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Second-Order Structured Deformations

DaviD R. OWEN & ROBERTO PARONI

Abstract

Structured deformations provide a multi-scale geometrical setting for resolving
the fields occurring in continuum mechanics into two parts: the part arising from
smooth changes at smaller lengths scales and the part due to slips and separations
(disarrangements) at smaller length scales. The portion without disarrangements
is known to be associated with limits of gradients of approximating deformations,
and the portion due to disarrangements corresponds to the effects of jumps in the
approximating deformations. This paper extends the principal concepts and results
on structured deformations to include the effects of limits of second gradients and
jumps in the first gradients of approximating deformations and provides exam-
ples illustrating these effects. The resulting second-order structured deformations
provide a setting for a complete description of structured motions and for the sys-
tematic treatment of mesolevel phase transitions, including the effects of jumps in
first gradients on the bulk density of the Helmholtz free energy.

1. Introduction

Recent research on geometrical changes that can occur at different length scales
has led to the concept of a structured deformatiorg, G) (see [1]). Here, the
piecewiseC! field ¢ describes the macroscopic changes in the geometry of a con-
tinuous body,G is a piecewise continuous tensor field satisfying the inequality
detG(x) £ detVg(x) at each poink, andk is a surface-like subset of the body at
which g andVg can have jump discontinuities. The main mathematical result in
the theory of structured deformations is the Approximation Theorent@tjeach
structured deformation, there exists a sequence> («,,, f,,) of “simple defor-
mations”, with the deformation field,, continuously differentiable away from the
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setk,,, such that

o0 o
k= liminf «, := U N« (1)
m=1j=m
g = lim fm, (2)
m— o0
G = lim Vf,, 3)
m—0o0

with the limits taken in the sense ¢éssentidl uniform convergence, i.e[,*
convergenceThe sequence of simple deformations in the Approximation Theo-
rem is called aletermining sequender the structured deformatiow, g, G), and

each term in the sequence,,, f,;) is interpreted as revealing detailed geomet-
rical changes, such as separation and slip on internal surfaces and smooth defor-
mation away from these surfaces, not revealed by the macroscopic deformation
g = lim,,_, » f» alone. Moreover, incorporating = lim,,_. V f,,; into the de-
scription of geometrical changes reveals some aspects of the more detailed geomet-
rical changes associated with a determining sequence. An application of a Gauss-
Green formula for structured deformations [2] permits the derivation of the follow-
ing formulas that further identify the tensatgx) andM (x) := Vg(x) — G(x):

G(x) = lim_lim vo|(6(x,r))‘1/ VIn(3)dVy @
r—Qm—00 B(x,r)\kn
M(x) = lim lim voI(B(x,r))_lf [fml(») @ v(y)dAy. (5)
r—Qm—oo F(f,,,)ﬂB(X,r)

The surface integral in the last relation is taken over th& ggt,) of jump points

of f,, that lie inside the balB(x, r) centered at of radiusr; the symbolg f,,,1(y)
andv(y) in the surface integral are the jump ji3 at the pointy and the normal to
I'(fn) aty, respectively. In view of the derived “identification relations” (4) and
(5) for G andM, the formula

Vgx) =Gx) + M(x) (6)

represents an additive decomposition of the macroscopic deformgior into

a deformation without disarrangements(x), associated with smooth geometri-

cal changes at a smaller length scale, amtgfmrmation due to disarrangements

M (x), associated with non-smooth changes at a smaller length scale. The fa-
miliar formula defining the gradient as a linear approximatigfy) — g(x) =
Vg(x)(y —x) +o(y — x), and the additive decomposition (6) then yield teéined

linear approximation

g —g) =Gy —x) + Mx)(y —x) +o(y —x) )

in which the vector fronz (x) to g(y), i.e., the translation froma(x) to g(y) in the
deformed body, is decomposed to within tersiis — x) into a sum of the vector
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G (x)(y —x), thetranslation without disarrangemenisnd the vectoM (x) (y — x),
thetranslation due to disarrangements

