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Abstract

Let φ : R
n → [0,+∞[ be a given positively one-homogeneous convex func-

tion, and letWφ := {φ � 1}. Pursuing our interest in motion by crystalline
mean curvature in three dimensions, we introduce and study the classRφ(R

n)

of “smooth” boundaries in the relative geometry induced by the ambient Banach
space(Rn, φ). It can be seen that, even whenWφ is a polytope,Rφ(R

n) cannot be
reduced to the class of polyhedral boundaries (locally resembling∂Wφ). Curved
portions must be necessarily included and this fact (as well as the nonsmoothness
of ∂Wφ) is the source of several technical difficulties related to the geometry of
Lipschitz manifolds. Given a boundary∂E in the classRφ(R

n), we rigorously
compute the first variation of the corresponding anisotropic perimeter, which leads
to a variational problem on vector fields defined on∂E. It turns out that the min-
imizers have a uniquely determined (intrinsic) tangential divergence on∂E. We
define such a divergence to be theφ-mean curvatureκφ of ∂E; the functionκφ is
expected to be the initial velocity of∂E, whenever∂E is considered as the initial
datum for the corresponding anisotropic mean curvature flow. We prove thatκφ is
bounded on∂E and that its sublevel sets are characterized through a variational
inequality.

1. Introduction

Motion by crystalline mean curvature describes the interface evolution obtained
as gradient flow of a surface energy functionalPφ having a crystalline density with
respect to the usual perimeter. This means that, witht → ∂E(t) denoting the
evolving front, the flow tries to reduce as fast as possible the value ofPφ(E(t)),
where

Pφ(E(t)) :=
∫
∂E(t)

φo(νE(t)) dHn−1.

Here νE(t) is the outward Euclidean unit normal to∂E(t) andφo (the surface
tension) is a positively one-homogeneous function such thatWo

φ := {φo � 1} is
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a convexpolytope of R
n containing the origin in its interior. The term crystalline

refers to the fact that the convex bodyWo
φ is faceted.

This evolution provides a simplified model for describing several phenomena
in material science and crystal growth, see for instance [12,13,28,23,32]. It also
represents an extreme example of anisotropic geometric flow, being the setWo

φ

neither strictly convex nor of classC2. The mathematical analysis of this problem
began with the works ofTaylor [28,27,30,31] and has received a certain amount
of attention in the last few years [2,11,1,20,17,33]. In comparison with more famil-
iar geometric evolutions (such as motion by mean curvature) it presents additional
difficulties, due to the lack of regularity both of the involved operators and of the
flowing interfaces. These obstructions, which at a first sight are of technical nature,
reveal that the study of the geometric properties of hypersurfaces in a finite dimen-
sional Banach space endowed with a crystalline metric cannot easily be reduced to
more regular situations.

The simplest (even if not realistic) model is inn = 2 space dimensions, when
the interface is a closed curve. In this case several results have been proved: in
particular, the class of curves which are admissible as “regular” initial data for the
evolution is characterized. The structure of a curve in this class is the following:
if we denote byWφ the Wulff shape (that is,Wφ := {φ � 1}, whereφ is the
dual function ofφo), a closed Lipschitz curve is admissible if it is a sequence of
segments (with a precise order) which are parallel to some edge of∂Wφ = {φ = 1}
and of segments or arcs which correspond to vertices of∂Wφ [31,25,21,26,22,18,
19,4]. In addition, a local-in-time existence theorem for “regular” evolutions holds:
each segment corresponding to an edge of∂Wφ translates parallel to itself (with
a suitable velocity), while the remaining segments or arcs have zero velocity. It
is important to remark that the admissibility properties of the curve, in relation
with the geometry of∂Wφ , remain unchanged during this evolution. Finally, a
comparison principle holds, and therefore the flow is uniquely determined [19].

The physical case is however in three space dimensions, where the situation is
much more complicated. In this case, one of the crucial mathematical problems,
which to the best of our knowledge is still open, is the short-time existence of
a “smooth” flow. Some examples can enlighten the difficulties related to such a
result. In [6] two explicit crystalline evolutions of surfaces are constructed. In both
the examples, the initial surfaces are polyhedral and their facets correspond to
facets of the Wulff shape. The first example is completely rigorous, and shows that,
at the initial time of the evolution, some facet can subdivide into smaller facets
(facet-breaking phenomenon) and therefore new facets may appear. By means of
a comparison argument [5], one can also show that the computed evolution is
the unique crystalline evolution of the given initial surface. The second example,
which is not completely rigorous, but is confirmed by several numerical simulations
performed with different methods [24,29] suggests that some facets can instantly
curve. This unexpected phenomenon has some interesting consequences, which
influence the approach to the crystalline evolution problem in three dimensions.
For instance, it shows that the preferred set of directions, corresponding to the
orientation of the facets of∂Wφ , is not preserved during the evolution: indeed, new
directions outside the preferred set may appear. In addition, one infers that the class
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of polyhedral surfaces (compatible with the geometry of∂Wφ) is too restricted
a class when one is looking for an existence result for crystalline evolutions. We
remark that, in any case, the evolutions of the two examples should be regarded as
“regular” crystalline evolutions. Summing up, in order to study crystalline motion
by mean curvature, it seems that some preliminary steps are necessary.A first step is
to have a reasonable definition of the class of crystalline “regular” surfaces. Given
a setE in this class, the next step is to understand which is the initial velocity field
on ∂E, in particular which are its singularities (which could be interpreted as the
breaking regions). Finally, it is natural to investigate whether the class of regular
surfaces is stable or not under motion by crystalline mean curvature.

The above arguments are the motivations for studying thestationary problem
considered in the present paper. We first introduce the classRφ(R

n) of compact
admissible interfaces, called Lipschitzφ-regular sets, which should be considered
as the analogue of smooth boundaries in the case of crystalline geometry. The
boundary∂E of a Lipschitzφ-regular setE may be polyhedral (with a structure
locally resembling the structure of∂Wφ) but may also have curved portions. In
addition, we impose the existence of a family of normal convex conesx → K(x)

(with varying dimensions, in connection with the geometry of the Wulff shape)
which contains acontinuous section on∂E. The precise requirement is that∂E
admits a vector fieldnφ : ∂E → R

n which is aLipschitz selection in this family
of cones, i.e.,nφ ∈ Lip(∂E;Rn) andnφ(x) ∈ K(x) for any x ∈ ∂E. If ∂Wφ

were smooth and strictly convex, the vector fieldnφ would be uniquely determined
(since each cone reduces to a vector at any point of∂E) and is usually called the
Cahn-Hoffman vector field. A similar class (the so-calledφ-regular sets) has been
introduced in [5,6]. Such a class may be, in principle, larger thanRφ(R

n), since in
that case the selectionnφ is required only to be bounded with bounded divergence.
Even if the local existence theorem is still missing, the class ofφ-regular sets
supports a uniqueness result, which is obtained as a by-product of an Allen-Cahn
type approximation argument [5].

Several technical reasons in the present paper impose the requirement that the
selectionnφ be Lipschitz: one of these is related to the weak definition of a suitable
divergence operator (see (1)) on a Lipschitz manifold (Remark 4.2). We stress once
again that the definition of Lipschitzφ-regularity is a regularity property in the
relative sense of the geometry induced onR

n by the Finsler metricφ. For instance,
it is easy to see that, inn = 2 space dimensions, if we chooseφ(ξ) := |ξ1| + |ξ2|,
the Euclidean ballB1(0) := {x ∈ R

2 : |x| � 1} does not admit any vector field
η : ∂B1(0)→ R

2 such that(B1(0), η) becomes Lipschitzφ-regular.
Fix now a Lipschitzφ-regular set(E, nφ) ∈ Rφ(R

n).We introduce a variational
problem on vector fields defined on∂E, whose solution gives the definition ofφ-
mean curvature of∂E and is expected to describe the initial velocity field of the
evolution problem having∂E as initial datum. More precisely, we propose to study
the following minimum problem:

inf

{∫
∂E

(divφ,nφ,τ N)
2 φo(νE) dHn−1 : N ∈ H(∂E;Rn)

}
. (1)
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The symbolH(∂E;Rn) denotes the class of all vector fieldsN ∈ L2(∂E;Rn)
such that divφ,nφ,τN ∈ L2(∂E) and which satisfy the constraintN(x) ∈ K(x) for
Hn−1-almost everyx ∈ ∂E. We refer to Section 3 for the precise definition of the
tangential divergence operator appearing in (1), which must be intended in a weak
sense and in the relative geometry induced on∂E byφ.Any solution of problem (1)
has the same divergence: ifNmin denotes a solution of (1), we are therefore led in a
natural way to define theφ-mean curvatureκφ of ∂E asκφ := divφ,nφ,τ Nmin. Our
conjecture is thatκφ represents the effective velocity of the initial setE (recall that
there is uniqueness of the evolution). To substantiate this conjecture we consider
the following arguments. It is well known (see for instance [10]) that the solution
of a parabolic partial differential inclusion of the formut ∈ Au (whereA is a
maximal monotone multivalued operator) selects, at each time, a particular element
(the so-called canonical element) which minimizes‖Au‖L2, i.e.,u actually solves
ut = Amu, whereAmx realizes the minimum in min{‖y‖2

L2 : y ∈ Ax}. This idea
has been applied to crystalline evolutions of graphs byFukui & Y. Giga in [16].
It is not difficult to see [24] that the analogue of this minimum property in our
geometric framework is given by (1).

