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Abstract

We analyze a quantum trajectory model given by a steady-state hydrodynamic
system for quantum fluids with positive constant temperature in bounded domains
for arbitrary large data. The momentum equation can be written as a dispersive third-
order equation for the particle density where viscous effects are incorporated. The
phenomena that admit positivity of the solutions are studied. The cases, one space
dimensional dispersive or non-dispersive, viscous or non-viscous, are thoroughly
analyzed with respect to positivity and existence or non-existence of solutions, all
depending on the constitutive relation for the pressure law. We distinguish between
isothermal (linear) and isentropic (power law) pressure functions of the density. Itis
proved that in the dispersive, non-viscous model, a classical positive solution only
exists for “small” (positive) particle current densities, both for the isentropic and
isothermal case. Uniqueness is also shown in the isentropic subsonic case, when
the pressure law is strictly convex. However, we prove that no weak isentropic
solution can exist for “large” current densities. The dispersive, viscous problem
admits a classical positive solution for all current densities, both for the isentropic
and isothermal case, with an “ultra-diffusion” condition.

The proofs are based on a reformulation of the equations as a singular elliptic
second-order problem and on a variant of the Stampacchia truncation technique.
Some of the results are extended to general third-order equations in any space
dimension.

1. Introduction

The present paper is concerned with hydrodynamic models for quantum fluids
in bounded domains. The evolution of the quantum fluid is governed by the con-
servation laws of mass and momentum for the particle densityd the particle
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current density/:

on

— +divJ =0, 1.1

o T (1.1)
aJ I ®J
—+d|v(&+P> —nF =W —vB, (1.2)
at n

whereP = (P;;) denotes the pressure terfthe sum of the (external) force®,
the momentum relaxation term, an# the viscous term with viscosity = 0. The
tensor product ® J is given by the componentsJ; withi, k =1,... ,d.

We consider an isothermal or isentropic quantum fluid of charged particles.
Then, the pressure tensor is assumed to be of the foen (T p(n)s;;) wheres;,
is the Kronecker symbol. The pressure functiois given by the relatiop (n) = n
in theisothermalcase angy(n) = n® with « > 1 in theisentropiccase, and’ is
a (scaled) temperature constant. We assume that the Foiséhe gradient of the
sum of the electrostatic potentidland the quantum Bohm potential

1
= 82— A/n,
0=~ Vn
8 > 0 being the scaled Planck constant. Equations (1.1), (1.2) are coupled to
Poisson’s equation for the electrostatic potential,

A2AV =n-—C, (1.3)

wherex > 0 denotes the scaled Debye length, éng C(x) models fixed charged
background ions. The relaxation term is givenidy= —J/t, 7 = t(x) > 0 being
the relaxation time. The choice of the viscous tertwill be defined below.

With these assumptions, the stationary quantum hydrodynamic equations with
viscosity can be formulated as

divJ =0, (1.4)
dw(JfJ)+Tvpm)—nVV—5%v(§%?)=_%_¢£. (1.5)
n

The equations (1.3)—(1.5) are solved in a bounded dorfaia R? (d > 1)
occupied by the fluid. Equations (1.4), (1.5) are in scaled form; we refer to [19] for
the choice of the scaling.

Inthe casé = 0 andv = 0, we get the classical hydrodynamic equations which
are considered, for instance, PyGonD & MARKOWICH [6] andMARKOWICH [26]
in two and three space dimensions for subsonic flow, an@iysa [8] in one
space dimension for transonic flow. The two-dimensional viscous hydrodynamic
equations$ = 0 andv > 0 are studied, in the potential flow formulation,@ymBa
& MoRrRAWETZ [9,12].

The quantum hydrodynamic equations or> 0 andv = 0 arise in semi-
conductor modeling where it has been used for analyzing the flow of electrons in
guantum semiconductor devices, like resonant tunneling diode modéisrof
NER & RINGHOFER [13, 14]. Recent quantum chemistry calculations using Quan-
tum Trajectories Methods @foPrREORE & WYATT [25] have been proposed to study
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resonant scattering with one-dimensional double barrier potentials [27] in order to
obtain properties of transmission probabilities. In addition, these quantum trajec-
tory models have been used in the modeling of collinear chemical reactions [31]
and in models for photo-dissociation of moleculesSay.es-Mayor et al. [29].
Very similar model equations have been employed in other areas of physics, e.g.,
in superfluidity [24] and in superconductivity [7].

We refer to [5,13-16] for a justification and derivation of the quantum hydro-
dynamic equations.

Mathematically, these models have been studietkkyme & ZHANG [32] and
Gy1 & JUNGEL [18] in one space dimension and bBy~GeL [20] in several space
dimensions. The existence of strong solutions of the boundary-value problem (with
Dirichlet and/or Neumann boundary conditions) could be proved under a smallness
condition on the data (current density or applied voltage) which corresponds essen-
tially to a subsonic condition of the underlying classical hydrodynamic problem.
However, no results are available for “large” data.

Viscous or diffusive terms in the quantum hydrodynamic equations are re-
cently derived byArnoLD et al. [1] from the Wigner-Fokker-Planck equation via
a moment method, and lByARDNER & RINGHOFER [14] from a Wigner-relaxation
model, via a Chapman-Enskog expansion method based on scaling arguments.