Structured deformations have been applied to describe geometrical changes as-
sociated with slips and the presence of defects in single crystals, with deformations
of liquid crystals, with fracture, and with the mixing of different substances [1,5,
7]. One limitation of structured deformations, as defined above, is that the effects
on macroscopic deformation of jumps in the gradiény, of approximating sim-
ple deformations are not captured by the refined linear approximation (7). Another
limitation is that the manner in which the quadratic approximation

g(y) — g(x) = Vg(x)(y — x) + 3V2¢()[y —x,y —x1+o(ly —xI?)  (8)

should be refined to include the effects of deformations at smaller length scales is
not revealed by structured deformations of the fekirg, G). (The second term on

the right-hand side of (8) denotes the action of the bilinear mappfagx) on the

pair of vectordy — x, y — x].) Finally, definitive refinements of kinematical quan-
tities such as acceleration and stretching are not available through such structured
deformations. (See [5], however, for results on the refinement of velocity based on
“space-time” structured deformations.)

Our goal in this paper is to provide a notion of “second-order structured defor-
mation” («, g, G, X) that extends the scope of the multiscale geometry afforded by
structured deformations of the original forim, g, G). (It is convenient from now
on to distinguish the original structured deformatigrsg, G) through the term
“first-order structured deformations”.) In Section 2 we adapt the notions of clas-
sical, simple, and structured deformations as defined in [1] in the first-order case
to yield corresponding concepts for the second-order case. In particular, the addi-
tional entryX that appears in the symb@l, g, G, X) for a second-order structured
deformation is a piecewise continuous, third-order tensor field possessing the same
symmetries as a second gradient, but not being necessarily a second gradient itself.
The remaining entries form a triple, g, G) that turns out to be a first-order struc-
tured deformation in whiclg is piecewise twice continuously differentiable aid
is piecewise continuously differentiable. Section 2 also contains a brief discussion
of compositions of second-order structured deformations.

The principal results of this paper, the Approximation Lemma (Lemma 1) and
the Approximation Theorem for second-order structured deformations (Theorem 2),
are established in Section 3. The main difficulties in the analysis of second-order
structured deformations are the necessity of constructing extensions of certain
quadratic maps to the entire space&&giffeomorphisms and the necessity of con-
structing injective mappings starting from a family of restrictions of the constructed
€2 diffeomorphisms. We overcome these difficulties in the proofs of Theorem 1
and the Approximation Lemma (Lemma 1). The remaining steps in establishing the
results in Section 3 follow closely the analysis of the Approximation Lemma and
the Approximation Theorem for first-order structured deformations [1]. In Section 4
we establish decompositions and identification relations that lead to the refinement
of the basic quadratic approximation for macroscopic deformation (8). These re-
sults show how smooth deformations at smaller length scale, as well as jumps in
deformation and in deformation gradient at a smaller length scale, contribute to the
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linear and quadratic terms in (8), yielding the desired refinement (48). An elemen-
tary example of second-order structured deformations is given in Section 3, and
Section 5 is devoted to additional examples, including the bending of a rectangular
block through distortions at smaller length scales without slips (“bending through
simple shears”), and the bending of a block through distortmuksslips at smaller
length scales (“bending of a deck of cards”).

A study of the energetics of first-order structured deformations has led to a
more general setting for defining and analyzing structured deformations [6, 7], and
a corresponding energetic analysis and extension for second-order structured de-
formations is in progress [8-10].

Notation and terminology. For each positive intege¥, we letRY denote the set
of all N-tuples of real numbers = (a1,... ,ay) = (ap €R: p=1,---,N),
we write MY *¥ for the set of allV x N real matrices

A=(AyyeR:pg=1---,N),
and we denote b1V *V¥*N the set of all real arrays
E:(qureR :p,q,r=1,--- ,N).

Of course, the matrices € MY *¥ are put in one-to-one correspondence with
the linear mappingé e Lin(R") by means of the mapping:

N
A Ly :=a+— Zquaq :p=1-.-- N| = Aaq,
g=1

and we define norms dR"¥ andM"*¥ through the formulas

N\
lall := (Za,?) : ©)
i=1

) | Aa|
Al := sup ;
az0 llal

(10)

respectively.
The arraysE € MV *¥*N are put in one-to-one correspondence with the bilin-
ear mappings e Lina(RY, RV) through the mapping

N
+— Bz :=(a,b) — Z Epgraghy : p=1,---,N | =: Ela, b];
q,r=1

[x]

