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Abstract

The principal focus of the article is the construction of classical weak solutions
of the initial value problem for a class of systems of viscoelasticity in arbitrary
spatial dimension. The class of systems studied is large enough to incorporate
certain requirements dictated by frame indifference and also has a structure which
allows for a variational treatment of the time-discretized problem. Weak solutions
for this system are constructed under certain monotonicity hypotheses and are
shown to satisfy various priori estimates, in particular giving improved regularity
for the time derivative. Also measure-valued solutions are obtained under a uniform
dissipation condition, which is much weaker than monotonicity. A special case of
the viscoelastic system is the gradient flow of a non-convex potential, for which
measure-valued solutions are here obtained, a new result in the vectorial case.
Furthermore, inthis setting itis possible to show that these measure-valued solutions
satisfy a certain property which ensures they coincide with the classical weak
solution when this exists, as for example in the convex case where existence and
uniqueness are well known.

1. Introduction and statement of results

1.1. The equations
This article concerns the system of equations of viscoelasticity

gy =V-X(Vu,Vuy) = V-o(Vu) +V -1t(Vu, Vu,) (1.2)
as well as that of the gradient flow,
vy =V.1(Vv), (1.2)
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which can be viewed as a special case of (1.1) whenO andt (F, F) = 7(F).
At fixed times, u,v : Q ¢ R" — R™, whereQ is an open, bounded set with
Lipschitz boundary angk, n € N. Both systems are supplemented with a Dirichlet
boundary condition

ut,x)=0, v(,x)=0 Vr=0, x €02, (1.3)
as well as initial conditions,

u(0, x) = uo(x),

1.4
u; (0, x) = vo(x),
whereug, vg € H&(Q) in the case of (1.1), and
v(0, x) = vo(x), (1.5)

wherevg € H&(Q) in the case of (1.2). The relation between the total tefisor
the elastic tensar and the dissipative tenseris given through the definitions

o(F)=X(F,0), t(F,F)=X(F, F)—X(F,0)

so thatr vanishes with the strain rate(F, 0) = 0. For (1.1) it is also assumed
that there exists an energy functid¥, not necessarily convex, with'(F, F) =
W(F) + G(F, F) whereVpW(F) = o(F) andV;G(F, F) = ©(F, F). In the
case of (1.2), it is assumed thatis a potentialz (F) = VyG. Assumptions made
on the energy and stress tensors are discussed below and are given precisely in
Section 1.2. It will be seen that monotonicity properties @re irrelevant for the
existence of a classical weak solution of (1.1), while monotonicity af the £
variables is important.

Although heren, n € N are not restricted, physically interesting is (1.1) with
n = 3,m = 1,3. Whenn,m = 3 this system comprises the equations of vis-
coelasticity. In certain cases, as in shearing, the equations degenerate to a single
dependent variable so thats scalar-valued. In the case of a single equation (with
n = 3,m = 1), (1.1) represents antiplane shear motion of a viscoelastic solid.

Informal description of results. The theorems summarized here are stated pre-
cisely in Section 1.3. Firstly, without any monotonicity assumptions pn other

than the dissipation condition (1.17) or (1)1 &xistence of a Young measure so-
lution of (1.1) is shown with the method of time-discretization. From the proof,
without the use of a dissipation condition, there follows also the existence of a
Young measure solution of the gradient flow. Next, | turn to the question of when
these measure-valued solutions essical weak solutions, that is, when are the
Young measures obtained delta functions. In Theorem A it is shown that under a
monotonicity assumption onwhich does not amount to full convexity 6f, the
constructed Young measure solution is tineque, classical weak solutionto (1.1).

For the gradient flow (1.2) the same monotonicity condition amounts to strict
convexity of G (which here depends only af) and in this case a classical weak
solutionis recovered directly from the regularization used to obtain measure-valued
solutions. In fact it is shown in Theorem B that, f@rstrictly convexany measure-
valued solution satisfying a pseudomonotonicity-type condition (an independence
property), isthe unique classical solution of (1.2). Of course, this conclusion also
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follows from the one made about (1.1) in Theorem A; however, it merits a separate
proof which | give, in order to illustrate that this pseudomonotonicity condition
reflects the differences in type between (1.1) and (1.2). (The presence of the
term changes significantly the type as well as the convergence properties of the
approximate solutions obtained under the same regularization).

In the remainder of the introduction | discuss the background to the equations,
assumptions made and their physical significance.

Thegradient flow. The role of the monotonicity of in the existence of classical
weak solutions is exemplified here: under the hypothesis of strict monotonicity of
7, as for example in the case of a strictly convex poter¥iél = z, it is well
known that classical weak solutions to the system (1.2) exist, while wignon-
monotone such solutions do not exist in general. Indeed, in regions of backwards
monotonicity the equation with initial conditions on the hyperplagre0 ceases to

be well posed and the forward—backward nature of the system forces oscillations
in approximating sequences.

In the absence of any monotonicity conditions, the best that can be expected
in general is the existence of very weak, typically Young measure, solutions. Com-
bining variational methods and the Young measure theory develop@draxr
[28] to treat conservation laws, time-discretization was first implemented in the
context of non-monotone evolutionary equationKoy¥DERLEHRER & PEDREGAL
[20] for the scalar case of (1.2) to obtain Young measure solutions. In the scalar
case a Young measure solution is unique if the independence property mentioned
above holds and coincides with a classical solution when one exists (cf. [13]). In the
vectorial case, however, independence is not immediately satisfied by construction,
hence uniqueness follows only for the measure-valued solutions which satisfy it.
This difference is linked to the fact that in the scalar case the relaxation of the non-
convex energy is convex, equivalent to a monotonicity condition for the gradient,
while in the vectorial case the relaxation is quasiconvex which seems not to imply
any such condition.

In this connection there are certain open questions, namely, how to solve the
gradient flow (1.2) under weaker convexity assumption&psuch as polyconvex-
ity or quasiconvexity. Under these more general conditions (or even under uniform
strict quasiconvexity introduced WBvans [17]), the existence of weak solutions of
the gradient flow is apparently unknown. In the same vein is the result of a classical
weak solution of (1.2) under the assumptionguisi monotonicity in ZEIDLER [29],
HAMBURGER [19] and LaNDEs [22], extending the proof oZHANG [30] and the
stronger assumption pseudomonotonicity introduced by.-L. Lions [23, Chapter
2.4)).

Weak solutions of elasticity. Before discussing viscoelasticity, it may be useful
to make a comparison with the equation of elastodynamics,

uy =V -o0(Vu), (1.6)

with ¢ = VW non-monotone. Existence of a Young measure solution was shown
in [14] for the scalar equatiom = 1 via the time-discretization method. The
difference in type between the three nonlinear equations, (1.2), (1.6) and (1.1) is
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reflected in this method, for example, in the way compactness of the approximate

solutions is obtained in order to yield a measure-valued solution as well as in the

properties of such solutions. The question arises as to what extent this approach
yields classical weak solutions when such exist.

In this connection the study of elastodynamics is undertaken in [15, 16]: in the
first stage we consider (1.6) with= m = 1 with o strictly monotone. It is shown
in [15] that the measure-valued solutions constructed by time-discretization satisfy
entropy inequalities and that DiPerna’s theorem (1983) applies, so we can deduce
that these are classical weak solutions.

The second stage of the analysis in [16] concerns (1.6) term = 3 with W
polyconvex and is motivated by recent results of Qin (1998) seErmos [12,
Chapter 5] on symmetrizing these equations by embedding them into an enlarged
system of conservations laws which includes the evolution of null Lagrangians.
Approximations are produced by constrained minimization and it is shown that in
the limit the elasticity equation is satisfied in a measure-valued sense while these
constraints hold in the classical weak sense.

The equations of viscoelasticity. Much less has been established for dynamical
viscoelasticity (1.1). When depends nonlinearly o, existence has been ad-
dressed mostly for = m = 1. In this case, without any monotonicity assumptions
ono and strict monotonicity of only in theu,, variable and dissipative, (1.17),
Darermos [11] showed the existence of a Holder solution and investigated its time-
asymptotic properties (also as these pertain to boundary conditions). Incorporating
the constraints of infinite energy for total compression and local invertibility of
discussed belowANnTmMAN & SEIDMAN [4] showed the existence of classical weak
solutions forn = m = 1 under (1.17). Under strict monotonicity &f in bothu,
andu,,, ANTMAN & KocH [6] found classical time-periodic solutions of the one-
dimensional nonlinear equation using Hopf bifurcation. In three dimensions with
dissipz)ativer, PoTIER-FERRY [26] showed the asymptotic stability of the equilibrium

in WP,

The special case of (1.1) with(F, F) = F gives rise to the semilinear case
where the strictly monotone dependence on the highest derivative term gives the
equation its (forward) parabolic character. This case has been the subject of signif-
icantly more literature, [1,2,25,27,18] among others, where the existence of weak
solutions, asymptotic analysis and stability have been investigated. In one dimen-
sion this example is physically realistic; however, in many dimensions it conflicts
with the requirement dirame indifference.

Frameindifferenceand other constraintswhenn = m. Physical considerations
delimit the constitutive equation, or functional form, of the energie®’, G and
stress tensoks, . Frame indifference is the requirement that when a rigid rotation,
possibly time-dependent, is superimposed on the matjdhen scalar quantities

like the energy remaiimvariant. In other words this axiom states that under the
action ofS O (n) on invertible matrices Mat(n) given by(Q, F) — QF, the set of
frame indifferent energies and stress tensors are those whitikegrpoints under

the induced action of O (n) on the functions on Mat(n) and their derivatives
(tensorial quantities like stress tensors vary covariantly). In the case of elasticity
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this meandW (QF) = W(F), equivalentlyo (QF) = Qo (F) for all rotationsQ
and invertibleF .

For viscoelasticity this condition implies that for @ll F as abovef’ € Mat(n)
and forallQ € TpSO(n), i.e., withQ Q* + Q 0* = 0, the stress tensor satisfies

S(QF, QF + QF) = QX(F, F) (1.7)

(which is equivalent toV(QF, OF + QF) = W(F, F) when there is an energy
function). Another form of (1.7) is obtained (see, e.g., [3, Chapter 12]) using the
polar decompositioF = RU for F € Matt(n) with R € SO(n) andU* = U,
U2 = F*F. Then (1.7) impliesS(F, QF + QF) = RX(U, U) forall O, R as
above and/ determined by = RU + RU.

