i = 1, 2.

(v) Let M̃ ε
ρ ⊂ C0(Ω̄) be the two-dimensional manifold

M̃ ε
ρ = {u = ũξ, ξ ∈ Ωρ+δ}

and let ˜N ⊂ C0(Ω̄) be the open neighborhood of̃M ε
ρ defined by

˜N =
{

u | ∃ ξ ∈ Ωρ+δ, w ∈ C0(Ω̄), ‖w‖0 < Cεη, u = ũξ +w
}
,

where‖ · ‖0 stands for the C0 norm. Then there isη > 0 such that u∈ ˜N is an
equilibrium of(1.1) if and only if

u = ũξ, cξ = 0(5.3)

for someξ ∈ Ωρ+δ.

Remark.From the estimate (ii) it follows that on the manifold̃M ε
ρ the Cahn-

Hilliard vector field is exponentially small inε:

‖L (ũξ)‖0 5 Cε−3e−2(νε/ε)dξ

.(5.4)

Moreover, the manifold has the property thatL (ũξ) is almost tangent to it at
ũξ (if it were exactly tangent, then the manifold would be invariant). Indeed,
Theorems 4.1, 5.1 imply that∣∣∣〈uξ

,1, u
ξ
,2〉L2

∣∣∣ 5 Ce−(νε/ε) dξ

, ‖uξ
,i ‖L2 = Cε− 1

2 .

min
c1,c2

‖L (ũξ) − c1ũξ
,1 − c2ũξ

,2‖0

‖L (ũξ)‖0

5
‖L (ũξ) − cξ

1 ũξ
,1 − cξ

2 ũξ
,2‖0

‖L (ũξ)‖0

=
‖cξ

1v
ξ
,1 + cξ

2v
ξ
,2‖0

‖cξ
1uξ

,1 + cξ
2uξ

,2‖0

5 |Ω| 1
2

‖cξ
1v

ξ
,1 + cξ

2v
ξ
,2‖0

‖cξ
1uξ

,1 + cξ
2uξ

,2‖L2

5 C
|cξ

1 |‖vξ
,1‖0 + |cξ

2 |‖vξ
,2‖0√

(cξ
1)2 + (cξ

2)2
5 Ce−(νε/ε) dξ .
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Remark.Theorem 5.1 gives a criterion for deciding which circular curvesΓ ⊂ Ω
can be “continued” into true equilibria of (1.1) for positiveε, in the sense that
there is a familyuε of equilibria of (1.1) such that

lim
ε→0

uε(x) =

{−1 insideΓ,
+1 outsideΓ.

(5.5)

Proof of Theorem 5.1.Consider the problem

∆µ = c1uξ
,1 + c2uξ

,2, x ∈ Ω,

Av =

{
µ + σ + F ξ(v) + βδ∂Ω, x ∈ Ω̄,

0, x ∈ R2 \ Ω̄,∫
Ω
v = 0,

∫
R2

vVi = 0, i = 1, 2,

∂µ

∂n
= 0,

∂v

∂n
= −∂uξ

∂n
, x ∈ ∂Ω,

(5.6)

wherec1, c2, β, µ, andv are to be considered unknowns withβ a continuous
function defined on∂Ω; δ∂Ω is a unitary distribution on∂Ω; A is the second-
order operator defined in (4.1);σ is the Lagrange multiplier in (2.1) andF ξ is
defined by

F ξ(v) = −F ′(uξ + v) + F ′(uξ) + F ′′(uξ)v.(5.7)

From (5.6), (5.7) and the definition (3.1) ofuξ it follows that, given a solution
of problem (5.6), the function ˜uξ = uξ + v satisfies the boundary conditions in
(1.1) and equation (5.2). Therefore, aside from the “only if” part of (v), in order
to establish Theorem 5.1 it is sufficient to show that (5.6) has a solution satisfying
the estimates (i) and (ii).

The strategy of the proof is to construct a mapv → v̂ by assuming thatv
is a given function in the right-hand side of (5.6) and by showing that (5.6) can
be solved, yielding a new value ˆv for v. The mapv → v̂ is then shown to be a
contraction forε > 0 sufficiently small.

From (3.2) it is inferred that∫
Ω

uξ
,i = 0, i = 1, 2.(5.8)

Therefore (5.6)1 with Neumann boundary conditions is solvable and

µ = c1

∫
Ω

h(x, y)uξ
,1(y) dy + c2

∫
Ω

h(x, y)uξ
,2(y) dy + µ̄,(5.9)

whereµ̄ is a constant andh is the Green’s function for the problem

∆φ = ψ, x ∈ Ω,
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∫
Ω
φ =

∫
Ω
ψ = 0,

∂φ

∂n
= 0, x ∈ ∂Ω.

We remark that equation (5.9) definesµ as a functionµ(c, µ̄) of the constants
c1, c2, and µ̄. If we assume that the right-hand side of equation (5.6)2 satisfies
the orthogonality conditions∫

Ω
(µ + σ + F ξ(v))Vi +

∫
∂Ω

βVi = 0, i = 1, 2,(5.10)

then equation (5.6)2 is solvable and the solution ˆv can be represented in the form

v̂(x) =
∫

Ω
g(x, y)(µ + σ + F ξ(v)) dy +

∫
∂Ω

g(x, y)β dSy

+µ−1
0

(∫
Ω

(µ + σ + F ξ(v))V0 dy +
∫

∂Ω
βV0 dSy

)
V0(x),

(5.11)

whereµ0 is the principal eigenvalue ofA and g is Green’s function forA (see
(4.3)). The function ˆv defined by (5.11) depends onβ, v and onc1, c2, and µ̄
throughµ. The function ˆv automatically satisfies the condition of being orthog-
onal toVi , i = 1, 2. We now show howβ is determined by the requirement that
v̂ + uξ satisfy Neumann boundary conditions. In order to do that, we need to
study the operator fromC0(∂Ω) into itself defined by

β(x) → ∂

∂nx

∫
∂Ω

g(x, y)β dSy + µ−1
0

(∫
∂Ω

βV0 dSy

)
∂V0

∂n
(x)

= lim
s→0−

d
ds

∫
∂Ω

g(x + sn, y)β dSy + µ−1
0

(∫
∂Ω

β V0 dSy

)
∂V0

∂n
(x),(5.12)

wheren is the outward normal to∂Ω at x.

Lemma 5.2. Assume thatβ ∈ C0(∂Ω). Then there isε0 > 0 such that, for
0< ε < ε0,

∂

∂nx

∫
∂Ω

g(x, y)β dSy + µ−1
0

(∫
∂Ω

βV0 dSy

)
∂V0

∂n
(x)

=
1
2
ε−2β(x) + (Kβ)(x),

(5.13)

where K is an integral operator such that

‖Kβ‖0 5 Cε−1‖β‖0.(5.14)

Therefore, forε < C−1, the equation

1
2ε

−2β + Kβ = γ(5.15)

has a unique solution and
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‖β‖0 5 Const. ε2‖γ‖0.(5.16)

Proof. By Theorem 4.2(i), forx ∈ ∂Ω we have the estimate∣∣∣∣ ∂∂nx

∫
∂Ω

(g(x, y) − ḡ(x, y))β(y) dSy

∣∣∣∣ 5 Ce−(c/ε)‖β‖0.

Accordingly, it suffices to prove the lemma withg replaced by ¯g. The analysis
of the first term in (5.13) is then reduced to standard potential theory estimates
(cf. e.g. [Fo]) and is omitted. The analysis of the second term in (5.13) which is
part of the operatorK is done by using the estimate implied in Theorem 4.1:

|V0(x)| 5 Ce−(c/ε), x ∈ ∂Ω,

and similar estimates for the partial derivatives ofV0 together with the estimate
for µ0 given in Theorem 4.1(i). ut

From Lemma 5.2 it is seen that the equation

∂v̂

∂n
= −∂uξ

∂n
uniquely determinesβ (and therefore ˆv) as a functionβ = β(c, v) of c =
(c0, c1, c2), andv, wherec0 stands for the sumc0 = µ̄ + σ. We now show that
equations (5.10) withβ = β(c, v), together with the condition∫

Ω
v̂(c, v) = 0(5.17)

make up a linear system inc = (c0, c1, c2), which ultimately determinesc as a
function of v and therefore gives meaning to the mapv → v̂. In what follows
we carry out the analysis of this linear system for establishing solvability. We
also obtain estimates that will be needed for computing the norm of the map. We
begin by studying the coefficientsB = (B0,B1,B2) of c0, c1, c2 in β(c, v). The
estimates ofB, and other estimates needed later, are collected in the following
lemma:

Lemma 5.3.The solutionβ(c, v) of the equation∂û
∂n = −∂uξ

∂n can be represented
in the form

β(c, v) = BTc + β0 + β1(v),(5.18)

whereβ1(0) = 0 and the functionsβ0 : ∂Ω → R, β1 : ∂Ω × C0(Ω̄) → R,
B : ∂Ω → R3 satisfy, for0< ε � 1,

