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Second-Order Structured Deformations

David R. Owen & Roberto Paroni

Abstract

Structured deformations provide a multi-scale geometrical setting for resolving
the fields occurring in continuum mechanics into two parts: the part arising from
smooth changes at smaller lengths scales and the part due to slips and separations
(disarrangements) at smaller length scales. The portion without disarrangements
is known to be associated with limits of gradients of approximating deformations,
and the portion due to disarrangements corresponds to the effects of jumps in the
approximating deformations. This paper extends the principal concepts and results
on structured deformations to include the effects of limits of second gradients and
jumps in the first gradients of approximating deformations and provides exam-
ples illustrating these effects. The resulting second-order structured deformations
provide a setting for a complete description of structured motions and for the sys-
tematic treatment of mesolevel phase transitions, including the effects of jumps in
first gradients on the bulk density of the Helmholtz free energy.

1. Introduction

Recent research on geometrical changes that can occur at different length scales
has led to the concept of a structured deformation(κ, g,G) (see [1]). Here, the
piecewiseC1 field g describes the macroscopic changes in the geometry of a con-
tinuous body,G is a piecewise continuous tensor field satisfying the inequality
detG(x) � det∇g(x) at each pointx, andκ is a surface-like subset of the body at
which g and∇g can have jump discontinuities. The main mathematical result in
the theory of structured deformations is the Approximation Theorem [1]:for each
structured deformation, there exists a sequencem �→ (κm, fm) of “simple defor-
mations”, with the deformation fieldfm continuously differentiable away from the
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setκm, such that

κ = lim inf
m→∞ κm :=

∞⋃
m=1

∞⋂
j=m

κj , (1)

g = lim
m→∞ fm, (2)

G = lim
m→∞∇fm, (3)

with the limits taken in the sense of(essential) uniform convergence, i.e.,L∞
convergence. The sequence of simple deformations in the Approximation Theo-
rem is called adetermining sequencefor the structured deformation(κ, g,G), and
each term in the sequence(κm, fm) is interpreted as revealing detailed geomet-
rical changes, such as separation and slip on internal surfaces and smooth defor-
mation away from these surfaces, not revealed by the macroscopic deformation
g = limm→∞ fm alone. Moreover, incorporatingG = limm→∞∇fm into the de-
scription of geometrical changes reveals some aspects of the more detailed geomet-
rical changes associated with a determining sequence. An application of a Gauss-
Green formula for structured deformations [2] permits the derivation of the follow-
ing formulas that further identify the tensorsG(x) andM(x) := ∇g(x)−G(x):

G(x) = lim
r→0

lim
m→∞ vol(B(x, r))−1

∫
B(x,r)\κn

∇fm(y)dVy (4)

M(x) = lim
r→0

lim
m→∞ vol(B(x, r))−1

∫
�(fm)∩B(x,r)

[fm](y)⊗ ν(y) dAy. (5)

The surface integral in the last relation is taken over the set�(fm) of jump points
of fm that lie inside the ballB(x, r) centered atx of radiusr; the symbols[fm](y)
andν(y) in the surface integral are the jump infm at the pointy and the normal to
�(fm) at y, respectively. In view of the derived “identification relations” (4) and
(5) forG andM, the formula

∇g(x) = G(x)+M(x) (6)

represents an additive decomposition of the macroscopic deformation∇g(x) into
a deformation without disarrangementsG(x), associated with smooth geometri-
cal changes at a smaller length scale, and adeformation due to disarrangements
M(x), associated with non-smooth changes at a smaller length scale. The fa-
miliar formula defining the gradient as a linear approximation,g(y) − g(x) =
∇g(x)(y−x)+o(y−x), and the additive decomposition (6) then yield therefined
linear approximation

g(y)− g(x) = G(x)(y − x)+M(x)(y − x)+ o(y − x) (7)

in which the vector fromg(x) to g(y), i.e., the translation fromg(x) to g(y) in the
deformed body, is decomposed to within termso(y − x) into a sum of the vector
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G(x)(y−x), thetranslation without disarrangements, and the vectorM(x)(y−x),
thetranslation due to disarrangements.

Structured deformations have been applied to describe geometrical changes as-
sociated with slips and the presence of defects in single crystals, with deformations
of liquid crystals, with fracture, and with the mixing of different substances [1,5,
7]. One limitation of structured deformations, as defined above, is that the effects
on macroscopic deformation of jumps in the gradients∇fm of approximating sim-
ple deformations are not captured by the refined linear approximation (7). Another
limitation is that the manner in which the quadratic approximation

g(y)− g(x) = ∇g(x)(y − x)+ 1
2∇2g(x)[y − x, y − x] + o(|y − x|2) (8)

should be refined to include the effects of deformations at smaller length scales is
not revealed by structured deformations of the form(κ, g,G). (The second term on
the right-hand side of (8) denotes the action of the bilinear mapping∇2g(x) on the
pair of vectors[y− x, y− x].) Finally, definitive refinements of kinematical quan-
tities such as acceleration and stretching are not available through such structured
deformations. (See [5], however, for results on the refinement of velocity based on
“space-time” structured deformations.)

Our goal in this paper is to provide a notion of “second-order structured defor-
mation”(κ, g,G,�) that extends the scope of the multiscale geometry afforded by
structured deformations of the original form(κ, g,G). (It is convenient from now
on to distinguish the original structured deformations(κ, g,G) through the term
“first-order structured deformations”.) In Section 2 we adapt the notions of clas-
sical, simple, and structured deformations as defined in [1] in the first-order case
to yield corresponding concepts for the second-order case. In particular, the addi-
tional entry� that appears in the symbol(κ, g,G,�) for a second-order structured
deformation is a piecewise continuous, third-order tensor field possessing the same
symmetries as a second gradient, but not being necessarily a second gradient itself.
The remaining entries form a triple(κ, g,G) that turns out to be a first-order struc-
tured deformation in whichg is piecewise twice continuously differentiable andG

is piecewise continuously differentiable. Section 2 also contains a brief discussion
of compositions of second-order structured deformations.

