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1. Introduction

The motion of an incompressible inviscid ¯uid moving in a bounded
domain of Euclidean space can be described, in a classical way, by the evo-
lution of vortex sheets separating areas where the velocity ®eld is smooth. In
this paper, we consider an ideal situation when these areas are so intricate
that, at a macroscopical level, each of them can be seen as a phase occupying
a positive portion of the physical space. The corresponding homogenized
model can be described as follows. A ®nite number M > 1 of ¯uid `phases',
labelled by a � 1; . . . ;M , moving in a bounded domain D of Rd (or in the
periodic box D � Rd=Zd ) are considered. Each `phase' has a density ®eld
qa�t; x� > 0 (where t 3 0 and x 2 D denote the time and space variables) and a
velocity ®eld va�t; x�. All phases have the same pressure ®eld p�t; x� and they
obey the following set of equationsX

a

qa � 1;

@tqa �r:ma � 0;

where

ma � qava

is supposed to be parallel to the boundary @D, and

@tva � �va:r�va �rp � 0:

Here we use the notations

@i � @

@xi
; r � �@1; . . . ; @d�; a:b �

Xd

j�1
ajbj

for a; b 2 Rd . In the present paper, we consider only potential velocity ®elds

va � rUa�t; x�;
and we substitute Bernoulli's law
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@tUa � 1
2 jrUaj2 � p � 0;

for the momentum equation. This choice is consistent, since curl-free velocity
®elds are preserved by the original equations. Indeed, in the case d � 3 for
example, the vorticity ®eld xa satis®es a conservation law

@txa �r:�xa 
 va ÿ va 
 xa� � 0;

which enforces, at least formally, that xa � 0 at all positive time t once it
holds true at time t � 0. These `homogenized vortex sheet equations'
(HVSEs) partly correspond to the `eÂ quations relaxeÂ es' due to DUCHONUCHON &
ROBERTOBERT [DR] (and coincide, in the special case d � M � 2). The HVSEs can
also be considered as a crude model for multiphase ¯ows or quasineutral
plasmas, for which we refer respectively to [CP, Appendix A] and [Gr]. They
also appear in a natural way in the variational theory of the Euler equations
as discussed in [Br3]. Notice that the classical Euler equations formally
correspond to the limit case when each `phase density' qa takes values in
f0; 1g and is the characteristic function of one of the M simply-connected
components of the portion of D delimited by the vortex sheets of the ¯uid.

In the present paper, there is no attempt to provide a rigorous derivation
of the HVSEs from the Euler equations (this is only brie¯y discussed in
Appendix 3 at the end of the paper). The main focus of interest is the
mathematical analysis of the HVSEs, and the word `homogenized' is loosely
used, without technical implication. Let us consider the initial-value problem,
when qa and rUa are prescribed at t � 0. The (formal) conservation in time
of the kinetic energy, de®ned by

K � 1

2

X
a

Z
D

qajrUaj2dx;

directly follows from the HVSEs. One of our results will show that a uniform
bound on the kinetic energy is su�cient to get a kind of weak non-linear
stability provided each qa stays bounded away from zero. However, from a
more classical point of view, the initial-value problem can be (and usually is)
linearly ill posed. For instance, assume that M � 2 and that the initial con-
ditions depend only on the ®rst spatial coordinate s � x1. We get from the
HVSEs that m1 � m2 is a constant and can be supposed to be 0, which implies
that m1m2 2 0. Then, we can reduce the system to

@tv1 � @s
1
2 v21 � v1v2
ÿ � � 0;

@tv2 � @s
1
2 v22 � v1v2
ÿ � � 0;

where

ma � qava;

which is hyperbolic when v1v2 > 0, but elliptic when v1v2 < 0. Therefore,
from the classical point of view, one cannot expect much more than a local
existence theorem for analytic initial data. Such a result can be found in [Gr]
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as a byproduct of GRENIERRENIER's work on quasineutral plasmas, in the case when
D � Rd=Zd . More precisely,

Proposition 1.1. Assume that the values of qa > 0 and Ua at time t � 0 are
prescribed analytic functions on Rd=Zd . Then, there is a positive time T such
that the initial-value problem for the HVSEs has a continuous solution in time
on �0; T � with values in a suitable set of analytic functions and qa stay bounded
away from zero.

Due to their ill-posedness, the HVSEs do not provide a fully satisfactory
homogenized model for vortex sheet motions. However, they have interesting
mathematical properties that will be discussed in the present paper. In par-
ticular, we will obtain a priori results on solutions such that

r�t� � inf
xa

qa�t; x�

stay bounded away from 0 on a time interval �0; T �. We then say that the
solution is `strongly homogenized', in complete contrast with the classical
vortex sheet solutions, when each qa takes values in f0; 1g (as discussed in
Section 1). Our main result reads as follows (in the case D � Rd=Zd ):

Theorem 1.2. Let �qa; va� be a strongly homogenized solution of the HVSEs on
the time interval �0; T �. Then the kinetic energy K is constant in time, KT 2 is
bounded by a constant depending only on D � Rd=Zd and for each d 2 �0; T =2�,
there is a constant Cd such thatZTÿd

d

Z
D

�
jrpj �

X
a

qa j@tvaj2 � jrvaj2
� ��

2 �1� K�Cd:

In particular, the strongly homogenized solutions have a ®nite life span
and, therefore, the local analytic solutions mentioned above cannot be global
in time. We believe that this phenomenon is of some interest. Our results are
indirectly obtained through an analysis of the time boundary-value problem,
when a ®nal time T > 0 is prescribed as well as the value of qa at time t � 0
and t � T . For this problem, we show a general existence result with a par-
ticular concept of so-called `variational' solutions. They are obtained by
minimizing the kinetic energy in space time, which means that, just as the
Euler equations [AK, CM, MP, MT, Se, Shn, Br2, Shn2, ...], the HVSEs can
be obtained from a variational principle. Then, the strongly homogenized
solutions of the HVSEs are characterized as those variational solutions for
which the lower bound r�t� stay bounded away from 0. For these solutions,
we show various properties, including Sobolev time and space regularity and,
with the help of recent tools in transport theory [DL], uniqueness and sta-
bility for the time boundary-value problem.

The paper is organized as follows. In the second section, we provide
di�erent de®nitions of solutions. In the third section, we prove the existence
of variational solutions for the time boundary-value problem by using clas-
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sical tools of convex analysis and previous results of mine. In the four last
sections, Sobolev regularity, uniqueness and stability results are established
for the strongly homogenized solutions.

2. Homogenized, Variational and Strongly Homogenized Solutions

In this section, di�erent notions of solutions are introduced for the
HVSEs. We denote by Q the cylinder �0; T ��D, where T > 0 is ®xed. Typi-
cally, D is the periodic cube Rd=Zd , but some of our proofs are also valid for
(or can be extended to) piecewise smooth bounded domains in Rd , which will
be explicitly mentioned.

De®nition 2.1. �qa;ma� is a homogenized solution of the HVSEs, if

02 qa 2 L1�Q�; ma � qava; va 2 L2�Q; qadt dx�; �1�X
a

qa � 1; @tqa �r:ma � 0; �2�

and there are locally integrable functions Ua and p such that

@tUa; jrUaj2 2 L1�Q; qa dt dx�; p 2 L1�Q; dt dx�; �3�

qa > 0 a.e.; va � rUa a.e.; �4�

@tUa � 1
2jrUaj2 � p � 0 a.e. �5�

Remark. Notice that (5) holds in the almost-everywhere sense (as in
KRUZHKOVRUZHKOV's theory of convex Hamilton-Jacobi equations, for which we refer
to [Li]). From (1), (2), it follows that ma 2 L2�Q� and

qa 2 C1=2��0; T �;Hÿ1�D��: �6�

Thus the value of qa�t; :� is well de®ned for all t 2 �0; T �, in particular for t � 0
and t � T , and time boundary conditions for qa are meaningful.

