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Abstract

We analyze a quantum trajectory model given by a steady-state hydrodynamic
system for quantum fluids with positive constant temperature in bounded domains
for arbitrary large data.The momentum equation can be written as a dispersive third-
order equation for the particle density where viscous effects are incorporated. The
phenomena that admit positivity of the solutions are studied. The cases, one space
dimensional dispersive or non-dispersive, viscous or non-viscous, are thoroughly
analyzed with respect to positivity and existence or non-existence of solutions, all
depending on the constitutive relation for the pressure law. We distinguish between
isothermal (linear) and isentropic (power law) pressure functions of the density. It is
proved that in the dispersive, non-viscous model, a classical positive solution only
exists for “small” (positive) particle current densities, both for the isentropic and
isothermal case. Uniqueness is also shown in the isentropic subsonic case, when
the pressure law is strictly convex. However, we prove that no weak isentropic
solution can exist for “large” current densities. The dispersive, viscous problem
admits a classical positive solution for all current densities, both for the isentropic
and isothermal case, with an “ultra-diffusion" condition.

The proofs are based on a reformulation of the equations as a singular elliptic
second-order problem and on a variant of the Stampacchia truncation technique.
Some of the results are extended to general third-order equations in any space
dimension.

1. Introduction

The present paper is concerned with hydrodynamic models for quantum fluids
in bounded domains. The evolution of the quantum fluid is governed by the con-
servation laws of mass and momentum for the particle densityn and the particle
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current densityJ :

∂n

∂t
+ div J = 0, (1.1)

∂J

∂t
+ div

(J ⊗ J

n
+ P

)
− nF = W − νB, (1.2)

whereP = (Pik) denotes the pressure term,F the sum of the (external) forces,W
the momentum relaxation term, andνB the viscous term with viscosityν � 0. The
tensor productJ ⊗ J is given by the componentsJiJk with i, k = 1, . . . , d.

We consider an isothermal or isentropic quantum fluid of charged particles.
Then, the pressure tensor is assumed to be of the formP = (Tp(n)δik) whereδik
is the Kronecker symbol. The pressure functionp is given by the relationp(n) = n

in the isothermalcase andp(n) = nα with α > 1 in theisentropiccase, andT is
a (scaled) temperature constant. We assume that the forceF is the gradient of the
sum of the electrostatic potentialV and the quantum Bohm potential

Q = δ2 1√
n
�

√
n,

δ > 0 being the scaled Planck constant. Equations (1.1), (1.2) are coupled to
Poisson’s equation for the electrostatic potential,

λ2�V = n− C, (1.3)

whereλ > 0 denotes the scaled Debye length, andC = C(x)models fixed charged
background ions. The relaxation term is given byW = −J/τ , τ = τ(x) > 0 being
the relaxation time. The choice of the viscous termνB will be defined below.

With these assumptions, the stationary quantum hydrodynamic equations with
viscosity can be formulated as

div J = 0, (1.4)

div
(J ⊗ J

n

)
+ T∇p(n)− n∇V − δ2n∇

(�√
n√
n

)
= −J

τ
− νB. (1.5)

The equations (1.3)–(1.5) are solved in a bounded domain� ⊂ R
d (d � 1)

occupied by the fluid. Equations (1.4), (1.5) are in scaled form; we refer to [19] for
the choice of the scaling.

In the caseδ = 0 andν = 0, we get the classical hydrodynamic equations which
are considered, for instance, byDegond &Markowich [6] andMarkowich [26]
in two and three space dimensions for subsonic flow, and byGamba [8] in one
space dimension for transonic flow. The two-dimensional viscous hydrodynamic
equationsδ = 0 andν > 0 are studied, in the potential flow formulation, byGamba
& Morawetz [9,12].

The quantum hydrodynamic equations forδ > 0 andν = 0 arise in semi-
conductor modeling where it has been used for analyzing the flow of electrons in
quantum semiconductor devices, like resonant tunneling diode models ofGard-
ner & Ringhofer [13,14]. Recent quantum chemistry calculations using Quan-
tum Trajectories Methods ofLopreore&Wyatt [25] have been proposed to study
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resonant scattering with one-dimensional double barrier potentials [27] in order to
obtain properties of transmission probabilities. In addition, these quantum trajec-
tory models have been used in the modeling of collinear chemical reactions [31]
and in models for photo-dissociation of molecules bySales-Mayor et al. [29].
Very similar model equations have been employed in other areas of physics, e.g.,
in superfluidity [24] and in superconductivity [7].

We refer to [5,13–16] for a justification and derivation of the quantum hydro-
dynamic equations.

Mathematically, these models have been studied byJerome & Zhang [32] and
Gyi & Jüngel [18] in one space dimension and byJüngel [20] in several space
dimensions. The existence of strong solutions of the boundary-value problem (with
Dirichlet and/or Neumann boundary conditions) could be proved under a smallness
condition on the data (current density or applied voltage) which corresponds essen-
tially to a subsonic condition of the underlying classical hydrodynamic problem.
However, no results are available for “large” data.

Viscous or diffusive terms in the quantum hydrodynamic equations are re-
cently derived byArnold et al. [1] from the Wigner-Fokker-Planck equation via
a moment method, and byGardner & Ringhofer [14] from a Wigner-relaxation
model, via a Chapman-Enskog expansion method based on scaling arguments.

Our goal is to show that if a special class of viscosities is considered, a positive
solution of the problem exists for all current densities.