The principal results of this paper, the Approximation Lemma (Lemma 1) and
theApproximationTheorem for second-order structured deformations (Theorem 2),
are established in Section 3. The main difficulties in the analysis of second-order
structured deformations are the necessity of constructing extensions of certain
quadratic maps to the entire space asC2 diffeomorphisms and the necessity of con-
structing injective mappings starting from a family of restrictions of the constructed
C2 diffeomorphisms. We overcome these difficulties in the proofs of Theorem 1
and theApproximation Lemma (Lemma 1). The remaining steps in establishing the
results in Section 3 follow closely the analysis of the Approximation Lemma and
theApproximation Theorem for first-order structured deformations [1]. In Section 4
we establish decompositions and identification relations that lead to the refinement
of the basic quadratic approximation for macroscopic deformation (8). These re-
sults show how smooth deformations at smaller length scale, as well as jumps in
deformation and in deformation gradient at a smaller length scale, contribute to the



218 David R. Owen & Roberto Paroni

linear and quadratic terms in (8), yielding the desired refinement (48). An elemen-
tary example of second-order structured deformations is given in Section 3, and
Section 5 is devoted to additional examples, including the bending of a rectangular
block through distortions at smaller length scales without slips (“bending through
simple shears”), and the bending of a block through distortionsandslips at smaller
length scales (“bending of a deck of cards”).

A study of the energetics of first-order structured deformations has led to a
more general setting for defining and analyzing structured deformations [6,7], and
a corresponding energetic analysis and extension for second-order structured de-
formations is in progress [8–10].

Notation and terminology. For each positive integerN , we letRN denote the set
of all N -tuples of real numbersa = (a1, . . . , aN) =

(
ap ∈ R : p = 1, · · · , N),

we writeM
N×N for the set of allN ×N real matrices

A = (Apq ∈ R : p, q = 1, · · · , N )
,

and we denote byMN×N×N the set of all real arrays

� = (�pqr ∈ R : p, q, r = 1, · · · , N )
.

Of course, the matricesA ∈M
N×N are put in one-to-one correspondence with

the linear mappingsL ∈ Lin(RN) by means of the mapping:

A �→ LA := a �→
 N∑

q=1

Apqaq : p = 1, · · · , N
 = Aa,

and we define norms onRN andM
N×N through the formulas

‖a‖ :=
(

N∑
i=1

a2
i

) 1
2

, (9)

‖A‖ := sup
a �=0

‖Aa‖
‖a‖ , (10)

respectively.
The arrays� ∈M

N×N×N are put in one-to-one correspondence with the bilin-
ear mappingsB ∈ Lin2(R

N,RN) through the mapping

� �→ B� := (a, b) �→
 N∑

q,r=1

�pqraqbr : p = 1, · · · , N
 =: �[a, b];

� (orB�) is said to besymmetricif �[a, b] = �[b, a] for all a, b ∈ R
N . (Equiva-

lently,� is symmetric if�pqr = �prq for all p, q, r = 1, · · · , N .) Moreover, each
a ∈ R

N and� ∈M
N×N×N , determine a linear mappingL�,a ∈ Lin R

N through
the formulaL�,a := �[a, ·], i.e.,

L�,a b := �[a, b] for all b ∈ R
N,
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and the formula

‖�‖ := sup
a �=0,b �=0

‖�[a, b]‖
‖a‖‖b‖ = sup

a �=0

‖�[a, ·]‖
‖a‖ (11)

defines a norm onMN×N×N . If A ∈M
N×N andp, q =1, · · · , N , thenApq denotes

thep-q-th component ofLA with respect to the standard basis onR
N, and we have∣∣Apq

∣∣ � ‖A‖. For eachp =1, · · · , N , we denote byIp(A) thep-th invariant ofA,
i.e., the sum of the determinants of all of the principalp×p submatrices ofA (see
the proof of Proposition 2 in Section 3). The symbolI alone denotes theN × N

identity matrixI = diag(1,1, · · · ,1), andB(x, r) denotes the open ball centered
atx ∈ R

N of radiusr > 0.
For each subsetA of R

N , we denote byA the closure ofA, by∂A the boundary
of A, and byA◦ the interior ofA. A C2 diffeomorphismof R

N is a bijective,C2

mappingf : RN → R
N whose inverse also is of classC2.

2. Definitions and preliminaries

The regions that a deforming body can occupy are described here in terms
of “fit regions” [3]: a fit region ofRN is a bounded, regularly open set with finite
perimeter whose boundary has measure zero.As is the case for first-order structured
deformations, the notion of a second-order structured deformation is based on
notions of “classical deformations” and “simple deformations”, defined here simply
by strengthening the smoothness requirements on mappings from “C1”, in the first-
order case [1], to “C2” in the present case.

Definition 1. Let A be a fit region inR
N . A classical deformation fromA is a

mappingf from A into R
N satisfying:

(Cld 1) f can be extended to aC2 diffeomorphism ofRN ;
(Cld 2) f is orientation preserving, i.e.,

det∇f (x) > 0 for all x ∈ A.

We recall that apiecewise fit region[1] is a finite union of (possibly overlapping)
fit regions.

Definition 2. Let A be a piecewise fit region inRN . A simple deformation fromA
is a pair(κ, f ), whereκ is a subset ofA andf is mapping fromA \ κ into R

N ,
with the following properties:

(Sid 1) volκ = 0;
(Sid 2) f is injective;
(Sid 3) A \ κ is the union of finitely many fit regions such that the restriction off

to each of the fit regions is a classical deformation.

Definition 3. Let A be a piecewise fit region inRN . A second-order structured
deformation fromA is a quadruple(κ, g,G,�) in which
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(Std 1) (κ, g) is a simple deformation fromA;
(Std 2) G : A \ κ →Lin (RN ) is of classC1, � : A \ κ → Lin2(R

N,RN) is
symmetric (i.e., for everyx ∈ A \ κ , �(x) is symmetric) and continuous,
G has a piecewiseC1 extension toA, and� has a piecewise continuous
extension toA, in the sense that there exists a finite collection of fit regions
{Aj : j = 1, . . . , J } whose union isA \ κ such that, for eachj =
1, . . . , J , G|Aj

has aC1 extension toAj and�|Aj
has a continuous

extension toAj .
(Std 3) There existsm > 0 such thatm < detG(x) � det∇g(x) for all x ∈ A\κ.

We note that the fieldsg,G, and� associated with a second-order structured defor-
mation, as well as the fieldsf ,∇f , and∇2f associated with a simple deformation,
are bounded.

The next definition provides a precise sense in which one can assert that a se-
quence of simple deformations approaches a second-order structured deformation.