Another remarkable argument which leads us to consider problem (1) comes
from the expression of the first variation of the functionalPφ . This computation
shows that the intrinsic perimeterPφ is reduced with maximal speed when the
variation is performed along the field−κφ Nmin.

If κφ gives really the initial velocity, its jump set should correspond to the
“fractures” along which new facets appear in the subsequent evolution; moreover,
the regions whereκφ is continuous but not constant should represent the regions of
∂E where curving is expected. This is in accordance with the examples computed
in [6].

The plan of the paper is the following. In Section 2 we give some notation, we
recall the main properties of the duality mappings and we define what we mean
by a facet of∂E. In Section 3 we introduce the classRφ(R

n) of Lipschitz φ-
regular sets (Definition 3.1). Relations between different definitions ofφ-regular
sets are briefly illustrated in Remark 3.2. Given(E, nφ) ∈ Rφ(R

n), one of the first
technical difficulties is that we need to extend Lipschitz vector fields, originally
defined on∂E, in an open neighbourhood of∂E, in a Lipschitz way. This is the
content of Lemma 3.3. The properties of the level sets of the intrinsic oriented
distance function from∂E and the connection withnφ are considered in Lemma 3.4.
These preliminary results are used to define the tangential divergence of a vector
field defined on∂E with respect toφ (Definition 4.1), and to exploit some of its
properties. The weak operator ofφ-tangential divergence is denoted by divφ,nφ,τ .
In principle, it may depend on the choice of the fieldnφ , but it turns out that, for
all vector fields of interest in this paper, this is not the case. It must be noted that,
on flat portions of∂E, this divergence coincides with the usual (weak) tangential
divergence divτ . In Proposition 4.6 and Corollary 4.7 we prove that, even if for the
same setE there are infinitely many possible choices of the Cahn-Hoffman vector
field nφ so that(E, nφ) becomes Lipschitzφ-regular, the definition of divφ,nφ,τ as
operator onφ-normal vector fields is intrinsic, i.e., does not depend on the choice of
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nφ . In Section 5 we compute the first variation of the functionalPφ , thus relating the
minimum problem (1) with motion by crystalline mean curvature. The first variation
of Pφ turns out also to be strictly related to the operator divφ,nφ,τ . In Section 6 we
are concerned with a minimum problem of the form (1), with an additional term
depending on a given functiong. In the evolution problemg plays the rˆole of
the forcing term. In Lemma 6.1 we prove the existence of minimizers; it is easily
seen that theirφ-tangential divergence is uniquely determined. The corresponding
Euler-Lagrange inequality is computed in (6.3). We denote bydmin the tangential
divergence of a minimizer (dmin reduces toκφ in the caseg = 0). The crucial
result proved in Theorem 6.5 is a reformulation of the Euler-Lagrange inequality
for dmin, by means of an inequality on each of its level sets. A direct consequence
of Theorem 6.5 is thatdmin is a bounded function (Theorem 6.7). In particular,
Lipschitzφ-regular sets have boundedφ-mean curvature.

In a forthcoming paper [7] we continue the analysis on the structure of Lipschitz
φ-regular sets and, using the resultκφ ∈ L∞(∂E), we prove thatκφ has bounded
variation on suitable facetsF . We also investigate further properties of the level
sets ofκφ onF , in connection with the geometry of the facet ofWφ parallel toF .

2. Notation

In the following we denote by· the standard Euclidean scalar product inR
n

and by | · | the Euclidean norm ofRn, n � 2. If ρ > 0 andx ∈ R
n, we set

Bρ(x) := {y ∈ R
n : |y − x| < ρ}.

Given two vectorsa, b ∈ R
n we let a ⊗ b be the matrix whose entries are

(a⊗ b)ij = aibj . If M is a(n×n)matrix, byMa (or aM) we denote the vector of
components(Ma)i = Mijaj (resp.,(aM)i = Mjiaj ), and trM is the trace ofM.
Note thata ⊗ b c = ab · c for anyc ∈ R

n. With the notationA � B we mean that
the setA is compactly contained inB.

The symbolHk denotes thek-dimensional Hausdorff measure inR
n, k ∈ [0, n].

If E ⊂ R
n, we denote by 1E the characteristic function ofE and by∂E the

topological boundary ofE. By Lip(∂E) (or Lip(∂E;Rn)) we denote the class of
all Lipschitz functions (resp., vector fields) defined on∂E.

We say thatE is Lipschitz ifE is open and, for anyx ∈ ∂E, there existsρ > 0
such thatBρ(x) ∩ ∂E is the graph of a Lipschitz functionf andBρ(x) ∩ E is the
subgraph off (with respect to a suitable orthogonal coordinate system). IfE is
Lipschitz, forHn−1-almost everyx ∈ ∂E we denote byνE(x) the outward unit
Euclidean normal to∂E atx, and byTx∂E the tangent hyperplane to∂E atx.

Finsler metrics on R
n. We indicate byφ : R

n → [0,+∞[ a convex function
satisfying the properties

φ(ξ) � +|ξ |, φ(aξ) = aφ(ξ), ξ ∈ R
n, a � 0, (2)

for a suitable constant+ ∈ ]0,+∞[. The functionφo : R
n → [0,+∞[ is defined

as
φo(ξ∗) := sup

{
ξ∗ · ξ : φ(ξ) � 1

}
,
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and is the dual ofφ; φ andφo are sometimes called Finsler metrics onR
n. We set

Wo
φ := {ξ∗ ∈ R

n : φo(ξ∗) � 1}, Wφ := {ξ ∈ R
n : φ(ξ) � 1}.

ClearlyWo
φ andWφ are compact convex sets whose interior parts contain the origin.

By a facet of∂Wφ (or of ∂Wo
φ) we always mean a(n− 1)-dimensional facet.

We say thatφ is crystalline ifWφ is a convex polytope. Ifφ is crystalline, then
alsoWo

φ is a convex polytope. The setWo
φ is sometimes called the Frank diagram

andWφ the Wulff shape.

Duality mappings. By T andT o we denote the possibly multivalued mappings
defined by

T (ξ) := {ξ∗ ∈ R
n : ξ∗ · ξ = φ(ξ)2 = (φo(ξ∗))2}, ξ ∈ R

n, (3)

T o(ξ∗) := {ξ ∈ R
n : ξ · ξ∗ = (φo(ξ∗))2 = φ(ξ)2}, ξ∗ ∈ R

n,

which are called the duality mappings. One can check that

T (ξ) = 1
2D

−(φ(ξ))2 = φ(ξ)D−φ(ξ), T (aξ) = aT (ξ), ξ ∈ R
n, a � 0,

and similarly forT o andφo, whereD− denotes the subdifferential. MoreoverT , T o

are maximal monotone operators,T (or T o) takes∂Wφ (resp.,∂Wo
φ) onto ∂Wo

φ

(resp., onto∂Wφ).
Notice that, ifξ ∈ ∂Wφ , T (ξ) is the intersection of the closed outward normal

cone to∂Wφ with ∂Wo
φ .

The φ-distance function. Given a nonempty setE ⊂ R
n andx ∈ R

n, we set

distφ(x,E) := inf
y∈E φ(x − y), distφ(E, x) := inf

y∈E φ(y − x),

dEφ (x) := distφ(x,E)− distφ(R
n \ E, x).

The functiondEφ is therefore the oriented intrinsic distance function negative inside

E; note that, since in generalφ is not symmetric,−dEφ does not necessarily coincide

with dR
n\E

φ .

At each pointx wheredEφ is differentiable, we have∇dEφ (x) ∈ ∂Wo
φ , hence

φo(∇dEφ ) = 1 atx; (4)

we setνEφ (x) := ∇dEφ (x) = νE(x)

φo(νE(x))
. As a consequence of (3), atHn−1-almost

everyx ∈ ∂E we have

νEφ (x) · p = 1 ∀p ∈ T o(νEφ (x)). (5)

If E is Lipschitz we define

Norφ(∂E;Rn) :={N : ∂E→ R
n : N(x) ∈ T o(νEφ (x)) for Hn−1-a.e.x ∈ ∂E},

Lipν,φ(∂E;Rn) := Lip(∂E;Rn) ∩ Norφ(∂E;Rn).
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Note that ifN ∈ Norφ(∂E;Rn), thenφ(N(x)) = 1 for Hn−1-almost everyx ∈
∂E. Moreover, ifN1, N2 ∈ Norφ(∂E;Rn), thenN1 − N2 is tangent to∂E, since
N1 · νEφ = 1= N2 · νEφ .

