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Abstract

This paper analyzes the non-classical shock waves which arise as limits of
certain di�usive-dispersive approximations to hyperbolic conservation laws.
Such shocks occur for non-convex ¯uxes and connect regions of di�erent
convexity. They have negative entropy dissipation for a single convex entropy
function, but not all convex entropies, and do not obey the classical Oleinik
entropy criterion. We derive necessary conditions for the existence of non-
classical shock waves, and construct them as limits of traveling-wave solu-
tions for several di�usive-dispersive approximations.

We introduce a ``kinetic relation'' to act as a selection principle for
choosing a unique non-classical solution to the Riemann problem. The
convergence to non-classical weak solutions for the Cauchy problem is in-
vestigated. Using numerical experiments, we demonstrate that, for the cubic
¯ux-function, the Beam-Warming scheme produces non-classical shocks
while no such shocks are observed with the Lax-Wendro� scheme. All of
these results depend crucially on the sign of the dispersion coe�cient.
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1. Introduction

In this paper we study the scalar conservation law

@tu� @xf �u� � 0; u�x; t� 2 R; x 2 R; t > 0; �1:1�
where the ¯ux-function f : R! R is non-convex, i.e., f 00�u� does not possess
a de®nite sign. Our primary focus is on the prototypical case of the cubic ¯ux
f �u� � u3. A function U : R! R is called an entropy for (1.1) with associ-
ated entropy ¯ux F : R! R if

@tU�u� � @xF �u� � 0 �1:2�
for all smooth solutions of (1.1). Equation (1.2) follows from (1.1) if and only
if F 0�u� � U 0�u�f 0�u�. In general, however, solutions to (1.1) do not remain
smooth, even for smooth initial data. On the other hand, discontinuous or
weak solutions of (1.1) are not uniquely determined by their initial data. A
criterion must therefore be imposed to select the correct, physically mean-
ingful solutions. When the ¯ux f is convex and when the weak solution u is,
say, a function of locally bounded variation, a single entropy inequality of the
form [17]

@tU�u� � @xF �u�2 0; �1:3�
where U is a given strictly convex entropy, is su�cient to determine a unique
solution to the Cauchy problem for (1.1). In this case the entropy inequality
(1.3) is equivalent to the viscosity criterion, which states that
u�x; t� � lime!0 u�x; t; e�, where the latter satis®es

@tu� @xf �u� � e @xxu; e > 0: �1:4�
When f is non-convex, the set of entropy inequalities (1.3) for all convex U
also selects a unique discontinuous solution, i.e., the classical entropy weak
solution, which can also be selected by the vanishing viscosity approach (1.4).
When the solution u admits left and right traces u� � u�x�; t� at each point, it
can be equivalently selected via the Oleinik entropy criterion

f �w� ÿ f �uÿ�
wÿ uÿ

3
f �u�� ÿ f �uÿ�

u� ÿ uÿ
�1:5�

for all w between uÿ and u�. The theory of classical entropy weak solutions is
reviewed in Section 2 of this paper.

When f is non-convex, a single entropy inequality (1.3) is not su�cient to
exclude some solutions disallowed by the viscosity criterion (1.4). In other
words, there are many discontinuous solutions that satisfy (1.1) and (1.3) in
the sense of distributions and assume the same initial data. On the other
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hand, there are shock waves which are limits of traveling waves for some
regularizations of (1.1) with viscosity and dispersive e�ects kept in balance,
but which do not satisfy (1.5). While these weak solutions do satisfy a single
entropy inequality (1.3), they do not satisfy the whole set of inequalities (1.3).
Moreover those solutions appear to be both stable under small perturbations
and physically relevant in a number of situations. In this paper we refer to
these waves as non-classical shocks, or non-classical weak solutions.

Let �U ; F � be a strictly convex entropy pair for the equation (1.1). We give
the following de®nition:

De®nition 1.1. A shock wave of the scalar conservation law (1.1) for a non-
convex ¯ux f is called a non-classical shock wave if it satis®es the single
entropy inequality (1.3), but not the Oleinik entropy criterion (1.5).

A non-classical shock is undercompressive in the sense (see, especially,
ISAACSONSAACSON, MARCHESINARCHESIN & PLOHRLOHR [14], LIUIU [27], LIUIU & ZUMBRUNUMBRUN [28], and
SHEARERHEARER, SCHAEFFERCHAEFFER, MARCHESINARCHESIN & PAESAES-LEMEEME [39]) that characteristics
pass through it rather than focus on it. This leads to non-uniqueness of
solutions for the Riemann problem.

Shock waves for the cubic scalar conservation law fall into three cate-
gories:

(1) ul; ur have the same sign.
(2) ul; ur have opposite signs, but the Oleinik entropy criterion (1.5) is

satis®ed.
(3) ul; ur have opposite signs, the single entropy inequality (1.3) holds, but the

Oleinik criterion is not ful®lled.

Shocks of category (3) are the non-classical ones. This work is aimed at
developing a suitable framework for the study of the existence, uniqueness,
and behavior of non-classical solutions to conservation laws. The present
paper is a prelude to a study of non-classical shocks in systems of hyperbolic
conservation laws which lack genuine nonlinearity or/and strict hyperbolic-
ity. Such systems, arising for instance in magnetohydrodynamics and non-
linear elasticity theory, are endowed with one convex entropy pair, which can
be used to formulate an entropy inequality like (1.3) (as well as an entropy
balance like (1.8), (1.9) below).

The principal objectives of this paper are

(i) the demonstration of the existence and the behavior of non-classical
shocks as limits of di�usive-dispersive traveling waves,

(ii) their characterization via a suitable selection principle, which we call a
kinetic relation by analogy with a similar strategy used in material science.

In Section 3, we study the existence and the behavior of non-classical
shocks generated by several di�usive-dispersive regularizations for the cubic
scalar equation. The ``correct'' shock waves associated with a given regu-
larization are those that admit a di�usive-dispersive pro®le. The shocks ob-
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tained as limits of traveling waves are then the building blocks used to solve
the Riemann problem for (1.1) in the class of solutions de®ned in De®ni-
tion 1.1.

Following WUU [42] and JACOBSACOBS, MCCKINNEYINNEY, & SHEARERHEARER [15], a special
emphasis will be placed on the modi®ed Korteweg-deVries-Burgers
(MKdVB) equation:

@tu� @xu3 � e @xxu� d @xxxu; �1:6�
where the parameters e and d are kept in balance, say d � A e2 where A > 0 is
a constant. Indeed when d � o�e2�, the dispersion e�ects are negligible and
the solutions u�x; t; e; d� to (1.6) converge to a classical weak solution as
e! 0. When e2 � o�d�, the dispersion is dominant and, as d! 0, the solu-
tions become highly oscillatory and do not converge weakly to solutions of
the cubic conservation law. The e�ects of dispersion (in the absence of dif-
fusion) have been investigated for the quadratically nonlinear Korteweg-de
Vries (KdV) equation by LAXAX & LEVERMOREEVERMORE [20]. For a more general survey
of oscillatory phenomena in both continuous and discrete settings, see the
review paper of LAXAX, LEVERMOREEVERMORE & VENAKIDESENAKIDES [21], and the references
contained therein.

In Section 3 we also study an equation augmented with a nonlinear dif-
fusive term (motivated by VONVON NEUMANNEUMANN & RICHTMYERICHTMYER'SS pseudo-viscosity
[33]) and a linear dispersive term:

@tu� @xu3 � e @x j@xuj@xu� � � d @xxxu: �1:7�
We show that these e�ects are balanced for d � A e1 and prove the existence
of a family of traveling-wave solutions to (1.7). Using shock waves that
admit such di�usive-dispersive pro®les, we are able to solve the Riemann
problem for (1.1) uniquely, in the class of non-classical solutions. The results
are illustrated numerically by solving (1.7) directly for small di�usion and a
®xed value of the ratio of di�usion-dispersion. It turns out that, compared to
the linear di�usive case (1.6), also studied numerically by WUU [42] and
JACOBSACOBS et al. [15], the classical shocks for the nonlinear di�usion are sig-
ni®cantly more oscillatory. It is checked that these oscillations re¯ect a
fundamental feature of the equation (3.17) and are not merely generated by
the numerics.

In Subsection 3c, we also prove the existence of some non-classical shocks
for the equivalent equation associated with the Beam-Warming scheme, and
the non-existence of such shocks for the Lax-Wendro� equivalent equation.
This result is closely related to the sign of the dispersion coe�cient in those
schemes.

The second issue addressed in this paper is the characterization of non-
classical weak solutions. In Section 4, we propose to use a kinetic relation as a
selection principle to select the physically meaningful, non-classical shocks.
Kinetic relations have been used in material science to control the rate at
which phase transitions proceed. In that context they are prescribed only at
subsonic phase transitions, not across shocks, and yield the rate of entropy
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dissipation across the phase boundary; cf. ABEYARATNEBEYARATNE & KNOWLESNOWLES [1],
LEEFLOCHLOCH [23], and TRUSKINOVSKYRUSKINOVSKY [40].

For phase transition problems as well as for the non-convex conservation
laws studied here, the entropy inequality (1.3) is inadequate to determine a
unique solution. It seems natural to extract additional information by
studying traveling waves for an augmented system, incorporating small ef-
fects (di�usion, dispersion, capillarity, etc.). This approach has a long history
in the mathematical theory of phase transitions (cf. for instance [2, 38, 40]
and the references cited therein). Here we view the non-classical shocks,
which span regions of di�erent convexity in the cubic scalar equation, as
``phase transitions'' and adapt techniques that were proved successful in
phase dynamics.

Let �U ; F � be a strictly convex entropy pair for (1.1). Our approach in the
present paper is to replace the entropy inequality (1.3) by an entropy balance,
i.e., a stronger condition of the form

@tU�u� � @xF �u� � lU ; �1:8�
where lU is a non-positive bounded Borel measure, called the entropy dis-
sipation measure for the entropy U . This measure must be determined by an
analysis of the traveling-wave solutions associated with a given approxima-
tion method for (1.1). The measure lU has a non-zero mass only along the
curves of discontinuity for the solution u. For non-classical shocks, we re-
quire the dissipation measure to be equal to a given function /U �s� of the
speed s of propagation:

ÿs U�u�� ÿ U�uÿ�� � � F �u�� ÿ F �uÿ� � lU

��x; t�	 � /U �s�; �1:9�

which we refer to as the kinetic relation. In general, di�erent approximation
methods generate di�erent kinetic relations.

Given a strictly convex entropy U and a kinetic function /U �s�, which is
assumed to satisfy certain assumptions of regularity and consistency
(cf. Section 4), we make the following de®nition.

De®nition 1.2. A weak solution to the scalar conservation law (1.1) is an
admissible, non-classical, weak solution if

(i) the entropy inequality (1.3) holds,
(ii) and every non-classical shock of De®nition 1.1 satis®es the kinetic rela-

tion (1.9).

As we demonstrate below, this de®nition provides us with a selection
principle that picks up the unique non-classical solution in the case of the
Riemann problem for the cubic ¯ux f �u� � u3. In order to discriminate be-
tween this non-classical solution and the classical one, a nucleation criterion
must also be imposed. For the Riemann problem, piecewise smooth solutions
are sought, and the left and right traces of the solution exist and so (1.9) is
well de®ned. For the general Cauchy problem, it would be interesting to
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determine the proper functional space in which to search for the solution u;
see the discussion in Section 5.

Turning, in Section 4, to the Riemann problem for cubic ¯ux we derive
conditions on the function /U which ensure that the problem has a unique
non-classical solution. Allowing non-classical shocks gives rise to a one-
parameter family of solutions, and the kinetic relation is then employed to
select a unique solution. Furthermore, we construct the function /U �s� which
is generated by the modi®ed Korteweg-deVries-Burgers approximation (1.6)
and its nonlinear version (1.7). This, in turn, allows us to recover the
Riemann solution obtained by JACOBSACOBS, MCCKINNEYINNEY & SHEARERHEARER [15] based on
(1.6), and the Riemann solution we construct in Section 3, based on (1.7). In
principle, a kinetic relation can also be derived for ®nite-di�erence schemes
such as the Beam-Warming scheme considered in Section 6.

The analogy between non-classical shocks and phase transitions is an
imperfect one: For the Riemann problem with cubic ¯ux, there may be either
classical or non-classical shocks when ulur < 0; and we must impose a ``nu-
cleation criterion'' to determine which of the two possibilities actually occurs.
Our nucleation has a sense di�erent from that of ABEYARATNEBEYARATNE & KNOWLESNOWLES

[1]. Their criterion concerned the nucleation, or opening up of a second
phase, within a region of a single phase. We show that this latter form of
nucleation can never occur for the cubic scalar equation.

Instead, we need a condition to say when a non-classical shock forms,
even when the initial data lie on opposite sides of u � 0:While the nucleation
criterion we introduce, in general, depends on the speci®c regularization of
(1.1), we ®nd that there is a ``universal nucleation criterion'' which must be
satis®ed by any augmented equation, in order to observe non-classical
shocks. As we show in Section 4, a more re®ned notion of what constitutes a
di�erent ``phase'' can substitute for this universal condition. For the equation
(1.7), the universal criterion is shown to be su�cient: The equation always
takes the non-classical solution if it exists, while for the equation (1.6), an
additional condition, relating the initial data to a relevant parameter in the
equation, must also be satis®ed.

In Section 5, based on the compensated-compactness method and the
important work by SCHONBEKCHONBEK [37], we study the vanishing di�usion-disper-
sion limit for the Cauchy problem for the cubic scalar equation. A main
observation in Section 5 is that the regularizations (1.6), (1.7) generate non-
classical solutions that do satisfy the entropy inequality (1.3) for U�u� � 1

2 u2,
but, in general, do not satisfy (1.3) for non-quadratic entropies.

Finally, in Section 6, we present numerical evidence for non-classical
shocks in ®nite-di�erence schemes. The main observation of this section is
that non-classical shocks are observed for the Beam-Warming scheme, while
no such shocks are obtained with the Lax-Wendro� scheme. These results
depend crucially on the sign of the dispersion coe�cient and the type of ¯ux-
function under consideration. We recall that in their pioneering paper on the
entropy consistency for di�erence schemes, HARTENARTEN, HYMANYMAN & LAXAX [9] for a
¯ux function having two changes of convexity numerically demonstrated the
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existence of stationary and stable discrete shocks that do not satisfy the
Oleinik entropy criterion. Section 6 also points to the stability of the non-
classical shocks. In addition, the design of numerical methods which compute
non-classical shocks turns out to be very subtle. Section 6 is intended as a step
towards the design of shock-capturing schemes for problems involving non-
classical shocks. Currently, the most reliable and practical approach to
numerical calculation of shocks is to resolve their inner structure. Other
strategies include Glimm's random choice scheme, the front tracking meth-
ods, and the level set methods; cf. the discussions in LEEFLOCHLOCH [23], ZHONGHONG,
HOUOU & LEEFLOCHLOCH [43], and HOUOU, LEEFLOCHLOCH & ROSAKISOSAKIS [13], respectively.

2. Classical Solutions to Conservation Laws

In this section we review the classical weak solutions to a non-convex
conservation law (1.1). For de®niteness we consider the cubic ¯ux-function
f �u� � u3, i.e.,

@tu� @xu3 � 0; u�x; t� 2 R; x 2 R; t > 0; �2:1�
and we specify an initial condition

u�x; 0� � u0�x�; x 2 R: �2:2�
The standard approach to constructing the weak solutions is to add a van-
ishing viscosity of the form e @xxu, e > 0, to the right-hand side of (2.1):

@tue � @x ue� �3� e @xxue; e > 0; �2:3�
which yields an equation for the approximate solution ue�x; t�.