B0(x) = −ε k
πνε

+ O(ε2),

Bi (x) = −2ε
k
πνε

∫
Γ

h(x, ·) cosαi + O(ε2), i = 1, 2,

β0(x) = −2ε2∂uξ

∂n
(x) + O

(
ε3

∥∥∥∥∂uξ

∂n

∥∥∥∥
0

)
,

β1(v)(x) = ε
k
πνε

F ξ(v)(x) + O
(
ε2‖F ξ(v)‖0

)
,

(5.19)
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whereαi (x) is the angle of the vector x− ξ with the xi axis and

‖ ‖0 = max
∂Ω

| |, k =
∫

〈z,n〉>0
K ′

0(|z|) 〈z, n〉
|z| dz

with K0 the function defined in Lemma 4.3. Moreover, from(5.19) it follows that

‖B‖0 5 Cε, ‖β0‖0 5 Cεe−(νε/ε)dξ

, ‖β1(v)‖0 5 Cε‖v‖2
0.(5.20)

Proof. Let the known terms in equation (5.17), that is, the terms which do not
containβ, be denoted byγ(c, v); then

γ(c, v) = DTc + γ0 + γ1(v),

whereD = (D0,D1,D2) is given by

D0(x) = − ∂

∂nx

∫
Ω
g(x, ·) − µ−1

0

(∫
Ω

V0

)
∂V0

∂n
(x) =: D1

0(x) + D2
0(x),

Di (x) = − ∂

∂nx

∫
Ω
g(x, y)

(∫
Ω

h(y, z)uξ
,i (z)dz

)
dy

−µ−1
0

[∫
Ω

V0(y)

(∫
Ω

h(y, z)uξ
,i (z)dz

)
dy

]
∂V0

∂n
(x) =: D1

i (x) + D2
i (x),

γ0(x) = −∂uξ

∂n
(x),

γ1(v)(x) = − ∂

∂nx

∫
Ω
g(x, ·)F ξ(v) − µ−1

0

(∫
Ω

V0F ξ(v)

)
∂V0

∂n
(x).

(5.21)

To estimateD1
0 we write

D1
0(x) = − ∂

∂nx

∫
B̄
g(x, ·) − ∂

∂nx

∫
Ω/B̄

g(x, ·),

whereB̄ is a ball of radius ¯ρ > ρ contained inΩ. Using the decay properties of
g (see the Remark in the proof of Theorem 4.2) we see that the first integral is
of order O(e−c/ε). Similarly, from Theorem 4.2(i), we see that replacingg by
ḡ in the second integral changes the integral by a term which is again of order
O(e−(c/ε)). Therefore we can write

D1
0(x) = − ∂

∂nx

∫
Ω/B̄

ḡ(x, ·) + O
(

e−c/ε
)
.(5.22)

Therefore by (4.11),

∂

∂nx

∫
Ω/B̄

ḡ(x, ·) =
νε

2πε3

∫
Ω/B̄

K ′
0

(
νε

ε
|x − y|

) 〈x − y, n〉
|x − y| dy

=
1

2πνεε

∫
Ex

K ′
0(|z|) 〈z, n〉

|z| dz,

(5.23)

whereEx = {z|z = ε−1νε(x − y), y ∈ Ω/B̄}.
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From (5.22), (5.23), the smoothness ofΩ and the exponential decay ofK ′
0 at

infinity it is understood that

D1
0(x) = − k

2πνεε
+ η0(x),(5.24)

where

k = lim
ε→0

∫
Ex

K ′
0(|z|) 〈z, n〉

|z| dz =
∫

〈z,n〉>0
K ′

0(|z|) 〈z, n〉
|z| dz,(5.25)

‖η0‖0 5 C .(5.26)

From Theorem 4.1(i) (see also Lemma 2.2 in [A-F1]) it follows that

‖D2
0‖0 < Ce−c/ε.(5.27)

To estimateD1
i , i = 1, 2, we start by observing that, asε → 0, uξ

,i approaches a
distribution supported onΓ with density−2 cosαi (x), αi (x) being the angle of
the vectorx − ξ with the xi axis. This is derived from the definition ofuξ, from
Proposition 2.1 and from the fact that

∫∞
−∞ U̇ = 2. Setting

ϕ(x) =
∫

Ω
h(x, ·)uξ

,i ,

we deduce by this observation that

lim
ε→0

ϕ(x) = −2
∫

Γ

h(x, ·) cosαi ,(5.28)

whereΓ = {y|y − ξ| = ρ}. By the same arguments used for estimatingD1
0 and

D2
0 we see that

D1
i (x) = − νε

2πε3

∫
Ω/B̄

K ′
0

(νε

ε
|x − y|

) 〈x − y, n〉
|x − y| ϕ( y) dy + O(e−c/ε)

= − k
πνεε

∫
Γ

h(x, ·) cosαi + ηi (x),

(5.29)

||ηi ||0 < C ,(5.30) ∣∣D2
i (x)

∣∣ < Ce−c/ε,(5.31)

γ1(v)(x) =
k

2πνεε
F ξ(v)(x) + O(1).(5.32)

From (3.4) it follows that

‖γ0‖0 5 Cε−1e−(νε/ε) dξ

.(5.33)

We also have

‖γ1(v)‖0 5 Cε−1‖v‖2
0.(5.34)
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From the definition ofγ, the above estimates and Lemma 5.2 the lemma
follows. ut

We now begin the discussion of the linear system determiningc(v).

Lemma 5.4. The linear system of the three equations(5.17) and (5.10) (with
β = β(c, v)) in the three unknowns c= (c0, c1, c2) can be written in the form

Hc = p(5.35)

where H = (Hij ), i , j = 0, 1, 2, is a3×3 matrix and p is a3-vector. Furthermore,

H00 = −ε−1 8πρ3∫∞
−∞ U̇ 2

+ O(1),

H0i = −ε−1 8ρ2∫∞
−∞ U̇ 2

∫
Γ

∫
Γ

h(x, y) cosαi (y) dy dx+ O(1), i = 1, 2,

Hi 0 = O
(
ε1/2e−(νε/ε)dξ

)
, i = 1, 2,

Hij = ε1/2 2
√

2√
πρ
∫∞

−∞ U̇ 2

∫
Γ

∫
Γ

h(x, y) cosαj (y) cosαi (x) dy dx

+ O(ε3/2), i , j = 1, 2,

(5.36)

p0 = O
(
ε−1e−(νε/ε) dξ

+ ε−1‖v‖2
0

)
,

pi = O
(
ε1/2e−(2νε/ε) dξ

+ ε1/2‖v‖2
0

)
, i = 1, 2.

(5.37)

Proof. By inserting (5.9) and (5.18) into (5.11) and by writing equations (5.17)
and (5.10) explicitly we obtain the following expressions forH , p:

H00 = µ−1
0

[(∫
Ω

V0

)2

+

(∫
∂Ω

B0V0

)∫
Ω

V0

]
+
∫

Ω

∫
Ω
g(x, y) dx dy

+
∫

Ω

∫
∂Ω
g(x, y)B0(y) dx dy,

Ho,i = µ−1
0

[ ∫
Ω

∫
Ω

h(x, y)uξ
,i (y)V0(x) dy dx+

∫
∂Ω

Bi V0

] ∫
Ω

V0

+
∫

Ω

∫
Ω

∫
Ω
g(x, y)h(y, z)uξ

,i (z) dz dy dx

+
∫
Ω

∫
∂Ω g(x, y)Bi (y) dy dx, i = 1, 2,

Hio =
∫

Ω
Vi +

∫
∂Ω

B0Vi , i = 1, 2,

Hij =
∫

Ω

∫
Ω

h(x, y)uξ
,j (y)Vi (x) dx dy+

∫
∂Ω

Bj Vi , i , j = 1, 2,

(5.38)
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p0 = p0
0 + p0(v),

p0
0 = −µ−1

0

(∫
∂Ω
β0V0

)∫
Ω

V0 −
∫

Ω

∫
∂Ω
g(x, y)β0(y) dy dx

p0(v) = −µ−1
0

[
dst
∫
Ω F ξ(v)V0 +

∫
∂Ω
β1(v)V0

] ∫
Ω

V0

−
∫

Ω

∫
Ω
g(x, y)F ξ(v)(y) dy dx−

∫
Ω

∫
∂Ω
g(x, y)β1(v)(y) dy dx,

(5.39)

pi = p0
i + pi (v),

p0
i = −

∫
∂Ω

β0Vi , i = 1, 2.

pi (v) = −
∫

Ω
F ξ(v)Vi −

∫
∂Ω

β1(v)Vi .

(5.40)

The main contribution toH00 is the first term in (5.38)1. This term can be
estimated by using Theorem 4.1(i),(iv). The second term is of orderO(e−c/ε)
becauseV0 is exponentially small inε on ∂Ω (cf. (4.16) and Lemma 2.2 in
[A-F1]). The third and fourth terms are handled by Theorem 4.2(ii) and (iii) and
Lemma 5.3 and are of orderO(1). The estimates in (5.36) are obtained in a
similar way from (5.38), by keeping in mind that

uξ
,i =

∂uξ

∂xi
+

1
ε

U ∗
ρ aξ

i ,(5.41)

with aξ
i = O(e−c/ε) by Lemma 3.1 and by using Theorem 4.2(ii), (iii) with

ϕ(x) =
∫

Ω
h(x, ·)uξ

i , ψ(x) = Bi (x).