Mathematical consequences of frame indifference are analysed in, for example,
[3, Chapter 12], [9, Chapters 3, 4], [12, Chapter 2], [24, Chapter 2]. A similar invari-
ance requirement is that tdotropy. Two further constraints desirable on physical
grounds areVu € Mat*(n) for which detvVu > 0, restricting to orientation pre-
serving deformations, and the conditisi( F) — +oo as detF — 0+, reflecting
that infinite energy is required for total compression. These significantly constrain
the constitutive equations fa¥ and X (as well as for higher order tensors) and
are hard to handle: for example, d&t > 0 is not a weakly closed condition in
Sobolev spaces.

A theorem of Noll (1958) states that a tensoris frame indifferent if and
only if there is a symmetric tensérsuch thatr (F) = Ro(U) = FS(U) for all
F e Mat™(n) with F = RU andR, U as above. For viscoelasticity this condition
states (cf. [3, Chapter 12]) that there exists a symmetric tefisach that

t(F, F) = FS(U, U). (1.8)

Based on this equivalent conditioANT™MAN [5] showed that certain constitutive
equations for with affinedependence oA (e.g., all forms (x, F, F) = a(x)F or
t(x, F, F) = Ep(x, F)F) conflict with (1.8) and hence with frame indifference.

An important aspect is the implication of frame indifference for ¢havexity
properties ofW andG. Although convexity does not directly conflict with frame
indifference, these two conditions together are physically too restricted: a theorem
of Coleman and Noll (1959) for elastostatics (see [10, Section 8, Theorem 2])
implies that frame indifference and convexity of the elastic enéigpreclude
stability under compression stresses (in a precisely given sense), stability being
a postulate of elasticity theory. Furthermore, convexity is incompatible with the
property that become singular on singular matrices, cf. [9, Theorem 4.8-1]. It
follows thatW or W cannot be convex.

Morrey’s theorem (1952) links the weak lower semicontinuity and quasicon-
vexity under conditions oV disallowing singularities. In this regaBhLL in [7]
established that the conditionjpdlyconvexity on W is sufficient for the conclusion
of Morrey’s theorem to hold under conditions sufficiently weak to allow singular
energies and treat the constraint ¥at > 0.

Turning now to properties ofi (F, -), | have made two assumptions to obtain
classical weak solutions, namely (1.11) and (1.18). To justify the former in the
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context of frame indifference, Dafermos provided an example which is presented
in Appendix B. Ball recently observed that the strict convexityGaf, -) implied

by (1.18) conflicts with (1.8) (see Appendix B) and thus is too stringent for frame
indifference (except whem = n = 1, and indeed strict monotonicity is assumed

in [11] and [4]). Nevertheless, non-strict convexity@{F, -) is compatible with

(1.8) and this is also proved in Appendix B. Therefore, it would be desirable to
replace the assumption (1.18) with the weaker assumption of convexity

((t(F,F)—t(H,H)) - (F — H) >0, (1.9)

although | am not able to circumvent (1.18) in the present framework.

1.2. Assumptions

1.2.1. Assumptions for viscoelasticity. ~We consider the class of stress tensors
for S(F, F) = o(F) + t(F, F) such that there existV € Cl(Mat(m x n)),
G € CY(Mat(m x n), Mat(m x n)) with

o(F) = 0pW(F), (1.10)
T(F, F) = 3;G(F, F), (1.12)

andG(F,0) = t(F,0) = Oforall F. Itis assumed that andz (F, -) are Lipschitz
continuous with constants,, for o, and L., uniformly in F for t. These two
Lipschitz conditions are used to derive the estimates in Section 2 and are also
essential in proving that a classical weak solution exists (Theorem 3.3).

For everyF, F € Mat(m x n) we assume the following growth conditions

k(FI? =Dt S W(F) S K(FP+1), (1.12)

c(FP=D)t < G(F, F)< C(FPP+|F?+ 1), (1.13)

o(F) < s|F|, (1.14)
—m|F| £ min{Gp(F, F), t(F, F}

<maxGr(F, F),t(F, F)} <m(F| + |F| + 1), (1.15)

wheres andc < C, k < K, m < m are positive constants independentofF . It
will be seen that ifr satisfies, instead of (1.15), the more restrictive condition

|T(F, F)| < m|F]|, (1.16)

then certain estimates on the derivatives of the solution become independent of time
(cf. Lemma 2.6). Note that4¢, the quasiconvex envelope 6fin the variables F,
also satisfies (1.13).
To obtain measure-valued solutions in Theorem Afijs assumed to beni-
formly dissipative,

T(F,F) - F Zy|F (1.17)

with y > 0, (equivalently,G (F, -) is strictly convex inF at (F, 0) uniformly in
F). This is used to derive the energy estimate in Lemma 2.1. It will be seen in the
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proof that it suffices toimpose (1.17) 6n= VG¢, whereG ‘¢ is the quasiconvex
envelope of5 inthevariables F. Moreover, it will be seen in the proof that uniform
dissipation can be generalized to

T(F,F)-F = y|F|? = §|F|? (1.17)

with y, § > 0, at the expense of the estimates in Lemma 2.4 being valid on finite
but arbitrary time intervals (cfc Corollary 2.5).

The dissipation condition is strengtheneditdform strict monotonicity in the
variablesF in order to obtain classical weak solutions in Theorem A(ii),

((x(F,F)—t(H,H)) - (F—H) > «|F —H?—l|F — H)? (1.18)

with «, / positive constants (depending only o) The compatibility of this con-
dition with frame indifference is discussed in the introduction and Appendix B. It
will be seen that the monotonicity efis not relevant whew is Lipschitz.

1.2.2. Assumptions for the gradient flow. We assume there exists a potential
G € CY(Mat(m x n)) with T = VG continuous (not necessarily Lipschitz) and
such that

*k|F?—kb*" <GWF) S KIFP+K (1.19)
(F) <m(|F| + 1). (1.20)
With these conditions, the existence of a measure-valued solutions follows in The-

orem B(i). A classical weak solution is recovered in Theorem B(ii) under the addi-
tional assumption

(t(A)—1(B))-(A—B)>0 forallA, B € Mat(m x n) unlessA = B.
(1.21)

Remark 1.1. The use of thel.? setting in either of these two problems is most
likely not essential and it is expected that the present results remain valid (with the
obvious modifications) ifp-polynomial growth is assumed instead (with duality
betweenw-? and w—1-7"). But for convenience | restrict to quadratic growth.
Also notice that under a change of variable (1.1) is formally equivalent to the first
order system

w; = Vv,
vy =V-3X(w,Vv) =V - X(w, w).

The validity of such a change of variable hinges on the regularity of the functions
involved but is not relevant in the analysis following and thus not pursued.

Notation. As is customaryH?” is the Sobolev spac# ?-2. Spaces of the form
Y (I, X(2)), with I an interval or all ofR™ andY, X Banach spaces (usually
Sobolev orL?), are often abbreviated hiy(X), e.g.,L°°(HOl(Q)). Using Qoo =
R* x Q, notation such a$il.(Qx) N H1(L?) is clear. The Banach space of
continuous p-growth functions ofR” or R”*”, under the natural norm, is denoted
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by &7, and byE” its separable subspace (under the same norm) of functisash
that £ (A) = o(14|A|?). Here the space® andE0 will be used. For, b € R" the
Euclidean dot product is written simply lay and forA, B € Mat(m x n) the dot
product is writtenA - B = A : B = tr(B*A). By G?° is denoted the quasiconvex
envelope ofF, F) — G(F, F) in the F variables as well as that @f — G(F)

(in F). The operatoWF is differentiation in thex variables (unless notation such as
V,.x is used). When not specifiefl; || stands for the spatial norm ().

On the space of map8. — M aYoung measure is a probability measure on
the product space, € P(Q x M) with marginal onQ, the Lebesgue measure,
thatis,v(S x M) = £11"(S) for all measurable ses C Q. It can be also viewed
as a parametrized family of probability measuves(z, x) — v, where for a.e.
(t,x) € O the measure; , is in P(M), the space of probability measures on
the target space. For brevif"*" is written in place of Magn x n). In the present
contextM = R™*" x R™ " or M = R™*" and for mapsf on M (real-valued or
otherwise) the distributional notatidm, f) represents the integrﬁ{l fdv; (v, a)
stands for the integral of the identity, also writteqmdd). Below appear essentially
three types of Young measurgs,generated by sequences of spatial gradients,
generated by their time derivatives ahdenerated by product sequences of such
gradients, with marginalg, v. For clarity the integration variables g sometimes
appear explicitly to distinguish the two argumentg pfo that(¢, f(«x)) = (i, f)
and(&, f(B)) = (v, f). The theory of gradient Young measures was developed in
[21].

1.3. Satement of the main theorems

Theorem A (The system of viscoelasticity).

(i) Existence of Young measure solutionslnder the assumptionson W, G, o, ©
in Section 1.2.1, except (1.18) and for initial data ug, vo € H(}(Q) there ex-
istsu € HZ.(L?) N WEX(HY) N L®(HE) with Vi, € L2(Qw) and a Young
measure £ € P(Qoo x R™ x R™*™) with marginals u, v € P(Qe x R™*™)
respectively on each space R”*" such that (1.1)is satisfied in the sense that for all
¢ € LG (RY, Hy(Q)),

T
/ / (€, %) V¢ +uyl) dedt =0. (1.22)
0
Equivalently, V - (&, £) = u, in L2 (R, H~1(Q)) where (§, =) = (u,0) +
(&, 7). Inaddition,
Vi, = (v,id) = 9 (n,id), (1, x) € 00 a& (1.23)
SUppPE; » C {G(F, ) = GI°(F, Nr=vuin)  (1.X) € Ono e (1.24)

Ast — O, (u(t), u;(t)) —> (uo, vo) strongly in L2(2), so that the initial
data are attained in Cioc(R™*, H3 ().
The ¢t-uniform and L2 bounds hold:

IVu @)l oo wt, 12(0)) + Vel z2¢0.) = C (1.25)
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and for every T > 0O,

sup [|Vu ()l 2y + luwellz2¢0,) = Cr, (1.26)
t€[0,T]
where the constants C and C7 depend only on ”I/IOHH(:)L(Q) and ||U0||H§(Q) and Cr
depends also on T'. Under the more restrictive condition (1.16)in place of (1.15)

(1.26)holds with Cr independent of 7. Smilarly, if (1.17 ) replaces (1.17), (1.25)
holds on arhitrary intervals [0, 7'] but with C depending T'.