When u0 2 L2�R� [ L1�R�, the solutions ue to (2.3) satisfy the maximum
principle and, in particular, for all t 3 0,

kue�:; t�kL1�R�2 ku0kL1�R�: �2:4�
The functions ue converge, almost everywhere, to a function u 2 L1�R� R��
which is a solution to (2.1) and satis®es all the entropy inequalities (1.3) in
the sense of distributions. The derivation of (1.3) for the limiting solution u is
based on the observation that the right-hand side of

@tU�ue� � @xF �ue� � e @xxU�ue� ÿ e U 00�ue�j@xuej2 �2:5�
is the sum of a term converging to zero in the Sobolev space Hÿ1loc and a non-
positive bounded Borel measure, provided U is convex.

Additional estimates on the solution u are known when more regularity
on u0 is available. For instance, if we further assume that u0 belongs to the
space BV �R� of bounded functions of bounded variation, the approximate
solutions ue are uniformly bounded in L1�R�;BV �R�� and so u belongs to the
same space, with the additional property that

TV �u�:; t��2 TV �u0�; t 3 0; �2:6�
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where we denote by TV the total variation of a function.
The properties (2.4)±(2.6), which are fundamental to the classical theory

of shock waves, are violated by the non-classical weak solutions.
Turning now to the issue of uniqueness, it is known that the set of all

entropy inequalities (1.3) allows one to characterize uniquely the solution
obtained by the vanishing-viscosity approximation. When u0 2 L1�R�\
L1�R�, it is proved that u satis®es the L1 contraction principle

ku�:; t� ÿ v�:; t�kL1�R� 2 ku0 ÿ v0kL1�R�; �2:7�
where v is the limit associated with initial data v0 2 L1�R� \ L1�R�. The
property (2.7) clearly implies the uniqueness of the solution for the Cauchy
problem. Finally, for BV solutions, the entropy inequalities understood in the
sense of distributions are equivalent to a pointwise formulation, i.e., the
Oleinik entropy inequalities (1.5). This provides us with at least three ap-
proaches to the selection of the classical weak solutions.

To complete this brief review, we explicitly describe the Oleinik solution
of the Riemann problem, which will be useful in the course of this paper. The
following construction is closely related to the convex or concave hull of the
cubic function. The initial data for the Riemann problem, by de®nition,
consists of two constant states, ul and ur, with

u�x; 0� � ul; x < 0,
ur; x > 0.

�
�2:8�

To be speci®c, we ®x ul > 0 in the whole of this paper, the other case being
completely analogous. We distinguish between three cases depending upon
the value of ur compared to the points u � ÿ 1

2 ul and u � ul. For ur 3 ul, the
solution to (2.1)±(2.8) is the rarefaction wave

u�x; t� �
ul; x < 3 u2l t,���������

x=3t
p

; 3u2l t < x < 3 u2r t,
ur; x > 3 u2r t.

8<: �2:9�

If ÿul=22 ur < ul, the solution contains a single shock wave

u�x; t� � ul; x < st,
ur; x > st,

�
�2:10�

where the shock speed s is given by the Rankine-Hugoniot (RH) condition

s � u2l � ulur � u2r : �2:11�
The signi®cance of the limiting case ur � ÿ 1

2 ul is that, at this point, the shock
speed and the right-hand wave speed coincide; i.e., s � f 0�ur�. We see,
therefore, that a single shock satisfying the Oleinik entropy criterion (1.5)
cannot connect ul to points ur < ÿ 1

2 ul. Instead, the entropy-satisfying solu-
tion in this region consists of a shock to ÿ 1

2 u1, immediately followed by a
rarefaction wave from ÿ 1

2 ul to ur; that is,
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u�x; t� �
ul; x < 3

4 u2l t,
ÿ ���������

x=3t
p

; 3
4 u2l t < x < 3 u2r t,

ur; x > 3 u2r t.

8<: �2:12�

We observe that the Riemann solution depends continuously upon its
initial states: If ur ! ul with ul ®xed, then all the values u taken by the
solution converge to ul as well. Furthermore, each of the above discontinu-
ities can be realized as the end points of a viscous pro®le, i.e., a traveling-
wave solution of the equation (2.3).

For future reference, we state

Proposition 2.1.
(1) Given a state ul > 0, the set S�ul� consisting of all states ur that can be
achieved through a di�usive traveling wave (i.e., a solution to (2.3)), taking the
values ul and ur at the left and the right ends respectively, is given by

S�ul� � ÿ1
2ul; ul

� �
:

(2) Given a state ul > 0, the Riemann problem with initial data ul and ur is then
satis®ed by

(i) a rarefaction wave, if ur 3 ul,
(ii) a shock wave, if ur 2 �ÿul=2; ul�,
(iii) a shock wave with attached rarefaction, if ur < ÿ 1

2 ul.

3. Non-Classical Shocks as Limits of Traveling Waves

In this section we study the existence of traveling-wave (TW) solutions to
several di�usive-dispersive regularizations for the cubic scalar equation. As
the coe�cients of di�usion and dispersion vanish, the TWs converge to non-
classical shocks. The latter are the building blocks to our construction of a
non-classical solution to the Riemann problem for the conservation law (1.1).
We consider three examples: the modi®ed Korteweg-deVries-Burgers
(MKdVB) equation, a nonlinear di�usive-dispersive approximation, and the
equivalent equation for the Lax-Wendro� and Beam-Warming schemes.

3a. Modi®ed Korteweg-deVries-Burgers Equation

This subsection reviews the recent construction of JACOBSACOBS, MCCKINNEYINNEY, &
SHEARERHEARER [15] for the MKdVB equation

@tu� @xu3 � e @xxu� d @xxxu; �3:1�
where e > 0 and d are real parameters, namely the coe�cients of linear dif-
fusion and dispersion, respectively. There are two markedly di�erent be-
haviors depending on whether (i) d 2 0 or (ii) d > 0. This is in contrast to the
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original (quadratically nonlinear) Korteweg-deVries-Burgers equation, for
instance studied by BONAONA & SCHONBEKCHONBEK [3], for which a change of sign in d can
be ``undone'' by the transformation �x; u� ! �ÿx;ÿu�.

We search for the traveling waves connecting two states ul and ur. Let

v�n� � u�x; t�; n � xÿ s t������jdjp ; �3:2�

where s is given by the Rankine-Hugoniot relation (2.11). The TW solutions
of (3.1) are smooth solutions u�x; t� that only depend on the variable n and
satisfy the boundary conditions

lim
n!ÿ1

v � ul; lim
n!�1

v � ur; �3:3�

lim
n!�1

v0 � 0; lim
n!�1

v00 � 0; �3:4�

where we use the notation v0 � dv=dn. We assume here that ur < 0 < ul; since
we are interested in trajectories connecting di�erent regions of convexity.

In the case d 2 0, all admissible TWs were shown in [15] to approach the
(Oleinik) shock trajectories of the classical shock theory, reviewed in Section
2, in the limit e; d! 0.

We now discuss the second case, d > 0, in more detail. The equation (3.1)
becomes

ÿs v0 � �v3�0 � e���
d
p v00 � v000: �3:5�

Forming the new parameter

l � e���
d
p �3:6�

and taking the limit e; d! 0, with l ®xed, keeps in balance the di�usive and
dispersive e�ects. Integrating (3.5) once and applying conditions (3.3), (3.4),
we arrive at the system

v0 � w; w0 � ÿl w� p�v� �3:7�
with p�v� � C ÿ s v� v3 and C � s ul ÿ u3l . The equilibrium points of (3.7)
are points �v;w� � ��v; 0� with p��v� � 0. Given ul > 0 and ur4ÿ 1

2 ul, there
always exist three equilibria, which we denote by vl � ul > vm > vr. So ur

equals either vm or vr. The states vr and vm are the two roots of the poly-
nomial

v2 � vl v� v2l ÿ s � 0: �3:8�
We note for future reference that, since p�v� has no quadratic term,

vr � vm � vl � 0: �3:9�
The eigenvalues of (3.7) at the equilibria are
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k���v� � 1
2 ÿl�

����������������������������������
l2 � 4l�3�v2 ÿ s�

q� �
� 1

2 ÿl�
�������������������������
l2 � 4lp0��v�

q� �
: �3:10�

Since p0�v� � 3v2 ÿ s is positive at the outer equilibria vr and vl, so that
kÿ��v� < 0 and k���v� > 0, the states vr and vl are saddle points. Since
p0�vm� < 0, the state vm is stable (l40 and the k�'s have a non-zero real part)
and is either a node if l2 � 4�3v2m ÿ s�3 0 (two negative real eigenvalues), or
a spiral if l2 � 4�3v2m ÿ s� < 0 (two complex conjugate eigenvalues).

JACOBSACOBS, MCCKINNEYINNEY, & SHEARERHEARER show that there exists a heteroclinic
saddle connection of the form

w�n� � 1���
2
p �v�n� ÿ vr��v�n� ÿ vl�: �3:11�

Substituting (3.11) into (3.7) and setting v � 0 (which, by continuity, must be
a value attained by v�n� for some n) leads us to the condition

vr � vl �
���
2
p

l� 2 vm: �3:12�
Combining (3.9) and (3.12) shows that in order for there to be a saddle-saddle
connection of this type, we must have

vm � ÿ
���
2
p

3
l < 0; vr � ÿvl �

���
2
p

3
l: �3:13�

So the right state ur � vr is uniquely determined from the left state ul (and the
parameter l which should be considered as ®xed here). Using vm of (3.13) in
(3.8) gives the shock speed as a function of vl and l:

s � v2l ÿ
���
2
p

3
l vl � 2

9
l2: �3:14�

Comparing the two expressions in (3.13), we observe that the trajectory (3.11)
connects two saddle points only if we actually have vr < vm, that is,

vl >
2
���
2
p

3
l; �3:15�

otherwise (3.11) is a connection between a saddle and a stable node/spiral.
JACOBSACOBS et al. then prove that (3.11) represents the only trajectory joining the
two saddle points.

Since 3 v2 ÿ s > 0 at both v � vr and v � vl, we see that the traveling-wave
speed is slower than the characteristic speeds on both sides. Thus in the limit
of e; d! 0, the saddle-saddle trajectory becomes an undercompressive shock,
through which the characteristics pass. This shock does not satisfy the Lax
entropy criterion and, therefore, the Oleinik entropy criterion also fails to
hold.

From the above discussion and the results in [15], we can state an an-
alogue of Proposition 2.1 but now for the di�usive-dispersive approxima-
tion.
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Proposition 3.1.
(1) Given a state ul > 0, the set S�ul� consisting of all states ur that can be
achieved through a di�usive-dispersive traveling wave, i.e., a solution to �3:1�,
taking the values ul and ur at the left and the right ends respectively is given by

S�ul� �
ÿ ul

2 ; ul
� �

if ul 2 2
��
2
p
3 l,

ÿul �
��
2
p
3 l

n o
[ ÿ

��
2
p
3 l; ul

h �
if ul >

2
��
2
p
3 l,

8<:
where the coe�cient l is the constant given by �3:6�.
(2) Given a state ul > 0, the Riemann problem with initial data ul and ur is
solved as follows using the shock curve derived in (1) above. If ul 2 2

��
2
p
3 l, the

solution is the classical Riemann solution described in Proposition 2.1. If
ul >

2
��
2
p
3 l, the solution consists of

(i) a rarefaction wave if ur 3 ul,
(ii) a classical shock wave if ur 2 �ÿ

��
2
p
3 l; ul�,

(iii) two shock waves if ur 2 �ÿul �
��
2
p
3 l;ÿ

��
2
p
3 l�, that is, a (slow) non-

classical shock from ul toÿul �
��
2
p
3 l followed by a (fast) classical shock

connecting to ur,
(iv) a shock wave and a rarefaction wave if ur 2 ÿ ul �

��
2
p
3 l, that is, a slow

non-classical shock wave from ul to ÿul �
��
2
p
3 l, followed by a rarefac-

tion wave connecting to ur.

Observe that when ul � 2
��
2
p
3 l, the shock curve is an interval, and when

ul >
2
��
2
p
3 l, it consists of the union of an isolated point and an interval.

We shall return to the Riemann problem in Section 4. We note here that
the di�erential equation (3.11) for the heteroclinic saddle-saddle connection
has the explicit solution

v�n� � vl � vr

2
ÿ vl ÿ vr

2
tanh

vl ÿ vr

2
���
2
p n

� �
: �3:16�

In Section 5 we show that this trajectory does not in general have negative
entropy dissipation, except for the quadratic entropy.

3b. Nonlinear Di�usive-Dispersive Approximation

In this section we study traveling-wave solutions to the cubic scalar
conservation law, augmented by a vanishing nonlinear di�usion (or pseudo-
viscosity) and a linear dispersion:

@tu� @xu3 � e @x j@xuj@xu� � � d @xxxu: �3:17�
Both e and d are positive constants in (3.17). Under a change of sign for d, the
equation (3.17) represents a special case of the nonlinear-di�usive dispersive
equation

@tu� @xu3 � e @x b�@xu� @xu� � � d @xxxu �3:18�
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studied for instance by LEEFLOCHLOCH & NATALINIATALINI [24]. The particular choice
b�k� � jkj in (3.18) gives (3.17). For d � 0, equation (3.18) has been studied
MARCATIARCATI & NATALINIATALINI [32] as a simpli®ed model of the pseudo-viscosity
proposed by VONVON NEUMANNEUMANN & RICHTMYERICHTMYER [33]. Observe that [33] also pro-
posed the pseudo-viscosity b�u� � @xu� �ÿ, where aÿ � ÿa if a 2 0 and aÿ � 0
if a 3 0; the analysis presented here could also be extended to this type of
di�usion. The nonlinear viscosity in (3.17) was also studied in connection
with numerical methods by RAVIARTAVIART [34] and RICHTMYERICHTMYER & MORTONORTON [35].

We make the change of variables

u�x; t� � v�n�; n � xÿ st���
d
p ; �3:19�

where the wave speed, s, is determined by the Rankine-Hugoniot condition.
This leads to the ordinary di�erential equation

ÿs v0 � v3
ÿ �0� e

d
jv0jv0� �0�v000: �3:20�

The boundary conditions are the same as for MKdVB, namely

lim
n!ÿ1

v�n� � ul; lim
n!�1

v�n� � ur; lim
jnj!1

v�j��n� � 0; �3:21�

where j � 1; 2; 3. For a TW connecting ul > 0 to ur, the Rankine-Hugoniot
condition gives

s � u3l ÿ u3r
ul ÿ ur

� u2l � ul ur � u2r : �3:22�

We can immediately integrate (3.20) once to get

C ÿ s v� v3 � 1
2cjv0jv0 � v00; �3:23�

where C � s ul ÿ u3l is provided by the boundary condition on v as n! ÿ1,
and where the parameter c > 0 is de®ned by

c � 2 e
d
: �3:24�

(In contrast to the parameter l � e=
���
d
p

, which emerged in the study of TW
solutions for MKdVB, the parameter c has d and e appearing with the same
exponent.)

