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Abstract

Let¢ : R" — [0, +oo[ be a given positively one-homogeneous convex func-
tion, and letW, := {¢ < 1}. Pursuing our interest in motion by crystalline
mean curvature in three dimensions, we introduce and study the Rla@&")
of “smooth” boundaries in the relative geometry induced by the ambient Banach
spacgR", ¢). It can be seen that, even whiy, is a polytopeR 4 (R") cannot be
reduced to the class of polyhedral boundaries (locally resemblifig). Curved
portions must be necessarily included and this fact (as well as the nonsmoothness
of dW;) is the source of several technical difficulties related to the geometry of
Lipschitz manifolds. Given a boundadf in the classR4(R"), we rigorously
compute the first variation of the corresponding anisotropic perimeter, which leads
to a variational problem on vector fields definedad. It turns out that the min-
imizers have a uniquely determined (intrinsic) tangential divergenceFnVe
define such a divergence to be thenean curvature, of 9 E; the functionk is
expected to be the initial velocity @fE, whenevel E is considered as the initial
datum for the corresponding anisotropic mean curvature flow. We proveghist
bounded ord E and that its sublevel sets are characterized through a variational
inequality.

1. Introduction

Motion by crystalline mean curvature describes the interface evolution obtained
as gradient flow of a surface energy functiofglhaving a crystalline density with
respect to the usual perimeter. This means that, with 9 E () denoting the
evolving front, the flow tries to reduce as fast as possible the valug, @i (7)),
where

Py(E(1)) :=/ d°(WEDy g1
AE (1)
Here vE® is the outward Euclidean unit normal & (r) and ¢° (the surface
tension) is a positively one-homogeneous function suchW@t: {¢p° < 1} is
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a convexpolytope of R” containing the origin in its interior. The term crystalline
refers to the fact that the convex boy; is faceted.

This evolution provides a simplified model for describing several phenomena
in material science and crystal growth, see for instance [12,13,28,23,32]. It also
represents an extreme example of anisotropic geometric flow, being thejset

neither strictly convex nor of clagg?. The mathematical analysis of this problem
began with the works dfayrLor [28,27,30,31] and has received a certain amount
of attention in the last few years[2,11, 1,20, 17, 33]. In comparison with more famil-
iar geometric evolutions (such as motion by mean curvature) it presents additional
difficulties, due to the lack of regularity both of the involved operators and of the
flowing interfaces. These obstructions, which at a first sight are of technical nature,
reveal that the study of the geometric properties of hypersurfaces in a finite dimen-
sional Banach space endowed with a crystalline metric cannot easily be reduced to
more regular situations.

The simplest (even if not realistic) model isin= 2 space dimensions, when
the interface is a closed curve. In this case several results have been proved: in
particular, the class of curves which are admissible as “regular” initial data for the
evolution is characterized. The structure of a curve in this class is the following:
if we denote byW, the Wulff shape (that iV, := {¢ < 1}, where¢ is the
dual function of¢?), a closed Lipschitz curve is admissible if it is a sequence of
segments (with a precise order) which are parallel to some edg¢/pt= {¢ = 1}
and of segments or arcs which correspond to verticé¥\f [31, 25,21, 26,22, 18,
19,4]. In addition, a local-in-time existence theorem for “regular” evolutions holds:
each segment corresponding to an edg@)of, translates parallel to itself (with
a suitable velocity), while the remaining segments or arcs have zero velocity. It
is important to remark that the admissibility properties of the curve, in relation
with the geometry obW,, remain unchanged during this evolution. Finally, a
comparison principle holds, and therefore the flow is uniquely determined [19].

The physical case is however in three space dimensions, where the situation is
much more complicated. In this case, one of the crucial mathematical problems,
which to the best of our knowledge is still open, is the short-time existence of
a “smooth” flow. Some examples can enlighten the difficulties related to such a
result. In [6] two explicit crystalline evolutions of surfaces are constructed. In both
the examples, the initial surfaces are polyhedral and their facets correspond to
facets of the Wulff shape. The first example is completely rigorous, and shows that,
at the initial time of the evolution, some facet can subdivide into smaller facets
(facet-breaking phenomenon) and therefore new facets may appear. By means of
a comparison argument [5], one can also show that the computed evolution is
the unique crystalline evolution of the given initial surface. The second example,
which is not completely rigorous, butis confirmed by several numerical simulations
performed with different methods [24, 29] suggests that some facets can instantly
curve. This unexpected phenomenon has some interesting consequences, which
influence the approach to the crystalline evolution problem in three dimensions.
For instance, it shows that the preferred set of directions, corresponding to the
orientation of the facets @V, is not preserved during the evolution: indeed, new
directions outside the preferred set may appear. In addition, one infers that the class
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of polyhedral surfaces (compatible with the geometryd ;) is too restricted

a class when one is looking for an existence result for crystalline evolutions. We
remark that, in any case, the evolutions of the two examples should be regarded as
“regular” crystalline evolutions. Summing up, in order to study crystalline motion

by mean curvature, it seems that some preliminary steps are necessary. Afirst step is
to have a reasonable definition of the class of crystalline “regular” surfaces. Given
a setE in this class, the next step is to understand which is the initial velocity field

onJ E, in particular which are its singularities (which could be interpreted as the
breaking regions). Finally, it is natural to investigate whether the class of regular
surfaces is stable or not under motion by crystalline mean curvature.

The above arguments are the motivations for studyingtiteonary problem
considered in the present paper. We first introduce the ®ggR") of compact
admissible interfaces, called Lipschitzregular sets, which should be considered
as the analogue of smooth boundaries in the case of crystalline geometry. The
boundaryd E of a Lipschitz¢-regular setE may be polyhedral (with a structure
locally resembling the structure @#V;) but may also have curved portions. In
addition, we impose the existence of a family of normal convex cones K (x)

(with varying dimensions, in connection with the geometry of the Wulff shape)
which contains aontinuous section ond E. The precise requirement is thag
admits a vector fieldy : dE — R" which is aLipschitz selection in this family

of cones, i.e.ny € LID(OE; R") andng(x) € K(x) foranyx € 9E. If aWy
were smooth and strictly convex, the vector fiejwould be uniquely determined
(since each cone reduces to a vector at any poidtFfand is usually called the
Cahn-Hoffman vector field. A similar class (the so-calfedegular sets) has been
introduced in [5, 6]. Such a class may be, in principle, larger Ra@R"), since in
that case the selectian is required only to be bounded with bounded divergence.
Even if the local existence theorem is still missing, the clasg-oégular sets
supports a uniqueness result, which is obtained as a by-product of an Allen-Cahn
type approximation argument [5].

Several technical reasons in the present paper impose the requirement that the
selectiom, be Lipschitz: one of these is related to the weak definition of a suitable
divergence operator (see (1)) on a Lipschitz manifold (Remark 4.2). We stress once
again that the definition of Lipschitg-regularity is a regularity property in the
relative sense of the geometry induced®dhby the Finsler metrig. For instance,
it is easy to see that, im = 2 space dimensions, if we choog€&) := |&1] + |&2],
the Euclidean balB1(0) := {x € R? : |x| < 1} does not admit any vector field
n: dB1(0) — R? such thaiB1(0), n) becomes Lipschitg-regular.