(i) Existence and uniqueness of a classical weak solutidssuming in addition
(1.18) there exists a unique classical weak solution « to (1.1) which satisfies

T
f / ((o(Vu) +1t(Vu,Vu,)) - Ve 4+ uyl ) dxdt =0
0 JQ

for all ¢ asabove. This solution can be obtained by the approximation whichisused
to proveexistencein TheoremA(i). Infact, given any measure-val ued solution (u, &)
withu € HZ.(L?) N HE.(H}) and & € P(Qo0 x R™*") for which (1.22)1.24)
hold and such that & satisfies

/ (& T B) - (v, ) dx > / (€. T, ) - B) dx. (1.27)
Q Q

then u coincides with the unique classical weak solution.

Furthermore, the initial value problem (1.1)11.4) is well posed in the sense
that if two solutions u, i correspond to pairs of initial data (g, vo), (&0, Do) then
forevery T > 0and0<r < T,

e = 120 + [V = Vit 2(e) £ k(T) (1lvo = ol + [ Vo = Vidol1?)
(1.28)

where || - || isthe L2(£2) norm.

Theorem B (The gradient flow).

(i) Existence of Young measure solutiondJnder the assumptions on G, t in
Section 1.2.2, except (1.21) and for initial data vp € H&(Q) there exists v €
H (Qo)NHE (RT, L2(Q)NL®[RT, H}(R)) andaYoungmeasurev : (¢, x) €
Qoo > Vi x € P(R™*™) such that

[ / ((v,7)-V¢+v¢)dxdt = (1.29)
Vv = (v,id) (t,x) € O a.e, (1.30)
suppv C {G = G9°}, (1.31)

and such that the independence property holds:
/ (v, ) (v,id) dx = / (v,t-id)dx VYt =0. (1.32)
Q Q



308 SopPHIA DEMOULINI

The initial data are attained in the sense that v(r) —> vg strongly in L2(2) as
t — 0™. Also the global ¢-uniform bounds hold:

VU oo+, 12(2)) T+ Vel 12¢0.) = CUIV VOl L2(02))- (1.33)

(ii) Recovery of classical weak solutiongssuming in addition (1.21) the Young
measure solution which is constructed in the proof of (i), or any measure-valued
solution (v, v) With v € HL (Qx0) and v € P(Qo x R™*") satisfying (1.29)-
(1.31) as well as the independence property (1.32)is the unique classical weak
solution of (1.2) so that

T
//(T(Vv)~vc+v,§)dxdr=0
0 JQ

for all ¢ asabove.

Remark 1.2. Property (1.32) asserts thedependence of = and the identity rela-

tive to v and is related to the property pfeudomonatonicity (cf. ZEIDLER [29])
mentioned in the introduction. Notice that any classical weak solution of the gra-
dient flow satisfies it and thus coincides with the Young measure solution provided
Vu C {G = G9¢}, (¢, x) a.e. In the scalar case the measure-valued solution in The-
orem B(i) is unique within the general class of measure-valued solutions satisfying
(1.29)—(1.31) and (1.32) ([13, Theorem 4.2]). This uniqueness cannot be recovered
(atleast in this framework) in the vectorial case. Finally notice that (1.33) is global
in ¢ without restricting the growth condition af (1.20).

The proofs of Theorems A and B appear in Section 4. The statements of exis-
tence, uniqueness and other properties asserted in the theorems are proved sepa-
rately in Sections 2 and 3.

1.4. A general lemma

The following compactness lemma states that when partial derivatives of
Sobolev functions converge weakly, then some regularity can be gained in the
corresponding variables. It will be used to show the attainment of the initial data
continuously in time.

Lemma1.3. Assume U C R" isan open set (not necessarily bounded) with Lips-
chitz boundary, p > 1, and that the sequence f* e Wlé‘cp (R x U; R™) converges
f* — fweaklyin W/ (R x U) and that for some zo € R, f*(19) —> [ (t0)
strongly in L?(U). Then f¥ — £ strongly in Cioc(R, L?(U)).

Proof. By compact imbedding, the sequer(gi—!‘)kZl converges tgf in L((’)C(R X
U). Fix w cC U (unlessU is bounded), lef” > 1o and setW, = [fg, T'] X w.
Givene > 0 there isK (¢) > 0 such that
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sup IF5@) = FL{Olrw) — 15 (0) = F110)lLrw)

10<t<T

t
=p sup / f L5 = FP2FF — (R — fhdxds
o Jw

10StsT

P
k_ oy 7 k_ gl
sp osup " = fllpawy I = filleeown
10StsT

r
< oI = oy (1 N oowny + 1A e own) )

&

A

for all k,I > K(e), using the strong convergence gf locally in L? and the
boundedness of the derivativgs. (The equality is valid ag f* — f!II7,q, (1) is
weakly differentiable irr.) Thus(f")kzl is Cauchy inC([rn, T1, L?(U)). O

2. Existence theory for measure-valued solutions

Step |: Thediscretization. We discretize (1.1) inthe time variable, implicitly in the
quantities:,,, Vu, and explicitly ino (Vu): this choice is designed in order to obtain

a good energy estimate in Lemma 2.1 and uniform bounds in Lemmas 2.4 and 2.6.
Lets > 0 be the time step and defin&® = ug, v"° = vg andu” 1 = ug — hvo,

=1 = 0. Forj = 1,2,... defineu’/ to be the solutions of the following
regularization:

phi i1

h _v. <a(wh’/—1) (Vi Vvh’j)) , (2.1)
where
py  uld =yt Wi i =1 g k=1 g =2
v = —m—m and =
I I 12

For fixedh, j, (2.1) is the Euler-Lagrange system corresponding to the functional
Inj : HY(Q) — R,

. . V7 -V h,j—1
Inj(@) = f (V o (Va2 4 hG (Vuli Tl o)
Q h
(z — 2uMi=1 4 yhi=2)2
dx.
2h?

Consider the relaxed functiong{*; obtained by replacing: in 7, ; with its qua-
siconvex envelope in th& variables,G%¢. Then there exista_h'/ € Hol(g) such
thatly,j = inf 1) In.j (@) = ianeH&(m L) = IS ). Let (uh»ff)k be
a minimizing sequence fak, ; and I/, so thatly, ; = limi—.c Iy, juhiky =
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im0 I} (u"7%). By the growth conditions (1.12) and (1.13)"/*); con-
verges subsequentlallyw -J weakly in Hol(Q) strongly inL2(€2) and pointwise
fora.e.x in Q.

These sequences are bounded uniformhy ipas is shown in Lemma 2.4. Since
Jo G, Vulik(x)ydx — [, G(x, Vu"J (x))dx where G(x, VuJ (x)) =
G¢(Vuhi-1, M)(}c) andG(x, ) € £2is quasiconvex, the sequence
G (x, Vu"7k(x)) is weakly precompact iil. Consider the¥1-2-gradient Young
measures/ = (V1) cq € P(R™") generated byVu/ik = p=L(vyh-ik —
Vu”i=1)),>1 and set for alb”0 = sy, for all . Then

FOVVIRY — (oM f) = / flayavt
Rll

weakly inL! for all f € £2 and weakly inL? for f € £1. Then it follows that

vl = (vh’j, id> =h~Yvuli — vu"i Y (2.2)
pointwise for a.ex € Q. By relaxation it follows that
suppy™/ C {G(F,-) = GI°(F, )| p_yyhj1)- (2.3)

Onthe se{F : F = Vui—1},
V(I T(F D) =V (v 0(F, ) = V- 0(F, Vo)), (2.9

where equality holds i ~(2).

To take the Gateaux derivative 0,? at the minimizen/>/ | apply a recent
theorem ofBaLL, KIRCHHEIM & KRISTENSEN [8] which establishes that the dif-
ferentiability properties of a function are inherited, and in fact improved, by its
guasiconvex envelope. More precisely, in the present setting this theorem implies
GI°(F,-)isCtandg = VG is locally Lipschitz inF uniformly in F (with the
same constarit, ). Thus the weak equation corresponding to the relaxed functional
is

:_q :_q ‘ vl —phei-1
0:/ <0(Vuh’] Y- Ve +0Vu I vy v + T;) dx
Q

B /sz <<”(V”h’j_l) (T e ) v+ %Q dx

forall ¢ e H&(Q); it is in this sense that (2.1) holds # . (The latter equation
is obtained by considering

_ ‘ . Bk _ ok j—1
/ ((o(wh’f—l) T (VI Vi ) Ve 4 ; 2 ;) dx.
Q
and taking the limit ink.)

Step 11: Estimates. The convergence of the approximate sequence relies on uni-
form estimates which imply the weak compactness of the sequence. The most
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significant estimate is thdiscretized energy non-increase. The classical analogue

(A.1) which is shown in the appendix holds for smooth solutions of (1.1).

Lemma 2.1 (Energy norm estimatg@d-or eachh > 0Oand j =0, 1, ... define

(uh,j _ uh,jfl)Z
2h?

Then, under the assumptions of Theorem A with uniformdissipation (1.17) for all
0<h< i—y = h,,

Ep; = / W(Vu"7) + dx.
Q

Epj— Enj-1 =0 (2.9)

0<h<hy,jeNg

o0 hoj _ o hj—1\2
) y—Lsh nj2, W J—v"I )
sup Eh,]+2h/9(( > >|Vv 1>+ o dx
j=0

< Eno. (2.6)
If the dissipation condition (1.17) is assumed instead then thereisa > 0 such that
Epj— (Q+ah)Epj-1=0 (2.7)

(and a version of (2.6) holds with modifications resulting in Corollary 2.5).

Remark 2.2 (Energy estimation in the presence of hyperbolic t¢rimsthe hy-
perbolic case (1.6) in [14] the convergence of the time-discretized approximation
hinged precisely on the observation thiae-discretization for second order dy-
namics in time leads to energy non-increase and hence uniform estimates exist.

This means that the discretization chosen is good if it is compatible with such an
energy estimate. The same is true here for (1.1) owing to its hyperbolieteviam)

and is in contrast with the case of the gradient flow, where the estimates follow
directly from the discretization.