Consider the one-dimensional equations (1.3)–(1.5) with the viscous termB =
n(β(n))xx :

(J 2

n
+ Tp(n)

)
x

− nVx − δ2n

(
(
√
n)xx√
n

)
x

= − J

τ(x)
− νn(β(n))xx, (1.6)

λ2Vxx = n− C(x), (1.7)

in the interval� = (0,1) for prescribedJ > 0, subject to the boundary conditions

n(0) = n0, n(1) = n1, V (0) = V0, Vx(0) = −E0, (1.8)

δ2 (
√
n)xx(0)√
n0

− νβ ′(n0)nx(0) = J 2

2n2
0

+ T h(n0)− V0 +K, (1.9)

whereh(s) is theenthalpyfunction defined byh′(s) = p′(s)/s, s > 0, andh(1) =
0, andK > 0 is a constant whose value is given below (see (1.14)). In the isothermal
case, the enthalpy ish(s) = log(s) (s � 0); in the isentropic case one getsh(s) =
α
α−1(s

α−1 − 1) (s > 0), withα > 1.
Notice that we need three boundary conditions forn, since (1.6) is of third

order. We do not prescribe the potentialV at bothx = 0 andx = 1 (but only at
x = 0), since the current density is given. Then, we can compute the applied voltage
V (1) − V (0) from the solution of the differential equations. This yields a well-
defined current-voltage characteristic. The third condition (1.9) can be interpreted
as a boundary condition for the quantum Fermi potential (or quantum velocity
potential; cf. [20]).
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One of the main assumptions of this paper is that we choose the viscous term
as follows:

β(n) = − 1

γ − 1

1

n(γ−1)/2
with γ > 4. (1.10)

This assumption is made by enforcing the minimal growth condition to the viscous
term so that the system admits positive solutions for all values of the current den-
sities. Thus, the main objective of this paper is to understand the phenomena that
admit existence and positivity of the solutions to thethird-order boundary value
problem (1.6)–(1.9) forν = 0 andν > 0.

It is well known that the positivity of solutions to higher-order equations is
a delicate problem since maximum principle arguments generally do not apply.
We refer to [2,3,21,28] for recent studies of the positivity of solutions tofourth-
order elliptic equations where similar difficulties arise. It turns out that for the
problem (1.6)–(1.9), theultra-diffusiveterm given byβ prevents the solution from
cavitating and provides the growth necessary to obtain a uniform bound in the
dispersive parameterδ. In this sense, this term corresponds to thehyper-diffusive
corrections sometimes used for stable numerical approximations to the Navier-
Stokes equations.

More precisely, let us consider the following cases:

Case δ = 0, ν > 0. This problem has been studied byGamba [8] with B = nxx . It
is shown that for isentropic pressure functionsp, there exists a positive solution to
the one-dimensional equations (1.6)–(1.8). Moreover, the lower and upper bounds
for this solution do not depend on the viscosityν, and it is possible to perform
rigorously the limitν → 0 and to obtain entropic inviscid solutions.

Case δ > 0, ν > 0. Consider isentropic or isothermal pressure functions. We
prove that for any givenJ > 0, there exists a classical solution(n, V ) to (1.6)–
(1.9) (Theorem 2.1). Furthermore, the particle density satisfies

0< m(ν) � n(x) � M for all x ∈ �. (1.11)

The constantsm(ν) andM do not depend onδ > 0, butm(ν) depends onν such
thatm(ν) → 0 asν → 0. In order to get an explicit positive lower bound for
n, theultra-diffusivetermνnβ(n)xx is necessary. This term is used to control the
convective termJ 2/n.

Case δ > 0, ν = 0. Without viscosity, we only get the existence of “subsonic”
solutions. We call a solution(n, V ) to (1.6)–(1.8) “subsonic” if the densityn is
positive and satisfies the condition

J/n <
√
Tp′(n) in �.

More precisely, for isothermal pressure functions or sufficiently largeE0 > 0 in
the case of isentropic pressure, there exists a constantJ0 > 0 such that for all
0 < J � J0 there exists a classical solution(n, V ) to (1.6)–(1.9) with positive
lower and upper bounds forn not depending onδ (Corollary 4.1). This solution is
“subsonic”. Moreover, for isentropic pressure functionsp(n) = nα with α > 2,
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there exists a constantJ1 > 0 such that for allJ � J1 the problem (1.6)–(1.9) cannot
have a weak solution with positiven (Corollary 4.1). Finally, we prove uniqueness
for isentropic pressure functionsp(n) = nα with α � 2, and sufficiently large
T > 0 andE0 > 0, in the class of “subsonic” solutions (Theorem 5.1).

We remark that, once uniformδ-bounds are obtained, it is possible to study the
asymptotic limits corresponding to small dispersion [10].

In the final section of this paper we show details how to extend our mathematical
techniques to some general multi-dimensional quantum trajectory models involving
third-order boundary value problems of the type

∇(A(u)�u) = µ∇(F (u))+ ∇(G(u))
+ ν∇(B̃(u)(1 · ∇)u) in � ⊂ R

d ,

Bu = u0 on ∂�,

(1.12)

where(1·∇)u = ∑
j ∂juandµ > 0. Depending on the boundary operatorBu = u0

and boundary geometry of the domain, it is possible to analyze the boundary value
problem (1.12) for nonlinear functionsA, B̃, F andG satisfying some growth
conditions (see Section 6). This problem is singular sinceF(u) = u−a with a > 0
is admissible.

We notice that third-order equations are also used in the modeling of long water
waves in channels with small depths (Korteweg-de-Vries equation; see, e.g., [22])
and of light waves guided in an optical fiber (third-order Schr¨odinger equation;
see [23]). In fact, we can prove for this problem that in the caseν = 0 there
exists a solution for sufficiently smallµ > 0, whereas there is no solution for
sufficiently largeµ > 0 (Theorem 6.2). Ifν > 0, then a solution exists for all
µ > 0 (Theorem 6.1).

Notice that the quantum hydrodynamic equation (1.5) can be written via the
change of variableu = √

n in the form

δ2∇(u−1�u) = ∇
( |J |2

2u4

)
+ T∇h(u2)− ∇V + J

τu2 + ν
B

u2

+ u−4((∇ ⊗ J )− (J ⊗ ∇))J
− 2u−5(|J |2∇u− (J · ∇u)J )

.