De®nition 2.2. �qa;ma� is a variational solution of the HVSEs if (1), (2) are
satis®ed and if, for each e > 0, there are functions Uae 2 C1� �Q�; pe 2 C0� �Q�
such that Z

Q

qajva ÿrUaej2 dx dt 2 e; �7�

Z
Q

qaj@tUae � 1
2jrUaej2 � pej2 dx dt 2 e; �8�
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@tUae � 1
2jrUaej2 � pe 2 0: �9�

Remark. This de®nition looks awkward since a limiting process involving an
e-dependent family is used. We could have introduced ad hoc weighted
Sobolev spaces, according to the measure qadt dx, but since nothing special is
assumed about the vanishing properties of qa, such spaces would have been
essentially useless. Anyway, our de®nition turns out to be very natural in the
framework of time boundary-value problems.

Proposition 2.3. If there is a constant r > 0 such that

qa�t; x�3 r a:e: �t; x� 2 Q; �10�
for all a � 1; . . . ;M , then the notions of homogenized and variational solutions
coincide. In that case, �qa;ma� is called a strongly homogenized solution (SHS)
of the HVSEs.

Proof. Let us show that a homogenized solution is a variational solution if
(10) holds. The converse part will follow from the results of Section 4. Here D
can be either the torus Rd=Zd or a convex domain in Rd containing a ball of
radius R centered at the origin. Let us introduce a nonnegative molli®er f on
R� Rd , with unit mass and support included in � ÿ 1;�1� �B, where B de-
notes the unit open ball in Rd . Then, for each e > 0, we set

Uae�t; x� �
ZZ

Ua��1ÿ g1�t � g1T s; �1ÿ g2�x� g2Rn�f�s; n� ds dn; �11�

where g1; g2 2�0; 1� will be de®ned later. Since D is convex (or is the torus), Uae

is well de®ned. By Jensen's inequality, this smooth function satis®es

jrUae�t; x�j2

2 �1ÿ g2�2
ZZ
jrUa��1ÿ g1�t � g1T s; �1ÿ g2�x� g2Rn�j2f�s; n� ds dn:

Thus, if we choose 0 < g2 < 1; 1ÿ g1 � �1ÿ g2�2, and set

pe�t; x� � �1ÿ g1�
ZZ

p��1ÿ g1�t � g1T s; �1ÿ g2�x� g2Rn�f�s; n� ds dn;

�12�
we deduce (9), pointwise, after convolution of the almost-everywhere equality

@tUa � 1
2jrUaj2 � p � 0;

which follows from (5) because of assumption (10). Finally, we choose g2 so
that Z

Q

jrUa ÿrUaej2 dx dt 2 e;
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Z
Q

j@tUae � 1
2jrUaej2 � pej2 dx dt 2 e:

This is possible since p; @tUa and jrUaj2 belong to L1�Q� (by assumption (3))
and Uae and pe are obtained by convolution of Ua and p. This completes the
proof.

3. Existence of Variational Solutions for the Time Boundary-Value Problem

In this section we show that the time boundary-value problem always has
variational solutions, characterized as minimizers for the kinetic energy.

Let us consider time boundary data �qa0; qaT � de®ned a.e. on D, with
values in �0; 1� and satisfying the compatibility conditionsX

a

qa0 �
X

a

qaT � 1;

Z
D

qaT �
Z
D

qa0 �13�

and set

I�q0; qT � � inf
1

2

X
a

Z
Q

qajvaj2 �14�

for �qa; va� satisfying (1), (2) and
qa�0; :� � qa0; qa�T ; :� � qaT : �15�

The variational theory of Euler equations [Br1, Br2] provides the following
result.

Theorem 3.1. There is a constant C � C�D� depending only on D such that, for
any time boundary data �qa0; qaT �, with values in [0,1] and compatible with
condition (13),

I�q0; qT �2 CTÿ1 �16�
and the in®mum is always achieved.

The proof relies on the concept of generalized ¯ows and is postponed
until Appendix 1. The main result of this section is

Theorem 3.2. The time boundary-value problem always has a variational so-
lution. Moreover, a family �qa;ma� satisfying (1), (2) is a variational solution
(i.e., satis®es (7), (8), (9)) if and only if

1

2

X
a

Z
Q

qajvaj2 � I�q0; qT �; �17�

where

qa0 � qa�0; :�; qaT � qa�T ; :�:
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An interesting consequence is

Proposition 3.3. There is no non-trivial global variational solution for the initial-
value problem corresponding to the HVSEs. In particular, there is no global
strongly homogenized solution.

Indeed, by Theorem 3.1, such a solution would satisfy, for any T > 0,

1

2

X
a

ZT

0

Z
D

qajvaj2dt dx 2 CTÿ1

and therefore qajvaj2 � 0 almost everywhere. The proof of Theorem 3.2. is
split into the next two subsections.

First step: a precise de®nition of kinetic energy. Let �q;m� be a pair of Borel
bounded measures on �Q respectively taking values in R and Rd and de®ne

K�q;m� � sup

Z
Q

�hq� w:m�; �18�

where �h;w� is any pair of continuous function on �Q respectively taking values
in R and Rd , subject to

h� 1
2jwj2 2 0;

everywhere in �Q.

Proposition 3.4. If q is a nonnegative measure and m is absolutely continuous
with respect to q with a Radon-Nikodym derivative v 2 L2�Q; q�, then

K�q;m� �
Z
Q

1
2jvj2q: �19�

Otherwise K�q;m� � �1.

Proof. (i) If q is not nonnegative, there is h0 2 C0� �Q� such that h0 3 0 andR
Q

h0q < 0. Then, for each n > 0, we set h � ÿnh0 and w � 0. Thus

K�q;m�3
Z
Q

hq � ÿn
Z
Q

h0q! �1

when n! �1.

(ii) If m is not absolutely continuous with respect to q, then, for every n > 0,
there is w 2 C0� �Q; Rd� such thatZ

Q

jwj2q 2 1;

Z
Q

w:m 3 n:

Then, with h � ÿ1
2 jwj2,
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K�q;m�3 nÿ 1
2! �1:

(iii) If m � vq for some v 2 L1�Q; q�, then
K�q;m� � sup

Z
Q

�w:vÿ 1
2jwj2�q;

for all v 2 C0� �Q; Rd� with values in Rd , and

K�q;m� �
Z
Q

1
2jvj2q 2 �0;�1�

immediately follows, which completes the proof.

Second step: the duality principle. In this subsection we prove Theorem 3.2 by
using classical tools of convex analysis. Let us assume that �qa0; qaT � are
®xed, For any family �qa; ma�, the constraints (1), (2) and the boundary
conditions (15) can be expressed in integral form byZ

Q

�@tf qa �rf :ma� �
Z
D

�qaT �x�f �T ; x� ÿ qa0�x�f �0; x�� dx; �20�

for all f 2 C1� �Q� and Z
Q

�X
a

qa ÿ 1
�

q � 0 �21�

for all q 2 C0� �Q�.
Notice that the simple combination of qa 3 0 (which automatically fol-

lows from K�qa;ma� < �1) and (21) (which means that
P

a qa is the Le-
besgue measure) implies that each qa is absolutely continuous with respect to
the Lebesgue measure and can be considered as a Lebesgue nonnegative
measurable function with values in [0,1].