The estimates (5.37) are obtained from (5.39) and (5.40) by similar arguments
utilizing Lemma 2.2 in [A-F1], Lemma 5.3, and Theorem 4.2 (ii), (iii).ut
Lemma 5.5. There exists a numberε0 > 0 such that for anyε, 0 < ε < ε0,
equation(5.35) has a unique solution c(v) and

|c0(v)| 5 C
(

e−(νε/ε) dξ

+ ‖v‖2
0

)
,

|ci (v)| 5 C
(

e−(2νε/ε) dξ

+ ‖v‖2
0

)
, i = 1, 2.

(5.42)

Proof. For ε small, the matrixH is nonsingular because Lemma 5.4 implies that
|H00| > Cε−1, for someC > 0, Hi 0 = O(e−c/ε), i = 1, 2, Hij = O(ε1/2), i , j =
1, 2 and, furthermore, this 2× 2 submatrix is a negative-definite matrix because
∆ with Neumann boundary conditions defines a negative operator onL2

0(Ω), the
subspace ofL2(Ω) of the functions with zero average. From this and from the
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estimates forp0, pi in Lemma 5.4 solvability follows together with the estimates
(5.42). ut

Substituting the functionc(v) given by Lemma 5.5 into the expression for
β(c, v) in Lemma 5.3 and that in turn into (5.11) yields a mapv → v̂ from
C0(Ω̄) into itself. We denote this map byT and show thatT is a contraction on
a suitable closed subset ofC0(Ω̄).

Lemma 5.6.There exist numbers K, α, ε0 > 0, such that for anyε, 0< ε < ε0,
the map T: Bδ → Bδ, with Bδ = {v ∈ C0(Ω̄)| ‖v‖0 5 δ = K εα}, is a contraction.
The fixed pointvξ satisfies the estimate

‖vξ‖0 5 Cε−2e−(νε/ε) dξ

.(5.43)

Proof. By standard elliptic regularity theory we obtain from (4.9) the gross
estimate

‖g(·, y)‖W1,2(Ω) 5 C
ε

uniformly for y ∈ Ω. From this and the symmetry ofg(x, y) we deduce that∫
∂Ω

|g(x, y)| dSy 5 C
ε
,

∫
Ω

|g(x, y)| dy 5 C
ε
,

and by utilizing the second of these estimates we obtain forv, w ∈ Bδ that∣∣∣∣∫
Ω
g(x, ·)F ξ(v)

∣∣∣∣ 5 Cε−1δ2,∣∣∣∣∫
Ω
g(x, ·) (F ξ(v) − F ξ(w)

)∣∣∣∣ 5 Cε−1δ‖v − w‖0.

(5.44)

Now, from Lemma 5.3, forv, w ∈ Bδ we have

‖β1(v)‖0 5 Cεδ2, ‖β1(v) − β1(w)‖0 5 Cεδ‖v − w‖0.(5.45)

From (5.42) it follows that

|c0(v)| 5 C(e−(νε/ε) dξ

+ δ2),

|ci (v)| 5 C(e−(2νε/ε) dξ

+ δ2), i = 1, 2.
(5.46)

From Lemma 5.4 and in particular from (5.35) and the expressions forp0(v), pi (v),
it follows that

|c(v) − c(w)| 5 Cδ‖v − w‖0.(5.47)

Using these estimates, Theorem 4.2, Lemma 5.3 and the estimates ong above,
we obtain
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∣∣∣∣∫
Ω
g(x, ·)(µ(v) + σ)

∣∣∣∣ 5 Cε−1
(

e−(νε/ε) dξ

+ δ2
)
,∣∣∣∣∫

Ω
g(x, ·)(µ(v) − µ(w))

∣∣∣∣ 5 Cε−1δ‖v − w‖0,∣∣∣∣∫
∂Ω

g(x, ·)β(v)

∣∣∣∣ 5 Cε−1
(

e−(νε/ε) dξ

+ δ2
)
,∣∣∣∣∫

∂Ω
g(x, ·) (β(v) − β(w))

∣∣∣∣ 5 Cε−1δ‖v − w‖0,

(5.48)

whereµ(v) is the function obtained by insertingc1(v), c2(v), µ̄ = c0(v) − σ
into (5.9), andβ(v) is obtained by insertingc(v) into (5.18). Taking into account
Theorem 4.1 we also obtain∣∣∣∣∣∣∣∣µ−1

0

[∫
Ω

(µ(v) + σ)V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2
(

e−(νεdξ/ε) + δ2
)
,∣∣∣∣∣∣∣∣µ−1

0

[∫
Ω

(µ(v) − µ(w))V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2δ‖v − w‖0,∣∣∣∣∣∣∣∣µ−1
0

[∫
∂Ω

β(v)V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2e−(νε/ε) dξ
(

e−(νε/ε) dξ

+ δ2
)
,∣∣∣∣∣∣∣∣µ−1

0

[∫
∂Ω

(β(v) − β(w))V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2e−(νε/ε) dξ

δ‖v − w‖0.

(5.49)

∣∣∣∣∣∣∣∣µ−1
0

[∫
Ω

F ξ(v)V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2δ2,∣∣∣∣∣∣∣∣µ−1
0

[∫
Ω

(
F ξ(v) − F ξ(w)

)
V0

]
V0

∣∣∣∣∣∣∣∣
0

5 Cε−2δ‖v − w‖0.

(5.50)

Therefore, from (5.11) we obtain

‖T(v)‖0 5 Cε−2(e−(νε/ε) dξ

+ δ2),

‖T(v) − T(w)‖0 5 Cε−2δ‖v − w‖0,
(5.51)

which show thatT is a contraction onBδ for δ = K εα with α > 2, K > 0 and
0< ε � 1. To derive the estimate (5.43) we observe that if we set

δ = 4Cε−2e−(νε/ε) dξ

,(5.52)

then forε > 0 sufficiently small, the estimates (5.51) imply

‖T(v)‖0 < δ, ‖T(v) − T(w)‖0 < η‖v − w‖0(5.53)

for someη < 1 and therefore the fixed pointvξ satisfies‖vξ‖0 < δ, that is,
(5.43). ut
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We are now in the position to completing the proof of Theorem 5.1: Part
(ii) follows by inserting (i) in (5.42)(ii). Part (iii) is straightforward but requires
some computations. We restrict ourselves to a few words. First, for obtaining
estimates for the derivatives ofv with respect toxi , one can use the equation
(5.2) to obtain estimates on∆v, and then by interpolation, estimates onvxi . For
higher derivatives, one needs to differentiate (5.2), and this requires smoothness
of F . For obtaining estimates on derivatives ofv and c with respect toξ, one
has to argue differently. First, we note the smooth dependence ofc on v. Next,
by differentiating (5.2) with respect toξi , we obtain an equation involving the
linearized operatorA. It is not difficult to see that the orthogonality condition∫

R2 vVi dx = 0 is almost preserved under differentiation with respect toξ (since∫
R2 vξVi dx = − ∫R2 vVi ξdx = 0 and v is exponentially small) and therefore

we can invert and obtain the desired estimates onvξ. Similarly, we can treat
higher derivatives inξ. Part (iv) is a straightforward consequence of the above
constructions. The “if ” part of (v) is obvious. To prove the “only if ” part of (v)
one need to show that, givenue ∈ ˜N , a stationary solution of (1.1), there exist
ξ ∈ Ωρ, µ = µ̄, β: ∂Ω → R and a continuous functionv: R2 → R that satisfy
(5.6) with c1 = c2 = 0 andv |Ω= u − uξ. To do this, we definevξ = ue − uξ

for any ξ ∈ Ωρ and extend the functionvξ = ue − uξ to a continuous bounded
function defined in the whole ofR2 by imposing that

Avξ = 0 in R2\Ω̄.

Clearly, ∫
Ω
vξ = 0,

∂vξ

∂n
= −∂uξ

∂n
, x ∈ ∂Ω.

Then we chooseξ by imposing the conditions∫
R2

uξVi = 0, i = 1, 2.

Once ξ is fixed, β is determined by the jump of the normal derivative ofvξ

across∂Ω and µ̄ = −σe where

ε2∆ue − F ′(ue) = σe. ut

6. The Linearized Cahn-Hilliard Operator

We begin by stating a theorem concerning the linearized Cahn-Hilliard
operator

Lξ = ∆(−ε2∆ + F ′′(ũξ)),(6.1)

whereũξ = uξ +vξ, with vξ the function constructed in Theorem 5.1. We consider
Lξ with the boundary conditions as an operator onH −1

0 , the subspace of the



Slow Dynamics for the Cahn-Hilliard Equation in Higher Space Dimensions43

Sobolev spaceH −1 consisting of functions with zero average. We let〈·, ·〉 be
the standard inner product inL2(Ω) and (·, ·) the inner product inH −1. In the
subspaceH −1

0 we have

(φ, ψ) = 〈(−∆)−1/2φ, (−∆)−1/2ψ〉,(6.2)

where −∆ is the self-adjoint positive operator defined inL2
0(Ω) = {φ ∈

L2(Ω)| ∫Ω φ = 0} by the negative Laplacian with Neumann boundary conditions.
In this section‖ · ‖ denotes theH −1 norm

‖φ‖ =
√

(φ, φ).(6.3)

Theorem 6.1.