(1.13)

In this situation, the current density is generally not constant. Notice that the last
two terms vanish in the one-dimensional case. The study of the above general third-
order problem is an important step in the existence analysis of themulti-dimensional
quantum hydrodynamic equations, to be studied in a separate project (see [11]).

For the proofs of the above results we combine the techniques developed in
[8,12,18,20]. The main idea is to integrate (1.6) once in order to get an elliptic
singular second-order problem for which comparison principle arguments apply.
The explicit lower and upper bounds for the particle density are obtained by using
a variant of theStampacchia truncation method [30]. For the existence results we
employ the Leray-Schauder fixed point theorem.
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Next, in order to derive the system of second-order equations to be analyzed,
we rewrite (1.6) as

n

[
J 2

2n2 + T h(n)− V − δ2 (
√
n)xx√
n

+ J

∫ x

0

ds

τn
+ νβ(n)x

]
x

= 0.

This implies, ifn > 0,

J 2

2n2 + T h(n)− V − δ2 (
√
n)xx√
n

+ J

∫ x

0

ds

τn
+ νβ(n)x = −K,

whereK is a constant which comes from (1.9). Observing that

β(n) = −n−(γ−1)/2/(γ − 1)

and settingw = √
n gives

δ2wxx = J 2

2w3 + Twh(w2)− Vw +Kw + Jw

∫ x

0

ds

τw2 + ν
wx

wγ
, (1.14)

λ2Vxx = w2 − C(x). (1.15)

These equations have to be solved in� = (0,1) subject to the boundary conditions

w(0) = w0, w(1) = w1, V (0) = V0, Vx(0) = −E0, (1.16)

wherew0 = √
n0 andw1 = √

n1. For the constantK we choose

K
def= V0 + max(−E0,0)+ λ−2M2, where (1.17)

M
def= max(w0, w1,M0), (1.18)

andM0 is such thath(M2
0) � 0. The constantK is taken in such a way that

−V (x) + K � 0 holds (see Section 2). Notice that every solution(w, V ) of
(1.14)–(1.16) satisfyingw > 0 in� gives a solution(n, V ) to (1.6), (1.7) subject
to the boundary conditions (1.8), (1.9).

In this paper we impose the following assumptions:

(H1) h ∈ C1(0,∞) andp′ (defined byp′(s) = sh′(s), s > 0) are non-decreasing,
andh satisfies

lim
s→∞h(s) > 0, lim

s→0+h(s) < 0, lim
s→0+

√
s h(s) > −∞. (1.19)

The viscous termβ is given by (1.10).
(H2) C ∈ L2(�), C � 0 in�; τ ∈ L∞(�), τ(x) � τ0 > 0 in�.
(H3) J,w0, w1, δ, λ, T > 0 ; ν � 0 ; V0, E0 ∈ R.

The isothermal enthalpy (h(s) = log(s), s > 0) and the isentropic enthalpies
(h(s) = α

α−1(s
α−1 − 1), s � 0, withα > 1) are included in (H1).

The outline of the paper is as follows. In Section 2 we prove the existence of
solutions to (1.14)–(1.16) forν > 0. Section 3 is devoted to the existence analysis
for the caseν = 0. The non-existence of solutions to (1.14)–(1.16) forν = 0 is
shown in Section 4. In Section 5 the uniqueness of “subsonic” solutions is proved.
Finally, in Section 6 we extend our methods to some third-order equations in several
space dimensions.
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2. Existence of dispersive and viscous solutions (δ > 0 and ν > 0) for all
prescribed current J

In this section we prove the following theorem:

Theorem 2.1. Let the hypotheses(H1)–(H3) hold and letν > 0. Then, for any
J > 0, there exists a classical solution(w, V ) ∈ (C2(� ))2 to (1.14)–(1.16)
satisfying

0< m(ν) � w(x) � M, for all x ∈ �.
Remark 2.1. The constantm(ν) is defined by

m(ν) = min(w0, w1,m1,m2),

where

h(4m2
1) � 0,

m2 �
(

1

2γ+1

ν

J 2/2 + J/τ0 + max(0,K − k)

)1/(γ−4)

,

k = V0 − max(E0,0)− λ−2‖C‖L1(�).

The constantM is defined in (1.18).

In order to prove Theorem 2.1, define the function

r(x) = ε(2 − x), x ∈ [0,1], 0< ε < min(1,M/2), (2.1)

and consider the truncated problem

δ2wxx = J 2w

2tε(w)4
+ Twh(w2)− Vw +Kw

+ Jw

∫ x

0

ds

τ tε(w)2
+ ν

(tr (wM))xw

tr (wM)γ+1 , (2.2)

λ2Vxx = w2 − C(x) in �, (2.3)

wheretε(w) = max(ε, w) andtr (wM) = max
(
r(·),min(M,w(·))). We can show

the existence of solutions to (2.2), (2.3), (1.16) for anyJ > 0 and anyν � 0.

Proposition 2.1. Let the assumptions(H1)–(H3) hold and letν � 0 and ε > 0.
Then, for anyJ > 0, there exists a solution(w, V ) ∈ (H 2(�))2 to (2.2), (2.3),
(1.16)satisfying0 � w(x) � M in �.

For the proof of Proposition 2.1, we consider the approximate problem

δ2wxx = J 2w+

2tε(w)4
+ Tw+h(w2)− Vw+ +Kw+

+ Jw+
∫ x

0

ds

τ tε(w)2
+ ν

(tr (wM))xw
+

tr (wM)γ+1 , (2.4)

λ2Vxx = w2
M − C(x) in �, (2.5)

wherew+ = max(0, w), wM = min(M,w). Let (w, V ) be a weak solution to
(2.4), (2.5), (1.16). Then we have the followinga priori estimates:
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Lemma 2.1 (L∞ estimates).The following inequalities hold for allx ∈ �:

0 � w(x) � M, k � V (x) � K, (2.6)

where

k = V0 − max(E0,0)− λ−2‖C‖L1(�).