According to Theorem 3.1, there is a family �qa;ma� such that (20) and
(21) are satis®ed together with K�qa;ma� < �1. (Otherwise I�q0; qT � would
be in®nite.) Thus, we can rephrase (20) and (21) asZ

Q

��qa ÿ qa�@tf � �ma ÿ ma�:rf � � 0; �22�

for all f 2 C1� �Q� and X
a

Z
Q

�qa ÿ qa�q � 0 �23�

for all q 2 C0� �Q�, where �qa; ma� belongs to the dual space E0 of

E � �C0� �Q; R� � C0� �Q; Rd��M :
So we are looking for a solution �qa;ma� 2 E0 of
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X
a

K�qa;ma� � I�q0; qT �; �24�

subject to (22) and (23).
To study this minimization problem, it is convenient to introduce the

following lower semicontinuous convex functions on E with values in
� ÿ1;�1�,

A�a; b� � 0 if aa � 1
2jbaj2 2 0; �25�

and A�a; b� � �1 otherwise, for all �a; b� 2 E,

B�a; b� �
X

a

Z
Q

�qaaa � ma:ba� �26�

if there are Ua 2 C1� �Q� and p 2 C0� �Q� such that

aa � @tUa � p � 0; ba �rUa � 0; �27�
and B�a; b� � �1 otherwise. The Legendre-Fenchel-Moreau transforms of A
and B are respectively given by

A���qa;ma�� � sup

(X
a

Z
Q

�qaaa � ma:ba�; aa � 1
2jbaj2 2 0

)
�28�

�
X

a

K�qa;ma�

(as follows from de®nition (18)) and

B���qa;ma�� � sup
X

a

Z
Q

��qa ÿ qa�aa � �ma ÿ ma�:ba� �29�

where �aa; ba� 2 E are subject to (27). Thus

B���qa;ma�� � sup

(X
a

Z
Q

��qa ÿ qa��@tUa � p� � �ma ÿ ma�:rUa�;

p 2 C0� �Q�; Ua 2 C1� �Q�
)
;

�30�

which is 0 if (22) and (23) are satis®ed, and �1 otherwise. It follows from
(29), (30) that

I�q0; qT � � inf A���qa;ma�� � B���qa;ma��; �qa;ma� 2 E0f g: �31�
Both A and B are convex, lower semicontinuous functions from E into
� ÿ1;�1�. Moreover, there is a point �aa; ba�, namely

aa � ÿ1; ba � 0;

where B is continuous (for the sup norm) and A is ®nite. Thus, we can use
Rockafellar's duality theorem, as stated in [Brez], and infer that
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I�q0; qT � � minfA���qa;ma�� � B���qa;ma��; �qa;ma� 2 E0g
� supfÿA�a; b� ÿ B�ÿa;ÿb�; �a; b� 2 Eg: �32�

More concretely, we get

I�q0; qT � � sup
X

a

Z
Q

�qa�@tUa � p� � ma:rUa� �33�

where p 2 C0� �Q�; Ua 2 C1� �Q� are subject to
@tUa � 1

2jrUaj2 � p 2 0:

Notice that Rockafellar's theorem ensures that the in®mum in (32) is
achieved by some solution �qa;ma�.

Such a solution is fully characterized by (22)±(24), which precisely means
(because of (33)) that, for each e > 0, there are pe 2 C0� �Q� and Uae 2 C1� �Q�
such that

@tUae � pe � 1
2jUaej2 2 0;

1

2

X
a

Z
Q

qajvaj2 2
X

a

Z
Q

�qa�@tUae � pe� � ma:rUae� � e:

Because of (22) and (23), the last inequality means that

1

2

X
a

Z
Q

qajvaj2 2
X

a

Z
Q

�qa�@tUae � pe� � ma:rUae�;

or, equivalently,

1

2

X
a

Z
Q

qajva ÿrUaej2 �
X

a

Z
Q

qaj@tUae � pe � 1

2
jrUaej2j2 e;

which exactly means that �qa;ma� is a variational solution. This completes the
proof of Theorem 3.2.

4. Some Preliminary Properties of Variational Solutions

In this section, useful information on variational solutions is obtained
through Lagrangian deformations of the density and impulsion ®elds. For a
general discussion on variational principles and the rigorous derivation of the
equations of ¯uid mechanics equation, we refer to [Se].

Theorem 4.1. Let �qa;ma � qava� be a variational solution. ThenX
a

�
@t�qavai� �

X
j

@j�qavajvai�
�� @ip � 0 �34�
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holds in the distributional sense on Q where p is a distribution uniquely de®ned
(up to a distribution depending on t only) by the pressure equation

ÿDp �
X
aij

@2ij�qavajvai�: �35�

The proof is split into four subsections.

First step: Lagrangian variations. Let c be a smooth map from �Q into D such
that for all t 2 �0; T �; x! c�t; x� is a di�eomorphism of D, there is d0 2 �0;
T=2� such that

c�t; x� � x 8 t 2 �0; d0� [ �T ÿ d0; T � �36�
and t! c�t; :� takes values in a small neighborhood of the identity map for
the C0 topology. Such non-trivial maps exist and can be constructed in the
following way. Let d be a small parameter. Let h be a compactly supported
smooth function on �0; 1� and w be a compactly supported smooth vector ®eld
on D. Then, we set

c�t; x� � expdh�t��w��x�; �37�

for all t 2 �0; 1�; x 2 D, where t! expt�w� denotes the ¯ow associated with w
through the ordinary di�erential equation dx=dt � w�x� such that
exp0�w��x� � x. We will use this type of map in some of the next subsections.
Let us now consider a di�eomorphism g of �0; T � such that g�t� ÿ t is com-
pactly supported in �0; T �. We denote by C the pair �c; g�.

If �qa;ma� is a variational solution, we ®rst denote

qg
a�t; x� � qa�g�t�; x�;

mg
a�t; x� � ma�g�t�; x�g0�t�;

vg
a�t; x� � va�g�t�; x�g0�t�

and then de®ne a Lagrangian variation �qC
a ;m

C
a � by setting, for all

f 2 L1�Q�; g 2 L2�Q�, respectively taking values in R and Rd ,Z
Q

f �t; x�qC
a �t; x� dx dt �

Z
Q

f �t; c�t; x��qg
a�t; x� dx dt; �38�

Z
Q

Xd

j�1
gj�t; x�mC

aj�t; x� dx dt

�
Z
Q

Xd

j�1
gj�t; c�t; x���@tcj�t; x�qg

a�t; x� �
Xd

k�1
@kcj�t; x�mg

ak�t; x�� dx dt:

�39�
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Notice that

Proposition 4.2. qC
a and mC

a are well de®ned respectively in L1�Q� and L2�Q�,
and satisfy the continuity equation

@tq
C
a �r:mC

a � 0; �40�
as well as the time boundary conditions

qC
a �t; :� � qa�t; :�; t � 0; T : �41�

More precisely, we get, through straightforward computations, the inte-
gral formulation of (40), (41), namelyZ

Q

@tf �t; x�qC
a �t; x� � rf �t; x�:mC

a �t; x� dx dt

�
Z
D

�f �T ; x�qa�T ; x� ÿ f �0; x�qa�0; x�� dx
�42�

for all f 2 C1� �Q�. (Use the chain rule to computeZ
Q

d
dt
� f �t; c�t; x���qg

a�t; x� dt dx

as well as de®nitions (38), (39).)

Second step: a variational estimate.