Fix now a Lipschitzp-regular setE, ny) € Ry (R"). We introduce a variational
problem on vector fields defined @, whose solution gives the definition ¢f
mean curvature of E and is expected to describe the initial velocity field of the
evolution problem having E as initial datum. More precisely, we propose to study
the following minimum problem:

inf {/ (diVg nye N2 ¢°0E)dH"™ N € HOE; R")} . (1)
oE
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The symbolH (9 E; R") denotes the class of all vector fields € L2(JE; R")

such that diy », N € L2(3E) and which satisfy the constrait(x) € K (x) for
#H"~1-almost everyr € JE. We refer to Section 3 for the precise definition of the
tangential divergence operator appearing in (1), which must be intended in a weak
sense and in the relative geometry induced Brby ¢. Any solution of problem (1)

has the same divergenceNfyin denotes a solution of (1), we are therefore led in a
natural way to define th¢-mean curvaturey of 0 £ asky := divy ;.- Nmin. OUr
conjecture is that, represents the effective velocity of the initial gefrecall that

there is uniqueness of the evolution). To substantiate this conjecture we consider
the following arguments. It is well known (see for instance [10]) that the solution
of a parabolic partial differential inclusion of the form € Au (whereA is a
maximal monotone multivalued operator) selects, at each time, a particular element
(the so-called canonical element) which minimi#es:||; 2, i.e.,u actually solves

u; = Ayu, whereA,, x realizes the minimum in m'{r11y||§2 1y € Ax}. This idea

has been applied to crystalline evolutions of graph&byui & Y. Gica in [16].

It is not difficult to see [24] that the analogue of this minimum property in our
geometric framework is given by (1).

Another remarkable argument which leads us to consider problem (1) comes
from the expression of the first variation of the functio®gl This computation
shows that the intrinsic perimetéi; is reduced with maximal speed when the
variation is performed along the fieldky Nmin.

If x4 gives really the initial velocity, its jump set should correspond to the
“fractures” along which new facets appear in the subsequent evolution; moreover,
the regions whergy is continuous but not constant should represent the regions of
d E where curving is expected. This is in accordance with the examples computed
in [6].

The plan of the paper is the following. In Section 2 we give some notation, we
recall the main properties of the duality mappings and we define what we mean
by a facet ofdE. In Section 3 we introduce the cla®gs (R") of Lipschitz ¢-
regular sets (Definition 3.1). Relations between different definitions-dfgular
sets are briefly illustrated in Remark 3.2. Giv@n ng) € Ry(R"), one of the first
technical difficulties is that we need to extend Lipschitz vector fields, originally
defined o E, in an open neighbourhood 6f, in a Lipschitz way. This is the
content of Lemma 3.3. The properties of the level sets of the intrinsic oriented
distance function frord E and the connection witly, are considered in Lemma 3.4.
These preliminary results are used to define the tangential divergence of a vector
field defined o E with respect tap (Definition 4.1), and to exploit some of its
properties. The weak operator ¢ftangential divergence is denoted by gy, ..

In principle, it may depend on the choice of the fielgl but it turns out that, for

all vector fields of interest in this paper, this is not the case. It must be noted that,
on flat portions of E, this divergence coincides with the usual (weak) tangential
divergence diy. In Proposition 4.6 and Corollary 4.7 we prove that, even if for the
same seE there are infinitely many possible choices of the Cahn-Hoffman vector
field ng so that(E, ny) becomes Lipschitg-regular, the definition of diy,,, . as
operator o-normal vector fields is intrinsic, i.e., does not depend on the choice of
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ng. In Section 5 we compute the first variation of the functiaRglthus relating the
minimum problem (1) with motion by crystalline mean curvature. The first variation
of P, turns out also to be strictly related to the operatogdiy. In Section 6 we

are concerned with a minimum problem of the form (1), with an additional term
depending on a given functiog. In the evolution probleng plays the ole of

the forcing term. In Lemma 6.1 we prove the existence of minimizers; it is easily
seen that theig-tangential divergence is uniquely determined. The corresponding
Euler-Lagrange inequality is computed in (6.3). We denotéhy the tangential
divergence of a minimizerdgin reduces tacy in the caseg = 0). The crucial
result proved in Theorem 6.5 is a reformulation of the Euler-Lagrange inequality
for dmin, by means of an inequality on each of its level sets. A direct consequence
of Theorem 6.5 is thaiin is a bounded function (Theorem 6.7). In particular,
Lipschitz¢-regular sets have boundeéemean curvature.

In a forthcoming paper [7] we continue the analysis on the structure of Lipschitz
¢-regular sets and, using the resujte L>(9E), we prove thak, has bounded
variation on suitable facetg. We also investigate further properties of the level
sets ofkg ON F, in connection with the geometry of the facetlof; parallel toF.

2. Notation

In the following we denote by the standard Euclidean scalar produciRifh
and by| - | the Euclidean norm oR", n = 2. If p > 0 andx € R", we set
B,(x) :={yeR": |y —x| < p}.

Given two vectors:, b € R" we leta ® b be the matrix whose entries are
(a®Db);j = a;b;. If Misa(n x n) matrix, byMa (or aM) we denote the vector of
component§Ma); = M;ja; (resp.,(aM); = Mj;a;), and ttM is the trace ofM.
Note thatu ® b ¢ = ab - ¢ for anyc € R". With the notatiorA € B we mean that
the setA is compactly contained iB.

The symboi* denotes thé-dimensional Hausdorff measurel, k € [0, n].

If E c R", we denote by & the characteristic function of and bydE the
topological boundary oF. By Lip(dE) (or Lip(dE; R")) we denote the class of
all Lipschitz functions (resp., vector fields) defineda.

We say thaf is Lipschitz if £ is open and, for any € 9 E, there exist > 0
such thatB,(x) N dE is the graph of a Lipschitz functiofi and B, (x) N E is the
subgraph off (with respect to a suitable orthogonal coordinate systeny. i
Lipschitz, forH"~1-almost everyx € dE we denote by (x) the outward unit
Euclidean normal td E atx, and byT,d E the tangent hyperplane & atx.

Finser metrics on R”. We indicate byp : R" — [0, +oo[ a convex function
satisfying the properties

P& = Al ¢(a§) = ap(§), §eR", az0, 2

for a suitable constamt € 10, +o0o[. The functionp? : R” — [0, +oo[ is defined
as

¢°(E) :=sup{s*-& : ¢(&) =1},
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and is the dual op; ¢ and¢? are sometimes called Finsler metricsRh We set
Wy =" eR" 1 ¢°(€") = 1}, Wy =16 eR" : ¢(§) = 1}.

CIearIyW; andW, are compact convex sets whose interior parts contain the origin.
By a facet ofdWW, (or of awg) we always mean & — 1)-dimensional facet.

We say that is crystalline iV, is a convex polytope. i is crystalline, then
alsoWy is a convex polytope. The sw;j is sometimes called the Frank diagram
andW, the Wulff shape.

Duality mappings. By T and7° we denote the possibly multivalued mappings
defined by
TE):={t"eR" :£" £ =¢(¢)° = (¢°(¢")%. EeR", 3)
TO(E") :=(§ €R" 1§ - & = (@°(EN* =9(®)?), & eR",
which are called the duality mappings. One can check that

T(E)=3D (&) =¢ED (), T@E) =aT(E), EcR".a20,

and similarly forT? andg?, whereD~ denotes the subdifferential. Moreover7°
are maximal monotone operatofs,(or 7°) takesoW, (resp.,awg) onto awg
(resp., ontdWs).

Notice that, if¢ € 9W,, T (¢) is the intersection of the closed outward normal
cone tod Wy with 9Wy.

