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1. Introduction

The constitutive equation of linear viscoelasticity is the Boltzmann-Vol-
terra equation

T �t� � G0E�t� �
Z�1
0

_G�s�E�t ÿ s� ds; �1:1�

in which the stress at the time t in a material element subject to the defor-
mation process E is determined by the current deformation E�t� and by the past
history Et of E at t:

Et�s� :� E�t ÿ s�; s 2 �0;�1�: �1:2�
If we ®x a time t > 0 and if we consider the restriction E�0;t� of E to the

time interval �0; t� as a continuation of the history E0, we can separate the
in¯uence of E�0;t� and E0 on the stress response by rewriting the equation (1.1)
in the form

Arch. Rational Mech. Anal. 138 (1997) 1±35. Ó Springer-Verlag 1997



T �t� � G0E�t� �
Z t

0

_G�t ÿ r�E�r� dr �
Z�1
0

_G�t � r�E0�r� dr: �1:3�

This equation tells us that two histories E0;E00 have the same in¯uence on the
stress response if and only if their di�erence H :� E0 ÿ E00 satis®es the con-
dition

Z�1
0

_G�t � r�H�r� dr � O for all t 3 0: �1:4�

The third axiom of NOLL'S new theory of simple materials [23] says that
``if two states are di�erent . . . then there must be some process which pro-
duces di�erent stresses with the two states as initial states''. If we accept this
axiom, and if we agree that in our case the processes are the continuations, we
may conclude that two histories whose di�erence satis®es the condition (1.4)
must correspond to the same state. If we assume that the current deformation
is independent of the past history, then we are led to de®ne a state as a pair
whose entries are an equivalence class of histories and a deformation. The
deformation is the current deformation, and two histories are equivalent if
their di�erence satis®es the condition (1.4).

With these de®nitions of process and state, we identify a system in the
sense of the theory of COLEMAN& OWEN [5], and we use the general results of
that theory to study some basic questions of linear viscoelasticity which have
long been debated by several authors. One such question is the character-
ization of the state space. Usually, states are identi®ed, at least implicitly,
with history-deformation pairs [3, 10, 13, 16]. There is, however, an impor-
tant exception, that of the viscoelastic materials of rate type, for which the
relaxation function is a linear combination of exponentials. For such mate-
rials, a state is usually identi®ed with a ®nite array of internal variables [2,
18]. It is not clear, however, whether this choice is a matter of convenience or
is dictated by some sort of general requirements. In the approach that we
present here, the possible de®nitions of a state are strictly limited by the
structure of the solution set of equation (1.4): Indeed, a state can be repre-
sented by a history-deformation pair if and only if the solution set reduces to
the null history alone, so that the equivalence classes which constitute the ®rst
entry of a state reduce to singletons.

For a relaxation function of exponential type, we show in Section 6 that
the ®nite dimensional characterization of a state is compatible with our
de®nition, while the characterization as a history-deformation pair is not.
This result can be easily extended to all viscoelastic materials of rate type. We
also produce an example of a class of completely monotonic relaxation
functions for which the equivalence classes are singletons, and therefore the
states are correctly described by history-deformation pairs.

Another question which we consider here is that of the topology of the
state space. When a state is de®ned as a history-deformation pair, it is natural
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to de®ne the state space as the product of the space of histories and the space
of deformations, and to endow it with the product norm of the two spaces
[13]. The norm chosen for the space of histories is usually the fading memory
norm of COLEMAN & NOLL [4], suggested by the physical consideration that
the response of a material with memory is more in¯uenced by the deforma-
tions undergone in the recent past than by those that occurred in the far past.
In e�ect, as shown by the weaker fading memory assumptions made by
VOLTERRA [24], GRAFFI [17], and DAY [11], a fading memory e�ect is implicit
in the constitutive equation (1.1), provided that the relaxation function de-
cays to its equilibrium value su�ciently fast. The main reason for the success
of the approach of COLEMAN& NOLL lies in the far-reaching consequences of
the principle of the fading memory, which is an assumption of continuity of
the constitutive functionals in the topology induced by the fading memory
norm. Under this assumption, many general properties of materials with
memory have been proved, such as some restrictions and interrelations for
the constitutive functionals, and the minimality of the equilibrium free energy
in the set of all states having the same current deformation. In this paper, in
the more limited context of linear viscoelasticity, we obtain the same results
in a more direct way. We endow the space of histories with a seminorm,
which is a norm for the set of the equivalence classes determined by the
solution set of the equation (1.4). The sum of this seminorm and the norm of
the space of deformations is a norm for the state space, and we use the
topology induced by that norm.

This choice plays an important role in the de®nition of the free energy,
which is the central subject of the paper. Among the de®nitions present in the
literature, we focus our attention on the de®nition given by COLEMAN &
OWEN, who de®ne the free energy as a lower potential for the work [6, Sec. 5].
The general results of their theory are then used to prove the existence of a
maximal and of a minimal free energy, characterized as the minimum work
done to approach a state starting from the natural state, and as the maximum
work which can be recovered from a given state, respectively. In the special
case of linear viscoelasticity, we ®nd two additional properties beyond those
shared by all systems and by all free energies. Namely, we prove that every
state can be approached from every other state by a sequence of processes
with the property that the sequence of the works done in these processes is
convergent, and we prove that the minimal free energy is lower semicontin-
uous with respect to the topology that we have adopted for the state space.

The last two sections are devoted to the study of two particular classes of
viscoelastic material elements, characterized by relaxation functions of ex-
ponential type and by completely monotonic relaxation functions, respec-
tively. For the ®rst class, we generalize a result of GRAFFI & FABRIZIO [19],
which asserts that there is just one free energy, whose explicit expression was
determined by BREUER& ONAT [2]. We also show that some other functions,
which are usually considered as appropriate to describe the free energy, are
indeed not acceptable because they do not de®ne a function of state for this
speci®c class of relaxation functions.
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For completely monotonic relaxation functions, we discuss here the
characterization of the state space, while the characterization of the free
energy is still under study. With the aid of Bernstein's representation formula
for completely monotonic functions and of MuÈ ntz's theorem on the com-
pleteness of powers, we determine a class of completely monotonic functions
for which states are characterized by history-deformation pairs. We also
determine a class, consisting of completely monotonic functions of expo-
nential type, for which the state space is ®nite-dimensional. These two classes
are not exhaustive, and a comprehensive classi®cation of completely mono-
tonic functions based on the structure of their state space is not yet available.

We conclude this introduction with some remarks on notation. We denote
by Sym the set of all symmetric linear transformations on the vectors,
equipped with the inner product A � B :� tr �ABT � and, consequently, with the
norm

jAj :� �A � A�1=2; �1:5�
and by LinSym we denote the set of all linear transformations on Sym,
equipped with the norm

kCk :� sup
A2SymnfOg

jCAj
jAj : �1:6�

By I and O we denote the identity and the zero mapping in Sym, and by I and
O we denote the corresponding mappings in LinSym. For each pair C, D of
elements of LinSym, the notations

C > D; C3D; �1:7�
mean that �CÿD� is positive-de®nite and positive-semide®nite, respectively.
We also denote by B�A; d� the open ball of radius d centered at A, and for
every functionH de®ned over an interval of the real line we denote by (var H )
the variation of H in its domain of de®nition [12, Eq. 2.1].

2. Histories and segments

In the constitutive equation (1.1), E is a function from the reals into Sym,
and _G is a function from the non-negative reals into LinSym. For these
functions, we keep the regularity assumptions made in [12. Sec. 2]; namely,
for E we assume that (i) for each t 2 R, the history Et de®ned by equation
(1.2) is a function of bounded variation, and that (ii) E is continuous from the
right. For _G we assume that (iii) _G is Lebesgue integrable. This assumption
implies that _G admits a primitive G, determined to within an additive con-
stant, which we ®x by setting

G�0� :� G0; �2:1�
where G0 is the tensor appearing in equation (1.1). It also implies that G is
absolutely continuous and bounded, and that the limit
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G1 :� lim
s!�1G�s� �2:2�

exists. The tensor G0 is the instantaneous elastic modulus, and G1 is the
equilibrium elastic modulus. We also assume that (iv) both G0 and G1 are
symmetric, and

G0 > G13O: �2:3�
The regularity assumptions made on E lead to the following de®nition of a
history.

2.1. De®nition. A history is a function from the positive reals into Sym, of
bounded variation and continuous from the left.

It can be shown that every history H is bounded and has right and left
limits H�s��, H�sÿ� at every s > 0, with H�sÿ� � H�s� by assumption (ii).
Moreover, a history has continuous extensions to zero and to in®nity:

H�0�� :� lim
s!0�

H�s�; H�1� :� lim
s!�1H�s�: �2:4�

A segment of duration d is a function K : �0; d � ! Sym, of bounded
variation and continuous from the left. The truncation of a history H at r > 0
is the segment Hr of duration r de®ned by

Hr�s� :� H�s�; 0 < s 2 r; �2:5�
and the r-section of H is the history Hr given by

H r�s� :� H�r � s� for s > 0: �2:6�
The continuation K � H of a history H by a segment K of duration d is the
history

�K � H��s� :� K�s� for 0 < s 2 d,
H�sÿ d� for s > d.

�
�2:7�

Notice that
Hr � H r � H �2:8�

for all histories H and for all r > 0.
In quite a similar way, one can de®ne the truncation Kr of a segment K to

be its restriction to �0; r�, and the r-section Kr of K to be the segment of
duration �dÿr� de®ned by Kr�s� � K�r � s�: The continuation of a segment K
of duration d by a segment K 0 of duration d 0 is the segment K 0 � K taking the
value K 0�s� for 0 < s 2 d 0 and K�sÿ d 0� for d 0 < s 2 d � d 0. Note that,
since histories and segments need not be continuous, any history and any
segment can be continued by any segment.