We letdPφ be the measure supported on∂E with densityφo(νE) with respect
to Hn−1, i.e.,

dPφ(B) :=
∫
B

φo(νE) dHn−1, B Borel set, B ⊆ ∂E.
If E is Lipschitz andψ ∈ Lip(∂E) we denote by∇τψ the Euclidean tangential
gradient ofψ on ∂E, which is defined atHn−1-almost every point of∂E. If v ∈
Lip(∂E;Rn) we denote by divτ v the Euclidean tangential divergence ofv, which
is defined (atHn−1-almost every point of∂E).

In the following, whenever there is no risk of confusion, we often do not indicate
the dependence onE of the unit normalsνE andνEφ , i.e., we setν := νE , νφ := νEφ .

3. Lipschitz φ-regular sets

Definition 3.1. LetE ⊆ R
n be a Lipschitz set with compact boundary. We say that

E is Lipschitz φ-regular if there exists a vector fieldnφ ∈ Lipν,φ(∂E;Rn). We
denote byRφ(R

n) the class of all Lipschitzφ-regular sets.

With a little abuse of notation, we shall sometimes write(E, nφ) ∈ Rφ(R
n),

and we shall say that(E, nφ) is Lipschitzφ-regular.
Observe that if(E, nφ) is Lipschitzφ-regular, thenφ(nφ) = 1 everywhere on

∂E. The canonical example of Lipschitzφ-regular set is given by(Wφ, x).

Remark 3.2. In [6] is introduced the class ofφ-regular sets, whose definition is
different from Definition 3.1, sincenφ is required to belong toL∞(∂E;Rn) and
to admit an extension on an open set containing∂E which is bounded and has
bounded divergence. In view of Lemmas 3.4 and 4.5 below, it follows thatRφ(R

n)

is contained in the class ofφ-regular sets. One can also prove that, ifφ is crystalline
andE is aφ-regular polyhedron, thenE is Lipschitzφ-regular.

The Lipschitz regularity requirement onnφ in Definition 3.1 allows to define
theφ-tangential divergence divφ,nφ,τ on the elements of Norφ(∂E;Rn); see Defi-
nition 4.1. Assuming less regularity onnφ should require a non-trivial modification
of Definition 4.1, see Remark 4.2.

The following lemma is well known in the smooth case. We need its version
in our nonsmooth case in order to prove Corollary 4.7 and to compute the first
variation ofPφ (see Section 5).

Lemma 3.3. Let E ⊆ R
n be a Lipschitz set with compact boundary. Let η ∈

Lip(∂E;Rn) be a vector field with the property that there is a constant c > 0
verifying

|η(x) · νE(x)| � c for Hn−1 -a.e.x ∈ ∂E. (6)

Then there exist ε > 0and an open setU(∂E) containing ∂E such that the following
properties hold.
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(i) The map Fη : ∂E × ] − ε, ε[ → U(∂E) defined by Fη(x, t) := x + tη(x) is
bi-Lipschitz.

(ii) Set Gη := F−1
η , Gη(·) := (πη(·), tη(·)) ∈ ∂E × ] − ε, ε[ on U(∂E). Let

z ∈ U(∂E). If η is differentiable at πη(z) and there exists Tπη(z)∂E, then Gη
is differentiable at z.

Proof. Let x0 ∈ ∂E. Up to a rotation of coordinates, a neighbourhood ofx0 in ∂E
can be written as(s, f (s)), for s ∈ 6 ⊆ R

n−1 andf : 6→ R a Lipschitz function.
Write η(s, f (s)) = (η1(s, f (s)), η2(s, f (s)) ∈ R

n−1 × R, and setF̂ (s, t) :=
Fη(x, t) = (s + tη1(s, f (s)), f (s) + tη2(s, f (s)). We want to apply the Implicit
Function Theorem in the Lipschitz case to the functionF̂ , see [14]. In order to fulfil
all the assumptions, we need to prove that, if{(sn, tn)} is a sequence of points in the
domain ofF̂ converging to(s, t) asn → ∞ such that̂F is differentiable at each
(sn, tn) and there is the limitM of ∇F̂ (sn, tn), thenM is nonsingular. Observe that

∇F̂ (sn, tn) =
(

Id +O(tn) η1(sn, f (sn))

∇f (sn)+O(tn) η2(sn, f (sn))

)
.

Using (6) we can check that
∣∣det

(∇F̂ (sn, tn))∣∣ � c/2, for anyn ∈ N andε > 0
small enough, and thereforeM is nonsingular. By [14] it follows that̂F is locally
invertible with a Lipschitz inversêG. Let us verify thatFη (henceF̂ ) is globally
injective for ε > 0 small enough. Assume by contradiction thatFη(x, t) = x +
tη(x) = y + rη(y) = Fη(y, r) for somex, y ∈ ∂E andt, r ∈ ] − ε, ε[, (x, t) �=
(y, r). Then|x− y| � 2ε‖η‖L∞(∂E;Rn), which contradicts the local invertibility of
Fη. Using the compactness of∂E, property (i) follows.

Let us prove (ii). Notice that ifη is differentiable atπη(z) and there exists
the tangent hyperplane to∂E at πη(z) (i.e., f is differentiable at the point of6
corresponding toπη(z)), thenF̂ is differentiable at̂G(z). Differentiating the identity
F̂ (Ĝ) = Id we get that̂G is differentiable at the point corresponding toz, which
implies thatGη is differentiable atz.

Lemma 3.4. Let E ∈ Rφ(R
n) and let η ∈ Lipν,φ(∂E;Rn). Let ε > 0 be given by

Lemma 3.3. Then for any t ∈ ] − ε, ε[ ,

dEφ (x + tη(x)) = t, x ∈ ∂E. (7)

In particular,

{z ∈ R
n : dEφ (z) = t} = {x + tη(x) : x ∈ ∂E}, t ∈ ] − ε, ε[. (8)

Moreover,

∇dEφ (x + tη(x)) = νφ(x), ∇dEφ (x + tη(x)) · η(x) = 1, (9)

for any t ∈ ] − ε, ε[ and for Hn−1-almost every x ∈ ∂E. Finally, if πη is as
in (ii) of Lemma 3.3, and if we define ηe(z) := η(πη(z)) for z ∈ U(∂E), then
({z ∈ U(∂E) : dEφ (z) = t}, ηe) is Lipschitz φ-regular, for any t ∈ ] − ε, ε[.
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Proof. Let us consider the caset > 0, since the caset < 0 is similar. Since
dEφ (x+ tη(x)) � φ(x+ tη(x)− x) = t , in order to prove (7) we need to show that

dEφ (x+ tη(x)) � t . Set for simplicityπ := πη, and letU(∂E) be as in Lemma 3.3.
Fix z ∈ U(∂E)∩ (Rn \E) such that there existsTπ(z)∂E andη is differentiable at
π(z) (hence the functionFη is differentiable at(π(z),0)). By (ii) of Lemma 3.3, it
follows thatt (·) := tη(·) is differentiable atz. We need two intermediate steps.

Step 1. Let us prove that
∇t (z) ⊥ Tπ(z)∂E.

Fix τ ∈ Tπ(z)∂E and setzε := z + ετ , for ε ∈ R small enough. From the relation
π(z)+ t (z)η(π(z)) = z we get(
t (zε)− t (z)

)
η(π(z)) = t (zε)η(π(zε))− t (z)η(π(z))

+ t (zε)
[
η(π(z))− η(π(zε))

]
(10)

= zε − z+ π(z)− π(zε)+ t (zε)
[
η(π(z))− η(π(zε))

]
.

Taking the scalar product of both sides of (10) withνφ(π(z)), using (5) and
recalling thatzε − z is a tangent vector to∂E atπ(z), we obtain

t (zε)− t (z) = (π(z)− π(zε)) · νφ(π(z))
+ t (zε)

[
η(π(z))− η(π(zε))

] · νφ(π(z)). (11)

The existence ofTπ(z)∂E and the fact thatzε − z is a tangent vector imply(
π(z)− π(zε)

) · νφ(π(z)) = o(ε), (12)

so that (11) becomes

t (zε)− t (z) = t (zε)
[
η(π(z))− η(π(zε))

] · νφ(π(z))+ o(ε). (13)

Let us now prove that[
η(π(z))− η(π(zε))

] · νφ(π(z)) = o(ε). (14)

If η = (η1, . . . , ηn), νφ = (νφ1, . . . , νφn) andπ = (π1, . . . , πn), summing over
repeated indices and using (12) we get[
η(π(z))− η(π(zε))

]· νφ(π(z))=∇j ηi(π(z))νφi(π(z))(πj (z)− πj (zε))+o(ε).
(15)

Recalling thatφ(η(π(z)))2 = 1, we can check that

0= D−(φ(η(π(z)))2) = νφ(π(z))∇η(π(z)) (16)

and therefore (14) follows from (15).
We conclude, using (13) and (14) thatt (zε) − t (z) = o(ε). Recalling that

ε∇t (z) · τ = t (zε)− t (z)+ o(ε), we getε∇t (z) · τ = o(ε), which proves Step 1.