Proposition 4.3. Let �qa;ma� be a variational solution. Then, for any La-
grangian variation C,Z

Q

�qC
a ÿ qa�pe � 1

2

Z
Q

qg
aj@tc� Dc:vg

a ÿrUae � cj2

2 e� 1

2

Z
Q

qg
aj@tc� Dc:vg

aj2 ÿ
1

2

Z
Q

qajvaj2:
�43�

In the special case when g�t� � t, a summation with respect to a yieldsZ
Q

�pe � cÿ pe� � 1

2

X
a

Z
Q

qaj@tc� Dc:va ÿrUae � cj2

2 eM � 1

2

X
a

Z
Q

qaj@tc� Dc:vaj2 ÿ 1

2

X
a

Z
Q

qajvaj2;
�44�

and, in particular,Z
Q

�pe � cÿ pe�2 eM � 1

2

X
a

Z
Q

qaj@tc� Dc:vaj2 ÿ 1

2

X
a

Z
Q

qajvaj2: �45�

Y. BRENIERRENIER330



Proof. Using de®nitions (38), (39), we get the following identities, where we
use the notation �Dc�kj � @kcj,Z

Q

�qC
a ÿ qa�@tUae � ÿ

Z
Q

�mC
a ÿ ma�:rUae

� ÿ
Z
Q

rUae � c:�qg
a@tc� Dc:mg

a� �
Z
Q

ma:rUae

� 1

2

Z
Q

qg
aj@tc� Dc:vg

a ÿrUae � cj2 ÿ 1

2

Z
Q

qg
aj@tc� Dc:vg

aj2

ÿ 1

2

Z
Q

qg
ajrUae � cj2 �

Z
Q

ma:rUae:

We also haveZ
Q

�qC
a ÿ qa�jrUaej2 �

Z
Q

qg
ajrUae � cj2 ÿ

Z
Q

qajrUaej2:

Thus,Z
Q

qC
a ÿ qa

ÿ �
@tUae � 1

2jrUaej2
� �
� 1

2

Z
Q

qg
aj@tc� Dc:vg

a ÿrUae � cj2 ÿ 1

2

Z
Q

qg
aj@tc� Dc:vg

aj2

ÿ 1

2

Z
Q

qajrUae ÿ vaj2 � 1

2

Z
Q

qajvaj2:

Since �qa;ma� is a variational solution, we get from (8) and (9) that

e 3
Z
Q

qC
a ÿ qa

ÿ ��pe � @tUae � 1
2 jrUaej2�:

(Notice that we use both (8) and (9) to get this estimate.) We also have

1

2

Z
Q

qajrUae ÿ vaj2 2 e:

This completes the proof.

Third step: existence of a pressure ®eld. In this subsection, we prove the weak
compactness of the family �pe�. By using a re®ned version of Moser's Lemma
due to DACOROGNAACOROGNA & MOSEROSER [DM], as in [Br2], it is possible to ®nd a Ck;d-
type norm jjj:jjj on �Q and a constant e0 > 0 so that one can associate with any
real-valued function b 2 C1c �Q� satisfying jjjbjjj2 e0 and
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Z
D

b�t; x� dx � 0 8 t 2 �0; T �; �46�

a map c satisfying (36),Z
Q

f �t; c�t; x�� dx dt �
Z
Q

f �t; x��1� b�t; x�� dt dx 8 f 2 L1�Q�; �47�

jj@tcjjL1�Q� � jjDcÿ I jjL1�Q�2 Cjjjbjjj;
where I denotes the identity matrix and C � C�D� is a constant depending
only on D.

The result of Proposition (4.3), namely (45), shows thatZ
Q

peb 2 eM � 1
2

X
a

Z
Q

qa�j@tc� Dc:vaj2 ÿ jvaj2�:

Thus, Z
Q

peb 2 eM � Cjjjbjjj
�
1�

X
a

Z
Q

qajvaj2
�
; �48�

provided that jjjbjjj is small enough. This proves that �pe� is bounded in the
distributional sense, provided we perform the normalizationZ

Q

pe�t; x� dx � 0 8 t 2 �0; T �; �49�

which is possible (by subtracting out of the Uae a ®xed function of t). Thus
�pe� is weakly compact and has a cluster point p.

Fourth step: completion of proof of Theorem 4.1. Let us consider a convergent
subsequence of �pe� (still labelled by e). We can now pass to the limit in
inequality (45) for all maps c satisfying (36). We haveZ

Q

�pe � cÿ pe� � hpe; bci

where h:; :i denotes the distribution bracket and 1� bc is the (smooth) inverse
Jacobian determinant of c implicitly de®ned byZ

Q

f �t; x��1� bc�t; x�� dt dx �
Z
Q

f � c �50�

for all smooth functions f . Thus, from (45) we get

hp; bci2
1

2

X
a

Z
Q

qaj@tc� Dc:vaj2 ÿ 1

2

X
a

Z
Q

qajvaj2: �51�

Y. BRENIERRENIER332



Let us now consider c of the form (37) and let d go to zero. Since
c�t; x� � expdh�t��w��x�, we deduce, through straightforward Taylor expan-
sions with respect to d! 0, that

jbc ÿ dhr:wj2 Cd2;

1

2

X
a

Z
Q

qaj@tc� Dc:vaj2 ÿ 1

2

X
a

Z
Q

qajvaj2 �52�

2 d
X

a

Z
Q

qa�hva:�Dw:va� � h0w:va� � Cd2
X

a

Z
Q

qa�1� jvaj2�;

where C � C�h;w� depends only on h and w. It follows that

hp; hr:wi �
X

a

Z
Q

qa�hva:�Dw:va� � h0w:va�; �53�

1

2

X
a

Z
Q

qaj@tc� Dc:vaj2 ÿ 1

2

X
a

Z
Q

qajvaj2

2 dhp; hr:wi � Cd2
X

a

Z
Q

qa�1� jvaj2�:
�54�

Notice that the uniqueness of p implies that the entire family �pe� weakly
converges to p, provided that p is properly normalized. This completes the
proof of Theorem 4.1.

A second variational estimate. Let us now get back to inequality (44) in the
case when c is of the form (37) and w is divergence-free. The right-hand side
of (44) can be estimated thanks to (54), which yields

Proposition 4.4. Let �qa;ma� be a variational solution and let c�t; :� � expdh�t� w
where w is divergence-free. Then

1

2

X
a

Z
Q

qaj@tc� Dc:va ÿrUae � cj2 2 eM � Cd2; �55�

where

C � C�h;w�
X

a

Z
Q

qa�1� jvaj2�:

5. Regularity of Strongly Homogenized Solutions

In this section, it is shown, when D � Rd=Zd , that strongly homogenized
solutions (SHSs) have regularity properties, namely, that the time and space
derivatives of the velocity ®elds belong to L2loc��0; T �; L2�D��.
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Theorem 5.1. Let �qa;ma � qava� be a variational solution of the HVSEs such
that

qa�t; x�3 r

a.e. for some constant r > 0. Then the kinetic energy

K � 1

2

X
a

Z
D

qajrUaj2

is time independent and

va � rUa; @tUa � 1
2 jrUaj2 � p � 0

hold a.e. in Q, where

@tUa;rUa 2 L2loc��0; T �;H 1�D��; rp 2 L1loc��0; T �; L1�D��: �56�
Moreover, for each a,

@t�qavai� �
X

j

@j�qavaivaj� � qa@ip � 0 �57�

holds in the distributional sense and, for each d0 2�0; T =2�, there is a constant
C � C�d0� such thatZ Tÿd0

d0

Z
D

�
jrpj �

X
a

qa�j@tvaj2 � jDvaj2�
�

2 �1� K�C: �58�

Remark. This result con®rms that a variational solution is `strongly ho-
mogenized' provided that qa�t; x�3 r holds a.e. for some constant r > 0 and
completes the proof of Proposition 2.3.

Proof of Theorem 5.1.