The constant history associated with the deformation A is the history Ay

with Ay�s� � A for all s > 0, and a ®nite history is a continuation K � Ay of a
constant history. The collection of all histories obeying De®nition 2.1 is a
vector space which is denoted by C. The set of all constant histories and the
set of all ®nite histories are subspaces of C, and the null element of C is the
constant history Oy associated with the null deformation.
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Another distinguished subspace of C is the set C0 of all solutions of
equation (1.4). The function

kHkC :� sup
t 3 0

��� Z�1
0

_G�t � s�H�s� ds
��� �2:9�

is a seminorm for C and a norm for the quotient space C=C0. Let us prove
some relevant properties of this seminorm.

2.2. Proposition. For every pair of histories H , H 0 the following properties
hold:

(i) For every segment K,

kK � H 0 ÿ K � HkC 2 kH 0 ÿ HkC: �2:10�
(ii) For each e > 0 there is a positive real m such that, for all segments K of

duration greater than m,

kK � H 0 ÿ K � HkC < e: �2:11�
(iii) If Hd is the truncation of H at d, then

lim
d!�1

kHd � H 0 ÿ HkC � 0: �2:12�

(iv) For every history H and for every segment K of duration d,

lim
r!d
kKr � H ÿ HkC � 0; �2:13�

where Kr is the r-section of K.

Proof. IfK is a segmentof durationd, it follows from thede®nitionofk � kC that

kK � H 0 ÿ K � HkC � sup
t 3 0

��� Z�1
d

_G�t � s��H 0�sÿ d� ÿ H�sÿ d�� ds
���

� sup
t 0 3 d

��� Z�1
0

_G�t 0 � s 0��H 0�s 0� ÿ H�s 0�� ds 0
���; �2:14�

with s 0 � sÿ d and t 0 � t � d. The inequality (2. 10) then follows by taking the
supremum over t 03 0 instead of t 03 d. To prove the second assertion, we set

M :� sup
s>0
jH�s�j � sup

s>0
jH 0�s�j �2:15�

and note that M < �1 because both H and H 0 are bounded. Thus, from
equation (2.14),

kK � H 0 ÿ K � HkC 2 M sup
t 3 0

Z�1
d

k _G�t � s�k ds �M

Z�1
d

k _G�s�k ds; �2:16�
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and, because _G is integrable over �0;�1�, there is a positive real m such that
for all d > m the last integral is less than eMÿ1. This proves the inequality
(2.11). If we now take K � Hd , from the identity (2.8) and from the inequality
(2.16) we have

kHd � H 0 ÿ HkC � kHd � H 0 ÿ Hd � HdkC 2 M
Z�1
d

k _G�s�k ds; �2:17�

and (2.12) follows. The last statement asserts that the supremum of the in-
tegralZ�1
0

_G�t � s��H�s� ÿ �Kr � H��s�� ds

�
Z�1
0

� _G�t � s� ÿ _G�t � s� d ÿ r��H�s� ds�
Zdÿr

0

_G�t � s�K�r � s� ds; �2:18�

taken over all non-negative t, converges to zero when r! d. By setting
r 0 � d ÿ r and integrating by parts, the same integral is transformed into

ÿ
Z�1
0

�G�t � s� ÿ G�t � s� r 0�� dH�s� ÿ �G�t� ÿ G�t � r 0��H�0��

ÿ
Zr 0

0

G�t � s� dK�d ÿ r 0 � s� � G�t � r 0�K�d� ÿ G�t�K�d ÿ r 0�; �2:19�

and therefore it is less than

�varH� sup
s 3 0
kG�t � s� ÿ G�t � s� r 0�k � jH�0��j kG�t� ÿ G�t � r 0�k

� �varK�
Zr 0

0

kG�t � s�k ds� kG�t � r 0�kjK�d� ÿ K�d ÿ r 0�j

� kG�t � r 0� ÿ G�t�kjK�d ÿ r 0�j: �2:20�

By the absolute continuity of G, for every e > 0 there is a d > 0 such that
r 0 < d implies that

kG�s� ÿ G�s� r 0�k < e;
Zs�r 0

s

kG�s 0�k ds 0 < e �2:21�

for all s 3 0, and the fact that K is continuous from the left implies that there
is a d 0 > 0 such that
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jK�d� ÿ K�d ÿ r 0�j < e �2:22�
for all r 0 < d 0. Thus, for su�ciently small r 0 the expression (2.20) is less than

��var H� � jH�0��j � �var K� � sup
s 3 0
kG�s�k � sup

d>s 3 0
jK�s�j�e; �2:23�

and because this bound is independent of t we conclude that the supremum of
the integral (2.18) taken over all t 3 0 converges to zero when r 0 ! 0: (

The constitutive equation (1.1) de®nes the stress reached by the material
when subjected to the history Et and to the current deformation E�t�; because
E is only continuous from the right, E�t� need not coincide with the ®nal
value E�t�� of Et, and therefore history and current deformation are unre-
lated. Thus, the response functional can be de®ned as the function
~T : C� Sym! Sym which with every history-deformation pair (H, A) as-
sociates the stress

~T �H ;A� :� G0A�
Z�1
0

_G�s�H�s� ds: �2:24�

The response functional is linear. Moreover, the inequality

j ~T �H ;A�j2 jG0Aj � kHkC; �2:25�
which follows from the de®nition (2.9) of the seminorm k � kC, shows that ~T is
continuous in the topology induced by k � kC. It also follows from the
property (2.11) of k � kC that, if we continue two histories H 0 and H with the
same segment K, the di�erence between ~T �K � H 0;A� and ~T �K � H ;A� can be
made arbitrarily small by taking K of su�ciently long duration. This prop-
erty of linear viscoelastic materials was called the principle of dissipation of
hereditary in¯uence by VOLTERRA [24]. As shown in the proof of Proposition
2.2, this property is a consequence of the assumed integrability of _G. In fact,
the integrability of _G was taken by GRAFFI as a weak form of the principle of
fading memory [17].

3. States and processes

On the basis of the motivations discussed in the Introduction, we identify
the states of the material with the elements of the Cartesian product

R :� �C=C0� � Sym; �3:1�
i.e., with ordered pairs whose ®rst item is an equivalence class of histories
modulo C0, and whose second item is a deformation. We use the notation

r � �H ;A� �3:2�
to mean that the state r is represented by the history-deformation pair
�H ;A�. Of course, r may be represented as well by any other pair �H 0;A�
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such that H 0 ÿ H 2 C0. In particular, rA � �Ay;A� is the equilibrium state
associated with the deformation A, and r0 � �Oy;O� is the natural state.
The state space R is a vector space, and can be made a normed space by
setting

krkR :� jG0Aj � kHkC �3:3�
whenever r � �H ;A�.

It is clear from the linearity of ~T and from the inequality (2.25) that, if
�H ;A� and �H 0;A� represent the same state, then the stresses ~T �H ;A� and
~T �H 0;A� are the same. This fact tells us that the response functional ~T is
indeed a function of state, and we may de®ne a function T̂ : R! Sym such
that

T̂ �r� � ~T �H ;A� �3:4�
when r � �H ;A�: The function T̂ is linear, and the inequality (2.25) tells us
that it is continuous:

jT̂ �r�j2 krkR: �3:5�
We de®ne a process of duration d as a segment-deformation pair

P :� �K; B�; �3:6�
where B is a deformation and K is a segment of duration d with K�d� � O.
For a state r � �H ;A� and a process P � �K;B�, the state reached from r
when subjected to P is, by de®nition,

Pr � �KA � H ;B� A�; �3:7�
where KA is the segment

KA�s� :� K�s� � A: �3:8�
We denote by P the set of all processes, and for each state r we denote by Pr
the set of all states which can be reached from r:

Pr :� fPr j P 2 Pg: �3:9�
We prove below that for every r 2 R the set Pr is dense in R. This is done by
constructing, for each r 0 2 R, a family r 7! Pr of processes such that the
states Prr converge to r 0 when r ! �1.

3.1. Proposition. Given two states r � �H ;A� and r 0 � �H 0;A 0�; for each
r > 0 consider the process

Pr :� �Kr � K 0;A 0 ÿ A�; �3:10�
where K 0 is a segment of arbitrary duration d with K 0�d� � O; and Kr is the
segment of duration r given by

Kr�s� :� H 0
r�s� ÿ A; �3:11�

with H 0
r the truncation of H 0 at r. Then the family r 7! Prr converges to r 0 in

the norm k � kR when r 7! �1.
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Proof. The de®nition (3.7) tells us that Prr � �H 0
r � K 0A � H ;A 0�. Thus, by the

de®nition (3.3) of k � kR,
kPrrÿ r 0kR � kH 0

r � K 0A � H ÿ H 0kC; �3:12�
and the third item in Proposition 2.2 shows that the right-hand side converges
to zero when r! �1: (

We now ®x a P 2 P, and consider the map r 7! Pr given by the de®nition
(3.7). We prove that this map is Lipschitz continuous.

3.2. Proposition. There is a positive constant m, depending only upon the re-
laxation function G, such that

kPr 0 ÿ PrkR 2 mkr 0 ÿ rkR �3:13�
for every process P and for every pair of states r; r 0.

