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Abstract

The system under study models unsteady, one-dimensional shear ¯ow of a
highly elastic and viscous incompressible non-Newtonian ¯uid with fading
memory under isothermal conditions. The ¯ow, in a channel, is driven by a
constant pressure gradient, is symmetric about the center line, and satis®es a
no-slip boundary condition at the wall. The non-Newtonian contribution to
the stress is assumed to obey a di�erential constitutive law (due to OLDROYDLDROYD,
JOHNSONOHNSON & SEGALMANEGALMAN), the key feature of which is a non-monotone relation
between the total steady shear stress and strain rate. In a regime in which the
Reynolds number is much smaller than the Deborah (or Weissenberg)
number, one obtains a degenerate, singularly perturbed system of nonlinear
reaction-di�usion equations. It is shown that if the driving pressure gradient
exceeds a critical value (the local shear stress maximum of the steady stress
vs. strain rate relation), then the solution to the governing system, starting
from rest at t � 0, tends as t!1 to a particular discontinuous steady state
solution (the ``top-jumping'' steady state), except in a small neighborhood of
the discontinuity. This discontinuous steady state is shown to be nonlinearly
stable in a precise sense with respect to perturbations yielding smooth initial
data. Such discontinuous steady states have been proposed to explain
``spurting'' ¯ows, which exhibit a large increase in mean ¯ow rate when the
driving pressure is raised above a critical value.

1. Introduction

In this paper, we complete the study initiated in [8] concerning the non-
linear stability and generation of certain discontinuous steady states which
model the spurt phenomenon observed in experiments on pressure-driven
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shear ¯ows of a highly elastic and viscous, incompressible, non-Newtonian
¯uid through a capillary [11]. The term ``spurt'' refers to the rapid and dra-
matic increase in ¯ow rate encountered as the driving pressure gradient ex-
ceeds a certain threshold value. As in earlier studies [5, 6, 8], we model the
capillary as a channel in the plane between ÿ12 x 2 1, aligned in the di-
rection of the y-axis, and we assume that the ¯ow is symmetric about the
center line x � 0. We assume that the stress in the ¯uid has a polymer con-
tribution which obeys the Johnson-Segalman-Oldroyd (J-S-O) di�erential
constitutive equations [4, 9], which satisfy the principle of material objec-
tivity. And we assume that the ¯ow takes place under isothermal conditions.
Since the ¯uid is undergoing simple shearing, the ¯ow variables are functions
of position x in the channel and time t. In dimensionless units, the ¯ow is
governed by a degenerate system of reaction-di�usion equations for the
unknown functions S; r; Z:

aSt � eSxx � a ÿr� �Z � 1��S � �T ÿ r�=e� �;
rt � ÿr� �Z � 1��S � �T ÿ r�=e;
Zt � ÿZ ÿ r�S � �T ÿ r�=e

�1:1�

for ÿ12 x 2 0, t > 0, together with the boundary conditions

Sx�ÿ1; t� � 0; S�0; t� � 0; r�0; t� � 0; �1:2�
and the initial conditions

S�x; 0� � S0�x�; r�x; 0� � r0�x�; Z�x; 0� � Z0�x�: �1:3�
To enforce consistency of the initial and boundary conditions, the compati-
bility conditions S00�ÿ1� � 0 and S0�0� � 0 and the continuity condition
r0�0� � 0 are assumed to hold. We refer to [6] for a derivation of the system
governing the ¯ow starting from three-dimensional balance laws and con-
stitutive equations, and to [7, 8] for the recasting of the initial-boundary-
value problem into the equivalent form (1.1)±(1.3). In terms of physical
quantities, the unknown function S is de®ned by

S :� evx � rÿ �T ; �T :� ÿ�f x; �1:4�
re¯ecting the fact that the total stress on the ¯uid is the sum of three con-
tributions: a Newtonian stress, a non-Newtonian extra stress and an isotropic
pressure, respectively. Here, v represents the ¯uid velocity, vx the strain rate, r
the polymer contribution to the non-Newtonian extra shear stress, and �f > 0
the constant pressure gradient driving the ¯ow. The quantity Z is propor-
tional to the ®rst normal stress di�erence. The second and third equations in
(1.1) stem directly from the J-S-O constitutive equations with a single re-
laxation time that are assumed to govern the class of ¯uids under study. The
parameter e is the ratio of Newtonian viscosity to shear viscosity (scaled by
relaxation time), and a is the ratio of Reynolds number to Deborah number.
For highly elastic and viscous ¯uids such as those in the experiments of
VINOGRADOVINOGRADOV et al. [11], a and e are both small, with e � 10ÿ2 or 10ÿ3, and a is
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7 to 10 orders of magnitude smaller than e (see [6]). Consequently, in much of
the analysis the governing system is regarded as a singular perturbation of the
system having a � 0.

System (1.1) admits steady states ��S�x�; �r�x�; �Z�x�� that satisfy the fol-
lowing relations (see [6, 8]):

�r�x� � �vx

1� �v2x
; �Z�x� � 1 � 1

1� �v2x
; �1:5�

�S�x� � e�vx � �vx

1� �v2x
ÿ �T � 0: �1:6�

Thus the steady strain rate �vx�x� satis®es the equation x��vx� � �T :� ÿ�f x, for
ÿ12 x 2 0, where �T represents the total steady shear stress at position x, and
where

x�n� :� n

1� n2
� en; ÿ1 < n <1: �1:7�

For e < 1
8, the function x is not monotone (see Fig. 1). Consequently, if �T is

su�ciently large, there are multiple steady states �vx�x� satisfying (1.6), which
are discontinuous in x. The resulting steady velocity pro®les �v�x� have kinks
at points x� where �vx is discontinuous. (For an example with one kink, see
Fig. 2.) Formulae (1.5) imply that the corresponding steady states ��r; �Z� have
discontinuities at the same points x� where �vx is discontinuous. Such dis-
continuous steady states stemming from the non-monotone constitutive
function x play a key role in the dynamics.

If a > 0 and e > 0, the initial-boundary-value problem (1.1)±(1.3) is
globally well-posed in time. In what follows, the function spaces Hs, C, C1,

Figure 1. x VSVS. n.

