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Abstract

In this paper ®nite-dimensional invariant manifolds for nonlinear para-
bolic partial di�erential equations of the form

@u
@s
� Dnu� F �u�; u � u�n; s�; n 2 Rd ; s 3 1

are constructed. Such results are somewhat surprising because of the con-
tinuous spectrum of the linearized equation. These manifolds control the
long-time behavior of solutions of these equations and can be used to con-
struct systematic, rigorous expansions of the long-time asymptotics in inverse
powers of s. They also give a new perspective on the change in the long-time
asymptotics of the equation with nonlinear term F �u� � jujpÿ1u, when p
passes through the critical value pc � 1� 2=d.

1. Introduction and Statement of Results

Invariant manifold theorems have found numerous applications in partial
di�erential equations. (CARRARR (1983), CARRARR & MUNCASTERUNCASTER (1983), ECKMANNCKMANN

& WAYNEAYNE (1991), FOIASOIAS & SAUTAUT (1984), HENRYENRY (1981), KIRCHGASSNERIRCHGAÈ SSNER

(1988), and MIELKEIELKE (1986) provide some examples, and VANDERBAUWHEDEANDERBAUWHEDE &
IOOSSOOSS (1992) list many more in the bibliography of their paper.) These ap-
plications, however, have been limited to situations in which either the time
or space variables have varied over a bounded domain, or to examples like
traveling waves which could be reduced to one of these cases. This restriction
results in a linearized problem with pure point spectrum which permits one to
identify modes associated with a center, or center stable manifold. In equa-
tions of the form
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@u
@s
� Dnu� F �u�; u � u�n; s�; n 2 Rd ; s 3 1�1:1�

with F �u� nonlinear, the linearized problem is the heat equation which clearly
has continuous spectrum. (By nonlinear, I mean that jF �u�j � jujp as juj ! 0
for some p > 1. In particular, F �0� � F 0�0� � 0.) Nonetheless, (1.1) does
possess ®nite-dimensional invariant manifolds which control the long-time
asymptotics of solutions near the origin.

It will become apparent in the course of the proof that it is more natural
to construct these invariant manifolds in the extended phase space. That is,
given a Hilbert space H with u 2H, the invariant manifold will be con-
structed in the space P �H� fs 2 R js 3 1g: (I choose the initial time to be
s � 1, rather than s � 0, to simplify a point that arises later in the paper.)
One also requires a certain degree of smoothness in the nonlinear term, which
again will be made precise below, but note that one of the examples that will
be considered below is F �u� � jujpÿ1u, and this does have su�cient
smoothness provided p is su�ciently large (depending on d). Under these
conditions, one has

Theorem 1.1. Suppose that the nonlinear term F in (1.1) is su�ciently smooth.
Fix n 3 0. There exists a Hilbert spaceH�n�, such that in the extended phase
space P�n� �H�n� � fs 2 R j s 3 1g, there exists a 1�Pn

j�0
ÿ j�dÿ1

dÿ1
�
-di-

mensional invariant manifold de®ned in a neighborhood of the origin, and left
invariant by the semi-¯ow de®ned by (1.1). Furthermore, solutions on the in-
variant manifold control the long-time asymptotics of ``small'' solutions of (1.1)
up to a ®xed (but n-dependent) inverse power of s.

Remark. The norm in which the solution must be ``small'' will be de®ned
below, but the point I wish to emphasize about this theorem is that if one
wishes to compute the long-time asymptotics of (1.1) up to some given in-
verse power of s, then by choosing n appropriately, this calculation can be
reduced to the study of the asymptotics of a ®nite-dimensional system of
ordinary di�erential equations. The algorithm that implements this reduc-
tion, along with an example, is explained in more detail in Section 4.

In the study of ordinary di�erential equations, invariant-manifold theo-
rems have many applications. (See, e.g., RUELLEUELLE (1989)). In this paper, I
exhibit two uses for them in the present context. First, as I mentioned in the
previous remark, they can be used to give a systematic, rigorous expansion of
the long-time asymptotics of solutions of (1.1). The second use I will illustrate
is to give an explanation based on bifurcation theory of the changes in the
long-time asymptotics of the equation with nonlinear term F �u� � ÿjuj� pÿ1�u,
when p passes through its critical value of pc � 1� 2=d.

My approach to this problem was inspired by BRICMONTRICMONT & KUPIAINENUPIAINEN

(1996), who study the stability of certain non-Gaussian solutions of (1.1) with
F �u� � ÿjuj�pÿ1�u, and 1 < p < pc. Their analysis was based on a change of
variables to what might be called ``similarity variables''. This same change
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of variables was also used by ESCOBEDOSCOBEDO & KAVIANAVIAN (1988) in their study of
this problem, and it is used here in a slightly di�erent context to construct the
invariant manifolds. Related changes of variables have found use in other
questions connected with the asymptotics of parabolic partial di�erential
equations. For instance, GIGAIGA & KOHNOHN (1987) apply a similar change of
variables to study the blow-up of solutions. Indeed, BRESSANRESSAN (1992), FILIPPASILIPPAS

& KOHNOHN (1992), and BERBENESERBENES & BRICHERRICHER (1992) all appeal to invariant-
manifold theorems as motivation for their results on blow-up in nonlinear
heat equations, but technical di�culties prevented the actual construction of
such manifolds in those problems.

Another point of view is obtained if one notes that in order to obtain
successively higher orders in the asymptotic expansion for the long-time
behavior of the solution, the Hilbert spaces in H�n� in Theoerm 1.1 are
chosen so that they impose increasingly stringent decay properties on u�x� as
jxj ! 1. (However, ju�x�j is required to decay only as an inverse power of jxj;
it is not necessary to impose exponential decay.) The use of weighted spaces
to analyze the stability properties of solutions of partial di�erential equations
on unbounded domains has been exploited by a number of authors including
HENRYENRY (1981), SATTINGERATTINGER (1976), BATESATES & JONESONES (1989), and KAPITULAAPITULA

(1994), who analyze the stability of traveling waves in parabolic partial dif-
ferential equations, and by SOFFEROFFER & WEINSTEINEINSTEIN (1991), and PEGOEGO &
WEINSTEINEINSTEIN (1994) who apply these ideas to study the asymptotics of solutions
of Hamiltonian partial di�erential equations. The novelty of the present work
lies in the fact that while the works mentioned above concentrate just on the
decay rate of the solutions (e�ectively, the lowest-order asymptotics), the
existence of the invariant manifolds described in Theorem 1.1 allows one to
systematically compute higher-order asymptotics.

For parabolic partial di�erential equations on bounded domains, the use
of invariant-manifold theorems to determine long-time asymptotics is much
more fully developed. (See VISHIKISHIK (1992) and the references therein.) In that
case, however, the situation is more reminiscent of the problem in ®nite
dimensions since the linearized operator has point spectrum, which gives a
natural and obvious separation of the phase space of the linear problem into
stable, unstable, and central subspaces. Furthermore, the asymptotics in that
case is characterized by exponential decay in time, as it is for ordinary dif-
ferential equations, rather than the power-law decay that one encounters in
the present context. In the case of bounded spatial domains, however, in-
variant manifold theorems have been proved for classes of equations much
more general than (1.1) and it will be interesting to see to what extent the
present theory can be extended to encompass such examples.

The remainder of the paper is organized as follows. In the next section I
show how invariant manifolds can be constructed in a relatively ``small''
Hilbert space. In Section 3, I then extend these results to a class of Sobolev
spaces with polynomial weights. In Section 4, these results are used to give a
systematic expansion of the long-time asymptotics of (1.1) in inverse powers
of t and to analyze the behavior of the equation with F �u� � ÿjuj�pÿ1�u near
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the critical power of the nonlinearity. Finally, Section 5 is devoted to con-
clusions and possible extensions.

Notation. Throughout this paper I work with L2-based Sobolev spaces. De®ne

H q;2 � u j kuk2Hq;2 �
X
jaj2 q

kDauk2L2 <1
8<:

9=;:
Here, as usual, a is a multi-index. In Section 3, the polynomially weighted
spaces Hq;2

r � fv j �1� jxj2�r=2v 2 H q;2g play a central role.