Proof. Let r � �H ;A�; r 0 � �H 0;A 0�; and P � �K;B� with K a segment of
duration d. Then by the de®nitions (3.3), (2.9) of k � kR and k � kC

kPr 0 ÿ PrkR � kKA 0 � H 0 ÿ KA � HkC � jG0�A 0 ÿ A�j

� sup
t 3 0

��� Zd

0

_G�t � s��KA 0 �s� ÿ KA�s�� ds

�
Z�1
d

_G�t � s��H 0�sÿ d� ÿ H�sÿ d�� ds
���

� jG0�A 0 ÿ A�j; �3:14�
with KA 0 �s� ÿ KA�s� � A 0 ÿ A by the de®nition (3.8), so that the ®rst integral
reduces to Zd

0

_G�t � s��A 0 ÿ A� ds � �G�t � d� ÿ G�t���A 0 ÿ A�: �3:15�

Because the second integral is less than or equal to kH 0 ÿ HkC, we have
kPr 0 ÿ PrkR 2 �1� 2 sup

r 3 0
kGÿ10 G�r�k�jG0�A 0 ÿ A�j � kH 0 ÿ HkC; �3:16�

and the inequality (3.13) follows, with

m � 1� 2 sup
r 3 0
kGÿ10 G�r�k: �3:17�

Note that m � 1 if A 0 � A: (
Given two processes P ; P 0, the composition of the maps r 7! Pr,

r 7! P 0r is, by de®nition, the map r 7! P 0Pr which with each state r asso-
ciates the state P 0Pr reached from Pr when subjected to P 0. Thus, for
r � �H ;A�; P � �K;B�; P 0 � �K 0;B 0�, we have

G. DEL PIERO & L. DESERI10



P 0Pr � �K 0B�A � KA � H ;B 0 � B� A�: �3:18�
Note that P 0Pr is the state reached from r when subjected to the process
�K 0B � K;B 0 � B�. This process is denoted by P 0P and is called the continua-
tion of P with P 0.

The density of the sets Pr in R and the de®nition of the composition
r 7! P 0Pr characterize the pair �R;P� as a system in the sense of COLEMAN &
OWEN [5, Def. 2.1]. The further speci®cation of the response functional T̂
completes the description of what is called here a linearly viscoelastic material
element. In the following, the adverb linearly is omitted for brevity. This
de®nition parallels the de®nition given in [5, Sec. 9], which includes the
thermal variables.

A di�erent de®nition of a linearly viscoelastic material element in the
framework of COLEMAN & OWEN's theory was given by FABRIZIO & MORRO

in the paper [13]. In accordance with the principle of fading memory of
COLEMAN & NOLL [4], these authors assume that the relaxation function
satis®es the condition Z�1

0

k _G�s�k2hÿ1�s� ds < �1; �3:19�

where h is a positive, non-increasing function decaying to zero at a prescribed
rate when s! �1. They also de®ne the fading memory space of histories as
the set C� of all functions H : �0;�1� ! Sym for which the fading memory
norm

kHkC� :�
� Z�1

0

jH�s�j2h�s� ds
�1=2

�3:20�

is ®nite. The states are then identi®ed with history-deformation pairs, and the
state space R� is the product space C� � Sym, endowed with the norm

krkR� :� �jAj2 � kHk2C� �1=2 �3:21�
with r � �H ;A�. If we assume that h is integrable, then we see that the history
space C is included in C� and, consequently, that the state space R is included
in R�. Indeed, since every history H 2 C is bounded, its norm (3.20) is ®nite if
h is integrable. Moreover, if we use the de®nition (2.9) of kHkC and the
Cauchy-Schwarz inequality, we get

kHkC 2 sup
t 3 0

� Z�1
0

k _G�t � s�k2hÿ1�s� ds
�1=2� Z�1

0

jH�s�j2h�s� ds
�1=2

: �3:22�

The supremum is attained at t � 0 because hÿ1 is positive and non-decreasing.
Thus, if we denote by m2 the integral in inequality (3.19), we conclude that

kHkC 2 mkHkC� 8 H 2 C; �3:23�
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and the de®nitions (3.3) and (3.21) allow us to conclude that there is a pos-
itive constant m 0 such that

krkR 2 m 0krkR� 8 r 2 R: �3:24�
This shows that the norm of R is continuous with respect to the norm of R�.
Consequently, every open set in R is an open set in R�, and therefore the
topology induced in R by the norm k � kR is coarser than the one induced by
the norm k � kR� . The inequality (3.23) cannot be reversed in general. Indeed,
for every history H 2 C0nfOyg we have kHkC� > 0 and kHkC � 0.

4. Work

The work done by a viscoelastic material element subject to a history H is

w�H� :� ÿ
Z�1
0�

~T �Hr;H�r�� � dH�r� �4:1�

with H r and ~T de®ned by equations (2.6) and (2.24), respectively, and with the
integral over �0�;�1� de®ned as the limit of the integral over �a;�1� when
a! 0 from the right. Notice that the Stieltjes integral on the right side is well
de®ned only if ~T is continuous, and this is not the case for discontinuous
histories. Indeed, it follows from the constitutive equation (2.24) that the
stress has a jump exactly at those points at which H has a jump. Nevertheless,
if the instantaneous modulus G0 is symmetric as we have assumed from the
beginning, then it is possible to de®ne, by a limit procedure, the work done in
a discontinuous history. Indeed, it is shown by Proposition 3.5 in [12] that the
work done in a history H having a jump at a can be expressed again by
equation (4.1), with the convention that the integral over �0�;�1� is now the
sum of the integrals over �0�; a� and �a�;�1�, plus the product of the jump
�H�a�� ÿ H�a�� of H by the arithmetic mean of the stresses ~T �H a;H�a��� and
~T �H a;H�a��. In particular, if we denote by ~w�H ;A� the work done in the
history H followed by the deformation A, then ~w�H ;H�0��� � w�H� and

~w�H ;A� � w�H� � 1
2�~T �H ;A� � ~T �H ;H�0���� � �Aÿ H�0���: �4:2�

We ®nd it convenient to consider A as the extension of H to s � 0, and to use
the notation

ÿ
Z�1
0

~T �H r;H�r�� � dH�r� :� ~w�H ;A� �4:3�

to include in the integral the work done in the jump �H�0�� ÿ A� at s � 0.
If H and H 0 are histories corresponding to the same state, the works w�H�

and w�H 0� need not be equal, as will be shown by an example in Section 6. In
other words, the work is not a function of state whenever C0 contains his-
tories other than Oy. On the contrary, the work done in a given process is
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always a function of the initial state. Indeed, take a history H and a process
P � �K;B� of duration d. Then the work done in the process is

~w�KA � H ;B� ÿ ~w�H ;A� � ÿ
Zd

0

~T �Kr
A � H ;KA�r�� � dKA�r�; �4:4�

with Kr
A the truncation of KA at r. Take another history H 0 such that

H 0 ÿ H 2 C0. Then the history �Kr
A � H 0 ÿ Kr

A � H� also belongs to C0 by
Proposition 2.2, and therefore the pairs �Kr

A � H ;KA�r�� and �Kr
A � H 0; KA�r��

represent the same state. Because ~T is a function of state, it follows that the
right-hand side of equation (4.4) does not change if H is replaced by H 0.
Thus, we may conclude that the work done in a process is a function of the
process of the initial state only, and we may introduce the notation

ŵ�P ; r� :� ~w�KA � H ;B� A� ÿ ~w�H ;A� �4:5�
to denote the work done in the process P � �K;B� starting from the state
r � �H ;A�:

In this way, we have de®ned a function ŵ from the set P� R into the
reals. According to [5, Def. 2.2], ŵ is an action if it enjoys the following two
properties:

(i) Additivity with respect to continuations:

ŵ�P 0P ; r� � ŵ�P 0; Pr� � ŵ�P ; r� 8P ; P 0 2 P; 8r 2 R: �4:6�
(ii) Continuity with respect to the states: For each P 2 P, the function

ŵ�P ; �� is continuous in R.

We prove below that ŵ satis®es these conditions, and that the continuity with
respect to the states is indeed Lipschitz continuity.

4.1. Proposition. The function ŵ : P� R! R de®ned by equation (4.4) is an
action. Moreover, it satis®es the inequality

jŵ�P ; r 0� ÿ ŵ�P ; r�j2 m (var K�kr 0 ÿ rkR �4:7�
for all P � �K;B� in P and for all r 0; r in R, with m the constant appearing in
equation (3.13).

Proof. Take a state r � �H ;A� and two processes P � �K;B�; P 0 � �K 0;B 0�:
The de®nitions (4.5) and (3.18) tell us that

ŵ�P 0; Pr� � ~w�K 0B�A � KA � H ; B 0 � B� A� ÿ ~w�KA � H ;B� A�; �4:8�
ŵ�P 0P ; r� � ~w�K 0B�A � KA � H ;B 0 � B� A� ÿ ~w�H ;A�; �4:9�

and the equality (4.6) is obtained by subtraction and substitution into
equation (4.5). Now take a process P � �K;B� of duration d and two states
r � �H ;A�; r 0 � �H 0;A 0�. From the de®nitions (4.4) and (4.5) and from the
fact that dKA 0 �r� � dKA�r� � dK�r� it follows that
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jŵ�P ; r 0� ÿ ŵ�P ; r�j �
��� Zd

0

� ~T �Kr
A 0 � H 0;KA 0 �r�� ÿ ~T �Kr

A � H ;KA�r��� � dK�r�
���

2 var K� sup
r2�0;d�

j ~T �Kr
A 0 � H 0;KA 0 �r�� ÿ ~T �Kr

A � H ;KA�r��j

�4:10�
If we denote by P r the process �Kr;K�r��, then �Kr

A 0 � H 0;KA 0 �r�� � P rr 0 and
�Kr

A � H ;KA�r�� � P rr, and from the de®nition (3.4), the linearity of T̂ , and
the inequalities (3.5), (3.13) it follows that

j ~T �Kr
A 0 � H 0;KA 0 �r�� ÿ ~T �Kr

A � H ;KA�r��j
� jT̂ �P rr 0� ÿ T̂ �P rr�j � jT̂ �P rr 0 ÿ P rr�j
2 kP rr 0 ÿ P rrkR 2 mkr 0 ÿ rkR:

�4:11�

Substitution into inequality (4.10) then proves the inequality (4.7). (

According to [5, Def 3.3], a state r 0 is said to be ŵ - approachable from
another state r if there is a sequence n 7! Pn in P such that (i) the sequence
n 7! Pnr converges to r 0, and (ii) the sequence n 7! ŵ�Pn; r� converges. In the
next Proposition 4.3, for every pair of states r; r 0 we construct a one-pa-
rameter family of processes with the above properties, showing thereby that
in a viscoelastic material element every state is ŵ - approachable from every
other state. The proof is based upon the following preliminary result, es-
sentially due to DAY

1.