Figure 2. Velocity pro®le with a kink; x��vx�x�� � �T .
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W 2;1, L1 refer to the interval �ÿ1; 0�. The global existence and uniqueness,
stated as Theorem 2.1 in [8] and repeated here for convenience, follow from a
general result in [7]:

Theorem 1.1. (a) For (smooth) initial data S0 2 H s, for some s > 3
2, and r0,

Z0 2 C1, there exists a unique classical solution on �ÿ1; 0� � �0;1� having the
regularity:

S 2 C��0;1�;C1� \ C��0;1�;H2�;
St 2 C��0;1�;C1�;

r; Z 2 C1��0;1�;C1�:
�1:8�

(b) For (rough) initial data S0 2 H1, and r0, Z0 2 L1, there is a unique semi-
classical solution on �ÿ1; 0� � �0;1� ( possibly having discontinuities in the
stress components) having the regularity:

S 2 C��0;1�;H1� \ C��0;1�;W 2;1�;
St 2 C��0;1�;H s� for all s < 2;

r; Z 2 C1��0;1�; L1�:
�1:9�

Given any bounded measurable representatives r0�, Z0� of the equivalence
classes r0, Z0 2 L1, there exist unique bounded measurable functions r��x; t�,
Z��x; t�, representing r��; t�, Z��; t� for each t > 0, such that the map
t 7! r��x; t�, Z��x; t� is of class C1 for t 3 0, and �S�; r�; Z�� satisfy the second
and third equations of system (1.1) for t > 0, where S� is the unique con-
tinuous representative of S.

The class of solutions in Theorem 1.1(b) notably includes the discontin-
uous steady states of the system (1.1). We identify a solution �S; r; Z� in case
(b) with some representative �S�; r�; Z��; then the second and third equations
in (1.1) are satis®ed pointwise for all t > 0. It is shown in [7] that disconti-
nuities in the stress components �r; Z� for such solutions can neither be
created nor destroyed in ®nite time.

System (1.1) is endowed with the identity

d
dt

r2 � Z � 1� �2
h i

� ÿ2 r2 � Z � 1=2� �2ÿ 1
4

� �
; �1:10�

observe that the identity is independent of a; e; �T . It follows easily from (1.10)
that r and Z are globally bounded in �x; t�; moreover, these bounds are
independent of a and e. But although solutions of (1.1)±(1.3) exist globally, it
does not follow without further restrictions that S remains globally bounded
in �x; t�. Moreover, determining the asymptotic behavior of solutions as
t! �1 and understanding the dynamics of (1.1) also requires additional but
physically reasonable assumptions.

The main focus of this paper is to complete the analysis initiated in [8],
showing that in a regime where e < 1

8 is ®xed and a > 0 is su�ciently small,
the dynamics of the full system (1.1) is similar to that generated by the
approximating system obtained from (1.1) by putting a � 0. The steady states
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of the system (1.1) are clearly the same for a > 0 as for a � 0. The dynamics
of the approximating system (given by system (Q) below) may be studied
independently for each x 2 �ÿ1; 0�, and has been completely determined by
phase-plane analysis [6]. The results (summarized in Propositions 2.1 and 2.2
below) form the basis for one possible explanation of spurt and related
phenomena ®rst observed in experiments by G. VINOGRADOVINOGRADOV et al. [11] in
quasistatic loading of pressure-driven ¯ows. As proposed by MALKUSALKUS,
NOHELOHEL & PLOHRLOHR [6], the approximating system (Q) predicts spurt as well as
latency, shape memory, and hysteresis under quasistatic loading and un-
loading of the driving pressure gradient.

The following three qualitative results, relating the dynamics of the full
system with a > 0 to that of the approximating system with a � 0, have
already been obtained in [8] for a > 0 su�ciently small, under the assumption
that the initial data (1.3) satisfy the assumptions (a) or (b) of Theorem 1.1.
Precise statements needed in the present paper are given in Section 2.

(1) On any ®xed interval 0 < t 2 T and a > 0, the solution �S; r; Z� of
(1.1)±(1.3) converges as a! 0 to the corresponding solution of the system in
which a � 0; but a � 0 implies that S�x; t� � 0, and the second and third
equations of (1.1) reduce to the one-parameter family of autonomous systems
of quadratic ordinary di�erential equations

rt � ÿr� Z � 1� � �T ÿ r� �=e;
Zt � ÿZ ÿ r �T ÿ r� �=e; (Q)

parametrized by x (or equivalently by �T ). (See Corollary 3.2 and Theorem 3.3
in [8].)

(2) If a is su�ciently small, every solution of (1.1)±(1.3) with initial data
satisfying

kS0kH1 � kr0kL1 � kZ0kL1 2 M ; �1:11�
where M > 0 is any constant, converges as t!1 to some steady state
�0; �r�x�; �Z�x�� (possibly discontinuous, possibly unstable) with

S ! 0 in H 1�ÿ1; 0�; �r�x; t�; Z�x; t�� ! ��r�x�; �Z�x��; �1:12�
for each x 2 �ÿ1; 0�. (See Theorem 3.5 in [8].) For some smooth solutions, the
corresponding asymptotic state is discontinuous in x, and the convergence in
(1.12) is not uniform; such solutions contain ``transition layers''. For a given
set of initial data, one cannot in general identify the limiting steady state in
(1.12), and for this reason, it is important to test which steady states are
stable.

(3) If a is su�ciently small, it is shown in Theorem 3.4 of [8] that any
steady state �0; �r�x�; �Z�x�� of (1.1), continuous or discontinuous, for which
x��vx� takes values only on strictly increasing portions of the graph of x�n� in
Fig. 1 (i.e., excluding a neighborhood of the local max and min), is nonlin-
early Lyapunov stable with respect to perturbations of initial data from
steady state in a precise sense discussed in Section 2. Such stable steady states
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may possess any arbitrary pattern of discontinuities. Stability holds when the
perturbation in S0 is small in H1�ÿ1; 0�, and the perturbations in r0 ÿ �r,
Z0 ÿ �Z are small in L1�ÿ1; 0�, and are bounded pointwise by some large
constant. Hence, there are smooth initial data in the basin of Lyapunov
stability of any such discontinuous steady state. Fig. 3 illustrates such a
perturbation of the discontinuous steady strain rate �vx having a single jump
that is responsible for the kinked velocity pro®le in Fig. 2.