Equation (3.23) may be written as a ®rst-order system; speci®cally

v0 � w; w0 � p�v� ÿ 1
2c jwjw �3:25�

with p�v� � C ÿ s v� v3. The equilibrium points of (3.25) are points
�v;w� � ��v; 0� where p��v� � 0. For the case that the cubic p�v� has three
distinct zeros, denoted by vl > vm > vr, the fact that p�v� lacks a quadratic
term implies that

vl � vm � vr � 0: �3:26�

Non-Classical Shock Waves 13



Whenever the meaning is clear, we abbreviate the equilibrium point ��v; 0� by
�v.

Consider in passing the case that d � 0 in (3.17) (i.e., no dispersion). In
terms of the variable n � xÿ s t, the integrated TW equation

e jv0j v0 � p�v�;
e > 0, is now on the real line, so trajectories satisfying the boundary condi-
tions (3.21) must join adjacent equilibrium points. Then since

v0 �
�������������
p�v�=ep

; v0 > 0, p(v) > 0,

ÿ �����������������ÿp�v�=ep
; v0 < 0, p(v) < 0,

�
p�v� > 0 for all ur < v < um, and p�v� < 0 for all um < v < ur, we see that the
only trajectories allowed are from ur to um, and from ul to um. So, by (3.26),
the only TW solutions connecting uÿ to u� satisfy ÿ1

2 � u�=uÿ < 1. As e! 0,
these tend to the classical shocks of Section 2. Henceforth, we assume that
d > 0.

Linearizing (3.25) about the equilibrium points, we ®nd that the eigen-
values are given by

k���v� � �
����������
p0��v�

p
� �

���������������
3 �v2 ÿ s

p
: �3:27�

As was the case for MKdVB, the outer equilibrium points vl and vr are both
saddle points, since at those points 3 �v2 ÿ s > 0, and so kÿ < 0 and k� > 0. In
contrast to MKdVB, however, the middle equilibrium vm is now an elliptic
equilibrium point or center since k��vm� are purely imaginary. While this fact
may seem to indicate the presence of periodic orbits or homoclinic connec-
tions for (3.25), the following proposition shows that this is not the case.

Proposition 3.2. System �3:25� has no non-trivial homoclinic orbits, nor does it
have any non-trivial periodic orbits. In addition, all heteroclinic orbits from ul to
ur must satisfy u2l > u2r .

Note that the condition u2l > u2r is slightly stronger than the condition we
will arrive at in Section 4 via entropy dissipation for a quadratic entropy
function, which is u2l 3 u2r .

Proof of Proposition 3.2. If �v;w� satisfy (3.25), then v satis®es (3.23). We use
an energy estimate: Multiply (3.23) by v0�n� and integrate from n � ÿ1 to
n � �1. This gives

C vÿ s
2

v2 � 1

4
v4

� ��1
ÿ1
� c
2

Z �1
ÿ1
jv0j�v0�2dn� 1

2
�v0�2

� ��1
ÿ1

: �3:28�

From the boundary conditions (3.21) on v0, the second term on the right-hand
side of (3.28) vanishes. Meanwhile, the integral must be positive, since c > 0
and v0 j� 0 (we exclude the trivial solution). This implies that

C �ur ÿ ul� ÿ s
2
�u2r ÿ u2l � �

1

4
�u4r ÿ u4l � > 0:
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A brief calculation using C � s ul ÿ u3l leads to

1
4�ur ÿ ul�2�u2l ÿ u2r � > 0: �3:29�

We therefore have �1� ul4ur; and �2� u2l > u2r .
Thus homoclinic orbits are not allowed and all heteroclinic orbits must

satisfy the second condition above.
Furthermore, suppose there were a periodic orbit with period P > 0; then

v�n� P � � v�n� and w�n� P � � w�n�. Multiplying the second equation of
(3.25) by w and integrating over one period givesZ

P
w w0dn �

Z
P

p�v�w dnÿ c
2

Z
P

w2jwj dn; �3:30�

so that the integral on the left-hand side of (3.30) is immediately seen to
vanish, while from the ®rst equation of (3.25), the ®rst integral on the right-
hand side of (3.30) is also zero. Thus the only solution to (3.30) is the trivial
one w � 0, so there are no non-trivial periodic orbits for (3.25) and Propo-
sition 3.2 is proved. (

The following corollary describes which equilibrium points of (3.25) may
possibly be joined by a traveling wave.

Corollary 3.3. For the equilibrium points vl > vm > vr of �3:25� there is the
following dichotomy:

(1) If vm 3 0, the only trajectory from vl is the heteroclinic connection to vm.
(2) If vm < 0, the equilibrium vl may be joined to either vm or vr, with the latter

trajectory being a heteroclinic saddle connection.

Proof of Corollary 3.3. From (3.26), vr � ÿvl ÿ vm. Since vl > 0, if vm > 0,
then jvrj > jvlj and by Proposition 3.2 there cannot be an orbit between vl and
vr. If vm < 0, then Proposition 3.2 is not su�cient to rule out orbits from vl to
either of vm or vr. (

We note that when vm < 0, the state vr is restricted by (3.26) and the fact
that vm > vr to belong the interval ÿvl < vr < ÿ 1

2 vl.
For a TW with endpoints ul and ur at n � ÿ1 and n � �1, respectively,

both of these values must correspond to equilibrium points of (3.25). We may
identify ul � vl; and by Corollary 3.3, we have ur � vm if ur is positive. In this
case the trajectory spirals into the point �vm; 0�, so the TW pro®le contains
oscillations about ur; which decay to zero as n! �1. When ur < 0, we
cannot yet say whether ur � vr or ur � vm. In the argument that follows, we
will show that if vm < 0, then for each c > 0, there is a value of vr in the range
ÿvl < vr < ÿ 1

2 vl, which can be joined to vl by a heteroclinic saddle con-
nection; i.e., when vm < 0, we always have ur � vr. To this end, we integrate
system (3.25) as follows.

For w < 0 (i.e., v0 < 0, which is the case for a heteroclinic orbit leaving vl

and connecting to vr < vl), the second equation in (3.25) becomes
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dw
dn
ÿ c
2

w2 � p�v�: �3:31�

Setting y�n� � w2�n� in (3.31) results in

dy
dv
ÿ cy � 2p�v�; �3:32�

which has the homogeneous solution Decv, and a particular solution of the
form

yP �v� � av3 � bv2 � cv� d: �3:33�
Substituting (3.33) into (3.32) we ®nd that

y�v� � Decv ÿ 2

c
v3 � 3

c
v2 ÿ sÿ 6

c2

� �
vÿ s

c
� C � 6

c3

� �
: �3:34�

The constant D is found by the condition y�vl� � 0, which (together with
p�vl� � 0), gives

D � 2eÿcvl

c4
�3v2l ÿ s�c2 � 6vlc� 6
ÿ �

: �3:35�

In summary, w � ÿ ���
y
p

, where y is given by (3.34) and (3.35), and this
trajectory leaves vl and decreases in v (recall that v0 � w < 0) until it reaches a
value v � v0 such that y�vÿ0 � < 0. At this point we can no longer invert y to
®nd w�v�.

We now look for a particular trajectory joining vl to the other saddle
point vr. This means that y�vr� � 0 in the equation (3.34), and we also make
use of the fact that p�vr� � 0. We end up with an equation connecting the
three parameters vl; vr, and c :

ec�vrÿvl� �3v2l ÿ s�c2 � 6vlc� 6
ÿ � � �3v2r ÿ s�c2 � 6vrc� 6; �3:36�

where we have divided both sides by 2=c4, so that the apparent solution c � 0
is actually a singularity of the equation.

We claim that for vl > 0 and vr 2 �ÿvl;ÿ 1
2 vl�, the equation (3.36) is

satis®ed by a unique value of c > 0. We o�er analytical proof of existence for
vr in a subinterval of �ÿvl;ÿ 1

2 vl�, as well as the numerical solution of (3.36)
via Newton's method, to support our claim.

Proposition 3.4. For vl > 0 and for vr in the interval �1ÿ ���
3
p �vl 2 vr < ÿ 1

2 vl,
there is a value

c� � �3v2r ÿ s�ÿ1 3jvrj �
�����������������������
3�2sÿ 3v2r �

q� �
�3:37�

with s given by the Rankine-Hugoniot relation (3.22), such that (3.36) has a
solution in c� < c < �1.
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Proof of Proposition 3.4. Denoting A � 3v2l ÿ s and B � 3v2r ÿ s, we have that
A > B > 0 by (3.22) and Proposition 3.3, and we can rewrite the quadratics
on the left- and right-hand sides of (3.36) as

Ql�c; vl; vr� � A�c� 3vlAÿ1�2 � 3�3v2l ÿ 2s�Aÿ1;
Qr�c; vl; vr� � B�c� 3vrBÿ1�2 � 3�3v2r ÿ 2s�Bÿ1:

�3:38�

Using the value of s from (3.22) we see that 3v2l ÿ 2s is positive for

ÿ 1�
���
3
p

2
vl < vr <

1� ���
3
p

2
vl;

and so the minimum value of Ql, which actually occurs when
c � ÿ3vlAÿ1 < 0, is greater than zero for all vr in �ÿvl;ÿ 1

2 vl�. Thus Ql is
strictly positive in the range of interest. This, in turn, means that the left-hand
side of (3.36) is always positive.

For Qr, on the other hand, 3v2r ÿ 2s 2 0 in (3.38) when �1ÿ ���
3
p �vl 2

vr 2 �1� ���
3
p �vl: At its minimum value, which occurs at c � 3jvrjBÿ1 > 0; Qr

is therefore negative. In particular, Qr < 0 in the applicable subinterval

�1ÿ
���
3
p
�vl 2 vr 2 ÿ 1

2vl: �3:39�

In fact, when (3.39) holds, Qr�c; vl; vr� < 0 for cÿ < c < c�, where

c� � Bÿ1 3jvrj �
�����������������������
3�2sÿ 3v2r �

q� �
:

Since the left-hand side of (3.36) is always positive and tends to zero as
c! �1, and the right-hand side of (3.36) is zero at c � c� and tends to �1,
as c! �1, there must be a solution of (3.36) for c 2 �c�;�1�. This proves
Proposition 3.4. (

The numerical solution of (3.36) in the interval ÿvl < vr < ÿ 1
2 vl indicates

that for vl > 0, there is a value of c > 0 which satis®ed the equation; i.e., there
is a heteroclinic saddle connection whenever vm < 0. Interestingly, the value
of c that satis®es (3.36) for a given value of vr=vl scales with ul. For if we
introduce the quantities

a � vr

vl
; C � vlc; �3:40�

then using (3.22) we can rewrite (3.36) as

eC�aÿ1� �2ÿ aÿ a2�C2 � 6C� 6
ÿ � � �2a2 ÿ aÿ 1�C2 � 6aC� 6; �3:41�

so that C depends only on a, and c can be recovered from (3.40) as C=vl. In
Figure 3.1, we plot the numerical solution to (3.41) as C versus a, for
a 2 �ÿ1;ÿ1

2�.
Based on the analytical and numerical evidence presented thus far, we

have the following picture for solutions of the Riemann problem for (3.17)
when e and d � 2e=c are positive: Consider the Riemann problem for the
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cubic equation with left- and right-hand states uÿ and u�, respectively. We
construct here a solution of the Riemann problem by using shocks that have
viscous pro®les corresponding to the approximation (3.17). According to the
just-mentioned scaling, we can take uÿ � 1. Then for a particular choice
c � c0 in (3.17), we have the scaled quantity C0. For u� > 1, a centered
rarefaction joins the two states. When 0 < u� < 1, there is a classical shock
connecting uÿ to u�. As u� is decreased below zero, the classical shock
persists until u� � ÿ1ÿ a�C0�;
where a�C0� is the solution to (3.41). At this particular value of u�, there is a
shock from uÿ � 1 to a�C0�, with speed S1 � 1� a� a2. This is followed by a
second shock from a to u�, having speed S2 � a2 � u�a� u2�. Note that
S1 � S2 when u� � ÿ1ÿ a, so the pair of shocks ®rst appears as an over-
shoot. As u� is further decreased, the slow shock is unchanged, but S2 in-
creases, so the gap between shocks widens for any ®xed t > 0. When
u� � a�C0�, there is a single (non-classical) shock, and when u� < a, this
shock is followed by a rarefaction to u�. We mention the limiting cases:

a�C0� ! ÿ 1
2 ; C0 ! �1,
ÿ1; C0 ! 0.

�
We now consider the problem from another perspective: Again ®x uÿ � 1,

and now ®x u� < 0. We then ask what happens as C is decreased from
in®nity. There are three scenarios, depending on u� : When ÿ 1

2 < u� < 0,
there is a value C � �C, satisfying (3.41) with a � ÿ1ÿ u�, such that there is a
classical shock for all C > �C. When C � �C, there is a non-classical shock to
ÿ1ÿ u�, followed by a classical one to u�. For C < �C, the intermediate state,
a�C�, decreases, approaching the value ÿ1, as C! 0.

Figure 3.1. Numerical solution of equation (3.36) for heteroclinic saddle orbit.
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If ÿ1 < u� < ÿ 1
2 ; there is a value Ĉ; which satis®es (3.41) with a � u�;

such that for C > Ĉ; the solution is a non-classical shock followed
by a rarefaction. This solution is almost indistinguishable from the classical
shock-rarefaction for C� 1: When C � Ĉ; there is a single, non-classical
shock to u�; and for C < Ĉ; there are two shocks, with the intermediate state
decreasing to ÿ1 as C! 0:

Finally, when u� < ÿ1, the solution again is like the classical shock-
rarefaction for C� 1. As C is decreased, an intermediate state opens up
between the shock and rarefaction. The value of this intermediate state once
again decreases with C to ÿ1. The value of the intermediate state is a�C�.

For illustration, we have used a pseudospectral method to numerically
solve the Riemann problem for (3.17). The results are plotted in Figures 3.2±
3.4, and were generated by DANIELANIEL MAHONEYAHONEY, using his numerical scheme
[29], which contains a pseudospectral decomposition in x, with time ad-
vancement carried out by an implicit, second-order Runge-Kutta technique.
This decomposition is based on the method of FORNBERGORNBERG & WHITHAMHITHAM [7].
We simulated Riemann initial data by taking a smooth, periodic function,
which decreases very rapidly near x � 0. Periodicity was maintained by
having a second region of more gradual increase. The spatial period was
chosen su�ciently large compared with the wave speeds involved, so that
noise from the boundaries could be kept away from the region of interest
near x � 0. In the plots below, the initial data are taken to be

u�x; 0� � 1� �uÿ 1

2
tanh�kx� ÿ tanh�kxÿ 0:4kxm�� �;

where �u is the value of the right-hand state, k � 2 is the scaling in the data,
and xm is half the width (period) of the data.

Figure 3.2. Non-classical shock in the nonlinear di�usive-dispersive equation.
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In Figure 3.2, we plot the numerical solution for u�x; 8�; with
ul � 1; ur � ÿ0:5; and c � 1:0:We use 2048 gridpoints over a spatial interval
x 2 ÿ20p; 20p� �: The ®gure shows a monotone non-classical shock, to a value

Figure 3.3. Pseudospectral solution of nonlinear di�usive equation. The Riemann
data are u � 1 (left); the ratio is 2.01795. The right inital states are
0:0; 0:2; ÿ0:8; ÿ1:25:

Figure 3.4. Pseudospectral solution of nonlinear di�usive equation. The Riemann

initial data are u � 1:0 �left� and u=0.75 (right). The graph with ratio 10 has a line
consisting of dot and dashes, that with ratio 2.346 has a solid line, and that with ratio
1.374 has dashed line.
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um � ÿ0:8849; within 5�10ÿ4� of the value found from the solution of
equation (3.41) by Newton's method. The time is taken so large that the
intermediate state clearly distinct from the post-shock oscillations associated
with the fast shock.