4.2. Lemma. For every pair of histories H ;H 0 and for every deformation A,

lim
p!�1

~w�H 0
p � H ;A� � ~w�H ;H 0�1�� � ~w�H 0;A�: �4:12�

Proof. Let H 0s be the s-section of H 0 and let H 0sr be the truncation of H 0s at r.
For ®xed values of s and r, the identity H 0

s � H 0sr � H 0
r�s and the de®nition

(4.5) of ŵ tell us that

~w�H 0
r�s � H ;A� � ~w�H ;H 0�r � s�� � ŵ�P s

r ; r�r � s�� � ŵ�Ps; rr�s��; �4:13�
where r�r � s� � �H ;H 0�r � s��; rr�s� � �H 0sr � H ;H 0�s��; and P s

r ; Ps are the
processes of duration r and s de®ned by

P s
r :� �Ks

r ;H
0�s� ÿ H 0�r � s��; Ks

r �r 0� :� H 0�r 0 � s� ÿ H 0�r � s�; �4:14�

Ps :� �Ks;Aÿ H 0�s��; Ks�s 0� :� H 0�s 0� ÿ H 0�s�; �4:15�

1 [11, p. 63]. Note that, while DAY's proof relies upon the fading memory property
implicit in the assumption that _G is Lebesgue integrable, the proof given here is based

on the assumption that every history has bounded variation.
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respectively. If we keep r ®xed and let s grow to �1, the work
~w�H ;H 0�r � s�� converges to ~w�H ;H 0�1�� by its de®nition (4.2). Moreover,

jŵ�P s
r ; r�r � s��j �

��� Zr

0

T �r; s� r 0� � dH 0�s� r�
���2 sup

r 0��0;r�
jT �r; s� r 0�j�var H 0sr�;

�4:16�
with

T �r; s� r 0� :� ~T �H ;H 0�r � s�� �
Zr

r 0

_G�r00�H 0�s� r00� dr00: �4:17�

It is not di�cult to prove that jT �r; s� r 0�j has a ®nite upper bound, inde-
pendent of s, r, and r 0. On the other hand, �var H 0s

r�2 (var H 0s� and
�var H 0s� ! 0 when s! �1 because H 0 has bounded variation. Thus, we
may conclude that for every ®xed r > 0 the work ŵ�P s

r ; r�r � s�� converges to
zero when s! �1.

It remains to consider the last term in equation (4.13). Consider the state
r 0�s� � �H 0s;H 0�s�� and the work

ŵ�Ps; r
0�s�� � ~w�H 0

s � H 0s;A� ÿ ~w�H 0s;H 0�s��: �4:18�
The ®rst term on the right side is equal to ~w�H 0;A� by the identity (2.8), and
the second converges to zero when s! �1 because the total variation of H 0s

converges to zero. If we now compare this work with the last term in equation
(4.13), with the aid of inequality (4.7) and of the de®nition (3.3) of k � kR we
®nd that

jŵ�Ps; rr�s�� ÿ ŵ�Ps; r
0�s��j2 �var K� k rr�s� ÿ r 0�s� kR

� �var K� k H 0s
r � H ÿ H 0s kC;

�4:19�

and therefore, when s! �1,��� lim
s!�1 ŵ�Ps; rr�s�� ÿ ~w�H 0;A�

���2 (var K� k H 0
r � H ÿ H 0 kC : �4:20�

Equation (4.13) then implies the inequality��� lim
s!�1

~w�H 0
r�s � H ;A�ÿ ~w�H ;H 0�1��ÿ ~w�H 0;A�

���2 �var K�k H 0
r � H ÿ H 0 kC :

�4:21�
By item (iii) in Proposition 2.2, for every e > 0 there is an re > 0 such that
(var K� k H 0

r � H ÿ H 0 kC< e for all r > re. The arbitrariness of e then leads
to the equality (4.12). (

We are now ready to prove that every state r 0 is ŵ-approachable from
every other state r. Because we have already constructed a family of pro-
cesses starting at r and converging to r 0, it is now su�cient to prove that the
work done in the same family of processes converges.
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4.3. Proposition. Each state r 0 � �H 0;A 0� is ŵ-approachable from every state
r � �H ;A�: Indeed, not only does the family r 7! Prr de®ned by equations
(3.10), (3.11) converge to r 0 as stated in Proposition 3.1, but also

lim
r!�1 ŵ�Pr; r� � ~w�H 0;A 0� � ŵ�P ;r� �4:22�

with P � �K 0;H 0�1� ÿ A�:

Proof. By equations (3.10), (3.11) and by the de®nition (4.5) of ŵ,

ŵ�Pr; r� � ~w�H 0
r � K 0A � H ;A 0� ÿ ~w�H ;A�; �4:23�

and, by the preceding lemma,

lim
r!�1

~w�H 0
r � K 0A�H ;A 0� � ~w�K 0A � H ;H 0�1�� � ~w�H 0;A 0�: �4:24�

Again by the de®nition (4.5),

~w�K 0A � H ;H 0�1�� � ~w�H ;A� � ŵ�P ; r�; �4:25�
and the desired result (4.22) follows. (

5. Free energy

In the more general context of the theory of simple materials with
memory, COLEMAN [3] de®nes the Helmholtz free energy as a function
~w : C � � Sym! R; continuous and continuously di�erentiable with respect
to both of its arguments. Here C� denotes the fading memory space of his-
tories de®ned in Sec. 3, and continuity and di�erentiability with respect to C�

are referred to the fading memory norm (3.20). It is also proved in [3] that, as
a consequence of the second law of thermodynamics, ~w has the following
properties:2

(P1) ~w satis®es the integrated dissipation inequality

~w�KA � H ;B� ÿ ~w�H ;A�2 ~w�KA � H ;B� ÿ ~w�H ;A� �5:1�
for every pair of deformations A, B, for every history H, and for every
segment K of duration d with K�d� � O.

(P2) For every deformation A and for every history H,

~w�Ay;A�2 ~w�H ;A�: �5:2�
(P3) For every deformation A and for every history H, the derivative of
~w�H ; �� at A is equal to the stress ~T �H ;A�:
(P4) For every deformation A,

~w�Ay;A� ÿ ~w�Oy;O� � 1
2G1A � A: �5:3�

2The property (P4), implicit in [3, Remark 11], is stated explicitly in [8, Sec. 8].

G. DEL PIERO & L. DESERI16



In linear viscoelasticity, several attempts have been made to de®ne the free
energy under assumptions weaker than continuity with respect to the fading
memory norm. For instance, VOLTERRA [25], DAY [8, 9], and GRAFFI [15]
proposed some explicit forms of the free energy, satisfying the properties
listed above. Later, GRAFFI [16], MORRO & VIANELLO [22], and FABRIZIO,
GIORGI & MORRO [14] took a more general viewpoint: They de®ned a free
energy to be any function which satis®es those properties.

It is common, in thermodynamics, to assume that the free energy is a
function of state. The notion of state introduced in Section 3 supplies the
following restriction that ~w has to satisfy to be a function of state:

~w�H 0;A� � ~w�H ;A� �5:4�
for all A 2 Sym and for all H 0, H 2 C with H 0 ÿ H 2 C0. If this condition is
satis®ed, then it is possible to de®ne a function w : R! R such that

w�r� � ~w�H ;A� �5:5�
whenever r � �H ;A�. In terms of the function w, the integrated dissipation
inequality (5.1) takes the form

w�Pr� ÿ w�r�2 ŵ�P ; r� �5:6�
for all P 2 P and for all r 2 R.

In their theory of thermodynamic systems, COLEMAN & OWEN [5, 6] de®ne
the free energy as a lower potential for the work. In the present context, a
function w : R! R is called a lower potential for the action ŵ if for every
e > 0 and for every r; r 0 2 R there is a d > 0 such that

w�r 0� ÿ w�r� < ŵ�P ; r� � e �5:7�
for every process P such that Pr 2 B�r 0; d�. If w is a lower potential for ŵ,
then it satis®es the inequality (5.6), and therefore it has the property (P1).
Indeed, if r 0 � Pr, then Pr belongs to B�r 0; d� for all d > 0, and therefore
the inequality (5.7) is satis®ed with r 0 � Pr for every e > 0. We now prove

5.1. Proposition. Every lower potential for ŵ satis®es the properties (P2)±(P4).

Proof. Consider a state r � �H ;A�, the equilibrium state rA � �Ay;A�, and
the process Pr :� �Oyr ;O�. By Proposition 3.1, Prr! rA when r! �1. Thus,
for each d > 0 there are values of r su�ciently large to ensure that
Prr 2 B�rA; d�. If w is a lower potential for ŵ, then for each e > 0 the in-
equality (5.7) can be written for r 0 � rA, for the given r, and for P � Pr with
su�ciently large r. Keeping in mind that ŵ�Prr� � 0 because Pr has constant
values, we get w�rA� ÿ w�r� < e, and the property (5.2) follows from the
arbitrariness of e. To prove (P3), take two states r � �H ;A�; r 0 � �H ;A 0�
corresponding to the same history H, and the process P 0r :� �Oyr ;A 0 ÿ A�. The
equality

k P 0rrÿ r 0 kR�k Ayr � H ÿ H kC �5:8�
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and the last item in Proposition 2.2 tell us that P 0rr! r 0 when r! 0.
Therefore, for every d > 0 we have P 0rr 2 B�r 0; d� for su�ciently small
values of r. If w is a lower potential for ŵ, the inequality (5,7) yields