Proof. The reason for the technical choice in (2.1) to discretize backwards (i.e.,
in u/=1) in the ¢ term and forwards in the term will be clear in this proof.
Temporarily suppress the dependencehoand reinstate it later. As above, let
v = %(uh’j —u7=1). Then

2

1
=/Q</O :—SW<sVuj+(l—s)Vuj_l)ds

o . J_pi=12
+ v/ () — v/-%_%) dx

1
= / <f o(sVu/ +(1— s)Vujl)ds> -hVv/
Q 0

. 4 . . 1 .
— hVv/. (U(Vujfl) +o(Vui—1, va)> — E(vj - U]71)2 dx

N2 _ (=12
Ej—Ep1 = / (W(wf> WV + M) i
Q
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1
Z/ (/ (a(sw-i+(1—s)wf—1)—o(w-/—1)) ds> - hVv/
Q 0

. ‘ , J_ i=12
— (VUL vly vl — % dx

1 , , , J— pi2
g/ (/ sL(,h|Vv-’|ds>-h|va|—hy|va|2—w dx
Q 0 2
L. h? . J_ pi—1?
g/ AN TR N (2.8)
o\ 2 2

where the Lipschitz continuity ef was used in the firstinequality, as well as (1.17)
applied tod together with the independence property (3.3) and (2.4):

0(a, Vo' - Vol =<vh»f,r(a,/\)-,\> > y( phi |A|2> Y|Vl 2.

Hence forh < f—’; (2.5), (2.6) follow from the lemma as well as the estimates in
Remark 2.3 below.

If (1.17) is assumed in place of (1.17), the first inequality in (2.8) is changed
by the addition of the term [, §|Vu™/~112dx on the right-hand side from which
(2.7) follows. (A “local” version of (2.6) holds in this case where both the right-
hand side as well as the telescoping terms are multiplied by a constant depending
onhj. The useful consequence thereof is given in Corollary 2.5).

Remark 2.3. From the proof transpires the following more precise estimate which
gives the extent to which the estimate above diverges from the classical estimate.
Forall0<h < ”

i /(/ <U(Vuh’j_l)—a(Vus)> ds

+o(Vuli 1, Wh’f)) Vol idx

§Zh/( >|v’”| dx
;,h/sz(#> <vh’-/,|k|2> dx < oo,

whereVu® = sVu/+(1—s)Vu/~Lfors € [0, 1]. The latter inequality follows from

the proof above by replacimy Vu'-/ =1, vo't-7)). vol-J with (w47, (Va7 =1 1)

A), made possible by (2.4), (3.3) and by using the lower semicontinuity property
Vo™ li2 < (o™, 221l 2

II/\

A

The non-increase of the;, ; and the chosen discretization form the basis for
the estimates below and thus of (1.25), (1.26).
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Lemma 2.4 (Integral and uniform estimates Under the hypothesesof Lemma 2.4
with uniform dissipation there exists a positive constant M such that for all 4 <

hy = i—’; the following integral estimates hold, where || - || represents the L2(2)
norm;

oo
DRIV " — o™ 2) < M (2.9)
j=0

Also the uniform estimates hold:

sup |Vt 4 o =) < (2.10)
héh*,./ENo

Consequently, for all # < h, the minimizing sequences can be taken to satisfy
sup, j x {Ivuhiky} < M. The minimal values of the functionals 7, = I"C are

uniformly bounded. The Young measures v/ satisfy,

Zh/ (” Lo h)(vh’f, |x|2> dx < 0. (2.11)

When (1.17) is assumed, M dependson 4 .

Proof. The restriction otk < h, applies only when (2.6) is used. Equation (2.9)
follows immediately from (2.8) by summation, and (2.18)true sinceE), ; < Eo.
(Notation such as (2.10js used to refer to the first term of (2.10) and so on.) From
(2.9)" also follows (2.10Y). Recall thatlj, ; (u"--F) — I,?fj(u“) and hence by
(1.13) the minimizing sequences can be always assumed to be bourﬁédﬂr)l
independently of:, j, k by the estimate

2 ¢ h,j ¢ h,j—1
Inj =L@ < LS @™

' ' hj=1 _ yh.j=2y2
— V h,]—l . V h,]—l (1/[ d
/Q(o( u )-Vu + o2 X

< Lo || Vai=)2

hj-1,
I72q) + Sup E™ =

h<hy, j

thus concluding syp:« ; In,; < M by (2.10J and Lemma 2.1. The inequality
(2.11) was explained in the proof of Lemma 2.10

Step I11: Interpolation and conver genceto a limiting solution. Introduce time-
dependent approximating solutions of (1.1) by interpolatingtire discrete solu-
tions obtained above, both piecewise constantly and continuously piecewise linearly
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in time. Letx”J () be the characteristic function of the interyaj, 4 (j + 1)) and
define forr = 0 andx a.e. inQ

u (1) =Y M oI,

J

Ut =Y @ (T = ),
J

ey =) xM oIt =ut,
J
h,j+1 _ . h,j
. . v v
Vi@ =" x" (1) (v”’f + (- hj)—) :
J

h (2.12)

h,j+1 h,j

L —v
) = Z X" (1) — = Vth,
j

i h,j
vill,x) = Z Xh’j(t)vx'k
J

”’ilt,x) = vyt x)

g?t,x) = "?nx) X "Z,x)-
Also defineu* = 3. y"Ju"7* and similarly v**. By (2.3), suppv”" <
{G(F,-) = GI°(F, )| p=v,} for a.e.(z, x), and by (2.2),

<vh, id> =3, (,Lh, id>. (2.13)
For¢ € Hl.(Qo) suchthatz(r,) € H(Q) for a.e.t the interpolates (2.12)
satisfy the weak equation
V. (G(Vuh(t — 1)) + ", T (vl — h), -))) =" inHZ 0.

Equivalently for sucht,

T
//((a(Vuh(t—h))+<vh,t(Vuh(t—h),~)>>-V{—i—zh{) dxdt = 0.
0JQ
(2.14)

By relaxation it was shown above (cf. (2.4)) that 0(Vu"(t — h), Vo) = V .
(", r(Vu(t — h),)) = V- (v", 0(Vu"(t — h), )} in Hy: so that (2.14) can also
be written in these terms. By Lebesgue differentiationon ¢, t + ¢), the time
integrand in (2.14) vanishes for aze= 0 so that the equation is also satisfied
pointwise a.e. in time.

Corollary 2.5 (Integral and uniform estimates Under (1.17)Lemma 2.4 implies
theuniformestimates || V" || oo 120y + VU | 12¢0.,) < M. Under (1.17) these
depend on t”ne, a.nd fOI‘ eaCh T > 0, ||Vuh ”LOO([O,T],LZ(Q)) + ||VUth ”Lz([O,T],LZ(Q))
< My.
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The final estimates in the following lemma concern bound¥farv”, 7. Their
classical counterpart is (A.3) in the appendix.

Lemma 2.6 (Integral and uniform estimates)llFor each T > 0 there exists a
constant My such that for all 4 < h, the regularizing solutions satisfy

sup |Vv 12(¢, x) dx = sup |VVh|2(t,x)dx) < My, (2.15)
te[0,T] t€[0,T]

/ / 12"%(t, x)dx dt < Mr. (2.16)

Consequently, the minimising sequences can be taken to satisfy
SURcpo.7 I Vo™ *[I(r) < M7 independently of /, k. The Young measure sequence
(v")5~0 generated by the V" is bounded in the space Li- (%) N L2.(EY) N
L>(Q, P(R™™)), (in particular, [|v" || Lo pgmxny, = 1). Under the growth con-
dition (1.16)in place of (1.15) M7 aboveisindependent of T.

Proof. A technical obstruction to the estimation here arises from the facGffat
may not have partial derivatives in the directiBr{cf. [8, Proposition 5.4]) while a
direct analogue of the classical case relies on the existence of such derivatives (see
(A.3)). Thus the present argument is inevitably more technical and circumvents
this difficulty by enabling use of the regularity 6f instead; here this is achieved
by considering the infimum of a functional relatedfip; in terms of the Young
measure/ .

It follows from [8] thatd = G exists, satisfies the same growthras (1.15)
andd (F, ) is Lipschitz continuous with constahy uniformly in F. Consider the
functional forz € H}(S),

h.j-1 h,j—1 (z — oMt
Jh,j(Z) :/ <V-O'(Vu = Yz 4+ G(Vu J= ’VZ)+T> dx
Q

(corresponding to the Euler-Lagrange system given in the remark in Section 1.2).
Then,

I, j(hz +u" ™Y = h Jy j(2) +/ Vo (Va7 it dx.
Q

Thus the relaxed functiondl,’f"} (defined similarly aslffj) attains its infimum at

v, which by Step | of Section 2 can be represented in terms of the gradient Young
measure’/:

J;{C (vh ]) = |nf Ji ](Z)
! zeHA(Q)

= / (v o (Vu I yyhi
Q

. . h,j _ ,,hj—1\2
+ <v/”, G(Vui-1, -)> n %) dx
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—pt (I,jcj(uh~-/')+/ G(Vuh’-/_l)-Vuh’-/_ldx).
’ Q
Sincev”/ minimizesJ;,
JiS @y < gl @hITh
=f (V- o(uh iyt 4 Grewut L volih) dx
Q
(and by lower semicontinuity alon@”-/~1%);)
<liminf | (Vo (I hphi=hk 4 GIewutI L volhikh
k—oo Jo
(and since the limit infimum is the limit an@%¢(a, -) < G(a, -))
< f (V co (Vul i —hyyhi—t 4 <vh’j_1, G(Vu" i1, )>) dx
Q

(and if the integral on the right-hand side is momentarily calléd’)

‘ hj—1 . hj—2\2
é\ph»1+/(” T g
o 2h

= JiS M +/ (a(wh’ffl) -~ a(vuh’f'*z)) vty
Q

+/ (<vh’j_1,G(Vuh'j_l,k)>—<vh’-/_l,G(Vuh’-/_z,k)>) dx
Q
= Q)Cjil(vh,j—l) + Si”j 4 Sg’j_ (2.17)

Summing (2.17) on both sides ind j < j, (wherej;, will be chosen soon), gives
a relationship with telescopes as

Jh hj—1 _ yh.j—2y2
: : v v
sup [ GU(VuI T vy 4+ :/ ( ) i
; Q
j=1

J<in I8 2h

supf V- G(Vuh’jfl)vh’j dx|.