The slow, non-classical shock is monotone, and its speed agrees with that
of the Rankine-Hugoniot condition, while the second shock is followed by
oscillations; these are discussed following Figure 3.4, and represent a genuine
feature of the TW solution. The oscillations have the e�ect of slowing down
the second shock: It occurs at x � 11:35 in Figure 3.2, a value 3.8% lower
than Rankine-Hugoniot condition would give for this choice of um; ur:

In Figure 3.3, we plot the numerical solution u�x; 8�; with 1024 grid points,
for c � 2:01795; ul � 1; and several values of ur: The transition from classical
shock, to non-classical shock, to (non-classical) shock-rarefaction can be
seen, as ur is decreased. The value of the intermediate state, ÿ0:7995; is again
within 5� 10ÿ4 of the predicted value. The pulse near x � 12; for ur � ÿ0:8;
appears to be a solitary wave; it cannot be one because of Proposition 3.2, but
with the nonlinear di�usion, there appears to be great sensitivity to whether
um � ur: If they di�er even slightly, as they do in this case, then the trajectory
between the two equilibria can still execute a wide loop in the phase plane.

In Figure 3.4, are plotted three curves for u�x; 8�; also with 1024 grid
points, corresponding to three values of c; for ul � 1 and ur � ÿ0:25. As c is
decreased, the oscillations are seen to increase.

While the non-classical shocks displayed in the preceding plots are quite
monotone, the classical shocks are followed by oscillatory envelopes. The
envelopes decay more quickly as c is increased or as the mesh size in the
scheme is decreased. The oscillations are present in the di�usive-dispersive
approximations but should not appear in the limiting solution to the hy-
perbolic problem. The computation therefore is quite delicate due to a subtle
competition between two parameters: the ratio c of di�usion to dispersion
and the mesh size of the discretization scheme.

We also point out that, for c � O�1�, the pro®les for the non-linear dif-
fusion are more oscillatory than those for the linear di�usion with its key
parameter l � O�1�. This is expected since (3.17) contains a smaller amount
of di�usion than (3.1) as ®rst observed by VONVON NEUMANN &EUMANN & RICHTMYERICHTMYER [33].
To con®rm that these oscillations are really due to the di�erential equation
(3.17), and not a numerical artifact, we numerically integrate the TW equa-
tions for the case of a classical shock.

We choose ul � 1, and ur � 0:5, in the classical regime. We then select
several values of c, and numerically integrate system (3.25), using (the slightly
dissipative) fourth-order Runge-Kutta method. In order to begin the calcu-
lation, it is necessary to move away from the equilibrium at �v;w� � �1; 0�.
We do this by solving for the ®rst intersection of the trajectory with the
v-axis, using Newton's method on equations (3.34) and (3.35). From this
point onward, the solution is found by the Runge-Kutta method. In Figure
3.5, we plot the integrated trajectories for c � 1, 5, and 25. The resemblence
to the oscillations in Figures 3.2±3.4 is immediately apparent.
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For the linear di�usion (MKdVB), the classical shock is oscillatory only
when l2 � 4p0�vm� < 0 in (3.10); otherwise, the middle equilibrium is a stable
node and there are no oscillations. In the case of nonlinear di�usion (3.17),
however, the middle equilibrium point, given by (3.27), is an elliptic point,
so that there are always some oscillations associated with the classical shock.
In both cases, a TW analysis gives monotone pro®les for the non-classical
shock.

For the nonlinear di�usive-dispersive approximation (3.17), the shock
curve is described as follows.

Proposition 3.5.
(1) Given a state ul > 0, the set S�ul� consisting of all states ur that can be
achieved through a nonlinear di�usive-dispersive traveling wave (i.e., a solution
to (3.17)), taking the values ul and ur at the left and the right ends respectively,
is given by

S�ul� �
�

ul a�c=ul�
	 [ �ÿul 1� a�c=ul�� �; ul�;

where the coe�cient c is the constant given by (3.24) and the function a � a�C�
is given implicitly by (3.41).
(2) Given a state ul > 0, the solution of the Riemann problem with initial data ul

and ur is given by

(i) a rarefaction wave if ur 3 ul,
(ii) a classical shock wave if ur 2 �ÿul 1� a�c=ul�� �; ul�,
(iii) two shock waves if ur 2 �ul a�c=ul�;ÿul 1� a�c=ul�� ��, that is, a slow

non-classical shock from ul to ul a�c=ul� followed by a fast classical
shock connecting to ur,

Figure 3.5. Oscillatory behavior of the nonlinear di�usive TW.
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(iv) a shock wave and a rarefaction wave if ur 2 ul a�c=ul�, that is, a slow
non-classical shock wave from ul to ul a�c=ul�, followed by a rarefaction wave
connecting to ur.

3c. Equivalent Equations for the Lax-Wendro� and Beam-Warming Schemes

In this subsection, we turn to traveling-wave solutions of

@tu� @xu3 � d @xxxu3; �3:42�

@tu� @xu3 � ÿd @xxxu3 �3:43�
for d > 0. Equation (3.42) is the equivalent equation for the Beam-Warming
numerical scheme for the cubic scalar equation, provided we identify d � 1

3D2

with D being the mesh spacing in x. Equation (3.43) is the equivalent equation
for the Lax-Wendro� numerical scheme, for d � 1

6D2. In Section 6 we study
the behavior of both numerical schemes on the cubic scalar equation, while
equation (3.42) is derived in the Appendix.

In this section, therefore, we study traveling-wave solutions of

@tu� @xu3 � 1
3j d @xxxu3; j � �1; d > 0: �3:44�

The sign of j in (3.44) is paramount in determining whether there is a het-
eroclinic saddle connection, as we now show.

Proposition 3.6. Given ul > 0, there exists a unique traveling-wave solution to
�3:42� corresponding to a heteroclinic saddle connection in the phase plane,
when j � �1. This trajectory approaches a non-classical shock between ul and
ÿul, traveling with speed u2l , as d! 0.When j � ÿ1, there is no saddle-saddle
connection.

We mention that ROSENAUOSENAU & HYMANYMAN [36] have also studied (3.44) when
j � �1, in connection with solitary waves having compact support.

Proof of Proposition 3.6. To ®nd traveling waves, we again change variables
to v�n�, where n is given by (3.19) and s by the Rankine-Hugoniot relation.
The parameter d is absorbed and v satis®es

ÿsv0 � �v3�0 � j v2v00 � 2v�v0�2
� �0

�3:45�
with boundary conditions (3.21) enforced as jnj ! �1. Integrating (3.45)
and using jÿ1 � j gives

v2v00 � 2v�v0�2 � j p�v�; �3:46�
where we once again de®ne p�v� � C ÿ sv� v3, with C � sul ÿ u3l . Writing
(3.46) as a ®rst-order system
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v0 � w;

w0 � vÿ2 j p�v� ÿ 2vw2
ÿ �

;
�3:47�

we ®nd that the critical points of (3.47) match those of the previous two
sections, see (3.26), and will be denoted by ul > um > ur. If j � �1, ul and ur

are once again saddle points, while um is a center. Alternatively, if j � ÿ1,
then um is a saddle, with ur and ul being centers. Thus the only possible case
where a heteroclinic saddle connection can exist is for j � �1; we now show
that there is indeed such a connection.

Setting y � w2 reduces (3.47) to a linear equation in y�v� :

v2

2

dy
dv
� 2v y � j p�v�: �3:48�

Integrating (3.48) leads to

y�v� � j
6v4

q�v�; �3:49�

where q�v� � 2v6 ÿ 3sv4 � 4Cv3 � D, and D is an integration constant. We
therefore have

w�v� � �
������������
j q�v�p ���
6
p

v2
: �3:50�

We now enforce the conditions w�ul� � w�ur� � 0. The condition q�ul� � 0
implies that D � u4l �2u2l ÿ s�, while setting ur � aul and using the Rankine-
Hugoniot relation with q�ur� � 0 results in

�aÿ 1�3�a� 1��a2 � a� 1� � 0; �3:51�
whose only real zeros are a � �1. The choice a � ÿ1 corresponds to a het-
eroclinic saddle connection between u � ul and u � ÿul. We now con®rm
that q�v� > 0 for ÿul < v < ul, so that w�v� in (3.50) remains real. Setting
z � v=ul, we get (for a � ÿ1),

q�v� � ~q�z� � u6l �z2 ÿ 1�2�2z2 � 1�;
so that q�v� is, in fact, positive and so for j � 1 (Beam-Warming case) there is
a real trajectory between ul and ÿul.

The Rankine-Hugoniot condition gives s � u2l for this trajectory, whereas
the wave speed at both ends is 3u2l . Thus the Lax entropy criterion is not
satis®ed. As d! 0, the pro®le therefore converges to an undercompressive
shock. (

Further analysis of the phase plane for (3.47) shows that TW solutions to
(3.42) give, at best, an incomplete solution to the Riemann problem for the
cubic scalar equation: When ur4ÿ ul, it can be shown that there are only
homoclinic orbits from ul to itself. Thus, in general, when ur4ul, it is im-
possible to connect the two distinct states by a TW. Equation (3.42) appar-
ently has too little structure to give rise to a large enough family of either
classical or non-classical shocks for the purpose of this paper. Equation
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(3.42) is therefore not a good candidate to approximate weak solutions of the
cubic scalar conservation law.

A better model, taking higher-order e�ects into account, would be ob-
tained from a higher-order equivalent for the Beam-Warming equation.
Indeed as described in Section 6, we numerically demonstrate the existence of
non-classical shocks for the Beam-Warming scheme. It is heuristically
expected that the same property should hold for the equivalent equation,
although no rigorous connection can possibly exist.

4. Kinetic Relation and Selection of Non-Classical Shocks

In Subsection 4a below, we study multi-wave solutions of the Riemann
problem for the equation

@tu� @xu3 � 0: �4:1�
Each shock wave should satisfy the Rankine-Hugoniot condition, cf. (2.11),
and a single entropy inequality, cf. (1.3). First of all we describe a family of
two-wave solutions, which can be composed of either two shock waves (one
slow and one fast) or a (slow) shock wave followed by a (fast) rarefaction
wave. For certain initial data in the Riemann problem, we deduce that, in
addition to the classical solution, one can construct a one-parameter family
of two-wave solutions. In order to select a unique non-classical solution, we
introduce a kinetic relation for the slow shock. In order to select between this
non-classical solution and the classical solution, an additional ``nucleation''
criterion must be imposed.

Next, in Subsection 4b, we explain how the kinetic relation can be de-
duced from the traveling-wave solutions associated with a given regulariza-
tion of (4.1). Entropy dissipation across a shock, as a means of determining
admissibility, goes back to the ``entropy rate'' admissibility criterion, intro-
duced by DAFERMOSAFERMOS [5].

4a. Non-Classical Solutions to the Riemann Problem

Our ®rst objective in this section is to describe the allowable solutions to
the Riemann problem for (4.1) in the class of non-classical weak solutions.
For de®niteness, we consider the quadratic entropy pair1

U�u� � 1
2 u2; F �u� � 3

4 u4: �4:2�

1 Our motivation in selecting a quadratic U�u� is that �1:3� holds at the limit for the
solutions constructed from �3:1� or �3:17�. Based on our discussion in Section 5, see
(5.17) and (5.18), similar Ð if not identical Ð results can be expected for the family of

entropies U�u� � u2n=2n.
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A shock from uÿ to u� is said to be admissible if it satis®es the Rankine-
Hugoniot relation and has negative entropy dissipation, i.e.,

D�uÿ; u�� � ÿs U�u�� ÿ U�uÿ�� � � F �u�� ÿ F �uÿ� 2 0; �4:3�
where s is the shock speed.

Proposition 4.1. Consider the Riemann problem with initial data ul > 0 and ur

for the cubic scalar equation (4.1) in the class of non-classical weak solutions.
Any admissible multi-wave solution of (4.1) is composed of either two shock
waves (one of them possibly being trivial ) or a shock wave followed by a rar-
efaction wave. In particular the Riemann solutions contain at most two waves.

Proof of Proposition 4.1. First of all, we observe that, across any admissible
shock discontinuity �uÿ; u��, the Rankine-Hugoniot relation

s � u2� � u�uÿ � u2ÿ;

applied to (4.3), yields

D�uÿ; u�� � 3
4 u4� ÿ u4ÿ
ÿ �ÿ 1

2�u2� � u�uÿ � u2ÿ� u2� ÿ u2ÿ
ÿ �

� 1
4�u� ÿ uÿ�2�u2� ÿ u2ÿ�2 0:

Therefore, across each shock �uÿ; u��, we must have
u2�2 u2ÿ: �4:4�

We begin by searching for two-wave solutions. The classical shocks of Sec-
tion 2 are special cases.

Step 1: Two Wave Solutions. In this case the solution is composed of three
constant states: ul, um, and ur. We consider successively the following four
combinations: shock-shock (S-S), shock-rarefaction (S-R), R-S, and R-R. To
simplify the notation, we rescale each state, dividing by ul, and set

a � um

ul
; b � ur

ul
: �4:5�

The type of waves in the solution ultimately depends on the quantities a and
b.

Step 1a: Shock-Shock. Across each shock, (4.4) must hold, so we have

a2 2 1; b2 2 a2: �4:6�
The shock speeds must satisfy s1 < s2 for the construction to be possible;
thus, by the Rankine-Hugoniot condition,

1� a� a2 < a2 � ab� b2:
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Rearranging the terms, we get

�1ÿ b��1� b� a� < 0: �4:7�
Since b > 1 is excluded by (4.6), we must have 1� b� a < 0 in (4.7). The
allowable 2-shock region is a triangle in the �a; b�-plane:

a 3 ÿ 1; b < ÿaÿ 1; b 3 a: �4:8�
Observe that the single-shock solution corresponds to the line segment
a � b; ÿ 1

2 2 a < 1.

Step 1b: Shock-Rarefaction. We now consider solutions composed of a shock
from ul to um, followed by a rarefaction from um to ur. In view of (4.5), the
entropy inequality (4.4) gives

a2 2 1: �4:9�
Since the wave speed must increase throughout the rarefaction, we have

a2 2
u2

u2l
2 b2 �4:10�

for all u inside the fan. Finally, the trailing edge of the fan must move faster
than the shock:

a2 � a� 1 < 3a2;

which, after rearranging, gives

�2a� 1��aÿ 1� > 0: �4:11�
By (4.9), aÿ 12 0, so that (4.11) gives a < ÿ 1

2. So the allowable S-R region
lies inside ÿ12 a < ÿ 1

2 ; in addition, careful consideration of (4.10) shows
that we cannot have a < 0 and b > 0, since then u � 0 inside the rarefaction,
violating the inequality. Thus the allowable �a; b�-region is the unbounded
trapezoid:

ÿ12 a < ÿ1
2; b 2 a: �4:12�

The right-hand boundary of the region, a � ÿ 1
2 ; b 2 a, corresponds to the

classical shock±rarefaction.

Step 1c: Rarefaction-Shock. Next we discuss the case of a rarefaction joining
ul to um, followed by a shock from um to ur. Using the notation (4.5), we get

12 u2 2 a2 �4:13�
for all u inside the rarefaction fan, and by (4.4) we have

a2 3 b2 �4:14�
across the shock. The condition that the shock precedes the rarefaction reads

�2a� b��aÿ b� < 0: �4:15�
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If aÿ b > 0 in (4.15), then (4.14) gives a > 0, so that 2a� b > 0, and (4.15) is
not satis®ed. A similar argument applies if aÿ b < 0. Thus there is no al-
lowable region in �a; b� for rarefaction-shock solutions.