The stability result in (3), from Theorem 3.4 of [8], does not apply to an
important steady solution which is naturally encountered in modeling the
loading process performed in experiments. As is proved in [6], starting from
rest with �r0; Z0� � �0; 0�, with the pressure gradient loaded to a value �f > �TM

above the local steady shear stress maximum, the solution of the approximate
problem (Q), corresponding to a � 0 in (1.1), converges as t!1 to the
discontinuous, top-jumping steady state ��r�x�; �Z�x�� having a single point of
discontinuity at the point x� (typically near x � ÿ1) where �T �x�� � �TM . In
Fig. 1, as x varies from the center line at 0 to the wall at ÿ1, the top-jumping
steady solution traces out the path �n;x�n�� � ��vx; �T �, starting at the origin
and proceeding along the stress vs. strain curve to the local shear stress
maximum at M . At this point the path jumps horizontally from M to a point
on the right-hand branch and continues along the curve to its highest point at
�f � �T �ÿ1� > �TM . Corresponding to the single jump discontinuity in the
steady strain rate �vx�x�, the steady stresses �r�x� and �Z�x� have discontinuities
at the same point x�.

Numerical simulation of the VINOGRADOVINOGRADOV quasistatic loading experiment
[11], based on a numerical algorithm developed in [5] for the full system
(1.1)±(1.3), also shows that the numerical solution converges as t!1 to the
top-jumping steady solution when the ®nal pressure gradient �f exceeds the
critical value �TM . Similarly, numerical simulation in [5] shows that the dis-
continuous,``bottom-jumping'' steady solution (i.e., a steady solution which
jumps across the local shear stress minimum at m in Fig. 1) is achieved when
the driving pressure gradient is down-loaded quasistatically from a value
�f > �TM to a value only slightly larger than �Tm, the local shear stress minimum
at m.

These results suggest that the steady top- and bottom-jumping solutions
of the full system (1.1), with a > 0, are nonlinearly stable with respect to

Figure 3. Smooth perturbation of velocity gradient.
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perturbations of initial data. It is desirable to settle this issue in a rigorous
fashion, for the problem is a delicate one, both in terms of interpreting
computations of solutions which are losing their smoothness, and from the
point of view of analysis. Two reasons suggest analytical di�culties:
(a) Spectral analysis of the linearization about the top-jumping solution re-
veals that the continuous spectrum includes an interval with the origin as its
right end point. (b) Linearized stability is not su�cient to imply the stability
of the discontinuous steady states with respect to perturbations yielding
smooth initial data.

A key result of this paper, Theorem 2.3 below, establishes the nonlinear
stability of the top-jumping steady solution, in a precise sense which allows
for perturbations yielding smooth initial data. Its proof, given in Sections 3
and 4, employs parabolic smoothing estimates di�erent from those used in
[8], but relies on several constructions made in [8] to analyze the dynamical
behavior of approximate solutions of system (Q).

The main result of this paper, Theorem 2.6 below, is a consequence of the
stability result in Theorem 2.3 and of the dynamical systems techniques de-
veloped in [8]. It shows that the top-jumping steady solution is indeed gen-
erated asymptotically in the ``start-up'' problem for the full system (1.1), for
su�ciently small a > 0: If the ¯ow starts from rest with �S0; r0; Z0� � �0; 0; 0�,
and if it is subjected to a driving pressure gradient �f > �TM above the local
steady shear stress maximum, then the corresponding solution �S; r; Z� of the
full system (1.1) converges pointwise to the discontinuous, top-jumping
steady state �0; �r�x�; �Z�x�� as t!1 for x 2 �ÿ1; 0�, except perhaps in a small
neighborhood of the single point of discontinuity at x�. The size of this
neighborhood shrinks to zero as a! 0.

As in the VINOGRADOVINOGRADOV loading experiment [11], the same discontinuous,
top-jumping steady state can also be generated analytically by the full system
(1.1) with a > 0 su�ciently small, by increasing the driving pressure gradient
�f ``quasistatically'' from values below to values above the local, steady shear
stress maximum �TM in Fig. 1. We also discuss the nonlinear stability and
generation of the discontinuous, bottom-jumping solutions.

These results, for one-dimensional shear ¯ows governed by the initial-
boundary-value problem (1.1)±(1.3) for a > 0 su�ciently small, further
support the argument given in [6] based on the inertialess ¯ow approximation
governed by system (Q) above (corresponding to a � 0 in (1.1)), namely, that
the spurt phenomenon is a consequence of material properties rather than of
a failure of material to adhere to the wall of the capillary.

Further in this direction, AARTSARTS & VANVAN DEDE VENEN [1] recently simulated and
partially analyzed spurt and related phenomena, using the inertialess ap-
proximation of the governing system for three-dimensional axisymmetric
shear ¯ow in a pipe. Their treatment is based on a particular modi®cation of
the K-BKZ integral constitutive law (with a single exponentially decaying
memory kernel) that exhibits non-monotone behavior in steady shear, in a
manner similiar to that shown here in Fig. 1 for the J-S-O di�erential con-
stitutive law. Their numerical results are similar to those described in [5] for
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the initial-boundary-value problem (1.1)±(1.3) with small a > 0, con®rming
that non-monotonicity of the total steady shear stress as function of strain
rate is key to explaining spurt.

In related recent work, Y. Y. RENARDYENARDY [10] investigates the linearized
stability of spurting planar Couette ¯ows in a Johnson-Segalman ¯uid, with
respect to two-dimensional in®nitesimal perturbations of the one-dimen-
sional base ¯ow. Such Couette ¯ows model spurting ¯ows near the boundary,
in situations like those that occur with the ¯ows considered in this paper
having driving pressure gradients �f near that for top-jumping. Interfacial
instabilities with dominant growth rate for short waves are found. These
results suggest that oscillations observed in the extrusion of molten polymers
(``sharkskin'') may be generated by multi-dimensional ¯ow instabilities.
Another factor possibly contributing to the generation of such oscillations is
that normal-stress oscillations occur with long relaxation times in one-di-
mensional spurting ¯ows, as shown in [6].

2. Main Result

For a > 0, it is convenient to follow [8] and write (1.1) in the more
compact form

St � e
aSxx � a�x; u�S � b�x; u�;

ut � G�x; u� � H�x; u�S; �2:1�

where u � �r; Z� and the components of G � �G1;G2� and H � �H1;H2� are
given by

G1�x; u� � ÿr� �Z � 1���T ÿ r�=e; H1�x; u� � �Z � 1�=e;
G2�x; u� � ÿZ ÿ r��T ÿ r�=e ; H2�x; u� � ÿr=e;

�2:2�

a�x; u� � H1�x; u�; b�x; u� � G1�x; u�: �2:3�
The family of approximating quadratic systems (Q) now takes the compact
form

_u � G�x; u�; �2:4�
where the parameter x 2 �ÿ1; 0� enters through �T � ÿ�f x, with �f > 0 a con-
stant.