Jh
h,j h,j
S Jo+ ) (877 4537+ sup |
J=Jh

Jj=1

Using (1.14) the last integral is bounded abovepyVu' /=12 + £ || Vv"-/||2 for
somee > 0 small, while by (1.13) the first integral on the left-hand side is bounded
below bye(||Vv"/||2 — 1)*. Therefore,

h,j—1 _ Uh'j72||2

2h

Jn
& ; v
(= 5) supnve™ /12 + ”

Jh
. ) 1 .
< Jo+ > (17 +837) + sup - Va2 (2.18)
j:l jéjh 28
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Now, givenT > 0, fix » > 0 and setj, = [£], wherej, — oo ash — 0. It
remains to estimate the sumsS§f’, S5/ in terms ofT'. First,

Jn o0
si=Y / (o (Vur I — (VU2 dx < Lo Y RV < M
j=1 J

for some constan¥ independent of (andT), by (2.9). Next, using (1.15)) o6 ¢,

Jh

SZ_Z/ ’” L Gvui=l 0 — G(Vuli2 X)))dx

- 2/ <vh’j_1, / Gp(sVu™ =1+ 1 —s)Vu"772 ). hvoli—t ds> dx
; 0

A

Jh 1
2/ <vh~f—1,/ m(|Vuh’f_2+sthh’J_l|+|X|+1)h|Vvh’/_1|ds>dx
0

A

Jh
Z/ (mh%|Vuh’j_2| h2 VoI =Y 4 mp2 iR

tm <vh’j’l, |)\|) RIVVI Y o mb| Vol =Y ) dx

]/1
—Zthu’” 2||2+mZ(—+h )|Vt 2

j=1 j=1

Jh Jh
+ "—21 Z:h /Q <vh’-/_1, |,\|2> dx + "—21 ;han(g)z

II/\

II/\

ETsupnwhfn +m<1+h>2;h||w’”n2
J

o0
+m;h/9<v"~f—1, |x|2> dx—i—%TE"(Q)Z

= Mt

and My depends only off’, using (2. 90 (2.10) and (2.11). Clearly this estimate
is independent of if |t (F, F)| < m|F| (in agreement with a similar assertion in
Lemma A.1). Therefore (2.18) implies that

7] h]_h,12
sup IVvhJIdx+Zh/(v e dx <y

1< <l ] Q
h>0

which is precisely (2.15), (2.16).
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It follows now that(v"-%), can be assumed to be boundecH@}u(Q) indepen-
dently ofh, j, k as

f G(Vuli=t, vl ikyax "2 | Gaevui=t vuhi)ydx
Q Q
so that it may be always assumed that

< / GI1(Vu =1 vl Hdx + 1‘.
Q

f G(Vu =1 vyikyax
Q

The bounds for the Young measures also follow,

h,j
", = [
Q

= lim /|Vvh’/’k|2dx+l
Q

sup f(e)dv™i
I/ llg2=1JR

dx < / la2dv dx + 1
Q Rll

k—o00

and by (2.15) the bound assertedifj. (%) follows. Boundedness in?(2, £1)
follows similarly and boundedness Ii*° (2, P(R™*")) uses the fact that/ are
probability measures. O

We are now able to Iét tend to zero. Firstly, observe two relations between the
iterates: for each € [hj, h(j + 1)),

UMty —ul(t — ) = (t = k)T = (t — R (1) = (¢« — hj)HUM), (2.19)
Vi) —v"(1) = (1 —hj —m)Z"(1) = (t —hj — )V (). (2.20)

Thus for any Lipschitz functiorf with constantL ¢,

LU @®) — "t — )| £ Lenlo" (1) = Leh|U! (1)), (2.21)
IF(VE@) — £t — )| £ LehlZ" (1) = Leh| V] (2)). (2.22)

Lemma 2.7 (Convergence There exists a pair (u, &) with
ue WERRT, H}(Q) N HZ(RY, L2(Q) N HE(RT, L3(Q)

and uy € Lipo(Qoo), Vitr € L?(Qo0) @nd § = (£1,1)1,x)¢ 0., @ YoUNg measure
such that u, & are weak limit points along a subsequencein 2 — 0

@, U, v, vUt o Vv v VY — (u,u, Vu, Vu, ug, g, Vg, Vug)
weaklys in L (L?) and weakly in L2 _(Qs). In particular,

loc

o', vhy — W, uy) weakly in H.(Qoo).
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Srong convergence then follows, namely,

U — u strongly in LE (L?) Vp 2 1,

2.23
Vi — u, strongly in L2 .(Q o). 229

Time derivatives converge also as
(Vo"', VvV — (Vu,, Vu;)  weaklyin L2(Qw),
&, weakly in LZ.(00)

and the convergence of (z"),-0 is weakly in L2(Q) if the growth of 7 is
|T(F, F)| < m|F|in (1.15) Also (", u") — (&, p) weaklyx in L®(P) and
v — v weakly* in LE (%) N L2(EY) N L®(P). Moreover, u, v are the
projections of & on each component R™*" and are Young measures generated by

spatial gradientsin the sense of [21].

Proof. The above assertions follow from the uniform/irbounds on the iterates
(2.12) provided by Lemmas 2.4 and 2.6. Firstl");, is bounded inw1>(H3)
by the uniform bounds (2.1Q)(2.15) and by compact embedding it is precompact
in L?(L?) for all p > 1. Also it follows that(U"),, is bounded in}.(Q«). These
bounds give the asserted weatonvergence irL>(L?). In particular(V"), is
bounded inL>®(H}). By (2.9) (VV"), is bounded inL?(Q.) and, by (2.16),
(z" = V"), is bounded inL?(Qr) for all T. Therefore(V"),, is bounded in
H%JC(QOO) and is precompact iD%C(QOO). These implications use the fact that the
limits of piecewise constant and continuous piecewise linear interpolates are the
same, as was shown in [20, Lemma 6.3]. (Tbifs u” have the same weak limit
above and similarly”, v" converge taw and, since/” = 3,U", thenv = u, and
similarly z# = 9, V" converge ta;,.)

Considering the Young measures, note thét", o) = (v", &) (z, x) a.e. where
p" andv" are the projections of” on R"*". By Lemma 2.6,v" has a weak
limit point v in the topology indicated whilgg”, u”) are bounded in the space
L*°(P) so we may extract wealimit points u, v, & respectively angk, v are the
projections of (not necessarily a product measure), and, moreover, these are Young
measures. For exampkis a Young measure generated by a diagonal subsequence
of (Vu", Vu"); (this construction was shown explicitly in [13, Lemma 2.4] for
the single equation (1.2) and applies here). This fact is of analytical interest but
not essential in obtaining a measure-valued solution here. A separate fact proved
in Lemma A.3 is that the piecewise constant and the continuous piecewise linear
interpolations generate the same Young measurngs.

Lettingh — 0in (2.14) we obtain the weak equation (1.22) stated in TheoremA,

T
/ / (&, 0 +1)- VI +uyt)dxdt =0,
0 Ja
where(§, o + 1) = (u, o)+ (&, ). Therelations od, i, v in (1.23), (1.24) follow
directly from (2.2), (2.3). It remains to discuss the initial data.

Corollary 2.8 (Initial datg. Ash — 0T, U" — u and V" — u; strongly in
Cloc(RT; L2(Q)). Thusu attainsitsinitial data (1o, vo) stronglyin L2($2) x L2(2).
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Proof. This follows directly from Lemma 2.7 using Lemma 1.3. Ag", v"),
converges iIHéC(QOO) and(U", v)(0, -) = (uo, vo) for all , thus a subsequence
converges strongly ifijoc (R, L2(€2)) and the initial data are obtained as asserted.
O

3. Existence and uniqueness of a classical weak solution

This section is divided into two parts: in Section 3.1 the solution obtained by
time-discretization in Section 2 is shown to be the unigue classical weak solution
(1.1) or (1.2) if the monotonicity conditions (1.18) and (1.21) are assumed. In
Section 3.2 | give sufficient conditions for any measure-valued solution to coincide
with this classical weak solution.

3.1. Classical weak from measure-val ued solutions

First, without assuming (1.18) or (1.21) | show that the Young measitres
obtained in Section 2 satisfy a property related to monotonicity which in the case
of the gradient flow also holds for the limiting measuterhen, imposing (1.18)
and (1.21), | show that the convergence(bf"),,~o can be improved to strong
convergence irm},c(Qoo): this is related to a partial smoothing property of the
solution operator.

Lemma 3.1 (IndependengeThe identity function and = are independent with re-
spect to the Young measure v’ obtained in Section 2, that is,

<vh, (Vi —h), ) - id> = <vh, (Vi (1 — h). .)> : <vh, id> 3.1)

for a.e. (1, x) € Q- In the case of the gradient flow, passing to the limit in A,
(1.32)holds, and in fact,

(v, r-id) = (v, 7) - {v,id), (z,x) ae (3.2)

Proof. Supposeu/* — u"J is a minimizing sequence and Igf"/, v/ be
generated as in Step |, Section 2. First we see that

<vh’j, r. id> — <vh’j, 1:> : (vh’j, id> fora.ex € Q. (3.3)

We know that for alk € H3(Q)

‘ . ' phdk _ yhii=1
/ <(U(Vuh’]_1) + T (VuhIiTt, w’w”‘)) V¢ + —g) dx
Q

e /Q ( (o (FuhI =Yy 4 (1] 2(Tui L, ) - v

i _ phi—1

REETEER
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from which itis deduced thgtv - = (Vu'/ =1, voik)) o
in H=4(Q) to v - (v"/ 7}, sincev/* — v"J strongly inL?(Q) and weakly in
H(Q). Therefore, (suppressing the explicit dependenc¥oh/ 1),

is strongly convergent

lim / Ve (VoK) ot kg dx = —/ (i, 7). VoI g dx
k—o0 Jq Q

= —/ (vh’j, r) . <vh’j, id>¢ dx
Q
forany¢ € C3°(Q2), that is,
r(Vvh’j’k) B VATLON A N (vh’j, r) . <vh’j, id)

in the sense of distributions. But sinced € £2itis also true that thé 1-weak limit
of the same sequence is given(lof%j, T- id) and by equating the two expressions
we obtain (3.1).

Consider the limit ass — 0. By the L?(Q4,) weak convergence (and thus
by strongH ~1(Q+,) compactness) (IﬁAf’,)h>o we deduce the strong convergence
of V- A" = V. (o(Vu") + (v", 7)) in Hyl. Let V- A" — V. A strongly in
H|0_cl(Qoo) (the limit of operators in divergence form is also in divergence form).
Also A coincides with the weak.? limit of A": sinceo (Vu") — (u, o) and
(", ) — (v,7) weakly inLZ (Qx) thenA = (u,0) + (£, 7) = (£, 0 + 7).
Apply the weak equation (2.14) agairgt = v” recallingv” — u, weakly in
HY.(Qc) (cf. (Lemma 2.7)). Thus for any € C5°(Qoo),

L7 (o) (o) - (i)
—>/Ooo/Q(w,o)Jr(s,r))'<v,id>¢dxdt.