2. The Existence of Invariant Manifolds

Begin by making the change of variables

u�n; s� � sÿ1=�pÿ1�v�n= ���
s
p
; log s�:�2:1�

Recall that p is determined by the behavior of the nonlinear term near zero ±
it need not be an integer. In terms of the new variables, x � n=

���
s
p

and
t � log s, (1.1) becomes

@v
@t
� Dxv� 1

2
x � rxv� 1

p ÿ 1
v� s

p
pÿ1F �s ÿ1pÿ1v�:�2:2�

Now make a further change of variables, and set w�x; t� � exp 1
8 x2
ÿ �

v�x; t�.
When expressed in terms of these variables, the equation becomes

@w

@t
� H0w� e

x2
8 s

p
pÿ1F �s ÿ1pÿ1e

ÿx2
8 w�;�2:3�

where the linear operator H0 � Dx ÿ x2
16� � 1

pÿ1ÿ d
4�. Noting that H0 is (up to

the additive constant) just the Hamiltonian of the quantum mechanical
harmonic oscillator, we can conclude (see, e.g., GLIMMLIMM & JAFFEAFFE (1981))
that its spectrum, considered as an operator on L2�Rd�, is r�H0� �
f 1

pÿ1ÿ d
2 ÿ m

2 jm � 0; 1; 2; . . .g. Furthermore, its eigenfunctions can be explic-
itly computed in terms of Hermite polynomials, a fact that I use later. It is not
convenient to study (2.3) on L2�Rd�, because the nonlinear term in the
equation has too little regularity when considered as a function on this space
to apply the version of the invariant-manifold theorem used below. However,
if we choose a constant c� p� su�ciently large, the operator �c� p�1ÿ H0� is
positive-de®nite. Thus one can take its square root. This allows us to de®ne a
family of Sobolev-like Hilbert spaces via

~H
q;2 � fwj�c� p�1ÿ H0�q=2w 2 L2�Rd�g:

Remark. While it is not necessary to introduce the ``w'' variables, the fact
that H0 is self-adjoint on ~H

q;2
will simplify many of the computations in later

sections.
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Remark. Another useful fact that is easy to prove is that for q a non-negative
integer, the ~H

q;2
norm is equivalent to the norm

jjjwjjj2q �
X

jaj�jbj2 q

kxaDbwk2L2 :

These norms control the ``ordinary'' Sobolev norms. For instance, just
from the de®nition of the norm, one has

Lemma 2.1. For any non-negative integer q, there exists a constant c�q� such
that jjwjjH q;2 2 c�q�jjwjj ~Hq;2 .

As a corollory of this lemma, one sees immediately that if w 2 ~H
q;2

and
q > 1

2 d, then w can be assumed to be continuous.
One can now apply the invariant-manifold theorem to (2.3). First convert

it to an autonomous equation by a standard trick. Set g � sÿ1=�pÿ1� �
exp�ÿt=�p ÿ 1��. If a `` _ '' denotes di�erentiation with respect to t, then (2.3)
is equivalent to the system of equations

_w � H0w� gÿpe x2=8F �geÿx2=8w�;

_g � ÿ 1

p ÿ 1

� �
g:

�2:4�

Remark. De®ne f �g; w� � gÿpe x2=8F �geÿx2=8w�. In order to apply the fol-
lowing version of the invariant-manifold theorem, f must be a Ck function on
R� ~H

q;2
for some k > 1 (not necessarily integral). I assume that F �u� is

smooth enough that this is the case, and then verify that it is true in each of
the examples considered in Section 4.

One can now construct an invariant manifold for (2.4) corresponding to
the n� 1 largest eigenvalues of H0, km � 1

pÿ1ÿ d
2 ÿ m

2, m � 0; 1; . . . ; n. Let Pc

be the projection (in ~H
q;2
) onto the subspace spanned by the eigenvectors

corresponding to these eigenvalues. (Note that the dimension of this space isPn
j�0

j�dÿ1
dÿ1

ÿ �
.) Let Ps � �Pc�?. I refer to this manifold as the ``pseudo-center

manifold'' in analogy with the more common pseudo-stable manifolds (see,
e.g., DEE LAA LLAVELAVE & WAYNEAYNE (1995)). Assume that n is so large that
kn < ÿ 1

pÿ1. In this case the g direction is included in the ``pseudo-center''
direction. The case in which kn > ÿ 1

pÿ1 is an easy modi®cation of this ar-
gument, because the dynamics in the g direction are trivial in either case. Let
Ec � R� range�Pc� and Es � range�Ps�, where the summand R in Ec cor-
responds to the g direction. Let Bc;�s��q� be the ball of radius q in Ec;�s�, B�q�
the ball of radius q in R� ~H

q;2
, and let Ac � ÿ 1

pÿ1�PcH0P
c and As �

PsH0P
s. By the spectral theorem, there exist constants kn�1 < ks < kc < kn,

such that

sup
t 3 0
jjeAstjjeÿkst <1; sup

t2R
jjeActjjekcjtj <1:�2:5�
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We can now apply Theorem 4.1 of GALLAYALLAY (1993) to obtain

Theorem 2.2. If the nonlinear term F in (1.1) is such that f �g;w� is Ck, with
k > 1, then there exists a > 0 and q > 0, and a C1�a function h : Bc�q� ! Es,
such that the graph of h is invariant under the (semi-) ¯ow of (2.3). Further-
more, h�0� � 0 and Dh�0� � 0.

Proof. Let xc and x s be coordinates on Ec;s respectively. Then (2.3) can be
rewritten as

_xc � Acxc � f c�xc; xs�;
_xs � Asxs � f s�xc; xs�:�2:6�

By the hypotheses of the theorem, the nonlinear terms f c and f s are Ck

functions for some k > 1, so the hypotheses of Theorem 4.1 of GALLAYALLAY

(1993) are satis®ed, and the theorem follows. (

Remark. Note that while Theorem 2.2 only guarantees the existence of the
invariant manifold in a neighborhood of the origin, this neighborhood can be
chosen to include the interval 02 g 2 1, and hence, since g � sÿ1=�pÿ1�, this
includes all values of the temporal variable s in which we are interested. The
reason that the whole interval 02 g 2 1 can be included in the domain of
existence of the invariant manifold is that GALLAYALLAY's theorem constructs an
invariant manifold on a set whose size is determined by the requirement that
the Lipschitz constant of the nonlinear term be small on that neighborhood.
In the case of the equations (2.4), the ``g''-equation has no nonlinear term,
and hence its Lipschitz constant may be taken to be zero, while in the ``w''-
equation, the Lipschitz constant can be made uniformly small for all
02 g 2 1 by making the neighborhood in the ``w''-variables small enough.

3. Attractivity of the Pseudo-Center Manifold

In this section I prove that the pseudo-center manifold attracts all solu-
tions that remain in some neighborhood of the origin. What is somewhat
surprising is that this is true for solutions in a much larger space than the
space in which this manifold was constructed. For the present construction
we revert to the ``v'' variables, and consider the equation in the form (2.2)

@v
@t
� Dxv� 1

2
x � rxv� 1

p ÿ 1
v� sp=�pÿ1�F �sÿ1=�pÿ1�v�:�3:1�

It is assumed that v lies in the weighted Sobolev spaces, H q;2
r � fv j

�1� jxj2�r=2v 2 H q;2g. Note that it may seem that the spaces H q;2
r are actually

smaller than the space ~H
q;2

used in the previous section, but recall that the
``w''-variables are de®ned by v�x; t� � exp�ÿx2=8�w�x; t�, so that the ``v''-
variables correspond to solutions of our original equation with polynomial
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decay at in®nity, while the ``w''-variables correspond to solutions with
Gaussian decay. It is in this sense that I refer to ~H

q;2
as being a ``smaller''

space than H q;2
r .

If fungn 3 0 are the eigenfunctions of the linear operator H0 in the pre-
vious section, then fwngn 3 0, with wj�x� � exp�ÿx2=8�uj�x� are eigenfunc-
tions of L0 � Dx � 1

2 x � rx � 1=�p ÿ 1�, with the same eigenvalues.
De®ne a projection operator

�Pnv��x� �
Xn

j�0
wj�x�hhwj; viiq;

where the inner product

hhv; ~viiq �
Z
�e x2=8~v�x���e x2=8�c� p� ÿL0�qv�x�� dx

is obtained formally from the inner product hw; ~wiq in the Hilbert space
~H

q;2
considered in the previous section upon substituting w�x� �

exp�x2=8�v�x�, and ~w�x� � exp�x2=8�~v�x�. While the computation leading to
the form of hh�; �iis is formal, the following lemma shows that Pn is well
de®ned.

Lemma 3.1. If r > n� 1
2 �d � 1�, then there exists C > 0 such that for any

v 2 H q;2
r ,

kPnvkHq;2
r

2 CkvkH q;2
r
:

Proof. The Hq;2
r norm of wj is ®nite so the lemma follows from the estimate

jhhwj; viiqj2 CkvkHq;2
r

for j � 0; . . . ; n. This in turn follows if we note that

jhhwj; viiqj �
Z

e x2=8v�x�e x2=8�c� p� ÿL0�qwj�x� dx

���� ����
2 �c� p� � jkjj�q

Z
e x2=4jv�x�jjwj�x�j dx:

Now recall that wj�x� � eÿx2=8uj�x� � eÿx2=8�eÿx2=8h�x��, where h�x� is (up to
normalization) a product of Hermite polynomials the sum of whose orders is
j. (In particular, if d � 1, h�x� � Hj�x�.) This implies that jh�x�j2 C�1� jxj�j.
Thus,

jhhwj;viiqj2 C�c� p� � jkjj�q
Z
�1� jxj�jjv�x�j dx

2 C�c� p� � jkjj�q
Z
�1� jxj�ÿ�d�1� dx

� �1=2 Z
�1� jxj�2j��d�1�jv�x�j2 dx

� �1=2
:

Thus, if 2r > 2j� d � 1, this expression is bounded by CkvkHq;2
r

and the
lemma follows. (
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Remark. The projection operator Pn is the analogue of P
c, de®ned in Section

2. However, at di�erent points in the argument it will be convenient to allow
n to vary, and for this reason this new notation is useful.