Proof. The problem (2.5), (1.16) is equivalent to

V (x) = V0 − E0x + λ−2
∫ x

0

∫ y

0
(w(z)2M − C(z)) dz dy, (2.7)

for x ∈ [0,1], which implies

V0 − max(E0,0)− λ−2‖C‖L1(�) � V (x) � V0 + max(−E0,0)+ λ−2M2.

This shows the second chain of inequalities of (2.6).
Usingw− = min(0, w) as test function in (2.4), we get immediatelyw � 0 in

�. Finally, with the test function(w−M)+ = max(0, w−M) in (2.4), we obtain

∫
�

(
(w −M)+x

)2
dx �

∫
�

(w −M)+w
[
− J 2

2tε(w)4
− T h(M2)+ (V −K)

− J

∫ x

0

ds

τ tε(w)2

]
dx

− ν

∫
�

(tr (wM))xw(w −M)+

tr (wM)γ+1 dx,

taking into account the monotonicity ofh. The first integral on the right-hand side
is non-positive sinceV � K andh(M2) � h(M2

0) � 0. Therefore

∫
�

(
(w −M)+x

)2
dx � −ν

∫
�

(tr (wM))xw(w −M)+

tr (wM)γ+1 dx � 0.

Hencew � M in �.

Lemma 2.2 (H 1 estimates).There exist constantsc1, c2 > 0 depending only on
given data and onδ, ε andM (but not onw andV ) such that

‖w‖H1(�) � c1, ‖V ‖H1(�) � c2.

Proof. The second assertion follows from Lemma 2.1 and

Vx(x) = −E0 + λ−2
∫ x

0
(w(y)2M − C(y)) dy.
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The first assertion follows from Lemma 2.1 and (2.4), after employing the test
functionw − wD, wherewD(x) = (1 − x)w0 + xw1. Indeed, we have

δ2
∫
�

w2
x dx = δ2

∫
�

wxwDx dx − ν

∫
�

(tr (wM))xw(w − wD)

tr (wM)γ+1 dx

−
∫
�

(w − wD)w

[
J 2

2tε(w)4
+ T h(w2)

− V +K + J

∫ x

0

ds

τ tε(w)2

]
dx.

Using Young’s inequality for the first two integrals on the right-hand side and
Lemma 2.1 for the last integral, we easily get

δ2

2

∫
�

w2
x � c.

Lemma 2.3 (H 2 estimate).There exists a constantc3 > 0 not depending onw
such that

‖w‖H2(�) � c3.

Proof. The lemma follows immediately from (2.4), Lemma 2.2 and the embedding
H 1(�) ↪→ L∞(�).

Proof of Proposition 2.1. We apply the Leray-Schauder fixed point theorem (see,
e.g., [17]). Letu ∈ H 1(�) and letV ∈ H 2(�) be the unique solution of

λ2Vxx = u2
M − C(x) in �, V (0) = V0, Vx(0) = −E0.

Letw ∈ H 2(�) be the unique solution of

δ2wxx = σ

[
J 2u+

2tε(u)4
+ T u+h(u2)− V u+ +Ku+

+ Ju+
∫ x

0

ds

τ tε(u)2

]
+ σν

(tr (uM))xu
+

tr (uM)γ+1 ,

w(0) = σw0, w(1) = σw1, whereσ ∈ [0,1].
This defines the fixed-point operatorS : H 1(�)×[0,1] → H 1(�), (u, σ ) �→ w. It
holdsS(u,0) = 0 for allu ∈ H 1(�). Similarly as in the proofs of Lemmas 2.1–2.3
we can show that there exists a constantc > 0 independent ofw andσ such that

‖w‖H2(�) � c

for all w ∈ H 1(�) satisfyingS(w, σ) = w. Standard arguments show thatS
is continuous and compact, if we note that the embeddingH 2(�) ↪→ H 1(�) is
compact. Thus, the fixed-point theorem applies.

For the proof of Theorem 2.1 we only have to show thatw is strictly positive
in �.
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Proof of Theorem 2.1. Taking(w−r)− ∈ H 1
0 (�) (see (2.1) for the definition ofr)

as test function in (2.4) gives:

δ2
∫
�

(
(w − r)−x

)2
dx

=
∫
�

(−(w − r)−)w
[

J 2

2tε(w)4
+ T h(w2)− V +K

+ J

∫ x

0

ds

τ tε(w)2
+ ν(tr (w))x

tr (w)γ+1

]
dx

�
∫
�

(−(w − r)−)w
[
J 2

2ε4 + T h(r2)− k +K + J

τ0ε2 + νrx

rγ+1

]
dx

�
∫
�

(−(w − r)−)w
[
J 2

2ε4 + T h(r2)− k +K + J

τ0ε2 − νε

(2ε)γ+1

]
dx,

using the monotonicity ofh and Lemma 2.1. Therefore

δ2
∫
�

(
(w − r)−x

)2
dx

�
∫
�

(−(w − r)−)w
[
J 2

2ε4 + T h(4ε2)− k +K + J

τ0ε2 − ν

2γ+1εγ

]
dx.

We claim that for sufficiently smallε > 0, the expression in the brackets is non-
positive, which impliesw(x) � r(x) � ε > 0 in�, i.e., we get the assertion of the
theorem after takingm(ν) = ε. Now chooseε ∈ (0,1) such that (see (H1))

ε �
(

1

2γ+1

ν

J 2/2 + J/τ0 + max(K − k,0)

)1/(γ−4)

and h(4ε2) � 0.