First step: Let �qa;ma� be a variational solution. It follows from (7), (8) that

rUae ! va in L2�Q�;

@tUae � 1
2 jrUaej2 � pe ! 0 in L1�Q�:

Since pe ! p in the distributional sense, as shown in the previous subsection,
this shows that

@tUae ! ÿp ÿ 1
2 jvaj2

in the distributional sense.This implies the existence of a distribution Ua such
that

Uae ! Ua;

@tUa � 1
2 jrUaj2 � p � 0: �59�
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Second step: an estimate for the time derivatives. Let us consider a degenerate
variation C when c�t; x� � x. Then qC

a � qg
a, mC

a � mg
a and

hqg
a ÿ qa; pi �

1

2

Z
Q

qg
ajva ÿ vg

aj2 2
1

2

Z
Q

qg
ajvg

aj2 ÿ
1

2

Z
Q

qajvaj2

follows from (43), once e! 0. In particular,

1

2

X
a

Z
Q

qg
ajva ÿ vg

aj2 2
1

2

X
a

Z
Q

qg
ajvg

aj2 ÿ
1

2

X
a

Z
Q

qajvaj2;

since
P

a qg
a �

P
a qa � 1 almost everywhere. FromX

a

Z
Q

qg
ajvg

aj2 �
X

a

Z
Q

qa�g�t�; x�jva�g�t�; x�j2g0�t�2 dt dx

�
X

a

Z
Q

qa�t; x�jva�t; x�j2g0�gÿ1�t�; dt dx;

we deduce thatX
a

Z
Q

qg
ajva ÿ vg

aj2 2
X

a

Z
Q

qajvaj2�g0 � gÿ1 ÿ 1�:

By choosing g�t� � t � dh�t�, where h 2 C1c ��0; T �� and letting d! 0, we infer
from a straightforward Taylor expansion that

1

2

X
a

Z
D

qa�t; x�jva�t; x�j2 dx�i�

is time independent (and subsequently denoted by K),
(ii) for all d0 2�0; T=2�,

X
a

ZTÿd0

d0

Z
D

qa�t; x�jva�t � d; x� ÿ va�t; x�j2 dx dt 2 CKd2;

where C depends only on d0. So, it follows that, for all SHSs, @tva belongs to
L2loc��0; T �; L2�D�� andX

a

ZTÿd0

d0

Z
D

qa�t; x�j@tva�t; x�j2 dx dt 2 C�d0�K: �60�

Third step: an estimate for the space derivatives. Here, our proof is restricted
to the case of the torus D � Rd=Zd .We set

g�t� � t; w�x� � a;
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where a is a ®xed vector of Rd with length 1, and we assume that h�t� � 1
when 0 < d0 2 t 2 T ÿ d0 < T , where d0 is ®xed in �0; T=2�. If we get back to
inequality (44), we can pass to the limit and obtainX

a

Z
Q

qaj@tc� Dc:va ÿ va � cj2 2
X

a

Z
Q

qaj@tc� Dc:vaj2 ÿ
X

a

Z
Q

qajvaj2:

Indeed, w is divergence-free; thus each c�t; :� is Lebesgue measure-preserving
and

Uae � c! va � c

in L2�Q�. Since, we explicitly have
c�t; x� � x� dh�t�a;

we can directly compute the di�erent terms of this inequality and obtain, for
the right-hand sideX

a

Z
Q

qa�j@tc� Dc:vaj2 ÿ jvaj2�

�
X

a

Z
Q

qa�t; x��jdh0�t�a� va�t; x�j2 ÿ jva�t; x�j2� dt dx

� d2jaj2
X

a

Z
Q

qa�t; x�jh0�t�j2 dt dx

� d2jDj
ZT

0

jh0�t�j2 dt dx;

where jDj � 1 denotes the Lebesgue measure of D � Rd=Zd . (Notice thatX
a

Z
Q

qa�t; x�va�t; x�:ah0�t� dt dx � 0

is necessarily null, according to Proposition 4.1 and equation (34).) For the
left-hand side, we haveX

a

Z
Q

qaj@tc� Dc:va ÿ va � cj2

�
X

a

Z
Q

qa�t; x�jdh0�t�a� va�t; x� ÿ va�t; x� dh�t�a�j2dt dx:

Finally we get

X
a

Z
Q

qa�t; x�jh�t�Dva�t; x�:aÿ h0�t�aj2 dt dx 2
ZT

0

jh0�t�j2 dt dx �61�
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for all a in the unit sphere and all h compactly supported in �0; T �, which leads
to ZTÿd0

d0

Z
D

qajDvaj2 2 C�d0�;

and shows that va 2 L2loc��0; T �;H1�D��.

Fourth step: regularity of the pressure ®eld. Since �qa;ma� is an SHS, we have
@tUa � 1

2 jrUaj2 � p � 0

almost everywhere, which, after di�erentiating with respect to x, leads to

@tvai �
X

j

@j�vaivaj� � ÿ@ip �63�

since va � rUa. Thus, we deduce from estimates (60) and (62) that
rp 2 L1loc�L1�D��. In addition, since

P
a qa � 1, we get

ÿ@ip �
X

a

qa

�
@tvai �

X
j

@j�vaivaj�
�
;

which shows that, for all d0 2�0; T=2�,ZTÿd0

d0

jrpj2
X

a

ZTÿd0

d0

Z
D

qa�j@tvaj � 2jvajjDvaj� dx dt 2 �1� K�C; �64�

where K denotes the kinetic energy and C � C�d0� depend only on d0.
Moreover, since @tUa,rUa 2 L2loc��0; T �;H 1�D��; qa 2 C1=2��0; T �;Hÿ1�D��;

the following identities are meaningful:

@t�qa@iUa� �
X

j

@j�qa@iUa@jUa� � @iUa

�
@tqa �

X
j

@j�qa@jUa�
�

� qa

�
@t@iUa �

X
j

@j�@iUa@jUa�
�

� qa

�
@t@iUa �

X
j

@j�@iUa@jUa�
�
:

(since @tqa �r:�qarUa� � 0)

� qa

�
@tvai �

X
j

@j�vaivaj�
�

(since va � rUa)

� ÿqa@ip

(because of (63)), which shows (57) and completes the proof.
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Remarks. (i) Notice that the estimate onrp given by (64) does not involve the
lower bound r of the density ®elds.
(ii) The regularity result for p can be improved by using Sobolev's embedding
theorem. Indeed

va � rUa 2 L2loc��0; T �; Ls�D��; �65�

for s � 2�, where 1ÿ d=2 � ÿd=2� if d > 2, and for all s < �1 otherwise.
Then, we ®nd that rp belongs to Lr

loc�Q� for r � d=�d ÿ 1� when d 3 2 and
all r < 2 if d � 2.

6. Uniqueness of Strongly Homogenized Solutions

In this section, we prove a uniqueness result for strongly homogenized
solutions:

Theorem 6.1. Let �qa;ma� be a strongly homogenized solution. Then there is no
other variational solution �q0a;m0a� such that

q0a�0; :� � qa�0; :�; q0a�T ; :� � qa�T ; :�: �66�

Proof. Let �q0a;m0a � q0av0a� be a variational solution such that (66) holds.
Then, by Theorem (3.2.), both �q0a;m0a� and �qa;ma� are minimizers for
I�q0; qT �. So, for each e > 0, there are pe and Uae such that

1

2

X
a

Z
Q

qajvaj2 � 1

2

X
a

Z
Q

q0ajv0aj2 � I�q0; qT �

2
X

a

Z
Q

qa��@tUae � pe� � ma:rUae� � e;

which implies (just as in the last subsection) that

1

2

X
a

Z
Q

qajva ÿrUaej2 �
X

a

Z
Q

qaj@tUae � pe � 1
2 jrUaej2j2 e;

1

2

X
a

Z
Q

q0ajv0a ÿrUaej2 �
X

a

Z
Q

q0aj@tUae � pe � 1
2 jrUaej2j2 e :

Since �qa;ma � qava� is strongly homogenized, it follows that
rUae ! va

in L2�Q� and, a fortiori, in L2�Q; q0a dt dx�. Thus
va � v0a q0a-a:e: �67�

in Q and q0ava � q0av0a holds Lebesgue almost everywhere in Q. Therefore, q0a
satis®es

Y. BRENIERRENIER338



@tq
0
a �r:�q0ava� � 0 �68�

in the distributional sense. Now, we observe that, by Theorem 5.1., va belongs
to L2loc��0; T �;H 1�D�� and L2�Q� and that

@tqa �r:�qava� � 0

holds in the distributional sense with

0 < r 2 qa�t; x�2 1

almost everywhere in Q. This is enough, as shown in Appendix 2, by using the
tools of the DIIPERNAERNA & LIONSIONS theory on ordinary di�erential equations [DL],
to show that equation (68) has a unique solution once qa�0; :� is prescribed.
Thus,

q0a � qa

holds almost everywhere in Q, which, together with (67), completes the proof.