Definition 4. LetA be a piecewise fit region inRN . We say that the sequencem �→
(κm, fm) of simple deformations fromA determinesthe second-order structured
deformation(κ, g,G,�) from A, if the following conditions are satisfied:

κ = lim inf
m→∞ κm :=

∞⋃
m=1

∞⋂
j=m

κj , (12)

lim
m→∞‖g − fm‖L∞(A,RN) = 0, (13)

lim
m→∞‖G− ∇fm‖L∞(A,Lin(RN ,RN)) = 0, (14)

lim
m→∞‖� − ∇

2fm‖L∞(A,Lin2(RN ,RN)) = 0. (15)

Our final definition embodies the idea that a body may undergo a simple defor-
mation followed by a second-order structured deformation.

Definition 5. Let (κ, f ) be a simple deformation fromA, and let(µ, h,H,))

be a second-order structured deformation fromf (A\κ). Then thecompositionof
(µ, h,H,)) with (κ, f ) is the quadruple defined by

(µ, h,H,)) ◦ (κ, f ) =
(
κ ∪ f−1(µ), h ◦ f |A\(κ∪f−1(µ)),(

H ◦ f |A\(κ∪f−1(µ))

)∇f |A\(κ∪f−1(µ)),(
) ◦ f |A\(κ∪f−1(µ))

)[∇f |A\(κ∪f−1(µ)),∇f |A\(κ∪f−1(µ))

]
+ (H ◦ f |A\(κ∪f−1(µ))

)∇2f |A\(κ∪f−1(µ))

)
. (16)

For each simple deformation(κ, f ), the quadruple(κ, f,∇f,∇2f ) turns out
to be a second-order structured deformation, and the formula (16) then leads to a
concept of composition for pairs of second-order structured deformations in which
the first need not arise from a simple deformation. (We shall not have need of this
more general composition in the present development.)
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It is a routine matter to verify that the composition(µ, h,H,)) ◦ (κ, f ) is a
second-order structured deformation from the piecewise fit regionA. Moreover, the
next result shows that a determining sequence for(µ, h,H,)) yields immediately
a determining sequence for(µ, h,H,)) ◦ (κ, f ).
Proposition 1. Let (κ, f ) be a simple deformation fromA, and let(µ, h,H , ))

be a second-order structured deformation fromf (A\κ). Letm �→ (µm, hm) be a
sequence of simple deformations fromf (A\κ) that determines(µ, h,H ,)). Then
the sequence of simple deformations

m �→ (µm, hm) ◦ (κ, f ) := (κ ∪ f−1(µm), hm ◦ f |A\(κ∪f−1(µm))
)

determines the second-order structured deformation(µ, h,H,)) ◦ (κ, f ).
Proof. We notice that

‖(∇2hm ◦ f )[∇f,∇f ] + (∇hm ◦ f )∇2f

− () ◦ f )[∇f,∇f ] − (H ◦ f )∇2f ‖L∞(A)

� ‖∇2hm −)‖L∞(A\κ)‖∇f ‖2
L∞(A)

+ ‖∇hm −H‖L∞(A\κ)‖∇2f ‖L∞(A) → 0

asm→∞. The rest of the proof is identical to the one given in [1], Proposition 4.9.
��

3. Approximation theorem

In this section we shall establish the Approximation Theorem for second-order
structured deformations (Theorem 2, below): every second-order structured de-
formation has a determining sequence. The existence of a determining sequence
reveals, by means of relations (12)–(15), geometrical information about each entry
in a second-order structured deformation(κ, g,G,�) that is not apparent from
Definition 3 and that is useful in a variety of situations.

Our first result provides elementary estimates required for the proof of Theo-
rem 1.

Proposition 2. For eachA ∈M
N×N ,

1−
N∑

j=1

j !
(
N

j

)
‖A‖j � det(I + A) � 1+

N∑
j=1

j !
(
N

j

)
‖A‖j . (17)

If B ∈M
N×N is a symmetric matrix whose eigenvalues are less than or equal to1

in absolute value, then

|Ij (AB)| � j !
(
N

j

)
‖A‖j for everyj = 1, . . . , N. (18)
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Proof. By induction it is easy to see that ifH ∈ Mj×j then|detH | � j !‖H‖j . To
verify (18), letα ⊂ {1,2, . . . , N} be an index set. For each matrixE ∈M

N×N we
denote the submatrix that lies in the rows and columns ofE indexed byα asE(α).
If α hasj elements then we write #(α) = j and call the submatrixE(α) a principal
submatrix of orderj . Let us choose a basis ofR

N such thatB = diag(β1, · · · , βN).
It follows by multiplication of matrices, that(AB)(α) = A(α)B(α). Hence, since
|detB(α)| � 1,

|det(AB)(α)| = |detA(α)||detB(α)| � |detA(α)|.
The definition of the principle invariantIj (AB) then yields

|Ij (AB)| =
∣∣∣∣ ∑
#(α)=j

det((AB)(α))

∣∣∣∣ �
∑

#(α)=j
|detA(α)| �

∑
#(α)=j

j !‖A‖j

=
(
N

j

)
j !‖A‖j ,

where we have used the fact that there are
(
N
j

)
different principal submatrices of

orderj , and this establishes (18). To complete the proof, we apply (18) withB = I

to obtain the inequality

∣∣Ij (A)∣∣ �
(
N

j

)
j !‖A‖j ,

and then we use the relation

det(I + A) = 1+
N∑

j=1

Ij (A)

together with the triangle inequality to obtain (17).��
The next result provides smooth diffeomorphic extensions to the entire space

for members of a particular class of quadratic functions.

Theorem 1. Let a ∈ R
N,A ∈ Lin(RN,RN), � ∈ Lin2(R

N,RN), and posi-
tive real numbersm,M be given such thatm � detA < M and � is sym-
metric. There existsr = r(M,detA, ‖A−1�‖) > 0 depending continuously on
(M,detA, ‖A−1�‖) such that the functionf : B(0, r)→ R

N defined by

f (x) = 1
2�[x, x] + Ax + a (19)

can be extended to aC2 diffeomorphismf e of R
N that satisfies

m

2
� det∇f e(x) < M (20)

for everyx ∈ R
N .
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Proof. We put. := A−1�, i.e.,.ijk = (A−1)ip�pjk and chooser1 > 0 such
that

r1 < sup

q > 0 : M

detA
> 1+

N∑
j=1

j !
(
N

j

)
‖.‖j sj

and 1−
N∑

j=1

j !
(
N

j

)
‖.‖j sj >

1

2
for all s ∈ [0, q]

 .