Step 2. Let us prove that
∇t (z) = νφ(π(z)).
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From Step 1 it follows that∇t (z) = λνφ(π(z)) for someλ ∈ R. Precisely,λ =
∇t (z) ·η(π(z)). Differentiating with respect tor the relationt (π(z)+ rη(π(z))) =
r, we getλ = 1 and Step 2 is proved.

By Step 2 we deduceφo(∇t (z)) = 1, which implies

t (z2)− t (z1) � φ(z2 − z1) for anyz1, z2 ∈ U(∂E) ∩ (Rn \ E). (17)

Takingz2 := z andz1 ∈ ∂E such thatdEφ (z) = φ(z− z1), inequality (17) becomes

dEφ (z) � t (z)− t (z1) = t (z),
and (7) follows.

Equality (8) is a direct consequence of (7). Finally, the set{z ∈ U(∂E) :
dEφ (z) = t} is the image of∂E through a bi-Lipschitz map,ηe is a Lipschitz vector
field onU(∂E) andηe(z) = η(π(z)) ∈ T o(νφ(π(z))) = T o(νφ(z)).

We conclude this section with a result which will be useful in the computation
of the first variation of the functionalPφ . Let η ∈ Lipν,φ(∂E;Rn), let U(∂E)
andπη be as in Lemma 3.3. Letψ ∈ Lip(∂E) and defineψe ∈ Lip(U(∂E)),
ηe ∈ Lip(U(∂E);Rn) asψe(z) := ψ(πη(z)), ηe(z) := η(πη(z)). For t ∈ R with
|t | < ε, ε > 0 small enough, define

F̃ ∈ Lip(U(∂E)× ] − ε, ε[;Rn), F̃ (z, t) := z+ tψe(z)ηe(z), (18)

and set̃F t(·) := F̃ (·, t). Finally, letEt := F̃ t (E).
Lemma 3.5. There exists ε > 0 such that for |t | < ε the following properties hold.

(P1) The set Et is Lipschitz continuous, and ∂Et = {z : z = x + tψ(x)η(x), x ∈
∂E}.

(P2) For Hn−1-almost every x ∈ ∂E, there exists∇dEtφ (x+ tψ(x)η(x)). We define

νt (x) :=
∇dEtφ (x + tψ(x)η(x))
|∇dEtφ (x + tψ(x)η(x))|

. (19)

(P3) For Hn−1-almost every x ∈ ∂E, there exists d
dt
νt (x)|t=0, and

d

dt
νt |t=0 = −νE∇(ψeηe)+ (νE · νE∇(ψeηe))νE Hn−1 − a.e. on ∂E.

(20)

(P4) For Hn−1-almost every x ∈ ∂E, there exists the right derivative d
+
dt
φo(νt (x))

at t = 0, and there holds

d+

dt
φo(νt (x))|t=0 = max

p∈T o(νφ(x))
p · d
dt
νt (x)|t=0. (21)

(P5) νφ(x)∇ηe(x) = 0 for Hn−1-almost every x ∈ ∂E.
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Proof. The fieldψη does not verify property (6), sinceψ may vanish somewhere
on ∂E. However, writetψη = −nφ + (nφ + tψη), wherenφ ∈ Lipν,φ(∂E;Rn);
for |t | small enough, both−nφ andnφ + tψη satisfy property (6), and therefore
∂Et is a bi-Lipschitz image of∂E from Lemma 3.3. In addition, it is clear that
∂Et := {x + tψ(x)η(x) : x ∈ ∂E}.

Notice thatdEtφ = dEφ − t , and therefore, forHn−1-almost everyx ∈ ∂E, there

exists∇dEtφ (x) = ∇dEφ (x) = νEφ (x), andνEφ (x) = ∇dEφ (x + tψ(x)η(x)) by (9).
This proves (P2).

Let us prove (P3). The equalitydEφ (z) = dEtφ (F̃ t (z)) for z ∈ U(∂E) yields, by
differentiation,

∇dEtφ (F̃ t (z)) = ∇dEφ (z)
(
Id + t∇(ψeηe)(z)+ o(t)

)−1

for almost everyz ∈ U(∂E) (precisely for anyz ∈ U(∂E) such thatνE(πη(z))
exists and such thatη is differentiable atπη(z)). Therefore

∇dEtφ (F̃ t (z)) = ∇dEφ (z)− t∇dEφ (z)∇(ψeηe)(z)+ o(t).
Then (P3) follows by a direct computation and using the definition ofνt .

Property (P4) follows using (P3) and the properties of subdifferential of convex
functions, and (P5) follows by differentiating the equalityνφ · ηe = 1; see (16).

4. The φ-tangential divergence

The definition of weakφ-tangential divergence on a Lipschitzφ-regular set
E with respect to a nonsmooth Finsler metricφ is quite involved. To justify our
definition we start from the smooth case, i.e., for strictly convex smoothφ2 and
φo2 and smooth setsE. We recall from [8] and [3] that, in the smooth case,∫

∂E

tr
[
(Id − nφ ⊗ νφ)∇v

]
dPφ =

∫
∂E

v · νφ div nφ dPφ (22)

for anyv ∈ C1(U(∂E);Rn), whereU(∂E) is a suitable open neighbourhood of∂E
andnφ := T o(νEφ )onU(∂E).We can check that tr

[
(Id−nφ⊗νφ)∇v

]
depends only

on the values ofv on∂E. If ψ ∈ C1(U(∂E);Rn), then tr
[
(Id−nφ⊗νφ)∇(ψv)

] =
ψ tr

[
(Id − nφ ⊗ νφ)∇v

] + [(Id − νφ ⊗ nφ)∇ψ] · v (notice the switch of the rˆole
of νφ andnφ). Therefore, from (22) we get∫

∂E

ψ tr
[
(Id − nφ ⊗ νφ)∇v

]
dPφ (23)

=
∫
∂E

ψ v · νφ div nφ dPφ −
∫
∂E

[
(Id − νφ ⊗ nφ)∇ψ

] · v dPφ. (24)

Formula (23) will be the starting point for our definition ofφ-tangential divergence
in the nonsmooth case. Let us introduce theφ-tangential divergence for vector fields
v ∈ L2(∂E;Rn) as a bounded linear operator on Lip(∂E).
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Definition 4.1. Let (E, nφ) ∈ Rφ(R
n) and letv ∈ L2(∂E;Rn). We define the

function divφ,nφ,τ v : Lip(∂E)→ R as follows: for anyψ ∈ Lip(∂E) we set

〈divφ,nφ,τ v, ψ〉 :=
∫
∂E

ψ v · νφ divτ nφ dPφ −
∫
∂E

[
(Id − νφ ⊗ nφ)∇τψ

]· v dPφ.
(25)

Remark 4.2. Definition 4.1 cannot be easily adapted when(E, nφ) is aφ-regular
set in the sense of [6] (see Remark 3.2). For instance, if we assume thatnφ is
only bounded, the definition of divτ nφ seems to require an integration by parts
formula involving the Euclidean mean curvature of∂E, which cannot be in principle
computed, since∂E is only Lipschitz continuous.

The following observations are immediate.

(i) If ψ is extended out of∂E by a differentiable functionψe, then(Id − νφ ⊗
nφ)∇τψ = (Id−νφ⊗nφ)∇ψe on∂E, i.e., any Euclidean normal component
of the gradient ofψ is killed in formula (25) by the operator Id− νφ ⊗ nφ .
This is a consequence of (5).

(ii) The operator divφ,nφ,τ v is a linear continuous map on Lip(∂E).
(iii) In the smooth case, i.e., for strictly convex smoothφ2 and(φo)2 and smooth

setsE, divφ,nφ,τ v = tr
[
(Id − nφ ⊗ νφ)∇v

]
, for anyv ∈ C1(U(∂E);Rn).

The operator divφ,nφ,τ depends onφ and could depend, in general, onnφ .

Definition 4.3. Let (E, nφ) ∈ Rφ(R
n) and letv ∈ L2(∂E;Rn). We say that

divφ,nφ,τ v is independent of the choice ofnφ if, given n∗φ ∈ Lipν,φ(∂E;Rn), we
have

〈divφ,nφ,τ v, ψ〉 = 〈divφ,n∗φ,τ v, ψ〉 ∀ψ ∈ Lip(∂E).

When divφ,nφ,τ v is independent of the choice ofnφ , we simply set divφ,τ v :=
divφ,nφ,τ v.