In what follows, an important fact about system (2.1), implied by (1.10), is
that an a priori bound exists for ju�x; t�j independent of S, namely, for some
constant Mu independent of a (and e), depending only on the initial data
u�x; 0� � u0�x�,

sup
ÿ1 2 x 2 0

t 3 0

ju�x; t�j2 Mu: �2:5�
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Moreover, system (2.1) is linear in S, and the functions a, b, G, H and their
Lipschitz constants with respect to u are bounded by some constant L=e,
where L is independent of a (and e).

To state the main stability result and its consequences, we require the
following facts about the dynamics of the approximating system (2.4) proved
in [6]. Considering �T � ÿ�f x 3 0 as a ®xed parameter in (2.2) and (2.4), we
have

(1) For each �T 3 0, system (2.4) has no periodic or homoclinic orbits, and
every solution converges as t!1 to some critical point.

(2) The critical points of (2.4) lie in the fourth quadrant of the u � �r; Z�-
phase plane, at the intersections of the circle

C :� �r; Z� j r2 � �Z � 1
2�2 � 1

4

n o
�2:6�

and the parabola Z � r�rÿ �T �=e.
The character of the critical points is described as follows: In Fig. 1, denote
the coordinates of the local maximum M and of the local minimum m by
�nM ; �TM� and �nm; �Tm� respectively; �Tm and �TM are the critical values of the
function x�n�, with �Tm < �TM . There are three cases:

(i) If 0 < �T < �Tm, there is a single critical point A � �rA; ZA� which is a
globally attracting node.

(ii) If �T > �TM , there is a single, globally attracting spiral point C � �rC; ZC�.
(iii) If �Tm < �T < �TM , there are three critical points A, B, C (see Fig. 4). A is an

attracting node, B is a saddle point and C is generally an attracting spiral
point. (But for �T close to �Tm, C is an attracting node.)

As shown in Fig. 4, for any value of �T (positive or negative), the attractor A
lies on the upper arc of the circle C through the origin between the points M
and M 0. The attractor C lies on the lower arc of C through the point �0;ÿ1�
between the points m and m0, while the saddle B lies on the remaining two arcs
of C, either between m and M or between m0 and M 0. Two saddle-node

Figure 4. Critical points of (2.4) in case (iii).
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bifurcations occur as �T varies: As �T ! �Tm from above, points B and C co-
alesce at m, and as �T ! �TM from below, points A and B coalesce at M . The
manifold of critical points of (2.4) in the full �r; Z; �T � parameter space is a
simple smooth curve; this set is visualized in Figure 5.

The asymptotic behavior of the solutions of (2.4) is completely charac-
terized as follows: For each �T < �Tm or �T > �TM , every solution tends to the
unique critical point, A or C respectively, where A is a globally attracting
node and C is a globally attracting spiral point. For �Tm < �T < �TM , the be-
havior of solutions is described by Proposition 3.5 in [6] as follows:

Proposition 2.1. The basin of attraction of A, i.e., the set of points that ¯ow
toward A as t!1, comprises those points on the same side of the stable
manifold of B as is A; points on the other side are in the basin of attraction of C.
Moreover, the arc of the circle C in Fig. 4, through the origin, between
B � �rB; ZB� and its re¯ection B0 � �ÿrB; ZB�, is contained in the basin of at-
traction of A.

These results for the quadratic system (2.4) have the following immediate
consequences for solutions �0; r; Z� of (1.1) with a � 0, for �x; t� 2 �ÿ1; 0�
��0;1�.

Proposition 2.2. Consider system (1.1) with a � 0.

(i) The asymptotic behavior of any given solution may be completely charac-
terized. For each x in �ÿ1; 0�, �r�x; t�; Z�x; t�� ! A, B or C as t!1,
according as to whether �r0�x�; Z0�x�� lies in the basin of attraction of A, on
the stable manifold of B, or in the basin of attraction of C.

(ii) The asymptotically stable steady states �0; �r; �Z� of (1.1) with a � 0 are
those for which

��r�x�; �Z�x�� � A or C for a:e: x 2 �ÿ1; 0�: �2:7�

In particular, the ``top-jumping'' steady state solution �0; �u�x�� of system (1.1)
with �u given by

Figure 5. Manifold of equilibria of system (2.4).

J. A. NOHELOHEL & R. L. PEGOEGO364



�u�x� � ��r�x�; �Z�x�� � A�x� for xM < x 2 0 �where 02 �T < �TM �;
C�x� for ÿ12 x < xM �where �TM < �T �;

�
�2:8�

where each A�x� is an attracting node and each C�x� is a globally attracting
spiral point, is asymptotically stable; the function �u has a single jump discon-
tinuity at x� :� xM � ÿ�TM=�f , where ÿ1 < x� < 0 and �f > �TM . Similarly, the
``bottom-jumping'' steady state solution �0; �u�x�� of system (1.1) with �u given by
(2.8) with subscript M replaced by m throughout and xm :� ÿ�Tm=�f , is asymp-
totically stable.

One goal of this paper is to extend the stability result in Proposition
2.2(ii), concerning the top-jumping steady state solution (2.8) of system (1.1)
when a � 0, to the full system (2.1) with a > 0 su�ciently small. The stability
of this solution is not established by Theorem 3.4 of [8] (described in item (3)
of Section 1) because of a degeneracy associated with the local maximum of
the steady stress-strain relation.

Our principal result in this regard establishes the nonlinear Lyapunov
stability of the top-jumping solution. We prove the following in Section 3:

Theorem 2.3. Let �0; �u�x�� be the top-jumping steady state solution of system
(1.1), where �u�x� is given by (2.8). There exist positive constants a0, g0, �C and
C0 such that if 0 < a < a0, 0 < g < g0 and if

kS0kH1 2 g and ju0�x� ÿ �u�x�j2 g for x 2 �ÿ1; 0�nU; �2:9�
where U � �x� ÿ �Cg; x� � �Cg� and x� � xM , then for all t > 0, the solution
�S; u� to the full system (2.1) corresponding to the initial data �S0; u0� satisfying
the hypothesis of Theorem 1.1, satis®es

kS��; t�kH1 2 C0g and ju�x; t� ÿ �u�x�j2 C0
���
g
p

for x 2 �ÿ1; 0�nU:
�2:10�

Remark 2.4. A similar stability result holds for the bottom-jumping steady
solution �0; �u�x�� of system (1.1), where �u is given by (2.8) withM replaced by
m throughout.