Notice thatγ > 4. Then, sinceε � 1,

J 2

2ε4 + T h(4ε2)+K − k + J

τ0ε2 − ν

2γ+1εγ

� 1

ε4

(
J 2

2
+ J

τ0
+ max(0,K − k)− ν

2γ+1εγ−4

)

� 0.

3. Existence of subsonic, isothermal, dispersive solutions (δ > 0 and ν = 0)

In the case of vanishing viscosity we can only expect to show existence of
solutions for sufficiently smallJ > 0, corresponding to a subsonic condition for
the hydrodynamic equations(δ = 0).
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In this section we need the following assumption. Assume that there exists
m0 > 0 such that

1

2
Tp′(m2

0)+ T h(m2
0)+

1

τ0

√
Tp′(m2

0)+K − k � 0. (3.1)

SinceK − k = −E0 + λ−2(M2 + ‖C‖L1(�)), this assumption is satisfied if, for
instance,

(i) lim
s→0+h(s) = −∞, or

(ii) E0 > 0 is sufficiently large.

Indeed, in case (i), the condition (3.1) becomes true for sufficiently smallm0 > 0;
we observe thatp′ is non-decreasing such thatp′(m2

0) cannot be arbitrarily large
near zero. For instance, the isothermal enthalpyh(s) = log(s) satisfies (i). In
case (ii) we can choose, for instance,m0 > 0 such thath(m2

0) � 0, and then take
E0 > 0 large enough such that

E0 � 1

2
Tp′(m2

0)+
1

τ0

√
Tp′(m2

0)+ λ−2(M2 + ‖C‖L1(�)). (3.2)

Now, define

m = min{w0, w1,m0}. (3.3)

Theorem 3.1. Let the assumptions(H1)–(H3)and (3.1) hold and letν = 0. Fur-
thermore, letJ > 0 be such that

J � J0
def= m2

√
Tp′(m2). (3.4)

Then there exists a classical solution(w, V ) ∈ (C2(� ))2 to (1.14)–(1.16)satisfy-
ing

0< m � w(x) � M in �,

wherem andM are defined in(3.3)and(1.18)respectively.

Remark 3.1. The condition (3.4) can be interpreted as a “subsonic condition” since
it implies that the velocityJ/n satisfies

J

n
= J

w2 � J

m2 �
√
Tp′(m2) �

√
Tp′(n).

Proof. By Proposition 2.1, there exists a solution(w, V ) to the truncated problem
(2.4), (2.5), (1.16) withε = m > 0 (andν = 0). It remains to show thatw � m in
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�. Using(w −m)− as test function gives

δ2
∫
�

(
(w −m)−x

)2
dx

=
∫
�

(−(w −m)−)w
[

J 2

2tm(w)4
+ T h(w2)− V +K + J

∫ x

0

ds

τ tm(w)2

]
dx

�
∫
�

(−(w −m)−)w
[
J 2

0

2m4 + T h(m2)− k +K + J0

τ0m2

]
dx

=
∫
�

(−(w −m)−)w
[

1

2
Tp′(m2)+ T h(m2)− k +K + 1

τ0

√
Tp′(m2)

]
dx

�
∫
�

(−(w −m)−)w
[

1

2
Tp′(m2

0)+ T h(m2
0)− k +K + 1

τ0

√
Tp′(m2

0)

]
dx

� 0,

in view of the definition (3.1) ofm0. This implies thatw � m in �.

Next, we prove that every weak solution is necessarily strictly positive:

Proposition 3.1. Let (w, V ) ∈ (H 1(�))2 be a weak solution to(1.14)–(1.16)with
ν � 0. Then there existsm > 0 such thatw(x) � m > 0 for all x ∈ �.

Proof. By the definition of weak solution, each term of the right-hand side of (1.14)
(with ν = 0) belongs toL1(�). In particular 1/w3 ∈ L1(�), so thatwxx ∈ L1(�),
which impliesw ∈ W2,1(�) ↪→ W1,∞(�). Now, suppose that there existsx0 ∈ �
such thatw(x0) = 0. Then

w(x) = (x − x0)

∫ 1

0
wx(θx + (1 − θ)x0) dθ, x ∈ �,

and ∫ 1

0

dx

|w(x)|3 �
∫ 1

0

(∫ 1

0
|wx(s)| ds

)−3

|x − x0|−3 dx = ∞,

contradicting the integrability of 1/w3. Hencew > 0 in�, and sincew is contin-
uous in�, there existsm > 0 such thatw(x) � m for all x ∈ �.

4. Non-existence of isentropic dispersive solutions (δ > 0 and ν = 0)
for large data

We show that, under some condition onh, a weak solution to (1.14)–(1.16)
cannot exist ifJ > 0 is large enough. For this, we have to prove thatw is bounded
from above independently ofJ .

Lemma 4.1. Let(w, V ) be any weak solution to(1.14)–(1.16)with ν = 0 and with
anyK ∈ R and anyJ > 0. Furthermore, let

h(s) � c0(s
α−1 − 1) for s � 0, with α > 2. (4.1)

Then there existsM1 > 0, independent ofJ , such thatw(x) � M1 for all x ∈ �.
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Remark 4.1. The boundM1 does not depend onK if K > 0.

Proof. Take(w −;)+ with ; � max(w0, w1) as test function in (1.11) to get

δ2
∫
�

(w −;)+2
x dx

=
∫
�

(w −;)+w
[
− J 2

2w4 − J

∫ x

0

ds

τw2 − h(w2)−K

]
dx

+
∫
�

(w −;)+wV dx.

(4.2)

The main difficulty is to estimate the last integral. From (2.7) it follows that

V (x) � V0 + max(−E0,0)+ λ−2
∫
�

w2 dx.