If X ∈ L2(∂E;Rn) is tangent to∂E andN ∈ Norφ(∂E;Rn), it turns out that
divφ,nφ,τX and divφ,nφ,τN are independent of the choice ofnφ , see (A2) of Lemma
4.4 and Corollary 4.7.

Lemma 4.4. Let (E, nφ) ∈ Rφ(R
n). The following assertions hold.

(A1) For any ψ ∈ Lip(∂E) we have 〈divφ,nφ,τ nφ, ψ〉 =
∫
∂E
ψ divτ nφ dPφ .

(A2) Let X ∈ L2(∂E;Rn) be tangent to ∂E. Then

〈divφ,nφ,τX,ψ〉 = −
∫
∂E

∇τψ ·X dPφ ∀ψ ∈ Lip(∂E).

In particular, divφ,nφ,τX is independent of the choice of nφ .

(A3) Let X ∈ L2(∂E;Rn) be tangent to ∂E. Then 〈divφ,τX,1〉 = 0.
(A4) Let N1, N2 ∈ Norφ(∂E;Rn). Then 〈divφ,nφ,τ (N1 −N2),1〉 = 0.
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Proof. If v is such thatv · nφ = 1, (25) becomes

〈divφ,nφ,τ v, ψ〉 =
∫
∂E

ψ divτ nφ dPφ −
∫
∂E

∇τψ · (v − nφ) dPφ.

Letting v = nφ , assertion (A1) follows. Assertion (A2) is immediate, and (A3)
follows from (A2).Assertion (A4) follows from (A3), sinceN1−N2 ∈ L2(∂E;Rn)
is tangent to∂E.

A refinement of assertion (A1) of Lemma 4.4 is given in Proposition 4.6 below.
The following lemma, which follows from (P5) of Lemma 3.5, shows that for

anyη ∈ Lipν,φ(∂E;Rn) the Euclidean tangential divergence ofη coincides with
the divergence of the extensionηe of η.

Lemma 4.5. Let (E, nφ) ∈ Rφ(R
n) and let η ∈ Lipν,φ(∂E;Rn). Let U(∂E) and

πη be as in Lemma 3.3, and set ηe(z) := η(πη(z)) for any z ∈ U(∂E). Then, for
Hn−1-almost every x ∈ ∂E,

divτ η(x) = div ηe(x) = tr
((

Id − nφ(x)⊗ νφ(x)
)
∇ηe(x)

)
. (26)

The following proposition shows that the operator divφ,nφ,τ coincides with the
operator divτ on vector fields of Lipν,φ(∂E;Rn).
Proposition 4.6. Let (E, nφ) ∈ Rφ(R

n) and let η ∈ Lipν,φ(∂E;Rn). Then

〈divφ,nφ,τ η, ψ〉 =
∫
∂E

ψ divτ η dPφ ∀ψ ∈ Lip(∂E). (27)

In particular, divφ,nφ,τ η is independent of the choice of nφ .

Proof. Fix ψ ∈ Lip(∂E), and write∫
∂E

ψ divτ η dPφ =
∫
∂E

ψ divτ nφ dPφ +
∫
∂E

ψ divτ (η − nφ) dPφ. (28)

Setζ := η − nφ . LetU(∂E) andπ := πη be as in Lemma 3.4, and setψe(z) :=
ψ(π(z)), ηe(z) := η(π(z)), ζ e(z) := ζ(π(z)) for z ∈ U(∂E). Let ε > 0 be
small enough. Recalling (4), the coarea formula for Lipschitz maps [15], the one-
homogeneity ofφo and (9), we have∫

{−ε<dEφ <ε}
ψedivζ e dz =

∫
{−ε<dEφ <ε}

ψedivζ e φo(∇dEφ ) dz

=
∫ ε

−ε

∫
{dEφ =t}

ψedivζ e φo
( ∇dEφ
|∇dEφ |

)
dHn−1(z) dt

=
∫ ε

−ε

∫
{dEφ =t}

ψedivζ e dPφ dt.

(29)
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Recalling (8) we have∫ ε

−ε

∫
{dEφ =t}

ψedivζ e dPφ dt =
∫ ε

−ε

∫
{x+tη(x):x∈∂E}

ψedivζ e dPφ dt (30)

=
∫ ε

−ε

∫
∂E

ψe(x + tη(x))divζ e(x + tη(x))
· φo(ν(x + tη(x))) dHn−1(x + tη(x)) dt.

From (9) we haveφo(ν(x + tη(x))) = φo(ν(x)) for Hn−1-almost everyx ∈
∂E. Moreoverψe(x + tη(x)) = ψ(x) by definition, anddHn−1(x + tη(x)) =
dHn−1(x)+O(t) by the area formula [15]. Finally

divζ e(x + tη(x)) = divτ ζ(x)+O(t). (31)

Indeed, lettingz := x + tη(x), sinceζ e(z) = ζ e(z− dEφ (z)ηe(z)), it follows that

∇ζ e(z) = ∇ζ e(z− dEφ (z)ηe(z))(Id − ∇dEφ (z)⊗ ηe(z)− dEφ (z)∇ηe(z))
= ∇ζ e(x)(Id − ∇dEφ (x)⊗ η(x)− dEφ (z)∇ηe(z)),

where the last equality follows from (9). Then (31) is a consequence of (26).
From (29), (30) and the above considerations, we then get∫

∂E

ψ divτ ζ dPφ = lim
ε→0

1

2ε

∫
{−ε<dEφ <ε}

ψedivζ e dz. (32)

Applying the Gauss-Green Theorem for fixed positiveε, we obtain∫
{−ε<dEφ <ε}

ψedivζ e dz = −
∫
{−ε<dEφ <ε}

ζ e · ∇ψe dz

+
∫
∂{−ε<dEφ <ε}

ψeζ e · νε dHn−1,

whereνε is the Euclidean outward unit normal to∂{−ε < dEφ < ε}.
Observe now that forHn−1-almost everyz ∈ ∂{−ε < dEφ < ε}, if z = x+tη(x)

for x ∈ ∂E, by (9) we haveζ e(z) · νε(z) = η(x) · νE(x) − nφ(x) · νE(x) = 0.
Hence from (32),∫
∂E

ψ divτ ζ dPφ = − lim
ε→0

1

2ε

∫
{−ε<dEφ <ε}

∇ψe · ζ e dz = −
∫
∂E

∇τψ · ζ dPφ,
(33)

which gives∫
∂E

ψ divτ η dPφ =
∫
∂E

ψ divτ nφ dPφ −
∫
∂E

∇τψ · (η − nφ) dPφ,

which is (27).
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We can now prove that the operator divφ,nφ,τ is independent of the choice of
nφ on the whole of Norφ(∂E;Rn).
Corollary 4.7. Let (E, nφ) ∈ Rφ(R

n). If N ∈ Norφ(∂E;Rn), it follows that
divφ,nφ,τN does not depend on the choice of nφ .

Proof. By (5) we haveN · νφ = 1, hence forψ ∈ Lip(∂E) formula (25) reduces
to

〈divφ,nφ,τ N,ψ〉 =
∫
∂E

ψ divτ nφ dPφ −
∫
∂E

∇τψ · (N − nφ) dPφ. (34)

Let nown∗φ ∈ Lipν,φ(∂E;Rn) and setζ := nφ − n∗φ . From (34) we deduce

〈divφ,nφ,τN − divφ,n∗φ,τ N,ψ〉 =
∫
∂E

ψ divτ ζ dPφ +
∫
∂E

∇τψ · ζ dPφ. (35)

Sincenφ, n∗φ ∈ Lipν,φ(∂E;Rn) we have thatζ ∈ Lip(∂E;Rn) is tangent to∂E,
hence from (A2) of Lemma 4.4 we get

〈divφ,nφ,τN − divφ,n∗φ,τ N,ψ〉 =
∫
∂E

ψ divτ ζ dPφ − 〈divφ,nφ,τ ζ, ψ〉.
Recalling the definition ofζ and applying Proposition 4.6, it follows that the right-
hand side of the above equality vanishes, and the assertion of the corollary follows.

5. The first variation of the functional Pφ

In this section we compute the first variation of the functionalPφ . This com-
putation is quite delicate, because neither the integrandφo(ν) nor the manifold∂E
are smooth. A partial result in this direction can be found in [6].

Let (E, nφ) ∈ Rφ(R
n). The set

{
v ∈ L2(∂E;Rn) : divφ,nφ,τ v ∈ L2(∂E)

}
is

nonempty and is a Hilbert space endowed with the norm(
‖v‖2

L2(∂E;Rn) + ‖divφ,nφ,τ v‖2
L2(∂E)

)1/2
.

We define

H(∂E;Rn) := {
N ∈ Norφ(∂E;Rn) : divφ,τN ∈ L2(∂E)

}
.