The ¢-distance function. Given a nonempty sef C R" andx € R”, we set

disty(x, E) := inf ¢(x — y), disty(E, x) = inf ¢(y — x),
yeE yeE

dg (x) := disty (x, E) — disty(R" \ E, x).

The functiorﬂf is therefore the oriented intrinsic distance function negative inside
E; note that, since in generals not symmetric,—dq’f does not necessarily coincide

with a%\E

PR
At each pointx wheredq,‘)g is differentiable, we hav§’d¢‘)E (x) € aIW?, hence
¢°(Vdj) =1  atx; (4)
vE ()

we setvq’f x) = qu’f (x) = As a consequence of (3), &'~ 1-almost

everyx € dE we have

¢ WEM)’

v () p=1 VpeT W) ®)
If E is Lipschitz we define

Norg (IE; R"):={N: JE — R": N(x) € T°(vF (x)) for H"L-a.e.x € 9E},
Lip, 4(3E; R") := Lip(0E; R") N Norg(JE; R").
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Note that if ¥ € Norg (dE; R"), theng(N(x)) = 1 for H"1-almost everyx e
dE. Moreover, ifN1, N2 € Norg(dE; R"), thenNy — N> is tangent td E, since
Nl-vleZNz-vg.

We letd Py be the measure supported @B with densityg? (vE) with respect
toH" 1 ie.,

dPy(B) = f #°(wE)dH"t, B Borelset B C JE.
B

If E is Lipschitz andyr € Lip(dE) we denote byV. ¢ the Euclidean tangential
gradient ofyr on 9 E, which is defined at{”~!-almost every point o8 E. If v €
Lip(0E; R") we denote by diyv the Euclidean tangential divergencewfwhich
is defined (at{”1-almost every point 0§ E).

Inthe following, whenever there is no risk of confusion, we often do not indicate

the dependence dfof the unitnormals * andv, i.e., we seb := v, vy := vf.

3. Lipschitz ¢-regular sets

Definition 3.1. Let E C R” be a Lipschitz set with compact boundary. We say that
E' is Lipschitz ¢-regular if there exists a vector field, € Lip, ,(0E; R"). We
denote byR4(R") the class of all Lipschitp-regular sets.

With a little abuse of notation, we shall sometimes w(iig ng) € Ry (R"),
and we shall say thaiZ, ny) is Lipschitzg-regular.

Observe that if E, ng) is Lipschitz¢-regular, therp (ng) = 1 everywhere on
dE. The canonical example of Lipschigeregular set is given by, x).

Remark 3.2. In [6] is introduced the class af-regular sets, whose definition is
different from Definition 3.1, sincey is required to belong t&. > (9 E; R") and
to admit an extension on an open set contairfiigywhich is bounded and has
bounded divergence. In view of Lemmas 3.4 and 4.5 below, it followsR&R")

is contained in the class @fregular sets. One can also prove thap, ii§ crystalline
andE is a¢-regular polyhedron, thef is Lipschitz¢-regular.

The Lipschitz regularity requirement arp, in Definition 3.1 allows to define
the ¢-tangential divergence d;iVn¢,r on the elements of NgKd E; R"); see Defi-
nition 4.1. Assuming less regularity ag should require a non-trivial modification
of Definition 4.1, see Remark 4.2.

The following lemma is well known in the smooth case. We need its version
in our nonsmooth case in order to prove Corollary 4.7 and to compute the first
variation of P, (see Section 5).

Lemma3.3.Let E C R” be a Lipschitz set with compact boundary. Let n €
Lip(0E; R"™) be a vector field with the property that there is a constant ¢ > 0

verifying
) -vE@)| =c  forH" ! -aex € IE. (6)

Thenthereexiste > Oandanopenset U (3 E) containing d E suchthat thefollowing
properties hold.
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(i) Themap F, : 0E x 1 —e¢,e[ — U(IE) defined by F,,(x, 1) :== x +tn(x) is
bi-Lipschitz.

(i) St Gy = Fn_l, Gp() == (my(),1;(:)) € dE x 1 —¢,e[onU(IE). Let
z € U(OE). If nisdifferentiable at 7, (z) and there exists Ty, ;) I E, then G,
isdifferentiable at z.

Proof. Letxg € 0E. Up to arotation of coordinates, a neighbourhoodgih o £
can be written ags, f(s)), fors € @ € R*landf : @ — Ra Lipschitz function.
Write n(s, £(s)) = (s, £(s)), n2(s, f(s)) € R"1 x R, and setF (s, ) :=
Fy(x, 1) = (s + tnals, f(s)), f(s) + tn2(s, f(s)). We want to apply the Implicit
Function Theorem in the Lipschitz case to the functiqrsee [14]. In order to fulfil
allthe assumptions, we need to prove thafi(s, ,)} is a sequence of points in the
domain of F converging to(s, r) asn — oo such thatF is differentiable at each
(sn, ;) and there is the limid/ of VF(sn, t,), thenM is nonsingular. Observe that
= ld+ O(t,) n1(Sn, f(sn))
VEn tn) = ( VF () + O n2sas f5) )

Using (6) we can check thzjxﬂet(vf(sn, )| = ¢/2, foranyn € Nande > 0
small enough, and therefoé is nonsingular. By [14] it follows thaf is locally
invertible with a Lipschitz invers&. Let us verify thatF, (henceF) is globally
injective fore > 0 small enough. Assume by contradiction thg{(x, 7) = x +
tx) =y +rn(y) = Fy(y,r) forsomex,y € 9E andt,r € ]—¢,¢[, (x,1) #
(., r). Then|x — y| < 2¢||nllL~E:R"), Which contradicts the local invertibility of
F,. Using the compactness 8f, property (i) follows.

Let us prove (ii). Notice that iy is differentiable atr,(z) and there exists
the tangent hyperplane & atm,(z) (i.e., f is dlfferenuable at the point a2
corresponding ta, (2)), thenF is differentiable aG (z). Differentiating the identity
F(G) = Id we get thaiG is differentiable at the point correspondingztowhich
implies thatG , is differentiable at.

Lemma34. Let E € Ry(R") and let n € Lip,, ,(0E; R"). Let e > 0 be given by
Lemma 3.3. Thenforanyt € ] —¢,¢[,

dj(x +mx) =1, xedE. 7
In particular,
{ze]R":df(z)zt}:{x+tn(x):xeaE}, te ]l—e ¢l (8)
Moreover,
Vd§ (x +1m(x)) = vp(x),  Vdg (x +1m(x)) - n(x) =1, ©)
foranyt € ] — e, e[ and for #"~1-almost every x € JE. Finaly, if , is as

in (ii) of Lemma 3.3, and if we define n°(z) = n(m,(2)) for z € U(IE), then
({z e UQE) :df(z) = t}, n°) isLipschitz ¢-regular, for anyr € ] — ¢, ¢[.
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Proof. Let us consider the cage> 0, since the case < 0 is similar. Since
df (x +1n(x)) £ ¢(x +1tn(x) —x) = ¢, in order to prove (7) we need to show that
dq’f(x +1n(x)) 2 t. Setfor simplicityr := m,,, and letU (9 E) be as in Lemma 3.3.
Fixz € U(OE) N (R"\ E) such that there exis&; ;)0 E andy is differentiable at
7(z) (hence the functiod;, is differentiable at (z), 0)). By (ii) of Lemma 3.3, it
follows thatz (-) := t,(-) is differentiable at. We need two intermediate steps.