Now restrict to the gradient flow; = 0 andt = z(F) and thust = v. As before,
(v", 7 - id) converges tdv, 7 - id) weakly in Lt (). But it also converges to
(v, T) - (v, id) in the same topology by the div-curl lemma using théd, in (2.12)
are compact irngcl(Qoo). Equating the two limits we obtain the stronger version

of (1.32) as claimed. O

Remark 3.2 (Independence property for viscoelastigitin the case of (1.1) the

limit of (3.1) ash — 0 is related to a chain rule property involvipg v and the

limit of (2.13). This is described in Lemma A.2. The analysis shows that these
properties are relevant to the question of uniqueness of measure-valued solutions.

Theorem 3.3 (Existence of a classical weak solutjoAssume that (1.18) holds.
Then the solution obtained in Section 2 is a classical weak solution and satisfies
forall T >0

T
/ / ((o(Vu) +1t(Vu,Vu,)) - V¢ 4+ uyl ) dxdt =0 (3.4)
0 JQ

for all ¢ € HY.(Q0) with zero trace on 3.
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Proof. The use of Gronwall’s inequality is natural in this context. | show that
the sequenceVU,’l)h>o obtained in the existence proof is CauchyliR(Qs.)

from which it can be deduced théit= §v, v.,). Apply the weak equation (2.14)
onv" = U and subtract at indices and /', recalling thatVv" generates.
Belowe(h, 1’; T) represents the error terms arising from exchanging the piecewise
constant with the piecewise differentiable interpolates as shown. Note that under
(1.18)v"j = 8y,4; and thus the”, v’ below are sums of delta functions. For
givenT > 0 have (specifying the dependence in time only whenit-ish),

/ ((zh (v vy p vt — th’|2) dx dt
or
1 , :
= / (—at|vh — VPP 4 x v o —ﬂ|2)) dx dt
or 2
1 , ,
< f 9,V — v 2 vuh — vl ?
or 2

+ " x vt (Vi (t - h), @)
— (V" (t = 1), B)) - (@ — B)) dxdt
- —/ ((G(VUh) - a(VUh’)) (Vo' — vl
or
+1vU" —VU”’|2> dxdt +e(h,h';T) (3.5)

L2 ,
< (—” +l>/ \VU" — VU" ?dx dt
28 or

+§/ Vol — Vol 2dx dt + e(h, 1; T)
2 or

L2 t ,
< (2—“ +1) T/ / \VU! — VU 2ds dx dt
£ orJ0

+ %/Q \VU" — YUY 2dxdi + e(h, W' T)
T

L? ! :
< (2—2 +1> T/O |Ivul —vul ||§2(QT)(s)ds

+ gnvuﬁ _vul Y e(h 1 T)

|12
L2(Q7)

where the first inequality holds by the lower semicontinuity of the norm, the second
uses (1.18), the equality is by (3.1) and (2.14) and the following inequality uses the
Lipschitz condition or (andvVU" — VU = [5(VU}' — VU!)ds). The error
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term is estimated using (2.20),

e(h,h;T) < /
or

+o(vu"y@ — 1) — o (VUM (1)| ) \VU" — VU | dx di

( o (Vu")(t = h) — 0 (VUM (1)]

+1/ (Vu" — Va2 — \vU" —vU" |?) dx dt
Q
—i—/ 12" — zhlllvh — Vi - Vh,|dxdt
Q
< (h+I)C (190" 12 4+ 190 12 4+ 1212 + 112 )2)

with C = C(T, Ls,sup | Vu"|)) a positive constant independent/ofs’ and
e(h,h'; T) — Oash, ' — 0 by (2.10), (2.15) and (2.16). Choosing= % (from
(1.18)) the first and last line in (3.5) give,

1 n ny2 K (T h "2
EIIV =V (T)+§ ; [Vv* — Vo ||°(2) dt

L2 T t ,
< (—“ + l> T/ / Vo — Vo ||2(s)ds dt + e(h, h'; T). (3.6)
K 0 Jo

Fix T, > 0 and note that(h, h; T) < e(h, h; T,), and by the Growall inequality
we have for alll’ < T, (ignoring the first term in (3.6)),

T
h 2 h 2
/O (10} = Ul 1220, + VUL = VUL 125, ) d

T h,h’—0

<e(h, h'; Tye 0.

We conclude that

(U, VU — (u;, Vu;)  strongly inL2 (Qoo),

loc

thatis,U" — u strongly inHX.(Q) (similarly for v"). Thereforeg = 8vu, vu,)
and (3.4) is proved. O

Well-posedness and uniqueness for the solution immediately follav(:, if"
are constructed corresponding to varying initial dat@ v4) and (g, 54), then

h ik < h ~h h_ ~h
IU" = UMllgrgn) =€ (||”o gl ) + llvo Uo||H(}(Q))'

For this the above proof can be repeated, now including the differericednthe
initial data on the right-hand side of (3.6). This is summarized as follows:

Coroallary 3.4 (Uniqueness and well-posedne}sAssume (1.18) holds. The so-
lution obtained with time discretization in Section 2 is the unique, classical weak
solution and is well posed with respect to initial data (1.4).



324 SopPHIA DEMOULINI

Restrict again to the gradient flow and assume (1.21). | close this section by
showing how the independence property (1.32) can be used to recover this solu-
tion from a measure-valued solution (in particular the one obtained by the time-
discretization).

Lemma 3.5 (Recovery of classical weak solutions of the gradient fld&wnder the
monotonicity assumption (1.21) the Young measure solution constructed in Sec-
tion 2, or any measure-valued solution (v, v) withv € H&,C(Qoo), v € P(Qoo X
R™>"") which satisfies (1.29)-(1.31)and (1.32) is the unique classical weak solu-
tion of (1.2).

Proof. Let(v, v), be a measure-valued solution satisfying the assumptions. By the
weak equation (1.29) applied to, id) — Vv,

t
O:// v, 1) - ((v,id) — Vv)dx ds
0/
t
=// (v, (t(a) — T(Vv)) - (¢ — Vv)) dx ds
0JQ

t
= // (v, (t(a) — (Vv)) - (¢ — Vv)) dx ds.
0JQ

By assumption the last term is non-negative, thus the support of the measure lies
where the integrand vanishes. This for¢ese) = Vv for (¢, x) a.e. Uniqueness
follows from Theorem 3.3. O

3.2. Qufficient conditions for classical weak solutions

Consider the clas§ of probability measure§ € P(Qq x R™*" x R™*™)
with marginaly € P(Q x R™*™) in the second factaR™*" such that for a.e.
t e RT (1.27) holds,

/Q(’S,f(a,ﬂ»%v,ﬁ) dXE/Q@,T(Ot,ﬁ)-ﬂ) dx.

In this section it is shown that under (1.18) the unique classical weak solution of
(1.1) obtainedinthe above sections is unique also within the class of measure-valued
solutions inS. (In other words, a measure-valued solutigné) with & € S is not
genuinely measure-valued but coincides with the classical weak solution obtained
in the previous theorem). First | show another relation between the measures

Lemma 3.6 (Kato-type inequalities Consider a pair of Young measures u, v €
P(Qo x R™™), each parametrized by (1, x) € Qo and generated by two se-
quences in L2 .(Quo), (fMi=0 and time derivatives (f/);-0 respectively with
fh(t,-) = 0. Assume that the Young measure representation holds weakly in
L .(Qoo) for functionsin £2. Then the Kato-type inequalities hold,



Weak Solutions in Viscoelasticity 325

and more generally, for 1 < p < 2,
p—1 3—p

o tod)1 = p (e her) * ([p18157) 7L xrae 38)
Forany T > 0and 1 < p < 2theintegral form holds,

/Q<u,|a|p>dxdt§Tp_l/Q /Ot(v,w’) dsdxdt. (3.9)

Proof. It can be shown by approximation by positive smooth functions bounded
2

away from 0 that the distributional derivative|gf’|? isin LE,C(Qoo) andy, | f|? =
plffP=2(f"- £ fora.e.(r, x) onthe sef /" # 0} and 0 a.e. on the complement.

(To see this, approximate eagh by A’(‘;j = (| f(];o 12+ 82)% Wheref(’;l) are smooth

and converge pointwise a.e. fg,), and compute lin, o lim._g B,A'(‘;S).) Then,
01171 < plFMPHAN, @) ae. (3.10)

so that for any measurable compactly supported i@ o,

3-p

h h2 7 h 3% 2
/|Bt|f |p|dxdt§p</ | f" dxdt> (/ |f,|31’dxdt> <00
E E E

2
and in factd, | |7 is bounded inL» . Sinced, | f*|? — 9, (i, |a|?) in the sense
2
of distributions and hence weakly i,

/ ¥ fMPdxdt — / O (w, ) dx dt
E E
by the Young measure representation|fot|?. Also,

h| 35 w2
flf, |37 dxdt — /(v,|ﬂ|3—">dxdt
E E

(the representation holds sing_é; < 2). Then (3.7) and (3.8) follow by Lebesgue

differentiation. The integral form (3.9) follows more readily: fbr> 0 and 0<
t<T,

t
f/wﬂwwm=/vaw
0JQ Q

t p t
=/ / flds dx§/<f |fth|1’ds)tpl
alJo e \Jo
and so by integrating

T T t
//|fh|dedt§TP*1/// \fP ds dx dt
0 JQ 0 JQJO

and then (3.9) follows by taking the limitil. O
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Remark 3.7. The casep = 1 is the only one in which the bound in (3.7) is inde-
pendent of the.2 norm of the sequence generating the measures. (The usual Kato
inequality refers to this case.) Fpr= 2 (and in general fop = 2 changing the
topology of convergence accordingly) it is easier to justify both taking the weak
derivative ofg, | f|? and the chain rule formula.

Theorem 3.8 (Uniqueness and well-posedness 8uppose 7 satifsfies (1.18)and
ii € H2.(L?)N Higo(Hy) issuch that there existsameasure & € P(Qoo x R™" x
R™*™) with marginals jt, ¥ for which (1.22)11.24)and (1.27) hold with initial
data (1.4) and the Young measure representation holdsin L for functionsin £2.
Then & coincides with the unique classical solution u of Theorem 3.3, i.e,u = @
(t,x) aein Q.