Our goal is to show that if a special class of viscosities is considered, a positive
solution of the problem exists for all current densities.

Consider the one-dimensional equations (1.3)—(1.5) with the viscousBtetrm

n(B(n))xx:

2

J o (D)
(7+Tp(n>)x—nvx—an< T )x‘_%_"”(ﬂ("))”’ (1.6)

A2V =n — C(x), 1.7)

in the interval®2 = (0, 1) for prescribed/ > 0, subject to the boundary conditions

n(0) =ng, n(d)=n1, VO =Vy, V(0 =-—Ep, (1.8)
(/1) xx(0) , J?
82T —vB (no)n,(0) = 5(2) + Th(ng) — Vo + K, (1.9

whereh (s) is theenthalpyfunction defined by'(s) = p’(s)/s, s > 0, andh(1) =
0,andK > Qisaconstantwhose value is given below (see (1.14)). In the isothermal
case, the enthalpy iss) = log(s) (s = 0); in the isentropic case one géts) =
(){L_l(s"‘_1 —1) (s > 0),witha > 1.

Notice that we need three boundary conditions#psince (1.6) is of third
order. We do not prescribe the potentiélat bothx = 0 andx = 1 (but only at
x = 0), since the current density is given. Then, we can compute the applied voltage
V(1) — V(0) from the solution of the differential equations. This yields a well-
defined current-voltage characteristic. The third condition (1.9) can be interpreted
as a boundary condition for the quantum Fermi potential (or quantum velocity
potential; cf. [20]).
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One of the main assumptions of this paper is that we choose the viscous term
as follows:

1

This assumption is made by enforcing the minimal growth condition to the viscous
term so that the system admits positive solutions for all values of the current den-
sities. Thus, the main objective of this paper is to understand the phenomena that
admit existence and positivity of the solutions to thed-order boundary value
problem (1.6)—(1.9) for = 0 andv > 0.

It is well known that the positivity of solutions to higher-order equations is
a delicate problem since maximum principle arguments generally do not apply.
We refer to [2,3,21, 28] for recent studies of the positivity of solutionfototh-
order elliptic equations where similar difficulties arise. It turns out that for the
problem (1.6)—(1.9), thaltra-diffusiveterm given byg prevents the solution from
cavitating and provides the growth necessary to obtain a uniform bound in the
dispersive parametér In this sense, this term corresponds to hlyper-diffusive
corrections sometimes used for stable numerical approximations to the Navier-
Stokes equations.

More precisely, let us consider the following cases:

Cased = 0,v > 0. This problem has been studied@ymsa [8] with B = n,. It

is shown that for isentropic pressure functignghere exists a positive solution to

the one-dimensional equations (1.6)—(1.8). Moreover, the lower and upper bounds
for this solution do not depend on the viscosityand it is possible to perform
rigorously the limitv — 0 and to obtain entropic inviscid solutions.

Case s > 0,v > 0. Consider isentropic or isothermal pressure functions. We
prove that for any givery > 0, there exists a classical solutiém, V) to (1.6)—
(1.9) (Theorem 2.1). Furthermore, the particle density satisfies

O<m@)<nkx)<M foralxe Q. (1.11)

The constants: (v) and M do not depend oA > 0, butm(v) depends omw such
thatm(v) — 0 asv — 0. In order to get an explicit positive lower bound for
n, the ultra-diffusivetermvng(n),, is necessary. This term is used to control the
convective ternmy?/n.

Cased > 0, v = 0. Without viscosity, we only get the existence of “subsonic”
solutions. We call a solutiof, V) to (1.6)—(1.8) “subsonic” if the density is
positive and satisfies the condition

J/n </Tp'(n) in Q.

More precisely, for isothermal pressure functions or sufficiently ldge- 0 in
the case of isentropic pressure, there exists a conggast 0 such that for all
0 < J £ Jg there exists a classical solutign, V) to (1.6)—(1.9) with positive
lower and upper bounds farnot depending o (Corollary 4.1). This solution is
“subsonic”. Moreover, for isentropic pressure functignag) = n* with « > 2,
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there exists a constast > 0 suchthatforall = J; the problem (1.6)—(1.9) cannot
have a weak solution with positive(Corollary 4.1). Finally, we prove uniqueness
for isentropic pressure functiongn) = n® with « = 2, and sufficiently large
T > 0andEg > 0, in the class of “subsonic” solutions (Theorem 5.1).

We remark that, once uniforatbounds are obtained, it is possible to study the
asymptotic limits corresponding to small dispersion [10].

Inthe final section of this paper we show details how to extend our mathematical
technigues to some general multi-dimensional quantum trajectory models involving
third-order boundary value problems of the type

V(Au)Au) = puV(F@)) + V(G(u))
+vV(Bu)(1-V)u)in Q c R?, (1.12)
Bu= ug o0nog,

where(1-V)u = Z dju andu > 0. Depending on the boundary operafar = ug

and boundary geometry of the domain, it is possible to analyze the boundary value
problem (1.12) for nonlinear functions, B, F and G satisfying some growth
conditions (see Section 6). This problem is singular sifi¢e) = 1~ witha > 0

is admissible.