Sep 1. Let us prove that
Vi(z) L Tr)9E.

Fix t € Tr(;)dE and set, := z + ¢, for ¢ € R small enough. From the relation
7(2) + t(2)n(7(z)) = z we get

(t(ze) — 1 @)™ (2) = t (2N (T (26)) — (2N (T (2))
+1(ze)[n((2)) — n( (2¢)) ] (10)
=2z —2+7(2) — 1(2e) + 1(2) [0 () — n(7w ()]

Taking the scalar product of both sides of (10) with( (z)), using (5) and
recalling thatz, — z is a tangent vector t8E atz(z), we obtain

1(ze) —1(2) = ((2) = 7(2¢)) - V(7 (2))

+1(2)[1(7(2) = (T (2e)] - vy (7 (2). (11)
The existence of;(;)d E and the fact that, — z is a tangent vector imply
(m(2) = 7(26)) - vy (T (2)) = 0(e), (12)

so that (11) becomes
1(ze) — 1(2) = 1(ze) [T (2) — N(T(26))] - v (1 (2)) + 0(e). (13)

Let us now prove that
[1((2)) = n((ze))] - vp (7 (2)) = o(e). (14)

Ifn=....0", vp = Vg, ..., ve,) aNdr = (71, ..., m,), SUMMIng over
repeated indices and using (12) we get

[n((2)) = 1@ )] ve (7 (2)) = V' (7 (2))vg; (0 (2)) (7 (2) — 7 (2¢)) +0e).
(15)

Recalling thatp ((r(z)))? = 1, we can check that

0= D" (p(N(w(2)))?) = vy (1 () V(7 (2)) (16)

and therefore (14) follows from (15).

We conclude, using (13) and (14) that,) — t1(z) = o(e). Recalling that
eVi(z) -t =1t(z¢) — t(z) + 0(e), we gete Vi (z) - T = o(g), which proves Step 1.
Sep 2. Let us prove that

Vi(z) = vy (7 (2)).
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From Step 1 it follows thaVz(z) = Avg(r(z)) for somexr € R. Preciselyr =
Vt(z)-n(m(z)). Differentiating with respect to the relatiorr (7 (z) +rn(w (z))) =
r, we geth = 1 and Step 2 is proved.

By Step 2 we deducg’ (Vi (z)) = 1, which implies
t(z2) — t(z1) < ¢(z2 — 21) foranyzi,z2 € UGE)N(R"\ E).  (17)

Takingzz := zandz1 € 9E such thatl(f(z) = ¢(z —z1), inequality (17) becomes

dy(2) 2 1(2) = 1(z1) = 1(2),

and (7) follows.

Equality (8) is a direct consequence of (7). Finally, the {see U(AE) :
df (z) = t}isthe image of E through a bi-Lipschitz map€ is a Lipschitz vector
field onU (E) andn®(z) = n(m(2)) € T° (g (7 (2))) = T°(vy(2)).

We conclude this section with a result which will be useful in the computation
of the first variation of the functionaP,. Let n < Lipw(aE; R"), let U(QE)
andm, be as in Lemma 3.3. Lel € Lip(dE) and definey¢ e Lip(U(QE)),
n¢ € LIp(UQE); R") asy®(z) := ¥ (my(2)), n°(2) := n(my(2)). Fort € R with
lt| < &, & > 0 small enough, define

FelipUBE) x 1—e e RY,  Fz0:=z+ty*@nk, (18)
and setF’ (-) := F (-, ¢). Finally, letE, := F'(E).
Lemma 3.5. Thereexistse > 0 suchthat for |¢| < ¢ thefollowing properties hold.
(P1) The set E; is Lipschitz continuous, and 0E; = {z : z = x + t{y (x)n(x), x €
IE).
(P2) For H"~1-almost every x € aE,thereexistsVdf’ (x + 19 (x)n(x)). We define
Vdy' (x + 19 (x)n(x))
IVdy! (x + 1 ()n(x))|

vr(x) = (19)

(P3) For H"1-almost every x € JE, there exists < £ (x)|1=0, and

d
im0 = —VEV@E) + 0F VEV@ OO WE A —ae ondE.

dt
(20)

(P4) For 1"~ 1-almost every x € JE, there existstheright derivative %W(ut (x))
at+ = 0, and there holds

d+¢"( (x)) d v (x) (21)
— Ve (X)))1=0 = X
a1 t [t=0 = TU(%(X))P dt Vr |t=0-

P5) g (x) Vi (x) = O for 7" 1-almost every x € JE.
¢
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Proof. The fieldyn does not verify property (6), sinag may vanish somewhere
ondE. However, writeryyn = —ng + (ng + tyn), whereng € Lipv,d,(aE; R™);
for |¢| small enough, both-ng andng + i1 satisfy property (6), and therefore
dE; is a bi-Lipschitz image ob E from Lemma 3.3. In addition, it is clear that
0E, = {x +ty(x)n(x): x € dE}.

Notice thatdq'f’ = d(f —t, and therefore, fol” ~1-almost every € dE, there
existsVdff (x) = Vd;;"(x) = vg(x), andvg(x) = Vdf(x + 1 (x)n(x)) by (9).
This proves (P2).

Let us prove (P3). The equali@f(z) = df’(f’(z)) forz € U(OE) yields, by
differentiation,

~ -1
Vdj (@) = Vdf @ (1d + 1V ) @) + o)

for almost every; € U(3E) (precisely for any; € U(dE) such thatvE(nn(z))
exists and such thatis differentiable atr,(z)). Therefore

V' (F'(2) = Vdj (2) — 1Vd§ @V (1) (@) + o).

Then (P3) follows by a direct computation and using the definition of
Property (P4) follows using (P3) and the properties of subdifferential of convex
functions, and (P5) follows by differentiating the equalify- n° = 1; see (16).

4. The ¢-tangential divergence

The definition of weakp-tangential divergence on a Lipschigzregular set
E with respect to a nonsmooth Finsler meigids quite involved. To justify our
definition we start from the smooth case, i.e., for strictly convex smgdtand
#°? and smooth set&. We recall from [8] and [3] that, in the smooth case,

/ tl’[(|d —ng & v¢)Vv] dPy = / v-vg divag dPg (22)
IE IE

foranyv € CL(U(JE); R"), whereU (3 E) is a suitable open neighbourhoodbdt
andng := T”(vf) onU (0E). We can check thatfttld —ngy ®vy) Vv] depends only
onthe values of ondE. If € CLUIE); R"), thent{(Id —ng ®vg)V(Yv)]| =
Ytr[(Id — ng ® vg) Vo] + [(Id — vy ® ng) V] - v (notice the switch of theale
of vy andngy). Therefore, from (22) we get

/ v tl’[(|d —ng ® U¢)Vv] dPy (23)
JIE
= Y v-vg divng dP¢—/ [(|d—\J¢ ®n¢)Vl//]-vdP¢. (24)
E

oFE

Formula (23) will be the starting point for our definition@ftangential divergence
inthe nonsmooth case. Let us introduceghimngential divergence for vector fields
v € L2(3E; R") as a bounded linear operator on ().