Remark. Note that an additional property of the inner product hh�; �iiq is that
hhwj;wj0 iiq � dj;j0 : This follows from the orthonormality of the eigenfunctions
uj.

The key estimate for the present section is the following estimate on the
linear evolution operator acting on Hq;2

r . Let Qn � 1ÿ Pn.

Proposition 3.2. Fix n > 0 such that kn�1 < 0. For r su�ciently large, there
exists C�r; q; n� > 0 such that

ketL0QnvkH q;2
r

2 C�r; q; n�eÿtjkn�1jkvkHq;2
r
:

Proof. See Appendix A.

Note that this is exactly the sort of decay estimate we could expect for
vectors in the ``stable-subspace'' Es � ~H

q;2
Ð what is surprising it that it also

holds in the much larger space H q;2
r .

Given such an estimate on the linearized evolution, results about the
attractivity of the invariant manifold follow very much as in the ®nite-di-
mensional case. We include proofs of Proposition 3.3 and Theorem 3.5 for
completeness, but they are essentially taken verbatim from CARRARR (1983, pp.
20±25). If we let g be as in the previous section, vc � Pnv and vs � Qnv, then
we can rewrite (2.2) as

_g �ÿ 1

p ÿ 1

� �
g;

_vc �Lc
0v

c � F c�g; vc; vs�;
_vs �Ls

0v
s � F s�g; vc; vs�:

�3:2�

Here Lc
0 � PnL0Pn, L

s
0 � QnL0Qn, while F c�g; vc; vs� � Pn�gpF �gÿpv�� and

F s�g; vc; vs� � Qn�gpF �gÿpv��. We require that F c and F s be Lipschitz func-
tions on Hq;2

r , a fact which we again check in each application. In addition we
assume that q, the index on the Sobolev space in which we work, is greater
than 1

2 d so that our functions are all continuous. The results of the previous
section imply that there exists an invariant manifold tangent at the origin to
R� range �Pn�. This manifold is given (locally) as the graph of a function
vs � h�g; vc�. The following results show ®rst that solutions near this mani-
fold are attracted to it, and second that one can approximate such solutions,
up to an exponentially small error, by the ®nite-dimensional system of or-
dinary di�erential equations corresponding to motion on the manifold.
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Proposition 3.3. Let �vc�t�; vs�t�� be a solution of (3.2) which remains for all
time in a su�ciently small neighborhood of the origin. (Note that the evolution
of g is trivial.) Then there exist positive constants C1 and l such that

kvs�t� ÿ h�g�t�; vc�t��kEs 2 C1eÿltkvs�0� ÿ h�g�0�; vc�0��kEs :

Proof. Following CARRARR, we let z�t� � vs�t� ÿ h�g�t�; vc�t��. Then

_z�t� �Ls
0z� N�g; vc; z�;�3:3�

where

N�g; vc; z� � F s�g; vc; h�vc� � z� ÿ F s�g; vc; h�vc��
� Dvc h�g; vc�fF c�g; vc; h�vc�� ÿ F c�g; vc; h�vc� � z�g:

Note that Dvc h�g; vc� is a linear operator from range �Pn� to range �Qn�. If we
rewrite (3.3) in integral form we obtain

z�t� � etLs
0z�0� �

Z t

0

e�tÿs�Ls
0N�g�s�; vc�s�; z�s�� ds:�3:4�

From the de®nitions of F c and F s, there exists a constant d�q� which goes to
zero as q! 0, and such that if kvckEc 2 q, kN�g; vc; z�kEc 2 d�q�kzkEs . Here,
k � kEc is the ordinary ®nite-dimensional Euclidean norm on range �Pn�, while
k � kEs is the Hq;2

r -norm, restricted to Es.

Applying this estimate of N , and the estimate of Proposition 3.2 to (3.4)
one sees that

kz�t�kEs 2 Ceÿtjkn�1jkz�0�kEs � Cd�q�
Z t

0

eÿ�tÿs�jkn�1jkz�s�kEs ds:�3:5�

The proposition then follows immediately from Gronwall's Lemma. (

Remark. Note that the constant d�q� can be chosen to be CL�q� where L�q� is
the Lipschitz constant of the nonlinearity F �v� on a ball of radius q in Hq;2

r .
This coupled with (3.5) implies that the constant l in Proposition 3.3 can be
chosen to be any number less than jjkn�1j ÿ CL�q�j. In particular, by taking q
su�ciently small, we can make L�q� arbitrarily small, and l arbitrarily close
to jkn�1j. Thus, one has

Corollary 3.4. There exist C > 0 and q0 > 0, such that if the solution of (2.2)
remains in a ball of radius q < q0 centered at the origin for all t 3 0, then v�t�
approaches the invariant manifold with a rate O�eÿlt�, where l �
jkn�1j ÿ CL�q�.
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We now turn to the second important result, namely, that we can ap-
proximate any trajectory of (2.2) near the origin by a solution of a ®nite-
dimensional system of ordinary di�erential equations. Let

_g � ÿ 1

p ÿ 1

� �
g;

_w �Lc
0w� F c�g;w; h�g;w��:

�3:6�

Theorem 3.5. Let �vc�t�; vs�t�� be a solution of (3.2) which remains in a su�-
ciently small neighborhood of the origin for all t 3 0. Then there exists a so-
lution w�t� of (3.6), and l > 0, such that as t!1,

vc�t� � w�t� � O�eÿlt�;
vs�t� � h�g�t�;w�t�� � O�eÿlt�:

Remark. As above, we can choose l � jkn�1j ÿ CL�q�.

Proof. We follow CARRARR's proof [1983, pp. 21±25], merely indicating the
di�erences. We use his notation without comment. De®ne z�t� �
vs�t� ÿ h�vc�t�� and u�t� � vc�t� ÿ w�t�. Then z and u satisfy

_z �Ls
0z� N�g;u� w; z�;

_u �Lc
0u� R�g;u; z�;�3:7�

where N is as in (3.3) and R�g;u; z� � F c�g;u� w; z� h�g;u� w��ÿ
F c�g;w; h�g;w��. Consider the Banach space of functions

Xa � fu 2 C��0;1�;Rn�1�j jjjujjja � sup
t 3 0
ku�t�eatkEs <1g:

Note that we can rewrite the second equation in (3.7) in integral form as

u�t� � e�tÿt0�Lc
0u�t0� ÿ

Zt0

t

e�tÿs�Lc
0R�g�s�;u�s�; z�s�� ds:

If u 2 Xa, and a > jknj, then e�tÿt0�Lc
0u�t0� ! 0 as t0 !1. This motivates the

de®nition of the transformation

�Tu��t� � ÿ
Z1
t

e�tÿs�Lc
0R�g�s�;u�s�; z�s�� ds:

By Proposition 3.3, we know that for any 0 < b1 2 �jkn�1j ÿ CL�q��,
kz�s�kEs 2 Ckz�0�keÿb1s. Using this, CARRARR shows that for any jknj < a < b1, T
has a unique ®xed point in Xa for any �w�0�; z�0�� su�ciently small. Fur-
thermore (possibly by shrinking the size of the neighborhood), the ®xed point
depends continuously on �w�0�; z�0��. (In CARRARR's case, jknj � 0; however, the
case jknj40 produces no essential change in the argument.)
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Now de®ne S�w�0�; z�0�� � �vc�0�; z�0��, where vc�0� � u�0� � w�0�. We
want to prove that S is one-to-one and hence invertible on a neighborhood of
the identity. This will then establish the theorem, with the constant l � a. As
CARRARR notes, proving that S is one-to-one is equivalent to showing that if
w�0� � u�0� � ~w�0� � ~u�0�, then u�0� � ~u�0� and w�0� � ~w�0�. By the
uniqueness of solutions of (3.2) we see that w�t� � u�t� � ~w�t� � ~u�t� for all
t 3 0, where w�t� and ~w�t� are the solutions of (3.6) with initial conditions
w�0� and ~w�0�, respectively. This equation is equivalent to the equation

u�t� ÿ ~u�t� � w�t� ÿ ~w�t�:�3:8�
Choose b2 such that jknj < b2 < a 2 b1, where a is the constant which deter-
mines the exponential decay rate of the space Xa. Then from (3.6) we see that

lim
t!1 eb2tkw�t� ÿ ~w�t�kEc � 1;

unless w�0� � ~w�0�. On the other hand, from the de®nition of Xa, limt!1 eb2tk
u�t� ÿ ~u�t�kEc � 0. Thus, (3.8) implies w�0� � ~w�0�, and hence u�0� � ~u�0�.