Further, we choose a numberr2 satisfying 0< r2 � min
{
r1, (7‖.‖)−1

}
; for

example, elementary estimates show that we may put

r2 := min

{
(7‖.‖)−1, (N !(1+ ‖.‖)N)−1 1

2
, (N !(1+ ‖.‖)N)−1M − detA

detA

}
.

(21)

We putr := r2/4, and we choose aC2 functionψ : (0,∞)→ R satisfyingψ = 1
on (0, r), ψ = 0 on (r2,∞) and−2/r2 � ψ ′(x) � 0 for everyx ∈ (0,∞). We
definef e : RN → R

N by

f e(x) = ψ(‖x‖)1
2�[x, x] + Ax + a,

and we notice thatf e is aC2 extension of the functionf defined in (19) from
B(0, r) to R

N . The gradient off e is

∇f e(x) = ψ ′(‖x‖)1

2
�[x, x] ⊗ x

‖x‖ + ψ(‖x‖)�[x, ·] + A

= A

(
1

2
ψ ′(‖x‖).[x, x] ⊗ x

‖x‖ + ψ(‖x‖).[x, ·] + I

)
= A

(
.[x, ·]

(
1

2
ψ ′(‖x‖)x ⊗ x

‖x‖ + ψ(‖x‖)I
)
+ I

)
= A(.[x, ·]B(x)+ I ),

where the symmetric matrixB(x) is defined by

B(x) = 1

2
ψ ′(‖x‖)x ⊗ x

‖x‖ + ψ(‖x‖)I

and where⊗ denotes the tensor product:(c⊗d)e = (d ·e)c for all c, d, e ∈ R
N . We

now show that the functionf e satisfies (20). For‖x‖ � r2 we havef e(x) = Ax+a

and hence (20) is clearly satisfied. For‖x‖ < r we have thatψ(‖x‖) = 1 and hence
B(x) = I . By using (17) we obtain the relations

det∇f e(x) = detAdet(I +.[x, ·])

∈ detA

1−
N∑

j=1

j !
(
N

j

)
‖.[x, ·]‖j ,1+

N∑
j=1

j !
(
N

j

)
‖.[x, ·]‖


⊂ detA

1−
N∑

j=1

j !
(
N

j

)
‖.‖j r

j
2

4j
,1+

N∑
j=1

j !
(
N

j

)
‖.‖j r

j
2

4j

 ,
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and, in view of (21), (20) is satisfied sincer = r2/4 � r1. Finally, forr � ‖x‖ � r2
we notice that the absolute value of each of the eigenvalues ofB(x) is less than 1.
In fact, for eachξ ∈ R

N we have

B(x)ξ · ξ = −1

2
|ψ ′(‖x‖)|‖x‖

(
x · ξ
‖x‖

)2

+ ψ(‖x‖)‖ξ‖2;

hence

B(x)ξ · ξ � ψ(‖x‖)‖ξ‖2 � ‖ξ‖2,

and

B(x)ξ · ξ � −1

2
|ψ ′(‖x‖)|‖x‖

(
x · ξ
‖x‖

)2

� −1

2

2

r2
‖x‖‖ξ‖2 � −‖ξ‖2.

From this bound on the eigenvalues ofB(x), the last equation in the proof of
Proposition 2 along with (18) and (17) yield

det∇f e(x) = detAdet(I +.[x, ·]B(x))

∈ detA

1−
N∑

j=1

|Ij (.[x, ·]B(x))|,1+
N∑

j=1

|Ij (.[x, ·]B(x))|


⊂ detA

1−
N∑

j=1

j !
(
N

j

)
‖.[x, ·]‖j ,1+

N∑
j=1

j !
(
N

j

)
‖.[x, ·]‖j


⊂ detA

1−
N∑

j=1

j !
(
N

j

)
‖.‖j r j

2 ,1+
N∑

j=1

j !
(
N

j

)
‖.‖j r j

2

 ,

and, keeping in mind thatr2 � r1, we conclude that (20) is satisfied.
We now show thatf e is injective. Since for‖x‖ > r2 the functionx �→ f e(x)

is injective, it suffices to consider the relationf e(x) = f e(x̃) when‖x‖ � r2
and‖x̃‖ is unrestricted. If‖x‖ � r2 and‖x̃‖ � r2, thenf e(x) = f e(x̃) implies
x̃ = x + 1

2ψ(‖x‖).[x, x], so that

‖x − x̃‖ � 1
2 ‖.‖ ‖x‖2 � 1

2 ‖.‖ r2
2 � r2.

Therefore, when‖x‖ � r2 and‖x̃‖ � r2, f e(x) = f e(x̃) implies that‖x̃‖ � 2r2.
Thus, it suffices to establish the injectivity ofx �→ f e(x) onB(0,2r2), the closed
ball of radius 2r2 centered at 0. Lety ∈ R

N be given and defineξ(x) = x +
A−1(y−f e(x)) for eachx ∈ R

N . We note thatξ(x) = x if and only iff e(x) = y,
so to prove the injectivity off e it suffices to show thatξ has at most one fixed
point in B(0,2r2). The Mean Value Theorem, the inequalityr2 � 1/(7‖.‖), and
the estimate

‖∇ξ(x)‖ = ‖I − A−1∇f e(x)‖ =
∥∥∥∥.[x, ·](1

2
ψ ′(‖x‖)x ⊗ x

‖x‖ + ψ(‖x‖)I
)∥∥∥∥

� ‖.‖‖x‖
(

1

2

2

r2
‖x‖ + 1

)
� ‖.‖2r2(2+ 1) = 6r2‖.‖
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show that‖ξ(x)− ξ(x̃)‖ < ‖x − x̃‖ for all x, x̃ ∈ B(0,2r2) with x �= x̃. Henceξ
has at most one fixed point on that ball. Thus,f e is an injective,C2 function with
det∇f e > 0, and the Inverse Function Theorem tell us thatf e is locally invertible
with a local inverse that is of classC2.