Proof. Suppose thatu, §) is the solution of Theorem 3.4 , where of couése-
8(vu,vu,), @and(i, &) a measure-valued solution wighe S andpt, v respectively

the projections of on each argument. We will fik > 0, apply the (3.4) and (1.22)
with ¢ = Vu — Vi and subtract. Then

=2
/ < o e 0 L 1V — B|2>> dx dt
Or 2
(using (1.18), (1.27))

< /QT (G = i) - oy = @) + (€. 7(Va, V)
—t(@ B)) - (3, Vuy — B) + L{jt, |[Vu — &2 ) dx dt
=- or (—{m, o(Vu) —o () - (Vu; — Vuy)
+ Ui, |Vu—&|2)> dx dt
<o [ (190 5190 - )

+z<,1, Vi — &|2>) dx dt

(now using (3.7) on the first term and (3.9) wijth= 2 on the second term)

gLaf (/ , |w,—B|>ds)-<ﬁ, Vu, — B)
or 0

t
+le /(ﬁ,|w,—/§|z>dsdxdt
Qr J0

(and by Jensen’s inequality)

(G,

+—f w, |Vu; — ,3| ydx dt
2 Or

5, Vi, — B >' dx dt
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L2 T
<(Ze 4 T/ Hv Vu
_(28 ) [ Jwave-pe],,

i Rl B (3.11)

Chooses = 5 and apply Gronwall’s inequality on

(t) dt

T
F(T) = llus — i3z, + /0 15, 1Vu = A1)l L1, dt-

Then by (3.11) there is a constant- 0 such thatF’(r) < cF(¢) so thatF(r) <
F(0)¢&" = 0. Assuming the same initial data far i, this shows that: = #
a.e. inQr for everyT = 0 but also as in Theorem 3.3 this proof also implies
well-posedness (1.28).0

Remark 3.9. The measures, u, v are not expected to be unique in general (only
their first moments): there simply is not enough information (or constraints) im-
posed on these measures, either by the assumptions of the theorem or the method
of construction of the solution, to guarantee such uniqueness. It would be desirable
have a further criterion to select a unique measure, especially in the case, when the
solution is not classical weak but genuinely measure-valued.

4. Proof of the main theorems, TheoremsA and B

The proof, in three steps, of the existence of Young measure solutions of (1.1)
(Theorem A(i)) is the content of Section 2. The approximate solutions constructed
in Steps I, Il are shown in Lemma 2.7 to converge to the Young measure solution
satisfying (1.22)—(1.24). The estimates in (1.25) and (1.26) are true by Lemmas 2.4
and 2.6 and Corollary 2.5. The initial data are attained as claimed by Corollary 2.8.1.
The measure-valued solution obtained above is in fact a classical weak solution
under (1.18) by Theorem 3.3 and in Theorem 3.8 it is shown to be unique within a
general class of measure-valued solutions.

The existence of Young measure solutions for (1.2) follows from that of (1.1),
with the simplification that the measuvesuffices to represent the solution as
depends only oWvu. Under strict convexity o€ it follows from Theorem 3.3 that
itis a unique classical weak solution and a proof particular to the gradient flow case
appears in Lemma 3.5.

5. Appendix

A. Energy dissipation for classical weak and measure-valued solutions

Viscoelasticity. The uniform estimates in (1.25) are obtained by taking limits of
approximate solutions constructed by time-discretization. This is in analogy with
the classical energy estimates which a weak solution satisfies given in the next
lemma.
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LemmaA.1 (Classical energy estimajesssumeu € Hi (Qoo) N L2(H(Q)) is
astrong distributional solution (or classical solution) of (1.1),(1.4)givenin Section
1.2. Thenfor 0< s <1,

t
E(t)+/ /yqu,|2dxdt
s Q

t
< E(t)—l—/ /r(Vu,Vu,)~Vuldxdt=E(s), (A1)
s JQ
where
14;2
E(1) =/ (W(Vu)(t,x)—i—?(t,x)) dx, (A.2)
Q
andfor all T > 0,
T
f/uﬁdde sup | |Vu,?dx £ Cr, (A.3)
0 Jq 0<i<T JQ

where the constant Cr depends on T and theinitial data. If the growth of G is
givenby Gr(F, F) < m|F| then the estimatein (A.1) isindependent of T.

Proof. Standard multiplication of the equation (layfor (A.1) and byu,, for (A.3))

and integration provides these estimates. | sketch the proof of (A.3) assuming (A.1).
Below Ky is a generic positive constant depending only on the initial dataCand

is a generic positive constant depending onlyfoiBoundary terms oAS2 vanish.

T T
/ / M,Z, dxdt = —/ / (o(Vu) - Vugy +1t(Vu, Vus) - Vi ) dx dt
0 JQ 0 JQ

def
= —|—1l.

(A.4)

Sinceo is Lipschitz,

T
= /Qo(Vu)-Vu,(T)dx—Ko—i-/o /Q(a’(W);(w,,.wt)) dx dt |

2
K 2 € 2 2
S S IVulZ 2y + SV (D 2y + Kot Lol Vg -

For Il we have,

T
I :/ G(Vu,Vu,)(T,x)dx—Ko—/ / Gr(Vu, Vu,) - Vu, dx dt
Q 0 JQ

and by the growth o5, G ¢

c/|Vut|2(T)dx §/ G(Vu, Vu,)(T) dx
Q Q
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and using again (A.1)

T
mT
/ / GF(VM, VM[) . Vu, dx dt g THVMHLOO(LZ)
0 JQ

mT|S|
+2mlVuilzz g, + =5 — =Cr

where clearly the estimate is independenfof ¢ satisfies the restricted growth
condition above. Then by choosiagufficiently smallin term | (A.4) implies (A.3).
O

For a Young measure solution, the classical result generalizes in the following
sense.

LemmaA.2 (Dissipation of energy, independence and a chain rule propé&sly
(u, u, &, v) be a solution of (1.1)), (1.3), (1.4)), found in Section 2. Define (the

energy) E(t) = [o, (r, W) (£, x) dx + %””’”iz(ﬂ)(t)' Then, t > E(¢) isan ab-

solutely continuous, decreasing function of time. Moreover, [, W(VU")(t, x) dx
convergesto [, (i x, W) dx weakly in Wis2 (R™) and

o /Q (1,20 W) dx = /Q ({6, 0) - Vuy(t) = Dy v ) dx, (A5)
where
D; =/Q(<v,,x,r(a) o) = (vix, T) - (v, id) ) dix. (A.6)

ThecasewherefQ D; , dx vanishesisof interest andisdiscussed inthenext section.
In that case the chain rule generalizes to the Young measure solution in a natural
way,

3t/ (Mt,m W> dx = [ (/'Lt,x’ 0) X <I‘Lt,)h id) dx
Q Q

(recalling (1.23)). Also (A.1) generalizes naturally to
t t
E(t) +/ / y<v,a2) dxdt < E(t) —i—/ / (v, 7t -a)dxdt = E(s) (A7)
s JQ s JQ

forall 0 < s < r. When féfg D; » dx = 0 we get the better analogue of (A.1),
namely,

'
E(t) +/ / (v, ) - (v,id) dxdt < E(s).
s JQ

Proof. As W is Lipschitz andvU"(-,x) € HL.(R") for a.e.x € €, then
W (VUM (., x) € WELR™) for suchx andd, W(VU") = o(VU") - VU}. Fur-
thermore,fQ W(VU" dx e Wlé'Cl(Rﬂ (in fact bounded there) and the relation

¥ [ W(VUM dx = [, 0(VU")- VU] dx is justified by dominated convergence.
O
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| compute now the weak limits of these quantities in terms of the Young measure
w and using (2.14) and LemmaA.3.

Claim. Theterm [/, W(VU")(t, x) dxds convergesto [of, (r, W) dxds weakly

in WI LR™).

Proof of claim. Notice first that the weak convergence asserted above cannot be
deduced by boundedness alone. It is clear yl"g,aW(VUh)(t,x)dx converges

to [, (m, W) dx weakly in LkJC using the Young measure representation and the
fact thatu”, Uh generate the same Young measure, see lemma A.3. Furthermore,

o"t) def ¥ [ W(VUM dx = [ o(VU") - VU] dx. By the growth ofr and the
integrability of VU", Q" is bounded |rL|OC(R+) and thus has a biting weak limit
which must coincide witla, fQ i, W) dx (asitcoincides with it on sets exhausting
Q). This proves the second claim and it remains now to identify this time derivative:
the desirable estimate of course is that it is giverybyu, o) - Vu; dx; however,
there is a correction tern; ., which will now be identified.

We can compute the same limit also by the approximating weak equation (2.14)
applied againsVU!". Let Wo = Jo W(Vuo) dx. For eachr = 0,

t
/ a,/ W (VU™ (1) dx ds:/ WU () dx — Wy
0 Q Q

t
=f/ o (VU - VU! dx ds
0JQ

t
:f/ (a(Vuh(t—h))~Vvh
0JQ

+ (a(VUh) — (V' (t — h))) : W”) dx ds
/f Vot 4+ ot —I-Ih) dx ds
—// (v, T -id) + uguy) dx ds

0JQ

t
— // ((V, T) . (V, ld) + upup + Dt,)() dx ds
0JQ

t t
:// ((M,0>-Vu[dde+//D,,x> dx ds
0Je 0Je
t
<=// (w, W) dxds),
0Jo

where the error terryféfQ I"dx ds — 0 ash — 0 by (2.21) (a is Lipschitz)
and (2.9).
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Now compute the weak limits of the time derivatives:

atf W(VUh)dx=/ o (VU - VU dx
Q Q

= —f (<vh, 1:> VOl M+ Ih> dx
Q
h—0 .
e —f ((9.7) - (v id) + tgetts + Dy.y) dx
Q

weakly in L (RT)

= /sz ((ﬂy o) Vu; + Dt,x) dx,

where the error terr'y"k2 I"dx — 0inLYweakly by (2.21) and (2.15). This shows
the chain rule (A.6) property as asserted.

Notice that as a consequenf(’gs2 (m, W) dxds € Wé’cl(R*) as a weak limit
of a sequence in this spacegriori this term belongs only tnﬁ)c); and hence this

is also true forféfQ ((w,0) - Vu, + Dy ) dxds. From this then follows that the
mapt — E(t) € ng’cl(RJf) since alsa — |lu;|l;2(q) (1) € Wlé’cl(RJf).