E (or Bg) is said to besymmetridf E[a, b] = E[b, a] foralla, b € RV, (Equiva-

lently, E is symmetricifE,,,, = E,,, forall p,q,r =1,-.-, N.) Moreover, each
a e RN andg e MV*N*N determine a linear mappingg , € Lin RV through

the formulalLg , := Ela, -], i.e.,

Lzqb:= Ela,b] forallb eR",
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and the formula

- | Ela, b]| | Ela, -]l
€] := = Su

= = (11)
az0b20 llalllbll ax0  lall

defines a norm ohIV>*V*N if A e MV*N andp, ¢ =1, - - - , N, thenA ,, denotes
the p-g-th component of. 4 with respect to the standard basis®M, and we have
|Apg| < IIAll. Foreachp =1, - -+, N, we denote by, (A) the p-th invariant ofA,
i.e., the sum of the determinants of all of the principat p submatrices ofA (see
the proof of Proposition 2 in Section 3). The symlichlone denotes thy x N
identity matrix/ = diag(1, 1, - - - , 1), andB(x, r) denotes the open ball centered
atx e RN of radiusr > 0.

For each subset of R, we denote byA the closure of4, by 3.4 the boundary
of A, and by.A° the interior of A. A C? diffeomorphismof RY is a bijective,C?
mappingf : RY — R whose inverse also is of clag¥.

2. Definitionsand preliminaries

The regions that a deforming body can occupy are described here in terms
of “fit regions” [3]: a fit region ofRY is a bounded, regularly open set with finite
perimeter whose boundary has measure zero. As is the case for first-order structured
deformations, the notion of a second-order structured deformation is based on
notions of “classical deformations” and “simple deformations”, defined here simply
by strengthening the smoothness requirements on mappings 8hifi the first-
order case [1], to€?” in the present case.

Definition 1. Let A be a fit region inRY. A classical deformation fromd is a
mappingf from A into RY satisfying:

(Cld 1) f can be extended to@? diffeomorphism ofR";
(Cld 2) f is orientation preserving, i.e.,

detvV f(x) > Oforallx € A.

We recall that piecewise fit regiofil] is a finite union of (possibly overlapping)
fit regions.

Definition 2. Let A be a piecewise fit region iR" . A simple deformation frond
is a pair(k, f), wherex is a subset 0f4 and f is mapping fromA \ « into RY,
with the following properties:

(Sid 1) volk = 0;

(Sid 2) f is injective;

(Sid 3) A\ « is the union of finitely many fit regions such that the restrictiorf of
to each of the fit regions is a classical deformation.

Definition 3. Let A be a piecewise fit region iR". A second-order structured
deformation fromA is a quadrupléx, g, G, ) in which



220 DavID R. OWEN & ROBERTO PARONI

(Std 1) («, g) is a simple deformation froma;

(Std2) G : A\ k —Lin (RV)is of classC!, = : A\ k — Liny(RY,RV) is
symmetric (i.e., for every € A\ «, £ (x) is symmetric) and continuous,
G has a piecewis€! extension ta4, and X has a piecewise continuous
extension ta4, in the sense that there exists a finite collection of fit regions
{A; : j =1,...,J} whose union is4 \ « such that, for each =
1.....J, Gla, has aC! extension tad; and $|4, has a continuous

extension ta4; .
(Std 3) There exista > 0suchthatn < detG(x) < detVg(x) forallx € A\«.

We note that the fields, G, andX associated with a second-order structured defor-
mation, as well as the fields, V f, andV? f associated with a simple deformation,
are bounded.

The next definition provides a precise sense in which one can assert that a se-
guence of simple deformations approaches a second-order structured deformation.

Definition 4. Let A be a piecewise fit region iR . We say that the sequenee—
(km, fm) Of simple deformations fromd determineghe second-order structured
deformation(k, g, G, X) from A, if the following conditions are satisfied:

o o
e =liminf i, = () (1) . (12)
e m=1j=m
m"_r)noo lg — fm”Loo(A,]RN) =0, (13)
mli_[noo IG =V fnllpooa,Lin®y wVy) =0, (14)
lim IS = V2 fonll oo A Liny @V Yy = O. (15)

Our final definition embodies the idea that a body may undergo a simple defor-
mation followed by a second-order structured deformation.