Step 1d: Rarefaction-Rarefaction. Since both rarefactions are continuous, two
consecutive rarefactions are equivalent to a single rarefaction joining ul to ur.
This single-wave solution was given in Section 2.

We plot the classical and two-wave solutions to the Riemann problem in
Figure 4.1. The shaded regions for the two-shock and shock-rarefaction so-
lutions correspond to the inequalities (4.8) and (4.12), respectively.

Step 2: Three-Wave Solutions. Every multi-wave solution to the Riemann
problem for (4.1) must begin on the left with either (i) S-S-S (ii) S-S-R
(iii) S-R-S (iv) S-R-R (v) R-S-S (vi) R-S-R (vii) R-R-S (viii) R-R-R. Of these,
(iv) is equivalent to the shock-rarefaction case previously discussed, (viii) is
just the single-rarefaction case, and (iii), (v), (vi) and (vii) are all disallowed
because they contain a shock following a rarefaction; cf. Case 1c above. It
remains to show that (i) and (ii) are also prohibited. Let the four states be ul,
um1

, um2
and ur, with normalized values:

a � um1

ul
; b � um2

ul
; c � ur

ul
: �4:16�

Step 2a: Shock-Shock-Shock. The entropy inequality (4.4) gives

a2 2 1; b2 2 a2; c2 2 b2; �4:17a�

Figure 4.1. Allowable Regions for Classical and Non-classical Solutions
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while the conditions s2 ÿ s1 > 0 and s3 ÿ s2 > 0 on the shock speeds give

�bÿ 1��1� a� b� > 0; �4:17b�
�cÿ a��c� a� b� > 0; �4:17c�

respectively. By (4.17a), we have b2 2 1, so that in (4.17b), we are compelled
to take 1� a� b < 0, or

a� b < ÿ1:
This, in turn, means that a < 0. Then applying (4.17a) to equation (4.17c), we
must have cÿ a > 0. We are now led to an impossible situation: We need
c� a� b > 0 to satisfy (4.17c), but c� a� b > cÿ 1 > 0 would imply that
c > 1, in violation of (4.17a). We conclude that there are no three-shock
solutions to (4.1).

Step 2b: Shock-Shock-Rarefaction. By (4.4) we have

a2 2 1; b2 2 a2; �4:18�
while inside the rarefaction fan we must have

b2 2
u2

u2l
2 c2: �4:19�

Finally the speeds satisfy s1 < s2 < 3 u2m2
, which leads to the inequalities

�bÿ 1��1� a� b� > 0; �4:20a�
�2b� a��bÿ a� > 0; �4:20b�

respectively. By (4.18), we see that (4.20a) is only satis®ed if bÿ 1 < 0 and
1� a� b < 0, so that

a� b < ÿ1; �4:21�
and so, again using (4.18), we have a < 0. This fact, together with a2 3 b2,
means that we must take bÿ a > 0 in (4.20b). This forces 2b� a > 0, which
combined with (4.21), implies b > 1, contradicting (4.18). Consequently there
are no S-S-R solutions of (4.1). The proof of Proposition 4.1 is complete. (

In what follows, we retain the notation, a and b, introduced in (4.5) and,
in addition, de®ne

V � s1
u2l
; �4:22�

where s1 is the speed of the ®rst (slow) shock. By the Rankine-Hugoniot
relation, one has

V � a2 � a� 1: �4:23�
The following corollary to Proposition 4.1 shows that the two-wave solutions
to the cubic scalar equation comprise a one-parameter family. It is convenient
to use V as a parameter.

Non-Classical Shock Waves 29



Proposition 4.2. For a given ul > 0, the Riemann problem for (4.1) with data ul

and ur � b ul admits the following one-parameter solutions.
(1) When b 2 �ÿ1; 0�, it admits a one-parameter family of non-classical, two-
shock solutions where the parameter V describes the interval de®ned by

max
b2 � 3

4
;
b2 � 2b� 4

4

� �
2 V 2 1: �4:24a�

Each solution consists of a slow non-classical shock with speed u2l V connecting
ul to um � a ul, with

a � ÿ1ÿ
���������������
4V ÿ 3
p

2
; �4:24b�

followed by a shock connecting um to ur � b ul. Here a < b and the solutions
are non-monotone.
(2) When b 2 �ÿ1;ÿ 1

2�, the Riemann problem also admits a one-parameter
family of two-wave solutions consisting of a non-classical shock, again para-
metrized by speed V, describing the interval

3
4 2 V 2 min 1;

b2 � 3

4

� �
; �4:25�

and connecting ul to um � a ul with a given by �4:25� followed by a rarefaction
connecting to ur � b ul. Here a 3 b and the solutions are monotonically de-
creasing.

We refer to Figure 4.1 for a graphical representation of the Riemann
solution.We recall that the left state ul is ®xed in the whole of the discussion. It
can be checked on Figure 4.1 that with a given value of b, i.e., with a given
right state ur, can be associated either one value of a (when b > 0), or the
union of an interval and one point (when b 2 �ÿ 1

2 ; 0�), or an interval (when
b 2 ÿ 1

2). When b 2 �ÿ1;ÿ 1
2�, the classical wave in the one-parameter family

of solutions can be either a shock (Case (1)) or a rarefaction (Case (2)). Note
the following limiting case in (2): when b 2 �ÿ1;ÿ 1

2� and a � b, the Riemann
solution contains only a non-classical shock, and the rarefaction is degenerate.

Observe that when b 2 �ÿ 1
2 ; 0�, the Riemann problem also admits the

classical one-shock solution, which may actually be considered as a special
case of the family (1) in which the two shock speeds coincide and therefore
the state um cannot be ``observed'' in the physical space �x; t�. Indeed, in the
range a 2 �ÿ1; 0�, the segments a � b and a� b� 1 � 0 should be identi®ed
with each other, since they correspond to physically indistinguishable
Riemann solutions.

Similarly, when b 2 �ÿ1;ÿ 1
2�, the Riemann problem admits the classical

shock-rarefaction solution as part of the family of solutions in (2). Indeed
those solutions correspond to the choice V � 3

4.
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Proof of Proposition 4.2. Consider for instance the family of two-shock so-
lutions. From the discussion in the proof of Proposition 4.1, it is known that
the intermediate state a ul lies in the region of the �a; b�-plane given by (4.8).
Since the slow shock satis®es the Rankine-Hugoniot relation, we solve for a
in (4.23) to get

a � ÿ1�
���������������
4V ÿ 3
p

2
;

we must take the ``±'' sign to stay within the allowable region of (4.8). This
establishes (4.24b).

From (4.8) we see that

ÿ12 a 2 ÿ bÿ 1; b 3 ÿ 1
2 ;ÿ12 a 2 b; b < ÿ 1
2 :

This leads to

ÿ12 a 2 min�b; jbj ÿ 1�:
From (4.25), a is clearly a decreasing function of V , so that, upon substituting
the above relation into (4.23), we get the desired range of V in (4.24). Similar
arguments apply to the family of shock-rarefaction solutions. The proof of
Proposition 4.2 is complete. (

In order to select a unique solution in the one-parameter families of
solutions, we introduce a kinetic relation based on a kinetic function, /�s1�,
depending on the wave speed, to be applied only to undercompressive shocks.
Speci®cally, we require all non-classical shocks for (4.1) to satisfy

D�ul; um� � /�s1�; �4:26�
where

D�ul; um� � 1
4 �ul ÿ um�2�u2m ÿ u2l �: �4:27�

It is convenient to rescale the kinetic relation by

/�s1� � u4l U�V ; ul�: �4:28�

For more generality, it could be assumed that the kinetics would depend
upon, say, the left state ul; however, in its application in Subsection 4.b
below, we shall show that it is actually su�cient to consider a kinetic function
of the variable V , only.

We show

Proposition 4.3. Assume that the kinetic function /�s1� is a smooth function
de®ned for all s1 2 �0;1� and all ul > 0; and satis®es the conditions

�a� /0�s1� < 0; s1 2 �0;1�;
�b� /�0� � 0;
�c� /�s1�3 ÿ 3

4 s21; s1 2 �0;1�:
�4:29�
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Consider two initial states ul > 0 and ur < 0. Then, in the family of two-wave
solutions derived in Proposition 4.2, there exists a unique solution consisting of
a non-classical shock from ul to an intermediate state denoted by
um�ul� 2 �ÿul;ÿ 1

2 u� with wave speed denoted by s1 2 �0;1� and a classical
wave from um�ul� to ur such that the kinetic relation (4.26)±(4.28) holds for the
non-classical wave. The classical wave is a shock wave if ur > um�ul� and a
rarefaction wave if ur 2 um�ul�.

We recall that the classical solution is viewed here as a special case of a
non-classical solution, in which the non-classical and the classical waves have
the same speed, so that the intermediate state cannot be observed physically.
In general, Proposition 4.3 produces a non-classical solution. It does, how-
ever, select the classical solution in the special cases that either
ur � ÿul ÿ um�ul� 2 �ÿ 1

2 ul; 0�, or V �ul� � 3
4 and ur 2 ÿ 1

2 ul.
In view of (4.29a), the function U is a monotone function of the variable

V , and therefore the condition (4.26) is equivalent to saying that the speed of
propagation for the non-classical shock is a function of the entropy dissi-
pation, i.e.,

s1 � g D� � with D � D�ul; um�; �4:30�
and g is a given monotone function of the variable D. Relations of the form
(4.30) have been introduced in the literature in material science in order to
describe propagating boundaries between di�erent phases of a material. In
that context, the function g can be determined via a series of experiments, the
entropy dissipation there being identi®ed with a force acting on the interface,
called a ``driving traction''.

Proof of Proposition 4.3. From Proposition 4.2, one knows that the admis-
sible two-wave solutions to (4.1) form a one-parameter family, with the speed
of the slow shock, normalized to V , serving as the parameter. We must now
prove that the kinetic relation U, subject to the conditions (4.29), selects a
unique value of V , everywhere in the range 3

4 2 V 2 1. The latter inequalities
are a consequence of (4.23) and (4.24), as we observed previously. This is
accomplished by showing that, for ul kept ®xed, the functions V ! D�ul; um�
and V ! /�s1; ul� have exactly one intersection point for V 2 3

4 ; 1
� �

.

Assertion. D�ul; um� is a strictly increasing function of V 2 �34 ; 1�.
Proof of the Assertion. From (4.27) we have

E�a� � D�ul; um� � 1
4 u4l �aÿ 1�2�a2 ÿ 1�;

so that
d

da
E�a� � 1

4 u4l �aÿ 1�2�2a� 1�:

Therefore E0�a� < 0 for a < ÿ 1
2, and, in particular, for ÿ12 a < ÿ 1

2. From
(4.25), a is monotonically decreasing with V ; thus, in terms of V , the entropy
dissipation function
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E�a�V �� � 1
4u

4
l V 2 � V �3� 2

���������������
4V ÿ 3
p

� ÿ 3
2

���������������
4V ÿ 3
p ÿ 9

2

� �
�4:31�

is strictly increasing throughout the interval 34 < V 2 1, and the assertion is
proved.

Since E is increasing as a function of V , any decreasing function U over
V 2 �34 ; 1� crosses the graph of E at exactly one place, provided that

u4l lim
V!3=4�

U�V ; s1�3 E�a�34�� � ÿ �34�3 u4l ;

u4l lim
V!1ÿ

U�V ; s1�2 E�a�1�� � 0:

This proves the desired result. (

We conclude the discussion with the existence result for the Riemann
problem. The notation um�ul� and V �ul� introduced in Proposition 4.3 is used
herein. We observe that the state ÿul ÿ um�ul� also satis®es the Rankine-
Hugoniot condition with ul as the left state and V �ul� as the shock speed, and
that

um�ul�2 ul 2 ÿ ul ÿ um�ul�2 0:

The following result is now immediate in view of Propositions 4.1±4.3.

Theorem 4.4. Let U be a ®xed kinetic function satisfying the conditions �4:29�.
Consider the Riemann problem with data ul > 0 and ur for the cubic scalar
equation �4:1� in the class of non-classical weak solutions in which each non-
classical shock satis®es the kinetic relation �4:26�±�4:28�. Then the Riemann
problem can be solved

(i) if ur 3 ul, by a rarefaction wave connecting monotonically ul to ur,
(ii) if ur 2 �ÿul ÿ um�ul�; ul�, by one classical shock connecting ul to ur,
(iii) if ur 2 �um�ul�;ÿul ÿ um�ul��, by one (slow) non-classical shock connecting

ul to um�ul�, followed by a (fast) classical shock connecting um�ul� to ur (the
solution is non-monotone),

(iv) if ur < um�ul�, by a (slow) non-classical shock wave connecting ul to um�ul�,
followed by (but not attached to) a rarefaction wave connecting um�ul� to ur

(the solution is monotone),

Furthermore, in the last two cases the classical solution is also available:
When ur 2 �ÿ 1

2 u;ÿul ÿ um�ul��; it connects ul to ur by a classical shock, and

when ur 2 ÿ 1
2 u, it connects ul to ÿ 1

2 u by a classical shock attached to a
rarefaction wave connecting, in turn, to ur.

No other solution exists in the class of self-similar solutions containing
shock waves or rarefaction waves. Theorem 4.4 shows, in particular, that
even after imposing the kinetic relation we are still left with two solutions. In
the range of values ur 2 ÿ ul ÿ um�ul�, an additional condition, which we call
a ``nucleation criterion'', is necessary to make the choice between a classical
solution and a non-classical one.
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The speci®c nucleation criterion must be determined on a case-by-case
basis, by utilizing information from the augmented equation. Nevertheless,
we can make several general comments: Consider a regularization of (4.1), in
which the coe�cients of di�usion and dispersion are balanced, and whose
ratio is denoted by the parameter s: For initial data �ul; ur�; the kinetic re-
lation selects a unique non-classical shock, with intermediate state
um�ul� � u�s; ul�:
(1) According to Theorem 4.4, we must have ur < ÿul ÿ u�s; ul�; in order to
have a non-classical shock. This result can be interpreted as a universal nu-
cleation criterion. Alternatively, we can view the ``phases'' not as opposite
signs of u; but rather as the following geometrical construct: Draw the chord
from ul to u�s; ul� on the graph of f �u� � u3; this chord intersects the graph at
u � ÿul ÿ u�s; ul�; and all points u to the left of this intersection can then be
interpreted as lying in a di�erent phase from ul: Even with this more re®ned
notion of what constitutes a phase, an additional nucleation criterion may
still be necessary, as we demonstrate in Section 4.b.
(2) From Proposition 3.5, we see that when the inequality in (1) holds, the
non-classical solution is always selected for the nonlinear di�usive-dispersive
regularization (1.7). For a discussion of nucleation in the Beam-Warming
scheme, we refer to Section 6.
(3) There is no nucleation of new phases from a region having a single phase.
This stands in contrast to the behavior of the 2� 2 system studied by
ABEYARATNEBEYARATNE & KNOWLESNOWLES [1, 2]. In this latter case, the Rankine-Hugoniot
condition yields an equation for s2, so that the system may have simultaneous
right- and left-moving phase-transitions. In equation (4.1), however, the non-
classical shock speed is determined uniquely by the left- and right-hand
states; thus, from a region having a single phase, uÿ; two successive non-
classical shocks, the ®rst to u� (in a di�erent phase) and the second back to
uÿ; cannot serve to open up, i.e., ``nucleate'' a region of u�-phase inside the
uÿ-phase region. Furthermore, other possible constructions taking uÿ to u�;
and back, such as a classical shock-rarefaction followed by a non-classical
shock, are all excluded by the arguments of Proposition 4.1.