Let v ∈ Lip(∂E;Rn). We first compute the first variation of the functionalE →
Pφ(E) along the fieldv. As in the smooth case,Pφ does not change under (in-
finitesimal) tangential variations, and therefore it is enough to considerφ-normal
fields, i.e., we can assume thatv can be written asv = ψη, whereψ ∈ Lip(∂E)
andη ∈ Lipν,φ(∂E;Rn).

Let U(∂E) andπη be as in Lemma 3.3, and defineψe ∈ Lip(U(∂E)), ηe ∈
Lip(U(∂E);Rn) asψe(z) := ψ(πη(z)), ηe(z) := η(πη(z)), and setve := ψeηe.
For t ∈ R with |t | < ε, ε > 0 small enough, definẽF as in (18), and set̃F t(·) :=
F̃ (·, t), Et := F̃ t (E). Define also

Var(Pφ,E)(ψη) := lim inf
t→0+

Pφ(Et )− Pφ(E)
t

.
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Theorem 5.1. The following equalities hold:

Var(Pφ,E)(ψη) = lim
t→0+

Pφ(Et )− Pφ(E)
t

= sup
N∈Norφ(∂E;Rn)

〈divφ,η,τ N,ψ〉.
(36)

Proof. By (P1) of Lemma 3.5Et is Lipschitz; therefore, using the area formula
we have

Pφ(Et ) =
∫
∂E

φo(νt ) dHn−1 +
∫
∂E

φo(ν) divτ v dHn−1 + o(t),

whereνt is defined in (19). Hence, by (21) and (20), Var(Pφ,E)(ψη) is equal to∫
∂E

lim
t→0+

φo(νt )− φo(ν)
t

dHn−1 +
∫
∂E

φo(ν) divτ v dHn−1 (37)

=
∫
∂E

{
max

p∈T o(νφ(x))
p ·
(
− νφ(x)∇ve(x)

+ [ν(x) · ν(x)∇ve(x)]νφ(x))+ divτ v
}
dPφ

=
∫
∂E

{
max

p∈T o(νφ(x))
−p · νφ(x)∇ve(x)+ ν(x) · ν(x)∇ve(x)+ divτ v

}
dPφ,

where the last equality follows fromp · νφ(x) = 1. It is not difficult to prove
now that the mapx → T o(νφ(x)), defined forHn−1-almost everyx ∈ ∂E, is
the smallest closed-valuedHn−1-measurable multifunction with the property that,
for anyN ∈ Norφ(∂E;Rn), N(x) ∈ T o(νφ(x)) for Hn−1-almost everyx ∈ ∂E.
Using this observation, a commutation argument between supremum and integral
(see [9], Lemma 4.3) allows us to prove that the last member of (37) equals

sup
N∈Norφ(∂E;Rn)

∫
∂E

{
−N · νφ∇ve + ν · ν∇ve + divτ v

}
dPφ

=: sup
N∈Norφ(∂E;Rn)

∫
∂E

IN dPφ.

FixN ∈ Norφ(∂E;Rn): recalling the expression of the Euclidean tangential diver-
gence,IN can be written as−N · νφ∇ve + div ve = −N · νφ∇ve + ψediv ηe +
∇ψe · ηe. Therefore, since Lemma 4.5 implies divηe = divτ η on ∂E, we obtain∫

∂E

IN dPφ =
∫
∂E

{
−N · νφ∇ve + ψ divτ η + ∇ψe · η

}
dPφ.

On the other hand, substitutingve = ψeηe into −N · νφ∇ve and using (P5) of
Lemma 3.5, we get−N · νφ∇ve = −∇ψe · N on ∂E. SinceN − η is a tangent
vector field, we have∇ψe ·(N−η) = ∇τψ ·(N−η) on∂E. Therefore we conclude
that∫

∂E

IN dPφ =
∫
∂E

{
ψ divτ η − ∇τψ · (N − η)

}
dPφ = 〈divφ,η,τN,ψ〉,

and the theorem follows.
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Recall that divφ,η,τ N in (36) actually does not depend onη (see Corollary 4.7),
so that Var(Pφ,E)(ψη) is independent ofη. We define (with a little abuse of
notation) the functional Var(Pφ,E) : L2(∂E)→]−∞,+∞] as

Var(Pφ,E)(ψ) :=
 sup
N∈Norφ(∂E;Rn)

〈divφ,τ N,ψ〉 if ψ ∈ Lip(∂E),

+∞ if ψ ∈ L2(∂E) \ Lip(∂E).

Define also

Bφ :=
{
ψ ∈ Lip(∂E) :

∫
∂E

ψ2 dPφ � 1
}
,

Bnφ :=
{
ψη : ψ ∈ Bφ, η ∈ Lipν,φ(∂E;Rn)

}
.

(38)

The next result gives, roughly speaking, the expression of minus the norm of the
gradient of the functionalPφ .

Proposition 5.2. We have

inf
ψη∈Bnφ

Var(Pφ,E)(ψη) = − min
N∈H(∂E;Rn)

(∫
∂E

(divφ,τN)
2 dPφ

) 1
2

.

Proof. Using Theorem 5.1 we get

inf
ψη∈Bnφ

Var(Pφ,E)(ψη) = inf
ψ∈Bφ

Var(Pφ,E)(ψ)

= inf
ψ∈Bφ

sup
N∈Norφ(∂E;Rn)

〈divφ,τ N,ψ〉 =: I. (39)

Notice that the map(ψ,N) ∈ Bφ × Norφ(∂E;Rn) → 〈divφ,τ N,ψ〉 is bilinear.
Moreover bothBφ and Norφ(∂E;Rn) are convex sets, andBφ (or Norφ(∂E;Rn))
is closed in theW1,∞(∂E) topology (resp., strongly closed and weakly compact
in theL2(∂E;Rn) topology). Therefore, by a commutation result between sup and
inf (see [10, Proposition 1.1]), we get

I = sup
N∈Norφ(∂E;Rn)

inf
ψ∈Bφ

〈divφ,τ N,ψ〉.

SinceN /∈ H(∂E;Rn) implies infψ∈Bφ 〈divφ,τ N,ψ〉 = −∞, we deduce

I = sup
N∈H(∂E;Rn)

inf
ψ∈Bφ

〈divφ,τ N,ψ〉.

Using the fact that infψ∈Bφ 〈divφ,τ N,ψ〉 = inf
ψ∈BφL

2 〈divφ,τ N,ψ〉, it follows

that

I = sup
N∈H(∂E;Rn)

−
∫
∂E
(divφ,τN)2 dPφ(∫

∂E
(divφ,τN)2 dPφ

) 1
2

= − inf
N∈H(∂E;Rn)

(∫
∂E

(divφ,τN)
2 dPφ

) 1
2

.

Thanks to Proposition 6.1 below, the infimum in the above inequality is a minimum,
and the proposition is proved.
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Given v ∈ L2(∂E;Rn) such thatv = ψÑ for someψ ∈ L2(∂E) andÑ ∈
H(∂E;Rn), we define

V Eφ (v) := sup
N∈H(∂E;Rn)

∫
∂E

ψ divφ,τN dPφ =: V Eφ (ψ),

whereV Eφ : L2(∂E)→]−∞,+∞].
The following observation shows thatV Eφ is the lower semicontinuous envelope

of Var(Pφ,E), with respect to theL2(∂E) topology.

Proposition 5.3. The functional V Eφ is the greatest L2(∂E) lower semicontinuous
functional less than or equal to Var(Pφ,E). In particular,

inf
ψ∈Bφ

Var(Pφ,E)(ψ) = inf
ψ∈Bφ

V Eφ (ψ).

Proof. Givenψ ∈ L2(∂E) andε > 0, we set

Bε(ψ) :=
{
ψ̃ ∈ Lip(∂E) : ||ψ̃ − ψ ||L2(∂E) < ε

}
.

TheL2(∂E) lower semicontinuous envelope of Var(Pφ,E) is, by definition

sup
ε>0

inf
ψ̃∈Bε(ψ)

Var(Pφ,E)(ψ̃).

By Theorem 5.1, this is equal to

sup
ε>0

inf
ψ̃∈Bε(ψ)

sup
N∈Norφ(∂E;Rn)

〈divφ,τ N, ψ̃〉.

Commuting the sup and the inf [10], we then have

sup
ε>0

inf
ψ̃∈Bε(ψ)

sup
N∈Norφ(∂E;Rn)

〈divφ,τ N, ψ̃〉

= sup
ε>0

sup
N∈Norφ(∂E;Rn)

inf
ψ̃∈Bε(ψ)

〈divφ,τ N, ψ̃〉

= sup
ε>0

sup
N∈H(∂E;Rn)

inf
ψ̃∈Bε(ψ)

∫
∂E

ψ̃ divφ,τN dPφ

= sup
N∈H(∂E;Rn)

sup
ε>0

inf
ψ̃∈Bε(ψ)

∫
∂E

ψ̃ divφ,τN dPφ

= sup
N∈H(∂E;Rn)

∫
∂E

ψ divφ,τN dPφ = V Eφ (ψ),

which proves the assertion.