(i) The operator Lξ can be extended to a self-adjoint operator on H−1
0 , the sub-

space of the Sobolev space H−1 consisting of functions with zero average.−Lξ

is bounded below.

(ii) Let λξ
1 5 λξ

2 5 λξ
3 5 · · · be the eigenvalues of

∆(−ε2∆ψ + F ′′(ũξ)ψ) = −λψ, x ∈ Ω,

∂ψ

∂n
=
∂∆ψ
∂n

= 0, x ∈ ∂Ω,
(6.4)

and let δ > 0 be fixed. Then there isε0 > 0 and constants c,C ,C ′ > 0 inde-
pendent ofε such that, for0 < ε < ε0 and ξ ∈ Ω with dξ > δ, the following
estimates hold:

− Ce−c/ε 5 λξ
1 5 λξ

2 5 Ce−c/ε,(6.5)

λξ
3 = C ′ε.(6.6)

(iii) In the two-dimensional subspace Uξ corresponding to the small eigenvalues
λξ

1, λ
ξ
2 there is an orthonormal basis(in H −1) ψξ

1 , ψ
ξ
2 such that

ψξ
i =

2∑
j =1

aξ
ij

ũξ
, j

‖ũξ
, j ‖

+ O(e−c/ε), i = 1, 2(6.7)

where the matrix(aξ
i j ) is nonsingular and a smooth function ofξ and ũξ

, j is the

derivative ofũξ with respect toξ j . Moreoverψξ
i is a smooth function ofξ and

‖ψξ
i , j ‖ = O(ε−1), i , j = 1, 2,(6.8)

whereψξ
i , j is the derivative ofψξ

i with respect toξ j .

Proof. Statement (i) is standard and is omitted. Statement (ii) is proved in
[A-F1] with uξ instead of ˜uξ. Since the difference between ˜uξ and uξ is of
order O(e−c/ε), it is not difficult to see that replacinguξ with ũξ changes the
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eigenvalues by a quantity of orderO(e−c/ε). To prove (iii) we start from the
equations

Lξũξ
,i =

2∑
j =1

cξ
j ,i u

ξ
,j +

2∑
j =1

cξ
j uξ

,ij , i = 1, 2,(6.9)

which are obtained by differentiating equation (5.2) with respect toξi , i = 1, 2.
In equation (6.9),cξ

j ,i stands for the derivative ofcξ
j with respect toξi and uξ

, ji

for the second derivative ofuξ with respect toξi , ξ j . From equation (6.9) and
Theorem 5.1 it follows that

‖Lξũξ
,i ‖ = O(e−c/ε), i = 1, 2.(6.10)

Furthermore, since Theorem 5.1(i),(iii), and (5.41) imply that

ũξ
,i =

∂uξ

∂xi
+ O(e−c/ε),(6.11) (

∂uξ

∂xi
,
∂uξ

∂xj

)
= −

∫
Ω

∫
Ω

h(x, y)
∂uξ

∂xi
(x)

∂uξ

∂xj
(y) dx dy,(6.12)

we obtain that (
ũξ

,i , ũ
ξ
,j

)
= −ε−1/2Hij + O(ε),(6.13)

which together with (5.36)(iv) and the fact that (Hij ) is a negative-definite matrix,

imply that the matrix
(

ũξ
,i , ũ

ξ
, j

)
approaches a nonsingular limit whenε → 0. This,

the estimate (6.10) and the fact that (6.5), (6.6) imply the existence of a gap of
order ε betweenλε

2 and λε
3 allow for the application of a basic perturbation

result (Lemma A.1 in [A-F1]). It follows that the distance betweenU ξ and span
{ũξ

,1 , ũ
ξ
,2} is of orderO(e−c/ε). By using this fact and the fact that−ε−1/2(Hij )

is a nonsingular matrix which depends smoothly onξ it is possible to construct
the coefficientsaξ

ij as claimed. Equation (6.8) follows from (6.7), Proposition 2.4
and Theorem 5.1. ut

7. The Dynamics of Bubbles

In this section we discuss the dynamics of approximately circular interfaces
and show that, if the initial condition is sufficiently close to the quasi-invariant
invariant manifoldM̃ ε

ρ constructed in§5, then the interface keeps its almost
circular shape and drifts very slowly acrossΩ. We show that the dynamics of its
center is determined to a very high degree of accuracy by the system of ordinary
differential equations

ξ̇1 = cξ
1 , ξ̇2 = cξ

2(7.1)

where cξ =
(

cξ
1 , c

ξ
1

)
is the vector field determined in Theorem 5.1. To show

this we use a technique similar to the one developed in [A-B-F] for the one-
dimensional case. We justify equations (7.1) by proving the existence of a set
which is similar to the slow channel considered in [C-Pe] for the one-dimensional
Allen-Cahn equation and in [B-X1, B-X2] for the one-dimensional Cahn-Hilliard
equation.
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A. The Equations for the New Variables(ξ, v)

The following proposition deals with the possibility of constructing a tubular
neighborhood ofM̃ ε

ρ in H −1
0 .

Proposition 7.1. Let ũξ, M̃ ε
ρ ,Ωρ be as in Theorem 5.1; then, forη > 1, the

condition
inf

ξ∈Ω̃ρ+2δ

‖u − ũξ‖ < εη,(7.2)

implies the existence of uniqueξ ∈ Ωρ+δ, v ∈ H −1
0 such that

u = ũξ + v

(v, ψξ
i ) = 0, i = 1, 2,

(7.3)

whereψξ
i as in Theorem 6.1. Moreover, the map u→ (ξ, v) defined by(7.3) is a

smooth map together with its inverse.

The proof is a quite standard argument based on the implicit function theorem
and on Theorem 6.1(iii), and is omitted (see [A-Bro-F]).

Let u(t) be a solution of (1.1) with initial conditionu(0) satisfying (7.2). Then
there is a time interval where the change of variablesu → (ξ, v) introduced in
Propositon 7.1 is well defined and (1.1) is equivalent to

dv
dt

+ ξ̇1ũξ
,1 + ξ̇2ũξ

,2 = L (ũξ + v),(7.4)

which is obtained by settingu = ũξ +v in (1.1). On the other hand, differentiating
(7.3)2 yields(

dv
dt
, ψξ

i

)
+ ξ̇1

(
v, ψξ

i ,1

)
+ ξ̇2

(
v, ψξ

i ,2

)
= 0, i = 1, 2.(7.5)

From Theorem 6.1(iii) the matrix (ψξ
j , ũ

ξ
,i ) is nonsingular and approaches a con-

stant asε → 0. On the other hand, as long asu(t) remains in the tubular
neighborhood ofM̃ ε

ρ defined by Proposition 7.1, we have from the estimate (6.8)
in Theorem 6.1 that

|(v, ψξ
i , j )| < εη−1.(7.6)

Therefore, if we multiply equation (7.4) byψξ
i and eliminate the term containing

dv
dt by means of (7.5), we obtain a linear system forξ̇1, ξ̇2 which is solvable for
ε > 0 sufficiently small, and we can write[

ξ̇1

ξ̇2

]
=
(
Z0 + Z1(v)

)−1

(L
(
ũξ + v

)
, ψξ

1

)
(

L
(
ũξ + v

)
, ψξ

2

) =: ϑξ(v),(7.7)

whereZ0 = (Z0
ij ) andZ1(v) = (Z1

ij (v)) are 2× 2 matrices defined by

Z0
ij =

(
ψξ

i , ũ
ξ
, j

)
, Z1

ij (v) = −
(
v, ψξ

i , j

)
.(7.8)
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Let V ξ be the orthogonal complement ofU ξ in H −1
0 (see Theorem 6.1(iii)). If

φ ∈ H −1
0 , we haveφ = φ= + φ⊥ with φ= ∈ U ξ, φ⊥ ∈ V ξ. From (7.5), and the

fact thatψξ
1 , ψ

ξ
2 are orthonormal, we obtain(

dv
dt

)=

= −
∑

i

∑
j

ξ̇j

(
v, ψξ

i , j

)
ψξ

i =: K ξ,ξ̇v.(7.9)

Moreover, we can write

L (ũξ + v) = L (ũξ) + Lξv + N ξ(v),(7.10)

whereN ξ(v) is the nonlinear part ofL (ũξ + v). Therefore projecting equation
(7.4) on the subspaceV ξ yields

dv
dt

= Lξv + K ξ,ϑξ(v)v + hξ(v),(7.11)

whereϑξ(v) stands for the right-hand side of (7.7) and

hξ(v) =
(

L (ũξ) + N ξ(v) − ϑξ
1(v)ũξ

,1 − ϑξ
2(v)ũξ

,2

)⊥
.(7.12)

Equations (7.7) and (7.11) make a system which in the tubular neighborhood
defined by Proposition 7.1 is equivalent to (1.1), and which is basic for the
rigorous justification of (7.1), stated in Theorem 7.2 below.