We notice that third-order equations are also used in the modeling of long water
waves in channels with small depths (Korteweg-de-Vries equation; see, e.g., [22])
and of light waves guided in an optical fiber (third-order Schinger equation;
see [23]). In fact, we can prove for this problem that in the case 0 there
exists a solution for sufficiently small > 0, whereas there is no solution for
sufficiently largex > 0 (Theorem 6.2). Ifv > 0, then a solution exists for all
u > 0 (Theorem 6.1).

Notice that the quantum hydrodynamic equation (1.5) can be written via the
change of variabla = /n in the form

B
2

2

82V (L Au) = v(' | )+TVh( v+ / S+
2t

+u (VO — (T V)] (1.13)

—2u™>(|J1?Vu — (J - Vu)J).

In this situation, the current density is generally not constant. Notice that the last
two terms vanish in the one-dimensional case. The study of the above general third-
order problem is animportant step in the existence analysis oftitedimensional
guantum hydrodynamic equations, to be studied in a separate project (see [11]).

For the proofs of the above results we combine the techniques developed in
[8,12,18,20]. The main idea is to integrate (1.6) once in order to get an elliptic
singular second-order problem for which comparison principle arguments apply.
The explicit lower and upper bounds for the particle density are obtained by using
a variant of thestampaccHiA truncation method [30]. For the existence results we
employ the Leray-Schauder fixed point theorem.
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Next, in order to derive the system of second-order equations to be analyzed,
we rewrite (1.6) as

J? o (VM) ¥ ds B
n[ﬁ—l—Th(n)—V—é N +J/O ;—i—vﬁ(n)x]x_o.

This implies, ifn > 0,

J? (f)xx
> HTho) =V V —§2

whereK is a constant which comes from (1.9). Observing that

Bn) = —n~ D2y — 1)
and settingy = /n gives
2

+J/ _+V:3(n)x:_ ,

82wy = o3t Twh(w?) — Vw+ Kw + Jw/ — 4 ¥ (1.14)
A2V = w2 — C(x). (1.15)
These equations have to be solve®ia= (0, 1) subject to the boundary conditions
wherewg = /ng andwy = ,/n1. For the constank we choose
K €'V, + max(—Eo, 0) + 2~2M2, where (1.17)
M L' maxwo, w1, Mo). (1.18)

and My is such thath(Mg) = 0. The constank is taken in such a way that
—V(x) + K = 0 holds (see Section 2). Notice that every solutian V) of
(1.14)—(1.16) satisfyingy > 0 in Q gives a solutior(n, V) to (1.6), (1.7) subject
to the boundary conditions (1.8), (1.9).

In this paper we impose the following assumptions:

(H1) i e C(0, 0o0) andp’ (defined byp'(s) = sh’(s), s > 0) are non-decreasing,
andh satisfies

lim h(s) > 0, lim h(s) <0, lim /s h(s) > —oo. (2.19)
§—00 s— 04 s—0+

The viscous terng is given by (1.10).
(H2) C € L%(),C 20in; 7 € L¥(Q), 1(x) = 10 > 0in Q.
(H3) J, wo, w1,8,A, T >0; v=0; Vo, Eg € R.

The isothermal enthalpy:(s) = log(s), s > 0) and the isentropic enthalpies
(h(s) = 25 (s*1 = 1), 5 = 0, withe > 1) are included in (H1).

The outline of the paper is as follows. In Section 2 we prove the existence of
solutions to (1.14)—(1.16) far > 0. Section 3 is devoted to the existence analysis
for the casev = 0. The non-existence of solutions to (1.14)—(1.16)foe O is
shown in Section 4. In Section 5 the uniqueness of “subsonic” solutions is proved.
Finally, in Section 6 we extend our methods to some third-order equations in several
space dimensions.
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2. Existence of dispersive and viscous solutions (§ > Oand v > 0) for all
prescribed current J

In this section we prove the following theorem:

Theorem 2.1. Let the hypothese@i1)—(H3) hold and letv > 0. Then, for any
J > 0, there exists a classical solutiafw, V) € (C2(2))? to (1.14)«1.16)
satisfying

0<m@) Swkx) <M, forall x e Q.
Remark 2.1. The constantz(v) is defined by
m(v) = min(wo, w1, m1, mz),
where
h(4m%) £ 0,

1 v 1/(y—4)
my < ,
- <2V+1 J2/2+ J /10 + max0, K — k))
k = Vo —max(Eo, 0) — 272 Cll 1(q)-
The constand/ is defined in (1.18).
In order to prove Theorem 2.1, define the function

r(x) =¢(2—x), x€[0,1, O<e<min(l M/2), (2.1)
and consider the truncated problem
J2w

82wxx = m + Twh(wz) —Vw+ Kw

T ds (tr (wyr))xw
J , 2.2
" w/o )2 |ty ()’ @2
A2V = w? — C(x) in Q, (2.3)

wherer, (w) = max(e, w) andz, (wy) = max(r(-), min(M, w(-))). We can show
the existence of solutions to (2.2), (2.3), (1.16) for any 0 and anyw > 0.

Proposition 2.1. Let the assumptiondi1)—(H3) hold and letv = 0 ande > O.
Then, for anyJ > 0, there exists a solutiotw, V) € (H%())? to (2.2), (2.3),
(1.16)satisfyingd < w(x) £ M in Q.