In order to show thatf e : R
N → R

N is a C2 diffeomorphism, it remains
to show that the range off e is equal toR

N . Becausef e(x) = Ax + a for all
x ∈ R

N\B(0, r2), the injectivity off e and the invertibility of(x �→ Ax + a) :
R
N → R

N yield

f e(B(0, r2)) ⊂ A(r2) := {Ax + a : |x| < r2}
and

f e(RN\B(0, r2)) = R
N\A(r2).

However, the inclusion in the first relation above must be equality. In fact, sup-
pose, to the contrary, thatf e(B(0, r2)) �= A(r2). Then we may choosey ∈
A(r2)\f e(B(0, r2)). If y ∈ ∂f e(B(0, r2)) the continuity and injectivity off e

imply that y ∈ ∂f e(B(0, r2)) = f e(∂B(0, r2)), and therefore there exists an
x̃ ∈ ∂B(0, r2) such thatf e(x̃) = Ax̃ + a = y. But this contradicts the fact that
y ∈ A(r2) and thatx �→ Ax + a is an injective mapping. Thusy �∈ ∂f e(B(0, r2))

and hencef e(B(0, r2)) is closed inA(r2), since we can find a small ball cen-
tered iny, open inA(r2) and which does not intersect∂f e(B(0, r2)). On the other
hand, the local invertibility off e implies thatf e(B(0, r2)) is open inA(r2). How-
ever,A(r2) is connected andf e(B(0, r2)) is a non-empty open and closed sub-
set ofA(r2), sof e(B(0, r2)) = A(r2), which contradicts our assumption. Thus
f e(B(0, r2)) = A(r2),

f e(RN) = f e(B(0, r2)) ∪ f e(RN\B(0, r2)) = A(r2) ∪
(
R
N\A(r2)

)
= R

N,

andf e is surjective. ��
Example 1.PutN := 1, A := (0,1), and, for each positive integern and i =
0,1, . . . , n, put xi := i/n andκn := {xi : i = 1,2, . . . , n − 1}. Let � ∈ R be
given, and define for eachx ∈ (0,1)\κn

fn(x) :=
n−1∑
i=0

(
xi + (1− |�|/n)(x − xi)+ 1

2�(x − xi)
2
)
χ(xi ,xi+1)(x), (22)

whereχ(xi ,xi+1)denotes the characteristic function of the interval(xi, xi+1). To
show that(κn, fn) is a simple deformation, it suffices to show thatfn is injective
and, for everyi = 0,1, . . . , n − 1, thatfn restricted to(xi, xi+1) is a classical
deformation . Note that forn > 2|�|

f ′n(x) =
n−1∑
i=0

(
1− |�|

n
+�(x − xi)

)
χ(xi ,xi+1)(x) � 1− 2

|�|
n

> 0.

Thus, forn large enough, we are in position to apply Theorem 1 and, hence, to
conclude thatfn restricted to(xi, xi+1) can be extended to aC2 diffeomorphism
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of R. We now show thatfn is injective. Sincefn is increasing on each interval
(xi, xi+1) for n large enough, it suffices to check that

fn(x
−
i ) := lim

x→x−i
fn(x) � lim

x→xi+
fn(x) = xi, (23)

for everyi = 1, . . . , n− 1. Note thatf ′n(x) � 1− |�|/n+ |�|/n = 1, so that for
x ∈ (xi−1, xi) we have

fn(x)− xi−1 =
∫ x

xi−1

f ′n(t) dt � x − xi−1,

and, therefore,fn(x) � x, which implies (23) and the injectivity offn. Finally, the
sequence of simple deformationsn �→ (κn, fn) satisfies

lim inf
n→+∞ κn = ∅,

lim
n→∞‖fn − id‖L∞ � lim

n→∞

( |�|
n

1

n
+ 1

2
|�| 1

n2

)
= 0,

lim
n→∞‖f

′
n − 1‖L∞ � lim

n→∞2
|�|
n
= 0,

and

lim
n→∞‖f

′′
n −�‖L∞ = 0.

Thus,n �→ (κn, fn) determines the second-order stuctured deformation(∅, id,
1, �), where id denotes the identity function on(0,1).

We now specify a few items required for the statements and proofs of the
Approximation Lemma and the Approximation Theorem for second-order struc-
tured deformations. These follow closely the specifications on pp. 130–131 of [1]
for the case of first-order structured deformations. Let a piecewise-fit regionA
in R

N be given, and choose a Cartesian coordinate system forR
N satisfying

A ⊂ (1/3,2/3)N . For each prime numberp and each subsetZ of the integers
Z, put

8(p,Z) := {π : π is a coordinate plane whose distance from

the origin O ism/p for somem ∈ Z} . (24)

Let a second-order structured deformation of the form(∅, i, H,)) be given, and
choose sets{Hj : j = 1, . . . , J } as in (Std 2); in particular, the union of the
setsHj is the regionA, the restrictionH |Hj

has a continuously differentiable

extension toHj , and the restriction) |Hj
has a continuous extension toHj , for

j = 1, . . . , J . Choose a subdivisionB of the piecewise fit regionA into mutually
disjoint fit regionsBj , j = 1, . . . , J , whose union differs fromA by a set of volume
zero. (See the construction (3.17), [1], withAj there replaced byHj .) Finally, we
define

�(B) :=
J⋃

j=1

(
(∂Bj ) ∩A)
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and, for eachε > 0,

�(B)ε := {x ∈ �(B) : dist(x, ∂A) < ε} .
Lemma 1 (Approximation Lemma (cf. [1], p. 131)). Let a piecewise fit regionA
and a second-order structured deformation(∅, i, H,)) from A be given, choose
sets{Hj : j = 1, . . . , J } as in (Std 2)and a subdivisionB as described above.
For eachε > 0 and each prime numberp, there exists a simple deformation(λ, h)
fromA and primesp1, p2 greater thanp such that

(i) λ is covered by the set�(B)ε together with the planes
π ∈ 8(pl, {1, . . . , pl − 1}) with l ∈ {1,2};

(ii) ‖h− i‖L∞ < ε;
(iii) ‖∇h−H‖L∞ < ε;
(iv) ‖∇2h−)‖L∞ < ε.

Moreover,(λ, h), p1, andp2 can be chosen so that, if

G := {x ∈ A : H(x) = I,)(x) = 0}◦,
thenλ ∩ G = ∅ andh |G= iG .