7. Stability of Strongly Homogenized Solutions

In this section, we prove that uniformly strongly homogenized solutions
are stable with respect to weak convergence.

Theorem 7.1. Let �qn
a;m

n
a � qn

avn
a� be a sequence of strongly homogenized so-

lutions on Q such that

0 < r 2 qn
a

holds a.e. on Q, where r > 0 is a ®xed constant. Then there is a strongly
homogenized solution �qa;ma � qava� and a subsequence, still labelled by n,
such that

qn
a ! qa; vn

a ! va;

respectively in L1�Q� weak-* and strongly in L2loc�L2�D��:
Proof. According to Theorem 5.1 and estimate (58), for all d0 2�0; T=2�, there
is a constant C � C�d0� > 0 such that

X
a

ZTÿd0

d0

Z
D

qn
a�j@tv

n
aj2 � jDvn

aj2� dx dt 2 �1� Kn�C;

where the kinetic energy Kn is bounded by C�D�Tÿ1, according to Theorem
3.1.

Thus (up to a subsequence extraction), vn
a strongly converges to va in

L2loc�L2�D��. Since
r 2 qn

a 2 1;

we also have

qn
a ! qa

A Homogenized Model for Vortex Sheets 339



in L1�Q� weak-*. Thus
@tqa �r:�qava� � 0;

X
a

qa � 1;

immediately follow from

@tq
n
a �r:�qn

av
n
a� � 0;

X
a

qn
a � 1:

Since �qn
a;m

n
a� are strongly homogenized, and therefore variational solu-

tions, there are pn and Un
a, respectively in C0� �Q� and C1� �Q� such that

@tU
n
a � pn � 1

2 jUn
aj2 2 0;

1

2

X
a

Z
Q

qn
ajvn

a ÿrUn
aj2 �

X
a

Z
Q

qn
aj@tU

n
a � pn � 1

2 rUn
a

�� ��2j ! 0;

which implies that

1

2

X
a

Z
Q

qajva ÿrUn
aj2 �

X
a

Z
Q

qaj@tU
n
a � pn � 1

2 rUn
a

�� ��2j ! 0:

Thus �qa;ma � qava� is a variational solution, which completes the proof.

8. Appendix 1: Generalized Flows and Variational Solutions

In this subsection, we prove Theorem 3.1 by using some results obtained
in [Br1, Br2] with the concept of generalized ¯ows. It is shown, in addition,
that the variational solutions (and, in particular, the strongly homogenized
solutions) are minimizers not only in the framework of Theorem 5.1, but also
in the framework of generalized ¯ows.

8.1. A Review of Generalized Flows

The proof of Theorem 3.1 is based on the concept of generalized ¯ow
[Br1, Br2, Shn2] related to Young's measures for which we refer to [Ta, Yo]. I
recently discovered that SHELUKHINHELUKHIN [She] introduced this concept earlier (in a
slightly di�erent context). A generalized ¯ow l is a bounded nonnegative

Borel measureon the set D
�0;T �

of all paths z with values in D. This in®nite
product space is compact (by Tychonov's theorem) for the product topology,
and the set of all bounded Borel measures does not di�er from the dual space
of all continuous function z! f �z� equipped with the sup-norm. In partic-
ular, for all integer k, all sequence 02 t1 < � � � < tk 2 T , and all f 2 C0�Dk�Z

f �z�t1�; . . . ; z�tk��l�dz�

is well de®ned. Let us now introduce
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e�z� � 1

2

ZT

0

jz0�t�j2 dt;

if z 2 H 1��0; T �; D�, with e�z� � �1 otherwise, which de®nes a lower semi-

continuous (and therefore Borel measurable) function D
�0;T � ! �0;�1�. Only

generalized ¯ows l such that Z
e�z�l�dz� <1

are considered. Each sequence �ln� of generalized ¯ows such that

sup
n

Z
e�z�ln�dz� <1

has a subsequence, still denoted by �ln�, converging to a generalized ¯ow l,
for the weak-* topology, which means that for all integer k, all sequence
02 t1 < � � � < tk 2 T , and all f 2 C0�Dk�Z

f �z�t1�; . . . ; z�tk��ln�dz� !
Z

f �z�t1�; . . . ; z�tk��l�dz�:

With each generalized ¯ow l, and for each t 2 �0; T �, we can associate the
projection ljt de®ned byZ

D

f �x�ljt�dx� �
Z

f �z�t��l�dz�; �69�

for all f 2 C0� �Q�.
Subsequently, we consider only generalized ¯ows such that lt is abso-

lutely continuous with respect to Lebesgue measure; the density is denoted by
q�t; :�.

Then, we associate with l a vector-valued Borel measure m on �Q de®ned
by Z

Q
g:m �

Z  ZT

0

z0�t�:g�t; z�t�� dt

!
l�dz� �70�

for all g 2 C0� �Q; Rd�, and we check (just as in Proposition 3.4) that m is
absolutely continuous with respect to q dt dx and can be written

m � qv; v 2 L2�Q; q dt dx�;
and

1

2

Z
Q

qjvj2 2
Z

e�z�l�dz�: �71�

(Let us sketch the proof: For each path z 2 H 1��0; T �; D�, each smooth
function g and each integer N > 0, we introduce
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IN
ÿ
z
� �XN

k�1

�
z
� k

N
T
�
ÿ z
�k ÿ 1

N
T
��
� g
� k

N
T ; z
� k

N
T
��
;

I�z� �
ZT

0

z0�t�:g�t; z�t�� dt:

By the mean value theorem, we easily get

jIN �z� ÿ I�z�j2 CNÿ1=2�1� e�z��;
where C depends only on T and g. Thus I is (square) integrable with respect
to l and Z

I�z�l�dz�
���� ����2 2 2

Z
e�z�l�dz�

Z
Q

jgj2q:

This shows that there is a unique function v 2 L2�Q; qdt dx� such thatZ
I�z�l�dz� �

Z
Q

g:vq;
Z
Q

jvj2q 2
Z

2e�z�l�dz�:

An easy consequence of de®nitions (69), (70) isZ
Q

�q@tf � m:rf � �
Z
D

�q�T ; :�f �T ; :� ÿ q�0; :�f �0; :�� �72�

for all f 2 C1� �Q�, since for all path z 2 H 1��0; T �; D� (and therefore l almost
every path z),

f �T ; z�T �� ÿ f �0; z�0�� �
ZT

0

d
dt
�f �t; z�t��� dt

�
ZT

0

�@tf �t; z�t�� � z0�t�:rf �t; z�t��� dt:

In particular,

@tq�r:m � 0

holds in the distributional sense, and therefore q 2 C1=2��0; T �;Hÿ1�D��.

8.2. The Proof of Theorem 3.1

We use two measure-theoretic lemmata and a theorem from [Br1].