B. The Main Result

In the next theoremcξ, ũξ, M̃ ε
ρ , Ωρ, andV ξ are defined as before (cf. Theorem

6.1 and Proposition 7.1);Xα, 0 5 α < 1, is the fractional-power space of orderα
associated with the sectorial operator−Lξ on H −1

0 = X0 (cf. [H]). The operator
Lξ depends onξ, but the spaces corresponding to different choices ofξ coincide.
We assume, as we can, thatα is so large that the imbeddingXα ↪→ C1(Ω̄) holds.
The norm inXα is denoted by‖ · ‖α.

Theorem 7.2.Let η > 0 be fixed and letNη ⊂ Xα, with α so large that Xα ↪→
C1(Ω̄), W2,2(Ω), be the set defined for smallε > 0 by

Nη = {u = ũξ + v| ξ ∈ Ωρ+2δ, v ∈ V ξ ∩ Xα, ‖v‖α 5 η|cξ|}.(7.13)

Let u : [0,∞) → Xα be a solution to the Cahn-Hilliard equation with initial
condition u0 ∈ N1. Then there isε0 > 0 such that, for0< ε < ε0,

u(t) = ũξ(t) + v(t) ∈ N2 ⇒
{

‖v(t)‖α < 2
∣∣cξ(t)

∣∣,
ξ̇(t) = cξ(t) + O

(∣∣cξ(t)
∣∣ e−c/ε

)
,

(7.14)

where c> 0 is a constant independent ofε.

Remark.We note that the estimate (ii) in Theorem 5.1 and Proposition 7.1 imply
that the setNη is well defined forε > 0 small.Nη is something like a tubular
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neighborhood ofM̃ ε
ρ but not exactly so becauseNη shrinks to zero whenever

cξ vanishes (Fig. 7).

Remark.Before proving Theorem 7.2 we note the implication of (7.14) thatu(t)
can leaveN 2 only if ξ(t) ∈ ∂Ωρ+2δ and that as long asξ(t) is in Ωρ+2δ, the
evolution of ξ, the center of the bubble, is determined to an extremely high
degree of accuracy by (7.1). These observations imply that

(a) The interface keeps its almost circular shape at least untilξ(t) reaches the
boundary of∂Ωρ+2δ. In fact, all functions inN 2 are very small perturbations of
functions which have an exact circular interface.

(b) The motion of the bubble is extremely slow. Typical speeds are exponentially
small in ε.

Proof of Theorem 7.2.The main point in the proof is to show that solutions
starting nearM̃ ε

ρ remain nearM̃ ε
ρ for a very long time. To show this we use a

kind of variation-of-constants argument applied to equation (7.11). To implement
the argument, we need estimates for the nonlinear functionsϑξ(v), hξ(v) and a
careful analysis of the homogenous equation

dv
dt

= Lξv + K ξ,ξ̇v(7.15)

whereK ξ,ξ̇ is defined in (7.9) andξ is considered as a known function oft .

Lemma 7.3.Let γ be a number satisfying

γ < 1
2ν

ε min
ξ∈Ωρ+δ

dξ.

Then there isε0 > 0 such that, for0< ε < ε0, the condition

u ∈ {u = ũξ + v| ξ ∈ Ωρ+2δ, v ∈ V ξ ∩ Xα, ‖v‖α < e−γ/ε}(7.16)

implies that

ϑξ(v) =
(

I + O(e−c/ε)
)

cξ + O
(

e−c/ε‖v‖α

)
,(7.17)

‖hξ(0)‖α 5 e−c/ε
∣∣cξ
∣∣ ,(7.18)

‖hξ(v) − hξ(0)‖ 5 e−c/ε ||v||α ,(7.19)

where I is the identity matrix inR2 and c is a positive constant independent
of ε.

Proof. Theorem 5.1(i),(iv), together with the definition (7.8) ofZ0, imply that

cξ =
(

Z0 + O(e−c/ε)
)−1

[(
L (ũξ), ψξ

1

)
(
L (ũξ), ψξ

2

)
]
.(7.20)

Therefore, if we insert equation (7.10) into the expression (7.7) ofϑξ(v) and note
that
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(
Lξv, ψξ

i

)
= 0, i = 1, 2.(7.21)

(becausev ∈ V ξ andV ξ is invariant underLξ), we obtain

ϑξ(v) =
(
Z0 + Z1(v)

)−1

(
(Z0 + O(e−c/ε))cξ +

[
(N ξ(v), ψξ

1)

(N ξ(v), ψξ
2)

])
.(7.22)

On the other hand, the definition ofZ1(v), estimate (6.8), and the condition (7.16)
imply, for ε > 0 small and somec > 0, that

Z1(v) = O(ε−1‖v‖) = O(e−c/ε).(7.23)

Moreover, taking into account thatN ξ(v) = ∆
(−F ′(ũξ + v) + F ′(ũξ) + F ′′(ũξ)v

)
,

and using Theorem 6.1(iii) for estimating theL1 norm ofψξ
i , we find that

(N ξ(v), ψξ
i ) = 〈(−∆)−1/2∆F̃ ξ(v), (−∆)−1/2ψξ

i 〉 = −〈F̃ ξ(v), ψξ
i 〉

= O(ε1/2‖v‖2
0) = O(e−c/ε‖v‖α),

(7.24)

whereF̃ ξ(v) = −F ′(ũξ + v) + F ′(ũξ) + F ′′(ũξ)v and‖ ‖0 denotes the sup norm.
In the last equality in (7.24) we have used the imbeddingXα ↪→ C0(Ω̄) and the
fact that on the subspaceXα ∩ V ξ,

‖v‖0 5 Cε−p‖v‖α,

for some numberp. The estimate (7.17) is obtained from (7.22)–(7.24). From
(7.12) it follows that

hξ(v) =
2∑

i =1

(
cξ

i − ϑξ
i (v)

)
(ũξ

,i )
⊥ +

2∑
i =1

cξ
i (uξ

,i − ũξ
,i )

⊥ + (N ξ(v))⊥.(7.25)

From Theorem 6.1, and its proof (cf. equation (6.10)), we have

‖(ũξ
,i )

⊥‖ = O(e−c/ε), ‖Lξ(ũξ
,i )

⊥‖ = O(e−c/ε).(7.26)

On the other hand, Theorem 5.1(i),(iii) implies that

‖uξ
,i − ũξ

,i ‖ = O(e−c/ε), ‖Lξ(uξ
,i − ũξ

,i )‖ = O(e−c/ε).(7.27)

The estimate (7.18) follows from (7.25), by also using (7.22), which implies
that ∣∣cξ − ϑξ(0)

∣∣ 5 Const.
∣∣cξ
∣∣ ,(7.28)

by means of the first estimate (7.27), and by observing thatN ξ(0) = 0.
To prove the last estimate, we note that forε > 0 small,

‖(N ξ(v))⊥‖2 5 ‖N ξ(v)‖2 = 〈(−∆)−1/2∆F̃ ξ(v), (−∆)−1/2∆F̃ ξ(v)〉
= 〈F̃ ξ(v),∆F̃ ξ(v)〉 5 Const.‖v‖2

C1(Ω̄)

5 e−c/ε‖v‖α,

(7.29)
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where we have performed an integration by parts, and also employed the imbed-
ding Xα ↪→ C1(Ω̄) and the condition (7.16). From the above estimate, and (7.22),
(7.23) (sincecξ = O(e−c/ε) it follows that∣∣ϑξ(v) − ϑξ(0)

∣∣ = O(e−c/ε‖v‖α).(7.30)

We note that this estimate is not a direct consequence of (7.17), because the
coefficient ofcξ in (7.17) is actually a function ofv.

The estimate (7.19) follows from this, the estimate (7.29) and (7.26),
(7.27). ut

Remark.The estimates (7.17), (7.18), and (7.19) hold inN 2. In fact, the definition
in Lemma 7.4 ofγ implies thatN 2 is contained in the set defined by (7.16).

We now begin the study of the homogeneous equation (7.15). We follow
an approach very similar to that of [A-B-F]. We assume thatξ : [a, b] →
Ωρ is a given smooth function. Equation (7.15) can be considered as a linear
nonautonomous differential equation. Since the principal part of the operator
is independent oft , the theory for nonautonomous parabolic equations in [H]
applies and implies the existence of a bounded linear operatorS(t , τ, ξ) : Xα →
Xα; S(t , τ, ξ) = I , such thatS(t , τ, ξ)v is a smooth function oft , τ . As we shall
see, the special structure of the linear operator in equation (7.15), in particular the
presence of the operatorK ξ,ξ̇, implies that (7.15) preserves the fibrationξ → V ξ.
SinceLξ is a sectorial operator, and the spectrum of the restriction ofLξ to V ξ

is bounded below by a positive constant, we can expect exponential decay in
t for S(t , τ, ξ)v when v ∈ V ξ(τ ). To prove this, and related facts, we start by
analyzing the operatorK ξ,ξ̇.