~w�H ;A 0� ÿ ~w�H ;A� < ŵ�P 0r; r� � e �5:9�
for every ®xed e > 0 and for su�ciently small r > 0. The work ŵ�P 0r; r� is
concentrated at the jump from A to A 0; according to equation (4.2), it is given
by

ŵ�P 0r; r� � 1
2� ~T �Ayr � H ;A 0� � ~T �Ayr � H ;A�� � �A 0 ÿ A�; �5:10�

and, in view of the identity

~T �H ;A 0� ÿ ~T �H ;A� � G0�A 0 ÿ A�; �5:11�
it can be given the form

ŵ�P 0r; r� � ~T �Ayr � H ;A� � �A 0 ÿ A� � o�A 0 ÿ A�: �5:12�
The linearity of ~T , the inequality (2.25) and the convergence of r 7! Ayr � H to
H imply the convergence of r 7! ~T �Ayr � H ;A� to ~T �H ;A� when r ! 0. Thus,
for r ! 0 the inequality (5.9) yields

~w�H ;A 0� ÿ ~w�H ;A� < ~T �H ;A� � �A 0 ÿ A� � o�A 0 ÿ A� � e; �5:13�
and, by the arbitrariness of e,

~w�H ;A 0� ÿ ~w�H ;A�2 ~T �H ;A� � �A 0 ÿ A� � o�A 0 ÿ A�: �5:14�
If we now repeat the whole procedure with A and A 0 interchanged, we get

~w�H ;A� ÿ ~w�H ;A 0�2 ~T �H ;A 0� � �Aÿ A 0� � o�A 0 ÿ A�
� ÿ ~T �H ;A� � �A 0 ÿ A� � o�A 0 ÿ A�; �5:15�

with the last step following from the identity (5.11). We then conclude that
the equality sign holds in inequality (5.14). This proves that ~w�H ; �� is dif-
ferentiable and that its derivative is ~T �H ; ��.

To prove the property (P4), we consider a segment K of duration d with
K�d� � O, and for every a > 1 we de®ne the a-retardation of K as the segment
Ka of duration �ad� given by

Ka�as� :� K�s�; s 2 �0; d�: �5:16�
It is known (see, e.g., [12, Sec. 3]) that, if rB and rA are the equilibrium states
associated with B and with A :� B� K�0��, and if Pa � �Ka;K�0���, then

lim
a!�1 ParB � rA; �5:17�

lim
a!�1 ŵ�Pa; rB� � 1

2 G1A � Aÿ 1
2G1B � B: �5:18�

If we ®x d > 0, equation (5.17) tells us that ParB belongs to B�rA; d� for
su�ciently large values of a. Then we can use the inequality (5.7) and the
property (5.18) of the retardations to get
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w�rA� ÿ w�rB� < ŵ�Pa; rB� � e < 1
2G1A � Aÿ 1

2G1B � B� 2e �5:19�
for every pair of deformations A;B. In particular, for B � O and e arbitrarily
small we have

w�rA� ÿ w�r0�2 1
2 G1A � A �5:20�

where r0 � �Oy;O� is the natural state, and for A � O we get the opposite
inequality

w�rB� ÿ w�r0�3 1
2 G1B � B: �5:21�

The equality (5.3) follows from the arbitratiness of A and B. (

In this paper we adopt COLEMAN & OWEN'S de®nition of free energy, with
the requirement that the domain of the free energy be all of R rather than
merely a dense subset of R as required in [6]. Moreover, we add for conve-
nience the normalization condition w�r0� � 0.

5.2. De®nition. A free energy for the viscoelastic material element is a func-
tion w : R! R which is a lower potential for ŵ and satis®es w�r0� � 0.

The set of all free energies is denoted byF. It has been proved above that
all functions inF have the properties (P1)±(P4). In particular, a consequence
of (P4) and of the positive-semide®niteness of G1 is that the free energy of
every equilibrium state is non-negative; moreover, the property (P2) tells us
that the free energy of every state is non-negative. It is also known thatF is
convex, i.e., that every convex combination of free energies is a free energy [6,
Sec. 3].

We now discuss the question of the existence of free energies. More
precisely, we wish to provide necessary and su�cient conditions under which
the setF is not empty. We observe that, if w is a lower potential for ŵ, then
the inequality (5.7) implies that

ŵ�P ; r� > ÿe �5:22�
for all P 2 P with Pr 2 B�r; d�. This property of ŵ is called the dissipation
property at r [6].

Thus, if ŵ has a lower potential, it has the dissipation property at all states
in R. It has been proved in [6, Theorem 3.3] that if ŵ is an action with the
dissipation property at some r 2 R, then it has a lower potential whose do-
main is the set of all states which are ŵ-approachable from r. By Proposition
4.3, this set is here the whole state space R. Therefore, for a viscoelastic
element, the assertions

� ŵ has the dissipation property at some r 2 R,
� ŵ has the dissipation property at all r 2 R,
� F is not empty

are equivalent. Moreover, the ®rst of them is equivalent to

� the relaxation function G is dissipative.
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Indeed, we recall that G is dissipative if the work done in any process
starting from the natural state is non-negative. Thus, if G is dissipative the
inequality (5.22) with r � r0 is satis®ed for all e > 0, and therefore ŵ has
the dissipation property at r0. Conversely, if ŵ has the dissipation property
at r0, then F is not empty, and the inequality (5.6) together with the
condition w�r0� � 0 and the fact that w takes non-negative values tell us
that

ŵ�P ; r0�3 w�Pr0� ÿ w�r0�3 0 �5:23�
for all P 2 P, i.e., that G is dissipative.

Consider the function w0 de®ned over R by

w0�r� :� lim
d!0�

inf fŵ�P ; r0� P 2 P; Pr0 2 B�r; d�j g: �5:24�

This is the minimum work expended to approach r by a process starting from
the natural state. It follows from Theorem 3.3 in [6] that, if ŵ has the dissi-
pation property at r0, then w0 is a lower potential for ŵ and is lower semi-
continuous. Moreover, Theorem 3.5 of [6] implies that w0 is the maximal free
energy in the sense that, for every function w in F,

w�r�2 w0�r� 8r 2 R: �5:25�
The same theorem also shows that, under more restricted conditions, the
function

w0�r� :� ÿ lim
d!0�

inf fŵ�P ; r� P 2 P; Pr 2 B�r0; d�j g �5:26�

is the minimal element of F. In the present setting of viscoelastic elements,
this part of the theorem can be restated as

5.3. Proposition. Assume that ŵ has the dissipation property at r0, and that

(i) r0 is ŵ-approachable from every other state in R,
(ii) w0�r� > ÿ1 for all r 2 R.

Then w0 belongs to F, and every other function w in F satis®es

w0�r�2 w�r� 8r 2 R: �5:27�
For viscoelastic material elements, property (i) has been proved in

Proposition 4.3, and (ii) is a consequence of (i). Indeed, it is su�cient to take
a family d 7! Pd of processes such that k Pdrÿ r0 kR < d and d 7! ŵ�Pd; r�
converges when d! 0�, to get from inequality (5.6) that

ÿw0�r�2 lim
d!0�

ŵ�Pd; r� < �1: �5:28�

Therefore, the hypotheses (i), (ii) in Proposition 5.3 are satis®ed whenever ŵ
has the dissipation property at r0. As a complement to the same proposition
we prove now that, if ŵ has the dissipation property at r0, then the function
w0 is lower semicontinuous. We begin with a preliminary result, which
characterizes w0�r� as the maximum recoverable work from r.
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5.4. Lemma. If ŵ has the dissipation property at r0, then for each d > 0 and for
each r 2 R,

inf
�

ŵ�P ; r� �� P 2 P; Pr 2 B�r0; d�
	 � inf

�
ŵ�P ; r� �� P 2 P

	
: �5:29�

Proof. The above relation is satis®ed trivially if the equality sign is replaced
by 3 ; it is then su�cient to prove the same relation with 2 in place of �.
For every process P and for every state r, the non-negativity of the free
energy and inequality (5.6) imply that

ŵ�P ; r�3 w0�Pr� ÿ w0�r�3 ÿ w0�r�; �5:30�
and therefore that ŵ�P ; r� j P 2 Pgf has a ®nite lower bound. Then, for every
e > 0 there is a process P such that

ŵ�P ; r�2 inf fŵ�P ; r� j P 2 Pg � 1
3 e: �5:31�

Let r � �H ;A� and P � �K;B�. For each r > 0, consider the process
Pr :� �Byr � K;B� obtained by continuing K with a constant segment of du-
ration r. Because no work is done in the continuation, the work ŵ�Pr; r� is
equal to ŵ�P ; r�. Moreover, Prr � ��B� A�yr � KA � H ;B� A�, so that

k Prrÿ rB�A kR � k �B� A�yr � KA � H ÿ �B� A�y kC; �5:32�
and the family r 7! Prr converges to rB�A when r ! �1 by item (iii) in
Proposition 2.2. Take another segment K 0 of duration d 0, with K 0�d 0� � 0
and K 0�0�� � ÿBÿ A, and let P 0a be the process �K 0a;ÿBÿ A�, with K 0a the
a- retardation of K 0. Then the work done in the process P 0aPr from r is

ŵ�P 0aPr; r� � ŵ�Pa
0; Prr� � ŵ�Pr; r� � ŵ�Pa

0; Prr� � ŵ�P ; r�: �5:33�
By proposition 4.1, the convergence of r 7! Prr to rB�A implies the conver-
gence of r 7! ŵ�Pa

0; Prr� to ŵ�Pa
0; rB�A�. Moreover, by the properties (5.17),

(5.18) of a-retardations, the states a 7! Pa
0rB�A converge to r0 when

a! �1, and the works a 7! ŵ�Pa
0; Prr� converge to

ÿ1
2 G1�B� A� � �B� A�, which is a non-positive real by the positive de®-

niteness of G1. It is then possible to select r and a su�ciently large to have

ŵ�Pr
0; Prr�2 ŵ�P 0a; rB�A� � 1

3 e 2 2
3 e ; �5:34�

and therefore, by (5.31) and (5.33),

ŵ�P 0a; Prr�2 inf fŵ�P ; r� P 2 Pj g � e: �5:35�
The convergence of r 7! Prr to rB�A and that of a 7! Pa

0rB�A to r0 also imply
that, for su�ciently large values of r and a, the state Pa

0 Prr belongs to
B�r0; d� for each ®xed d > 0. For this choice of a and r,

inf ŵ�P ; r� P 2 P; Pr 2 B�r0; d�g2 ŵ�Pa
0Pr; r�;jf �5:36�

and the combination with the preceding inequality and the arbitrariness of e
lead to the relation (5.29) with 2 in place of �. (
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5.5. Proposition. If ŵ has the dissipation property at r0, then the function w0 is
lower semicontinuous.