Since

w2 = (w +;)(w −;)+;2 � (w +;)(w −;)+ +;2

� 2w(w −;)+ +;2,

we get

V (x) � V0 + max(−E0,0)+ 2λ−2
∫
�

w(w −;)+ dx +;2λ−2

and, settingV1
def= V0 + max(−E0,0),∫

�

(w −;)+wV dx �
∫
�

(w −;)+w(V1 +;2λ−2) dx

+ 2λ−2
(∫

�

(w −;)+w dx
)2

� V1

∫
�

(w −;)+w dx + λ−2
∫
�

(w −;)+w3 dx

+ 2λ−2
∫
�

(w −;)+2w2 dx

� V1

∫
�

(w −;)+w dx + 3λ−2
∫
�

(w −;)+w3 dx,

since; � w on {x : w(x) � ;} and(w−;)+ � w. Therefore we get from (4.2)

δ2
∫
�

(w −;)+2
x dx

�
∫
�

(w −;)+w[V1 + 3λ−2w2 −K − c0(w
2α−2 − 1)] dx.

Since 2α − 2> 2, there existsM1 > 0 such that

c0M
2α−2
1 − 3λ−2M2

1 − V1 +K − c0 � 0, (4.3)

which implies, after taking; = M1, thatw � M1 in �.
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Theorem 4.1. Let(H1)–(H3)and(4.1)hold, letν = 0, and letK ∈ R be arbitrarily
given. Then there existsJ1 > 0 such that, ifJ � J1, then the problem(1.14)–(1.16)
cannot have a weak solution.

Remark 4.2. The constantJ1 > 0 is defined by

J 2
1

2M3
1

= 8δ2(max(w0, w1)+ 1)− T h0 +M1(|V0|

+ |E0| + λ−2M2
1 − min(0,K)),

(4.4)

whereh0 = inf {sh(s2) : 0< s � M1} > −∞ andM1 > 0 is defined by (4.3).

Proof. Suppose that there exists a weak solution(w, V ) to (1.14)–(1.16) for allJ >
0 for someK ∈ R. By Lemma 4.1,w � M1 in �. Moreover, by Proposition 3.1,
w > 0 andw ∈ H 1(�) ↪→ C0(� ) andw > 0 in�. Thereforewxx ∈ C0(� ).

Thusw is a classical solution. LetJ � J1, whereJ1 is defined in (4.4). Then

δ2wxx � J 2

2M3
1

+ T h0 − w(sup
�

V − min(0,K))

� J 2
1

2M3
1

+ T h0 −M1(|V0| + |E0| + λ−2M2
1 − min(0,K))

= 8δ2(max(w0, w1)+ 1).

Introduceq(x) = 4(max(w0, w1)+ 1)(x − 1
2)

2 − 1, x ∈ [0,1]. Then

q(0) = q(1) = max(w0, w1),

qxx(x) = 8(max(w0, w1)+ 1),

for x ∈ �, which implies

w − q � 0 on ∂�, (w − q)xx � 0 in �.

The maximum principle givesw − q � 0 in �. In particular,w(1
2) � q(1

2) =
−1< 0, which contradicts the positivity ofw.

Corollary 4.1. Let (H1)–(H3)hold and letν = 0.

(i) Let (3.1)hold. Then there existsJ0 > 0 such that for allJ � J0 there exists a
solution(n, V ) ∈ (C3(� ))2 to (1.6)–(1.9)with strictly positiven.

(ii) Let (4.1)hold. Then there existsJ1 > 0 such that for allJ � J1, the problem
(1.6)–(1.9)cannot have a weak solution.

Proof. The first part follows from Theorem 3.1 after settingn = w2 and differ-
entiating (1.11) withν = 0. The second part follows from Theorem 4.1 since the
constantK ∈ R is fixed in (1.9). Thus the problems (1.6)–(1.9) and (1.14)–(1.16)
are equivalent and the non-existence of solutions to (1.14)–(1.16) implies the non-
existence of solutions to (1.6)–(1.9).
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5. Uniqueness of subsonic, isentropic, dispersive solutions (δ > 0 and ν = 0)

We can prove the uniqueness of “subsonic” solutions to (1.6)–(1.9). Our main
result is the following theorem.

Theorem 5.1. Let (H1)–(H3)hold and letν = 0 and1/τ ≡ 0. Moreover, leth′ be
non-decreasing and letε > 0. Then there existE0 > 0 andT0 > 0 such that for all
T � T0 there is uniqueness of weak solutions to(1.14)–(1.16)(and to(1.6)–(1.9))
in the class of positive densities satisfying the “subsonic” condition

J/w(x)2 �
√
(1 − ε)Tp′(w(x)2) for all x ∈ �. (5.1)

For instance, isentropic enthalpiesh(s) = α
α−1(s

α−1 − 1) with α � 2 satisfy
the condition onh′ of Theorem 5.1.

Proof. Let m0 > 0 be such thath(m2
0) � 0. ChooseT � T0, whereT0 > 0 is

defined below. Then letE0 > 0 be chosen such that the inequality (3.2) holds. Then
the assumptions of Theorem 3.1 are satisfied. Now let(w1, V1) be the solution to
(1.14)–(1.16) constructed in Theorem 3.1, i.e.,w1 � m holds in�, andm > 0 does
not depend onT > 0. Moreover, there existsε > 0 such that (5.1) holds forw1.
Finally, let (w2, V2) be a second weak solution to (1.14)–(1.16) satisfying (5.1).
Thenw2 is positive in�, by Proposition 3.1, andw1,w2 are classical solutions of
(1.11).

Introduceχ(w) = J 2/2w4 + (1 − ε)T h(w2). Then, proceeding similarly to
[4], we write

−δ2w1,xx

w1
+ δ2w2,xx

w2
= −χ(w1)

w1
+ χ(w2)

w2
− εT (h(w2

1)− h(w2
2))+ V1 − V2.