Still, when ur ul < 0 we found distinct solutions, with either classical or
non-classical behavior, that are in the same spirit as those observed by
ABEYARATNEBEYARATNE & KNOWLESNOWLES.

4b. Kinetic Relations Derived from Traveling Waves

By employing a speci®c kinetic relation, we now recover the solutions
obtained as limits of vanishing viscosity-dispersion approximations. We
recall ®rst certain properties of the solution to the Riemann problem
obtained by JACOBSACOBS, MCCKINNEYINNEY, & SHEARERHEARER [15] using admissible traveling-
wave solutions to the MKdVB approximation. To restate their results in a
format convenient for our analysis, we de®ne a normalized parameter
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g � l
ul
� e���

d
p

ul
: �4:32�

We recall that the traveling-wave analysis performed in Section 3 yields a
unique solution to the Riemann problem. If we are given Riemann initial
data ul � vl and ur, along with a value of d such that (3.15) holds, then the
quantities vm�d� and vr�d; vl� are determined by (3.13), while s�d; vl� is pro-
vided by (3.14). For a value of ur just less than vl, by standard results for
vector ®elds there exists a TW connecting vl to ur, corresponding to a saddle-
node connection and having speed given by the Rankine-Hugoniot relation:

s1 � v2l � urvl � u2r � u2l 1ÿ
��
2
p
3 g� 2

9 g2
� �

: �4:33�
As ur, and along with it s1, decreases, it eventually reaches vm�d�, at

which point there is no longer a saddle-node connection. Instead, there is a
heteroclinic saddle orbit joining vl to vr�d; vl�, with speed s of (3.14). This
trajectory corresponds to an undercompressive shock wave. For vr�d; vl�
< ur < vm�d�, there is a saddle-node connection between vr�d; vl� and ur,
corresponding to an Oleinik entropy-satisfying shock; its speed is given by

s2 � v2r � vrur � u2r : �4:34�
This picture of slow and fast shocks persists as ur is decreased to vr�d; vl�,
whereupon the undercompressive shock still remains, but there is now a
rarefaction fan from vr to ur. Note that since s < 3v2r , there is an intermediate
state, um, between shock and rarefaction Ð they are no longer attached as in
the classical case.

We now state our main theorem of this subsection, which reproduces the
unique solution to the Riemann problem for MKdVB, through the use of a
speci®c kinetic relation and nucleation criterion:

Theorem 4.5. The unique solution to the Riemann problem for MKdVB (3.1) is
equivalent to allowing non-classical shocks of De®nition 1.1 for the cubic scalar
equation (4.1) which satisfy the kinetic relation (4.26) for U�V � having the
explicit dependence

/�s1� � u4l U�V � � E�a�V �� � w s1�g; ul�� �; �4:35�

where the function E�a�V �� is as in (4.31), and s1�g; ul� is given by (4.33). The
non-classical shocks must also satisfy the nucleation criteria:

(a) ur < ÿ
���
2
p

l=3;

(b) ul > 2
���
2
p

l=3:
�4:36�

Proof of Theorem 4.5. In order to select the non-classical shocks, which are
admissible TW solutions of MKdVB, we must utilize explicit information
from the augmented equation (3.1) regarding the shock speed V in the kinetic
relation (4.26). In equation (4.31), we make the substitution
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V � uÿ2l s1�g; ul� � 1ÿ
��
2
p
3 g� 2

9g
2 �4:37�

We then ®nd explicitly the right-hand side (4.35) of the kinetic relation, using
(4.37). In the course of computing the function W; we obtain���������������
4V ÿ 3
p � j 23

���
2
p

gÿ 1j � 1ÿ 2
3

���
2
p

g; by equation (4.37) and the nucleation
criterion (4.36b), respectively. A straightforward computation on (4.31) then
gives

w�s1�g; ul�� � u4l
g4

81
ÿ

���
2
p

g3

9
� 2g2

3
ÿ 2

���
2
p

g
3

 !
: �4:38�

The expression in (4.38) is also what is given by the entropy dissipation

D�ul; um�ul�� � D�ul;ÿul �
���
2
p

l=3�
for the non-classical MKdVB shock, after a brief calculation using equation
(4.27). According to Proposition 4.3, therefore, the unique right-hand state
selected by the kinetic relation is um�ul� � ÿul � 1

3

���
2
p

l:
Turning to the nucleation criterion, we see that (4.36a) is just the universal

requirement that ur < ÿul ÿ um�ul�; for the speci®c value of um in MKdVB.
The requirement that ul >

2
3

���
2
p

l is quite speci®c to MKdVB; it can only be
arrived at, as derived in (3.15), by an analysis of admissible TW solutions.
Having selected um�ul� � ÿul � 1

3

���
2
p

l by (4.35), we use this value in Theorem
4.4, which, combined with conditions (4.36a) and (4.36b), leads directly to the
Riemann solution for MKdVB in Proposition 3.1. This proves Theorem
4.5. (

5. Remarks on the Convergence to Non-Classical Weak Solutions

In this section we study the vanishing di�usive-dispersive limit for the
Cauchy problem with di�usion and dispersion kept in balance. A signi®cant
open question concerns choosing the proper functional space for which the
limiting (e! 0) Cauchy problem is well-posed. In this section we concentrate
on the question of existence. We show that while the dispersive term is potent
enough to modify the entropy criterion, it still is not an obstacle to strong
convergence: As e! 0, the solutions to the regularized equation do converge
to a weak solution of the conservation law. Uniqueness for the Cauchy
problem remains largely an open question, although our results in Section 4
provide an answer in the special case of the Riemann problem. In this section,
we provide a detailed discussion of entropy inequalities, and comment par-
ticularly on their importance in providing a priori estimates on the solutions
and in selecting non-classical solutions. In Theorem 5.1, we prove that all of
the entropy inequalities, except for the one associated with the quadratic
entropy, fail to hold in general for the non-classical solutions constructed by
examination of admissible TW solutions.

We state our result on convergence of the MKdVB approximation:
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Theorem 5.1. Let fuege>0 be a family of smooth solutions to the Cauchy
problem

@tu� @xu3 � e @xxu � d @xxxu; ue�x; 0� � ue
0�x�; �5:1�

where e > 0 and d � A e2 with A > 0 ®xed, and with the initial data satisfying

kue
0kL2�R� � kue

0kL4�R� �
���
d
p
k@xue

0kL2�R� 2 O�1�:
(1) Then the ue's remain uniformly bounded in L1�R�; L2�R� \ L4�R�� and
converge in any L1loc�Lp

loc� �22 p < 4� to a solution u 2 L1�R�; L2�R� \ L4�R��
of

@tu� @xu3 � 0:

(2) If l � lime!0 ue� �4, which (at least) belongs to the space of bounded Borel
measures, then

@t
u2

2
� @x

3 l
4

2 0: �5:2�

If ue converges strongly in L4, then l � u4 and the function u satis®es the
entropy inequality for the entropy 1

2 u2.
(3) For an arbitrary (smooth and sub-quadratic) convex entropy U , the entropy
inequality

@tU�u� � @xF �u�2 0 �5:3�
is generally not satis®ed by the limiting solution.

The proof of Part (1) Theorem 5.1 is based on the compensated com-
pactness method and follows from the seminal work by SCHONBEKCHONBEK [37]. In
particular, the relevance of the space L4 was ®rst pointed out in [37]; a notion
of Lp Young measure, necessary to apply the compensated compactness
method here, was introduced therein. Parts (2), (3) are based on the new
observation that the traveling-wave solutions associated with (5.1) satisfy the
entropy inequality (5.3) with a quadratic entropy, but do not, in general,
satisfy (5.3) with other entropies.

Lemma 5.2 below provides several a priori estimates generated by suitable
entropy functions, that is, U�u� � u2 and U�u� � u4. More precisely, we note
that (5.1) reduces to the integrable, modi®ed Korteweg-deVries equation
when e � 0. In fact, the two main energy-like estimate below, cf. (5.4) and
(5.5), are associated with the second and third time-invariants of MKdV: u2

and u4 � 2 d j@xuj2. In the next lemma, Lemma 5.3, we estimate the entropy
dissipation terms associated with an arbitrary sub-quadratic entropy. The
proof of Theorem 5.1 then is a corollary of Lemmas 5.2, 5.3.

We omit the subscript e when there is no ambiguity. For later use in this
section, it is convenient to state Lemma 5.2 in the more general case of a
nonlinear di�usion bm�w� � jwjmÿ1 for m 3 1, i.e., Lemma 5.2 below concerns

@tu� @xu3 � e @x bm�@xu� @xu� � � d @xxxu;

ue�x; 0� � ue
0�x�;

�5:4�
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where it is natural to assume now e > 0 and d � A e2=m with A > 0 ®xed.

Lemma 5.2. For every T > 0, the solutions ue of (5.4) satisfy the uniform
estimates

1

2

Z
R

u2�T � dx� e
Z T

0

Z
R

j@xujm�1 dx dt � 1

2

Z
R

u20 dx 2 O�1�; �5:5�

1

4

Z
R

u�T �4 � 2 d j@xu�T �j2
� �

dx

�
Z T

0

Z
R

3 e u2 j@xujm�1 � e d m j@xujmÿ1 j@xxuj2
� �

dx dt

� 1

4

Z
R

u40 � 2 d j@xu0j2
� �

dx 2 O�1�:

�5:6�

We mention that the estimate (5.5) is true regardless of the sign of d. The
estimate (5.6) is the crucial estimate in proving Theorem 5.1: When d > 0,
which is the sign we are interested in, it provides a uniform control on u, @xu
and, most importantly, @xxu. This would not be the case if d < 0:

Proof of Lemma 5.2. To derive the energy estimate (5.5), we multiply (5.4) by
u and we integrate over x. Integrating by parts and applying the identities

u @x bm�@xu�@xu� � � @x u bm�@xu� @xu� � ÿ j@xujm�1;
u @xxxu � @x u @xxuÿ 1

2j@xuj2
� �

;

we get

d
dt

Z
R

u2

2
dx � ÿe

Z
R

j@xujm�1 dx:

After integrating in time, we arrive at (5.4). Here and in the entirety of this
section, we tacitly assume that the solutions ue and their derivatives decay
su�ciently rapidly when jxj ! 1.

We now turn to the higher order energy-like estimate (5.6), deriving it in
two steps. We ®rst multiply (5.1) by u3 and integrate by parts:

d
dt

Z
R

u4

4
dx � ÿe

Z
R

3 u2 j@xujm�1 dxÿ d
Z

R

3 u2 @xu @xxu dx:

Using the identity 2 u2 @xu @xxu � @x u2 j@xuj2
� �

ÿ 2 u @xu� �3 and integrating in
time yields

1

4

Z
R

u�T �4 dx� 3 e
Z T

0

Z
R

u2 j@xujm�1 dx dt

� 1

4

Z
R

u40 dx� 3 d
Z T

0

Z
R

u @xu� �3 dx dt:

�5:7�

By itself, (5.7) gives no uniform control since the sign of the last term of the
right-hand side is inde®nite. To circumvent this problem in ®nding (5.5), we
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employ a second step of multiplying (5.1) by ÿd @xxu. After integrating by
parts, we have

d
dt

d
2

Z
R

j@xuj2 dx
� �

ÿ 3 d
Z

R

u2 @xu @xxu dx� e d
Z

R

m bm�@xu� j@xxuj2 dx � 0;

since d bm�w�w� �=dw � m bm�w�. Integration in time leads to

d
2

Z
R

j@xu�T �j2 dx� e d
Z T

0

Z
R

m bm�@xu� j@xxuj2 dx dt

� d
2

Z
R

j@xu0j2 dxÿ 3 d
Z T

0

Z
R

u @xu� �3 dx dt:

�5:8�

The terms without de®nite signs in (5.7) and (5.8) occur with opposite co-
e�cients, so that by adding those two equations we arrive at the estimate
(5.6). (

Lemma 5.3. Consider the equation (5.1) with e! 0; d � A e2, and A > 0 ®xed.
Let �U ; F � be an entropy pair with U having (at most) quadratic growth at
in®nity in the sense that

jU 00�u�j 2 C0 for all u; �5:9�
where C0 is a positive constant. Then

@tU�ue� � @xF �ue� � De
1 �De

2; �5:10a�
where the distributions De

1 and D
e
2 satisfy

De
1ÿ! 0 in the Sobolev space W ÿ1;2

loc �R� R��;
De

2 is a bounded Borel measure:
�5:10b�

Proof of Lemma 5.3. To bound U 0 in our estimates below we shall use the
following consequence of (5.9):

jU 0�u�j 2 C1 � C0 juj for all u;

with C1 � U 0�0�, say. From (5.1) and an integration by parts, we have

@tU�ue� � @xF �ue� � U 0�ue� e @xxue � U 0�ue� d @xxxue

� e @x U 0�ue� @xue� � ÿ e U 00�ue� j@xuej2 � d @x U 0�ue�@xxue� �
ÿ d U 00�ue� @xue @xxue

� T e
1 � T e

2 � T e
3 � T e

4 : �5:11�
We now examine each of the terms T e

i in the identity (5.11).
The terms T e

1 tend to zero in the Sobolev space W ÿ1;2
loc �R� R��. Namely,

for each h 2 W 1;2�R� R�� having a compact support, one can use the
Cauchy-Schwarz inequality and get
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hT e
1 ; hi

�� �� � ZZ
R�R�

e @x U 0�ue� @xue� � h dx dt

���� ����
2 O�1�

ZZ
R�R�

e �1 � juej� j@xuej j@xhj dx dt

2 O�e� k�1 � juej�@xuekL2
loc
�R�R��k@xhkL2�R�R��

2 O�1� e1=2 khkW 1;2�R�R�� ÿ! 0;

where we have used both energy estimates (5.5), (5.6) and the bound (5.9) on
U .

The term T e
2 is immediately found to be bounded in the space of bounded

Borel measures thanks to the entropy dissipation estimate in (5.5) and the
bound (5.9).