Lemma 8.1. Let �A0
a; a � 1; :::;M� and �AT

a ; a � 1; :::;M� be two Borel parti-
tions of D such that
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jA0
aj � jAT

a j 8a;
where j:j denotes the Lebesgue measure. Then there is a Lebesgue measure-
preserving Borel map h such that

hÿ1�AT
a � � hÿ1�A0

a� 8a;
where, by a Lebesgue measure-preserving map, we mean that jhÿ1�A�j � jAj for
all Borel subsets of D.

Lemma 8.2. Let r1; :::; rM 2 L1�D; �0; 1�� such thatX
a

ra � 1:

Then, for each positive integer n, there is a Borel partition �Aan; a � 1; :::;M� of
D such that

jAanj �
Z
D

ra 8a; n;

1Aan ! ra;

in L1�D� weak-*.

Theorem 8.3. Let h be a Borel map from D into itself, preserving the Lebesgue
measure. Then

inf

Z
e�z�l�dz�

is achieved among all generalized ¯ows l subject to

ljt � 1 8 t 2 �0; T �;Z
f �z�0�; z�T ��l�dz� �

Z
D

f �x; h�x�� dx;

and is bounded by CTÿ1 where C=C(D) depends only on D.

Proof. The ®rst lemma is standard (see [Roy], for instance). The proof of
Theorem 8.3. is given in [Br1] when D � Rd=Zd , and for smooth domains in
[Roe]. Let us sketch the proof of the second lemma. Let us split up D in n cells
Djn, j � 1; :::; n such that

dn � sup diameter �Djn� ! 0; n! �1:
Then we can split up each Djn into M subcells Djna, a � 1; . . . ;M , so that

jDjnaj �
Z

Djn

ra 8 a; n; j:

Finally, set

Aan �
[

j

Djna:
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Let us now prove Theorem 3.1. According to Lemmata 8.1, 8.2, we can
associate with each positive integer n a Lebesgue measure-preserving map hn

and two Borel partitions �A0
an�, �AT

an� of D such that

hÿ1n �AT
an� � hÿ1n �A0

an� 8a;
jAT

anj � jA0
anj �

Z
D

qa0 �
Z
D

qaT ;

1A0
an
! qa0; 1AT

an
! qaT

in L1�D� weak-*. From Theorem 8.3, we infer that there is a sequence �ln� of
incompressible generalized ¯ows such thatZ

e�z�ln�dz�2 CTÿ1;

where C � C�D� depends only on D, andZ
f �z�0�; z�T ��ln�dz� �

Z
D

f �x; hn�x�� dx

for all f 2 C0�D2�. For each a � 1; . . . ;M , we de®ne a generalized ¯ow lan by
settingZ

f �z�t1�; . . . ; z�tk��lan�dz� �
Z

1A0
an
�z�0��f �z�t1�; . . . ; z�tk��ln�dz�

for all integer k, all sequence 02 t1 < � � � < tk 2 T , and all f 2 C0�Dk�. We
obviously have

lanj0 � 1A0
an
; lanjT � 1AT

an
;X

a

lanjt � 1 8 t 2 �0; T �:

Each family �lan� is sequentially weakly compact and has a cluster point
la. These la satisfy X

a

Z
e�z�la�dz�2 CTÿ1;X

a

lajt � 1 8 t 2 �0; T �:

laj0 � qa0; lajT � qaT :

The corresponding density and impulsion ®elds qa;ma de®ned from la by
(69), (70) satisfy X

a

Z
Q

1
2 qajvaj2 2

P
a

R
e�z�la�dz�2 CTÿ1;

X
a

qa � 1;

qa�0; :� � qa0; qa�T ; :� � qaT ;
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which completes the proof of Theorem 3.1.

8.3. More on Variational Solutions in the Generalized Framework

The variational solutions (and, in particular, the strongly homogenized
solutions) have a remarkable property. They minimize the kinetic energy not
only in the framework of Theorem 5.1, but in the framework of generalized
¯ows.

Theorem 8.4. Let �qa;ma � qava� be a variational solution and �la� a family of
generalized ¯ows satisfyingX

a

lajt � 1; 8t 2 �0; T �; �73�

lajt�0 � qa0; lajt�T � qaT : �74�
Then

1

2

X
a

Z
Q

qajvaj2 2
X

a

Z
e�z�la�dz�: �75�

Moreover, if there is equality and if �qa;ma � qava� is strongly homogenized,
then

z0�t� � va�t; z�t�� �76�

holds a.e. on �0; T � for la-almost every path z.

Proof. The proof is strongly reminiscent of the proof of Theorem 3.2. To
avoid any confusion, we denote

ql
a�t; :� � lajt 8 t 2 �0; T �

and, in the same way, we associate ml
a with la by (70). Clearly,

ql
a�0; :� � qa0; ql

a�T ; :� � qaT : �77�

Let �qa;ma� be a variational solution (which means that (1), (2), (7)±(9)
are satis®ed). Since Uae belongs to C1� �Q� and (2) holds for both �qa;ma� and
�ql

a ;m
l
a�, we haveZ

Q

�qa@tUae � marUae� �
Z
Q

�ql
a@tUae � ml

arUae�: �78�

By de®nition of ql
a and ml

a , the right-hand side of (78) can be written
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ZZT

0

�@tUae�t; z�t�� � z0�t�:rUae�t; z�t��� dtla�dz�

�
Z �ZT

0

��@tUae � 1
2jrUaej2 � pe��t; z�t��

ÿ 1
2jz0�t� ÿ rUae�t; z�t��j2� dt � e�z�

�
la�dz�

ÿ
ZZT

0

pe�t; z�t�� dtla�dz�:

(Notice that all these integrals are well de®ned and ®nite). SinceP
a ql

a � 1 �Pa qa � 1, we have

X
a

ZZT

0

pe�t; z�t�� dtla�dz� �
Z
Q

pe �
X

a

Z
Q

qape:

Thus, it follows from (78) thatX
a

Z �Z T

0

��@tUae � 1
2jrUaej2 � pe��t; z�t��

ÿ 1

2
jz0�t� ÿ rUae�t; z�t��j2� dt � e�z�

�
la�dz�

�
X

a

Z
Q

qa�@tUae � varUae � pe�

�
X

a

Z
Q

qa�@tUae � 1

2
jrUaej2 � pe�

ÿ 1

2

X
a

Z
Q

qajva ÿrUaej2 � 1
2

X
a

Z
Q

qajvaj2:

�79�

Since �qa;ma� is a variational solution, the right-hand side is bounded from
below by

ÿ2e� 1

2

X
a

Z
Q

qajvaj2;

and the left-hand side is bounded from above byX
a

Z �
ÿ
Z T

0

1
2 jz0�t� ÿ rUae�t; z�t��j2dt � e�z�

�
la�dz�:

Finally we get
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X
a

Z ZT

0

1

2
jz0�t� ÿ rUae�t; z�t��j2dtla�dz� � 1

2

X
a

Z
Q

qajvaj2

2
X

a

Z
e�z�la�dz� � 2e:

�80�

The proof then follows easily.

9. Appendix 2: On Transport Equations

Let D � Rd=Zd and Q ��0; T ��D. Let �t; x� ! v�t; x� be a vector ®eld on Q
such that v 2 L2�Q� and Dv 2 L2loc�L2�D��. Assume there is a constant r > 0
and a scalar ®eld q such that

r 2 q�t; x�2 rÿ1;
@tq�r � �qv� � 0;

�81�

holds in the distributional sense. Notice that q 2 C1=2��0; T �;Hÿ1�D�� follows
from (81), since v 2 L2�Q�. Then

Theorem 9.1. There is no solution of (81) in L1�Q� other than q once q�0; :� is
prescribed.