The following result, which follows from Proposition 5.3, shows that the di-
rection of minimal slope for the functionalPφ is given byNmin, and is one of the
incentives for introducing and studying the functional in (1) in connection with
motion by crystalline mean curvature.
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Corollary 5.4. The following equality holds:

inf
ψη∈Bnφ

Var(Pφ,E)(ψη) = V Eφ (ψNmin),

whereNmin is a minimizer of the functionalN → ∫
∂E
(divφ,τN)2 dPφ (see Propo-

sition 6.1 below, with g = 0) and

ψ = − divφ,τNmin(∫
∂E
(divφ,τNmin)2 dPφ

) 1
2

.

6. The minimum problem on ∂E: L∞ regularity

Letg ∈ L2(∂E) and letF : H(∂E;Rn)→ [0,+∞[ be the functional defined
as

F(N) :=
∫
∂E

(
divφ,τ N − g)2 dPφ. (40)

We are interested in studying the following minimum problem on∂E:

inf
{F(N) : N ∈ H(∂E;Rn)} . (41)

It is clear that problem (41) is equivalent, up to constants, to the problem

inf

{∫
∂E

(divφ,τ N)
2 − 2gdivφ,τN dPφ : N ∈ H(∂E;Rn)

}
. (42)

Proposition 6.1. Problem (41) admits a solution. Moreover, if N1 and N2 are two
minimizers of (41), then divφ,τ N1(x) = divφ,τ N2(x) for Hn−1-almost every
x ∈ ∂E.

Proof. Define
C := {divφ,τN : N ∈ H(∂E;Rn)}.

ThenC is a convex subset ofL2(∂E). Let us prove thatC is closed inL2(∂E). Let
fk := divφ,τNk ∈ C be such thatfk → f in L2(∂E) ask→∞. We have to prove
thatf ∈ C. Since supk ‖Nk‖L2(∂E;Rn) < +∞, possibly passing to a subsequence
(still denoted by(Nk)) we can assume that(Nk) converges weakly inL2(∂E;Rn)
to a vector fieldN ∈ L2(∂E;Rn). SinceNk ∈ T o(νEφ ), by Mazur’s Theorem we
find thatN ∈ Norφ(∂E;Rn). Moreover, for anyψ ∈ Lip(∂E)we have, using (25),∫

∂E

ψf dPφ = lim
k→+∞

∫
∂E

ψ divφ,τ Nk dPφ

=
∫
∂E

ψ divτ nφ dPφ − lim
k→+∞

∫
∂E

∇τψ · (Nk − nφ) dPφ

=
∫
∂E

ψ divτ nφ dPφ −
∫
∂E

∇τψ · (N − nφ) dPφ.

It follows thatf = divφ,τN , henceC is closed inL2(∂E;Rn). The proof of the
proposition is then is a standard consequence of minimization on convex sets of
strictly convex functionals on Hilbert spaces.



184 G. Bellettini, M. Novaga & M. Paolini

LetNmin ∈ H(∂E;Rn) be a minimizer ofF . A direct computation shows that
the Euler-Lagrange inequality ofF reads as follows:∫

∂E

(divφ,τNmin − g) divφ,τ (Nmin −N) dPφ � 0 ∀N ∈ H(∂E;Rn). (43)

We now give the definition of mean curvature of a Lipschitzφ-regular set with
respect to the metricφ.

Definition 6.2. LetE ∈ Rφ(R
n). LetNmin be a solution of (41). We set

dmin := divφ,τNmin ∈ L2(∂E).

Wheng = 0, we define theφ-mean curvature κφ of ∂E as

κφ := divφ,τNmin ∈ L2(∂E).

We shall see in Theorem 6.7 that Lipschitzφ-regular sets have actually bounded
φ-mean curvature.

Remark 6.3. SinceF is strictly convex if considered as a function of the diver-
gence, iff is of the formf = divφ,τN for someN ∈ H(∂E;Rn) and if∫

∂E

(f − g)divφ,τ (N −N) dPφ � 0 ∀N ∈ H(∂E;Rn),

thenN is a solution of (41).

The next step is to prove thatdmin ∈ L∞(∂E). To this end we begin with the
following auxiliary lemma, whose standard proof is omitted.

Lemma 6.4. Let a, b ∈ R, a < b and let f, β ∈ L2(∂E). Let µ be a measure on
∂E absolutely continuous with respect to the restriction of Hn−1 to ∂E. Assume

that
∫
∂E

β dµ = 0. Then∫
∂E

fβ dµ =
∫ +∞

−∞

∫
{f>t}

β dµ dt,∫
{a<f<b}

fβ dµ =
∫ b

a

∫
{f>t}

β dµ dt + a
∫
{f>a}

β dµ− b
∫
{f>b}

β dµ.

(44)

The crucial result of this section is the following.

Theorem 6.5. Let E ∈ Rφ(R
n). For any t ∈ R, define

At := {dmin − g > t}, 6t := {dmin − g < t}.
Then∫

At

dmin dPφ �
∫
At

divφ,τ N dPφ ∀ t ∈ R, ∀N ∈ H(∂E;Rn), (45)

and ∫
6t

dmin dPφ �
∫
6t

divφ,τN dPφ ∀ t ∈ R, ∀N ∈ H(∂E;Rn). (46)
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Proof. We shall prove only (45), since the proof of (46) is similar. For simplicity
of notation, set

V := dmin − g.
Moreover, ifχ ∈ H(∂E;Rn) andB ⊆ ∂E is a Borel set, we let

D(B, χ) :=
∫
B

divφ,τ (χ −Nmin) dPφ.

Assume by contradiction that there existλ ∈ R, N ∈ H(∂E;Rn), andc > 0 such
that

D(Aλ,N) = −4c < 0.

SinceAλ =⋃
t>λ At , we have 1At → 1Aλ in L1(∂E) (hence, being characteristic

functions, also inL2(∂E)) ast ↓ λ. Therefore there existsε > 0 such that

D(At ,N) � −2c ∀ t ∈ [λ, λ+ ε]. (47)

Fix λ′ ∈ R andε′ > 0 with the following properties:

[λ′, λ′ + ε′] ⊆ [λ, λ+ ε], (48)

Hn−1
(
{V = λ′} ∪ {V = λ′ + ε′}

)
= 0. (49)

Clearly from (47) and (48) we get∫ λ′+ε′

λ′
D(At ,N) dt � −2cε′. (50)

Let {fi} be a sequence of functions in Lip(∂E) converging toV in L2(∂E) and
almost everywhere. For anyi ∈ N andt ∈ R we define

Ait := {fi > t}.
We split the proof into three intermediate steps.

Step 1. Let us prove that there existsi0 ∈ N such that∫ λ′+ε′

λ′
D(Ait , N) dt � −cε′ ∀ i � i0. (51)

We claim that

lim
i→+∞

∫ λ′+ε′

λ′
D(Ait , N) dt =

∫ λ′+ε′

λ′
D(At ,N) dt. (52)

By (A4) of Lemma 4.4 we haveD(∂E,N) = 0, hence applying Lemma 6.4 with
f , β, dµ, a, b replaced byfi , divφ,τ (N − Nmin), dPφ , λ′, λ′ + ε′ in that order,
from (44) we find∫ λ′+ε′

λ′
D(Ait , N) dt =

∫
{λ′<fi<λ′+ε′}

fidivφ,τ (N −Nmin) dPφ − λ′D(Aiλ′ , N)

+ (λ′ + ε′)D(Aiλ′+ε′ , N).
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In view of this equality and of the corresponding one withfi andAit replaced by
V andAt , to prove (52) it is enough to show that 1Ai

λ′
(or 1{λ′<fi<λ′+ε′}, 1Ai

λ′+ε′
)

converges to 1Aλ′ (resp., 1{λ′<V<λ′+ε′}, 1Aλ′+ε′ ) in L1(∂E) asi → +∞. We show

this property forAi
λ′ , the other cases being similar. DefineAi := (Aiλ′ \Aλ′)∪(Aλ′ \

Ai
λ′). It is enough to check thatHn−1(∩i∪m�i Am) = 0. Letx ∈ ∩i∪m�i Am. Then

there exists a subsequence(ik) such thatfik (x) > λ
′ andV (x) � λ′, orfik (x) � λ′

andV (x) > λ′ for anyk ∈ N.
Sincefi → V almost everywhere, we getHn−1(∩i ∪m�i Am) � Hn−1({V =

λ′}) = 0, by (49). The claim is proved. Then (51) follows from (52) and (50), and
Step 1 is proved.

Step 2. Let us prove that

lim inf
i→+∞

∫
∂E

fidivφ,τ (χ −Nmin) dPφ � 0 ∀χ ∈ H(∂E;Rn). (53)

Let χ ∈ H(∂E;Rn). Sincefi → V in L2(∂E), we have

lim inf
i→+∞

∫
∂E

fidivφ,τ (χ −Nmin) dPφ =
∫
∂E

V divφ,τ (χ −Nmin) dPφ � 0,

(54)

where the last inequality follows from the Euler inequality (43). Step 2 is proved.