Proof. Select an e > 0, a state r 0, and a process P such that

ŵ�P ; r 0�2 inf fŵ�P ;r 0� j P 2 Pg � 1
2 e �5:37�

By the continuity of ŵ with respect to the states, there is a d > 0 such that

ŵ�P ;r�2 ŵ�P ; r 0� � 1
2 e �5:38�

for all r in B�r 0; d�. By the preceding lemma, the in®mum in inequality (5.37)
is equal to ÿw0�r 0�, and ŵ�P ; r� is not less than ÿw0�r�: Thus,

ÿw0�r�2 ÿ w0�r 0� � e �5:39�
for all r in B�r 0; d�. This proves the semicontinuity of w0 at each r 0 in R: (

Consider the function ~wMV : C� Sym! R de®ned by

~wMV �H ;A� :� ~w�H ;A� � 1
2G1H�1� � H�1�: �5:40�

It has been proved by MORRO & VIANELLO [22] that ~wMV has the properties
�P1� ÿ �P4�, and that it is the maximal element in the class of all functions
which satisfy the same properties. Thus, if the free energy is de®ned as a
function which satis®es the properties �P1�ÿ�P4�, as was done in [22], then
~wMV is the maximal free energy.
This conclusion is no longer true for free energies de®ned according to

De®nition 5.2. Indeed, ~wMV need not satisfy the condition (5.4), and therefore
need not be a function of state. This certainly occurs when C0, the set of all
solutions of equation (1.4), consists of the null history alone. There is an
explicit example for this situation, which we discuss in Section 7 in the
context of completely monotonic relaxation functions. There is another ex-
ample in which ~wMV is not a function of state, the case of a relaxation
function of exponential type, which we discuss in the next section.
Even if ~wMV is a function of state, it need not be a lower potential for the

action ŵ, and therefore it need not belong to the set F of all free energies
according to De®nition 5.2. The conditions under which ~wMV 2F are not
known. However, the fact that ~wMV is the maximal element in the class of all
functions which satisfy the properties �P1�ÿ�P4� and that all functions in F
satisfy the same properties tells us that, whenever ~wMV belongs to F, it
coincides with the maximal element w0 of F.

6. Relaxation functions of exponential type

Let us consider a relaxation function of the type

�G�s� � �G0 eÿsB; �6:1�
where �G�s� :� G�s� ÿ G1. We assume that the tensor �G0 :� �G�0� is sym-
metric and positive-de®nite, and that all eigenvalues of B have a positive real
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part. It has been proved in [12, Sec. 7] that this condition on B is necessary
and su�cient to ensure that _G is Lebesgue integrable over �0;�1�, as as-
sumed here in Section 2.

6.1. De®nition. A relaxation function of exponential type is a function G
which admits the representation (6.1), with �G0 symmetric and positive de®nite
and with all eigenvalues of B having a positive real part.

For this class of relaxation functions, the constitutive equation (2.24)
takes the form

T �r� � G0H�r� ÿ �G0B

Z�1
0

eÿsBH�r � s� ds; �6:2�

where by T �r� we have denoted the stress ~T �H r;H�r��. An important property
of exponential relaxation functions, already studied by GRAFFI & FABRIZIO
[18], is that the states can be identi®ed with the pairs formed by the current
stress and the current deformation. In our approach, this is a consequence of
the fact that for an exponential relaxation function the number
jT �0�� ÿ G0H�0��j is a seminorm for the history space C, and that this
seminorm is equivalent to k � kC.

6.2. Proposition. If G is a relaxation function of exponential type, then there is
a positive constant m such that

jT �0�� ÿ G0H�0��j2 kHkC 2 mjT �0�� ÿ G0H�0��j �6:3�
for all histories H 2 C.

Proof. By the de®nition (2.9) of k � kC and by equations (6.1) and (6.2), we
have

kHkC � sup
t 3 0

Z�1
0

�G0Beÿ�t�s�BH�s� ds � sup
t 3 0
j �G0eÿtB �Gÿ10 �T �0�� ÿ G0H�0���j;

�6:4�
where in the last step we have taken advantage of the fact that B commutes
with eÿtB. If we take t � 0, we get the ®rst of the inequalities (6.3). To prove
the second inequality, we use the identity

�G0 eÿtB �Gÿ10 � eÿt �G0B �Gÿ10 �6:5�
and the fact that the eigenvalues of �G0B �Gÿ10 are the same as those of B, and
therefore have a positive real part. Under these conditions, it has been proved
in [12, Prop. 7.2] that keÿt �G0B �Gÿ10 k is bounded by a positive constant m, and the
second of inequalities (6.3) follows. (
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This result tells us that, for a relaxation function of exponential type, the
equivalence classes modulo C0 in the history space C can be characterized by
the tensor �T �0�� ÿ G0H�0���: Consider now a state r � �H ;A� and denote
by T the current stress ~T �H ;A� given by equation (2.24). The same equation
tells us that

T ÿ G0A � T �0�� ÿ G0H�0��: �6:6�

Consequently, a state r � �H ;A� can be identi®ed with the pair �T ;A� formed
by the current stress and the current deformation, and the state space R can
be identi®ed with the product space Sym2, which is ®nite-dimensional. Thus,
the de®nition (3.3) of the norm k � kR and the equivalence result (6.3) tell us
that k � kR is equivalent to any norm of Sym2. In particular, we ®nd it con-
venient to identify the state r with the pair �T ;A�, and to take

jT ÿ G1Aj � jAj �6:7�

as the norm in the state space.
For relaxation functions of exponential type, the action ŵ takes a spe-

cial form that we wish to determine now. Let us begin with a preliminary
result.

6.3. Proposition. Let G be of exponential type. Then for every history H 2 C
the function r! �T �r� ÿ G0H�r�� is di�erentiable, and its derivative is

�T �r� ÿ G0H�r��_� ÿ _G�0� �Gÿ10 �T �r� ÿ G1H�r��; �6:8�
with

_G�0� � ÿ �G0B: �6:9�
Proof. With the change of variable r � s � t, equation (6.2) takes the form

T �r� ÿ G0H�r� � ÿ �G0B

Z�1
r

eÿ�tÿr�BH�t� dt; �6:10�

which shows that r 7! �T �r� ÿ G0 H�r�� is di�erentiable and that its deriva-
tive is

�T �r� ÿ G0H�r��_� �G0B H�r� ÿ �G0B
2

Z�1
r

eÿ�tÿr�BH�t� dt: �6:11�

The desired equality (6.8) follows after subtracting from equation (6.11) the
equation (6.10) premultiplied by �G0 B �G0:

ÿ1 (

Let us now multiply both sides of equation (6.8) by �Gÿ10 �T �r� ÿ G1H�r��
and integrate over �0; s�:
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Zs

0

�T �r� ÿ G0H�r��_ � �Gÿ10 �T �r� ÿ G1H�r�� dr

� ÿ
Zs

0

�Gÿ10 _G�0� �Gÿ10 �T �r� ÿ G1H�r�� � �T �r� ÿ G1H�r�� dr: �6:12�

The left-hand side is equal to

1
2

�Gÿ10 �T �r� ÿ G0H�r�� � �T �r� ÿ G0H�r��
� �s

0
�
Zs

0

�T �r� ÿ G0H�r��_ � H�r� dr;

�6:13�
and can be further transformed by integration by parts, to get

1
2

�Gÿ10 �T �r� ÿ G0H�r�� � �T �r� ÿ G0H�r��
�
�T �r� � H�r� ÿ 1

2G0H�r� � H�r�
�s
0
ÿ
Zs

0

T �r� � dH�r�: �6:14�

If we now set

�w�T ;A� :� 1
2

�Gÿ10 �T ÿ G1A� � �T ÿ G1A� � 1
2 G1A � A; �6:15�

we see after some computation that the term in brackets is equal to
�w�T �r�; H�r��: Therefore, equation (6.12) takes the form

ÿ
Zs

0

T �r� � dH�r� � ÿ � �w�T �r�;H�r���s0

ÿ
Zs

0

�Gÿ10 _G�0� �Gÿ10 �T �r� ÿ G1H�r�� � �T �r� ÿ G1H�r�� dr:

�6:16�
By the de®nitions (4.4), (4.5), the integral on the left-hand side is the work
done in the process �Hs ÿ �H�s��ys ; Aÿ H�s�� starting from the state
�T �s�;H�s�� � �Hs;H�s��. More generally, if we consider a state r � �T ;A�
and a process P � �K;B� of duration d, then equation (6.16) tells us that

ŵ�P ; r� � �w�Pr� ÿ �w�r�

ÿ
Zd

0

�Gÿ10 _G�0� �Gÿ10 �T �r� ÿ G1KA�r�� � �T �r� ÿ G1KA�r�� dr:

�6:17�
This is the expression of the action ŵ for a relaxation function of exponential
type. From it, the following result on the existence of a free energy in the
sense of De®nition 5.2 can be deduced.
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6.4. Proposition. Let G be a relaxation function of exponential type. Then the
function �w de®ned by equation (6.15) is a free energy in the sense of De®nition
5.2 if and only if _G�0� is negative-semide®nite.