This implies that S is invertible, or that given any vc�0� and z�0� su�-
ciently small, we can ®nd z�0� and w�0� such that if vc�t� and w�t� are the
solutions of (3.2) and (3.6) with these initial conditions and if u�t� �
vc�t� ÿ w�t�, then ku�t�kEc 2 Ceÿat and kz�t�kEs 2 Ceÿat: (

If we combine Theorems 2.2 and 3.5, we see that any solution of (2.2) in a
su�ciently small neighborhood of the origin in Hq;2

r approaches a solution on
the invariant manifold at a rate O�exp�ÿjkn�1jt��. To prove Theorem 1.1, we
revert to the original variables

u�n; s� � sÿ1=�pÿ1�v�n= ���
s
p
; log s�:

Thus, if we consider the evolution of (1.1) in its extended phase space
H q;2

r � fs j s 3 1g, the invariant manifold for (2.2) gets mapped to an in-
variant manifold for (1.1). Note further that the exponential approach to-
ward the manifold in the ``t'' variable becomes an algebraic approach in s, in
fact an approach like O�sÿjkn�1j� � O�sÿ d

2 ÿ n�1
2 � 1

pÿ1�.
Unfortunately, because of the way that the change of variables (2.1) mixes

the time and space coordinates, we do not obtain a simple estimate of the
asymptotics of u�n; s� in terms of the Hq;2

r norm in �n; s�, but rather in a more
complicated space-time dependent norm. (The invariant manifold of course
exists in the extended phase space, Hq;2

r � fs j s 3 1g; it is just that it is not
convenient to studyconvergence toward it in thisnorm.)Moreprecisely,onehas

Theorem 3.6. Fix n 3 0 and e > 0, and suppose that the nonlinear term F in
�1:1� is so smooth that Theorems 2.2 and 3.5 apply. Then for r su�ciently large,

there exists a 1�Pn
j�0

j�dÿ1
dÿ1

ÿ �
-dimensional invariant manifold for �1:1� in the

extended phase space Hq;2
r � fs j s 3 1g. If, in addition, the solution u�n; s� of

�1:1� is such that when expressed in the �x; t� variables through �2:1� it remains
in a su�ciently small neighborhood of the origin in H q;2

r , then there exists a

solution u�n; s� on the invariant manifold and a constant C > 0, such that
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 Z
�1� jnj2=s�rju�n; s� ÿ u�n; s�j2 dn

!1=2

2 Csÿ �
d
4 � n�1

2 ÿ e�:�3:9�

Remark. It may not be clear from the statement of the theorem what deter-
mines the value of the index q in the de®nition of Hq;2

r . In general (and in
particular, in the applications in the next section) one ®nds that the re-
quirement that the nonlinear term be smooth enough to apply Theorems 2.2
and 3.5 determine the allowed values of q.

Proof. The existence of the invariant manifold was discussed in the preceding
paragraph so we need only verify (3.9). To see that this holds, note that if one
rewrites u�n; s� � sÿ1=�pÿ1�v�n= ���

s
p
; log s�, then Theorem 3.5 guarantees that if

v remains in a su�ciently small neighborhood of the origin, then there exists a
solution v�x; t� on the invariant manifold such that�Z

�1� jxj2�rjv�x; t� ÿ v�x; t�j2 dx
�1=2

2 Ceÿ�jkn�1jÿe�t:�3:10�
Letting t � log s, changing variables in the integral to n � x

���
s
p

, and de®ning
u�n; s� � sÿ1=�pÿ1�v�n= ���

s
p
; log s� result immediately in (3.9). (

Note that Theorem 1.1 follows immediately from Theorem 3.6 if we de-
®ne the requirement in Theorem 1.1 that solutions be ``small'' to mean that
they are small in Hq;2

r when expressed in the variables given by (2.1).

Remark. Since Theorem 3.5 implies that convergence toward a solution on
the invariant manifold actually occurs in the H q;2

r norm, we could replace
(3.10) by an estimate not just on vÿ v, but also on derivatives of this dif-
ference. This would in turn give a strengthened version of (3.9), but one
which is somewhat complicated to write because the various derivatives in-
volve di�erent powers of s.

Remark. The estimate of the rate of convergence can also be written as�Z
�1� jxj2�rju�x ���

s
p
; s� ÿ u�x ���

s
p
; s�j2 dx

�1=2

2 Csÿ�n�1�dÿe�=2;

again, simply by changing variables in (3.10).

Remark. While it is somewhat awkward to bound the asymptotics in terms of
norms depending on both space and time, such estimates are not uncommon
in the study of the asymptotics of solutions of parabolic partial di�erential
equations (BRICMONTRICMONT, KUPIAINENUPIAINEN, & LININ (1994), FILIPPASILIPPAS & KOHNOHN (1992)).
On the other hand, if one wishes to work with ordinary Sobolev norms,
rather than these space-time norms, one can infer from (3.9) that

ku�s� ÿ u�s�kH0;2
s

2 Csÿ �
d
4 � n�1

2 ÿ s
2 ÿ e�; 02 s 2 r;�3:11�

by expanding the term �1� jnj2=s�r in the integrand. This estimate is only
interesting for those values of s for which d

4 � n�1
2 ÿ s

2 > 0, but it emphasizes
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that if one wants to study the long-time asymptotics in a particular weighted
Sobolev space, rather than the space-time norms in (3.9), then one can ®x s,
and then choose n so large that d

4 � n�1
2 ÿ s

2 > 0. Constructing the invariant
manifold corresponding to this n guarantees that there is a solution on the
invariant manifold which captures the long-time behavior in the H 0;2

s norm
up to correction terms of O�sÿ �d4 � n�1

2 ÿ s
2 ÿ e��.

4. Applications

In the present section two applications of the preceding theory are given.
The ®rst is the computation of higher-order asymptotics for equations like
(1.1). I work through an example in some detail to illustrate the di�erences
between these sorts of corrections and the lowest-order asymptotics discussed
in BRICMONTRICMONT, KUPIAINENUPIAINEN, & LININ (1994). The second example shows that
these results, when combined with bifurcation theory, give a new perspective
on the change in the nature of the long-time behavior of solutions of

@u
@s
� Dnuÿ jujpÿ1u; u � u�n; s�; n 2 Rd ; s 3 1;�4:1�

when p passes through its critical value of pc � 1� 2=d.

4.1. Higher-order asymptotics

In general, if one wishes to compute the asymptotics of solutions of an
equation of the form (1.1) to O�tÿa�, one chooses n so that n� 1� 1

2 d > 2a.
One then computes the pseudo-center manifold corresponding to the n lowest
eigenvalues of the linear operator H0 in (2.3). By Theorem 3.6, this manifold

has dimension 1�Pn
j�0
�

j�dÿ1
dÿ1

�
, and all trajectories in a neighborhood of

the origin approach this manifold at a rate O�sÿ�n�1��d=2�ÿe�=2� < O�tÿa� if e is
su�ciently small. Thus, the problem of computing the asymptotics of (1.1)
has been reduced to the problem of computing the asymptotics of this ®nite
system of ordinary di�erential equations, for which well-understood tech-
niques exist.

As an example, let us consider the initial-value problem

@u
@s
� Dnuÿ u4; u�n; 1� � u0�n�; n 2 R2; s 3 1:�4:2�

By considering the second-order asymptotics, one can prove

Proposition 4.1. Fix e > 0. For u0�n� in a su�ciently small neighborhood of the
origin, there exist constants z�0� � �z00; z10; z01�, and K > 0, and functions
f00; f10; f01, such that
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��������u�n1 ���
s
p
; n2

���
s
p
; s� ÿ

(
1

s
1

2
���
p
p
� 3
5

�2
�z00 � f00�z�0���eÿ�n

2
1�n22�=4

� 1

s3=2
1

2
������
2p
p

� 6

13

�2
�z10 � f10�z�0���H1�n1�eÿ�n

2
1�n22�=4

� 1

s3=2
1

2
������
2p
p

� 6

13

�2
� �z01 � f01�z�0���H1�n2�eÿ�n

2
1�n22�=4

)��������
Hq;2

r

2 Ks2ÿe:

Remark. The function H1 is the ®rst Hermite polynomial. The constants
z00; z10; z01 can be computed in terms of the initial condition u0, while
the functions f00; f10; f01 are determined by the ¯ow on the pseudo-center
manifold ± a system of three ordinary di�erential equations in this case.

Proof. Transformed to the ``w''-variables used in Section 2, the equation
becomes

@w
@t
� H0w� eÿ3jxj

2=8w4; w�x; 0� � u0�x�; t 3 0;�4:3�

where H0 � Dx ÿ x2
16ÿ 1

6. The spectrum of H0 is r�H0� � fÿ 2
3ÿ m

2 jm �
0; 1; 2; . . .g and we construct the pseudo-center manifold corresponding to the
two lowest eigenvalues. In order to apply Theorem 2.2, Proposition 3.3, and
Theorem 3.5, we must verify that the nonlinear term in the equation is suf-
®ciently smooth. We begin by showing that f �w� � exp�ÿ3jxj2=8�w4 is in Ck

with k > 1 on ~H
q;2

for any q > 1
2 d � 1. (Note that because the nonlinear term

is a homogeneous function, f does not depend on the auxiliary variable g.) If
one de®nes g�x; y� � exp�ÿ3jxj2=8�y4, then f �w��x� � g�x; w�x��. By Theorem
4.3 of VALENTALENT (1988), if g 2 Cm�k, and w 2 H m;2, with m > 1

2 d, then the
composition f �w��x� � g�x; w�x�� is a Ck function from Hm;2 to itself. The
proof in VALENTALENT (1988) may be readily modi®ed to show that the result is
also true in the weighted Sobolev spaces ~H

q;2
, and Hq;2

r . We can also extend
the theorem to allow for functions de®ned on unbounded domains in Rd ,
provided that g and its derivatives vanish at y � 0 as is the case here. Thus,
since g 2 C1, we conclude that f �w� is a Ck function on ~H

q;2
for any q > 1, and

any k. Similarly, if we rewrite (4.2) in terms of the ``v''-variables, the
nonlinearity becomes simply ~f �v� � v4, and again the results of VALENTALENT

(1989) imply that the nonlinearity is Ck on H q;2
r for any k. Thus, we may apply

all of the results of Sections 2 and 3 to this example, provided that we choose
q > 1. For concreteness choose q � 4. Proposition (3.3) then implies that all
solutions in a su�ciently small neighborhood of the origin, approach this
manifold at a rate O�1=t

5
3ÿe�, where we can make e as small as we like by

taking the neighborhood on which we work su�ciently small.
In order to construct the invariant manifold we need to know the

eigenfunctions of H0, which in this case are ujk�x; y� � cjkHj�x�Hk�y�
exp�ÿ�x2 � y2��=8, where the constants cjk are chosen so that hujk ;u~|~kiq �
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dj~|dk~k, and Hk is the kth Hermite polynomial. In particular, if we choose the

constant c� p� in the de®nition of the inner product in ~H
q;2

to be 1 and take

q � 4, we ®nd that c00 � 9=�50 ���
p
p � and c10 � c01 � 18=�169 ������

2p
p �. The

eigenvalue corresponding to ujk is kjk � ÿ 2
3ÿ �j�k�

2 . Thus, the ``central sub-

space'' Ec � spanfu00;u10;u01g.
By Theorem 3.5, any solution of (4.3) in a su�ciently small neighborhood

of the origin approaches a solution of

_w � Hc
0w� F c�w; h�w��:�4:4�

Remark. Equation (4.4) is just (3.6) rewritten in the ``w''-variables. Also,
since the nonlinear term in (4.1) is a homogeneous function, the nonlinear
term in (4.4) is independent of g.

Let zjk be coordinates in W s in the ujk direction, and let
hjk�z00; z01; z10� � hjk�z�, j� k 3 2 be the component of h in the ujk direction.
(Recall that h is the function whose graph gives the invariant manifold.) We
can compute h by standard techniques (see, e.g, CARRARR (1983)) and we ®nd
that

hjk�z� �
X

m1�m2�m3�4
mj 3 0

ÿcjk�m�
�kjk � 8

3� m2�m3

2 �
zm � O�jzj5�:�4:5�

I have used the standard multi-index notation here, so that
zm � zm1

00 zm2

01 zm3

10 . Also, cjk�m� is the coe�cient of zm in the eigenfunction ex-
pansion of the nonlinear term in (4.3). More precisely, it is the coe�cient of
zm in the expression hujk; exp�ÿ3�x2 � y2�=8��z00u00 � z01u01 � z10u10�4i4.
Again, these are straightforward to compute and one ®nds, for example,

c00�4; 0; 0� � �1p�3=2�14�5=2�35�6, c00�3; 1; 0� � 0, c00�3; 0; 1� � 0, . . .
Using this information about h, one can write (4.4) more explicitly as

_z00 �ÿ 2
3 z00 �

X
m1�m2�m3�4

mj 3 0

c00�m�zm � O�jzj5�;

_z10 �ÿ 7
6 z10 �

X
m1�m2�m3�4

mj 3 0

c10�m�zm � O�jzj5�;

_z01 �ÿ 7
6 z01 �

X
m1�m2�m3�4

mj 3 0

c01�m�zm � O�jzj5�:

�4:6�

We can easily derive the asymptotics of this system of equations. If we start
from the point z�0� � �z00�0�; z10�0�; z01�0��, then we ®nd

z00�t� �eÿ2t=3�z00�0� � f00�z�0�� � O�eÿlt�;
z10�t� �eÿ7t=6�z10�0� � f10�z�0�� � O�eÿlt�;
z01�t� �eÿ7t=6�z10�0� � f00�z�0�� � O�eÿlt�;
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with l 3 2. The functions fjk can be approximated by their Taylor series and
we ®nd that

fjk�z�0�� �
X

m1�m2�m3�4
mj 3 0

6cjk�m�
�4m1 � 7m2 � 7m3 ÿ 4� z�0�

m � O�jzj5�:

If we now return to the variables of (4.4), this implies that

w�x; y; t�� eÿ2t=3�z00�0�� f00�z�0���u00�x; t�� eÿ7t=6�z10�0�� f10�z�0���u10�x; t�
� eÿ7t=6�z01�0� � f01�z�0���u01�x; t� � O�eÿl1t�;

for some l1 3 2. In light of Proposition 3.3 and the fact that hjk�z� � O�jzj4�,
we see that if w�t� � �wr�t�;ws�t�� is a solution of (4.3) which remains in a
neighborhood of the origin for all time, then there exists z�0� � �z00�0�;
z10�0�; z01�0�� such that

wc�t� � w�t�; ws�t� � O�eÿ8=3t� � O�eÿl2t�;

where l2 can be made as close as we like to
5
3 �� k02 � k11 � k20�. Thus, if we

revert to our original variables, we see that for long times, the solution of
(4.1) is

u�n ���
s
p
; s� � 1

2
���
p
p 3

5

� �2
1

s
�z00 � f00�z�0��� exp ÿ 1

4 �n21 � n22 �
ÿ �

� 1

2
������
2p
p 6

13

� �2
1

s3=2
�z10 � f10�z�0���H1�n1� exp ÿ1

4 �n21 � n22 �
ÿ �

� 1

2
������
2p
p 6

13

� �2
1

s3=2
�z01 � f01�z�0���

� H1�n2� exp ÿ1
4 �n21 � n22 �

ÿ �� O 1

s2ÿe

� �
;

where e can be made arbitrarily small by choosing a su�ciently small
neighborhood of the origin. This estimate completes the proof of Proposition
(4.1.) (

Remark. Note that while the lowest-order asymptotics for this equation (see,
e.g., BRICMONTRICMONT, KUPIAINENUPIAINEN, & LININ (1994)) are ``universal'' ± that is, re-
gardless of initial conditions they approach the function u��n ���

s
p
; s� �

K
s eÿ�n

2
1�n22�=4 for some choice of K, the higher-order asymptotics are more

complicated, in particular, not universal, and depend in a nontrivial way on
the initial conditions. In related equations, which model the propagation of
waves on a ¯uid surface, such dependence may have experimentally observ-
able consequences (see BONAONA, PROMISLOWROMISLOW, & WAYNEAYNE (1995)).

Remark. Since Theorem 2.2 only guarantees that the invariant manifold is of
class C1�a, one may wonder whether expansions like (4.5) are justi®ed.
However, as CARRARR (1983, Section 2.5) shows, if we can ®nd a function ~h
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which satis®es the equation de®ning the invariant manifold up to terms of
order O�jxjs�, with s > 1, then ~h provides an approximation of the true in-
variant manifold up to an error of the same order. It is also worth remarking,
however, that there is no guarantee that we can solve for the Taylor coe�-
cients of h to arbitrary order, as resonances between the eigenvalues of H0

may prevent us from continuing beyond a certain point.

Remark. While this example shows that the second-order asymptotics are
more complicated than the ®rst-order, yet more involved phenomena may
occur. For examples of such problems, the reader may wish to consider the
higher-order asymptotics of @su � @nnuÿ u4, or @su � @nnuÿ u3, for n 2 R. In
both cases we ®nd that the higher-order asymptotics contain terms involving
log s rather than just inverse powers of s.

4.2. Behavior of solutions for p near pc � 1� 2=d.

In this subsection we consider the behavior of solutions of (4.1), for
p � 1� 2=d. This question has already received much attention (GALAK-ALAK-

TIONOVTIONOV, KUDYMOVUDYMOV, & SAMARSKIIAMARSKII (1986), KAMINAMIN & PELETIERELETIER (1985), BRIC-RIC-

MONTMONT & KUPIAINENUPIAINEN (1996), ESCOBEDOSCOBEDO & KAVIANAVIAN (1988), ESCOBEDOSCOBEDO, KAVIANAVIAN,
& MATANOATANO (1995)). I wish to illustrate a new outlook on the change in the
behavior of solutions when p passes through pc by using ideas from bifur-
cation theory, coupled with the invariant-manifold theorems of this paper.
For reasons explained below, I restrict consideration to one spatial dimen-
sion. If we rewrite (4.1) in the ``w''-variables, one ®nds that

@w

@s
� H0� pc�w� � pc ÿ p�

� pc ÿ 1�� p ÿ 1�wÿ eÿ
1
8�pÿ1�x2 jwjpÿ1w:

Now use a standard ``trick'' from bifurcation theory (see, e.g., RUELLEUELLE

(1989)) and introduce q � pc ÿ p as a new variable. Then, using the fact that
pc � 3 for d � 1, one has:

_q � 0;

@w

@s
� d2

dx2
ÿ x2

16
� 1

4

� �
w� qw

2�2ÿ q� ÿ eÿ
1
8�2ÿq�x2 jwj2ÿqw:

�4:7�

Noting that the spectrum of d2
dx2 ÿ x2

16� 1
4

� �
is f0;ÿ 1

2 ;ÿ1;ÿ 3
2 ; . . .g, we see that

provided the nonlinear term in this system satis®es the hypotheses of Theo-
rem 2.2, (4.7) has a two-dimensional center manifold, tangent at the origin to
the zero eigenspace of H0� pc� and the q direction.

To verify the hypotheses on the nonlinear term, de®ne
g�q; x; y� � exp�ÿ 1

8 �2ÿ q�x2�jyj2ÿqy; then g 2 C2 (for jqj < 1), and hence by
Theorem 4.1 of VALENTALENT (1988) (again, suitably modi®ed to account for the
weights in ~H

q;2
and the fact that we work with functions de®ned on un-

bounded domains), f �q; x� � g�q; x; w�x�� is a C1 function of ~H
1;2

to itself.
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(Here I have ®xed q � 1. This is where the restriction to d � 1 arises. If one
wished to work in d � 2 or 3, one would have to assume that w 2 ~H 2;2, and
then f would not be smooth enough to apply Theorem 4.1 of VALENTALENT (1988).
I believe that this is only a technical restriction which could be overcome by
taking advantage of the smoothing that comes from the linear semi-group.)
In fact, to apply Theorem 2.2, one requires that f 2 Ck with k > 1. To see
that this is true, note that if jqj < 1

2, then g 2 C2�g, for some g > 1
2. By an

extension of VALENTALENT's argument, which is included in Appendix B, one can
show that this implies that the nonlinearity is then a C1�g function from ~H

1;2

to itself. Thus, Theorem 2.2 applies to (4.7). If we now rewrite (4.7) in terms
of the ``v''-variables, the nonlinear term becomes ~f �q; x� � jvj2ÿqv, and if
jqj < 1, then ~f 2 C1 (as a function from ~H

1;2
to itself ), and this su�ces to

ensure that the results of Section 3 also apply to this example.
Turning now to the actual construction of the center manifold, we take

c� p� � 1 (in the de®nition of ~H
1;2
), and we then ®nd that the approximate

equations in the center manifold are

_q � 0;

_z � q
2�2ÿ q� zÿ

1

2

1������
3p
p z3 � O4�q; z�;

�4:8�

where z is the coordinate in the direction of u0�x�, the eigenfunction of H0

with zero eigenvalue, and O4�q; z� means that the terms that have been
omitted are of the form qazb with a� b 3 4. Note that for q < 0 (i.e., p > pc),
the origin is a stable ®xed point of (4.8). Thus, z�t� � z�0� exp�qt=2�2ÿ q��,
or in the original variables,

u�n ���
s
p
; s� � K

s
1

pÿ1
s

q
2�2ÿq�e

ÿn2

4 � K���
s
p e

ÿn2

4 ;

as expected.
On the other hand, as q passes through zero, the origin becomes unstable

and a new stable ®xed point of (4.8) appears at z� �
�����������������������������������
3p
p

q=�2ÿ q�
q

. (This is
the exact location of the ®xed point if one ignores the terms O4�q; z�.) Thus in
this case,

z�t� � z� � K�z�0��eÿlt;

where for q small, l � ÿ 1
2 q� o�q�. Thus, if w��x� is the function corre-

sponding to z� (the properties of w� have been studied in BREZISREZIS, PELETIERELETIER &
TERMANERMAN (1986), GALAKTIONOVALAKTIONOV, KUDYMOVUDYMOV, & SAMARSKIIAMARSKII (1986), KAMINAMIN &
PELETIERELETIER (1985)) we ®nd that

kw�x; t� ÿ w��x�k ~H
1;2 2 Keÿlt;

or if we again revert to our original variables,

u�n ���
s
p
; s� � 1

s1=�pÿ1�
en2s=2w��n ���

s
p � � O 1

sl� 1
pÿ1

� �
:

Note that in addition to the appearance of a new limiting function w�, the
rate of decay has also changed from tÿ1=2 to tÿ1=�pÿ1� as p passed through pc.
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This is again consistent with the results of ESCOBEDOSCOBEDO & KAVIANAVIAN (1988) and
BRICMONTRICMONT & KUPIAINENUPIAINEN (1996), but in contrast to those results, gives an
explicit estimate of the rate of decay of the higher-order terms for q small.
Since this paper was submitted, the work of ESCOBEDOSCOBEDO, KAVIANAVIAN, & MATANOATANO

(1995) has appeared in which they also compute the rate of decay of the
higher-order terms, albeit by very di�erent methods.

Finally, note that exactly at pc � 3, the equations on the center manifold
become

_q � 0;

_z � ÿ 1
2

1������
3p
p z3 � O4�q; z�:

In this case, one ®nds that z�t� approaches the origin as z�t� � 1=
��
t
p
. Re-

verting to our original variables, one ®nds that

u�n ���
s
p
; s� � K�������������

s log s
p eÿn2=4:

Thus we immediately and easily recover the logarithmic corrections to the
decay rate in the critical case.

5. Conclusions and Possible Extensions

One obvious extension of this work is to expand the class of nonlinear
terms allowed in (1.1). For instance, the studies of the lowest-order asymp-
totics of such equations (e.g., BRICMONTRICMONT, KUPIAINENUPIAINEN, & LININ (1994)) admit
nonlinearities of the form F �u;ru� which depend on the gradient of u. In the
present case we cannot include such terms because of the requirement of
GALLAYALLAY's theorem that the nonlinear term be a Ck function with k > 1. Such
a condition seems to be necessary if one works with only very weak as-
sumptions on the linear evolution, as GALLAYALLAY does. In the present situation,
however, we have quite detailed knowledge of the linear evolution, and I hope
that by taking advantage of that knowledge, one can extend these ``pseudo-
center'' manifolds to equations with derivatives in the nonlinear terms, much
as MIELKEIELKE (1991) was able to do for the ordinary center manifolds.

Another natural extension would be to examine the possible existence of
invariant manifolds in the neighborhood of non-constant solutions of (1.1)
such as fronts. As mentioned in the introduction, a number of authors have
studied the stability of fronts and derived essentially the ®rst-order asymptotics
of solutions near these fronts. If the present work could be extended to such
situations, it would give a much clearer picture of the invariant geometrical
structures in the phase space of such partial di�erential equations, and also
allow one to derive higher-order asymptotics for solutions near these fronts.

A third intriguing question is whether or not results analogous to those
described here are also applicable to dispersive equations. STRAUSSTRAUSS (1974) has
investigated the long-time behavior of nonlinear perturbations of the
SchroÈ dinger equation and linearized Korteweg-de Vries equation and found
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that under appropriate assumptions on the nonlinear term, solutions of such
equations approach a solution of the linear equation, just as do solutions of
(1.1), when p > pc. It is natural to wonder whether the geometric structures
underlying the long-time behavior in the dissipative case are also present in
the dispersive equations.

Appendix A

In this appendix I prove Proposition (3.2), which forms the basis of the
study of the attractivity of the pseudo-center manifold in Section 3. Recall
that those estimates hold in the weighted Sobolev spaces

Hq;2
r � v

���� X
jaj2 q

kDa�1� jxj2�r=2vkL2 <1
8<:

9=;:
The desired estimate is proved by representing the linear semi-group
exp�tL0� as an integral using MEHLEREHLER's formula, and then estimating this
integral by considering separately its action on functions supported inside,
and outside, of a ball of radius R. Since the integral is time-dependent, the
radius R is also chosen to depend on time (although, I do not make this
dependence explicit in the notation). De®ne a smooth function vl�x� such that

vl�x� �
0 if jxj2 R,
1 if jxj3 8

7 R.

�
Given a positive integer N , de®ne QN as in Section 3. Note that if v 2 H q;2

r
is in the range of QN , then QN v � v. Also, given any function f , de®ne
f>�x� � vl�x�f �x� and f<�x� � �1ÿ vl�x��f �x�. The essence of the proof of
Proposition (3.2) is contained in the following pair of propositions:

Proposition A.1. If r 3 min�q;N � 1
2 �d � 1��, then there exists C�r; q� > 0,

independent of R, such that

ketL0QN v<kHq;2
r

2 C�r; q�eR2=6eÿjkN�1jtkvkHq;2
r
:

Proposition A.2. If r 3 min�q;N � 1
2 �d � 1�� and R 3 1, then there exists

C�r; q� > 0, independent of R, such that

ketL0QN v>kHq;2
r

2 C�r; q�
n

eR2=6e�
1

pÿ1 � q
2 ÿ d

4� t2eÿjkN�1j t2

� e�
1

pÿ1 � q
2 ÿ d

4 ÿ r
4�t � e�

1
pÿ1 � q

2 ÿ d
4�teÿ

3
16R

2
o
kvkHq;2

r
:

Before proving these two propositions, I now show that they imply
Proposition 3.2. Let n be the integer ®xed in Proposition 3.2. Fix
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N > max

 
4n� 3d ÿ 6

p ÿ 1
� 3;

142

p ÿ 1
� 72qÿ 1

!
:

Note that this de®nition, together with the de®nition of the eigenvalues
km, ensures that

jkN�1j > 4jkn�1j; ÿ 5
18jkN�1j � 2

�
1

p ÿ 1
� q
2

�
< ÿ1

4jkN�1j:
Next choose

r > jkN�1j � 4

p ÿ 1
� 2qÿ d:

This de®nition ensures that � 1
pÿ1� q

2ÿ d
4 ÿ r

4� < ÿ 1
4 jkN�1j. Finally, de®ne

R � max

�
1;

�
16t
3

� jkN�1j
4
� 1

p ÿ 1
� q
2
ÿ d
2

��1=2�
:

If one combines the estimates of Propositions A.1 and A.2, one sees that

ketL0QN vkHq;2
r

2 ketL0QN v<kHq;2
r
� ketL0QN v>kHq;2

r

2 C�r; q�feR2
6 eÿjkN�1jt � e

R2
6 e�

1
pÿ1�q

2ÿd
4� t2eÿjkN�1j t2

� e�
1

pÿ1�q
2ÿd

4ÿr
4�t � e�

1
pÿ1�q

2ÿd
4�teÿ

3
16R

2gkvkHq;2
r
:

Inserting the de®nitions of the various constants from above, we see that this
expression is bounded by C�r; q�eÿjkN�1jt=4kvkHq;2

r
. Thus, we have

Corollary A.3. If r 3 min�q;N � �d � 1�=2� and if N and r are chosen as
above, there exists a constant C�r; q; n� such that

ketL0QN vkHq;2
r

2 C�r; q; n�eÿjkN�1jt=4kvkHq;2
r
:

To complete the proof of Proposition 3.2, we now introduce the projec-
tion operators Pn and Qn in addition to PN and QN . Rewrite

etL0Qnv � etL0�PN � QN �Qnv � etL0QN Qnv� etL0PN Qnv:

By Corollary A.3, we can bound

ketL0QN QnvkHq;2
r

2 C�r; q; n�eÿjkN�1jt=4kvkHq;2
r

2 C�r; q; n�eÿjkn�1jtkvkHq;2
r
:�A1�

On the other hand, by the orthonormality of the wj's,

PN Qnv � PN �1ÿ Pn�v �
XN

j�n�1
wjhhwj; viiq;

while exp�tL0�wj � exp�tkj�wj, so that

�A2�
ketL0PN QnvkHq;2

r
� k

XN

j�n�1
exp�tkj�wjhhwj; viiqkHq;2

r
2 C�r; q; n�eÿtjkn�1jkvkHq;2

r
:
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Combining (A.1) and (A.2) completes the proof of Proposition 3.2. (

We now return to the proofs of Propositions A.1 and A.2. The proof of
Proposition A.1 is based on the fact that since v< is zero outside a ball of
radius R, it is in the Sobolev space ~H

q;2
of Section 2, and hence we can

estimate the action of the linear semi-group on such functions with the aid of
the spectral theorem. Begin by noting

Lemma A.4. If w 2 ~H
q;2
, then there exists C�q; r�3 0 such that

keÿx2=8w�x�kHq;2
r

2 C�q; r�kwk ~H
q;2 :

Proof. This follows from the de®nition of the norms and the fact that for
every r > 0, there exists K�r� > 0, such that supx�1� jxj2�reÿx2=8 2 K�r�. (

Proof of Proposition A.1. By Lemma A.4,

etL0QN v<


 



Hq;2
r
� keÿx2=8etH0ex2=8QN v<kHq;2

r
2 C�q; r�ketH0ex2=8QN v<k ~H

q;2 :

But ex2=8QN v< � ~QN ex2=8v<, where ~QN is the projection onto the orthogonal

complement of spanfu0; _s;uNg in ~H
q;2
. Thus,

ketH0 ~QN ex2=8v<k ~H
q;2 2 C�q�eÿjkN�1jtkex2=8v<k ~H

q;2 :

But now we note that since v<�x� � 0 if jxj3 8
7 R, k exp�18 x2�v<k ~H

q;2

2 C�q��1� Rr� exp� 849 R2�kvkHq;2
r
, by the de®nition of the norms, and Prop-

osition A.1 follows. (

Remark. Because R depends on time, it is important to stress that the con-
stant C�r; q� in Proposition A.1 is independent of R ± all of the R dependence
in this estimate is captured in the exponential.

We now turn to the more di�cult estimate, namely, Proposition A.2. We
begin with an estimate of the action of the linear semi-group.

Proposition A.5. There exists C�r; q� > 0 (independent of R) such that for
R 3 1, and any v 2 Hq;2

r ,

kvl exp �tL0�vk2Hq;2
r

2 C�r; q�e 2t
pÿ1eÿ

dt
2fe�qÿr�t

2 � e
tq
2eÿ

3
16R

2g2kvk2Hq;2
r
:

Proof. Using MEHLEREHLER's formula for exp�tL0� as in BRICMONTRICMONT & KUPIAINENUPIAINEN

(1996), we ®nd that
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�etL0v��x� � 1

�4pa�t��ÿd=2
et=�pÿ1�

Z
eÿz2=�4a�t��v�et=2�x� z�� dz;

where a�t� � 1ÿ exp�ÿt�. Thus,

kvle
tL0vk2Hq;2

r
2

X
jaj2 q

kDa�1� j � j2�r=2vl����etL0v����k2L2

2
X
jaj2 q

1

�4pa�t��ÿd e2t=�pÿ1�
Z

dz1 dz2eÿz2
1
=�4a�t��eÿz2

2
=�4a�t��

����
�
Z
�Da

x�1� jxj2�r=2vl�x�v�et=2�x� z1���

� �Da
x�1� jxj2�r=2vl�x�v�et=2�x� z2��� dx

�����
2

X
jaj2 q

 
1

�4pa�t��ÿd=2
et=�pÿ1�

Z
dz eÿz2

1
=�4a�t��

� kDa�1� j � j2�r=2vl���v�et=2�� � z��kL2

!2

;

�A:3�

where the last inequality applied the Cauchy-Schwarz inequality to estimate
the integral with respect to x.

The integral over z is estimated by breaking it up into two pieces ac-
cording to whether z is less than or greater than 7

8 R, and then estimating each
of those pieces with the aid of

Lemma A.6. There exists C�r; q� > 0 (independent of R) such that for any
jaj2 q,

(i) If jzj2 7
8 R,

kDa�1� j � j2�r=2vl���v�et=2�� � z��k2L2 2 C�r; q�et�qÿrÿd=2�kvk2Hq;2
r
:

(ii) If jzj > 7
8 R,

kDa�1� j � j2�r=2vl���v�et=2�� � z��k2L2 2 C�r; q�et�qÿd=2��1� jzj2�rkvk2Hq;2
r
:

Remark. The constant C�r; q�, also depends on the L1 norm of the cuto�
function vl, and its derivatives of order q or less. vl can be chosen so that
these derivatives are bounded independently of R for R 3 1. We assume
throughout the remainder of this appendix that R 3 1, and hence we supress
this dependence.

Applying this lemma to (A.3), one ®nds
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kvle
tL0vk2H q;2

r
2 C�q; r��4pa�t��ÿde�

2
pÿ1ÿd

2�tkvk2Hq;2
r

�
Z

jzj2 7R=8

eÿz2=�4a�t��e�qÿr�t=2 dz

8><>:
�

Z
jzj>7R=8

eÿz2=�4a�t��etq=2�1� jzj2�r=2 dz

9>=>;
2

:

Elementary estimates of these integrals then complete the proof of Proposi-
tion A.5. j

Proof of Lemma A.6. Consider ®rst case (i).

kDa�1�j � j2�r=2vl���v�et=2�� � z��k2L2
�
Z
�Da

x�1� jxj2�r=2vl�x�v�et=2�x� z���2 dx

2 C�jaj; r�
X

jbj�jcj2 jaj

Z
�1� jxj2�rjDbvl�x�j2ejcjtjDcv�et=2�x� z��j2 dx;

where the sum runs over all ways of distributing the derivatives over v and v.
This in turn is bounded by

C�jaj; r�ejajt
Z �1� jxj2�r
�1� etjx� zj2�r jD

bvl�x�j2�1� etjx� zj2�rjDcv�et=2�x� z��j2 dx:

Since vl�x� � 0 if jxj2 R, one sees that jx� zj3 1
8 jxj. Thus,

�1� jxj2�r
�1� etjx� zj2�r 2 C�r�eÿtr;

and so the previous expression is bounded by

C�jaj; r�ejajteÿtr
Z
�1� etjx� zj2�rjDcv�et=2�x� z��j2 dx

2 C�jaj; r�ejajteÿtreÿtd=2kvkH q;2
r
;

the last step following from the change of variables y � et=2�x� z�.
Now turn to the estimate in part (ii) of the lemma. As before, one has

kDa�1�j � j2�r=2vl���v�et=2�� � z��k2L2
2 C�q; r�etq sup

jbj2 jaj

Z
�1� jxj2�rjDb

x v�et=2�x� z��j2 dx

� C�q; r�etqeÿtd=2
Z
�1� jeÿt=2y ÿ zj2�rjDbv�y�j2 dy

2 C�q; r�etqeÿtd=2�1� jzj2�rkvk2~Hq;2 :
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Note that if the factor of vl is not present in Proposition A.5, the esti-
mates proceed in a very similar fashion except that (A.3) is replaced by

ketL0vk2Hq;2
r

2 C�q; r��4pa�t��ÿde2t=�pÿ1�eÿtd=2kvk2Hq;2
r

Z
eÿz2=�4a�t��etq=2�1� jzj2�rdz

� �2

:

An elementary estimate of this integral implies

Corollary A.7. There exists C�r; q� > 0 such that for any v 2 Hq;2
r ,

ketL0vk2Hq;2
r

2 C�q; r�e2t=�pÿ1�eÿdt=2etqkvk2H q;2
r
:

We can now prove Proposition A.2. Begin by writing

etL0QN v> � e
1
2 tL0QN e

1
2 tL0v> � e

1
2 tL0QNvle

1
2 tL0v> � e

1
2 tL0QN �1ÿ vl�e

1
2 tL0v>:

By Proposition A.1 and Corollary A.7,

ke1
2 tL0QN �1ÿ vl�e1=2tL0v>kHq;2

r
2 C�r; q�eR2=6eÿjkN�1jt=2ke1

2tL0v>kH q;2
r

2 C�r; q�eR2=6eÿ�jkN�1j�� 1
pÿ1 ÿ d

4 � q
2��t=2kvkHq;2

r
:

�A:4�
On the other hand, by Corollary A.7 and Proposition A.5,

ke1=2tL0QNvle
1=2tL0v>kHq;2

r
2 C�r; q�e� 1

pÿ1 � q
2 ÿ d

4�t=2kvle
1
2tL0v>kHq;2

r

2 C�q; r�e� 1
pÿ1 � q

2 ÿ d
4�t=2e�

1
pÿ1 ÿ d

4�t=2
n

e�qÿr�t=4 � etq=4eÿ3R2=16
o
kvkHq;2

r
:

�A:5�
Combining (A.4) and (A.5) completes the proof of Proposition A.2. (

Appendix B

In this appendix I consider the smoothness of the function w! F �w�,
de®ned by w�x� ! f �x; w�x��, considered as a map from ~H

1;2
to itself. Since I

wish speci®cally to verify the hypotheses made in Subsection 4.2, I restrict
consideration to d � 1 and assume that f �x; y� 2 C2�g, for some 0 < g < 1.
Then easy modi®cations of the proof of Theorem 4.1 in VALENTALENT (1988) to
account for the weights in our Sobolev space, and the fact that we work on an
unbounded domain, allow us to conclude that F is in C1, and that the de-
rivative of F is given by the linear operator

F 0�w�s � Fy�w�s;
where Fy�w��x� � fy�x; w�x��. I now show that the derivative of F is itself
HoÈ lder continuous, and hence prove
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Proposition B.1. Suppose that f 2 C2�g, with 1
3 < g < 1, and that there exists

C > 0, and n > 0 such that

sup
x
jDa

xDb
y f �x; y�j2 Cjyj�1� jyj�n for all jaj � jbj2 2 ; jbj < 2:

Then w! F �w� is a C1�g function from ~H
1;2

to itself.

Remark. The hypothesis on the derivatives of f �x; y� is necessary because of
the fact that we work on an unbounded domain.

Proof. Since we know that F is in C1 and have a formula for the ®rst de-
rivative, the proposition follows from an estimate of the form

k�F 0�w� ÿ F 0� ~w��k ~H
1;2 2 Ckwÿ ~wkg

~H
1;2 for w and ~w 2 ~H

1;2
:

Recalling the de®nition of the norm in ~H
1;2
, we see that kF 0�w� ÿ F 0� ~w�k ~H

1;2 is
a sum of two types of terms:
Type I.

k�1� jxj��fy�x; w�x�� ÿ fy�x; ~w�x���kL2 2 Ck�1� jxj�jw�x� ÿ ~w�x�jkL2

�since f 2 C2�g�
2 Ckwÿ ~wk ~H

q;2 :
Type II.

kDx�fy�x; w�x��ÿfy�x; ~w�x���kL2

2 kfxy�x; w�x�� ÿ fxy�x; ~w�x��kL2

� kfyy�x; w�x��w0�x� ÿ fyy�x; ~w�x�� ~w0�x�kL2 :

�B:1�

Since f 2 C2�g, jfxy�x; w�x�� ÿ fxy�x; ~w�x��j2 Cjw�x� ÿ ~w�x�jg, it follows that
kfxy�x; w�x�� ÿ fxy�x; ~w�x��k2L2

2 C
Z
jw�x� ÿ ~w�x�j2g dx

2 C
Z
�1� jxj�ÿ2g��1� jxj�jw�x� ÿ ~w�x�j�2g dx

2 C
Z
�1� jxj�ÿ2gqdx

� �1=q Z
��1� jxj�jw�x� ÿ ~w�x�j�2gpdx

� �1=p

;

where 1=q� 1=p � 1. If one sets p � 1=g, then the second integral is bounded
by kwÿ ~wk2g

~H
1;2 , while the ®rst integral becomes

R �1� jxj�ÿ2g=�1ÿg�dx, which is
bounded by a constant if g > 1

3. To estimate the second term in (B.1), note
that

kfyy�x; w�x��w0�x�ÿfyy�x; ~w�x�� ~w0�x�kL2

2 2

Z
jfyy�x; w�x�� ÿ fyy�x; ~w�x��j2jw0�x�j2 dx

� 2

Z
jfyy�x; ~w�x��j2jw0�x� ÿ ~w0�x�j2 dx:

Since d � 1, it follows that ~w 2 L1, so jfyy�x; ~w�x��j2 C and
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Z
jfyy�x; ~w�x��j2jw0�x� ÿ ~w0�x�j2dx 2 Ckwÿ ~wk2~H 1;2 :

On the other hand,

jfyy�x; w�x�� ÿ fyy�x; ~w�x��j2 2 Cjw�x� ÿ ~w�x�j2g 2 Ckwÿ ~wk2gL1 :

Thus, Z
jfyy�x; w�x�� ÿ fyy�x; ~w�x��j2jw0�x�j2 dx 2 Ckwÿ ~wk2g

~H
1;2 ;

and the proposition follows. (

Remark. The restriction that g > 1
3 arises from estimating the ®rst term on

the right-hand side of (B.1). If one assumes that fxy 2 C1 (as is the case in
Subsection 4.2), one can avoid this restriction.
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