Lemma 7.4.Let ξ : [a, b] → Ωρ be a smooth function. Then

(i) The problem

dφ
dt

(t) = K ξ(t),ξ̇(t)φ(t), φ(τ ) = φ̄ ∈ H −1
0(7.31)

has a unique solutionφ(t) = Φ(t , τ, ξ)φ̄ ∈ H −1
0 which is a smooth function of

(t , τ, ξ, φ̄).
Φ(t , τ, ξ) : V ξ(τ ) → V ξ(t),

(ii) ‖Φ(t , τ, ξ)φ‖ = ‖φ‖ ∀φ ∈ V ξ(τ ).

Furthermore, for t= τ and some number b independent ofε,

‖Φ(t , τ, ξ)φ‖ 5 (1 + Cε−1
∫ t

τ

|ξ̇|)‖φ‖ , φ ∈ H −1
0 .(iii)

(iv) ‖Φ(t , τ, ξ)φ− φ‖α

5 Cε−b

[∫ t

τ

∣∣ξ̇(s)
∣∣ (1 + Cε−1

∫ s

τ

∣∣ξ̇∣∣) ds

]
‖φ‖, φ ∈ H −1

0 ,

and the same is true with the Ck(Ω̄) norm replacing the Xα norm.
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The adjoint ofΦ(t , τ, ξ) can be identified with the solution operatorΦ∗(τ, t , ξ)
of the equation

dφ
dt

=
∑

i

∑
j

ξ̇j (φ, ψ
ξ
i )ψξ

i , j ,(7.32)

and

‖Φ∗(t , τ, ξ)ψξ(τ )
i , j ‖C0(Ω̄) 5 Cε−2

(
1 + ε−2

[∫ t

τ

|ξ̇|
])

(v)

Proof. Statement (i) follows from the definition (7.9), which implies thatK ξ(t),ξ̇(t)

is a bounded linear operator onH −1
0 and a smooth function oft andξ : [a, b] →

Ωρ. To prove (ii), we observe that (7.31) and (7.9) imply that

d
dt

(φ, ψξ
i ) =

(
K ξ,ξ̇φ, ψξ

i

)
+
∑

j

ξ̇j

(
φ, ψξ

i ,j

)
= 0 ∀φ(t).(7.33)

Therefore,

(φ, ψξ
i ) = Const.,(7.34)

and in particular (φ, ψξ
i ) = 0 if it is zero att = τ . This shows thatΦ(t , τ, ξ) maps

V ξ(t) into V ξ(t).
A solutionφ(t) of (7.31) satisfies

d
dt

(φ, φ) = 2
(

K ξ,ξ̇φ, φ
)
.(7.35)

From this, ifφ ∈ V ξ, it follows that d
dt (φ, φ) = 0 and therefore‖φ‖ = Const.

In order to prove (iii), we decomposeφ as

φ =
∑

i

αiψ
ξ
i + σ, σ ∈ V ξ.(7.36)

We have seen in (7.34) that for a generic solutionφ(t) of (7.31),αi = (φ, ψξ
i ) is

a constant quantity; therefore differentiating (7.36) and also using (7.9) yields

K ξ,ξ̇σ −
∑

i

∑
h

∑
j

ᾱi ξ̇j

(
ψξ

i , ψ
ξ
h, j

)
ψh =

∑
i

∑
j

ᾱi ξ̇jψ
ξ
i , j + σ̇,(7.37)

whereᾱi is the value ofαi for t = τ .
From this, and the orthonormality of the basisψξ

1 , ψ
ξ
2, which implies that∑

j

ξ̇j

(
ψξ

h, j , ψ
ξ
i

)
= −

∑
j

ξ̇j

(
ψξ

h , ψ
ξ
i , j

)
,

it follows that

σ̇ = K ξ,ξ̇σ + l(7.38)

where
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l = −
∑

i

∑
j

ᾱi ξ̇j

[
ψξ

i ,j −
∑

h

(
ψξ

i , j , ψ
ξ
h

)
ψξ

h

]
∈ V ξ.

From this expression forl and from the estimate (6.8) ofψξ
i ,j we derive

‖l ‖ 5 Cε−1|ᾱ| |ξ̇|.(7.39)

From the variation-of-constants formula, applied to (7.38) it follows fort = τ
that

‖σ(t)‖ 5 ‖Φ(t , τ, ξ)σ̄‖ +
∫ t

τ

‖Φ(t , s, ξ)l (s)‖ds,(7.40)

with σ̄ = σ(τ ).
This and (ii), since ¯σ ∈ V ξ(τ ) and l (s) ∈ V ξ(s), imply that

‖σ(t)‖ 5 ‖σ̄‖ +
∫ t

τ

‖l (s)‖ds 5 ‖σ̄‖ + Cε−1|ᾱ|
∫ t

τ

|ξ̇|(7.41)

where in the last inequality we have used the estimate (7.39). Therefore, we have

‖φ(t)‖2 = |ᾱ|2 + ‖σ(t)‖2 5 |ᾱ|2 +

(
‖σ̄‖ + Cε−1|ᾱ|

∫ t

τ

|ξ̇|
)2

5 ‖φ(τ )‖2

(
1 + Cε−1

∫ t

τ

|ξ̇|
)2

.

(7.42)

The differential equation (7.31) implies that

φ(t) − φ(τ ) = −
∫ t

τ

∑
i

∑
j

ξ̇j (s)
(
φ(s), ψξ(s)

i ,j

)
ψξ(s)

i ds.(7.43)

From this, (7.42) witht = s, the estimate (6.8) and the fact that

‖ψξ
i ‖α 5 Cε−b(7.44)

for some numberb independent ofε, it follows that

‖φ(t) − φ(τ )‖α 5 Cε−b

[∫ t

τ

|ξ̇(s)|(1 + Cε−1
∫ s

τ

|ξ̇|)
]

‖φ(τ )‖,(7.45)

that is, (iv). With a different value ofb, the estimate (7.44) is also valid for the
Ck(Ω̄) norm. Therefore in (7.45) theXα norm can be replaced by theCk(Ω̄)
norm.

To see (7.32), letΦ∗(τ, t , ξ) be the adjoint ofΦ(t , τ, ξ). Then by definition,

(Φ(t , τ, ξ)φ, z) =
(
φ, Φ∗(τ, t , ξ)z

) ∀φ, z ∈ H −1
0 .(7.46)

Differentiating this identity with respect tot , settingt = τ and using the definition
of K ξ,ξ̇ and equation (7.31) yieldφ,−∑

i

∑
j

ξ̇ j (z, ψ
ξ
i )ψξ

i , j

 =

(
φ,

d
dt

(
Φ∗(τ, t , ξ)z

)
t=τ

)
.(7.47)
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From this identity it follows thatΦ∗(t , τ, ξ) can be identified with the solution
operator of the equation

dz
dt

=
∑

i

∑
j

ξ̇ j (z, ψ
ξ
i )ψξ

i , j ,(7.48)

which is (7.32).
To derive the estimate (v) we writez =

∑
i αiψ

ξ
i + σ with (σ, ψξ

i ) = 0 as
before. Then (7.48) implies that∑

i

α̇iψ
ξ
i + σ̇ = 0.(7.49)

From this, and (σ, ψξ
i ) = 0, which implies that(

σ̇, ψξ
i

)
+
∑

j

ξ̇ j

(
σ, ψξ

i , j

)
= 0,

it follows that

α̇i =
∑

j

ξ̇j (σ, ψ
ξ
i ,j ),(7.50)

and therefore
σ̇ = −

∑
i

∑
j

ξ̇j (σ, ψ
ξ
i ,j )ψ

ξ
i = K ξ,ξ̇σ.(7.51)

This and (ii) imply‖σ(t)‖ = ‖σ(τ )‖ and thus from (7.50), and (7.51), we obtain

|αi (t) − αi (τ )| < Cε−1

(∫ t

τ

|ξ̇|
)

‖σ(τ )‖,(7.52)

‖σ(t) − σ(τ )‖C0(Ω̄) 5 Cε−2

(∫ t

τ

|ξ̇|
)

‖σ(τ )‖,(7.53)

From these estimates, since theH −1
0 norm is bounded by theC0 norm: ‖z‖ <

C‖z‖C0(Ω̄), it follows that

‖z(t)‖C0(Ω̄) 5 C

[
1 + Cε−2

(∫ t

τ

|ξ̇|
)]

‖z(τ )‖C0(Ω̄).(7.54)

Applying this inequality toψξ(τ )
i ,j and using the fact that

‖ψξ
i ,j ‖C0(Ω̄) = O(ε−2)(7.55)

(which was already used in (7.53)) yields (v).ut
Lemma 7.5.Assume thatξ : [a, b] → Ωρ+δ is a smooth function and let S(t , s, ξ) :
Xα → Xα, with α as in statement of Theorem 7.2, be the solution operator of
equation(7.15). Then
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v ∈ V ξ(s) ⇒ S(t , s, ξ)v ∈ V ξ(t).