Proof. We note first that, by (Std 3), there existsm > 0 such that

m < detH(x) � det∇i = 1 (25)

for all x ∈ A. Let ε > 0 and a primep be given, and chooseβ > 0 such that

1− ε

4 supx∈A ‖H(x)‖ < β < 1. (26)

LetHj : Hj →M
N×N and)j : Hj →M

N×N×N denote the continuously differ-
entiable and continuous extensions to the closure ofHj of H and), respectively,
described above. We note that maxj=1,... ,J max

x∈Hj
‖Hj(x)

−1)j(x)‖ = 0 if and
only if )j(x) = 0 for everyx ∈ Hj and for everyj = 1, · · · , J , and, without loss
of generality, we may assume maxj=1,... ,J max

x∈Hj
‖Hj(x)

−1)j(x)‖ > 0 (other-
wise, the proof of the present lemma reduces to that of the Approximation Lemma
for first-order structured deformations). For eachj = 1, . . . , J andx ∈ Hj , we
define a quadratic mappingfj (x, ·) : RN → R

N by

fj (x, y) := 1
2)j(x)[y − x, y − x] + βHj (x)(y − x)+ x. (27)

Putting� := )j(x), A := βHj (x), a := x, andM := 1, in view of (25) we may
apply Theorem 1 to chooserj (x) > 0 such that the restriction offj (x, ·) to the ball
B(x, rj (x)) has an extension to all ofRN as aC2 diffeomorphism. Moreover the
continuous dependence ofrj (x) on)j(x) andHj(x) established in Theorem 1, the
uniform continuity ofHj and)j , and the relations (25) and (26) tell us that:

(a)

ρ := min
j=1,...,J

min
x∈Hj

rj (x) > 0; (28)
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(b) we may choose a numberδ for which

0 < δ < min

{
ε

4 supx∈A ‖)(x)‖ ,
ε

4β supx∈A ‖H(x)‖ ,√
ε

2 supx∈A ‖)(x)‖ ,2ρ

}
(29)

and such that, ifx, y ∈ Hj and‖x − y‖ < δ, then

‖Hj(x)−Hj(y)‖ � ε

2J
, (30)

‖)j(x)−)j(y)‖ � ε

2J
, (31)

for everyj = 1, . . . , J .

For each suchj we set

r
(j)
2 := inf

x∈Hj

inf
y∈∂B(x,δ/2)

‖fj (x, y)− x‖, (32)

and we now show thatr(j)2 > 0. By the compactness ofHj we may choose se-
quencesn �→ xn ∈ Hj andn �→ yn ∈ ∂B(xn, δ/2) converging tox0 ∈ Hj and

y0 ∈ ∂B(x0, δ/2), respectively, such that‖fj (xn, yn)−xn‖ converges tor(j)2 . Sup-

poser(j)2 = 0. Thenfj (xn, yn) − xn → 0, so thatfj (xn, yn)→ x0 asn→ +∞.
By (27),fj : Hj × R

N → R
N is continuous and we conclude that

fj (x0, x0) = x0 = lim
n→+∞ fj (xn, yn) = fj (x0, y0).

Becausefj (x0, ·) is injective onB(x0, rj (x0)) andx0, y0 ∈ B(x0, rj (x0)) we have

x0 = y0, which contradicts the relationy0 ∈ ∂B(x0, δ/2). Hencer(j)2 > 0. We may
now put

r2 := min
j=1,...,J

r
(j)
2 > 0.

Choose a prime numberp1 such that

p1 > max

{
p + 1,

√
N

r2
,

2
√
N

δ
,

2
√
N

ε

}
, (33)

and defineC as the set of all closed cubesC in (0,1)N whose pairs of parallel faces
are subsets of consecutive coordinate planes in8(p1, {1, . . . , p1− 1}) as defined
in (24). For each closed cubeC ∈ C, we consider two cases:

(a) C is included inA,
(b) C is neither included in nor disjoint fromA.
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Case (a). Let C ∈ C be given such thatC ⊂ A. Using (30) and (31), it can be
shown (cf. (5.35) of [1]) that ifx, y ∈ C, then

‖H(x)−H(y)‖ � ε

2
, (34)

‖)(x)−)(y)‖ � ε

2
. (35)

ChoosecC an arbitrary point in the cubeC, and definefC : RN → R
N by

fC(x) := 1
2)(cC)[x − cC, x − cC] + βH(cC)[x − cC] + cC . (36)

By the choice of the numberρ in (28), the mappingfC restricted to the ballB(cC, ρ)
is invertible. Since by (33) we have

√
N/p1 < min{δ/2, r2}, we may conclude that

C ⊂ B
(
cC,

δ

2

)
∩ fC

(
B
(
cC,

δ

2

))
. (37)

To show thatC ⊂ fC
(B (cC, δ

2

))
we note that, otherwise, we may choosex ∈ C

such thatx �= fC(y) for all y ∈ B (cC, δ
2

)
. ButcC ∈ C∩B (cC, δ

2

)
andcC = fC(cC)

so that the line segment throughx andcC is contained inC, cC ∈ fC
(B (cC, δ

2

))
,

but the end pointx is not infC
(B (cC, δ

2

))
. BecausefC is a diffeomorphism we

may choosẽx on the line segment and̃y ∈ ∂B (cC, δ
2

)
such thatfC(ỹ) = x̃, and

by (32), (33), and the definition ofr2,

r2 > ‖x̃ − cC‖ = ‖fC(ỹ)− cC‖ � r2

a contradiction. From (29) we have that

fC
(

B
(
cC,

δ

2

))
⊂ fC (B (cC, ρ)) . (38)

Hence,C is a subset of the range offC which is equal to the domain off−1
C , and,

by (37), we also have that

f−1
C (C) ⊂ B

(
cC,

δ

2

)
. (39)

Recall that detH(x) � 1 for everyx ∈ A, so that det(βH(cC)) < 1. Thus,
by (20), we have 0< det∇fC(x) < 1 for everyx ∈ B (cC, ρ) and, therefore,
det∇f−1

C (x) > 1 for everyx ∈ fC(B (cC, ρ)), so that vol(C) < vol(f−1
C (C)).