For the proof of Proposition 2.1, we consider the approximate problem

2 J2w+ 2
8wy = ) +Twrh(w?) — Vwt + Kw*
Y ds (tr(wpr))xw™
Jw™ , 2.4
o /0 )2 () T @4
A2V = why — C(x) in Q, (2.5)

wherewt = max©0, w), wy = min(M, w). Let (w, V) be a weak solution to
(2.4), (2.5), (1.16). Then we have the followiagriori estimates:
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Lemma 2.1 (L estimates)The following inequalities hold for alt € Q:
OZSwkx)EM, k<Vkx) K, (2.6)
where
k = Vo — max(Eo, 0) — 27 2|[Cl| 1q)-

Proof. The problem (2.5), (1.16) is equivalent to

X y
V(x) = Vo — Eox + FZ/ / (w(2)% — C(2))dzdy, (2.7
0 0
for x € [0, 1], which implies
Vo — max(Eo, 0) — A72||Cll 1) £ V(x) < Vo + max(—Eo, 0) + A~ *M?.

This shows the second chain of inequalities of (2.6).
Usingw™ = min(0, w) as test function in (2.4), we get immediatedy> 0 in
Q. Finally, with the test functiottw — M)™ = max(0, w — M) in (2.4), we obtain

2
a2y < Ve B R 2 _
/Q((w M)F) dx:/Q(w M) w[ s iys ~ TR + (V= K)

X od
— J/ i dx
0 Tte(w)z

3 v/ (tr (war))xw(w — M)*
Q

tr(wM)y—H'

dx,

taking into account the monotonicity 6f The first integral on the right-hand side
is non-positive sinc& < K andh(M?) = h(M2) = 0. Therefore

2 - (wp))xw(w — M)+
/Q((w — M) dx £ —U/Q f(wa)? 1L dx £0.

Hencew £ M in Q.

Lemma 2.2 (H! estimates)There exist constantg, c; > 0 depending only on
given data and o, ¢ and M (but not onw and V) such that

||w||1-11(sz) < e, ||V||H1(Q) < c2.

Proof. The second assertion follows from Lemma 2.1 and

Vi(x) = —Eo+ 12 /O (1% — C(y) dy.
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The first assertion follows from Lemma 2.1 and (2.4), after employing the test
functionw — wp, wherewp(x) = (1 — x)wg + xw;. Indeed, we have

l’ —_
82/ wfdx :82/ Wy WDy dx—v/ (& (Wan))xwlw — wp) dx
Q Q Q

1 (wM)V+l

]2

- - — 4 Th(w?
fQ(w U)D)w|:2t€(w)4+ (w?)
V+K+J / B
— —_— X.
0 Tts(w)z

Using Young's inequality for the first two integrals on the right-hand side and
Lemma 2.1 for the last integral, we easily get

X

82
2 Jo

A

2
w; Sc.

Lemma 2.3 (H? estimate) There exists a constamg > 0 not depending omw
such that

lwll gz = cs.

Proof. The lemma follows immediately from (2.4), Lemma 2.2 and the embedding
HY(Q) — L®(Q).

Proof of Proposition 2.1. We apply the Leray-Schauder fixed point theorem (see,
e.g., [17]). Letu € HY(Q) and letV e H2(2) be the unique solution of

A2V =ud, —Cx) inQ, V(0) = Vo, Vi(0) = —Ep.

Letw € H?(Q) be the unique solution of

2 J2u* +1 (1,2 + +
(Sw“:a W+T“ h(u)—Vu +KM
&
Y ds (1 (up))xu™
Jut ,
o /o ng(u)z}”” b Gaan)7 +

w(0) = owo, w(l) = owsy, wheres € [0, 1].

This defines the fixed-point operator H(Q2) x [0, 1] — HY(Q), (u, o) — w. It
holdsS(x, 0) = O forallu € H1(Q). Similarly as in the proofs of Lemmas 2.1-2.3
we can show that there exists a constast 0 independent ofv ando such that

lwll g2y < ¢

for all w € HY(Q) satisfyingS(w, o) = w. Standard arguments show tht
is continuous and compact, if we note that the embedd@R¢2) — HL(Q) is
compact. Thus, the fixed-point theorem applies.

For the proof of Theorem 2.1 we only have to show thas strictly positive
in Q.
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Proof of Theorem 2.1. Taking(w —r)~ € Hol(Q) (see (2.1) for the definition af)
as test function in (2.4) gives:

82/ ((w — r);)zdx
Q

[ 72 )
—/Q(—(IU—r) )W-W—FT}Z(W)—V—I—K

Yoo ds v(t(w))x
* J/o @2 T } a

[ J2 J
< — — " —
:/Q( (w—r) )w24+Th(r) k+K+ +r1’+1:|dx

. TJ? J ve
§/Q(—(w—r) Yw 24—}-Th(r )—k+K+?—W:|dx,

using the monotonicity of and Lemma 2.1. Therefore

82/ ((w—r)7)2 dx

f( (w—r)~ )w|: FTh(4e®) —k+ K + 12 ﬁ}dx.