Remark 2.5. From the proofs of Theorem 2.3 here and Theorem 3.4 of [8], it
can be seen that a similar stability result holds for a steady state solution
�0; �u� of (1.1) having an arbitrary pattern of jumps in the interval
xM < x < xm, taking the form

�u�x� � ��r�x�; �Z�x�� �
A for x where 02 �T < �Tm;
A or C for x where �Tm 2 �T 2 �TM ;
C for x where �TM 2 �T

8<: �2:11�

for ÿ12 x 2 0. This removes a nondegeneracy hypothesis in the statement of
Theorem 3.4 of [8], permitting the steady state solution �u�x� to take the value
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A�x� and C�x� at points x arbitrarily close to xM and xm respectively, where the
saddle-node bifurcation occurs. This allows top- or bottom-jumping in the
presence of other discontinuities.

Our primary goal in this paper is to study the long-time behavior of the
solution of the start-up problem for system (1.1) for small a > 0, corre-
sponding to a ¯uid initially at rest with fully relaxed stress components, but
suddenly subjected to a driving pressure gradient �f > �TM . In the case a � 0, it
was shown in [6] that the solution �0; u0�x; t�� to system (1.1) with �f > �TM and
zero initial data tends to the top-jumping steady state solution �0; �u�x�� as
t!1, where �u is given in (2.8). Here, we show that the asymptotic state
generated by the solution of (1.1) for small a > 0 with zero initial data, is
discontinuous and approaches the top-jumping state in the limit a! 0. The
following result is proved in Section 4:

Theorem 2.6. Let �f > �TM . There exists a1 > 0 such that if 0 < a < a1, then the
solution �S; u� to the full system (2.1) corresponding to zero initial data ap-
proaches an asymptotic limit �0; u1�x�� as t!1, satisfying

u1�x� � ��r�x�; �Z�x�� � A�x� for 03 x > xM � b,
C�x� for ÿ12 x < xM

�
�2:12�

for some b � b�a�, where b! 0 as a! 0.

That is, the asymptotic steady-state solution �0; u1� may di�er from the
top-jumping solution �0; �u� of (2.8) only on an interval �x�; x� � b� with
x� � xM ; the length of this interval shrinks to zero in the limit a! 0.
Therefore we may conclude that a ``spurting ¯ow'' is generated starting from
rest with �f > �TM when a > 0 is small; the average ¯ow rate is much larger
than for classical continuous steady states occurring when �f < �TM .

Remark 2.7. The proof of Theorem 2.6 also implies the same conclusion for
any smooth nonzero initial data �0; u0�x�� such that u0�x� lies in the basin of
attraction of the node A�x� for system (2.4) whenever xM < x 2 0, i.e.,
whenever �T < �TM . In particular, this is known to be the case (see Propsition
2.1) if u0�x� � A��x� corresponds to the continuous steady state solution for
some driving pressure gradient �f� < �TM . This models the process in the
VINOGRADOVINOGRADOV loading experiment [11] in which �f is raised quasistatically from
below to above �TM (also see discussion based on phase-plane analysis of
system (2.4) in Section 5 of [6]).

Remark 2.8. The proof of Theorem 2.6 can also be used to show how a steady
state can be generated close to the discontinuous bottom-jumping steady
solution �0; �u�, where �u is given by (2.8) with M replaced by m throughout. In
this case, one shows that, given initial data such that u0�x� lies in the basin of
attraction of C�x� for system (2.4) whenever ÿ1 < x < xm, the asymptotic
limit of the solution of (2.1) for small a > 0 agrees with the bottom-jumping
steady state except in a small neighborhood of xm. A means of generating
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such initial data has been discussed in [6]. One may start with a spurting ¯ow
corresponding to a driving pressure gradient �f � > �TM , near the top-jumping
solution �0; �u�x�� except in a neighborhood of its discontinuity at
x�M � ÿ�TM=�f �. Then the loading is decreased to a value �f only slightly larger
than �Tm, such that xm � ÿ�Tm=�f < x�M . The point is that for x < xm, the basin
of attraction of C�x� in the ¯ow of system (2.4) includes the lower arc of the
circle C in Fig. 4 between C�x� and the point �r; Z� � �0;ÿ1�, hence includes
the points C��x� corresponding to �f �. (See Propositions 2.1 and 2.2 above and
the discussion based on phase-plane analysis of system (2.4) in 5.3 and 5.4 of
[6]). However, for x > xm the only critical point in (2.4) is A�x�, which
therefore must be the limiting stress state for those values of x. (This corre-
sponds to a shape-memory e�ect, which is more fully discussed in [6].)

3. Proof of Theorem 2.3

We ®rst prove an estimate for solutions of system (2.1) that bounds the
H 1 norm of S globally in time for small a in terms of the L1 norm of b. The
corresponding estimate used in [8] bounds the H1 norm of S for small a in
terms of the L2 norm of b; this is not adequate for our current purpose. As in
[8], our method of obtaining the estimate on S uses the parabolic smoothing
properties of the heat operator, and the variation of constants formula,
following ideas in [3].

Lemma 3.1. Let �S; u� be a solution of (2.1), (1.2), (1.3) with the regularity
properties (1.8) or (1.9) of Theorem 1.1. Let k :� p2=4 and let eC, eK be the
constants

eC � 4
2

p2
X1
n�1

1

�2nÿ 1�2
 !1=2

; eK � Z1=2k
0

�2et�ÿ1=2ekt=2dt �
Z1

1=2k

k1=2eÿkt=2dt:

�3:1�
If a < e2=2LeK, then
kS��; t�k12 kS��; t�kH1 2 2kS0kH1eÿekt=2a � aeC

e
sup

0 2 s 2 t
kb��; u��; s��kL1 : �3:2�

Proof. On the Hilbert space X � L2�ÿ1; 0�, let K denote the operator with
domain

D�K� :� w 2 H 2�ÿ1; 0� j wx�ÿ1� � 0 � w�0�� 	 �3:3�
given by Kw :� ÿwxx. The operator K is self adjoint and positive. The ei-
genvalues of K are kn � ��2nÿ 1�=2�2p2, n � 1; 2; . . ., so that k :� p2=4 is its
®rst eigenvalue. The corresponding normalized eigenfunctions are
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/n�x� �
���
2
p

sin
2nÿ 1

2

� �
px; n � 1; 2; . . . ; �3:4�

with k/nkL2 � 1 and k/nk1 �
���
2
p

: For what follows, de®ne

H1
b :� v 2 H1�ÿ1; 0� j v�0� � 0

� 	
; �3:5�

and recall the elementary estimates

kvkL2 2 kvk12 kvxkL2 for v 2 H1
b : �3:6�

For v 2 H 1
b , we de®ne kvkH1 :� kvxkL2 . Also, if v 2 H1, elementary Fourier

analysis yields

kvk2H1 �
X1
n�1

knj�v;/n�j2; �3:7�

where ��; �� denotes the L2 inner product on the interval ÿ12 x 2 0.
Let �S; u� be a solution of (2.1), (1.2), (1.3) satisfying the hypothesis of