Proof. It has already been proved in Section 5 that if there is a free energy,
then the material element is dissipative. The negative semide®niteness of _G�0�
is a well-known property of the dissipative viscoelastic material element; see,
e.g., [11, Sec. 6.1].

Conversely, if we assume that _G�0� is negative-semide®nite, then equation
(6.17) shows that �w satis®es the integrated dissipation inequality (5.6). Be-
cause �w is continuous with respect to the norm (6.7) and this norm is
equivalent to k � kR, we deduce that the inequality (5.7) is satis®ed, and
therefore �w is a lower potential for ŵ. Because the normalization condition
�w�O;O� � 0 is also satis®ed, we conclude that �w is a free energy in the sense of
De®nition 5.2. (

A relaxation function with a scalar exponent

�G�s� :� �G0eÿas �6:18�
is a particular case of equation (6.1), obtained by taking B � aI. For relax-
ation functions of this type, it has been proved by GRAFFI & FABRIZIO [18]3

that there is just one function of state which satis®es the properties �P1�ÿ�P3�
listed at the beginning of Sec. 5, and that this is the function �w de®ned by
equation (6.15). It follows then from Proposition 5.1 that �w is the only
possible free energy according to De®nition 5.2. Here we extend this result to
all relaxation functions of exponential type with _G�0�2O. We recall that by
Proposition 6.4 the assumption _G�0�2O implies that �w belongs to the setF
of all free energies, and that the functions w0; w0 de®ned by equations (5.24)
and (5.26) are the maximal and the minimal element of F, respectively.

6.5. Proposition. Let G be a relaxation function of exponential type, with
_G�0�2O. Let �w be the element ofF de®ned by equation (6.15) and let w0 and

w0 be the maximal and the minimal elements of F. Then w0 � w0 � �w.

Proof. With every state r � �T ;A�, let us associate the deformation
B :� �Gÿ10 �G0Aÿ T �: �6:19�

Consider a segment K of duration d, with K�d�=0 and K�0�� � B, and the
process Pa � �Ka;B�, with Ka the a-retardation of K. If r0 is the natural state,
it follows from the properties (5.17), (5.18) of the a-retardations that

lim
a!�1 Par0 � �G1 B;B�; �6:20�

lim
a!�1 ŵ�Pa; r0� � 1

2 G1B � B: �6:21�

3See also BREUER & ONAT [2].
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Moreover, if we consider the process P 0a :� �Ka;A�, from the formula (5,11)
we get

lim
a!�1 P 0ar0 � �G1B� G0�Aÿ B�;A� � �T ;A� � r; �6:22�

and, from (4.2) and the expression (6.19) for B,

lim
a!�1 ŵ�P 0a; r0� � 1

2 G1B � B� G1B � �Aÿ B� � 1
2 G0�Aÿ B� � �Aÿ B�

� 1
2

�G0B � Bÿ �G0A � B� 1
2G0A � A

� 1
2

�Gÿ10 �T ÿ G0A� � �T ÿ G0A� � A � �T ÿ G0A� � 1
2G0A � A:
�6:23�

Now we observe that the right-hand side in the last equation is equal to
�w�T ;A�, as can be checked by direct computation. Thus,

lim
a!�1 ŵ�P 0a; r0� � �w�T ;A�: �6:24�

By equation (6.22), for every ®xed d > 0 the state P 0ar0 belongs to B�r; d�
for su�ciently large values of a. Therefore, for each d > 0 there is an a such
that

ŵ�P 0a; r0�3 inf ŵfr0 ! B�r; d�g; �6:25�
and the fact that, when d! 0, the left-hand side converges to �w�T ;A� and the
right-hand side converges to w0�T ;A� allows us to conclude that
�w�T ;A�3 w0�T ;A� for all states �T ;A� in R, and, therefore, that �w 3 w0.
Because w0 is the maximal free energy, we have proved that �w � w0.

To prove that �w � w0, consider a state �T ;A� and suppose that the de-
formation undergoes a jump from A to B. Then equation (5.11) tells us that
the stress jumps from T to T 0 � T � G0�Bÿ A�; and if we take B as in
equation (6.19), we see that T 0 � G1B. This characterizes �T 0;B� as the
equilibrium state associated with B; indeed, the constitutive equation (2.24)
shows that G1B is the stress associated with the history-deformation pair
�By;B�:

By equation (4.2), the work done in the jump from A to B is
T � �Bÿ A� � 1

2 G0�Bÿ A� � �Bÿ A�. If we now subject the equilibrium state
�T 0;B� to the retarded processes Pa � �Ka;O�, the work done in those pro-
cesses converges to ÿ 1

2G1B � B when a! �1 by equation (5.18). Thus, the
total work done is

T � �Bÿ A� � 1
2 G0�Bÿ A� � �Bÿ A� ÿ 1

2 G1B � B; �6:26�

and substitution of the expression (6.19) of B shows that this work is equal to
ÿ �w�T ;A�. In this way, we have proved that it is possible to recover the work
�w�T ;A� from the state �T ;A�. Recalling the characterization (5.29) of w0 as
the maximum recoverable work, we conclude that w0�T ;A�3 �w�T ;A�, for all
states �T ;A�, and therefore w0 3 �w. The equality w0 � �w then follows from
the fact that w0 is the minimal element of F: (
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We now prove that the function �wMV de®ned by equation (5.40) is not a
function of state when the relaxation function is of exponential type. Con-
sider the history

H�s� :� A f �s�; �6:27�

where A4O is a ®xed deformation and f is the piecewise constant function
de®ned over �0;1� by

f �s� :�
1 for a < s 2 b;
ÿ1 for b < s 2 c;
0 everywhere else,

8<: �6:28�

with 0 < a < b < c. It is convenient to express the stress in the form

T �r� � G1 Af �r� ÿ �G0

Z1
r

eÿ�sÿr�BA df �s�; �6:29�

obtained from equation (6.2) by integration by parts. In particular,

T �c�� � O;

T �b�� � G1A� �G0eÿ�cÿb�BA;

T �a�� � ÿG1A� �G0eÿ�cÿa�BAÿ 2 �G0eÿ�bÿa�BA;

T �0�� � �G0eÿaBAÿ 2 �G0eÿbBA� �G0eÿcBA:

�6:30�

The last equation shows that, if a, b and c satisfy

eÿ�cÿa�B ÿ 2eÿ�bÿa�B � 1 � 0; �6:31�
then T �0�� � O: Because H�0�� � O, the history-deformation pair �H ;O�
with H de®ned by equations (6.27), (6.28) and (6.31) represents the natural
state, just as done by the pair �Oy;O�: We wish to show that �wMV �H ;O� is
di�erent from �wMV �Oy;O�. Because the ®rst is equal to �w�H ;O� and the
second is zero, it is su�cient to show that �w�H ;O� is not identically zero. The
history H being piecewise constant, the formulae (4.3) and (5.11) yield

�w�H ;O� � 1
2�T �c�� � T �c���A� 1

2�T �b�� � T �b����ÿ2A� � 1
2�T �a�� � T �a���A

� T �c�� � Aÿ 2T �b�� � A� T �a�� � A� 3G0A � A; �6:32�
and substitution of the expressions (6.30) for the stresses yields

�w�H ;O� � �G0�ÿ2eÿ�cÿb�B � eÿ�cÿa�B ÿ 2eÿ�bÿa�B � 3 I�A � A: �6:33�
Finally, using the condition (6.31) we get

�w�H ;O� � 2 �G0�Iÿ eÿ�cÿb�B�A � A: �6:34�
That �w�H ;O� is not identically zero follows from the fact that the right-hand
side is a continuous function of �cÿ b�, which takes the value zero when
�cÿ b� � 0 and approaches the positive value 2 �G0A � A when �cÿ b� !
�1. (

G. DEL PIERO & L. DESERI28



6.6. Remark. A similar argument shows that the free energy of single-integral
type proposed by GURTIN & HRUSA [20]:

�wGÿ�H ;A� :� 1

2
G0A � A� A �

Z�1
0

_G�s�H�s� dsÿ 1

2

Z�1
0

_G�s�H�s� � H�s� ds �6:35�

is not a free energy according to De®nition 5.2 if the relaxation function is of
exponential type. Indeed, for A � O and for the history H de®ned by equa-
tion (6.27) with A replaced by B we get

�wGH�H ;O� � ÿ1
2

Z�1
0

_G�s�B � B f 2�s� ds � ÿ1
2

Zc

a

_G�s�B � B ds

� 1
2 � �G�a� ÿ �G�c��B � B; �6:36�

and the last term is not identically zero.

7. Completely monotonic relaxation functions

We recall that a relaxation function G is completely monotonic if it has
derivatives G�p� of every order p and if

�ÿ1�pG�p��s�3O �7:1�
for all s 3 0 and for all p 2 N. It has been proved in [12, Sec. 6] that G is
completely monotonic if and only if its symmetric part G s admits the rep-
resentation

G s�s� �
Z�1
0

eÿxs dK�x�; �7:2�

with K : �0;�1� ! LinSym; symmetric, bounded and non-decreasing with
respect to the order relation (1.7).