Definition 5. Let (x, f) be a simple deformation fror, and let(u, h, H, ©)
be a second-order structured deformation fr6\«). Then thecompositionof
(e, h, H, ®) with («, f) is the quadruple defined by

(1 H,©) 0 (6, f) = (kU £72G0. ko f | ayeus-1g0)-

(H o flaweor1a )V Lawus—2g):
(© o f Lavwusr2a) VS Lot VI Lo ]

2
 (H o f Laveus -t ) VS Laveus-tion )- (16)

For each simple deformatio, f), the quadrupléx, f, V f, V2 f) turns out
to be a second-order structured deformation, and the formula (16) then leads to a
concept of composition for pairs of second-order structured deformations in which
the first need not arise from a simple deformation. (We shall not have need of this
more general composition in the present development.)
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It is a routine matter to verify that the composition, 1, H, ®) o (x, f) is a
second-order structured deformation from the piecewise fit redidnoreover, the
next result shows that a determining sequencéifor, H, ®) yields immediately
a determining sequence fau, h, H, ©) o (k, f).

Proposition 1. Let (k, f) be a simple deformation fromd, and let(u, i, H, ®)
be a second-order structured deformation frgigd\«). Letm +— (w,, hn) be a
sequence of simple deformations frgiyd\«) that determinesu, #, H, ®). Then
the sequence of simple deformations

m > (s b)) © (6, f) = (U £ 7 0m)s b © f | euf—20u))
determines the second-order structured deformatiom, H, ®) o («, f).

Proof. We notice that

1(V2hm o IV V F1+ (Vhw o fIVAf
— @0 NHIVA V= (Ho IV flireca
S 11V%hm = Oll oo (avo IV f1IF o )
+ I Vhm — Hl pooavo IV £l ooty = O

asm — oo. Therest of the proofis identical to the one given in [1], Proposition 4.9.
]

3. Approximation theorem

In this section we shall establish the Approximation Theorem for second-order
structured deformations (Theorem 2, below): every second-order structured de-
formation has a determining sequence. The existence of a determining sequence
reveals, by means of relations (12)—(15), geometrical information about each entry
in a second-order structured deformati@n g, G, ¥) that is not apparent from
Definition 3 and that is useful in a variety of situations.

Our first result provides elementary estimates required for the proof of Theo-
rem 1.

Proposition 2. For eachA € MV *V,

N N
L (N i (N .
1-> ( . ) 1Al < det( + 4) S1+ ) ! ( . ) IAl.  (17)
j=1 J j=1 J

If B e MV is a symmetric matrix whose eigenvalues are less than or eqdal to
in absolute value, then

11;(AB)| < j! (1;’) |Al/  foreveryj=1,...,N. (18)
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Proof. By induction itis easy to see thatif € M/*J then|detH| < j!|H|/. To
verify (18), leto € {1, 2, ..., N} be an index set. For each matiixe MY *V we
denote the submatrix that lies in the rows and columng ofdexed by asE («).
If « hasj elements then we write(&) = j and call the submatrik («) a principal
submatrix of ordeyj. Let us choose a basis®&f' such tha3 = diag(B1, - - - , Bw).
It follows by multiplication of matrices, thatA B)(«¢) = A(a)B(«). Hence, since
|detB(a)| = 1,

| det(AB)(a)| = | detA(a)|| detB(a)| < | detA(a)|.

The definition of the principle invariardi (A B) then yields

I1,(AB)| =

> det((AB)(a))’§ > ldetA@] £ Y AN

Ho)=j #Hao)=j #a)=j

N .
=\ . )JjUAl,
<]>J|| |

where we have used the fact that there (a(}le) different principal submatrices of
order;, and this establishes (18). To complete the proof, we apply (18)Bvith]
to obtain the inequality

N .
11;(A)| £ <j>j!||A||f,

and then we use the relation

N
det(/ + A) =1+ Y I;(A)
j=1

together with the triangle inequality to obtain (17)o

The next result provides smooth diffeomorphic extensions to the entire space
for members of a particular class of quadratic functions.