Fix now δ > 0 and definẽη = η̃(η, λ′, ε′, i, δ) : ∂E→ R
n as follows:

η̃ :=
{
N on {λ′ < fi < λ′ + ε′},
Nmin on {fi < λ′ − δ} ∪ Aiλ′+ε′+δ,

and

η̃(x) :=



ψ
(
fi(x)−λ′+δ

δ

)
N(x)+

(
1− ψ

(
fi(x)−λ′+δ

δ

))
Nmin(x)

for x ∈ {λ′ − δ � fi � λ′},

ψ
(
fi(x)−λ′−ε′

δ

)
Nmin(x)+

(
1− ψ

(
fi(x)−λ′−ε′

δ

))
N(x)

for x ∈ {λ′ + ε′ � fi � λ′ + ε′ + δ},
whereψ has the following properties:ψ ∈ C∞([0,1]; [0,1]), there isσ ∈ ]0, 1

2[
such thatψ(s) = 0 for s ∈ [0, σ ], ψ(s) = 1 for s ∈ [1− σ,1], andψ|[σ,1−σ ] is
strictly increasing.

Note thatη̃ ∈ H(∂E;Rn) and that(η̃−N) has compact support inAit , for any
t ∈ [λ′, λ′ + ε′]. It follows from (A4) of Lemma 4.4 that∫

Ait

divφ,τ (η̃ −N) dPφ = 0 ∀ t ∈ [λ′, λ′ + ε]. (55)

Therefore from (55) and (51)∫ λ′+ε′

λ′
D(Ait , η̃) dt =

∫ λ′+ε′

λ′
D(Ait , N) dt � −cε′ ∀ i � i0. (56)
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Step 3. Let us prove that

0= lim
δ↓0

∫ λ′

λ′−δ
D(Ait , η̃) dt = lim

δ↓0

∫ λ′+ε′+δ

λ′+ε′
D(Ait , η̃) dt ∀ i � i0. (57)

Since(η̃−Nmin) has compact support inAi
λ′−δ, using (A4) of Lemma 4.4 we have

D(Ai
λ′−δ, η̃) = 0. Therefore, by Lemma 6.4 applied withf , β, dµ, a, b replaced

by fi , divφ,τ (η̃ −Nmin), dPφ , λ′ − δ, λ′ in that order, we have∫ λ′

λ′−δ
D(Ait , η̃) dt =

∫
{λ′−δ<fi<λ′}

fi divφ,τ (η̃ −Nmin) dPφ + λ′D(Aiλ′ , η̃).
(58)

Define now

hi(x) :=
{
fi(x) if x ∈ {fi < λ′},
λ′ if x ∈ {fi � λ′}.

Thenhi ∈ Lip(∂E), and recalling that̃η = Nmin in a neighbourhood of{fi <
λ′ − δ}, we get∫

{λ′−δ<fi<λ′}
fi divφ,τ (η̃ −Nmin) dPφ + λ′D(Aiλ′ , η̃) =

∫
∂E

hidivφ,τ (η̃ −Nmin) dPφ.

(59)

Hence, by (58), (59), and using (25) we deduce∫ λ′

λ′−δ
D(Ait , η̃) dt = −

∫
∂E

∇τ hi · (η̃ −Nmin) dPφ

= −
∫
{λ′−δ<fi<λ′}

∇τ hi · (η̃ −Nmin) dPφ

� ‖η̃ − Nmin‖L∞(∂E)‖∇τ hi‖L∞(∂E)Hn−1({λ′ − δ < fi < λ
′}).

Now the first equality of (57) follows by observing thatHn−1({λ′ − δ < fi <

λ′}) ↓ 0 asδ→ 0. The other equality is similar. Step 3 is proved.

We can now conclude the proof of the theorem. Recalling Step 2, we can fix a
natural numberi1 � i0, such that∫

∂E

fi1 divφ,τ (η̃ −Nmin) dPφ > −c ε
′

4
.

We have

− c ε
′

4
<

∫
∂E

fi1divφ,τ (η̃ −Nmin) dPφ

=
∫ λ′−δ

−∞
D(A

i1
t , η̃) dt +

∫ λ′

λ′−δ
D(A

i1
t , η̃) dt +

∫ λ′+ε′

λ′
D(A

i1
t , η̃) dt

+
∫ λ′+ε′+δ

λ′+ε′
D(A

i1
t , η̃) dt +

∫ +∞

λ′+ε′+δ
D(A

i1
t , η̃) dt

:= I + II + III + IV +V.
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By the definition of̃η and Lemma 4.4 we have I= V = 0. In addition III� −cε′
by (56), and II and IV tends to zero asδ ↓ 0 by step 3. Therefore, takingδ > 0
small enough, we get II+ IV � c ε′2 . Then

−ε c
′

4
<

∫
∂E

fi1divφ,τ (η̃ −Nmin) dPφ � −ε′c + ε′ c
2
= −ε′ c

2
,

which is a contradiction.

Since
∫
∂E

divφ,τ (N − Nmin) dPφ = 0, from (45) and (46) it follows that the
statement of Theorem 6.5 holds also if, in the definitions ofAt and6t , we write
the weak inequalities in place of the strict inequalities.

The following observation, which follows from Lemma 6.4 and Remark 6.3, is
a kind of converse of Theorem 6.5.

Proposition 6.6. Let N ∈ H(∂E;Rn) and define Bt := {divφ,τ N − g > t} for
any t ∈ R. If∫

Bt

divφ,τN dPφ �
∫
Bt

divφ,τ χ dPφ ∀ t ∈ R, ∀χ ∈ H(∂E;Rn), (60)

then divφ,τ N = dmin.

Proof. Recalling (A4) of Lemma 4.4, we have∫
∂E

divτ nφ dPφ =
∫
∂E

divφ,τN dPφ =: c.

Setf := divφ,τN − g andβ := divφ,τN − c. Assumption (60) can be rewritten as∫
{f>t}

β dPφ �
∫
{f>t}

(divφ,τ χ − c) dPφ ∀ t ∈ R, ∀χ ∈ H(∂E;Rn).

Clearly
∫
∂E
β dPφ = 0. Applying (44) we get∫

∂E

fβ dPφ =
∫ ∞

−∞

∫
{f>t}

β dPφ dt

�
∫ ∞

−∞

∫
{f>t}

(divφ,τ χ − c) dPφ dt =
∫
∂E

f (divφ,τ χ − c) dPφ.

It follows that∫
∂E

f (β − divφ,τ χ + c) dPφ � 0 ∀χ ∈ H(∂E;Rn),

that is,∫
∂E

(divφ,τN − g) divφ,τ (N − χ) dPφ � 0 ∀χ ∈ H(∂E;Rn).

Using Remark 6.3 the assertion follows.
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Note that Proposition 6.6 still holds if, in the definition ofBt , we replace the
weak inequality with the strict inequality.

We are now in a position to prove theL∞ regularity of the divergence of
solutions of (41).

Theorem 6.7. Let E ∈ Rφ(R
n) and assume that g ∈ L∞(∂E). Then

dmin ∈ L∞(∂E). (61)

More precisely,

‖dmin − g‖L∞(∂E) � ‖divτ nφ − g‖L∞(∂E). (62)

Proof. SetV := dmin − g. By (45) we have∫
At

V dPφ �
∫
At

(
divτ nφ − g

)
dPφ � ‖divτ nφ − g‖L∞(∂E)Pφ(At ) ∀ t ∈ R,

so that

t � 1

Pφ(At )

∫
At

V dPφ � ‖divτ nφ − g‖L∞(∂E) ∀ t ∈ R with At �= ∅,

which impliesHn−1 − esssup∂EV � ‖divτ nφ − g‖L∞(∂E).
Since

∫
∂E

divφ,τ (Nmin − nφ) dPφ = 0, using (46) we also get∫
6t

V dPφ �
∫
6t

(
divτ nφ − g

)
dPφ, ∀ t ∈ R,

which implies

t � 1

Pφ(6t )

∫
6t

V dPφ � −‖divτ nφ − g‖L∞(∂E) ∀ t ∈ R with 6t �= ∅.

It follows thatHn−1 − essinf∂EV � −‖divτ nφ − g‖L∞(∂E). This concludes the
proof of (62).

Remark 6.8. Thanks to Theorem 6.7, ifg ∈ L∞(∂E) the functionalF can be
equivalently minimized on the space

Ĥ (∂E;Rn) := {
N ∈ Norφ(∂E;Rn) : divφ,τN ∈ L∞(∂E)}.

Moreover,

‖dmin − g‖L∞(∂E) = min
{‖divφ,τN − g‖L∞(∂E) : N ∈ Ĥ (∂E;Rn)}.
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