The term T e
3 converges to zero in W ÿ1;2

loc �R� R��. We estimate it by the
Cauchy-Schwarz inequality and the higher-order estimate (5.6), as follows:

hT e
3 ; hi

�� �� 2 d k�1 � juej�@xxuekL2�R�R�� khkW 1;2�R�R��

2 d
�
k@xxuekL2�R�R�� � sup

t2R�
kue�t�kL2�R�k@xxuekL2�R�R��

�
khkW 1;2�R�R��

2 O�1� d e d� �ÿ1=2 khkW 1;2�R�R��
2 O�e1=2 � khkW 1;2�R�R�� ÿ! 0:

We ®nally turn to the term T e
4 . For every continuous function h with compact

support, we use the Cauchy-Schwarz inequality and (5.5), (5.6) to obtain

hT e
4 ; hi

�� �� � ZZ
R�R�

d U 00�ue�@xue@xxue h dx dt

���� ����
2 O�d� k@xuekL1�R�;L2�R��k@xxuekL2�R�R��khkL1�R�R��

2 O�d� eÿ1=2 e d� �ÿ1=2 khkL1�R�R��
� O�1� khkL1�R�R��

if d � O�e2�, which proves that T e
4 is uniformly bounded as a sequence of

bounded Borel measures. Therefore (5.10) holds if we set De
1 � T e

1 � T e
3 and

De
2 � T e

2 � T e
4 . The proof of Lemma 5.4 is complete. (

Proof of Theorem 5.1. Lemma 5.3 allows us to apply the compensated
compactness method and derive TARTARARTAR's commutation relation for the
Young measure associated with the sequence

�
ue
	
. Compared with TARTARARTAR's

proof, the major di�erence here is that the relevant space is L4 rather than
L1, and so L4 Young measures are to be used. The convergence framework in
SCHONBEKCHONBEK [37] applies here in a straightforward manner. We observe that, at
this stage of the proof of Theorem 5.1, we only need Lemma 5.3 for entropies
with compact support. The result is that the solutions ue converge strongly in
any L1�Lp� space locally, 22 p < 4, to a solution u 2 L1�R�; L2�R� \ L4�R��
of the cubic conservation law.
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We now focus on the derivation of the entropy inequality, which is again
based on Lemma 5.3. Applying this lemma with U�u� � 1

2 u2, we see that

@t
1
2 ue� �2
� �

� @x
3
4 ue� �4
� �

� De
1 �De

2: �5:12�

The ®rst term De
1 converges to zero in W ÿ1;2, whereas De

2 is a (generally non-
trivial) bounded measure and so it admits a weak-? limit, denoted below by
D?

2.
In order to pass to the limit in (5.12) as e! 0, we observe that the

sequence ue� �2 converges strongly to u2, but that ue� �4 is merely bounded in L1

in view of our estimate (5.6) and therefore converges to a measure which we
denote by l. Passing to the limit in (5.12) yields

@t�12u2� � @x�34 l� � D?
2:

Lastly we check that the measure D?
2 is actually non-positive. Indeed De

2 is
given by the general formula

De
2 � ÿe U 00�ue� j@xuej2 � d U 000�ue� @xue� �3; �5:13�

so for U�u� � 1
2 u2, we simply obtain

De � ÿe U 00�ue� j@xuej2;
which is non-positive. This proves that D?

2 2 0 in the sense of bounded
measures, and (5.13) implies (5.2).

We now consider the entropy inequalities for arbitrary entropies. To es-
tablish the assertion (3) in Theorem 5.1, it is enough to treat traveling-wave
solutions to (5.1) and their limits. For an arbitrary entropy pair �U ; F � and
d � Ae2, we consider De

2 de®ned by (5.13) and show that De
2 need not con-

verge to a non-positive measure when U�u�4u2. According to the analysis
made in Sections 3 and 4 on the traveling waves, a non-classical shock
connects a left state ul >

2
3

���
2
p

l to the particular state um � ÿul � 1
3

���
2
p

l. For
a traveling-wave solution with wave speed s, it is not hard to see that the
limiting measure D?

2 generated by the sequence D
e
2 has its support on the line

x � s t and that the mass of the measure on this line is exactly

DU �ul; l� � ÿ s U�ÿul � 1
3

���
2
p

l� ÿ U�ul�
� �

� F �ÿul � 1
3

���
2
p

l� ÿ F �ul�;
�5:14�

with s � u2l ÿ 1
3

���
2
p

lul � 2
9 l2.

That DU �ul; l� is non-positive for U�u� � 1
2 u2 can be checked directly

from (5.14); one ®nds

DU �ul; l� � ÿl
2
���
2
p

3
ul ÿ l

3
���
2
p

� �3

; �5:15�

which is always negative since ul >
2
3

���
2
p

l. Of course, this result is also a direct
consequence of Part (2) of the theorem.
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First of all, we claim that given any non-classical shock, i.e., any
ul >

2
3

���
2
p

l, there exists at least one entropy for which DU �ul; l� is positive.
To show this, we use the KruzÏ kov entropy

U�u� � juÿ kj; F �u� � sgn �uÿ k��u3 ÿ k3�
with the choice k � ÿ 1

2 ul. We then have

DU �ul; l� � 3

4
u3l ÿ

���
2
p

l
3

u2l �
2l2

9
ul 3

���
2
p

l
6

u2l �
2l2

9
ul > 0:

The ®rst inequality above is obtained by substituting (3.15) for one factor of
ul in the u3l term.

It seems natural that, given any non-quadratic entropy U , there should
exist a non-classical shock having positive entropy dissipation for that en-
tropy. This is actually false, without certain restrictions on the entropy. We
verify this by using the ordinary di�erential equation (3.11) for the traveling
wave. Consider the TW ue�x; t� � v�n� associated with a non-classical shock.
Multiplying the equation (3.5) by U 0�v�, we obtain an equivalent expression
for the mass on the discontinuity of the entropy dissipation measure:

DU �ul; l� �
Z

R

ÿl U 00�v� v0� �2�U 000�v� v0� �3
� �

dn: �5:16�

This term need not be negative for general traveling waves and general
convex entropies. It is clear, however, that DU �ul; l� is actually non-positive if
U 000 is not ``too'' large, i.e., if, for instance,

U 00�u� > 0 and jU 000�u�j sup
n2R
jv0�n�j 2 l U 00�u� for all u;

because this condition ensures that the integrand of (5.16) is non-positive.
We now consider the particular family of entropies:

U�u� � u2n=2n �5:17�
with n 3 2. For this family, we show that DU �ul; l� is indeed negative.
Substituting (5.17) into (5.16) gives

DU �ul; l� � ÿ
Z

R

v0� �2 l U 00�v� ÿ U 000�v� v0� � dn

� ÿ�2nÿ 1�
Z

R

v2nÿ4 v0� �2 l v2 ÿ �2nÿ 2� v v0
ÿ �

dn:
�5:18�

We observe that the ®rst term inside the integral, with lv2, is always positive.
Furthermore, when we use the explicit tanh form (3.16) of the non-classical
MKdVB shock, we see that because ul > jurj, we have that v is an odd
function plus a positive constant; in addition, v0 is a negative even function:
ÿsech2. Therefore, ÿv v0 integrated over the real line is also positive. The
negative sign in front of the integral gives the overall negative sign for the
integrand of DU �ul; l�.
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When the convex entropy is an even function, as in (5.15), DU �ul; l�
appears to have the ``correct'' (negative) sign, but when this symmetry is
broken, as in the case of the KruzÏ kov entropy, above, or (as can be shown) by
using U�v� � eÿv in (5.14), the dissipation measure is, in general, positive.

This completes the proof of Theorem 5.1. (

We note that Part (3) of Theorem 5.1 can be generalized to equations
containing a nonlinear di�usion, especially (5.4), or to the regularization
based on the Beam-Warming equivalent equation studied in Subsection 3c.
For the equation (5.4), the preferred entropy is again the quadratic function.
While for the Beam-Warming equivalent equation, we should instead use the
quartic entropy function U�u� � 1

4 u4. Indeed if u satis®es (3.44), we get for-
mally

1
4 @tu4 � 1

7 @x3 u7 � j ~d u3 @xxxu3 � j ~d @x u3 @xxu3 ÿ 1
2 @x�u3�
ÿ �2� �

; �5:19�

where ~d � 1
3 d. The right-hand side of (5.19) is in conservation form and

should not, therefore, contribute in the limit d! 0.
We conclude by commenting that the solutions ue constructed by (5.1) do

not satisfy the maximum principle or the total-variation-diminishing prop-
erty, as was the case of the classical weak solutions. There is generally no
uniform bound, nor is a uniform bound for the amplitude available. However
an estimate for the growth of kuekL1 can be obtained as follows:

kuek2L1�R�R�� 2 2 sup
x;t

Z x

0

jue�y; t�j j@xue�y; t�j dy

2 O�1� sup
t
kue�t�kL2 k@xue�t�kL2

2 O�dÿ1=2�;
thus

kuekL1�R�R�� 2 O�dÿ1=4�:

6. Non-Classical Shocks in the Beam-Warming Scheme

The purpose of this section is to demonstrate numerically that ®nite dif-
ference schemes may generate non-classical shocks. In principle, those waves
should also be described in the framework introduced in Section 4, although
studying discrete shock pro®les needed to determine the kinetic relation in
Section 4 is more delicate than studying continuous TWs.

We focus here on two well-known, ®nite-di�erence approximations to the
cubic scalar conservation law (4.1), namely, the Lax-Wendro� (LW) and
Beam-Warming (BW) schemes. We discretize space and time using the mesh
points x � k Dx and t � n Dt, and as Dx;Dt! 0, we expect the numerical
solution, un

k , to approximate u�k Dx; n Dt�, where the function u satis®es (4.1).
For both schemes below we use the notation: f n

k � �un
k�3.

Non-Classical Shock Waves 43



Both LW and BW are second-order accurate schemes and are not total-
variation-diminishing. The latter feature seems to be a necessary requirement
for a conservative scheme to admit non-classical shocks. We recall that
monotone, ®rst-order conservative schemes have their total variation de-
creasing in time. On the other hand, the two-shock non-classical solution
represents an increase in total variation, compared with the Riemann initial
data.

Being second-order accurate is not, however, a su�cient (nor necessary)
condition for a numerical scheme (having a nonconvex ¯ux) to admit non-
classical shocks. Indeed one of the observations in this section is that solu-
tions to the Riemann problem for LW schemes do converge to the classical
Oleinik solution (cf. Section 2) as Dx;Dt! 0. Meanwhile, for a range of
initial states, ul and ur, solutions to BW schemes converge to non-classical
shocks.

We conjecture that this disparity in behavior for BW and LW is due to a
di�erence in the sign of the numerically induced dispersion, as explained
below. It would be interesting to rigourously establish that the LW scheme
converges to the classical entropy solution. On the other hand, we conjecture
that any total-variation-diminishing scheme applied to the cubic conservation
law and smooth initial data, and satisfying one entropy inequality of the form
(1.3), converges to the classical entropy solution. Indeed the results in Section
4 show that any Riemann solution that does not satisfy the Oleinik entropy
criterion is necessarily non-monotone, but such a behavior is excluded for a
total-variation-diminishing scheme.

The archetypal second-order ®nite-di�erence scheme is the LW scheme, a
conservative form of which (cf. for instance LEEVEQUEEQUE [26]) is

un�1
j � un

j ÿ
k
2

ÿ
f �un

j�1� ÿ f �un
jÿ1�

�� k2

2
Aj�1=2

ÿ
f �un

j�1� ÿ f �un
j �
�

ÿ k2

2
Ajÿ1=2

ÿ
f �un

j � ÿ f �un
jÿ1�

��
;

�6:1�

where

k � Dt
Dx
; �6:2�

is the ratio of time step to grid space, and Aj�1=2 � f 0�12 �un
j � un

j�1��, is the
derivative of the ¯ux, evaluated midway between consecutive grid points. We
performed numerical experiments on the cubic scalar equation with this
scheme, but observed only classical behavior, modulo some pre-shock os-
cillations; see Figure 6.3, for example.

Using another second-order ®nite-di�erence scheme, due to WARMINGARMING &
BEAMEAM [41], we were able to detect non-classical behavior. While the LW
scheme uses both left- and right-di�erences, BW is a second-order upwinding
scheme:
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vn
j � un

j ÿ k f n
j ÿ f n

jÿ1
� �

; �6:3a�

un�1
j � 1

2
un

j � vn
j

� �
ÿ k
2

gn
j ÿ gn

jÿ1
� �

ÿ k
2

f n
j ÿ 2 f n

jÿ1 � f n
jÿ2

� �
; �6:3b�

where gn
j � f �vn

j � is the ¯ux evaluated at the intermediate point.
HARTENARTEN, HYMANYMAN & LAXAX [9] discovered an entropy-violating shock for the

LW solution to (1.1) with the non-convex ¯ux f �u� � uÿ a u2�1ÿ u�2; a > 0,
and also one for a convex ¯ux function with f �1� � f �ÿ1�. Both of these
non-classical shocks are stationary. MAJDAAJDA & OSHERSHER [31] point out that all
examples of entropy violating shocks for LW are steady solutions of (6.1). By
contrast, the non-classical shock we observe in BW is a traveling wave, whose
speed depends, through the Rankine-Hugoniot condition, on the left- and
right-hand states.

We now motivate our conjecture that the sign of the numerical dispersion
is crucial by considering the case of a linear ¯ux.

Analysis of BW and LW Schemes for Linear Equations

For the linear advection equation

ut � Aux � 0 �6:4�
with A constant, the LW scheme reduces to

un�1
j � un

j ÿ
k A
2

un
j�1 ÿ un

jÿ1
� �

� k2 A2

2
un

j�1 ÿ 2 un
j � un

jÿ1
� �

; �6:5�

while the BW scheme becomes

un�1
j � un

j ÿ
k A
2

3 un
j ÿ 4 un

jÿ1 � un
jÿ2

� �
� k2 A2

2
un

j ÿ 2 un
jÿ1 � un

jÿ2
� �

: �6:6�

An important distinction between the modi®ed equations for LW and BW
schemes in the linear case is in the sign of their dispersion coe�cients. Taking
A > 0 (which we must do in order to satisfy the Courant-Friedriches-Lewy
(CFL) condition for the upwind BW scheme, and which will be true for our
nonlinear scheme, when f 0�u� � 3u2 3 0�, we ®nd the modi®ed equations for
both linear schemes (6.5) and (6.6) to be

ut � Aux � luxxx: �6:7�
For second-order approximations to a linear equation, there is no uxx term, as
there was in MKdVB, but the modi®ed equations for the full nonlinear
schemes on (4.1) do contain both second- and third derivative terms. For the
LW scheme,

l � 1
6�Dx�2A��kA�2 ÿ 1�2 0; �6:8�
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with the inequality coming from the CFL stability condition 2 for (6.5) is
jkAj2 1, while for the BW scheme, the dispersion coe�cient is

l � 1
6�Dx�2A�2ÿ kA��1ÿ kA�: �6:9�

The CFL condition for (6.6) is 02 kA 2 2, and so in the equation (6.9)
scheme, l > 0 for 0 < kA < 1. The usual manifestation of the sign di�erence
is that pre-shock oscillations occur in the LW scheme, while the BW scheme
has post-shock oscillations. In the context of this paper, we note that for
0 < kA < 1, we can achieve the ``interesting'' positive sign of the dispersion,
with respect to the TW solutions in Section 3, for this equivalent equation.

A similar sign discrepancy is also present in the equivalent equations of
the LW and BW scheme for the cubic conservation law (4.1). In Section 3c,
we showed that this sign di�erence allows non-classical solutions in the
equivalent equation for the BW scheme, while disallowing them in the
equivalent equation for the LW scheme. In addition, Example 4 of this sec-
tion will show that the intermediate state, following the non-classical shock,
becomes unstable at values of k well below the CFL limit, near k � 1=A,
where l changes signs in (6.9).

Numerical Experiments with Cubic Flux

In all of the ensuing numerical experiments, we deal with Riemann initial
data for the LW scheme (6.1) and the BW scheme (6.3a,b):

u0j �
ul; j 2 0;
ur; j > 0:

�
Example 1. In Figure 6.1, we plot the solution to the BW scheme (6.3) for the

choice f n
j �

ÿ
un

j

�3
and with ul � 1; ur � ÿ0:4. The classical solution would be

a shock from u � 1 to u � ÿ0:4, traveling with speed s � 0:76, but the pro®le
we observe is non-monotone, with an intermediate state, um � ÿ0:855 ul,
having formed as the single shock split in two: a slow undercompressive
shock and a fast Oleinik shock. The Rankine-Hugoniot condition is satis®ed
numerically across both shocks, as it must be according to the Lax-Wendro�
Theorem;3 see [22]. Also note the small oscillations following both shocks;
one must look closely near the undercompressive (slow) shock, however, in
order to see them.