176 G. BELLETTINI, M. NovaGA & M. PAOLINI

Definition 4.1. Let (E, ng) € Ry(R") and letv e L2(3E; R"). We define the
function divg . v : LIp(dE) — R as follows: for any € Lip(dE) we set

(diVg ny.r v, W) ::/ Vv vy diveng d Py —/ [(1d — vy @ ny) VY] v dPy.
oE oE
(25)

Remark 4.2. Definition 4.1 cannot be easily adapted whéh ny) is a¢-regular
set in the sense of [6] (see Remark 3.2). For instance, if we assumegtlisit
only bounded, the definition of diws seems to require an integration by parts
formulainvolving the Euclidean mean curvatur@@f, which cannot be in principle
computed, sincéE is only Lipschitz continuous.

The following observations are immediate.

(i) If ¥ is extended out od E by a differentiable function/¢, then(ld — vy ®
ng)Vey = (Id — vy @ng) V¢ ondE, i.e., any Euclidean normal component
of the gradient ofi is killed in formula (25) by the operator ld vy ® ng.
This is a consequence of (5).

(i) The operator diy ., - v is a linear continuous map on L(PE).

(iii) In the smooth case, i.e., for strictly convex smogthand(¢°)2 and smooth
setsE, divg ,,-v = tr[(Id — ngy ® vg)Vu], for anyv € CLUDE); R").

The operator diy .- depends o and could depend, in general, op.

Definition 4.3. Let (E,ng) € Ryp(R") and letv € L?(JE; R"). We say that
div¢,,n¢,rv is independent of the choice o}, if, given n;; € Lipw(aE; R™), we
have

(div n,.rv, V) = (divd,’,,;,,v, v) Vi € LIp(AE).

When diy », v is independent of the choice af,, we simply set diy ;v :=
diV¢’n¢,tv.

If X € L2(3E; R") is tangent t® E andN € Norg (3 E; R™), it turns out that
divg n,. X and div, .- N are independent of the choicengf, see (A2) of Lemma
4.4 and Corollary 4.7.

Lemma4.4. Let (E, ng) € Ry (R™). The following assertions hold.

(A1) For any ¢ € Lip(dE) we have (divy n,.cng. ¥) = [, ¥ diveng d Pg.
(A2) Let X € L?(DE; R") betangent to d E. Then

(div¢’”¢,,X, v) = —f V- XdP¢ Vi € LIp(OE).
E
In particular, divg ,, . X isindependent of the choice of n.
(A3) Let X € L?(3E; R") betangent to d E. Then (divy . X, 1) = 0.
(A4) Let N1, N2 € Nory(dE; R™). Then (divg u,. - (N1 — N2), 1) = 0.
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Proof. If vis such thav - ng = 1, (25) becomes

(diV¢,n¢’f v, Y) = / W diVTnd) dP¢ — / Ve - (v — n¢) dP¢.
E E

Letting v = ng, assertion (A1) follows. Assertion (A2) is immediate, and (A3)
follows from (A2). Assertion (A4) follows from (A3), sinc¥; — N» € L%(3E; R")
is tangent td E.

A refinement of assertion (A1) of Lemma 4.4 is given in Proposition 4.6 below.
The following lemma, which follows from (P5) of Lemma 3.5, shows that for
anyn € Lip, 4(0E; R") the Euclidean tangential divergencerp€oincides with
the divergence of the extensigh of 7.

Lemma4.5. Let (E, ny) € Ry(R") andlet n Lipw(aE; R"). Let U(E) and
m, beasin Lemma 3.3, and set 1°(z) := n(m,(2)) for any z € U(dE). Then, for
H"1-almost every x € JE,

div.n(x) =div n°(x) =tr ((Id —ng(x) ® v¢(x)>Vne(x)) . (26)

The following proposition shows that the operatorydiy . coincides with the
operator div on vector fields of Lip ,(3E; R").

Proposition 4.6. Let (E, ng) € Ryp(R") andletn € Lipv_¢(8E; R™). Then

(diVg g1, ) :/ v div, ndPs ¥ € Lip(OE). (27)
E

In particular, divy ,, .7 isindependent of the choice of n.

Proof. Fix ¢ € Lip(dE), and write

/ Y div, ndP¢=[ Y dive ng dP¢+/ Y dive (n —ng)dPy.  (28)
IE oE oE

Set¢ :=n —ng. LetU(IE) andr := m, be as in Lemma 3.4, and sgt(z) :=
V(m(2), n°(z) = n(m(2)), ¢¢(2) = ¢(n(z)) for z € U(OE). Lete > O be
small enough. Recalling (4), the coarea formula for Lipschitz maps [15], the one-
homogeneity of° and (9), we have

/ vedivee dz = / yedive® ¢°(Vdy) dz
{—s<d£<s}

{—8<d‘f<8}
E

e _ vd} L
= / / yedive® ¢° — ) " (2) dt
—e J{af=1) [Vdy |

&
= / / Yedive® dPy dt.
—e J{dj =1}

(29)
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Recalling (8) we have

&€ &
/ / Yedive® dPy dt = / / Yedive® d Py dt (30)
—¢ {df:z} —& J{x+tn(x):x€dE}

= [ /aE Ve (x + m(x)dive e (x + tn(x))
P (w(x + tn(x))) dH" (x4 tn(x)) dt.
From (9) we havep®(v(x + 1n(x))) = ¢°(v(x)) for " 1-almost everyx €
dE. Moreovery¢(x + tn(x)) = y(x) by definition, andd#"1(x + tn(x)) =
dH"1(x) + O(r) by the area formula [15]. Finally
divee(x +tn(x)) = div g (x) + 0@). (31)
Indeed, letting; := x + tn(x), sincec?(z) = ¢¢(z — df(z)ne(z)), it follows that
VE(2) = VE4(z — df (n°(2)(1d — Vi (2) @ n°(2) — djj (2)V1° (2))
= V£e(x)(id — Vdj (x) ® n(x) — dj (2)Vn©(2)),

where the last equality follows from (9). Then (31) is a consequence of (26).
From (29), (30) and the above considerations, we then get

1
/ ¥ div ¢ dPy = lim —/ Yedive® dz. (32)
9E e—0 2¢ {—s<df<a}

Applying the Gauss-Green Theorem for fixed positiyge obtain

/ Yédive® dz = —/ ¢ -Vydz
{7e<df<a} {7s<d¢E<e}
+f wece . vé‘ d%n_l,
8{75<d(f<s}

wherev, is the Euclidean outward unit normal 8¢—¢ < d(f < el
Observe now that fok*~1-almostevery € d{—¢ < df < e}, ifz = x+1n(x)

for x € 9E, by (9) we haver®(z) - ve(z) = n(x) - vE(x) — ng(x) - vE(x) = 0.
Hence from (32),

1
wdivrgdp¢=—|im—/ wf.;fdzz—/ Veu - ¢ dPy,
IE e—0 28 J{_g<dE <g) IE
(33)

which gives

/ IﬁdivfndP¢=/ Iﬁdivf ng dP¢—/ Vflﬁ-(n—n(p) dP¢,
oE oE oE

which is (27).
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We can now prove that the operator gljy, . is independent of the choice of
ng on the whole of Nog(9E; R").

Corollary 4.7. Let (E,ng) € Re(R"). If N € Norg(3E; R"), it follows that
divg,n,.- N does not depend on the choice of n.