Proceeding as in pp. 133–134 of [1], it can be shown that there exists a primepC
such that for every primep′ > pC there exists an injective, piecewise rigid mapping
rC : C\8(p′,Z)→ f−1

C (C◦). We define the set

λC := {x ∈ π ∩ C◦ : π ∈ 8(p′, {1, . . . , p′ − 1})}
and the mappinghC : C◦\λC → C◦ by

hC(x) := fC(rC(x)).
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We now check that on its domain the maphC satisfies the requirements (ii), (iii),
(iv). We first note by (39) thatrC(x) ∈ B (cC, δ

2

)
for everyx ∈ C ⊂ B (cC, δ

2

)
, so

that

‖rC(x)− x‖ � δ (40)

for everyx ∈ C. By using (36), (40), (29), and (33)–(35) we see that

‖hC(x)− i(x)‖ = ‖1
2)(cC)[rC(x)− cC, rC(x)− cC]
+ βH(cC)[rC(x)− cC] + cC − x‖

� 1
2‖)(cC)‖δ2+ β‖H(cC)‖δ +

√
n

p1
� ε

4
+ ε

4
+ ε

2
= ε,

‖∇hC(x)−H(x)‖ = ‖)(cC)[rC(x)− cC] + βH(cC)−H(x)‖
� ‖)(cC)‖δ + (1− β)‖H(cC)‖ + ‖H(cC)−H(x)‖ � ε,

and

‖∇2hC(x)−)(x)‖ = ‖)(cC)−)(x)‖ � ε.

Case (b). This case can be analyzed by following the argument above and the
argument on pp. 134–135 of [1], and we only outline the reasoning here. Let a cube
C ∈ C be given such thatC∩A �= ∅ andC∩ (RN\A) �= ∅. LetB = {B1, . . . ,BJ }
be the subdivision ofA chosen just above the statement of this lemma, and for
everyj = 1, . . . , J we put

Cj = Bj ∩ C, (41)

we chooseyj ∈ Cj , and definefCj : RN → R
N by

fCj (x) = 1
2)(yj )[x − yj , x − yj ] + βH(yj )[x − yj ] + yj .

Using the same procedure as described above we can choose a primepCj such that,
for all primesp′j � pCj , there exists an injective piecewise rigid mappingrCj which

mapsCj\8(p′j ,Z) into f−1
Cj
(
C◦j
)
. We now define

λCj = {x ∈ π ∩ C◦j : π ∈ 8(p′j , {1, . . . , p′j − 1})},
hCj (x) = fCj (rCj (x)),

for x ∈ Cj\λCj .
Using the pairs(λCj , hCj ) we can construct a simple deformation fromC◦ ∩A

that satisfies (ii)–(iv), and the construction of the simple deformation(λ, h) satisfy-
ing (i)–(iv) in the statement of the lemma can be done, using the simple deformations
constructed above and following the reasoning on p. 136 of [1]; verification of the
“Moreover...” assertion at the end of this lemma follows the argument on pp. 136
and 137. ��
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The factorization of the type (16),

(κ, g,G,�) = (∅, i, H,)) ◦ (κ.g), (42)

where

H(y) = (G(∇g)−1)(g−1(y)) (43)

and

)(y)[a, b] = �(g−1(y))[(∇g)−1(g−1(y))a, (∇g)−1(g−1(y))b]
− (G(∇g)−1)(g−1(y))∇2g(g−1(y))[a, b] (44)

for everyy ∈ g(A\κ) anda, b ∈ R
N , together with Proposition 1, permits us to

deduce from the Approximation Lemma the existence of a determining sequence
for each second-order structured deformation. The details of the argument follow
those on pp. 138–139 of [1] and provide the desired proof of our main result:

Theorem 2 (Approximation Theorem for Second-Order Structured Deformations).
For each piecewise fit regionA and second-order structured deformation(κ, g,
G,�) fromA, there exists a sequencem �→ (κm, fm) of simple deformations from
A that determines(κ, g,G,�).

It is convenient to use the term “disarrangement” [4] to denote non-classical
geometrical changes due to slip and separation on internal surfaces and occurring
possibly at more than one length scale. Because∇fm and∇2fm do not measure
such geometrical changes, it is natural in view of the Approximation Theorem to
callG = limm→∞∇fm the (first-order) deformation without disarrangementsand
� = limm→∞∇2fm the (second-order) deformation without disarrangementsfor
the second-order structured deformation(κ, g,G,�). Becauseκm is a collection
of points wherefm can fail to be smooth, we callκm thedisarrangement sitefor
the simple deformation(κm, fm) and, in view of the Approximation Theorem, we
callκ = lim inf m→∞ κm the (permanent) disarrangement sitefor the second-order
structured deformation(κ, g,G,�). Measures of deformation due to disarrange-
ment for second-order structured deformations will be identified in the next section.

4. Decompositions and identification relations

We recall from relation (5) that theApproximationTheorem for first-order struc-
tured deformations and a Gauss-Green formula imply the “identification relation”:

M(x) := ∇g(x)−G(x) (45)

= lim
r→0

lim
m→+∞

1

vol(B(x, r))

∫
B(x,r)∩�(fm)

[fm](y)⊗ ν�(fm)(y) dAy,

where�(fm) denotes the jump-set forfm, [fm](y) denotes the jump infm at
y ∈ �(fm), ν�(fm)(y), denotes the normal at the pointy ∈ �(fm), andAy de-
notesN -dimensional area measure. The term “identification relation” is appropri-
ate for the formula (45), because it identifies the differenceM(x) = ∇g(x) −
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G(x) = (∇ limm→∞ fm − limm→∞∇fm)|x as a measure of deformation due to
a large number of small jumps infm. This identification relation justifies calling
∇g(x)−G(x) the (first-order) deformation due to(micro) disarrangements[5]. For
a second-order structured deformation(κ, g,G,�)we have, by theApproximation
Theorem,∇G = ∇ limm→∞∇fm and� = limm→∞∇2fm = limm→∞∇(∇fm);
the results in [2] when applied to∇fm, instead of tofm, then yield a new identifi-
cation relation:

∇G(x)−�(x) (46)

= lim
r→0

lim
m→+∞

1

vol (B(x, r))

∫
B(x,r)∩�(∇fm)

[∇fm](y)⊗ ν�(∇fm)(y) dAy.