Lemma 3.1. We apply the variation-of-constants formula to the ®rst equation
in (2.1). Suppressing the x-dependence, we obtain

S�t� � eÿeKt=aS0 �
Z t

0

eÿeK�tÿs�=a�aS � b��s�ds: �3:8�

To prove Lemma 3.1, de®ne

MS�t� � sup
0 2 s 2 t

kS�s�kH1eeks=2aeÿekt=2a; Mb�t� � sup
0 2 s 2 t

kb�s�kL1 : �3:9�

As in equation (4.2) in [8], de®ne

K�t� :� �2et�ÿ1=2 for t < 1=2k,
k1=2eÿkt for t > 1=2k,

�
�3:10�

and note that Z1
0

K�t�ekt=2 dt � eK: �3:11�

To estimate the H1 norm of S, we begin by estimating the H1 norm of the
integral Z t

0

eÿeK�tÿs�=ab�s� ds �3:12�

in (3.8). First, compute the inner product�Z t

0

eÿeK�tÿs�=ab�s� ds;/n

�
�
Z t

0

eÿekn�tÿs�=a�b;/n� ds; �3:13�

J. A. NOHELOHEL & R. L. PEGOEGO368



where the self-adjointness of K has been used. Recalling de®nition (3.9), we
easily calculate that����� Z

t

0

eÿeK�tÿs�=ab�s� ds;/n

�����2 a
���
2
p

ekn
Mb�t�: �3:14�

Multiplying both sides by
�����
kn
p

, recalling the de®nition (3.1), and substituting
this estimate in (3.7) yields



 Z

t

0

eÿeK�tÿs�=ab�s� ds






H1

2
aeC
2e

Mb�t�: �3:15�

Next, take the H1 norm on both sides of (3.8). Using Lemma 4.1 in [8],
recalling the bound (2.5) satis®ed by u and the resulting bound satis®ed by a,
and using (3.15) yields

kS�t�kH 1 2 eÿekt=akS0kH1 � Leÿ1
Z t

0

K�e�t ÿ s�=a�kS�s�kL2 ds� aeC
2e

Mb�t�:

�3:16�
Let T > 0, and let 02 t 2 T . Repeating the argument of [8, p. 924] that uses
(3.9), (3.10), (3.11), (3.1), as well as kS�t�kL2 2 kS�t�kH1 2 MS�t�, we obtain

eekt=2akS�t�kH1 2 kS0kH1 � eekT=2a a
e2

L ~KMS�T � � a ~C
2e

Mb�T �
� �

; �3:17�

for 02 t 2 T . Finally, multiplying (3.17) by eÿekT=2a and choosing
a < e2=2L ~K, we easily obtain

kS�T �kH 1 2 2 kS0kH1eÿekT=2a � a ~C
2e

Mb�T �
� �

: �3:18�

Since T > 0 is arbitrary, Lemma 3.1 follows. (

As in [8], the main point of view underpinning the analysis will be that for
small a, the bound on S from Lemma 3.1 and the linearity of (2.1) in S allow
us to consider the evolution of u � �r; Z� as given approximately by the
quadratic system (2.4) for each x 2 �ÿ1; 0� independently. We will make ex-
tensive use of the following notion of a d-approximate solution. This notion
was already introduced in [8] to study the general problem of convergence to
equilibrium for solutions of system (1.1), by constructing a ``semi-Morse
decomposition'' of the phase space �ÿ1; 0� � R2, based on ideas of C. CONLEYONLEY

[2].

De®nition 3.2. For d > 0 and x ®xed, a d-approximate solution of the qua-
dratic system (2.4) is a C1-function w : �0;1� 7!R2 such that

j _wÿ G�x;w�j2 d; 02 t <1; �3:19�
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where j � j denotes a vector norm in R2.
An important step now is to identify suitable neighborhoods of the stable

critical points �u�x� given by the top-jumping solution in (2.8), which can trap
d-approximate solutions of (2.4) uniformly in x. Special attention is required
for values of x near xM , where the stable node A�x� coalesces with the saddle
B�x�. Our construction, based on the development in [8], is carried out in
Section 4, establishing the following result.

Proposition 3.3. Let �u�x� be given by (2.8), so �0; �u�x�� is the top-jumping steady
state solution of system (1.1). There exist positive constants d1, �K and K such
that if 0 < d < d1 and x 2 �ÿ1; 0� with x 2j �xM ; xM � �Kd�, then there exists a
closed neighborhood N�x; d� of �u�x� such that

(i) N�x; d� is positively invariant for any d-approximate solution of (2.4).
(ii) jG�x; u�j2 Kd for all u 2 N�x; d�.
(iii) If juÿ �u�x�j2 d=K, then u 2 N�x; d�.
(iv) juÿ �u�x�j2 K

���
d
p

for all u 2 N�x; d�.
Our stability proof will involve a simple continuation argument relying on

the a priori bounds implied by the following result.

Proposition 3.4. There exist positive constants a0, g0, and K� such that the
following hold. Let �S; u� be a solution of (2.1), (1.2), (1.3) with the regularity
properties (1.8) or (1.9) of Theorem 1.1. Suppose that 0 < a < a0, 0 < g < g0
and d � K�g. Suppose that

kS0kH1
2 g; u0�x� 2 N�x; d� for jxÿ xM j 3 �Kd; �3:20�

and further suppose that, with t1 3 0 given,

u�x; t� 2 N�x; 2d� for jxÿ xM j 3 �Kd; �3:21�
for 02 t 2 t1. Then

kS��; t�kH1
2 3g and u�x; t� 2 N�x; d� for jxÿ xM j 3 �Kd; �3:22�

for 02 t 2 t1.