It follows now thatE (¢) is decreasing im:

d

d .
EE(I) =7 /Q ((M’a o) (v,id) — Dy x + Mttut) dx

=—/S;(v,r~id)dx§—)//£2<v7052>§0

and from this together with (1.17) follows (A.7).0

Above, the following has been used:

LemmaA.3. Thesequences(VU"),, and (Vu");, generatethe sameYoung measure
w. Smilarly, (VV"), and (Vv"),, generate v.

Proof. Itis easy to see that the? weak limits of¢(VU") and$ (Vu') are repre-
sented by(u, ¢) for all ¢ Lipschitz continuous by (2.21) and (2.19). The extension
to all functions inS& is immediate by density; and the extension to functions in
56’ with p > 1 (which can be at most locally Lipschitz with a constant growing
like the p — 1 power of the size of the local domain) is straightforward by the
available estimates. | give two arguments for- 1 (as remarked in Section 1.2
the restrictionp = 2 in the text is most likely not essential): first observe that the
set of locally Lipschitz functiong such that SUP,ep, lpx) —dp (M| = cplx — |

with ¢, = pP~1is dense iré’é’ so it suffices to show the claim for sugh In-

deed, by (2.19) and (2.21%,(VU") — ¢(Vu")(t — h) < ch|VV"|(r) andc =

|IVU" — Vu(t — h)|P~1 < (h|VV"])P~1; integrate overQr to show that in the

limit the difference is bounded bzyhl’||Vv"||Z,,(QT) which vanishes by (2.9) or
(2.10) and thus the Young measure representation of the two integrals in the limit
is the same.
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A direct argument fop € Eé’ is provided by showing that the claim is true for
the p-norm of the generating sequences. For simplicity we show this pvith2

T T
//|VUh|2dxdt=/ / \Vu" P+ |VU" =Vu" P+ Vu" - (VU" = Vu") dx dt
0 JQ 0 JQ

and the first term converges fgfg (v, (id)?) dx dt while the other two terms are
O (h) by (2.19) and the uniform bounds (2.10)z

The gradient flow. As in viscoelasticity, the uniform estimates are provided by
energy norm estimates. Define theergy

E@t) = / (v, G) dx.
Q

ThenE e LY(R™), itisdecreasinginand lim | E(t) = 0. Thisis the counterpart
of the classical energy estimate with

E@t) = f G(Vu)(t, x) dx
Q

which satisfies the same properties.

B. Frame indifference and monotonicity in F: an example

Assumen = m = 3. The following is an example proposed by Dafermos of a
frame indifferent tensor which satisfies (1.11),

t(F,F)=(FF Y+ (FFHY"F 1, (A.8)

thent(F, F) = G (F, F) whereG is the positive semi-definite quadratic form
. . ) 2
G(F, F) = (det F)~Ytr (FF_l + (FF_l)*> . (A.9)

This example is motivated by the known general form of frame indifferent temsors
namely polynomial irD with coefficients depending only on the principal invariants
of D, whereD is the symmetric part of F~1 (cf.[12,9]). We may use this example
to check whether (1.18) is satisfied. The poterdi& convex but not strictly convex,
in fact it vanishes wher& F~1 is skew symmetric and therefore for SuEhF the
convexity of G (F, -) and monotonicity of degenerate: indeed, takidy= H and

F — H = JF with J 4+ J* = 0, the left-hand side of (1.18) is 0.

Ball observed that (1.18) is incompatible with the necessary forrrpobvided
by Antman in (1.8): choosé(r) = R(t), F2(t) = Q(t) two smooth curves in
SO (3) with R(0) = Q(0) = 1 (and so(U, U) = (1, 0) for Fy, F»). Then (1.18)
implies(RS—05)-(R— Q) = k|R— Q|>—I|R — Q|?, impossible when evaluated
at (1, 0) since|R — Q|(0) = 0 and so the left-hand side vanishes.

This implies that strict convexity ofi (F, -) is incompatible with frame indif-
ference. This fact can be seen also directly from (1.7): takking H = Q = 1,
F=—F* Q= —Q* (1.7) implies that the left-hand side of (1.18) vanishes,
(t(1, F) — t(1,0)) - F = 0. Non-strict convexity, however, is compatible with
frame indifference, as is evident by example (A.8).



Weak Solutions in Viscoelasticity 333

Acknowledgements. | thank STUART ANTMAN, JOHN BALL, CONSTANTINE DAFERMOS and

Davip StuarT for very helpful discussions. The problem was proposed biNTMAN

who also made available early versions of [5, 6] cited below. J. Ball suggested that frame
indifference be incorporated which led to the study of the more general problem (1.1). In this
respect it was helpful to know the extent to which the imposed assumptions (1.11), (1.18)
are compatible with frame indifference, and this question was answered by the example
furnished byC. Darermos and the observation af. BaLL described in the text. | thank
also the authors of [8] for making available a preliminary version of their preprint and in
particular | thankian KrRisTENSEN for many related discussions. This work was supported
by the European Commission TMR Grant ERBFMBICT972343 held at the Mathematical
Institute, University of Oxford.

References

1. G. ANDRrREWS, On the existence of solutions to the equation = uxx; + o (ux)yx, J.
Diff. Egs. 35, 200—231, 1980.

2. G. AnDREWS & J. BALL, Asymptotic behaviour and changes of phase in one-dimensional
nonlinear viscoelasticityl. Diff. Egs. 44, 306-341, 1982.

3. S. ANTMAN, Nonlinear problemsinelasticity, Applied Mathematical Sciences, Vol. 107,
Springer Verlag, New York 1995.

4. S. ANTMAN & T. SEiDMAN, Quasilinear Hyperbolic-Parabolic Equations of One-
Dimensional Viscoelasticity]. Diff. Egs. 124, 132—184, 1996.

5. S. ANTMAN, Physically unacceptable viscous stresZesngew. Math. Phys. 49, 980—
988, 1998.

6. S. ANTMAN & H. KocH, Self-sustained oscillations of nonlinearly viscoelastic layers.
To appear.

7. J. BaLL, Convexity conditions and existence theorems in nonlinear elasthgiti,
Rational Mech. Anal. 63, 337-403, 1977.

8. J.BALL, B.KirRcHHEIM & J. KRISTENSEN, Regularity of quasiconvex envelopes. Preprint.

9. P. CiarLET, Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity, Studies in
Mathematics and Its Appliations, Vol. 20, North-Holland, Amsterdam 1994.

10. B. CoLEMAN & W. NoLL, On the Thermostatics of Continuous Meddach. Rational
Mech. Anal. 4, 97-128, 1959.

11. C. DarerMos, The mixed initial-boundary value problem for the equations of one-
dimensional nonlinear viscoelasticity,Diff. Egs. 6, 71-86, 1969.

12. C. DareErMos, Hyperholic Conservation Laws in Continuum Physics, Springer Verlag,
New York 2000.

13. S. DEMouLINI, Young measure solution for a nonlinear parabolic equation of forward-
backward typeS/AM J. Math. Anal. 27, 376—403, 1996.

14. S. DEmMouLINI, Young measure solutions for nonlinear evolutionary systems of mixed
type,Ann. Inst. Henri Poincaré, Analyse non lingaire, 14, 143-162, 1997.

15. S. DEMOULINI, D. STUART & A. TzAvARrAsS, Construction of entropy solutions for one-
dimensional elastodynamics via time discretisathm. Inst. Henri Poincaré, Analyse
non linéaire 17, 711-731, 2000

16. S. DEMOULINI, D. STUART & A. TzAVARAS, A variational approximation scheme for
three dimensional elastodynamics with polyconvex energy. Arch RAtional Mechn.
Anal., to appear

17. L. Evans, Weak convergence methods for nonlinear partial differential equations,
CBMS Vol 74, American Mathematical Society, Providence 1990.

18. G. FrieseckE & G. DoLzmANN, Implicit time discretization and global existence for a
quasilinear evolution equation with nonconvex ene@pM J. Math. Anal. 28, 363—
380, 1997.

19. C.HaMBURGER, Quasimonotonicty, regularity and duality for nonlinear sytems of partial
differential equationsénnali Mat. pura ed appl. 69, 321-354, 1995.



334 SopPHIA DEMOULINI

20. D. KINDERLEHRER & P. PEDREGAL, Weak convergence of integrands and the Young
measure representatidd AM J. Math. Anal. 23, 1-19, 1992.

21. D. KINDERLEHRER & P. PEDREGAL, Gradient Young measures generated by sequences
in Sobolev spaces, Geom. Anal. 4, 59-90 1994.

22. R.LANDES, Quasimonotone versus pseudomonoténes. Roy. Soc. Edin. A 126, 705—
717, 1996.

23. J.L. Lions, Quelques Méthodes de résolution des problemes aux limites non linéaires,
Etudes Matkmatiques, Dunod, Paris 1969.

24. J. MArsDEN & T. HuGHES, Mathematical Foundations of Elasticity, (Prentice-Hall,
1983) Dover, New York 1993.

25. R. PEGo, Phase transitions in one-dimensional nonlinear viscoelastgitk, Rational
Mech. Anal. 97, 353-394, 1987.

26. M. Potier-FERRY, On the Mathematical Foundations of Elastic Stability Theory. 1.,
Arch. Rational Mech. Anal. 78, 55—-72, 1982.

27. P.RyBkA, Dynamical modeling of phase transitions by means of viscoelasticity in many
dimensionsProc. Roy. Soc. Edin. A 121, 101-138, 1992.

28. L. TARTAR, Compensated compactness and partial differential equatioNenlimear
Analysis and Mechanics, Knops, ed., Vol. IV, Pitman Research Notes in Mathematics,
1979, pp. 136-212.

29. E. ZrpLER, Nonlinear Functional Analysisand Its Applications Il A, Springer Verlag,
New York 1990.

30. K.-W. Zuang, On the Dirichlet problem for a class of quasilinear elliptic systems of
partial differential equationsindivergenceform, Chern, ed., Vol. 1306, Springer Lecture
Notes in Mathematics 1988, pp. 262-277.

Mathematical Institute
University of Oxford
currently at:

CMS/DPMMS
University of Cambridge
Wilberforce Road
Cambridge CB3 OWB
UK
e-mail: S.Demoulini@dpmms.cam.ac.uk

(Accepted July 1, 2000)
Published online December 6, 2000 — (© Springer-Verlag (2000)