Theorem 1. Leta € RY, A € Lin(RY,RY), 8 e Lin,@RY,RY), and posi-
tive real numbersn, M be given such that: < detA < M and E is sym-
metric. There exists = r(M, detA, |A~1Z|)) > 0 depending continuously on
(M, detA, ||A~L1E|) such that the functiorf : B(0, r) — R¥ defined by

fx) = %E[x,x]—i—Ax—i—a (19)
can be extended to@?2 diffeomorphismy¢ of RV that satisfies

% < detV f(x) < M (20)

for everyx € RV.
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Proof. We putA := A~1E, i.e, A;jx = (A71);,E,jx and choose; > 0 such
that

N
M .
r1<sup{q>0:m>1+§j!<1;/)||1\||1s./
and 1— Z_]( >||A||’s’>§forallse[0 q]}

Further, we choose a numbersatisfying 0 < r» < min{r1, (7| A[)~1}; for

example, elementary estimates show that we may put
1 M — detA
=min{ (7IAD™L (NA+ 1ADDM, (V@ + japy) t———
r2 m{( IAIDT= (NI A+ [IAD™) 2,( @+ 1amn™ detA
(21)

We putr := r»/4, and we choose@? functiony : (0, co) — R satisfyingy = 1
on(0,r), ¥ = 0on(r, 00) and—2/r; < ¥'(x) < 0 for everyx € (0, 00). We
definef¢ : RN — RN by

f@) =¥ dxID3Elx, x] + Ax +a,
and we notice thay* is a C? extension of the functiory defined in (19) from
B0, r) toRY. The gradient off¢is

Vi) =y (IIXII)—u[x x]® — ” ” + ¥ dlxDELx, T+ A

( ¥ (IxIDALx, x ®ﬂ+1ﬁ(IIXII)A[x ]+1)

=A (A[x, ] ( v (lxDx ® H + w(||x||)1> >
= A(Alx, -1B(x) + 1),
where the symmetric matriB(x) is defined by

B(x) = —W (lxhx ® ﬂ + ¥ lxID!

and wherep denotes the tensor produttid)e = (d-e)cforallc, d, e € RN . We
now show that the functiopi¢ satisfies (20). Fofx|| = r» we havef¢(x) = Ax+a
and hence (20) is clearly satisfied. fat| < r we have that/ (|x||) = 1 and hence
B(x) = I. By using (17) we obtain the relations

detV f¢(x) = detA det(J + Alx, -])

N
€ detA (1—2;’!( )||A[x I, 1+Z; (1;7>||A[x,~]||)

N j N J
S N i’ G N )
C detA 1—211( _>||A||f—.,1+ ]!( .>||A||J—. ,

j=
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and, in view of (21), (20) is satisfied since= r»/4 < ry. Finally, forr < ||x|| < rp
we notice that the absolute value of each of the eigenvaluggxfis less than 1.
In fact, for eactt € RY we have

£

B(x)§ - 5_——|1/f ([l ID111x II(|| |

) +yxIDIEN?;
hence

B)E-& S y(xIDIEN? < 1IEN3,
and

> g 2> 12 2> 2
B(x)§-§ = ——W (e D ” | :———|| N = =117

From this bound on the eigenvalues Bfx), the last equation in the proof of
Proposition 2 along with (18) and (17) yield

detV f¢(x) = detA det(/ + Alx, -]B(x))

N N
€ detA | 1= | (Alx, 1B 1+ [ (Alx, -]B(x))|)

j= j=1

N
J! (’JV) IALx, IV, 14 j! (’Jv) IALx, ~]||f')
j j=1

N N o N N o
C detA 1—2]'! < i ) IANry, 1+Zj! ( j ) 1Al 75 ],
j=1

j=1

1
N

C detA | 1—

=1

and, keeping in mind thab < r1, we conclude that (20) is satisfied.

We now show thayf ¢ is injective. Since fol|x|| > r» the functionx — f¢(x)
is injective, it suffices to consider the relatigif(x) = f¢(x) when|x| < rp
and || x| is unrestricted. H|x|| < rp and||X|| = rp, then f¢(x) = f¢(x) implies
% =x+ 3y (IxIDAlx, x], so that

2 < 1 2.1 2
lx =%l = 5 1Al XN = 5 1Al75 < ra.

Therefore, wherix|| < rp and||X] = r2, fé(x) = fé(X) implies that||x|| < 2r.
Thus, it suffices to establish the injectivity of— f¢(x) on B(0, 2r7), the closed
ball of radius 2, centered at 0. