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Abstract

The existence, uniqueness, stability and regularity properties of traveling-
wave solutions of a bistable nonlinear integrodi�erential equation are es-
tablished, as well as their global asymptotic stability in the case of zero-
velocity continuous waves. This equation is a direct analog of the more
familiar bistable nonlinear di�usion equation, and shares many of its prop-
erties. It governs gradient ¯ows for free-energy functionals with general
nonlocal interaction integrals penalizing spatial nonuniformity.

1. Introduction

Consider the following evolution problem for functions u�x; t� de®ned on
R� R�:

ut � J � uÿ uÿ f �u� �1:1�
where the kernel J of the convolution J � u�x� � R1ÿ1 J�xÿ y�u�y�dy is non-
negative, even, with unit integral, and the function f is bistable. The analysis
to follow uses some properties that the linear operator A, de®ned by
Au � J � uÿ u, shares with the Laplacian, such as a form of maximum
principle. One can also see that A is a nonpositive operator on L2�R� by taking
Fourier transforms since Ĵ�s� � R1ÿ1 eisxJ�x�dx is real and bounded by 1.

Thus, we see that (1.1) is a nonlocal analog of the usual bistable reaction-
di�usion equation

ut � Duÿ f �u�:
As such, (1.1) as well as this equation may model a variety of physical and
biological phenomena involving media with properties varying in space. The
possible advantages of (1.1) lie in the fact that much more general types of
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interactions between states at nearby locations in the medium can be ac-
counted for.

Integrodi�erential equations with many of the properties of (1.1) have
been derived and studied from the point of view of certain continuum limits
of dynamic Ising models [DGP, DOPT1±3, KS1±3]. For an excellent review,
see [S].

Our principal motivation for studying (1.1) lies in the fact that it is a
gradient ¯ow for a natural generalization of the usual Ginzburg-Landau
functional for an order parameter describing the state of a solid material. Let
u�x; t� be such an order parameter, representing the state at position x and
time t. We call the states u � �1 ``pure''; they may represent two di�erent
orientations of a perfect crystal, for example, or di�erent variants of a given
crystal. Values of u between ÿ1 and �1 then may represent disordered states
intermediate between the pure states. Thus u2 rather than u would be a
measure of the order.

We postulate a Helmholtz free-energy functional of the form

E�u� � 1

4

Z Z
R2

J�xÿ y��u�x� ÿ u�y��2dx dy �
Z
R

F �u�x�� dx; �1:2�

where J�r� � J�ÿr�3 0 is a measure of the energy resulting from u�x� being
di�erent from u�x� r�, and F is a double-well function having (not neces-
sarily equal) minima at �1, representing the bulk energy density of a state
with u constant. This can be considered as the continuum limit of an anal-
ogous free-energy functional on a one-dimensional discrete lattice.

Note that the ®rst term in (1.2) penalizes spatially inhomogeneous ma-
terials while the second term penalizes states which take values other than �1.
If we consider the L2-gradient ¯ow associated with (1.2), we expect to observe
the e�ects of any competition between (1) the attraction of the material to
one or the other of the pure states u � �1 due to F , depending on which
domain of attraction it is in at a given location, and (2) the propensity to
become homogeneous. The competition arises because a spatial variation in
the domain of attraction in which the material lies means the attraction
property induces inhomogeneity.

A short calculation reveals that if
R
R

J � 1, then the equation representing
the L2-gradient ¯ow is (1.1), where � is convolution and f � F 0 is as pictured
in Figure 1, below.

Figure 1
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If the minima of F have equal depth, i.e., if
R 1
ÿ1 f �u�du � 0, as would be

the case when the two pure states are variants of a single crystalline structure,
then it is conceivable that a stable state u exists taking values near ÿ1 on an
interval of the form �ÿ1; a� and values near 1 on an interval of the form
�b;1� with a simple transition occurring on �a; b�. On the other hand, if one
pure state has higher energy than the other, say F �1� > F �ÿ1�, due for ex-
ample to intrinsic stress from a distribution of dislocations, then an initial
state of the type mentioned above could evolve to decrease its energy on a
large interval �ÿk; k� by simply moving to the right. One may expect the
gradient ¯ow to produce a stable traveling wave in this case. Such a solution
may be thought of as a planar front propagating into the region of higher
energy, hence the one-dimensional character of the solution.

Such fronts are well known in the more familiar case when the interaction
(®rst) term indicated in (1.2) is replaced by 1

2

R
R
�ux�x��2dx; then in place of

(1.1), we have ut � uxx ÿ f �u�. When it is replaced by an integral of a
quadratic form in the ®rst and higher derivatives of u, see [GJ] and in the
case of stationary fronts, [PT, BR]. Finally, for results concerning traveling
waves for systems obtained when temperature is dynamically coupled to
order parameter, see [CN] or [BFGJ1] for the case when the integrand of the
analogous interaction integral in E is �ux�2 or a higher-order expression,
respectively.

We are unaware of any results giving traveling waves for (1.1) or for (1.1)
coupled with a heat equation. However, ERMENTROUTRMENTROUT & MCCLEODEOD [EM] and
DEE MASIASI and others [DGP,OT] have shown the existence of traveling waves
for other nonlinear integrodi�erential equations. In the latter case, the
equation is

ut � tanhfb�J � u� h�g ÿ u;

where b > 1 and h are constants. Stability results were also given. This
equation arises from a statistical mechanics approach to phase transitions. In
[P], PENROSEENROSE made a comparison between spatially discrete versions of this
equation and (1.1) for a particular function f .

Concerning (1.1) we make the following assumptions which will be in
force for the remainder of the paper:

�H1� J 2 C1�R�; J�s� � J�ÿs�3 0 for all s,
R

R
J � 1,

R
R

J�y�jyjdy <1,
J 0 2 L1�R�,

�H2� f 2 C2�R�; f ��1� � 0 < f 0��1�; f has only one zero, a, in �ÿ1; 1�,
and no zeros outside �ÿ1; 1�.

We do not require (as in the last cited papers) that J have compact support.
We seek solutions to (1.1) of the form u�x; t� � û�xÿ ct� for some velocity

c, with u having limits �1 at x � �1. Thus, making the change of variables
n � xÿ ct, we seek a function û�n� and a constant c satisfying

J � ûÿ û� cû0 ÿ f �û� � 0 on R; �1:3�
û��1� � �1: �1:4�
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Our approach, inspired by a similar idea of ERMENTROUTRMENTROUT, MCCLEODEOD and XIEIE

in [EM, MX], is to embed (1.3) in a family of equations parametrized by
h 2 �0; 1�. When h � 0, the equation is already known to have a (traveling-
wave) solution; when h � 1, we have (1.3). A continuation argument allows
us to pass in increments from 0 to 1 in h, obtaining existence for all values in
the process. From now on we drop the caret and simply write u. The family
we choose is

h�J � uÿ u� � �1ÿ h�u00 � cu0 ÿ f �u� � 0 on R: �1:5�
Unlike previous applications of this method, our arti®cial problems (those
with h < 1) are therefore of an essentially di�erent type from (1.3); a second-
order derivative term is introduced, which degenerates to the desired problem
as h! 1.

When h � 0 it is well known that (1.5) has a solution �u; c� that is unique
(up to shifts in the independent variable) such that (1.4) holds. Furthermore,
u0 > 0 on R. The Implicit Function Theorem is used to obtain the same
conclusion for all h 2 �0; 1�. Using the weak formulation of the equation
allows us to pass to the limit as h! 1, having ®rst shown that the speeds
c � ch are bounded. This is done in Section 2.

In Section 3 we examine the regularity properties of solutions, observing
that waves with nonzero speed are smooth while (under an additional hy-
pothesis on f ) monotone stationary waves have at most one point of dis-
continuity and are smooth elsewhere. We also characterize nonlinearities f
which give rise to discontinuous stationary waves and at the same time de-
termine the jump in the solution.

In Section 4 we prove uniqueness of the solution �u; c�, up to translation
in n, and establish a nonlinear stability result, showing that solutions to (1.1)
with certain initial functions, u0, remain close to traveling waves for all time.

Finally, in Section 5 we establish the global asymptotic stability of con-
tinuous stationary waves (see Theorem 5.1 and 5.5).

2. Existence of Weak Solutions

Under the assumptions (H1), (H2) we will establish the existence of
traveling or stationary waves through a series of lemmas.

Lemma 2.1. Let h 2 �0; 1� and let u satisfy (1.4) and (1.5). Then u�n� 2 �ÿ1; 1�
for all n 2 R.

Proof. First, it is clear that any L1 solution of (1.5) is of class C3. If u has a
global maximum at n0 with u�n0�3 1, then u�n�2 u�n0� for all n 2 R, andR

R
J � 1 implies �J � uÿ u��n0�2 0. Since u is not constant, n0 can be chosen

so that J�nÿ n0�40 for some n with u�n� < u�n0�; this shows that the in-
equality is strict. That the other terms in (1.5) are nonpositive when evaluated
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at n0 provides a contradiction. A similar argument shows that u�n� > ÿ1 for
all n. (

Now suppose that �u0; c0� is a solution to (1.4) and (1.5) for some
h0 2 �0; 1� and suppose that u00 > 0 on R. We shall use the Implicit Function
Theorem to obtain a solution for h > h0. We take perturbations in the space

X0 � funiformly continuous functions on R which vanish at �1g:
Let L � L�u0; c0; h0� be the linear operator de®ned in X0 by

dom L � X2 � fv 2 X0 : v00 2 X0g;

Lv � h0�J � vÿ v� � �1ÿ h0�v00 � c0v0 ÿ f 0�u0�v: �2:1�

Lemma 2.2. L has 0 as a simple eigenvalue.

Proof. The result is known for h0 � 0, so we assume that h0 > 0. Clearly,
p � u00 is an eigenfunction of L with corresponding eigenvalue 0, so the only
question is simplicity. Suppose that / is another eigenfunction with eigen-
value 0, and assume that / takes on positive values at some points. We shall
show that p and / are linearly dependent by considering the family of
eigenfunctions

/b � p � b/; b 2 R:

Let �b � sup fb < 0 : /b�n� < 0 for some ng. Then �b is well-de®ned since /
is positive at some points. Recall that p > 0 on R. For b < �b, let nb be a
point where /b achieves its minimum, so that �J � /b ÿ /b��nb� > 0;
/00b�nb�3 0 � /0b�nb�. It follows that nb lies in that interval on which f 0�u0� is
negative; that interval is bounded since u0�n� ! �1 as n! �1. Now take
the limit b% �b along a sequence such that nb converges to some �n and
observe that /�b��n� � 02 /�b�n� for all n 2 R. It follows that
02 �J � /�b ÿ /�b���n� � �1ÿ 1=h0�/00�b��n�2 0 and so J � /�b ÿ /�b � 0 at �n. A
short computation shows that if �a; b� � supp�J�, then /�b�n� � /�b��n� for
n 2 ��nÿ b; �nÿ a� [ ��n� a; �n� b�, and then an induction argument shows that
/�b must be constant, namely, zero. Hence, p and / are linearly dependent. (

The formal adjoint of L is given by

L�v � h0�J � vÿ v� � �1ÿ h0�v00 ÿ c0v0 ÿ f 0�u0�v;
and it is easy to show that 0 is a simple eigenvalue of L� also. Moreover, 0 is
isolated since that would be true if the ®rst term in the expression for L� were
missing, and one can show that this term does not change the essential
spectrum. Let /� be the corresponding eigenfunction; then by the Fredholm
Alternative, for g 2 X0; Lv � g has a solution in X2 if and only if

R
R

g/� � 0.
We can now give the continuation result:

Lemma 2.3. With h0; u0 and c0 as above, there exists g > 0 such that for
h 2 �h0; h0 � g�, problem (1.4), (1.5) has a solution �u; c�.
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Proof. Without loss of generality, we may assume u0�0� � 0. For
w � �v; c� 2 X2 � R and h 2 R de®ne

G�w; h� � �h�J � �u0 � v� ÿ �u0 � v�� � �1ÿ h��u0 � v�00 � �c0 � c��u0 � v�0
ÿ f �u0 � v�; v�0��

so that G : �X2 � R� � R! X0 � R is of class C1. We have G�0; h0� � �0; 0�
and

DG � @G
@w
�0; h0� � L u00

d 0

� �
;

where dv � v�0�.
If we can show that DG : X2 � R! X0 � R is invertible, then the lemma

would follow from the Implicit Function Theorem. To that end, let h 2 X0

and b 2 R and consider

DG�v; c� � �h; b�;
that is,

Lv� cu00 � h; �2:2�
v�0� � b: �2:3�

As we observed above, (2.2) is solvable if and only if

c
Z
R

u00/
� �

Z
R

h/�:

This determines c, since the simplicity of the eigenvalue 0 of L ensures that the
integral on the left is not zero. With this value of c the solution to (2.2) is
determined up to an additive term cu00, where c 2 R. Now (2.3) is satis®ed by
a unique choice of c since u00�0� > 0. Thus, DG is invertible and the lemma is
proved. (

In order to continue to the whole interval h 2 �0; 1�, and for other con-
siderations, it is necessary to show that for all h 2 �h0; h0 � g� the solution u
obtained in the previous lemma is strictly increasing. We have

Lemma 2.4. Let h 2 �h0; h0 � g� and �u; c� be the solution given above. Then
u0�n� > 0 for all n 2 R.

Proof. First, we show that u0�n�3 0. Suppose not. Then

�h � inffh > h0 : u0�n� < 0 for some n 2 Rg
is well de®ned. Note that we have suppressed the h-dependence of u and c.
Since the set over which this in®mum is taken is open, there exists a de-
creasing sequence hn & �h on which ph�n� � u0�n� has a negative minimum at
some point nh. Also,

h�J � ph ÿ ph� � �1ÿ h�p00h � cp0h ÿ f 0�u�ph � 0 �2:4�
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so that at nh; f 0�u�ph 3 0 and therefore nh is bounded, independent of h. Take
a limit along a sequence such that h& �h and nh ! �n. Then at h � �h and
n � �n, with �p � p�h we have

0 � �h�J � �p ÿ �p� � �1ÿ �h��p00 � c�p0 ÿ f 0�u��p
� �h�J � �p ÿ �p� � �1ÿ �h��p00
3 �h�J � �p ÿ �p�3 0:

As in the proof of Lemma 2.2, we can show that �p is constant, namely 0. This
is impossible, since �p � u0 and u is not constant. Thus, for all h 2 �h0; h0 � g�
we have u03 0. The preceding integro-di�erential inequality shows that u0

cannot achieve a minimum value of 0 and so the lemma is proved. (

Remark. Eventually we will pass to the limit h! 1 and obtain a solution u to
(1.3) which is monotone. By the inequality above with h � 1, one can see that
u0 can never be zero. This observation will be used later in Section 4.

We wish to continue the solution branch to h 2 �0; 1�. To do this we must
establish some a priori bounds.

Lemma 2.5. Suppose that for h 2 �0; �h� there exists a solution �uh; ch� to (1.4),
(1.5) and that �h < 1. Then fuh : h 2 �0; �h�g is bounded in C3.

Proof. Fix h 2 �0; �h� and denote �uh; ch� by �u; c�. The previous lemma shows
that u0 > 0 on R, and since u0�n� ! 0 as jnj ! 1; u0 has a maximum value.
At the point n where that occurs we have u00 � 0 and so

kcu0k1 � f �u�n�� ÿ h�J � uÿ u��n�2 K �2:5�
for some K, independent of h, by Lemma 2.1.

Returning to equation (1.5), since h < �h < 1, we have

ku00k12 2K=�1ÿ �h�;
and a standard interpolation argument yields

ku0k12 2� K=�1ÿ �h�:
The bound in C3 follows from di�erentiating equation (1.5). (

Remark. The family fuh : 1ÿ d < h < 1g is bounded in C2 for some d > 0
provided that 1� f 0�u� > 0 and f 2 C2. To see this, note that p � u0 satis®es
the variational equation (2.4) and that this may be rewritten as

hJ 0 � u� �1ÿ h�p00 � cp0 ÿ �h� f 0�u��p � 0: �2:6�
At the point n0 where p achieves its (positive) maximum one has

�h� f 0�u��p 2 hJ 0 � u

and so p � u0 is uniformly bounded for h near 1. Di�erentiating equation
(2.6) and using the same argument allows us to obtain uniform bounds on u00

as desired.
To pass to the limit h% �h in the equation, we must also bound ch.
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Lemma 2.6. Under the hypotheses of Lemma 2.5, fch : h 2 �0; �h�g is bounded.

Proof. Suppose, on the contrary, that this set is unbounded. Then there
would exist a sequence fhng with cn � chn ! �1 as n!1. Writing
un � uhn , we see from (2.5) that

ku0nk1 ! 0 as n!1: �2:7�
We now assert that for any e > 0 and closed interval U � �ÿ1; 1� of

positive length there exists nn such that un�nn� 2 U and ju00n�nn�j < e. If this
were not the case, there would exist such an interval U and a number e > 0
such that ju00n j3 e on the interval �an; bn�, where un��an; bn�� � U . For de®-
niteness assume u00n 3 e on �an; bn�. Then

2ku0nk13 u0n�bn� ÿ u0n�an�3 e�bn ÿ an�;
and by the Mean Value Theorem, the length of U , is

jU j � un�bn� ÿ un�an�2 ku0nk1�bn ÿ an�:
It follows that 2ku0nk213 e jU j contradicting (2.7), thus establishing the as-
sertion.

Now pick g > 0 and small and let U be such that f �u� < ÿg for all u 2 U
in the case that cn ! �1 and such that f �u� > g for all u 2 U in the case that
cn ! ÿ1. Take e � g=2 and take fnng to be the sequence given by the as-
sertion above. Then (1.5) with h � hn; c � cn and u � un evaluated at nn gives

g < jcnu0n ÿ f �un�j < e� jJ � un ÿ unj: �2:8�
The ®rst inequality relies upon u0n > 0. Finally, since jju0njj1 ! 0 and sinceR

R
J�y�jyjdy <1, we see that

J � un ÿ un ! 0 uniformly as n!1;
so that (2.8) gives a contradiction, proving the lemma. (

We are now prepared to obtain a solution to (1.3) and (1.4). It is easiest to
begin by considering weak solutions, i.e., functions u 2 L1�R� and constants c
satisfyingZ

R

�J � uÿ uÿ f �u��/ÿ c
Z
R

u/0 � 0 for all / 2 C10 �R�: �1:3�w

Correspondingly, the weak formulation of (1.5) isZ
R

�h�J � uÿ u� ÿ f �u��/� �1ÿ h�
Z
R

u/00 ÿ c
Z
R

u/0 � 0 for all / 2 C10 �R�:

�1:5�w
Theorem 2.7. There exists a solution �u; c� to �1:3�w satisfying (1.4).

Proof. Lemma 2.3 gave a solution, uh, to (1.4) and (1.5) for each h 2 �0; �h� for
some �h 2 �0; 1�. Furthermore, u0h > 0 on R by Lemma 2.4.
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If �h < 1, then along a sequence hn % �h, by Lemmas 2.5 and 2.6, we may
pass to the limit in (1.5), thereby obtaining a smooth solution ��u;�c� to (1.5)
for h � �h. Clearly, this solution satis®es �u03 0 but the proof of Lemma 2.4
again shows that �u0 > 0 if �u satis®es (1.4). Once we show that �u satis®es (1.4),
Lemma 2.3 again may be applied, showing that solutions exist for h 2 �0; 1�.

The remark following Lemma 2.5 shows the same is true for �h � 1 pro-
vided that 1� f 0�u� > 0 and f is su�ciently smooth. But if this inequality is
false, we do not have bounds on the derivatives of uh, so we cannot pass to
the limit in (1.5). We do have bounds on jjuhjj1 and ch, by Lemmas 2.1 and
2.6, and since uh is increasing for each h, we may take a sequence of h% 1 so
that uh converges pointwise to a function, again called �u, and ch converges to
�c. Lebesgue's Theorem applied in �1:5�w shows that ��u;�c� satis®es �1:3�w. As
we shall see in the next section, �u satis®es (1.3) if �c40 and if �c � 0

J � �uÿ �uÿ f ��u� � 0 a.e. �2:9�
We now show that �u satis®es (1.4). The same argument holds for either of

the cases �h < 1 or �h � 1. Because �u is bounded and monotone, it has limits as
n! �1, and using the dominated convergence theorem in the convolution
term we see from (1.5) or (2.9) that these limits are zeros of f .

Suppose that �c 3 0. Recall the intermediate zero a from (H2). Take
�a 2 �a; 1� and translate uh so that uh�0� � �a for each h. We still may take a
sequence of h% �h, a subsequence of the original one, so that uh converges
pointwise to some �u. Since c is independent of translations, we still have
ch ! �c. Then limn!1 �u�n� � 1 and limn!ÿ1 �u�n� 2 fa;ÿ1g. If limn!ÿ1 �u�n�
� ÿ1, then we are done. So from now on assume limn!ÿ1 �u�n� � a. Then
f ��u�n�� < 0 on R.

If �h < 1, then by the above discussion, �u is C2 smooth and satis®es (1.5). So

0 >

ZR

ÿR

f ��u�n�� dn �
ZR

ÿR

��h�J � �uÿ �u� � �1ÿ �h��u00 � �c�u0� dn

3 �h
ZR

ÿR

�J � �uÿ �u� dn� �1ÿ �h���u0�R� ÿ �u0�ÿR��; �2:10�

but ZR

ÿR

�J � �uÿ �u�dn�
ZR

ÿR

Z1
ÿ1

J�y���u�nÿ y� ÿ �u�n�� dy dn

� ÿ
ZR

ÿR

Z1
ÿ1

J�y�
Z1
0

�u0�nÿ ty�y dt dy dn

� ÿ
Z1
ÿ1

y J�y�
Z1
0

� ZR

ÿR

�u0�nÿ ty�dn

�
dt dy
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� ÿ
Z1
ÿ1

y J�y�
Z1
0

��u�Rÿ ty� ÿ �u�ÿRÿ ty�� dt dy

! ÿ�1ÿ a�
Z1
ÿ1

yJ�y� dy � 0

as R!1 by Fubini's Theorem and Lebesgue's Theorem. Now sending
R!1 in (2.10), and noting that by (1.5) �u0�x� ! 0 as jxj ! 1, we reach a
contradiction.

If �h � 1, then �u satis®es (1.3) or (2.9). So J � �uÿ �u < 0 a.e. in R. By
Lebesgue's Theorem and the calculation following (2.10), we have

0 >

ZR

ÿR

�J � �uÿ �u� dn � lim
h%1

ZR

ÿR

�J � uh ÿ uh� dn

� ÿ
Z1
ÿ1

y J�y�
Z1
0

��u�Rÿ ty� ÿ �u�ÿRÿ ty�� dt dy ! 0

as R!1. Again a contradiction.
If �c < 0, a similar argument is used taking �a 2 �ÿ1; a�. This completes the

proof of the theorem. (

We note that if �u; c� is a solution to (1.3) with u 2 C1�R�, then the speed
is given by

c �
Z1
ÿ1

f �u� du
. Z1
ÿ1
�u0�2dn: �2:11�

This follows by multiplying (1.3) by u0 and integrating, observing thatZ1
ÿ1

u0�J � uÿ u� dn � 0:

3. Regularity and Discontinuous Solutions

We now examine the regularity of the weak solution guaranteed by
Theorem 2.7. For this we de®ne g�u� � u� f �u�, and for simplicity assume
that g has at most three u-intervals of monotonicity:

g0 > 0 on �ÿ1; b� [ �c; 1�; g0 < 0 on �b; c��H3�
for some b 2 c. Recall from (H2) that g��1� � �1. Note that g0 > 0 on
�ÿ1; 1� is allowed by having b � c � any value in that interval. In this case it
is also possible that g0�b� � 0 with g0 > 0 elsewhere.

If the number k 2 fg�u� : u 2 �ÿ1; b�g \ fg�u� : u 2 �c; 1�g (always non-
empty), we de®ne ĝk�u� to be the continuous nondecreasing function obtained
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by modifying g to be the constant value k between the ascending branches of
ĝk (see Figure 2). Note that if g is monotone, then b � c � k can be chosen to
be any number in [)1,1], and ĝk�u� � g�u� for all u.

Theorem 3.1. Assume that (H1)±(H3) hold and suppose that f is of class Cr for
some r 3 1. Let �u; c� be the weak solution, guaranteed to exist by Theorem 2.7.
Recall that it is monotone.

(a) If c40, then u satis®es (1.3) and is of class Cr�1.
(b) If c � 0, there exists a value of k with

R 1
ÿ1 ĝk�u�du � 0. Conversely, if there

exists a value of k for which this integral condition is satis®ed, then there is
a solution with c � 0.

(c) In any case, �u; c� is a classical solution. If c � 0, the solution has at most
one point of discontinuity, which with no loss of generality we take to be at
x � 0. This is a jump discontinuity and the jump occurs between the mini-
mum and maximum values of u for which g equals the value of k referred to
in (b) (see Figure 3). In fact, u is Cr on �ÿ1; 0� [ �0;1�. If g0 > 0 on
�ÿ1; 1� (hence b � c), then u is in Cr on �ÿ1;1�.

Remark. If (H3) is violated and g�u� has a ®nite number of maximal intervals
of monotonicity, then most of the conclusions of Theorem 3.1 remain true.

Figure 2

Figure 3
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The di�erence is that when c � 0, u�x� may have several points of disconti-
nuity and, if discontinuous, typically is not unique. Uniqueness for the so-
lutions under (H3) is proved in the next section.

Proof. If c40, then

c
Z
R

u/0 �
Z
R

�J � uÿ uÿ f �u��/ for all / 2 C10 �R�

implies that u 2 W 1;1�R�. A bootstrap argument then shows that u has the
required regularity indicated in part (a) of the theorem.

If c � 0, thenZ
R

�J � uÿ uÿ f �u��/ � 0 for all / 2 C10 �R�;

so that
u� f �u� � J � u a.e. on R: �3:1�

Furthermore, u�x� satis®es (1.4) and is nondecreasing on R; therefore it has
only jump discontinuities. Hence g�u�x�� � u�x� � f �u�x�� has only jump
discontinuities. Since J � u�x� is continuous and increasing, it follows from
(3.1) that the jumps which g�u�x�� undergoes all have magnitude zero. Thus
u�x� can be rede®ned at discrete points, if necessary, to make g�u� continuous
and increasing. It is now a classical solution, since (3.1) holds everywhere. It
also follows that u�x� has only one point of discontinuity, jumps between the
two ascending branches of g, and has the regularity claimed in part (c).

Only part (b) remains to be established. Suppose that c � 0, and b < c.
Let k be the value of g at which the discontinuity in u occurs, as indicated
above. We show ®rst that k satis®es the integral condition in part (b).

Multiply (3.1) by u0, integrate the product over �ÿ1; 0� and over �0;1�,
and add the results to getZu�0ÿ�

ÿ1
g�u� du�

Z1
u�0��

g�u� du �
Z0
ÿ1

u0J � u�
Z1
0

u0J � u:

To evaluate this, we set v�x� � u�x� ÿ S�x�, where S�x� � �1 is the sign of x.
Thus v��1� � 0. ThenZ0

ÿ1
u0�x�J � u�x� dx

�
Z0
ÿ1

v0�x�J � �v� S� � v�0ÿ�J � u�0ÿ� ÿ
Z0
ÿ1

v�x�J 0 � �v� S� dx

� �u�0ÿ� � 1�J � u�0� ÿ
Z0
ÿ1

v�x�J 0 � v�x� dxÿ 2

Z0
ÿ1

v�x�J�x� dx;
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since J 0 � S�x� � 2J�x�. Similarly,Z1
0

u0�x�J � u�x� dx � �ÿu�0�� � 1�J � u�0�

ÿ
Z1
0

v�x�J 0 � v�x� dxÿ 2

Z1
0

v�x�J�x� dx:

The sum of these last two integrals equals

�u�0ÿ� ÿ u�0���J � u�0� � 2J � u�0� ÿ
Z1
ÿ1

v�x�J 0 � v�x�dxÿ 2J � u�0�:

.

By (3.1), by the assumption that f 0��1�40 and by the arguments around
(2.10), it is easy to show that v 2 L1 on the line. Hence, v�x�v�y�J 0�xÿ y� is in
L1 on the plane, and we may use Fubini's theorem to deduce thatZ1

ÿ1
v�x�J 0 � v�x� dx �

ZZ
v�x�v�y�J 0�xÿ y� dx dy � 0;

since J 0�s� is odd. Since J � u�0� � g�u�0ÿ�� � k by (3.1), we obtainZ1
ÿ1

ĝk�u� du �
Zu�0ÿ�
ÿ1

g�u� du�
Z1

u�0��

g�u�du� k�u�0�� ÿ u�0ÿ�� � 0:

This shows that there is a value of k satisfying the integral condition in (b),
and that the jump occurs at that value of g.

If b � c, the argument simpli®es. The choice of k is arbitrary, but we still
obtain that

R 1
ÿ1 ĝk�u�du � R 1ÿ1 g�u�du � 0:

Finally, the converse part of (b) is established by the following lemma,
whose proof will complete the proof of the theorem.

Lemma 3.2. Assume that (H1)±(H3) hold and that
R 1
ÿ1 ĝk�u�du � 0 for some

value k. Then there exists a monotone solution u 2 C1�Rnf0g� to
J � uÿ g�u� � 0 for x40;

u��1� � �1;
u�0ÿ� � uÿ; u�0�� � u�; �3:2�

where ĝÿ1k �k� � �uÿ; u��:

Proof. We consider only the case b < c, as the proof can then be easily
extended to the case b � c. Recall that g 2 C2. Let gn�u�; an; bn satisfy

an " uÿ; bn # u� as n!1;
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gn�u� � g�u�; u 2 �ÿ1; an� [ �bn; 1�;

gn 2 C1�ÿ1; 1�; g0n�u� > 0;

Z1
ÿ1

gn�u� du � 0:

The construction of the functions gn is possible, due to (H3) and the van-
ishing integral of ĝk. Moreover, it follows that

gn�u� ! ĝk�u� uniformly as n!1: �3:3�
We have shown that if g0�u� > 0, then the solution given by Theorem 2.7

is of class C2. Therefore for each n, there exist smooth monotone pro®les
un�x� satisfying (1.4) and

J � un ÿ gn�un� � 0; un�0� � an: �3:4�
Let dn be de®ned by

un�dn� � bn > an: �3:5�
By Helly's Theorem, there exists a subsequence of the functions un (still
denoted by un) converging pointwise to a monotone increasing function �u�x�
as n!1. By the Dominated Convergence Theorem, J � un ! J � �u, also
pointwise, so that in fact by (3.3) and (3.4),

J � �uÿ ĝk��u� � 0: �3:6�
It is easy to see that �u satis®es (1.4) by employing the argument used in
Theorem 2.7.

We now show that �u satis®es (3.2), which will complete the proof.
For n < 0, it follows from the monotonicity of un and (3.4) that

un�n� < an, hence by passing to the limit, �u�n�2 uÿ. Therefore

�u�0ÿ� � a 2 uÿ: �3:7�
Now let

d � lim inf fdng:
If d > 0, then �u�n� satis®es

J � �u�n� � ĝk�uÿ� � k � const �3:8�
for n 2 �0; d�. But �u is not identically constant, since it satis®es (1.4). It follows
that J � �u�n� is strictly increasing in n, which contradicts (3.8). Therefore
d � 0, and by taking another subsequence, we may assume that dn ! 0.

We therefore have, by an argument similar to the one leading to (3.7), that

�u�0�� � �b 3 u�: �3:9�
We know from (3.6) that ĝk��u�n�� is continuous, so that g�a� � g��b�. This

together with a 2 uÿ, �b 3 u� and the de®nition of ĝk shows that
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a � uÿ; �b � u� hence (3.2). This completes the proof of the lemma and of the
theorem. (

To summarize the results of this section, if we assume (H1)±(H3) and if
�u; c� is a solution to �1:3�w and (1.4) with u monotone, then c40 implies u is
smooth, it satis®es (1.3) and

c �
Z1
ÿ1

f

, Z1
ÿ1
�u0�2:

If u is not continuous then it has a single jump discontinuity and is otherwise
smooth, c � 0 and

R 1
ÿ1 ĝk � 0 for some k. Furthermore, this last condition is

su�cient for the existence of a discontinuous solution with c � 0. When the
results in this section are combined with the uniqueness result in the next
section, we obtain

(i) c � 0 if and only if there exists a value k satisfying the integral condition
in Theorem 3.1(b), and

(ii) the pro®le u�n� is discontinuous if and only if there is such a value of k
and b < c.

Remark. If (H3) holds with b � c and if g0�b� � 0, then one can show that
c � 0 and u is continuous, but not continuously di�erentiable provided thatR 1
ÿ1 g � 0. The behavior of u near u � b can be read o� from the equation

J � u � g�u� and the fact that J � u is continuously di�erentiable with positive
derivative.

4. Uniqueness

Because they may have independent interest, we consider solutions �u; c�
to (1.5) for h 2 �0; 1� with u satisfying (1.4). We normalize by requiring
u�0� � 0 if u is continuous and if not, then by requiring that u have its jump at
0. As we remarked following Lemma 2.4, u0 > 0 on R. This applies even if u is
discontinuous, in which case right- and left-handed derivatives are taken at
points of discontinuity.

Theorem 4.1. Assume that (H1)±(H3) hold. Let �u; c� be the solution to (1.4)
and (1.5) given in Section 2 and let �v;�c� be another solution with v having at
most isolated discontinuities. Then c � �c. If u or v is continuous or if v is also
monotone, then, up to translation, u � v.

Remark. From the proof of this theorem, we will see that (i) If 02 h < 1,
assumption (H3) is not needed. (ii) In case h � 1, without assuming (H3), the
velocity c is unique. (iii) Without assuming (H3), for any ®xed nonzero c,
there exists at most one u so that �u; c� satis®es (1.4) and (1.5). (iv) In the case
of discontinuous waves, uniqueness within the class of monotone solutions is
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all that can be expected since XINFUINFU CHENHEN has pointed out that nonmono-
tone stationary solutions to (1.4) and (1.5) exist in certain cases. (v) In case
h � 1 and c � 0, the uniqueness of waves actually holds in the class of so-
lutions each having only one discontinuity, jumping upward.

Proof of Theorem 4.1. Our proof is based on ideas from [ABC] (see also [FM])
where horizontal and vertical translates of u are used to construct sub- and
super-solutions, trapping v. Suppose that c4�c. Assume that c > �c and take
the case that c40 so that u is smooth and u0 > 0 on R. If v has discontinuities,
we assume that these are isolated, therefore countable, and that they occur at
n � nj; j � 1; 2; . . .. Note that this situation can occur only when h � 1 and
�c � 0, and so c > 0.

Choose d > 0 such that

f 0�p�3 2d when kpj ÿ 1j2 d: �4:1�
De®ne, for some l 2 �0; d=2�,

A�t� � leÿdt

and choose M > 0 such that

ku�n�j ÿ 1j2 1
2 d for jnj3 M ÿ 1: �4:2�

Choose K > 0 such that

u0�n� > K on �ÿM ÿ 1;M � 1�; �4:3�
and de®ne

B�t� � l�d�1ÿ eÿdt�=K;

where

�d � 1ÿminff 0�p� : ÿ12 p 2 2g=d:
We further restrict l so that

l < K=�d:

De®ne

~u�n; t� � u�n� B�t� � ��cÿ c�t� � A�t�; ~v�n; t� � v�nÿ z�;
where z > z0 � inffz : u�n� � A�0� > v�nÿ z� for all n 2 Rg is ®xed.

Then w � ~uÿ ~v satis®es

w�n; 0� > 0 on R; w��1; t� � A�t� for t 3 0;

wt ÿ h�J � wÿ w� ÿ �1ÿ h�wnn ÿ �cwn � u0B0 � A0 � u0��cÿ c�
ÿ h�J � �uÿ v� ÿ �uÿ v�� ÿ �1ÿ h��uÿ v�00 ÿ �cu0 � �cv0

� u0B0 � A0 ÿ f �u� � f �v�; �4:4�
for �n; t� 2 R� �0;1�, except possibly on the lines nÿ z � nj; j � 1; . . . ; in
the case that v has jump discontinuities. In (4.4) u and u0 are evaluated at
n� B�t� � ��cÿ c�t while v is evaluated at nÿ z. Suppose that for some n0 2 R

and t0 > 0 we have

P. W. BATESATES, P. C. FIFEIFE, XIAOFENGIAOFENG RENEN & XUEFENGUEFENG WANGANG120



w�n0; t0� � 02 w�n; t� for all t 2 �0; t0�; n 2 R:

Note that if n0 is a point of discontinuity of v, then �c � 0 and h � 1 and no
derivatives of v are required. In any case, at �n0; t0� we have, since J � w 3 0,

03 u0B0 � A0 ÿ f �u� � f �u� A� � E�n0; t0�: �4:5�
We consider two cases:

Case I. If jn0 � ��cÿ c�t0j2 M ; then E > leÿdt0�d�dÿ d� f 0�d�� �4:6�
for some d � d�n0; t0� 2 �ÿ1; 2�, by (4.3), the de®nitions of A and B, and the
Mean Value Theorem. The de®nition of �d shows that (4.5) and (4.6) are
incompatible.

Case II. If jn0 � ��cÿ c�t0j > M ; then jn0 � B�t0� � ��cÿ c�t0j3 M ÿ 1;

since l 2 K=�d. Hence, E > �ÿd� f 0�d��A�t0� for some d � d�n0; t0� satisfying
jjdj ÿ 1j2 d, by (4.2) since A 2 d=2. Consequently E > 0, by (4.1), again
contradicting (4.5).

Therefore, w�n; t� > 0 for all t 3 0 and n 2 R.
Choose n � ÿl�d=K � �cÿ �c�t and let t!1 to get

02 u�0� ÿ v�1� � ÿ1
since c > �c. This contradiction shows that c 2�c. If c < �c, a similar argument
may be given using translates of u and v so that w�n; 0� < 0. The result is that
c � �c. The case that c � 0 can be treated similarly, using right- and left-
handed derivatives if u is discontinuous at a point.

If u is continuous, c � 0 and h � 1, it follows from (1.5) that the function
g�s� � f �s� � s is continuous and monotone as a function of s, so that every
solution must be continuous. This eliminates the possibility that u is con-
tinuous but v is discontinuous. Therefore in any case it su�ces to assume that
v is either continuous or monotone, and we do that from now on. A further
analysis of (1.5) in the case c � 0 and h � 1 now shows that either u and v are
both continuous, or both discontinuous with the same range.

This implies that v has at most one point of discontinuity. Since the above
analysis could have been carried out with any translate of v, there is no loss in
now taking a particular translation. Regardless of whether u and v are con-
tinuous, we may select a point �n such that u��n� lies in their range and then
require v��n� � u��n�.

Continuing with our original de®nition of w, we have (now that c � �c)

u�n� B�t�� � A�t� > v�nÿ z� for all n 2 R and t 3 0: �4:7�
This is because the analysis with c4�c which yielded w > 0 may still be done
with c � �c, taking into account the possibility that u is discontinuous, in
which case the necessary left- and right-handed derivatives exist. A question
might arise about the possibility of w changing sign without becoming zero in
the case that u and v are both discontinuous. First, if u or v is discontinuous,
we include the right- or left-hand limits according to our needs. Second, we
see that v�nÿ z� does not evolve with t while ~u�n; t� is monotone in n and as t
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increases its graph descends and moves to the left. Consequently, ~u and v
must touch if they are to cross.

Letting t!1 in (4.7) yields

u�n� l�d=K�3 v�nÿ z� for all n 2 R;

and hence, letting z& z0 yields

u�n�3 v�nÿ �z0 � l�d=K�� for all n 2 R: �4:8�
Because of (4.8) we can ®nd a minimal �z 3 0 such that

u�n�3 v�nÿ �z� for all n 2 R: �4:9�
We assert that if u �j v, then the inequality in (4.9) is strict, and consequently
�z > 0 since u��n� � v��n�. If for some n0 equality were to hold, then at
n0; �w�n� � u�n� ÿ v�nÿ �z� would satisfy

03 h�J � �w� � �1ÿ h��w00 � h�J � uÿ u� � �1ÿ h�u00 � cu0

ÿ�h�J � vÿ v� � �1ÿ h�v00 � cv0�
� f �u� ÿ f �v� � 0: �4:10�

If h40, then we have �w�n�3 0; �w�n0� � J � w�n0� � 0 and from this it fol-
lows that �w � 0. If h � 0, then the Maximum Principle implies �w � 0. This
establishes the assertion. Recall that if v is discontinuous, then c � 0 and
h � 1 and so no derivatives are present in (4.10).

For the moment suppose that at least one of u and v is continuous. For
g > 0 de®ne

z�g� � inffz : u�n�3 v�nÿ z� ÿ g for all n 2 Rg:
Note that z�g� < �z and that limg&0 z�g� � �z: Fix N > 0. We assert that

there exists gN > 0 such that for all g 2 �0; gN �,
u�n� > v�nÿ z�g�� ÿ g for jnj2 N : �4:11�

If not, then there would exist a sequence fnng � �ÿN ;N � and gn & 0 with nn

converging to some �n as n!1, and u�nn� � v�nn ÿ z�gn�� ÿ gn: Taking the
limit as n!1 gives

u��n� � v��nÿ �z�
contradicting our previously established assertion. Now let A�t� � leÿdt with
the further restriction l < gM , where M is from (4.2), and with d from (4.1).
Since z�l� < �z, we may take e > 0 such that 2e < �zÿ z�l�. Let
ŵ�n; t� � u�n� � A�t� ÿ v�nÿ ��zÿ e��. Then ŵ�n; 0� > 0 and if for some t0 > 0
and n 2 R; ŵ�n0; t0� � 0 < ŵ�n; t� for all t < t0 and n 2 R, then at �n0; t0�

03 ŵt ÿ h�J � ŵÿ ŵ� ÿ �1ÿ h�ŵnn ÿ cŵn

� A0�t0� � f �v� ÿ f �u� � �f 0�d� ÿ d�A�t0� �4:12�
for some d 2 �u�n0�; u�n0� � A�t0��. Because u�n0� � v�n0 ÿ ��zÿ e�� ÿ leÿdt0 , it
follows that z�leÿdt0� � �z0 ÿ e and since leÿdt0 < gM , (4.11) implies that
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jn0j > M and hence jjdj ÿ 1j2 d. Consequently f 0�d� ÿ d > 0 by (4.1), con-
tradicting (4.12).

We have shown that ŵ�n; t� > 0 for all t > 0 and n 2 R. Taking the limit
as t!1 gives

u�n�3 v�nÿ ��zÿ e�� for all n 2 R;

contradicting the minimality of �z and proving that u � v.
Finally, suppose that both u and v are discontinuous, u having a jump at

n � 0 and v having its jump at some point n1. Recall that u is monotone by
construction and v is monotone by assumption. The above analysis for the
case with u or v continuous also applies unless both u�n� and v�nÿ �z� have
their jumps at the same point, that is, n1 � ÿ�z. In this case, lowering v slightly
will not allow it to be translated to the left while remaining below u. How-
ever, we may now use an argument similar to that which produced (4.9) to
show that v�n�3 u�nÿ ẑ� for some minimal ẑ. Then one can again show that
v�n� and u�nÿ ẑ� have their jumps at the same point, that is, ẑ � n1. This
implies that u�n�3 v�n� n1�3 u�n� for all n 2 R, completing the proof. (

Now consider the evolution given by the generalized version of (1.1),
namely,

vt � h�J � vÿ v� � �1ÿ h�vxx ÿ f �v� for t > 0 and x 2 R; �4:13�

v�x; 0� � v0�x� for x 2 R;

where h 2 �0; 1� is ®xed. It is easy to see that (4.13) generates a semi¯ow (or
¯ow, when h � 1) on BC�R�, the space of bounded continuous functions on
R. If u is the traveling-wave solution to (4.13), say u�x; t� � U�xÿ ct� for
some constant c and increasing function U with U�0� � 0, then we claim that
u is stable in the following sense.

Theorem 4.2. Let v be the solution to (4.13) with v0 2 BC�R�. Suppose that
kv0k12 1; lim inf

x!1 v0�x� > a; lim sup
x!ÿ1

v0�x� < a: �4:14�

Then

(a) There exist constants x1; x2; l > 0 and d > 0 such that

U�xÿ x1 ÿ ct� ÿ leÿdt < v�x; t� < U�xÿ x2 ÿ ct� � leÿdt �4:15�

for all x 2 R and t > 0.

(b) There is a function x�e�, de®ned for small e > 0, such that lime!0 x�e� � 0
with the property that if v0 satis®es (4.15) at t � 0 with l � e and with
x2 ÿ x1 2 e, then for all x 2 R and t 3 0

U�xÿ x1 ÿ x�e� ÿ ct� ÿ eeÿdt < v�x; t� < U�xÿ x2 � x�e� ÿ ct� � eeÿdt:

�4:16�
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The proof of (a) uses sub- and super-solutions exactly as in the proof of
Theorem 4.1 but the only restriction needed on l is that 0 < l < 1. Condition
(4.14) allows us to ®nd x�1; x

�
2 and such a l so that

U�xÿ x�1� ÿ l < v0�x� < U�xÿ x�2� � l:

Then B1�t� and B2�t� are chosen so that Bj�0� � ÿx�j ; limt!1�Bj�t� � ct� exists
and such that U�x� B1�t�� ÿ leÿdt < v�x; t� < U�x� B2�t�� � leÿdt for all
x 2 R and t > 0, where d is as in (4.1). This last requirement is accomplished,
as before, by considering the cases where v�x; t� touches the sub- or super-
solution at values near �1 or away from �1. The details are omitted. Part (b)
follows from the proof of part (a) by noting that Bj can be chosen so that
jBj�t� � ctj2 o�e�.

5. Asymptotic stability

We conclude by showing that when U is a stationary-wave solution to
(1.1) satisfying the boundary condition (1.4), it is globally asymptotically
stable in various senses, up to translation.

Consider the Cauchy problem for (1.1) with initial condition

u�x; 0� � /�x�; ÿ12 / 2 1: �5:1�
Our ®rst result deals with the asymptotic stability of smooth stationary

waves. Recall that (1.1) has a smooth stationary wave U if and only ifZ1
ÿ1

f �u� du � 0; g0�u� > 0 for u 2 �ÿ1; 1�; �5:2�

where g�u� � u� f �u�.
Theorem 5.1. Suppose (5.2) holds and the initial value / satis®es

lim sup
x!ÿ1

/�x� < a < lim inf
x!1 /�x�: �5:3�

If / is continuous on R, then the solution u�x; t� of the Cauchy problem
converges to a unique shift of U in the L1�R� norm as t!1. Furthermore, the
convergence is exponentially fast as t!1.

The basic idea in the proof of the ®rst part of the theorem comes from
[FM]. First we prove that u�x; t� converges to a shift of U in the L1�R� norm
along a sequence tn !1, by using the Lyapunov functional method. Then
the ®rst part of Theorem 5.1 follows from the stability result in Theorem
4.2(b). To obtain the exponential convergence, we study the spectrum of the
linear operator L obtained by linearizing the right-hand side of (1.1) at the
shift of U (or equivalently at U ). We show in the L1 setting that 0 is a simple
eigenvalue of L and the rest of the spectrum lies in the left half-plane,
bounded away from the imaginary axis. Then the exponential convergence in
the L1 norm follows from the ®rst part of Theorem 5.1 and standard theory.
We start with
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Lemma 5.2. Suppose that g0�u� � 1� f 0�u� > 0 on �ÿ1; 1�. If the initial value /
is continuous in R, then the modulus of continuity of u�x; t� in x is bounded in
any bounded interval �a; b�, uniformly in t 3 0.

Proof. For every small constant h, let

�du��x; t� � u�x� h; t� ÿ u�x; t�:
By (1.1) and (5.1),

�du�t �
R

R1�J�x� hÿ y� ÿ J�xÿ y��u�y; t� dy ÿ g0��u��du�;
�du��0; t� � �d/��x� �5:4�

where �u is between u�x; t� and u�x� h; t�. Observe that since ÿ12 u 2 1,Z
R

�J�x� hÿ y� ÿ J�xÿ y�� u�y; t� dy

������
������2

Z
R

jJ�y � h� ÿ J�y�j dy � e�h�

with e�h� ! 0 as h! 0. Set l � infu2�ÿ1;1� g0�u� > 0.
Let v�t� be the solution of

v0�t� � e�h� ÿ lv�t�; v�0� � kd/kL1�a;b�: �5:5�
Then

v�t� � eÿltkd/kL1�a;b� �
e�h�

l
�1ÿ eÿlt� > 0:

A simple comparison between (5.4) and (5.5) yields that for x 2 �a; b�,

j�du��x; t�j2 v�t�2 kd/kL1�a;b� �
e�h�

l
! 0

as h! 0. This completes the proof of Lemma 5.2. (

Proof of Theorem 5.1. To prove the ®rst part of Theorem 5.1, we note that by
Lemma 5.2, the ArzelaÁ -Ascoli Theorem and (4.15) (with c=0), for any se-
quence t0n !1, there exists a subsequence tn !1 such that

u�x; tn� ! some u1�x� in L1�R� �5:6�
as tn !1.

Let g be a C1 function de®ned on �0;1� such that g�x� � 1 for x 2 �0; 12�
and � 0 for x 3 1. De®ne

W �x; t� �
u�x; t�; jxj2 t;
u�x; t�g�xÿ t� � �1ÿ g�xÿ t��; x 3 t;
u�x; t�g�ÿxÿ t� ÿ �1ÿ g�ÿxÿ t��; x 2 ÿ t:

8<: �5:7�

Then W �x; t� � 1 for x 3 t � 1 and W �x; t� � ÿ1 for x 2 ÿ t ÿ 1: Note also
that ÿ12W �x; t�2 1; W �x; t�3u�x; t� for x 3 0; and W �x; t�2u�x; t� for x20.

Let F �u� � R u
ÿ1 f �s�ds. Then F �ÿ1� � F �1� � F 0�ÿ1� � F 0�1� � 0. De®ne

an energy functional associated with (1.1) by
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V �t� � 1

2

Z
R

�J � W ÿ W �W �x; t� dxÿ
Z
R

F �W �x; t�� dx:

Now we show that V �t� is well-de®ned and in fact bounded in t 3 0. We
®rst tackle the last term:Z

R

F �W �x; t�� dx �
Z1
0

�
Z0
ÿ1
�
Zt�1
0

F �W �x; t�� dx�
Z0
ÿtÿ1

F �W �x; t�� dx:

From now on, let C be a generic positive constant which may vary from line
to line. By the fact that jF �u�j2 C�1ÿ u��1� u� for u 2 �ÿ1; 1� and by (4.15),
we haveZt�1
0

F �W �x; t�� dx

������
������2 C

Zt�1
0

�1ÿ W �x; t�� dx 2 C
Zt�1
0

�1ÿ u�x; t�� dx

2 C
Zt�1
0

�1ÿ U�xÿ x1� � leÿdt� dx � C�t � 1�eÿdt

� C
Zt�1
0

�1ÿ U�xÿ x1�� dx: �5:8�

On the other hand, using the equation satis®ed by U and the fact that
f 0�1� > 0, we see that there exist positive constants C and R such that

ÿ�J � U��x� � U�x�3 C�1ÿ U�x��
for x 3 R. Integrating this inequality on �R;1� and using the calculation
immediately following (2.10), we have the ®rst of the following two in-
equalities: Z1

0

�1ÿ U�x�� dx <1;
Z0
ÿ1
�1� U�x�� dx <1 �5:9�

(the second inequality follows similarly). Thus j R t�1
0 F �W �dxj is bounded in

t 3 0: Similarly, this is true for j R 0ÿtÿ1 F �W �dxj. We have proved that the
second term in the de®nition of V �t� is bounded in t 3 0.

Now we come back to the ®rst term in the de®nition of V �t�:Z
R

�J � W ÿ W �W �x; t� dx

������
������2

Z
R

J � W ÿ Wj j�x; t� dx

�
Z t

0

�
Z0
ÿt

�
Z1
t

�
Zÿt

ÿ1

0@ 1AjJ � W ÿ W j�x; t� dx � I1 � I2 � I3 � I4: �5:10�
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I1 2
Z t

0

dx
Z1
0

J�xÿ y�jW �y; t� ÿ W �x; t�j dy

� 2

Z t

0

dx
Z0
ÿ1

J�xÿ y� dy � I11 � 2I12:

I12 �
Z t

0

dx
Zÿx

ÿ1
J�y� dy �

Z0
ÿt

Zÿy

0

J�y� dx dy �
Zÿt

ÿ1

Z t

0

J�y� dx dy

2
Z0
ÿt

jyjJ�y� dy �
Zÿt

ÿ1
jyjJ�y� dy <1

by assumption (H1). By (4.15),

I11 2
Z t

0

dx
Z1
0

J�xÿ y��1ÿ W �y; t�� dy �
Z t

0

dx
Z1
0

J�xÿ y��1ÿ W �x; t�� dy

2
Z t

0

dx
Z1
0

J�xÿ y��1ÿ U�y ÿ x1� � leÿdt� dy

�
Z t

0

�1ÿ U�xÿ x1� � leÿdt� dx

2
Z1
0

�1ÿ U�y ÿ x1�� dy � 2lteÿdt �
Z1
0

�1ÿ U�xÿ x1�� dx;

which is bounded by (5.9). Thus I1 and similarly I2 are bounded for t 3 0.
We now proceed to show that I3 � I4 in (5.10) is bounded and in fact

converges to 0 as t!1. By estimates similar to those for I12 and I11, we
have

I3 2
Z1
t

dx
Z1
0

J�xÿ y�jW �y; t� ÿ W �x; t�j dy � 2

Z1
t

dx
Z0
ÿ1

J�xÿ y� dy

2
Z1
t

dx
Z1
0

J�xÿ y��1ÿ W �y; t�� dy

�
Z1
t

dx
Z1
0

J�xÿ y��1ÿ W �x; t�� dy � 2

Zÿt

ÿ1
jyjJ�y� dy
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�
Z1
t

dx
Zt�1
0

J�xÿ y��1ÿ W �y; t�� dy

�
Zt�1
t

dx
Z1
0

J�xÿ y��1ÿ W �x; t�� dy � 2

Zÿt

ÿ1
jyj J�y� dy

2
Z1
t

dx
Zt�1
0

J�xÿ y��1ÿ U�y ÿ x1�� dy � l�t � 1�eÿdt

� �1ÿ U�t ÿ x1� � leÿdt� � 2

Zÿt

ÿ1
jyjJ�y� dy:

The ®rst term in the last expression is not larger than

2

Z1
t

dx
Zt=2
0

J�xÿ y� dy �
Z1
t

dx
Zt�1

t=2

J�xÿ y� dy
ÿ
1ÿ U

ÿ
1
2 t ÿ x1

��

2 2
t
2

Z1
t=2

J�x� dx�
Z1
t

dx
Zt�1ÿx

ÿx

J�y� dy
ÿ
1ÿ U 1

2 t ÿ x1
��ÿ

2 2

Z1
t=2

xJ�x� dx� C�1�
Z
R

jyjJ�y� dy�ÿ1ÿ U 1
2 t ÿ x1

��
:

ÿ
By the above estimates for I3, we conclude that

I3 is bounded and converges to 0 as t!1: The same is true for I4:

�5:11�
We have thus proved that the energy V �t� is bounded for t 3 0.

Now we di�erentiate V �t� to obtain

V 0�t� �
Z
R

�J � W ÿ W �Wt�x; t� dxÿ
Z
R

f �W �Wt�x; t� dx:

(That we can change the order of di�erentiation and integration follows from
Lebesgue's Theorem and the facts that Wt is bounded and the L1 norm of
J � W ÿ W and f �W � are bounded for t 3 0. See the proof of the bounded-
ness of V �t�.) We write

V 0�t� ÿ Q�t� �
Z
R

�J � W ÿ W ÿ f �W ���Wt ÿ J � W � W � f �W �� dx � P �t�

�5:12�
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where

Q�t� �
Z
R

�J � W ÿ W ÿ f �W ��2dx:

We proceed to show that P �t� ! 0 as t!1. Using (1.1) and (5.7), we obtain

P �t�2 C
Z

jxj2 t

jWt ÿ J � W � W � f �W �j dx� C
Z

jxj3 t

jJ � W ÿ W ÿ f �W �j dx

2 C
Z

jxj2 t

jJ � �W ÿ u�j dx� C
Z

jxj3 t

jJ � W ÿ W j dx� C
Z

jxj3 t

jf �W �j dx

� C�J1 � J2 � J3�:

By (5.11), J2 � I3 � I4 ! 0 as t!1. Observe that there exists a positive
constant C such that jf �u�j2 C�1ÿ u��1� u� for u 2 �ÿ1; 1�. So

J3 �
Zt�1
t

jf �W �j dx�
Zÿt

ÿtÿ1
jf �W �j dx

2 C
Zt�1
t

�1ÿ W �x; t�� dx� C
Zÿt

ÿtÿ1
�1� W �x; t�� dx

2 C
Zt�1
t

�1ÿ U�xÿ x1� � leÿdt� dx� C
Zÿt

ÿtÿ1
�1� U�xÿ x2� � leÿdt� dx

� C�1ÿ U�t ÿ x1� � leÿdt� � C�1� U�ÿt ÿ x2� � leÿdt�

which converges to 0 as t!1. (The second inequality follows from (4.15).)
Also

J1 2
Z t

ÿt

dx
Z

jyj3 t

J�xÿ y�jW �y; t� ÿ u�y; t�j dy

2
Z t

ÿt

dx
Z1
t

J�xÿ y��1ÿ u�y; t�� dy �
Z t

ÿt

dx
Zÿt

ÿ1
J�xÿ y��1� u�y; t�� dy

� J11 � J12;

J11 2
Z t

ÿt

dx
Z1
t

J�xÿ y��1ÿ U�y ÿ x1� � leÿdt� dy

2
Z t

ÿt

dx
�Z2t

t

�
Z1
2t

�
J�xÿ y��1ÿ U�y ÿ x1�� dy � 2lteÿdt

A Convolution Model for Phase Transitions 129



2
Z t

ÿt

dx
Zat

t

J�xÿ y� dy �1ÿ U�t ÿ x1��

�
Zÿt

ÿ1
J�x�dx

Z1
2t

�1ÿ U�y ÿ x1�� dy � 2lteÿdt

2 C
Z1
0

jyjJ�y� dy �1ÿ U�t ÿ x1��

�
Zÿt

ÿ1
J�x� dx

Z1
2t

�1ÿ U�y ÿ x1�� dy � 2lteÿdt;

which converges to 0 as t!1: Similarly, we can show that this is true for
J12.

We have shown that

V 0�t� ÿ Q�t� � P �t� ! 0 as t!1: �5:13�
Since V �t� is bounded, there exists a sequence t0n !1 such that V 0�t0n� ! 0.
From this, (5.13), (5.6) and Fatou's Lemma, we deduce that there exists a
subsequence tn !1 such that

u�x; tn� ! some u1 in the L1 norm �5:14�
where u1 is a stationary wave of (1.1), satisfying (4.15) without the expo-
nential terms. By the uniqueness result in Section 4, u1�x� � U�x� x0� for
some x0 2 R. Combining (5.14) with (b) of Theorem 4.2, we have that as
t!1,

u�x; t� ! U�x� x0� in the L1 norm: �5:15�

The ®rst part of Theorem 5.1 is proved.
We now proceed to prove the exponential convergence. To this end, we

need to understand the spectrum of the following linear operator obtained by
linearizing (1.1) at U :

L�v� � J � vÿ vÿ f 0�U�v:

Lemma 5.3. Suppose that g0�u� � 1� f 0�u� > 0 on �ÿ1; 1�. Then
L : L1�R� ! L1�R� has simple eigenvalue 0 with an eigenfunction U 0. The rest
of the spectrum (which is compact) lies on the left half plane, bounded away
from the imaginary axis.

Now by (5.15), Lemma 5.1 and well-known results (see, e.g., Theorem 1.1
in Chapter 5 of [VVV]), we have the exponential convergence in L1, as
claimed in Theorem 5.1. This ®nishes the proof of Theorem 5.1.

Proof of Lemma 5.3. It is obvious that U 0 is an eigenfunction of L with
eigenvalue 0. To prove the simplicity, we use the argument in the proof of
Lemma 2.2 as follows. Let v 2 Ker�L�; v �j 0. Then
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J � vÿ vÿ f 0�U�v � 0; and hence v � J � v
1� f 0�U� :

So v is continuous in R. Without loss of generality, assume that v is real-
valued and is positive somewhere. De®ne vb � U 0 � bv, b 2 R;
�b � supfb < 0 : vb is negative somewhereg: For b < �b, we assert that inf vb is
assumed at a point nb, not at �1. To see this, we argue by contradiction.
Assume that for some b < �b, there exists a sequence xn approaching, say �1,
as n!1, such that vb�xn� ! inf vb < 0, so

0 > f 0�1��inf vb� � lim
n!1 f 0�U�xn��vb�xn�

� lim
n!1��J � vb��xn� ÿ vb�xn��

� lim
n!1��J � vb��xn� ÿ inf vb� � �inf vb ÿ vb�xn���3 0;

which is a contradiction. This completes the proof of the assertion and this
argument actually leads to the boundedness of the minimum point nb of vb as
b! �b. Now exactly as in the proof of Lemma 2.2, we have vb � 0 and hence
the simplicity of the eigenvalue 0 of L.

To locate the rest of the spectrum of L, we ®rst show that Lÿ kI is a
Fredholm operator with index 0, for any k 2 Sd � fk 2 Cj Re k 3 ÿ dg,
where d is a small positive constant satisfying

(1) inf�1� f 0�U�x��� > d,

(2) f 0�1� � f 0�ÿ1� > d.

We write

�Lÿ k�v � J � vÿ �1� f 0�U� � k�v

� �1� f 0�U� � k� 1

1� f 0�U� � k
ÿ 1

q�x�
� �

J � v� 1

q�x� J � vÿ v
� �� �

� �1� f 0�U� � k��L1 � L2�

where q�x� is chosen to be a continuous function so that for k 2 Sd,
q��1� � 1� f 0��1� � k and jq�x�j is bounded from below by a constant
C > 1 (such a choice is possible because of (2) above). Note by (1),
j1� f 0�U� � kj is bounded away from 0. By the ArzelaÁ -Ascoli Theorem and
the fact that

1

1� f 0�U� � k
ÿ 1

q�x� ! 0 as jxj ! 1;

it is easy to see that L1 : L1�R� ! L1�R� is a compact operator. Moreover,
since jq�x�j3 C > 1, the ®rst operator in the de®nition of L2 has norm less
than 1. Thus L2 : L1�R� ! L1�R� has bounded inverse. Therefore Lÿ kI is a
Fredholm operator with 0 index for k 2 Sd. This and the simplicity of the
eigenvalue 0 of L imply that L1�R� � Range�L� � N , where N is one-di-
mensional. On the other hand, for any v 2 L1�R�,
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Z
R

U 0Lv � 0:

So we can take N � Ker�L� and hence L1�R� � Range�L� �Ker�L�. Now
L : Range�L� ! Range�L� is one-to-one and onto, so it has a bounded in-
verse. In particular, for small jkj, �Lÿ kI�jRange�L� is invertible and hence if
k40, Lv � kv has no non-zero solution in L1. From this and the fact that
Lÿ kI is a Fredholm operator with zero index for k 2 Sd, we have that if
jkj40 is small, then k is in the resolvant set of L.

Now we proceed to show that if Re k 3 0, k40, then k is in the resolvant
set of L. Suppose otherwise. Then once again, since Lÿ kI is a Fredholm
operator with index 0, there exists v 2 L1�R�, v �j 0, such that Lv � kv, i.e.,

J � v � �1� f 0�U� � k�v: �5:16�
Since Re k 3 0 and 1� f 0�U� > 0; we have

J � jvj3 �1� f 0�U��jvj: �5:17�
De®ne vb � U 0 � bjvj, �b � sup fb < 0 : vb is negative somewhereg: Then

for b < �b 2 0;
J � vb 2 �1� f 0�U��vb:

Now the proof of the simplicity of eigenvalue 0 of L again leads us to
v�b � const. � 0. In particular, (5.17) is an equality. But this happens only if
k � 0, contradicting k40. This completes the proof of Lemma 5.3. (

Finally we turn to the asymptotic stability of the monotone wave solution
of (1.1) even when it is not smooth.

Theorem 5.4. Suppose that (H1)±(H3) hold, that (1.1) has a non-smooth sta-
tionary monotone wave U , and that the initial value / satis®es (5.3) and is a
non-decreasing continuous function on R. Then

(1) If the stationary wave U is continuous everywhere, (i.e., b � c in (H3) with
g0�b� � 0), then the solution u�x; t� of the Cauchy problem (1.1) and (5.1)
converges to a unique shift of U in the L1�R� norm as t!1.

(2) If U is discontinuous (i.e., if b < c) at, say, x � 0, then u�x; t� converges to
a unique shift U�x� x0� of U�x� pointwise on R as t!1, and the con-
vergence is uniform outside any ®xed neighborhood of the point of dis-
continuity x � ÿx0.

Remark 5.5. In (2), u�x; t� does not converge uniformly to U�x� x0� on R as
t!1 because u�x; t� is continuous in x for each t 3 0. Unlike the smooth
case, further studies are needed to obtain the convergence rates in (1) and (2).
As pointed out in Section 4, if U is discontinuous one cannot relax the
monotonicity condition on the initial value since there may exist nonmono-
tone discontinuous solutions. In the case of continuous U , for which
1� f 0�u� > 0 on �ÿ1; 1� except at u � b, we can show that if / is continuous
(not necessarily monotone), then each sequence of t0n !1 contains a sub-
sequence tn !1 such that u�x; tn� ! some u1�x� a.e. in R, and u1 is a shift
of U . The details of the last point, will be given at the end of this section.
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Proof of Theorem 5.4.We assert that u�x; t� is non-decreasing in x. To see this,
for every h, de®ne v�x; t� � u�x� h; t� ÿ u�x; t�. Then v satis®es

vt � Av� c�x; t�v;
v�x; 0� � /�x� h� ÿ /�x�3 0

�5:18�
where Av � J � v, c�x; t� is de®ned in the obvious way and is bounded on
R� R�. The assertion follows if v 3 0. Without the loss of generality, assume
that c�x; t�3 0 (otherwise, consider eMtv with M being large). The ``variation-
of-constants'' formula corresponding to (5.18) is

�v�t� � etAv�0� �
Z t

0

e�tÿs�Ac��; s��v�s�ds � F ��v�;

where v�0� is the initial value in (15.18). Since A is order-preserving and c 3 0,
F is also order-preserving. Now it is easy to show by the Contraction
Mapping Theorem that F has a unique ®xed point �v 3 0 in a ball B centered
at v�0� in L1�R� �0; T �� for a small constant T > 0. On the other hand, v, the
solution of (5.18), is a ®xed point of F in B. So v � �v 3 0 in R� �0; T �. A
ladder argument shows v 3 0 in R� R�. The assertion is proved.

Now since u�x; t� is non-decreasing in x for every t 3 0, and since
ÿ12 u 2 1, for each sequence t0n !1, there exists a subsequence tn !1
such that for some nondecreasing function u1,

u�x; t� ! u1�x� �5:19�
pointwise on R. Moreover, the convergence is uniform in any ®nite interval
�a; b� which contains no points of discontinuity of u1.

Next we de®ne W �x; t� and F �u� as in the proof of Theorem 5.1. In this
situation, F �1� is not necessarily equal to 0. We de®ne a new energy func-
tional V �t� by replacing F �W � in the old one by F �W � ÿ vF �1�, where
v�x� � 0 for x < 0, � 1 for x 3 0. Then exactly as in the previous case, there
exists a sequence tn !1 so that for some constant x0,

u�x; tn� ! U�x� x0� for x4ÿ x0; �5:20�
furthermore, by the above discussion and (4.15), the convergence is uniform
outside any ®xed neighborhood of ÿx0, and if U is continuous everywhere, it
is uniform on the whole of R. From this and (b) of Theorem 4.2, follows (1)
of Theorem 5.4.

To ®nish the proof of the second part of Theorem 5.4, we need to take
extra care, because we cannot apply (b) of Theorem 4.2. By the calculations
in the proof of Theorem 4.1, it is easy to see that for any ®xed e > 0,

u�x; t� � U�x� x0 ÿ eÿ n�t�� ÿ q�t�
is a subsolution of (1.1) where

q�t� � eeÿdt; n�t� � d� kf 0kL1�ÿ1;1�
dK

�1ÿ eÿdt�;

d andK being given in (4.1) and (4.3).Wewish to show that u�x; t � tn�3 u�x; t�
for t 3 0 if tn is large. To this end, we need to show that for large tn,
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u�x; tn�3 u�x; 0� � U�x� x0 ÿ e� ÿ e: �5:21�
This is obviously true for x outside the interval �ÿR;R�, R being large,

since the convergence in (5.20) is uniform outside �ÿR;R�. To see (5.21) for
x 2 �ÿR;R�, we argue by contradiction. So assume that there exists a sequence
xn 2 �ÿR;R� such that for large tn,

u�xn; tn� < U�xn � x0 ÿ e� ÿ e: �5:22�
Without the loss of generality, assume that xn ! �x1 2 �ÿR;R�. Fix a constant
�x2 < �x1. Then by (5.22) and the monotonicity of u in x,

u��x2; tn� < U�xn � x0 ÿ e� ÿ e:

Sending n!1, we have by (5.20),

Uÿ��x2 � x0�2 U���x1 � x0 ÿ e� ÿ e;

which in turn implies

Uÿ��x1 � x0�2 U���x1 � x0 ÿ e� ÿ e;

where U��x� represent right and left limits of U at x, respectively. This is
clearly impossible.

We have shown that u�x; tn � t�3 u�x; t� for large tn, which implies that

Uÿ x� x0 ÿ eÿ �kf
0kL1 � d�e

dK

� �
2 lim inf

t!1 u�x; t�:

Sending e! 0, we deduce that Uÿ�x� x0�2 lim inft!1 u�x; t�: Similarly, we
can show that lim supt!1 u�x; t�2 U��x� x0�. This completes the proof of
Theorem 5.4 . (

Now we give the details for the last point in Remark 5.5. Suppose / is
continuous, satisfying (5.3) and g0�u� > 0 on �ÿ1; 1� except at u � b withR 1
ÿ1 g�u� � 0, where g�u� � u� f �u�. We use the notation in the proofs of
Theorems 5.4 and 5.1, in particular, P �t� and Q�t� as de®ned in (5.12). Under
our present condition on /, V �t� is still bounded in t 3 0. Furthermore, by
the estimates for P �t� in the proof of Theorem 5.1, we haveZ1

0

P �t� dt <1;

provided that
R1
ÿ1 x2J�x� <1. This and (5.12) imply thatZ1

0

Q�t� dt <1: �5:23�

We claim Q0�t� is bounded. To see this, observe

jQ0�t�j2 2

Z
R

jJ � W ÿ W ÿ f �W �kJ � Wt ÿ Wt ÿ f 0�W �Wtj dx

2 C
Z
R

jJ � W ÿ W ÿ f �W �j dx

which is bounded by the proof of the boundedness of V �t�. Thus Q 0�t� is
bounded and combining this with (5.23), we see that as t!1,
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Q�t� � kJ � W ÿ W ÿ f �W �k2L2�R� ! 0: �5:24�
We write

Wt � J � W ÿ W ÿ f �W � � e�x; t�: �5:25�
Then e is bounded, and ke��; t�kL1�R� ! 0 as t!1 by the argument leading
to (5.13). This, (5.25) and (5.24) imply that

ut��; t� ! 0; in L2loc�R�: �5:26�
Now we write (1.1) as

g�u� � J � uÿ ut: �5:27�
Since J � u�x; t� is equicontinuous in x, where t is regarded as a parameter,

by the ArzelaÁ -Ascoli Theorem, each sequence t0n !1 contains a subsequence
tn !1 so that �J � u��x; tn� converges pointwise on R as tn !1. Now
(5.27), (5.26) and the fact that g has a continuous inverse imply that

u�x; tn� ! some u1�x� a.e. in R; �5:28�
after passing to another subsequence. From this, (5.26) and (5.27), we deduce
that g�u1� � J � u1, i.e., u1 is a steady state of (1.1). By (4.15),
u1��1� � �1 and hence u1 is a stationary wave of (1.1). By the uniqueness,
u1 is a shift of U (but might depend on the sequence tn).
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