Proof.With reference to the de®nition of b in (2.3), the hypotheses imply that
for 02 t 2 t1,

kb��; u�kL1 2
Z

jxÿxM j3 �Kd

jG��; u�j dx�
Z

jxÿxM j2 �Kd

jG��; u�j dx

2 2dK � 2�KdM � ~Kg; �3:23�

where ~K � 2�K � �KM�K�. Here we have used the estimate of Proposition
3.3(ii) for G�x; u� in the ®rst integral and the fact that G�x; u� is bounded by a
constant M for all �x; t� 2 �ÿ1; 0� � �0;1� in the second integral. Now the
result of Lemma 3.1 implies that for 02 t 2 t1,
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kS��; t�kH1
2 2g� a ~C ~Kg=e: �3:24�

This is less than 3g provided that a < e= ~C ~K. Now if K� > 3L=e, then

jH�x; u�Sj2 eÿ1LkSk12 3gL=e < d;

for �x; t� 2 �ÿ1; 0� � �0; t1�. It follows that for each x 2 �ÿ1; 0�, u�x; t� is a d-
approximate solution of (2.4) for 02 t 2 t1. Hence N�x; d� is positively in-
variant on �0; t1� for x 2j �xM ; xM � �Kd�, and the result of Proposition 3.4 fol-
lows immediately. (

Now the proof of Theorem 2.3 may be concluded by using a continuation
argument. First, note that if the hypotheses of Theorem 2.3 hold with g
su�ciently small and d � K�g, then the hypotheses of Proposition 3.4 hold
with t1 � 0. We claim that the conclusion (3.22) of Proposition 3.4 holds for
all t > 0. It su�ces to show that the set of t1 3 0 for which (3.22) holds for
02 t 2 t1 is both open and closed; hence this set coincides with R�. Clearly
this set is closed, since the sets N�x; d� are closed. To show that the set is open,
suppose that (3.22) holds for 02 t 2 t1. Then assumption (3.21) holds for
02 t 2~t1, for some ~t1 > t1. But then Proposition 3.4 implies that (3.22) holds
for 02 t 2~t1, and the conclusion follows.

Now the conclusion of Theorem 2.3 follows from (3.22), the estimate
from part (iv) of Proposition 3.3, and the de®nition d � K�g.

4. Construction of Positively Invariant Neighborhoods

In this section we prove Proposition 3.3, constructing the neighborhoods
N�x; d� of the critical points �u�x� which are positively invariant for d-ap-
proximate solutions of (2.4) and satisfy the estimates asserted in Proposi-
tion 3.3. In fact, the appropriate neighborhoods may be found among the
constructions performed in Sections 7±10 of [8] in order to study the general
problem of convergence to equilibrium as t!1. The only di�erence is that
some of the relevant constructions near the saddle-node bifurcation were
described in Section 10 of [8] for the case when B�x� and C�x� coalesce, which
corresponds here to studying the bottom-jumping solution. Here, similar
constructions are needed when A�x� and B�x� coalesce.

The construction of N�x; d� breaks down into two cases, depending on
whether N�x; d� is far from or near the saddle-node bifurcation which occurs
at x � xM . In the ®rst case, let h > 0, and suppose that

x 2 Ih :� �ÿ1; xM � [ �xM � h; 0�: �4:1�
(The number h will be ®xed in analyzing the second case.) For such x, write
P �x� � �u�x� � A�x� or C�x� as appropriate. As shown in [8], the critical point
P �x� is stable for system (2.4), uniformly for x 2 Ih. Indeed, in this case we
de®ne N�x; d� exactly as in (8.3) of [8], namely as N�x; d� � NP �x; d� where
NP �x; d� has the form
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NP �x; d� �
�

u � P�x� � w j �wT Dw�1=2 2 Kad
	
: �4:2�

Here D � DP �x� is a certain positive de®nite matrix, such that D and Dÿ1 are
uniformly bounded for x 2 Ih, and Ka > 0 is a suitable constant. (See
Lemma 7.2 and equations (7.11) and (8.3) of [8].) From these facts, the
bounds asserted in parts (ii)±(iv) of Proposition 3.3 are evident. The state-
ment of part (i) for this case, namely that there exists d1 > 0 such that N�x; d�
is positively invariant for d-approximate solutions of (2.4) if 02 d < d1 and
x 2 Ih, follows immediately from Lemma 8.1 of [8].

In the second case we have xM 2 x 2 xM � h and �u�x� � A�x�. To analyze
this case, we make a change of variables performed in [8] using the center-
manifold theorem applied at the degenerate critical point �x; u���xM ;A�xM��
��xM ;B�xM �� in (2.4). Summarizing the results of Lemmas 7.4 and 7.5 in [8],
we have

Proposition 4.1. On some neighborhood N� of the point �u; x� � �A�xM �; xM�,
there exists a Ck (k 3 3 is ®xed) invertible map �u; x� 7! �w1;w2; y� :� W �u; x�,
where y � xÿ xM , such that

(i) W �A�xM �; xM � � �0; 0; 0�.
(ii) W ÿ1 is de®ned for jW j1 :� max�jw1j; jw2j; jyj�2 h0, for some h0 > 0.
(iii) There exists d2 > 0 such that if 02 d < d2 and u is a d-approximate

solution of (2.4) in N�, then the transformed variables �w1�t�; w2�t�;
y�t�� :� W �u; x� satisfy the system of ordinary di�erential equations

w1t � k1w1 � g1�w1;w2; y� � f1�t�;
w2t � w2

2 ÿ a�w2; y�y � g2�w1;w2; y� � f2�t�;
yt � 0;

�4:3�

where k1 < 0 is one eigenvalue of the linearization of (2.4) at the point
�xM ;A�xM �� (the other being zero), and where the functions g1, g2 and a are in
Ck, and the following hold for jW j12 h0, for some constant K0 > 0 indepen-
dent of d:

jg1�W �j2 K0jw1jjW j1; a2 :� a�0; 0� > 0;

jg2�W �j2 K0jw1jjW j1; jf1�t�j � jf2�t�j < K0d:
�4:4�

For convenience, the notation in (4.3) is slightly altered from that in [8];
here, g1 replaces F1 and ÿa replaces a. By taking h0 smaller if necessary, we
may suppose further that

K0h0 < min�12; 12 a2; 14 jk1j�; �4:5�
and that for jW j12 h0 we have

1

2
a2 2

@

@y
�a�w2; y�y�2 2a2;

@2

@w2
2

�w2
2 ÿ ay�3 1: �4:6�
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In the local coordinates described in Proposition 4.1, the center manifold
at W � 0 is simply given by w1 � 0. For d � 0 ( f1 � f2 � 0), and for small
y > 0, the system (4.3) has the two critical points W A � �0;wA

2 ; y� and
W B � �0;wB

2 ; y� corresponding to the two small roots of w2
2 ÿ a�w2; y�y � 0.