Moreover, there exist numbers̄a, ε̄ > 0 such that0< ε < ε̄, a > ā and∣∣ξ̇(t)
∣∣ < Cεa, t ∈ [a, b],(7.56)

imply that the operator S(t , s, ξ) : V ξ(s) → V ξ(t) satisfies

‖S(t , s, ξ)v‖α 5 e−εβ(t−s)‖v‖α,

‖S(t , s, ξ)v‖α 5 M (t − s)−αe−εβ(t−s)‖v‖,(7.57)

where M, β > 0 are independent ofε, a.

Proof. From (7.15), and the definition (7.9) ofK ξ,ξ̇, it is seen that

d
dt

(v, ψξ
i ) = (Lξv, ψξ

i ) + (K ξ,ξ̇v, ψξ
i ) +

∑
j ξ̇j (v, ψ

ξ
i ,j )

= (Lξv, ψξ
i ) = 0,

(7.58)

which proves (i). Now, we regard (7.15) as a differential equation on the fibration
ξ → V ξ, and transform it into an equation on a fixed fiberV ξ(s). We do this
by introducing a new variablew ∈ V ξ(s) through the time-dependent change of
variables

v(t) = Φ(t , s, ξ)w(t),(7.59)

whereΦ is the operator discussed in Lemma 7.4. The equation forw(t) is

wt = Lξ(s)w + Bw(7.60)

with

B = Φ(s, t , ξ)Lξ(t)Φ(t , s, ξ) − Lξ(s).(7.61)

To simplify the notation we writeΦ(s, t), Lt andK t instead ofΦ(s, t , ξ), Lξ(t)

andK ξ(t),ξ̇(t), etc. By definition,Φ satisfies

Φ(t , τ )φ(τ ) = φ(τ ) +
∫ t

τ

K sΦ(s, τ )φ(τ ) ds;

therefore from (7.61) we get, assumingw is sufficiently smooth, that

Bw = LtΦ(t , s)w +
∫ s

t
K rΦ(r , t)LtΦ(t , s)w dr − Lsw

= (Lt − Ls)w + Lt

∫ t

s
K rΦ(r , s)w dr +

∫ s

t
K rΦ(r , t)Ltw dr

+
∫ s

t
K rΦ(r , t)Lt

(∫ t

s
K τΦ(τ, s)w dτ

)
ds.

(7.62)

We estimate only the third term, which is the most singular; the remaining terms
can be estimated by the same method and satisfy similar estimates. LetI (w) be
the third term in (7.62); then recalling the definition (7.9) ofK ξ,ξ̇ we have
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I (w) =
∫ s

t

∑
i

∑
j

ξ̇j (r )(Φ(r , t)Ltw,ψr
i ,j )ψ

r
i dr ,(7.63)

which implies that

‖I (w)‖ 5 C‖ξ̇‖0

∣∣∣∣ ∫ s

t

∑
i

∑
j

∣∣∣(Φ(r , t)Ltw,ψr
i ,j

)∣∣∣ dr

∣∣∣∣
= C‖ξ̇‖0

∣∣∣∣ ∫ s

t

∑
i

∑
j

∣∣∣(Ltw,Φ∗(t , r )ψr
i ,j

)∣∣∣ dr

∣∣∣∣(7.64)

where‖ξ̇‖0 = maxs∈[a,b] |ξ̇(s)|.
From (6.2) it follows that

(Ltw,Φ∗(t , r )ψr
i ,j ) = −〈ε2∆w − F ′′(ũt )w,Φ∗(t , r )ψr

i ,j 〉.(7.65)

From this, the assumptionXα ↪→ W2,2(Ω) which implies that

‖ε2∆w − F ′′(ũt )w‖L2 5 Cε−b‖w‖α

for some real numberb, and the estimates (v) in Lemma 7.4, it follows that∣∣(Ltw,Φ∗(t , r )ψr
i ,j )
∣∣ 5 Cε−(b+2)

(
1 + ε−2‖ξ̇‖0|t − r |) ‖w‖α.(7.66)

Therefore (7.64) yields

‖I (w)‖ 5 Cε−(b+2)‖ξ̇‖0

(
|t − s| + ε−2‖ξ̇‖0

∣∣∣∣∫ s

t
|t − r | dr

∣∣∣∣) ‖w‖α.(7.67)

As mentioned above, the other terms in (7.62) satisfy similar estimates, and as a
result we can conclude that there is a numberb′ such that

‖Bw‖ 5 Cε−b′‖ξ̇‖0

(
|t − s| + ε−b′‖ξ̇‖0

∣∣∣∣∫ s

t
|t − r | dr

∣∣∣∣) ‖w‖α.(7.68)

Next, we note that the invariance ofV ξ underLξ implies thatLξ can be con-
sidered as a self-adjoint operator onV ξ. For the restricted operator we have by
Theorem 6.1 that

σ(Lξ) < −C ′ε.

It follows that Ls generates an analytic semigroup onV ξ and

‖etLs

w‖α 5 e−εC′t‖w‖α, ‖etLs

w‖α 5 M ′t−αe−εC′t‖w‖(7.69)

for some constantM ′ independent ofε.
We only prove the estimate (7.57)1. The proof of the other estimate is similar.

To prove (7.57)1 it suffices to consider the caset − s 5 1. In fact, the general
case follows from this special case and the semigroup property of the operator
S. If t −s 5 1 and (7.56) holds witha > b′, the estimate (7.68) forε sufficiently
small yields
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‖Bw‖ 5 Cεa′ |t − s| ‖w‖α,(7.70)

for somea′ > 0.
From this, the variation-of-constants formula applied to (7.60) and the esti-

mates (7.69) it follows fort > s that

‖w(t)‖α 5 e−εC′(t−s)‖w(s)‖α

+ Cεa′
∫ t

s
e−εC′(t−r )(t − r )−α(r − s)‖w(r )‖αdr .

(7.71)

This inequality implies the existence of an interval [s, s+h] such that‖w(r )‖α 5
2‖w(s)‖α for r ∈ [s, s + h] and ε < ε̄. For t 5 s + h we have∫ t

s
e−εC′(t−r )(t − r )−α(r − s)‖w(r )‖αdr 5 2

1 − α
‖w(s)‖α(t − s)2−α,

and therefore (7.71) implies fors 5 t 5 s + h that

‖w(t)‖α 5
[

e−εC′(t−s) + εa′ 2(t − s)2−α

1 − α

]
‖w(s)‖α.(7.72)

We can takeh so small (depending onε) that the coefficient of‖w(s)‖α in (7.72)
satisfies

e−εC′(t−s) + εa′ 2(t − s)2−α

1 − α
5 e−ε(C′/2)(t−s),

for t ∈ [s, s + h]. Therefore (7.72) implies that

‖w(t)‖α 5 e−ε(C′/2)(t−s)‖w(s)‖α , t ∈ [s, s + h](7.73)

for someh > 0.

If a in (7.56) is taken sufficiently large, then forε > 0 small, the estimate
(iv) in Lemma 7.4 (since|t − s| 5 1) implies that

‖Φ(t , s, ξ)w(t) − w(t)‖α 5 Cεa′ |t − s|‖w(t)‖(7.74)

for somea′ > 0. From this estimate, (7.73), and the definition (7.59) ofw it
follows that

‖v(t)‖α 5 ‖Φ(t , s, ξ)w(t) − w(t)‖α + ‖w(t)‖α

5 (1 + Cεa′ |t − s|)‖w(t)‖α

5 (1 + Cεa′ |t − s|)e−ε(C′/2)(t−s) ||v(s)||α , t ∈ [s, s + h],

(7.75)

where in the last inequality we have usedw(s) = v(s). By taking a sufficiently
large in (7.56), we can assume thata′ > 1. Then, forε > 0 small, we obtain(

1 + Cεa′ |t − s|)e−ε(C′/2)(t−s) 5 e−ε(C′/4)(t−s), t ∈ [s, s + h′],

for someh′ > 0 depending onε. Therefore we conclude that under the same
assumptions,
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‖v(t)‖α 5 e−ε(C′/4)(t−s)‖v(s)‖α, t ∈ [s, s + h′].

As remarked earlier, a repeated application of this argument proves the first of
the estimates (7.57) withβ = 1

4C ′. The proof of Lemma 7.5 is complete.ut
We can now complete the proof of Theorem 7.2. By assumption,

u(t) = ũξ(t) + v(t)(7.76)

is the solution to the Cahn-Hilliard equation with initial condition

u0 = ũξ0 + v0 ∈ N 1.

From this and Theorem 5.1(ii) it follows that, forε small,

‖v0‖α 5 |cξ0| < e−3γ/2ε,

with γ the number defined in Lemma 7.3. Therefore, there exists a numberτ > 0
such that

‖v(t)‖α < e−γ/ε, t ∈ [0, τ ].