We claim that for sufficiently smalt > 0, the expression in the brackets is non-
positive, which impliesv(x) = r(x) =2 ¢ > 0in Q, i.e., we get the assertion of the
theorem after taking:(v) = . Now choose: € (0, 1) such that (see (H1))

) 1 v 1/(y—4) 2 <
< and h(4¢%) < 0.
= <2y+1 J2/2+ J/tg+max K —k, 0)> @0 =

Notice thaty > 4. Then, since < 1,

2
2 __v
> +Th(4e®) + K —k + — o 5y
1/J%2 J v
< | = _ _ [
:E4<2+m+max(0,l< k) 2V+1£V—4>
<0.

3. Existence of subsonic, isothermal, dispersive solutions (§ > 0 and v = 0)

In the case of vanishing viscosity we can only expect to show existence of
solutions for sufficiently small > 0, corresponding to a subsonic condition for
the hydrodynamic equatiorig = 0).
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In this section we need the following assumption. Assume that there exists
mgo > 0 such that

1 1
waé+mmé+; Tp'(m3)+ K —k 0. (3.1)
0

SinceK —k = —Eg + A"2(M? + ICll 1)), this assumption is satisfied if, for
instance,

(i) lim h(s) = —o0,0r
s—0+

(i) Eo > 0is sufficiently large.

Indeed, in case (i), the condition (3.1) becomes true for sufficiently smpa O;
we observe thap’ is non-decreasing such thﬁ‘t(m%) cannot be arbitrarily large
near zero. For instance, the isothermal enthd@) = log(s) satisfies (i). In
case (ii) we can choose, for instanes, > 0 such thah(mg) < 0, and then take
Eg > 0 large enough such that

1, 1 _
Eo = 5Tp (’”5”?0 Tp'(m3) + A" 2(M? + ||Cll 1q))- (3.2)

Now, define

m = min{wg, w1, mo}. (3.3)

Theorem 3.1. Let the assumption@d1)—-(H3)and (3.1) hold and letv = 0. Fur-
thermore, let/ > 0 be such that

J < Jo ¥ Tp (m2). (3.4)

Then there exists a classical solution, V) € (C2(2))? to (1.14)<(1.16)satisfy-
ing

O<mSwx)SMin Q,
wherem and M are defined in(3.3)and(1.18)respectively.

Remark 3.1. The condition (3.4) can be interpreted as a “subsonic condition” since
it implies that the velocity/ /n satisfies

J J J
S =< < Tyt < VT,

Proof. By Proposition 2.1, there exists a solutian, V) to the truncated problem
(2.4), (2.5), (1.16) witk = m > 0 (andv = 0). It remains to show that = m in
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Q. Using(w — m)~ as test function gives
52/ ((w—m)7)?dx
Q

= [ (—( )—>_J—2Th2)VKJXLd
_/Q_w_m Y| 2yt T VA KA /onmuu)z ¥

rJ2 J
< / (—(w —m)w 2—04 L Thm?) —k+ K + —02} dx
Q | £mn Tom

/ — 1 reo 2 2 1 2]
=] (—(w—m)Hw| =Tp (m°)+Th(m*) —k+ K + —/Tp’'(m¢) | dx
Q 2 70

1 1
< /Q<—(w —m)"yw| STp'(mg) + Thmg) —k+ K + - Tp/(mé)] dx

in view of the definition (3.1) ofrg. This implies thatw = m in Q.
Next, we prove that every weak solution is necessarily strictly positive:

Proposition 3.1. Let(w, V) € (H1(2))? be a weak solution t(l.14)+(1.16)with
v 2 0. Then there exist& > 0 such thatw(x) = m > Oforall x € Q.

Proof. By the definition of weak solution, each term of the right-hand side of (1.14)
(with v = 0) belongs ta.1(€2). In particular Yw® € L1(Q), so thatw,, € L1(Q),
which impliesw € W21(Q) — W1(Q). Now, suppose that there exisise Q
such thatw(xg) = 0. Then

1
w(x):(x—xo)/ wy(0x + (1 — 0)xg) db, x €,
0

L dx 1 1 -3
/0 |w(x)|33/0 (/o wa(S)Ids) Ix — xo| 3dx = o0,

contradicting the integrability of /w3. Hencew > 0 in , and sincaw is contin-
uous ing2, there exist& > 0 such thaiw(x) = m for all x € Q.

and

4. Non-existence of isentropic dispersive solutions (6 > Oand v = 0)
for large data

We show that, under some condition bna weak solution to (1.14)—(1.16)
cannot exist if/ > 0 is large enough. For this, we have to prove thas bounded
from above independently of.

Lemma4.l. Let(w, V) be any weak solution {d..14)}(1.16)with v = 0 and with
anyK € R and anyJ > 0. Furthermore, let

h(s) = co(s* 1 —1) for s =0, with o > 2. (4.1)
Then there existd; > 0, independent of , such thatw(x) < M7 forall x € Q.
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Remark 4.1. The boundM; does not depend ok if K > 0.

Proof. Take(w — A)T with A = max(wg, w1) as test function in (1.11) to get

52/ (w—A)2dx
Q

+ ]2 x dS 2
=] w-AN"wl-——-1J — — h(w®) — K |dx (4.2)
Q 2w4 0 'L'w2
+ / (w—A)TwV dx.
Q
The main difficulty is to estimate the last integral. From (2.7) it follows that

V(x) £ Vo + max(—Eg, 0) +/\‘2f w?dx.