The problem that we consider here is the characterization of the state
space for completely monotonic relaxation functions. As we shall see, there
are di�erent characterizations for di�erent subclasses of such functions. In
particular, we are interested in determining a subclass for which states can be
identi®ed with history-deformation pairs. We know that this occurs whenever
the solution set C0 of equation (1.4) reduces to the null history. Let us take,
then, a history H 2 C0. The equation (1.4), multiplied by H�t� and integrated
over �0;1�, yields Z�1

0

Z�1
0

_G�t � s�H�s� � H�t� ds dt � 0: �7:3�

In this equation, G can be replaced by its symmetric part, and we can use the
representation (7.2) to obtain
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Z�1
0

dK�x��x1=2Ĥ�x�� � �x1=2Ĥ�x�� � 0; �7:4�

where Ĥ�x� is the Laplace integral

Ĥ�x� :�
Z�1
0

eÿxsH�s� ds; �7:5�

with x real and non-negative. That K is non-decreasing implies that the
integrand in equation (7.4) vanishes at almost every x. In particular,
Ĥ�x� � O at all those x at which K is continuous and has a right derivative
which is positive-de®nite, and at all those x at which K has a jump and
K�x�� > K�xÿ�. When either of these conditions is satis®ed, we say that K is
strictly increasing at x. Thus, we may state

7.1. Proposition. Let H 2 C0. Then Ĥ�x� � O at all those x at which K is
strictly increasing.

It is known that if Ĥ�x� � O for all x > 0, then H is the null history Oy,
and, therefore, that C0 � fOyg: But there are weaker conditions on Ĥ leading
to the same conclusion. We begin with the following result [26, Sec 2.6].

7.2 Proposition. If H 2 C0 and if Ĥ�n� � O for n � 1; 2; . . . ; then H � Oy.

Proof. The proof is based on the change of variable r � eÿs, which trans-
forms equation (7.5) into

Ĥ�x� �
Z1
0

rxÿ1K�r� dr; �7:6�

with K�r� � H�ln�rÿ1��. Assume that there is a sequence n 7! xn of points at
which Ĥ�xn� � O: If we consider the linear combination

PN �r� :�
XN

n�1
Pnrxnÿ1 �7:7�

with coe�cients Pn in Sym, we get

Z1
0

PN �r� � K�r� dr � 0; �7:8�

and therefore, by the Cauchy-Schwarz inequality,
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kKk2L2 :�
Z1
0

jK�r�j2 dr �
Z1
0

K�r� � �K�r� ÿ PN �r�� dr 2 kKkL2kK ÿ PNkL2 :

�7:9�
Note that K is bounded, and therefore square integrable, because K and H
take the same values and H is bounded. We may then divide by the L2-norm
of K, to obtain

kKkL2 2 kK ÿ PNkL2 �7:10�
for every PN of the type (7.7).

If xn � n as stated in the proposition, then the functions PN are the
polynomials. By the Weierstrass approximation theorem, the polynomials are
dense in C0 endowed with the supremum norm, and therefore they are dense
in L2. Consequently, for every e > 0 there is a polynomial PN such that the
right-hand side of inequality (7.10) is less than e. This implies that kKkL2 � 0,
i.e., that K�r� � O almost everywhere.

We now observe that K�r� � H� f �r��, with f continuous and decreasing
and H continuous from the left. Then K is continuous from the right, and a
function which vanishes almost everywhere and is continuous from the right
is identically zero. Because H takes the same values as K, we conclude that H
is identically zero as well. (

It is clear from the preceding proof that the conclusion H � Oy remains
valid if the sequence n � 1; 2; . . . is replaced by any other sequence xn with
the property that the linear combinations PN are dense in C0. The theorem of
MUÈ NTZ [7, p. 100] provides a class of sequences with this property. They are
the sequences n 7! xn which satisfy the two conditions

lim
n!�1xn � �1;

X1
n�1

xÿ1n � �1: �7:11�

It was recognized later (see [1]) that the unboundedness of the sequence is not
essential. Thus, we can state the following fairly general conclusion.

7.3. Proposition. For a completely monotonic relaxation function, the states
can be identi®ed with the history-deformation pairs if the function K de®ned by
equation (7.2) is strictly increasing at a countable set n 7! xn of points, satis-
fying the condition (7.11).

In particular, the identi®cation of states with history-deformation pairs is
possible whenever K is strictly increasing on a subset of �0;�1� with positive
measure. However, one cannot expect that this identi®cation can be extended
to all completely monotonic relaxation functions. Indeed, there are com-
pletely monotonic relaxation functions which are of exponential type, and it
has been shown in the preceding section that for such functions the states
cannot be identi®ed with history-deformation pairs.
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The question arises of which functions of exponential type are completely
monotonic. In one dimension, the answer is easy: An exponential function is
completely monotonic if and only if its exponent is negative. In higher di-
mensions, the de®nition (7.1) of complete monotonicity involves only the
symmetric part of G, and it is not so immediate to relate it with the de®nition
(6.1), which involves the whole function. The result which we present here is
obtained with the aid of the �S�N � decomposition of linear operators on a
real ®nite-dimensional vector space [21, Sec. 6.2]. According to this decom-
position, any B 2 LinSym admits the representation

B �
Xl

h�1
kh Eh �N: �7:12�

where kh � ah � ibh are the eigenvalues of B;E h are projections of LinSym
such that

E hE k � dhkE
h;

Xl

h�1
E h � I; �7:13�

and N is a nilpotent operator, i.e., an element of LinSym such that N q � O
for some q 2 N. Moreover, N commutes with every E h:

NE h � E hN 8 h 2 f1; . . . :lg: �7:14�
7.4. Proposition. Let G be a relaxation function of exponential type with ex-
ponent B. Then G is completely monotonic if and only if all eigenvalues of B are
real, all tensors E h appearing in the decomposition (7.12) of B satisfy

�G0E
h 3O 8h 2 f1; . . . ; lg: �7:15�

and the tensor N appearing in the same decomposition (7.12) is zero.

Proof. The properties (7.13) of the projections E h and the de®nition of an
exponential tensor function4 imply that

exp

�Xl
h�1

khE
h
�
�
Xl
h�1

ekh E h: �7:16�

Thus, by using the decomposition (7.12) of B, equation (6.1) can be rewritten
in the form

�G�s� �
Xl

h�1
eÿskh �G0 eÿsNE h: �7:17�

Assume that G is completely monotonic. Then �G is positive-semide®nite, and
this implies that Xl

h�1
eÿskh �G0eÿsNE hE pA � E pA 3O �7:18�

4 See, e.g., [12, Eq. 7.2].
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for all A 2 Sym and for all p 2 f1; . . . lg; and from the identity E hE p � dhpE
p

we conclude that

eÿskp�E p�T �G0eÿsNE p 3O: �7:19�
Because N q � O; eÿsN is a polynomial of order �qÿ 1�

eÿsN �
Xqÿ1
r�0

sr

r!
�ÿN�r; �7:20�

and therefore the inequality (7.19) can be veri®ed for every s > 0 only if kp is
real. Thus, we have proved that G completely monotonic implies that all
eigenvalues of B are real.

Now the coe�cient eÿskp can be dropped form inequality (7.19); what
remains is a polynomial of order �qÿ 1�, whose term of highest order must be
positive-semide®nite. Then, if we set M :� �ÿN �qÿ1 and use the com-
mutativity property (7.14), we get

�E p�T �G0E
pM3O 8 p 2 f1; . . . lg: �7:21�

We claim that M � O. Indeed, if M4O, there is a C 2 Sym such that
MC4O, and the fact that

Pl
p�1 E

pMC �MC4O tells us that there must be
some p for which E pMC4O. For one such p, the inequality (7.21) yields

�G0�E pMA� E pMB� � �E pA� E pB�3 0 �7:22�
for all A;B 2 Sym. In particular, if we take B �MC, we haveMB �M 2C � O
because M 2 � N 2qÿ2 � O except for the trivial case q � 1. The inequality
(7.22) then reduces to

�G0E
pMA � �E pA� E pMC�3 0 �7:23�

for all A 2 Sym, and this implies

�G0E
pMA � E pMC � 0 �7:24�

for all A 2 Sym. It is now su�cient to take A � C to get a contradiction,
because E pMC4O and �G0 is positive-de®nite. Thus, we have proved that, if
�G is positive-semide®nite, then N q � O implies N qÿ1 � O. By induction, we
may conclude that N � O. The equation (7.17) then takes the form

�G�s� �
Xl

h�1
eÿsah �G0E

h; �7:25�

with ah the real eigenvalues of B. Now assume that G is completely mono-
tonic. In view of the de®nition (7.1), this is equivalent to assuming thatXl

h�1
ap

h eÿsah �G0E
h 3O �7:26�

for all s 3 0 and for all p 2 N. In particular, if we set s � 0 and recall that the
vectors �ap

1; a
p
2; . . . ; ap

l �; p 2 f0; 1; . . . lÿ 1g are linearly independent, we ob-
tain the inequalities (7.15). This completes the proof that a function of ex-
ponential type that is completely monotonic satis®es the conditions stated in
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the proposition. That the same conditions are su�cient for complete
monotonicity is trivially veri®ed. (

The formula (7.25) tells us that a completely monotonic relaxation
function of exponential type is a linear combination of scalar exponentials,
whose coe�cients �G0E

h are positive semide®nite. Moreover, if we take the
eigenvalues of B with the ordering 0 < a1 < a2 < � � � < al and if we consider
the piecewise constant function K de®ned by

K�x� :�
Xj

h�1
�G0E

h for aj < x < aj�1; j 2 f1; . . . ; lg; �7:27�

we see that the formula (7.25) can be written in the form

�G�s� �
Z�1
0

eÿxs dK�x�; �7:28�

and the representation (7.2) of G s is obtained after replacing K by its sym-
metric part K s. Because it is constant except at a ®nite number of jump
points, K s does not satisfy the condition, required by Proposition 7.3, of
being strictly increasing at a countable set of points. This agrees with the
conclusion obtained in Section 6 that for relaxation functions of exponential
type the states cannot be identi®ed with history-deformation pairs.
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