Multiplying this equation byw2
1 −w2

2, integrating over� and integrating by parts,
we obtain, after elementary computations,

∫
�

(w2
1 + w2

2)(lnw1 − lnw2)
2
x dx

=
∫
�

[(
w1,x − w1

w2
w2,x

)2 +
(
w2,x − w2

w1
w1,x

)2]
dx

= −
∫
�

(χ(w1)

w1
− χ(w2)

w2

)
(w2

1 − w2
2) dx

− εT

∫
�

(h(w2
1)− h(w2

2))(w
2
1 − w2

2) dx

+
∫
�

(V1 − V2)(w
2
1 − w2

2) dx.

(5.2)
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We first estimate the second integral on the right-hand side, using the assumption
thath′ is non-decreasing:

−εT
∫
�

(h(w2
1)− h(w2

2))(w
2
1 − w2

2) dx

= −εT
∫
�

∫ 1

0
h′(θw2

1 + (1 − θ)w2
2)(w

2
1 − w2

2)
2dθ dx

� −εcT
∫
�

(w2
1 − w2

2)
2 dx,

where

c =
∫ 1

0
h′(θm2) dθ > 0

is independent ofT > 0.
Now multiply the difference of (1.15) forV1 andV2 byV1 −V2, integrate over

� and integrate by parts to get∫
�

(V1 − V2)(w
2
1 − w2

2) dx

= −λ2
∫
�

(V1 − V2)
2
x dx + λ2(V1 − V2)(1)(V1 − V2)x(1)

� −λ2
∫
�

(V1 − V2)
2
x dx + λ−2

( ∫ 1

0
(w2

1 − w2
2) dx

)2

� −λ2
∫
�

(V1 − V2)
2
x dx + λ−2

∫ 1

0
(w2

1 − w2
2)

2 dx,

where we used the expression (2.6) forV1 andV2 and Jensen’s inequality.
Finally, we estimate the first integral on the right-hand side of (5.2).The function

s �→ χ(s)/s is non-decreasing if and only if

d

ds

χ(s)

s
= −2J 2

s5
+ 2(1 − ε)T sh′(s2) = 2

s

(
− J 2

s4 + T (1 − ε)p′(s2)
)

� 0.

In view of condition (5.1) this implies that

−
∫
�

(χ(w1)

w1
− χ(w2)

w2

)
(w2

1 − w2
2) dx � 0.

Hence, we obtain from (5.2)∫
�

(w2
1 + w2

2)(lnw1 − lnw2)
2
x dx

� −λ2
∫
�

(V1 − V2)
2
x dx + (λ−2 − εcT )

∫ 1

0
(w2

1 − w2
2)

2 dx

� 0,

choosingT � T0, whereT0
def= 1/λ2εc. Hencew1 = w2 andV1 = V2 in �.
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6. Third-order equations in several dimensions

In this section we show how the methods of the previous sections can be ex-
tended to a large class of third-order equations in any space dimension. This is the
first important step for performing the existence analysis of the multi-dimensional
quantum hydrodynamic equations. Since the proofs are similar to those of the pre-
vious sections, we only sketch the proofs. A rigorous proof of an existence result
for the quantum trajectory models in 2 or 3 dimensions will require an additional
detailed description of the flow domain and boundary conditions. Such study is part
of a future project.

Let� ⊂ R
d (d � 1) be a bounded “channel like” domain and consider

∇(A(u)�u) = µ∇(F (u))+ ∇(G(u))+ ν∇(B(u)(1 · ∇)u) in �, (6.1)

Bu = uD on ∂�, (6.2)

whereν � 0 andµ > 0. Recall that(1 · ∇)u = ∑
j ∂ju.

We must assume that the boundary conditions are such that the integration of
(6.1) along integral curves is well defined; for instance, a two- or three-dimensional
domain, homeomorphic to bounded cylindrical domains (as a section of a duct)
with two opposite walls, denoted byD, where Dirichlet data is prescribed for
the density (as contact boundaries), and the remainder of the boundary, denoted
by N , are “insulating” walls corresponding to homogeneous Neumann conditions
(as insulating boundaries). Such a two-dimensional configuration was applied and
studied in the existence of positive densities for steady potential viscous fluid-
Poisson systems in [12].

Therefore the boundary operator becomesBu = u |D ∪ ∇u · η |N , whereη is
the outer normal vector to the boundary of the domain∂� = D ∪ N . ThusuD =
f (x) prescribed inD anduD = 0 in N . We point out that if the boundary surfaces
D andN intersect orthogonally, the standard reflection techniques for second-order
equations, with the given boundary conditions, apply and yield optimal regularity
for the solutions of the equation.

Now, integrating (6.1) along integral curves we obtain

�u = µf (u)+ g(u)+Ka(u)+ νb(u)(1 · ∇)u, (6.3)

whereK ∈ R is a constant and

f (u) = F(u)

A(u)
, g(u) = G(u)

A(u)
, a(u) = 1

A(u)
, b(u) = B(u)

A(u)
.

Any solutionu ∈ H 2(�) to (6.3), (6.2) solves the problem (6.1), (6.2) and vice
versa. For simplicity, we suppose thatD = ∂�. We assume that

∂� ∈ C1,1, uD ∈ H 2(�) ∩ L∞(�) ; uD � u0 > 0 on∂� ; (6.4)

a, b, f, g ∈ C(0,∞), a, g are non-decreasing, a, b are non-negative; (6.5)

g(0+) < 0 ; g(+∞) > 0 ; lim
s→0+ a(s)/sb(s) = 0 ; (6.6)

inf
0<s<M

f (s) > 0 ∀M > 0 ; lim
s→0+ f (s)/sb(s) = 0. (6.7)
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Admissible functions are, for instance,

f (u) = u−α, g(u) = uβ − 1, a(u) = uγ , b(u) = u−δ

with α, β, γ > 0, γ > δ − 1, andδ > 1 + α.

Theorem 6.1. Let ν > 0 andK > 0. Then there exists a solutionu ∈ H 2(�) to
(6.1), (6.2) for all µ > 0.