Q
Since
w?=(w+ A)w—A)+ A%< (w+ A)(w— AT+ A2
<2ww— AT+ A
we get

V(x) £ Vo + max(—Ep, 0) + 2,\—2/ ww — A)T dx + A2L 72
Q

and, setting/, d='3fVo + max(—Ep, 0),

/ (w—A)Twvdx < / (w— A)Tw(Vy + A1) dx
Q Q

2
+ zxz(f (w—A)tw dx)
Q

< vlf (w—A)Twdx + A‘Z/ (w— AT widx

Q Q
+ 2)\72/ (w — A)Jrzu)2 dx
Q

< vlf (w—A)Twdx + 3,\—2/ (w— A)Twddx,

Q Q
sinceA S won{x: wx) = A} and(w — A)™ < w. Therefore we get from (4.2)
52/ (w— A)F2dx
Q
< f (w— A w[Vi+ 32 2w? — K — co(w® 2 — 1)]dx.
Q

Since & — 2 > 2, there exist3/1 > 0 such that
coM®™2 —3072M2 — Vi + K — ¢ 2 0, (4.3)
which implies, after taking\ = M1, thatw < M1 in Q.
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Theorem 4.1. Let(H1)—(H3)and(4.1)hold, letv = 0,and letk € R be arbitrarily
given. Then there existg > Osuch that, if/ = J;, then the probleril.14){(1.16)
cannot have a weak solution.

Remark 4.2. The constant/; > 0 is defined by

2

Ji
S = = 85%(max(wo, w1) + 1) — Tho + M1(|Vol

2M: (4.4)

+ |Eo| + A~2M? — min(0, K)),
wherehg = inf{sh(s?) : 0 < s < M1} > —oc andM; > 0 is defined by (4.3).

Proof. Suppose thatthere exists aweak solutionV) to (1.14)—(1.16) foraly >
0 for someK € R. By Lemma 4.1w < M, in Q. Moreover, by Proposition 3.1,
w > 0andw € HY(Q) — €% Q) andw > 0in Q. Thereforew,, € CO(Q).

Thusw is a classical solution. Let = J1, whereJ; is defined in (4.4). Then

J2
Wy 2 —— oM 3 + Tho — w(supv min(0, K))

2
2M 3
= 852 (max(wo, wy) + 1).

II\/

+ Tho — M1(|Vo| + |Eo| + 2"2M2? — min(0, K))

Introduceg (x) = 4max(wo, w1) + 1)(x — 3)2 — 1,x € [0, 1]. Then

q(0) = g(1) = max(wo, wi),
gxx (x) = 8(Max(wo, w1) + 1),

for x € ©, which implies
w—qg<00n93R, (w—q) =0 in Q.

The maximum principle givess — g < 0 in Q. In particular, w( ) £ q(z) =
—1 < 0, which contradicts the positivity ab.

Corallary 4.1. Let(H1)—-(H3)hold and letv = 0.

(i) Let(3.1)hold. Then there existg > 0 such that for all/ < Jg there exists a
solution(n, V) € (C3(Q))? to (1.6)«1.9) with strictly positiven.

(i) Let(4.1)hold. Then there existf > 0 such that for all/ = J;, the problem
(1.6)+1.9) cannot have a weak solution.

Proof. The first part follows from Theorem 3.1 after setting= w? and differ-
entiating (1.11) withv = 0. The second part follows from Theorem 4.1 since the
constantk € R is fixed in (1.9). Thus the problems (1.6)—(1.9) and (1.14)—(1.16)
are equivalent and the non-existence of solutions to (1.14)—(1.16) implies the non-
existence of solutions to (1.6)—(1.9).
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5. Uniqueness of subsonic, isentropic, dispersive solutions (§ > O and v = 0)

We can prove the uniqueness of “subsonic” solutions to (1.6)—(1.9). Our main
result is the following theorem.

Theorem 5.1. Let(H1)-(H3)hold and letv = 0 and 1/t = 0. Moreover, let’ be
non-decreasing and let> 0. Then there existy > 0and Ty > 0 such that for all
T = Ty there is uniqueness of weak solutiongXd 4){(1.16) (and to(1.6)1.9))
in the class of positive densities satisfying the “subsonic” condition

J/w(x)? < \/(1— aTp (wx)?) forall x € Q. (5.1)

For instance, isentropic enthalpie&) = aaTl(Sa_l — 1) with o = 2 satisfy
the condition or” of Theorem 5.1.

Proof. Let mg > 0 be such thah(m(z,) < 0. Choosel' = Ty, whereTp > O is
defined below. Then ldiy > 0 be chosen such that the inequality (3.2) holds. Then
the assumptions of Theorem 3.1 are satisfied. Nowuet V1) be the solution to
(1.14)—(1.16) constructed in Theorem 3.1, w&.,= m holds in$2, andm > 0 does
not depend ol > 0. Moreover, there exists > 0 such that (5.1) holds fap;.
Finally, let (w2, V2) be a second weak solution to (1.14)—(1.16) satisfying (5.1).
Thenws is positive in€2, by Proposition 3.1, and1, w; are classical solutions of
(1.12).