Proof. By (5) we haveN - vy = 1, hence fony € Lip(dE) formula (25) reduces
to

(div¢,n¢,t N, w> = / 1//‘ din ng dP¢ — f VTW . (N — n¢) de). (34)
¢ oF

Let nOWn € Lip, 4 (OE; R") and set :=ny — n . From (34) we deduce

(diV¢,n¢’TN — diV(p’n;’T N,y) = / ¥ dive ¢ dP¢ +/ Ve - ¢ dP¢. (35)
oE E

Sincen¢,,n; € Lipw(aE;R") we have that € Lip(dE; R") is tangent t® E,
hence from (A2) of Lemma 4.4 we get

(diV¢,11¢,rN - div(b,n(’;,r N,v¥) = /BE ¥ div, ¢ dP(P - <div¢,n¢,r{a ¥).

Recalling the definition of and applying Proposition 4.6, it follows that the right-
hand side of the above equality vanishes, and the assertion of the corollary follows.

5. Thefirst variation of the functional Py

In this section we compute the first variation of the functioRgl This com-
putation is quite delicate, because neither the integgéite) nor the manifold E
are smooth. A partial result in this direction can be found in [6].

Let (E, ng) € Rg(R"). The set{v € L2IE; R") : divg n,.c v € L2(QE)} is
nonempty and is a Hilbert space endowed with the norm

’ . ) 1/2
(||v||L2(3E;R") + ||dlv¢,n¢,‘f U”LZ(aE)) .
We define
H@E;R") := |N € Norg(OE; R") : divg . N € L2 DE)}.

Letv € Lip(0E; R"). We first compute the first variation of the functioral—
Py(E) along the fieldv. As in the smooth case;; does not change under (in-
finitesimal) tangential variations, and therefore it is enough to congidermal
fields, i.e., we can assume thatan be written as = vn, wherey € Lip(dE)
andn € Lip, ,(QE; R").

Let U(dE) andm, be as in Lemma 3.3, and defige e Lip(UQE)), n° €
Lip(UE); R") asy®(z) := ¢ (my(2)), n°(2) := n(my(2)), and sew’ := ¢<n°.
Fort € R with |7] < &, & > 0 small enough, defing as in (18), and sek’ () :=
F(., 1), E, ;== F'(E). Define also

Py(Ey) — Py(E)

Var(Py, E = liminf
ar(Py. E)(yrm) := limin t
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Theorem 5.1. The following equalities hold:

Po(E) = Py(E) _ sup  (divg .« N, ¥).

Var(Py, E)(¥n) = lim
1—0F ! NeNorg (9 E;R™)

(36)
Proof. By (P1) of Lemma 3.5, is Lipschitz; therefore, using the area formula
we have
PoE) = [ e [ gt divew a4 o),
JE oE
wherev;, is defined in (19). Hence, by (21) and (20), V8§, E) (¥ n) is equal to

/ lim Mcm"-u #°(v) divev dH" L (37)
gE t—0F t OE

=/ { max p~<—v¢(x)Vve(x)
aE L pero(o ()

+ [v(x) . v(x)Vv"(x)]v(;)(x)) + diVTv] dPy

= / { max —p-vg(x)Vo(x) +v(x) - v(x)Vo(x) + div,v} dPy,
aE L peT?(vy(x))

where the last equality follows from - vs(x) = 1. It is not difficult to prove

now that the map — 79(vy(x)), defined forH"~1-almost everyx € 9E, is

the smallest closed-valugd'—1-measurable multifunction with the property that,

forany N € Norg(0E; R"), N(x) € T(vs(x)) for H"~1-almost everyc € JE.

Using this observation, a commutation argument between supremum and integral

(see [9], Lemma 4.3) allows us to prove that the last member of (37) equals

sup / {_N.%Vve-{—vave—i—divrv}dP¢
yJOE

NeNory (9E;R"
=: sup / Iy dPy.
NeNory(@E:R") JIE

Fix N € Nory (3 E; R"): recalling the expression of the Euclidean tangential diver-
gence,/y can be written as-N - vy Vv® + div v¢ = —N - v V¢ + yediv ¢ +
Ve - ne. Therefore, since Lemma 4.5 implies dj¥ = div; n ond E, we obtain

/INdP¢=/ {—N-V¢Vv"+wdiv,n+v¢"-n}dp¢.
JIE JIE

On the other hand, substituting = ¥“»° into —N - v, Vv® and using (P5) of
Lemma 3.5, we get-N - vy Vv¢ = —Vy¢ - N ondE. SinceN — n is a tangent
vector field, we hav® ¢ - (N —n) = V¢ - (N —n) ond E. Therefore we conclude
that

/ Iy dPy = / [w div,n — Vo - (N — n)} dPy = (divg,, N, ),
oE oE

and the theorem follows.
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Recall that diy , . N in (36) actually does not depend giisee Corollary 4.7),
so that VatPy, E)(yn) is independent of). We define (with a little abuse of
notation) the functional V&P, E) : L2(3E) —] — o0, +00] as

sup (divg N,y) if ¥ € Lip(dE),
Var(Py, E)(y) := { NeNory (I E:R")
+00 if ¥ € L2(E) \ Lip(3E).

Define also
By = {1// € Lip(dE) : / Yw2dPy < 1},
AE (38)
B} = {wn . ¥ € By, neLip, ,(OF; R”)}.
The next result gives, roughly speaking, the expression of minus the norm of the
gradient of the functionaby.
Proposition 5.2. We have
1
2
inf Var(Py, E =— min divg -N)?dPs) .
s (Py, EY(¥rn) Nl o (/35( ot N) ¢>
Proof. Using Theorem 5.1 we get
inf  Var(Py, E = inf Var(Py, E
LB (Py, E)(¥rn) Ly (Pyp, E)(¥)
. . (39)
= inf sup (divg: N, o) =: I.
¥€By NeNory, (DE;R")

Notice that the mapy,, N) € By x Norg(dE; R") — (divg . N, ) is bilinear.
Moreover bothBy and Nog, (9 E; R") are convex sets, ang, (or Norg (0 E; R™))

is closed in theW 1> (3 E) topology (resp., strongly closed and weakly compact
inthe L2(d E; R") topology). Therefore, by a commutation result between sup and
inf (see [10, Proposition 1.1]), we get

I = sup inf (divg - N, ¥r).
NeNorg (9 E;R?) ¥V €Bg

SinceN ¢ H(JE; R") implies infycp, (divy N, ) = —oo, we deduce

I = sup inf (divg . N, ).
NeH(JE;R") VEBy o

Using the fact that infep, (divg . N, ¥) = infw 12 (divg - N, ), it follows
€b¢
that

divy - N)? dP
I= sup - Jop @M.V ¢1
NeHGERY (fo(divy N)? dPy)2

=— inf divy ;N)2dP
NeH(&E;R*l)(/BE( 9.c V) ¢)

Thanks to Proposition 6.1 below, the infimum in the above inequality is a minimum,
and the proposition is proved.
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Givenv € L2(JE; R") such thatv = ¥ N for somey € L2(3E) andN e
H(JE; R"), we define

Vi) =  sup / ¥ divg N dPy =: Vi (),
NeH@OE;R") JOE

whereV,f : L2(E) —] — 00, +00].
The following observation shows thﬁf is the lower semicontinuous envelope
of Var(Py, E), with respect to thé.2(3 E) topology.