Here, for eachA ∈ Lin(RN) andv ∈ R
N , we define the tensor productA ⊗ v ∈

Lin(RN,Lin(RN)) by (A ⊗ v)w = Aw ⊗ v for all w ∈ R
N . The identification

relation (46) permits us to call∇G(x) − �(x) a (second-order) deformation due
to disarrangements. If we differentiate both sides of the identification relation (45)
and add the resulting equation to the identification relation (46), we obtain the
identification relation

∇2g(x)−�(x) = ∇G(x)−�(x)+ ∇M(x)

= lim
r→0

lim
m→+∞

1

vol(B(x, r))

∫
B(x,r)∩�(∇fm)

[∇fm](y)⊗ ν�(∇fm) (y) dAy

+∇x lim
r→0

lim
m→+∞

1

vol(B(x, r))

∫
B(x,r)∩�(fm)

[fm](y)⊗ ν�(fm) (y) dAy.

(47)

In this relation, we may call∇2g(x)− �(x) a (second-order) deformation due to
disarrangments, and this difference is revealed as the term∇G(x)−�(x) arising
only from jumps in∇fm plus the term∇M(x) arising only from jumps infm. We
may now write

∇g(x) = G(x)+M(x),

∇2g(x) = ∇G(x)−�(x)+ ∇M(x)+�(x),

and use relation (8) to obtain therefined quadratic approximation:

g(x)− g(y) = G(x)(y − x)+M(x)(y − x)

+1
2(∇G(x)−�(x))[y − x, y − x] + 1

2∇M(x)[y − x, y − x]
+1

2�(x)[y − x, y − x] + o(|y − x|2). (48)

In this approximation, the termsG(x)(y − x) and 1
2�(x)[y − x, y − x] represent

translations without disarrangements, from limits of first gradients∇fm and second
gradients∇2fm, respectively. The termsM(x)(y−x), 1

2(∇G(x)−�(x))[y−x, y−
x], and 1

2∇M(x)[y − x, y − x] representtranslations due to disarrangements:
M(x)(y − x) and 1

2∇M(x)[y − x, y − x] arise due to jumps infm, whereas
1
2(∇G(x)−�(x))[y − x, y − x] arises due to jumps in∇fm.
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5. Additional examples

Example 2 (Bending through simple shears).LetN = 2 and letA = (0,1)×(0,1).
For each positive integern, putyi := i/n for i = 0,1, . . . , n, andκn := {(0,1)×
{yi} : i = 1,2, . . . , n − 1}. Let h ∈ C2((0,1);R), and fori = 0,1, . . . , n − 1
define

mi := h(yi+1)− h(yi)

yi+1− yi
,

as well as

hn(y) :=
n−1∑
i=0

(mi(y − yi)+ h(yi)) χ(yi ,yi+1)(y).

Finally, we putfn(x, y) := (x + hn(y), y) andg(x, y) := (x + h(y), y). It is
easily seen that the simple deformation(κn, fn) determines the second-order struc-
tured deformation(∅, g,∇g,0). Moreover,M vanishes, and the translations due
to disarrangements in (48) arise solely from the term∇G−� = ∇2g, whose only
non-zero component is∇2g(x, y)122= h′′(y). In view of (46), the translations due
to disarrangements associated with(∅, g,∇g,0) arise through the jumps in∇fn,
specifically, the jumps inh′n.

Example 3 (Bending of a deck of cards).LetN = 2 and letA = (−1,1)× (2,3).
For each positive integern, put yi := 2 + i

n
for i = 0,1, . . . , n, andκn :=

{(−1,1)× {yi} : i = 1,2, . . . , n− 1}. We define

ρ(y) :=
√

1+ y2 (49)

and

fn(x, y) := ρ(y)

ρ([ny]/n)(x,
√
ρ([ny]/n)2− x2) (50)

for every(x, y) ∈ (−1,1)× (2,3). Here,[·] denotes the greatest integer function,
and relation (50) tells us that linesy = y0 are mapped byfn into circular arcs with
center at the origin and radiusρ(y0), while linesx = x0 are mapped into a collection
of line segments, each of which, when extended, passes through the origin. Figure 1
shows the effect of the mappingfn on rectangles of the form(−1,1)× (yi, yi+1):
each is mapped into an annular region with inner radiusρ(yi) and outer radius
ρ(yi+1). (This deformation is reminiscent of the geometrical changes in a deck
of cards when it is bent prior to shuffling.) Because 0� y − [ny]/n � 1/n, it
follows thatρ([ny]/n) converges toρ(y) asn tends to infinity, uniformly iny.
Consequently, the sequencen �→ fn converges uniformly on(−1,1) × (2,3) to
the functiong defined by

g(x, y) := (x,

√
1+ y2− x2), (51)

and the gradients
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y

1
x

-1

Fig. 1. Microview of the deformation of Example 3.

∇fn(x, y) =


ρ(y)
ρ([ny]/n)

xy
ρ([ny]/n)ρ(y)

− ρ(y)x

ρ([ny]/n)
√

ρ([ny]/n)2−x2

y
ρ([ny]/n)ρ(y)

√
ρ([ny]/n)2 − x2


converge uniformly to

G(x, y) :=


1 xy

1+y2

− x√
1+y2−x2

y
√

1+y2−x2

1+y2

 . (52)

We easily find that

∇g(x, y) =
 1 0

− x√
1+y2−x2

y√
1+y2−x2

 (53)

and, therefore, on (−1, 1)× (2, 3), we have

2

3
� y√

1+ y2 − x2
= det G(x, y) = det∇g(x, y).

Consequently, the inequalities in (Std 3) of Definition 3 are satisfied by G and ∇g.
Finally, the second gradients ∇2fn are easily shown to converge uniformly to the
tensor field � having components �ijk at (x, y) given by

�111 = 0, �112 = y

1+ y2 ,

�121 = y

1+ y2 , �122 = x

(1+ y2)2 ,

�211 = − 1+ y2

(1+ y2 − x2)3/2 , �212 = − xy√
1+ y2 − x2(1+ y2)

,

�221 = − xy√
1+ y2 − x2(1+ y2)

, �222 =
√

1+ y2 − x2

(1+ y2)2 ,
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and it is straightforward to verify that∇G �= �,∇M �= 0, and∇2g �= �. Thus, the
second-order structured deformation deformation (∅, g,G,�) represents a macro-
scopic bending of the two-dimensional region (−1, 1)×(2, 3), with accompanying
disarrangements occurring due to jumps both in fn and in ∇fn.
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