Introducey (w) = J2/2w* + (1 — &)Th(w?). Then, proceeding similarly to
[4], we write
_§2Whax | soW2xx _ x(wy) n x (w2)

— T (h(wd) — h(wd)) + Vi — Va.
w1 w2 w1 w2

Multiplying this equation byuf — w%, integrating ovek2 and integrating by parts,
we obtain, after elementary computations,

/ (w% + w%) (Inw1—1In wz))zC dx
Q

w1 2 wo 2
= / [(wl,x - _wZ,x> + (wz,x - _wl,x) ]dx
Q w2 w1

= —/ (—X(wl) - X(wZ))(w% - w%) dx (5.2)
Q

w1 w2

— eT/ (h(w?) — h(w3))(w? — w3) dx
Q

+ / (V1 — Vo) (w? — w?) dx.
Q
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We first estimate the second integral on the right-hand side, using the assumption
thath’ is non-decreasing:

—eT / (h(w?) — h(w3))(w? — w3) dx
Q
1
= —8T/ / B (Ow? + (1 — 0)w?)(w? — w3)%do dx
QJO

< —SCT/ (w? — w3)?dx,
Q
where
1
¢ =/ h'(0m?) do > 0
0

is independent of" > 0.
Now multiply the difference of (1.15) fovy andV» by V1 — V>, integrate over
Q and integrate by parts to get

/ (V1 — Vo) (w? — w?) dx
Q

= -7 / (Vi = V2)2dx + 22(V1 — Vo) (D) (V1 — V2)x (D)
Q
1 2
< —)\Zf (V1 — V2)2dx +/\—2(/ (w? — wd) dx)
Q 0

1
< —Azf (V1 — V2)2 dx +A‘2f (wi — wh)?dx,
Q 0

where we used the expression (2.6) Yarand V» and Jensen’s inequality.

Finally, we estimate the firstintegral on the right-hand side of (5.2). The function
s — x(s)/s is non-decreasing if and only if

d x(s) 272 2, J2

TS = S 20— T ) = ;( - G- e)p’(sz)) >0,

In view of condition (5.1) this implies that

x(w1)  x(w2)\, » 2
_ L7 — dx <0.
,/Q ( w1 w2 >(w1 wz) t=

Hence, we obtain from (5.2)

/ (w% + w%)(ln w1 — In wz))zc dx
Q

1
< —x2/ (V1—V2)2dx + (272 - 8cT)/O (w2 — w3)2dx
Q

[IA

07

choosingTl 2> Ty, whereTp dzefl/)»ZEC. Hencew1 = wy andVy = Vo in Q.
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6. Third-order equationsin several dimensions

In this section we show how the methods of the previous sections can be ex-
tended to a large class of third-order equations in any space dimension. This is the
first important step for performing the existence analysis of the multi-dimensional
guantum hydrodynamic equations. Since the proofs are similar to those of the pre-
vious sections, we only sketch the proofs. A rigorous proof of an existence result
for the quantum trajectory models in 2 or 3 dimensions will require an additional
detailed description of the flow domain and boundary conditions. Such study is part
of a future project.

Let 2 c R? (d = 1) be a bounded “channel like” domain and consider

V(Aw)Au) = uV(Fw)) + V(Gw)) + vVW(Bwm)(1- Vyu) inQ, (6.1)
Bu=up o0noig, (6.2)

wherev 2 0 andu > 0. Recall tha(l - V)u = Zj oju.

We must assume that the boundary conditions are such that the integration of
(6.1) along integral curves is well defined; for instance, a two- or three-dimensional
domain, homeomorphic to bounded cylindrical domains (as a section of a duct)
with two opposite walls, denoted b, where Dirichlet data is prescribed for
the density (as contact boundaries), and the remainder of the boundary, denoted
by NV, are “insulating” walls corresponding to homogeneous Neumann conditions
(as insulating boundaries). Such a two-dimensional configuration was applied and
studied in the existence of positive densities for steady potential viscous fluid-
Poisson systems in [12].

Therefore the boundary operator becofas= u |p U Vu - n |zr, Wheren is
the outer normal vector to the boundary of the donédin= D U /. Thusup =
f(x) prescribed iD andup = 0 in V. We point out that if the boundary surfaces
D andV intersect orthogonally, the standard reflection technigues for second-order
equations, with the given boundary conditions, apply and yield optimal regularity
for the solutions of the equation.

Now, integrating (6.1) along integral curves we obtain

Au = pufw)+ gw) + Ka(u) + vbu)(1- V)u, (6.3)
whereK < R is a constant and
_ Fu) . @ _ 1 _ B
Sw) = A glu) = A’ a(u) = A’ b(u) = A0

Any solutionu € H2(2) to (6.3), (6.2) solves the problem (6.1), (6.2) and vice
versa. For simplicity, we suppose tlat= 2. We assume that

Qe up e H(Q)NL®(Q); up = up>00nd; (6.4)

a,b, f,g € C(0,00), a, g are non-decreasing:, b are non-negative (6.5)

g(0+) <0; g(+00) >0; Ilim a(s)/sb(s) =0; (6.6)
s—0+

OJ?IM f()>0 VM >0; Siﬁ(}_Ir f(s)/sb(s) =0. (6.7)
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Admissible functions are, for instance,
fw=u% gw=u-1, aw)=u’, bu)=u?
withe, 8,y >0,y >8—1,ands > 1+ «a.