Proposition 5.3. The functional V¢E isthe greatest L2(9 E) lower semicontinuous
functional less than or equal to Var(Py, E). In particular,

ot Nar(Ps. E)Y) = inf V().
Proof. Giveny € L2(3E) ande > 0, we set
Bew) i= ¥ € LD@E) : I — ¥llzae) < ).
The L2(3 E) lower semicontinuous envelope of &, E) is, by definition

sup_inf  Var(Py, E)(¥).
e>0yeB: (V)

By Theorem 5.1, this is equal to

sup _inf sup  (divy. N, V).
e>0v€B:(¥) NeNory(dE;R")

Commuting the sup and the inf [10], we then have

sup _ inf sup  (divy . N, )
>0y eB:(¥) NeNory (0 E;R")

=sup  sup _inf (divg . N, ¥)
£>0 NeNorg (QE;R") ¥ €B: (V)

=sup sup _inf / ¥ divy N dP,
e>0NeH@E;R") Yy eB: () JOE

= sup sup_inf ¥ divy N dP,
NeH@OE;R") >0 €B, () JOE

=  sup / ¥ divg <N dPy = Vi ().
NeHE;R") JOE

which proves the assertion.

The following result, which follows from Proposition 5.3, shows that the di-
rection of minimal slope for the functional is given by Nmin, and is one of the
incentives for introducing and studying the functional in (1) in connection with
motion by crystalline mean curvature.
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Corollary 5.4. The following equality holds:

Var(Py, E)(¥n) = Vg (¥ Nain),

inf
WUEBd,

where Nmin isaminimizer of thefunctional N — [, (divg - N)? d Py (see Propo-
sition 6.1 below, with ¢ = 0) and
diV¢‘1—Nmin

¥ =- : T
(/3£ (diVg, - Nmin)? d Py) 2

6. The minimum problem on 9 E: L regularity

Letg € L2(E) andletF : H(JE; R") — [0, +oo[ be the functional defined
as

F(N) := / (divg.. N —g)* dPy. (40)
IE
We are interested in studying the following minimum problenb@h
inf {F(N): N € HQE; R")}. (41)

It is clear that problem (41) is equivalent, up to constants, to the problem

inf {/ (divy.: N)2 — 2gdivy N dPy: N € H(IE; R”)} . (82
IE

Proposition 6.1. Problem (41) admits a solution. Moreover, if N1 and N> are two
minimizers of (41), then divg . N1(x) = divg . No(x) for H"1-almost every
x € OF.

Proof. Define

C:={divy ;N : N € HOE; R")}.
ThenC is a convex subset df2(3E). Let us prove thaf is closed inL?(3 E). Let
fi == divg N € C be suchthafy — fin L?(3E) ask — oo. We have to prove
that f € C. Since sup || Ni|l 25 .rny < +00, possibly passing to a subsequence
(still denoted by(Ny)) we can assume thaw,) converges weakly i2(d E; R")
to a vector fieldV € L2(9E; R"). SinceN; € T”(vd)E), by Mazur’s Theorem we
find thatN € Norg (9 E; R"). Moreover, for any) € Lip(3d E) we have, using (25),

/ YfdPy= lim / Y divg  Ni dPy
9E k—+00 JoE

= v dinl’Ld) dP¢ — |lim / Ve - (N — n¢) dP¢
dE k—+00 JoE

= Iﬂdivfl’lq; dP¢—f V1;1/I~(N—n¢) dP¢.
IE IE
It follows that f = divs . N, henceC is closed inL2(d E; R"). The proof of the
proposition is then is a standard consequence of minimization on convex sets of
strictly convex functionals on Hilbert spaces.
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Let Nmin € H(0E; R™) be a minimizer ofF. A direct computation shows that
the Euler-Lagrange inequality df reads as follows:

/ (div¢)mein — g) diV¢’f(Nmin — N) dP¢ é 0 VNe€ H(BE, Rn) (43)
oFE

We now give the definition of mean curvature of a Lipsckfiteegular set with
respect to the metrig.

Definition 6.2. Let E € Ry (R"). Let Nmin be a solution of (41). We set
dmin = diVg.; Nmin € L2(JE).

Wheng = 0, we define the)-mean curvature k4 of 9E as
Ky = diVg ; Nmin € L2(JE).

We shall see in Theorem 6.7 that Lipschftzegular sets have actually bounded
¢-mean curvature.

Remark 6.3. Since ¥ is strictly convex if considered as a function of the diver-
gence, iff is of the form f = divy . N for someN € H(9E; R") and if
/ (f —g)divy (N —=N)dPs <0 VN e HOE;R"),
JE

thenN is a solution of (41).

The next step is to prove thdkin, € L*°(dE). To this end we begin with the
following auxiliary lemma, whose standard proof is omitted.

Lemma6.4. Leta,b e R,a < bandlet f, 8 € L?(3E). Let u be a measure on
9 E absolutely continuous with respect to the restriction of #"~1 to 9 E. Assume

that Bdu = 0.Then

oE
+00
fﬁdu=/ / B du di,
oE —oo J{f>t}

b
/ fﬂdu:// ﬁd,udt—l—a/ ,Bd,u—b/ Bdu.
fa<f<b} a J{f>t} {f>a} {f>b}

The crucial result of this section is the following.
Theorem 6.5. Let E € Ry (R"). For any ¢t € R, define

(44)

A; = {dmin — g > 1}, $2 = {dmin — g < 1}.
Then

/ dmindPs < | divg. NdPy VieR, VN e H@OE;R"),  (45)
A, A,

and

/ dmin d Py z[ diV¢’1N dPy VieR, VN € HOE; R"). (46)
Q Q
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Proof. We shall prove only (45), since the proof of (46) is similar. For simplicity
of notation, set
V.= dmm — 8.

Moreover, ify € H(0E; R") andB C dE is a Borel set, we let
D(B, x) ::/ divg : (x — Nmin) dPy.
B

Assume by contradiction that there exist R, N € H(dE; R"), andc > 0 such
that
D(A;, N) = —4c < 0.

SinceA;, = J,., A, we have }, — 14, in LY(3E) (hence, being characteristic
functions, also iIL2(d E)) ast | A. Therefore there exists> 0 such that

D(A;,N)< —2c  Vte[rhr+el (47)

Fix A’ € R ande’ > 0 with the following properties:
(W, 4TS [h A+ el (48)
’H”’l<{V YUV =4 + e/}) —0. (49)

Clearly from (47) and (48) we get

A./+8,
/ D(A;, N) dt < —2c¢'. (50)

/

Let { f;} be a sequence of functions in I(fE) converging toV in L2(3E) and
almost everywhere. For anye N andr € R we define

Al = {fi > 1).

We split the proof into three intermediate steps.
Sep 1. Let us prove that there existg € N such that

Ve }
/ D(A},N)dt < —ce’ Vi Zig. (51)

/

We claim that

N+e Ve
lim / D(A!, N)dt = / D(A;, N) dt. (52)
i—>+o00 Jy/ b

By (A4) of Lemma 4.4 we hav® (0 E, N) = 0, hence applying Lemma 6.4 with
f. B, du, a, b replaced byf;, divy . (N — Nmin), d Py, 2, A’ + ¢ in that order,
from (44) we find

Nte ) )
/ D(A!, N)dt = f fidivg (N — Niin) d Py — X' D(AL,, N)
! V< fi<A+e"}

+ (W +€)D(AL ., N).
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In view of this equality and of the corresponding one wjthand A: replaced by
V and A,, to prove (52) it is enough to show tha};,;,l (or Lpvcficagerys 1

Ai
N4e!
converges to 4, (resp., Ly <v<i+e) 1Ax,+£/) in LYQE) asi — +o0o0. We show

this property fomg,, the other cases being similar. Defitig:= (A%, \ A;/)U(A;/\

Al). Itis enough to check that"~1(N; U,,>; Ay) = 0. Letx € N; U, >; Ay. Then
there exists a subsequen(gg such thatf;, (x) > A" andV (x) < A/, or fi, (x) < A/
andV(x) > A’ foranyk € N.