We have wA
2 < 0 < wB

2 and W A � W �A�x�; x�, W B � W �B�x�; x�.
For a solution of (4.3) with jW j12 h0, from (4.4) it follows that if

jw1j3 K1d where 1
4jk1jK1 � K0, then

jw1jt 2 k1jw1j � K0h0jw1j � K0d 2 1
2 k1jw1j < 0: �4:7�

Furthermore, it is easy to verify that

jw2
2 ÿ ayj3 jw1j � K0d implies sgn w2t � sgn �w2

2 ÿ ay�: �4:8�
At this point we ®x h > 0, requiring that

h 2 h0; 2a2h 2 1
2 h20; and hj@a=@w2j2 2 1

4 a2 for jW j12 h0: �4:9�
Then for 02 y 2 h, using (4.6) we ®nd that taking w2 � ÿh0 gives

w2
2 ÿ ay 3 h20 ÿ 2a2h 3 1

2 h20 > 0; �4:10�
and taking w2 � 0 gives

w2
2 ÿ ay 2 ÿ 1

2 a2y < 0: �4:11�
Let K2 � 2�K0 � K1� and de®ne �K � 4K2=a2. From (4.6) and the condi-

tions on h in (4.9), it follows that provided 0 < �Kd 2 y 2 h, we have
K2d 2 1

4a2y 2 1
2h

2
0, hence

w2 2 �ÿh0; 0� j jw2
2 ÿ ayj2 K2d

� 	 � �c1; c2� �4:12�

for some interval �c1; c2� � �ÿh0; 0�, depending on x and d.
At this point, for 0 < �Kd 2 y � xÿ xM 2 h we de®ne

N�x; d� � u 2 N� j c1�x; d�2 w2 2 c2�x; d� and kw1j2 K1df g: �4:13�

From (4.8), if 0 < �Kd 2 y 2 h and jw1j2 K1d, it follows that

w2t > 0 if w2 � c1; w2t < 0 if w2 � c2: �4:14�

Combined with (4.7), this implies that N�x; d� is positively invariant for d-
approximate solutions of (2.4). The ¯ow in the phase plane for (2.4) near the
saddle-node bifurcation, for small xÿ xM > 0, is indicated in Fig. 6.

From this construction, it is straightforward to verify the estimates as-
serted in parts (ii) and (iii) of Proposition 3.3. For some constant K̂, the right-
hand side of (4.3) is bounded by K̂d for all u 2 N�x; d�; since the change of
variables u 7!W is in Ck, part (ii) follows. For some constant K > 0 we have
jw2

2 ÿ ayj2 Kjw2 ÿ wA
2 j whenever jW j12 h0, so w2 2 �c1; c2� provided

jw2 ÿ wA
2 j2 K2d=K, and part (iii) follows.

To deduce part (iv), let F �w2; y� � w2
2 ÿ a�w2; y�y. For 0 < �Kd 2 y 2 h,

(4.6) implies that F is a convex function of w2, so if w2 2 �c1; c2�, then
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@

@w2
F �w2; y�2 @

@w2
F �c2; y� � 2c2 ÿ

@

@w2
a�c2; y�y: �4:15�

Because h satis®es (4.9), and K2d 2 1
4 a2y, we infer that

@

@w2
a�c2; y�y

���� ����2 2 1
4 a2y 2 a�c2; y�y ÿ K2d � c22; �4:16�

and therefore @F=@w2�c2; y�2 c2 2 ÿ ��������
K2d
p

. Now it follows that

2K2d � F �c1; y� ÿ F �c2; y�3 ÿ �c2 ÿ c1�
@

@w2
F �c2; y�3

��������
K2d

p
�c2 ÿ c1�;

�4:17�
and therefore

w2 2 �c1; c2� implies jw2 ÿ wA
2 j2 jc2 ÿ c1j2 2

����������
d=K2

p
: �4:18�

This implies part (iv), and ®nishes the proof of Proposition 3.3.

5. Proof of Theorem 2.6

Let �0; u0�x; t�� be the smooth solution to system (1.1) with a � 0 and
�f > �TM , corresponding to initial data S0�x� � 0, u0�x� � 0, for ÿ12 x 2 0.
Recall that u0�x; t� ! �u�x� as t!1, where �u is the piecewise smooth, top-
jumping steady solution given in (2.8) with a single jump discontinuity at
x� � xM . Furthermore, given any g > 0, there exists a time T1 > 0 such that

ju0�x; T1� ÿ �u�x�j2 1
2 g for jxÿ xM j3 �Cg: �5:1�

Here the constant �C is taken from the conclusion of Theorem 2.3. Let a0, g0,
C0 also be taken from Theorem 2.3. Given any b > 0, in what follows we ®x
g > 0 such that �Cg < b and 0 < g < g0.

Figure 6. Phase plane of system (2.4) near the saddle-node bifurcation.
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Next, for T1 as above, use Theorem 3.3 in [8] to ®x a1 > 0, where a1 2 a0,
such that if 0 < a < a1, the solution �S; u� to system (2.1), satisfying the
boundary conditions (1.2) and initial conditions (1.3), satis®es

kS��; T1�kH1 2 g and ju�x; T1� ÿ u0�x; T1�j2 1
2 g for ÿ12 x 2 0:

�5:2�
Notice that (5.1) and (5.2) imply that

ju�x; T1� ÿ �u�x�j2 g for jxÿ xM j 3 �Cg: �5:3�

Now we may apply Theorem 2.3 to the solution �S; u� for t 3 T1. With
S��; T1� and u��; T1� taken as initial data, the hypotheses in (2.9) hold, and we
may conclude that for all t 3 T1,

kS��; t�kH 1 2 C0g and ju�x; t� ÿ �u�x�j2 C0
���
g
p

for jxÿ xM j3 �Cg: �5:4�
In fact, we conclude from the proof of Theorem 2.3 that for jxÿ xM j3 �Cg,
u�x; t� 2 N�x; d� for all t 3 T1, where the positively invariant sets N�x; d� are
described in Proposition 4.1 and d � K�g, the constant K� being taken from
Proposition 3.4.

Finally, we apply Theorem 3.5 in [8] to conclude that (by taking a1 smaller
if necessary) for 0 < a < a1, the solution �S; u� converges asymptotically as
t!1 to an equilibrium �0; u1�x��. Since for ÿ12 x < xM the only critical
point of (2.4) is �u�x� � C�x�, and for xM � �Cg 2 x � 0 the only critical point
in N�x; d� is �u�x� � A�x�, it follows that u1�x� � �u�x� if x 2j �xM ; xM � �Cg�.
Since �Cg < b, this completes the proof.
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