For t ∈ [0, τ ] we have from the variation-of-constants formula applied to equation
(7.11) and from the estimates in Lemmata 7.3 and 7.5 (cf. (7.18), (7.19), (7.57))

‖v(t)‖α 5 e−εβt‖v0‖α + e−c/ε

∫ t

0
e−εβ(t−s)|cξ(s)| ds

+ e−c/ε

∫ t

0
e−εβ(t−s)(t − s)−α‖v(s)‖α ds,

(7.77)

which is equivalent to

ρ(t) 5 ‖v0‖α + e−c/ε

∫ t

0
eεβs|cξ(s)| ds + e−c/ε

∫ t

0
(t − s)−αρ(s) ds(7.78)

with ρ(t) = eεβt‖v(t)‖α. Equation (7.78) is valid fort ∈ [0, τ ]. If we restrict our
attention tot 5 1, then (7.78) implies that

ρ(t) 5 ‖v0‖α + e−(c/ε−εβ) max
s∈[0,1]

|cξ(s)| + e−c/ε

∫ t

0
(t − s)−αρ(s) ds.(7.79)

Therefore, recalling that‖v0‖α < e−3γ/2ε, we have

‖v0‖α + e−(c/ε−εβ) max
s∈[0,1]

|cξ(s)| 5 e−c′/εe−γ/ε(7.80)

for ε small and some numberc′ > 0 independent ofε. Therefore (7.79) implies
that

ρ(t) 5 e−c′/εe−γ/ε + e−c/ε

∫ t

0
(t − s)−αρ(s) ds

5 e−c′/εe−γ/ε + e−c/ερ̄(t)
∫ t

0
(t − s)−αds

5 e−c′/εe−γ/ε +
e−c/ε

1 − α
ρ̄(t),

(7.81)
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where ¯ρ(t) = maxs∈[0,t ] ρ(s). From (7.81) it follows that

ρ(t) 5 ρ̄(t) 5 e−c′/ε

1 − e−c/ε

1−α

e−γ/ε,(7.82)

and therefore

‖v(t)‖α 5 e−c/εe−γ/εe−εβt , t ∈ [0, τ ], t 5 1.(7.83)

This inequality proves that we can, in fact, assume thatτ = 1 and therefore
that ‖v(t)‖α 5 e−γ/ε for all t ∈ [0, 1]. Thus the inequality (7.79) is also valid
for t ∈ [0, 1]. By arguing as we have done in deducing (7.82), we see that the
inequality (7.79) implies that

‖v(t)‖α 5
(

‖v0‖α + e−c/ε max
s∈[0,1]

|cξ(s)|
)

e−εβt

1 − e−c/ε
, t ∈ [0, 1].(7.84)

The assumption‖v0‖α 5 |cξ0| implies the existence of a numberr > 0 such that

‖v(t)‖α 5 2|cξ(t)|, t ∈ [0, r ].

It follows that for t ∈ [0, r ] the estimate (7.17) in Lemma 7.3 and (7.7) imply

|ξ̇(t)| 5 C |cξ(t)|, t ∈ [0, r ].(7.85)

From this, and Theorem 5.1(iii), it is seen that

‖cξ|·| 5 |(cξ)·| 5 C
∑

i

∑
j

|ξ̇ j |, |cξ
i , j | 5 e−c/ε|cξ|.(7.86)

Therefore, fort ∈ [0, r ](
1 − e−c/εt

)|cξ0| 5 |cξ(t)| 5 (1 + e−c/εt)|cξ0|,(7.87)

where we have also used the assumption thatt 5 1. From these inequalities and
(7.84) it follows that

‖v(t)‖α 5
(
1 + e−c/ε

)
e−εβt |cξ0|

5 (1 + e−c/ε)(1 + e−c/εt)e−εβt |cξ(t)|,(7.88)

which is valid for t < 1 andt ∈ [0, r ].
If ε is sufficiently small, this inequality implies that

‖v(t)‖α 5
(

1 + e−c/ε
)2

|cξ(t)| 5 2|cξ(t)|,(7.89)

with the sign of strict inequality ifcξ(t) |= 0. This implies that we can taker = 1
and that the inequalities (7.88), (7.89) hold in the interval [0,1]. Therefore, we
have u(t) ∈ N 2 for t ∈ [0, 1] and u(t) in the interior of N 2 if u0 is not an
equilibrium. From equation (7.7), the inequality (7.89) and Lemma 7.3 it also
follows that for t ∈ [0, 1]
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ξ̇(t) = cξ(t) + O(e−c/ε|cξ(t)|).

Having established all this, we complete the proof if we show thatu(1) is actually
in N1. In fact, the theorem then follows from an obvious induction argument.
From (7.88) we obtain

‖v(1)‖α 5 (1 + e−c/ε)2e−εβ |cξ(1)|

which implies that
‖v(1)‖α 5 |cξ(1)|

providedε > 0 is sufficiently small. The proof of Theorem 7.2 is complete.ut
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Perelló, C. Simó, J. Solà-Morales, eds.), Vol. 1, World Scientific,
1993, pp. 59–67.

[Ag] S.Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger
operators, Springer Lecture Notes in Mathematics 1159, 1985, pp. 1–38.

[A-Mc] N.D. Alikakos & W.R. McKinney, Remarks on the equilibrium
theory for the Cahn-Hilliard equation in one space dimension,Reaction-
Diffusion Equations (K.Brown & A. Lacey, eds.), Oxford Univ. Press,
1990.

[B] P.W. Bates, Personal communication.
[B-E1] J. F. Blowey & C.M. Elliott, The Cahn-Hilliard gradient theory for

phase separation with non-smooth free energy. Part I: Mathematical analysis,
Euro. J. Appl. Math.22 (1991), 233–279.



Slow Dynamics for the Cahn-Hilliard Equation in Higher Space Dimensions59

[B-E2] J. F. Blowey & C.M. Elliott, The Cahn-Hilliard gradient theory for
phase separation with non-smooth free energy. Part II: Numerical analysis,
Euro. J. Appl. Math., in press.

[B-F1] P.W. Bates & P. Fife, Spectral comparison principles for the Cahn-
Hilliard and phase field equations, and time scales for coarsening,Physica
D 43 (1990), 335–348.

[B-F2] P.W. Bates & P. Fife, The dynamics of nucleation for the Cahn-Hilliard
equation,SIAM J. Appl. Math.53 (1993), 990–1008.

[Bro-H] L.Bronsard & D.Hilhorst, On the slow dynamics for the Cahn-
Hilliard equation in one space dimension,Proc. Roy. Soc. London A439
(1992), 669–682.

[Bro-K1] L.Bronsard & R.V. Kohn, On the slowness of the phase boundary
motion in one space dimension,Comm. Pure Appl. Math.43 (1990), 983–
997.

[Bro-K2] L.Bronsard & R.V. Kohn, Motion by mean curvature as the singular
limit of Ginzburg-Landau dynamics,J. Diff. Eqs. (1990), 211–237.

[B-X1] P.W. Bates & J. P. Xun, Metastable patterns for the Cahn-Hilliard
equation: Part I,J. Diff. Eqs.111 (1994), 421–457.

[B-X2] P.W. Bates & J. P. Xun, Metastable patterns for the Cahn-Hilliard
equations: Part II, Layer dynamics and slow invariant manifold,J. Diff. Eqs.
116 (1995), 165–216.

[C1] J.W. Cahn, Theory of crystal growth and interface motion in crystalline
materials,Acta Metallurgica8 (1960), 554–562.

[C2] J.W. Cahn, On spinodal decomposition,Acta Metallurgica9 (1961), 795–
801.

[C3] J.W. Cahn, Spinodal decomposition,Trans. Metallurg. Soc. of AIME242
(1968), 166–180.

[Ca] G.Caginalp, The dynamics of a conserved phase field system: Stefan-like,
Hele-Shaw and Cahn-Hilliard models as asymptotic limits,IMA J. of Math.
44 (1989).

[Ca-F] G.Caginalp & P.C. Fife, Phase field methods for interfacial bound-
aries, Phys. Rev. B33 (1986), 7792–7794.

[C-H] J.W. Cahn & J. E. Hilliard, Free energy of a nonuniform system I.
Interfacial energy,J. Chemical Physics28 (1957), 258–267.

[Ch1] Xinfu Chen, Hele-Shaw problem and area preserved curve shortening mo-
tion, Arch. Rational Mech. Anal.123 (1993), 117–151.

[Ch2] Xinfu Chen, Personal communication.
[Ch-H-Y] Xinfu Chen, J. Hong & F.Yi, Existence, uniqueness, and regularity of

classical solutions of the Mulins-Sekerka problem,preprint.
[C-G-S] J. Carr, M.E. Gurtin, & M. Slemrod, Structured phase transitions

on a finite interval,Arch. Rational Mech. Anal.86 (1984), 317–351.
[Ch-K] Xinfu Chen & M.Kowalczyk, Existence of equilibria for the Cahn-

Hilliard equation via local minimizers of perimeter,Comm. Part. Diff. Eqs.
21 (1996), 1097–1123.

[C-Pe] J. Carr & R. L. Pego, Metastable patterns in solutions of ut = ε2uxx −
f (u), Comm. Pure Appl. Math.42 (1989), 523–576.

[C-Pu] P. Constantin & M. Pugh, Global solutions for small data to the Hele-
Shaw problem,Nonlinearity6 (1993), 393–415.

[E] C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase sep-
aration, in Mathematical Models for Phase Change Problems,Int. Sem. of
Numerical Math., Vol. 88 (J.F. Rodrigues, ed.) Birkḧauser, 1989, pp. 35–
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