Sincef; — V almost everywhere, we gét"1(N; U,>; Ap) < H' IV =
A'}) = 0, by (49). The claim is proved. Then (51) follows from (52) and (50), and
Step 1 is proved.

Sep 2. Let us prove that
lim inf fidivg r (x — Nmin) dPg 2 0 Vx € HOE; R"). (53)
i—>+00 JaF

Let x € H(E; R"). Sincef; — V in L2(3E), we have

liminf fidivg + (X — Nmin) dPp = / Vdivg : (x — Nmin) dPy 2 0,
i—>+00 JyE dE
(54)
where the last inequality follows from the Euler inequality (43). Step 2 is proved.
Fix nows > 0 and defingj = 7j(n, A/, €/, i, 8) : 9E — R”" as follows:

U on{M < fi <M +¢'},
Nmin on{f; <A’ —8}U AL,

+6'48°

and

v (M) N(x) + (l -y (M)) Nnin(x)
forxe A =8 f; SV}

n(x) =
" (f,-(x);k/—s/> Nimin(x) + (1 -V (%’M)) N (x)
forx e (M +e' = fi =M+ +3),

whereyr has the following propertiesr € C°°([0, 1]; [0, 1]), there iso € ]0, %[
such thaty (s) = 0 fors € [0, 0], ¥ (s) = 1 fors € [1— o, 1], andy|[5,1—0] IS
strictly increasing.

Note thatj € H (3 E; R") and that(; — N) has compact support i, for any
t € [, A + ¢']. It follows from (A4) of Lemma 4.4 that

/_ divy (7 —N)dP, =0  Vte[ A +el (55)
A
Therefore from (55) and (51)

Ne! ) M +e! )
f D(A;, 1) dt = / D(AL, N)dt < —cé’ Vi 2 ip. (56)
A A
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Sep 3. Let us prove that
! ) P ) )
0=lim D(AL 1) dt =lim D(AL 1) dt Vi = ip. 57
m . (AL, 1) m .. (AL, 1) Zio.  (57)
Since(n — Nmin) has compact support imi_g, using (A4) of Lemma 4.4 we have

D(AL, . i) = 0. Therefore, by Lemma 6.4 applied with 8, du, a, b replaced
by fi, divg - (7 — Nmin), d Py, A — 8, A" in that order, we have

)\'/
f DAL ) di = / £ iV, G — Nmin) d Py + X' D(AL, ).
P (V—8< fi <A}
(58)

Define now
A if xe{fi =2\}.

Thenh; € Lip(9E), and recalling thaff = Nmin in a neighbourhood of f; <
A — 8}, we get

i) {ﬁ(x) it x e {fi <),

i 8.1 G = N Py + X DAL ) = [ g, G = N) d Py
(M —=8<fi<r'} E
(59)

Hence, by (58), (59), and using (25) we deduce
)\4/
f D(A;, 1) dt = —f Vihi - (1 — Nmin) d Py
A—=8 oE

=—/ Vthi‘(ﬁ—Nmin)qub
{M=8<fi<r}

<\ = Nminllze@mIVehillLe@rnH 20N — 8 < fi <X')).
Now the first equality of (57) follows by observing that*—1({x' — § < f; <

A'}) | 0asé — 0. The other equality is similar. Step 3 is proved.

We can now conclude the proof of the theorem. Recalling Step 2, we can fix a
natural numbei; = ig, such that

/

H ~ I
/ fir divg £ (1 — Nmin) d Py > —CZ.
AE
We have

&' . -
—cg < f firdivg £ (1 — Nmin) d Py
oF

U . by ' Nte! .
_ / DA, ) di + / DA™, i) di + / D(AI, 7) di
—00 A =8 2
N+e'+8 ) +o0 )
+/ D(A;l, n) dt + / D(Ail, n) dt
A 4e! M4e'+68
=141+ +1V +V.
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By the definition ofj and Lemma 4.4 we havet V = 0. Inaddition lll £ —ce’
by (56), and Il and IV tends to zero é&s| O by step 3. Therefore, takingy> 0
small enough, we get i IV < ¢%. Then

/
5 < / Fr OV < (i — Nein) d Py < —€'c + '3 = —¢'5,
4 IE ’ 2 2
which is a contradiction.

SincefaE divg - (N — Nmin) d Py = 0, from (45) and (46) it follows that the
statement of Theorem 6.5 holds also if, in the definitiong pfnd Q;, we write
the weak inequalities in place of the strict inequalities.

The following observation, which follows from Lemma 6.4 and Remark 6.3, is
a kind of converse of Theorem 6.5.

Proposition 6.6. Let N € H(9E; R") and define B, := {divy, N — g > ¢t} for
anyr € R. If

ddi))rN dP¢ § / diV¢,’1— X dP¢ Vit eR, Vyxe H@E, Rn), (60)
B; B,

Proof. Recalling (A4) of Lemma 4.4, we have
/ diVTn¢ dP¢ = / diV(p,TN dP¢ =:cC.
3E dE

Setf :=divy ;N — g andg := divy . N — c. Assumption (60) can be rewritten as
/ BdPy < / (divgx —c)dPy YteR, Vxe HOE;R").
{f>1} {f>1}

Clearly [, . B d Py = 0. Applying (44) we get

f fﬁdp¢=/oo/ B dPydt
AE —oco J{f>t}

o
< / [ (divg,rx —c)dPy dt = / fdivg - x —¢) dPy.
—o00 J{f>1} dE
It follows that
/ f(ﬂ—div(,,,rx +c)dP¢§0 Vx € HOE;R"),
IE
that is,
f (divy ;N —g)divg (N — x)dPs <0 ¥y e HOE; R").
AE

Using Remark 6.3 the assertion follows.
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Note that Proposition 6.6 still holds if, in the definition Bf, we replace the
weak inequality with the strict inequality.

We are now in a position to prove the™ regularity of the divergence of
solutions of (41).

Theorem 6.7. Let E € Ry (R") and assumethat g € L*°(9E). Then
dmin € LX(OE). (61)
More precisely,
l[dmin — gllLe@e) = diveng — gl E).- (62)

Proof. SetV := dmin — g. By (45) we have

/ \% dP¢ § f (divrn¢ — g) dP¢ § ||dinn¢ _g||L°°(3E)P¢(At) Vit e R,
A

t

so that

t <
Py(Ar) Ja,

\% dP¢ § ||diV,n¢ — g||L°°(BE) vVt € R with A, #0,

which impliesH"~1 — esssupg V < |[diving — gl E)-
SincefaE divg - (Nmin — ng) d Pg = 0, using (46) we also get

/ VdP, > / (diveng —g) dpPy, Ve,
Q Q

which implies

1 ) .
t 2 m ; VdPy 2 —|diveng — gllreme) Vit e Rwith Q; # @.

It follows that#" 1 — essinfzV > —|ldiveng — gllzeaE). This concludes the
proof of (62).

Remark 6.8. Thanks to Theorem 6.7, § € L°°(dE) the functionalF can be
equivalently minimized on the space

H@OE;R") := {N € Nory(E; R") : divy N € LXIE)]}.
Moreover,

ldmin — gllz@r) = min{|ldivy : N — gllL=@E) : N € HOE; RM)).
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