Theorem 6.1. Letv > 0 and K > 0. Then there exists a solutione H2(2) to
(6.1), (6.2)for all u > 0.

Remark 6.1. The assumptiork > 0 can be weakened by choosing appropriate
assumptions on the functions f, andg.

Proof. SinceQ is bounded, there exist® > 0 such thaiQ is contained in the
ball B (0) of radiusR and center 0. Introduce the comparison funcigmn) =
¢(x1,....,x3) = (2R —x1) and 0 < & < min(uo, M/3). Setty(uy) =
max(¢ (-), min(M, u(-))) and consider the truncated problem

f(t¢(’4M))u+ g(t¢(uM))u+ Ka(t¢(MM))M+

Au =
ty(u) ty(u) ty(up)
2l V() N, (6.8)
to(up)
U= up onog, (6.9)

whereut = max(0, u). Using the methods of the proof of Proposition 2.1, we
easily get the existence of a solutiore H2(2) to (6.8),(6.9) for any > 0 (here
we use thaKa(s) = 0). It remains to show that < u(x) < M for x € Q.

First we observe that by using™ as test function in (6.8), we immediately
conclude that:(x) = 0in . In order to prove that < M in Q for someM > 0
we use(u — M) with M = |lup||L~(q) as test function in (6.8). Since there exists
a constaniM > 0 such thag(M) = 0, we can show as in the proof of Lemma 2.1
that(u — M)T™ =0in Q.

For the lower bound we us@a — ¢)~ as test function in (6.8), observing that
e < Pp(x) £3einQ:

/ V(- ¢) [Pdx
Q

LT fUsw)  glp@) . alip@)
- K
fg( =) )uln @ @ W

b(tp(u))
o (1. V)(t¢(u))] dx

L@ 8@ a@) | b@)
[ (==l £ kD 290 ar

. @ s  Ka@) v
- b ~la
/Q( =) Jub@) | 1oy 5+ St gy~ 3R)

+v

A

=0

by choosinge small enough such that the inequalitie&) < 0, f(¢)/db(P)
< v/6uR, anda(¢)/Pb(¢) < v/6K R are satisfied if2. This is possible in view
of the conditions (6.6), (6.7). We conclude thak ¢ = ¢ in Q.
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Theorem 6.2. Letv = 0.

(i) Letg(0+) < 0. Furthermore, assume th& > 0 andlim;_ o a(s)/s = 0.
Then there existgg > 0 such that for all0 < u < g there exists a solution
u € H2(Q) to (6.1), (6.2)satisfying

Au = puf(up)+gup) + Ka(up) ond<Q. (6.10)

(ii) Letg(0+) > —oo. Then there existg; > 0 such that for allu = 1 there is
no weak solution t¢6.1), (6.2), (6.10)

Proof. For the first part of the theorem we only have to show that the solution
to (6.8), (6.9) is strictly positive for sufficiently small > 0. Takes = m > 0 and

8 > 0 such thain < ug, g(¢)/¢ < —8 < 0, anda(¢)/¢ < §/2K (if K > 0)in

Q. The existence ofi andé is ensured by condition (6.6) and the assumption.on
Let fin = SUR,<s<3, f(s)/s. Thenf, > 0O in view of assumption (6.7). Choose
0 < uo £68/2f,, andlet 0< u < uo. Using(u — m)~ as test function in (6.7)
yields

/ IV —m)~|2dx
Q
Q

1 (u) te () tg ()
- f@) 8@ a(o)
< /Q(—(u—m) )u[uo p + p +K 5 ]dx
= /Q (= @ —m)")u[pofm — 8/2] dx
<0

Thusu =2 m > 0in Q.

To prove the second part of the theorem, dete H(Q) be a solution to
(6.2), (6.3) withu < M in Q and K € R. Using the positivity of f, we can
easily see that the constamt does not depend op. Let xg € Q. SinceQ is
open, there exists a ball, (xg) of radiusr with centerxg contained inQ2. Set
fo=inf{f(s) :0 <s < M} > 0andag = inf{a(s) : 0 <s < M} =2 0and
chooseu1 > 0 such thaf. OEfulfo + g(04) +max©, Kag) = 2d(M +1)/r?and
L = M. Notice that we assumegd0+) > —oo. We show thai:(xg) < 0 which
is a contradiction to the non-negativity of The following holds (in the sense of
distributions):

Au 2 pfo+ g(04+) + max0, Kag) 2 p1.fo + g(0+) + max(0, Kap)
=L in Q.

Now define

L
qg(x) = g|x —x0l?=1 forx € B.(x0).
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Then
Ag =L in B.(xp), q=r’L/2d —1>0 ondB,(xo).
This implies
Au—¢q)=0 inB(xo), u—q<M—r?°L/2d+1=0 ondB,(xp).

By the maximum principle, we conclude that- ¢ < 0 in B, (xp). In particular,
u(xg) < g(xg) = —1 < 0, which is a contradiction.
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