Then in Figure 6.2, we plot the numerical solution corresponding to the
non-classical shock/rarefaction, with ul � 1; ur � ÿ1:2 Instead of having a
classical shock from ul to ÿ0:5 ul, followed immediately by a rarefaction to ur,

2 The leapfrog scheme also has l < 0; we therefore expect its behavior to be similar to

that of the LW scheme.
3 They proved that if a di�erence scheme is in conservation form (as is BW), then if it
converges boundedly to some function as Dx;Dt ! 0, that function must be a weak

solution.
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the BW scheme's pro®le jumps to an intermediate state um � ÿ0:853 ul and
remains at that level until its right-hand boundary, where x � 3 u2mt. Oscil-
lations behind the rarefaction are visible, while those behind the shock are
invisible at the scale of this plot.4

Figure 6.1. Beam-Warming scheme for F �u� � u3, k � 0:25; intermediate state=
ÿ0:8546234.

Figure 6.2. Beam-Warming scheme for F �u� � u3, k � 0:2; intermediate state =

ÿ0:85295.

4 The slight discrepancy between the values of um in Figures 6.1 and 6.2 may be due to

the small change in k between the two ®gures; see Example 4 in this regard.
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Next, in Figure 6.3, we plot the solution of the LW scheme for cubic ¯ux,
with initial data ul � 1; ur � ÿ0:4. Although there are some pre-shock os-
cillations, there is only one wave speed. We took k � 0:2 for Figure 6.3, but
similar results were obtained for other values of k, as well as for other choices
of ur < 0, which all led to classical solutions.

Example 2. Figure 6.4 shows the transition to an undercompressive shock as
ur is decreased, while ul is ®xed at 1. From Figure 6.4, it appears that the
intermediate state grows out of a post-shock overshoot. For ur � 0, there is a
relatively small overshoot, which grows as ur is decreased, until it saturates at
approximately ÿ0:855 for ÿ0:15 < ur < ÿ0:18. Further decreasing ur does
not change the value of the intermediate level. This behavior mimics that of
MKdVB, where we need ur < vm�l�, with this latter quantity given by (3.13),
in order to observe non-classical behavior. Here there is an e�ective value of
l for the BW scheme, determined by the scheme and the choices of k and ul.

Example 3. In this experiment, we observe that in analogy with the condition
(3.15) for MKdVB, ul needs to be su�ciently large, compared to the e�ective
l for the BW scheme, in order to see the formation of an intermediate state.
In Figure 6.5, we ®x the ratio of ur=ul � ÿ1

2, and we increase ul from 0.1 to
0.4. From the plotted curves, it appears that the threshold of formation for an
intermediate state is ul � 0:3; when ul > 0:3, we observe an intermediate
state, with value um � ÿ0:85ul.

Examples 2 and 3 are evidence of a nucleation criterion for the BW scheme
to have non-classical shocks. Based on the ®ndings of these examples, the
nucleation criterion here should be similar to that of MKdVB in Theorem 4.5.

Figure 6.3. Lax-Wendro� scheme for F �u� � u3, k � 0:25; ul � 1; ur � ÿ0:4.
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Example 4. Figure 6.6 displays the e�ect of variations in k � Dt=Dx scheme
on the pro®le. With ul � 1 and ur � ÿ0:4, the wave speeds satisfy 3u2 2 3.
Thus the CFL condition for the BW scheme should be k < 2

3, and, indeed, we
observe this numerically. Well before this value of k is reached, however,
large-amplitude, medium-wavelength oscillations appear in the intermediate

Figure 6.4. Transition to an undercompressive shock with decreasing ur, k � 0:25;
ur � 0; ÿ:1; ÿ:15; ÿ:18; ÿ:3.

Figure 6.5. Threshold for nonclassical shocks in the Beam-Warming scheme with

k � 0:1; Dx � 1=400; ul � 0:1 (dash), 0.2 (dot), 0.3 (solid), 0.4 (dash±dot).
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state (see the k � 0:5 curve, for example). We believe this to be connected
with the change in sign of the dispersion coe�cient for the linear scheme (6.6)
at k � 1

3.
We further observe that the pro®les appear to be converging as k! 0.

This fact may be useful in future analysis of non-classical behavior for the
BW scheme.

7. Concluding Remarks

This paper presents a new approach towards de®ning shock waves in non-
convex scalar conservation laws. Those non-classical shocks are generated by
approximation methods for (1.1) that contain both di�usion and dispersion,
e.g., the equations of the form (3.18) with di�usion and dispersion kept in
balance, or the non-total-variation-diminishing numerical schemes such as
the second-order schemes in Section 6. It should be noted that the Lax-
Wendro� and Beam-Warming schemes automatically balance di�usion and
dispersion. Similar e�ects could presumably be obtained with singular source
terms (relaxation, etc.) added to the right-hand side of the conservation law.

Understanding non-classical shocks may be based on the following
strategy: Studying the existence and the behavior of the traveling wave so-
lutions leads to the class of admissible shock waves for the conservation law.
In certain cases, the class of TW solutions is rich enough so that a solution to
the Riemann problem may be determined (Subsections 3.a and 3.b). It may
not be unique, however, and an additional criterion is then necessary. A

Figure 6.6. E�ect of k on the undercompressive shock with ul � 1:0 and ur � 0:4: k �
0.025 (dotted), 0.1 (dashed), 0.3 (dash-dot), 0.5 (solid).
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nucleation criterion, specifying when new phase boundaries can arise, is re-
quired for some phase-transition models [1] in materials science.

With any system derived from conservation principles in physics is as-
sociated one entropy function and a corresponding entropy inequality. The
more stringent requirement that the entropy dissipation should be known for
each undercompressive shock can be used to select a unique solution, the
``correct'' non-classical solution, to the Riemann problem; cf. Section 4. It
seems convenient to express this condition in the form of a kinetic relation.
To complete the description, it is necessary to derive this kinetic relation from
the properties of the TW solutions for the speci®c regularization which has
been employed. The above analysis should also provide valuable insight to-
wards deriving a priori estimates for the Cauchy problem.

This paper presented an instance where shock waves are sensitive to the
form of regularization used to approach them. Such behavior has been
pointed out recently for non-strictly hyperbolic systems (for instance, [4, 14,
27, 42] and the references contained therein) and phase-transition problems [2,
38, 40]. For other hyperbolic problems see also [6, 12, 15, 18, 19, 25]. Similar
sensitivity has been observed in other contexts, e.g., the vortex sheet problem
in incompressible ¯uid dynamics; cf. [16] and the references listed therein.
We now mention some of the outstanding problems in this area:

It should be possible to prove an analogue of Theorem 5.1 for the Beam-
Warming scheme. The existence of two special entropies, having favorable
properties for dissipation, was crucial in the analysis of Section 5. When
d < 0, we conjecture that the di�usive-dispersive approximations to the cubic
conservation law converge to the classical, entropy weak solution. On the
other hand, deriving a criterion for the solutions to the Cauchy problem, i.e.,
an extension to the kinetic relation introduced for the Riemann problem in
Section 4, is one of the main challenges. Another approach to the charac-
terization of limiting solutions may be necessary.

The stability of the traveling waves associated with non-classical shocks is
also an open question. The present paper focused on the cubic conservation
law; treatment of arbitrary non-convex ¯uxes is an open problem. It would be
interesting to see whether our De®nition 1.2 is su�cient to ensure uniqueness
for a non-cubic ¯ux. Systems are considered in HAYESAYES & LEEFLOCHLOCH [11].

Appendix. Derivation of the Beam-Warming Equivalent Equation

In this appendix, we derive the equivalent equation associated with the
Beam-Warming scheme when F �un

j � � �un
j �3. Explicitly writing out the two-

step scheme (6.3), we get

un�1
j � uj ÿ 1

2 k�u3j ÿ u3jÿ1� ÿ 1
2 k ��uj ÿ k�u3j ÿ u3jÿ1��3:

ÿ �ujÿ1 ÿ k�u3jÿ1 ÿ u3jÿ2��3 � ÿ 1
2 k�u3j ÿ 2u3jÿ1 � u3jÿ2�;

�A:1�
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where uj � un
j . Writing (A.1) in ascending powers of k leads to

un�1
j � uj ÿ 1

2 k�3u3j ÿ 4u3jÿ1 � u3jÿ2� � 3
2 k2�u2j �u3j ÿ u3jÿ1�

ÿ u2jÿ1�u3jÿ1 ÿ u3jÿ2�� � 3
2 k3�ÿuj�u3j ÿ u3jÿ1�2

� ujÿ1�u3jÿ1 ÿ u3jÿ2�2� � 1
2 k4��u3j ÿ u3jÿ1�3 ÿ �u3jÿ1 ÿ u3jÿ2�3�:

�A:2�

To calculate the modi®ed equation, we insert the Taylor series for quantities
like

ujÿ1 � uÿ Dux � 1
2 D2uxx ÿ 1

6 D3uxxx � � � � ;

where D is the spatial mesh size, into equation (A.2). De®ning the three
quantities

a � 3u2ux;

b � ÿ3
2 u2uxx ÿ 3uu2x ;

c � 1
2 u2uxxx � 3uuxuxx � u3x ;

we can compactly write the Taylor expansions for expressions from (A.2):

u3j ÿ u3jÿ1 � a D� bD2 � cD3 � O D4
ÿ �

;

u3jÿ1 ÿ u3jÿ2 � a D� 3bD2 � 7cD3 � O�D4�;

�u3j ÿ u3jÿ1�2 � a2 D2 � 2a bD3 � O�D4�;
�u3jÿ1 ÿ u3jÿ2�2 � a2 D2 � 6a bD3 � O D4

ÿ �
;

�u3j ÿ u3jÿ1�3 � a3 D3 � O�D4�;
�u3jÿ1 ÿ u3jÿ2�3 � a3D3 � O D4

ÿ �
:

We therefore have

3u3j ÿ 4u3jÿ1 � u3jÿ2 � 2aDÿ 4cD3 � O D4
ÿ �

; �A:3�

u2j �u3j ÿ u3jÿ1� ÿ u2jÿ1�u3jÿ1 ÿ u3jÿ2� � �2auux ÿ 2bu2�D2

� �ÿau2x ÿ auuxx � 6buux ÿ 6cu2�D3

� O�D4�; �A:4�

ujÿ1�u3jÿ1 ÿ u3jÿ2�2 ÿ uj�u3j ÿ u3jÿ1�2 � 4abuÿ a2ux
ÿ �

D3 � O D4
ÿ �

; �A:5�

�u3j ÿ u3jÿ1�3 ÿ �u3jÿ1 ÿ u3jÿ2�3 � O D4
ÿ �

: �A:6�
Inserting (A.3)±(A.6) into the right-hand side of (A.2) gives
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un�1
j � uÿ ad� 2cD2d� O D3d

ÿ � � 3
2 2auux ÿ 2bu2
ÿ �

d2

� 3
2 ÿau2x ÿ auuxx � 6buux ÿ 6cu2
ÿ �

Dd2 � O D2d2
ÿ �

� 3
2 4abuÿ a2ux
ÿ �

d3 � O Dd3
ÿ � � O d4

ÿ �
;

�A:7�

where d � kD is the time step. Rearrangement of (A.7) yields

un�1
j � uÿ 3u2uxd� 1

2 9u4uxx � 36u3u2x
ÿ �

d2 � 2cD2d

� 3
2 ÿau2x ÿ auuxx � 6buux ÿ 6cu2
ÿ �

Dd2

� 3
2 4abuÿ a2ux
ÿ �

d3 � O D4
ÿ �

:

�A:8�

Note that we have substituted the expressions for a and b in the two
lowest-order terms of (A.8). We now expand the left-hand side of (A.8):

un�1
j � u� dut � 1

2 d2utt � 1
6 d3uttt � � � � :

After substituting this into (A.8), cancelling the O�1� terms and dividing by d,
we get

ut � 1
2dutt � 1

6d
2uttt � O d3

ÿ � �ÿ 3u2ux � 1
2 9u4uxx � 36u3u2x
ÿ �

d� 2cD2

� 3
2 ÿau2x ÿ auuxx � 6buux ÿ 6cu2
ÿ �

Dd

� 3
2 4abuÿ a2ux
ÿ �

d2 � O D4=d
ÿ �

:

�A:9�

To compute the higher time derivatives of u, we utilize the relation

ut � ÿ3u2ux � O D2
ÿ �

; �A:10�
so that

utt � ÿ3 u2ux
ÿ �

t�O D2
ÿ �

� ÿ6uuxut ÿ 3u3 ut� �x�O D2
ÿ �

� 9u4uxx � 36u3u2x � O D2
ÿ �

:

�A:11�

Similarly, we ®nd that

uttt � ÿ36au3uxx ÿ 54u4cÿ 36a2ux � 48abu� O D2
ÿ �

: �A:12�
Note that (A.10) may be justi®ed a posteriori by inserting (A.11) into (A.9).
Expanding the O�Dd� term from (A.9) yields

ÿau2x ÿ auuxx � 6buux ÿ 6cu2 � ÿ30u3uxuxx ÿ 27u2u3x ÿ 3u4uxxx: �A:13�
Combining (A.9)±(A.13) and retaining terms up to second order gives

ut � 3u2ux � u2uxxx � 6uuxuxx � 2u3x
ÿ �

D2 ÿ 9
2 10u3uxuxx � 9u2u3x � u4uxxx
ÿ �

Dd

� 9
2 12u5uxuxx � 15u4u3x � u6uxxx
ÿ �

d2:

�A:14�
The O D2

ÿ �
term may be written in conservation form as

u2uxxx � 6uuxuxx � 2u3x � u2uxx � 2uu2x
ÿ �

x� 1
3 u3
ÿ �

xxx: �A:15�
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The O Dd� � term can also be expressed as an exact derivative:

10u3uxuxx � 9u2u3x � u4uxxx � 3u3u2x � u4uxx
ÿ �

x� 1
4�u u4
ÿ �

xx�x: �A:16�
For the O�d2� term, we similarly have

12u5uxuxx � 15u4u3x � u6uxxx � �3u5u2x � u6uxx�x � 1
4�u3 u4�xx�x:

ÿ �A:17�
Using (A.15)±(A.17) we can write (A.12) more compactly as

ut � �u3�x � D2 1
3�u3�xxx ÿ 9

8 k�u�u4�xx�x � 9
8 k2�u3�u4�xx�xg:

� �A:18�
If we restrict k to be so small that the second and third terms on the right may
be neglected in comparison to O�D2�, then the result is equation (3.44) with
j � 1.

The derivation of the modi®ed equation for the Lax-Wendro� scheme is
similar, and may be found in detail in MAJDAAJDA && OSHERSHER [30]. The modi®ed
equation for this scheme is

ut � u3
ÿ �

x� ÿ1
6D2 u3

ÿ �
xxx�O d2

ÿ �
; �A:19�

so that in equation (3.44), we actually have j � ÿ 1
2 for the Lax-Wendro�

scheme, but this factor of 1
2 can be absorbed into D.
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Note added in proof. After this paper was completed, LEVEV TRUSKINOVSKYRUSKINOVSKY

pointed out to us that A. KULIKOVSKYULIKOVSKY, in Dokl. Acad. Nauk SSR 275 (1984),
1349±1352, had introduced a kinetic relation for scalar conservation laws in a
fashion similar to that of Section 4 of the present paper.
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