This uniqueness result follows from

Proposition 9.2. Let g 2 L1loc�Q� and r 2 L1�Q�. Then r is a distributional
solution of

@t�qr� � r:�qrv� � qg �82�
if and only if

@tr�r:�rv� ÿ rr � v � g �83�
holds in the distributional sense. Moreover, r belongs to C0��0; T �; Lp�D�� for all
p 2 �1;�1� and, for all locally Lipschitz continuous functions b,

@t�qb�r�� � r � �qb�r�v� � qb0�r�g: �84�

Proof. Let us ®rst prove that Theorem 9.1 follows from Proposition 9.2. Let q
be a di�erent solution of (81) and set

r � q
q
ÿ 1 2 L1�Q�:

Then, r is a distributional solution of (82), with g � 0, such that r�0; :� � 0.
Thus, by Proposition (9.2),

@t�qjrj� � r � �qjrjv� � 0:

So jqÿ qj � qjrj belongs to C1=2��0; T �;Hÿ1�D�� and satis®es
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hjqÿ qj�t; :�; 1i � hjqÿ qj�0; :�; 1i;
where h:; :i denotes the distribution bracket on D � Rd=Zd , which shows that
q � q almost everywhere in Q and completes the proof of Theorem 9.1.

Let us now prove Proposition 9.2. We use the following (slightly) modi-
®ed Lemma from [ DL].

Lemma 9.3. Let h 2 L1�Q� with values in �0; 1� and b 2 L1loc�Q� be such that

@th�r � �hv� � b � 0 �85�
holds in the distributional sense. Then there is he in C1�Q� with values in �0; 1�
such that

he ! h

almost everywhere in Q and

@the �r:�hev� � b! 0

in L1loc�Q�.

From this lemma, we get qe 2 C1�Q�, such that

0 < r 2 qe 2 rÿ1;

qe ! q; @tqe �r � �qev� ! 0;

in L1loc�Q�. For each ®xed e > 0, there is a one-to-one correspondence in
C1c �Q� de®ned by

/ � qef ; f � /
qe
:

Assume that r satis®es (82), namely,Z
Q

�qr@tf � qrv:rf � qgf � � 0

for all f 2 C1c �Q�. Then, we infer thatZ
Q

q
qe
�r�@t/� v:r/� � g/� �

Z
Q

q
q2e

r/�@tqe � v:rqe�

� ÿ
Z
Q

q
qe

r/r:v�
Z
Q

q
q2e

r/�@tqe �r:�qev��:

Then, when e! 0, we getZ
Q

�r�@t/� v:r/� /r:v� � g/� � 0;

which exactly means (83). Conversely, if (83) holds, then
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0 �
Z
Q

�r�@t�qe f � � v:r�qe f �� � gqe f � �
Z
Q

rqe fr:v

�
Z
Q

qe�r�@tf � v:rf � � gf � �
Z
Q

rf �@tqe � v:rqe � qer:v�

!
Z
Q

�rq�@tf � v:rf � � gf �;

which exactly means (82). Now, by Lemma 9.3, we have re 2 C1�Q� such
that

@tre �r � �vre� ÿ rr � v! g

a.e. in Q and re ! r a.e. boundedly in Q. Thus

b0�re��@tre �r � �vre� ÿ rr � v�

� @t�b�re�� � r � �vb�re�� ÿ �b�re� � �rÿ re�b0�re��r � v! b0�r�g
and therefore

@t�b�r�� � r � �vb�r�� ÿ b�r�r � v � b0�r�g;
which is equivalent, as just shown, to

@t�qb�r�� � r � �qvb�r�� � qb0�r�g:
Moreover, for all b, t! b�r�t; :� is continous from �0; T � into L1�D� for the
weak-* topology, which shows, by a classical argument, that, for all
p 2 �1;�1�, r is continuous from �0; T � into Lp�D� for the strong topology,
and completes the proof.

10. Appendix 3: From the Euler Equations to the Homogenized Equations

10.1. Vortex Sheet Solutions to the Euler Equations

Let us consider an incompressible inviscid ¯uid moving in a bounded
domain D of Rd (or in the periodic cube D � Rd=Zd ) and introduce the
velocity and pressure ®elds u�t; x�, p�t; x�. These ®elds obey the classical Euler
equations (see [Ma] for a modern review)

@tui �
Xd

j�1
@j�uiuj� � @ip � 0; �86�

r:u � 0 �87�
and u is parallel to the boundary @D. The pressure can be recovered from the
velocity ®eld through
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ÿDp �
X

ij

@2ij�uiuj�: �88�

We say that such a ¯ow has a vortex sheet structure if there is a `material
partition' �Da�t�; a � 1; . . . ;M� of D such that each `cell' Da�t� is a simply-
connected open set where the velocity ®eld is smooth. By `material partition',
we mean that the characteristic functions qa�t; x� � 1fx2Da�t�g satisfyX

a

qa � 1 �89�

(almost everywhere in D) and the transport equation

@tqa �r:�qau� � 0:

If we denote

ma � qau;

and if va is the Radon-Nikodym derivative of ma with respect to qa so that

ma � qava;

then we see that

u �
X

a

ma;

ma � qava; �90�

@tqa �r � ma � 0; �91�
and, from (88), we get the pressure equation in a new form:

ÿDp �
X

ij

@2ij�qavaivaj�: �92�

From the combination of (86) and (91), we also get, for each a, the mo-
mentum equation

@tmai �
X

j

@j�qavajvai� � qa@ip � 0; �93�

which is not written in conservation form. Notice that (92) can also be re-
covered from

r:
�X

a

ma

�
� 0; �94�

X
a

@tmai �
X
aj

@j�qavajvai� � @ip � 0; �95�

which are respectively obtained from (89), after summing up equations (91)
and (93) with respect to a.

So, classical vortex sheet motions are fully described by the consistent set
of equations (89)±(91) and (93), where only qa, va and p are involved and the
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product qarp is required to be well de®ned, for instance by assuming that rp
is locally integrable, which can be physically interpreted as a continuity
condition for p across the cell boundaries.

10.2. The Homogenized Vortex Sheet Equations

If we relax the condition that qa takes values in f0; 1g and consider so-
lutions with values in �0; 1�, we obtain a self-consistent system of equations
with (89)±(91) and (93) (assuming that rp is locally integrable). The corre-
sponding solutions can be seen as describing generalized (or homogenized)
vortex sheet motions.

Obviously, these equations cannot be derived through any reasonable
homogenization process if the genuine weak convergence of the density ®elds
(leading to values of qa in the range �0; 1�) is not compatible with the strong
convergence of the corresponding velocity ®elds. Let us consider a sequence
of classical vortex sheet solutions �qn

a; v
n
a�. If we assume that

1

2

X
a

Z
Q

qn
ajvn

aj2

is uniformly bounded, then, up to a subsequence extraction, both mn
a and qn

a
have weak limits ma and qa, respectively in L2�Q� and L1�Q� weak-*.
Moreover ma � qava, with va 2 L2�Q; qa dt dx�.

The situation we are interested in corresponds to the case when, for each
a, there is no kinetic energy defect in the sense thatZ

Q

qn
ajvn

aj2 !
Z
Q

qajvaj2:

Since the homogeneous convex function �q;m� ! jmj2qÿ1 is not strictly
convex, it does not follow that mn

a and qn
a strongly converge. In particular, qa

may have values in �0; 1�, the velocity ®eld
un �

X
a

mn
a

may not strongly converge and the weak limit of un may not be a weak
solution to the Euler equations. However, we immediately get thatZ

Q

qn
ajvn

a ÿ vaj2 ! 0;

which is compatible with the strong convergence of the velocity ®eld vn
a (al-

though it is not de®ned almost everywhere but only where qn
a > 0 !).

Remark. Notice that va is not necessarily curl-free when the ®elds vn
a are curl-

free.
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