Remark 6.1. The assumptionK > 0 can be weakened by choosing appropriate
assumptions on the functionsa, f , andg.

Proof. Since� is bounded, there existsR > 0 such that� is contained in the
ball BR(0) of radiusR and center 0. Introduce the comparison functionφ(x) =
φ(x1, . . . , xd) = ε

R
(2R − x1) and 0 < ε � min(u0,M/3). Set tφ(uM) =

max(φ(·),min(M, u(·))) and consider the truncated problem

�u = µ
f (tφ(uM))

tφ(u)
u+ + g(tφ(uM))

tφ(u)
u+ +K

a(tφ(uM))

tφ(uM)
u+

+ ν
b(tφ(uM))

tφ(uM)
u+(1 · ∇)(tφ(uM)) in �, (6.8)

u = uD on ∂�, (6.9)

whereu+ = max(0, u). Using the methods of the proof of Proposition 2.1, we
easily get the existence of a solutionu ∈ H 2(�) to (6.8),(6.9) for anyν � 0 (here
we use thatKa(s) � 0). It remains to show thatε � u(x) � M for x ∈ �.

First we observe that by usingu− as test function in (6.8), we immediately
conclude thatu(x) � 0 in�. In order to prove thatu � M in � for someM > 0
we use(u−M)+ withM � ‖uD‖L∞(�) as test function in (6.8). Since there exists
a constantM > 0 such thatg(M) � 0, we can show as in the proof of Lemma 2.1
that(u−M)+ = 0 in�.

For the lower bound we use(u − φ)− as test function in (6.8), observing that
ε � φ(x) � 3ε in �:∫

�

|∇(u− φ)−|2 dx

=
∫
�

( − (u− φ)−
)
u
[
µ
f (tφ(u))

tφ(u)
+ g(tφ(u))

tφ(u)
+K

a(tφ(u))

tφ(u)

+ ν
b(tφ(u))

tφ(u)
(1 · ∇)(tφ(u))

]
dx

=
∫
�

( − (u− φ)−
)
u
[
µ
f (φ)

φ
+ g(φ)

φ
+K

a(φ)

φ
+ ν

b(φ)

φ
(1 · ∇)φ

]
dx

�
∫
�

( − (u− φ)−
)
ub(φ)

[
µ
f (φ)

φb(φ)
+ g(φ)

φb(φ)
+ Ka(φ)

φb(φ)
− ν

3R

]
dx

� 0,

by choosingε small enough such that the inequalitiesg(φ) � 0, f (φ)/φb(φ)
� ν/6µR, anda(φ)/φb(φ) � ν/6KR are satisfied in�. This is possible in view
of the conditions (6.6), (6.7). We conclude thatu � φ � ε in �.
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Theorem 6.2. Letν = 0.

(i) Let g(0+) < 0. Furthermore, assume thatK > 0 and lims→0+ a(s)/s = 0.
Then there existsµ0 > 0 such that for all0 < µ � µ0 there exists a solution
u ∈ H 2(�) to (6.1), (6.2)satisfying

�u = µf (uD)+ g(uD)+Ka(uD) on ∂�. (6.10)

(ii) Letg(0+) > −∞. Then there existsµ1 > 0 such that for allµ � µ1 there is
no weak solution to(6.1), (6.2), (6.10).

Proof. For the first part of the theorem we only have to show that the solutionu

to (6.8), (6.9) is strictly positive for sufficiently smallµ > 0. Takeε = m > 0 and
δ > 0 such thatm � u0, g(φ)/φ � −δ < 0, anda(φ)/φ � δ/2K (if K > 0) in
�. The existence ofm andδ is ensured by condition (6.6) and the assumption ona.
Let fm = supm<s<3m f (s)/s. Thenfm > 0 in view of assumption (6.7). Choose
0 < µ0 � δ/2fm and let 0< µ � µ0. Using(u − m)− as test function in (6.7)
yields∫

�

|∇(u−m)−|2 dx

=
∫
�

( − (u−m)−
)
u
[
µ
f (tφ(u))

tφ(u)
+ g(tφ(u))

tφ(u)
+K

a(tφ(u))

tφ(u)

]
dx

�
∫
�

( − (u−m)−
)
u
[
µ0
f (φ)

φ
+ g(φ)

φ
+K

a(φ)

φ

]
dx

�
∫
�

( − (u−m)−
)
u
[
µ0fm − δ/2

]
dx

� 0.

Thusu � m > 0 in�.
To prove the second part of the theorem, letu ∈ H 1(�) be a solution to

(6.2), (6.3) withu � M in � andK ∈ R. Using the positivity off , we can
easily see that the constantM does not depend onµ. Let x0 ∈ �. Since� is
open, there exists a ballBr(x0) of radiusr with centerx0 contained in�. Set
f0 = inf {f (s) : 0 < s < M} > 0 anda0 = inf {a(s) : 0 < s < M} � 0 and

chooseµ1 > 0 such thatL
def= µ1f0 +g(0+)+max(0,Ka0) � 2d(M+1)/r2 and

L � M. Notice that we assumedg(0+) > −∞. We show thatu(x0) < 0 which
is a contradiction to the non-negativity ofu. The following holds (in the sense of
distributions):

�u � µf0 + g(0+)+ max(0,Ka0) � µ1f0 + g(0+)+ max(0,Ka0)

= L in �.

Now define

q(x) = L

2d
|x − x0|2 − 1 for x ∈ Br(x0).
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Then

�q = L in Br(x0), q = r2L/2d − 1 � 0 on∂Br(x0).

This implies

�(u− q) � 0 inBr(x0), u− q � M − r2L/2d + 1 � 0 on∂Br(x0).

By the maximum principle, we conclude thatu − q � 0 in Br(x0). In particular,
u(x0) � q(x0) = −1< 0, which is a contradiction.
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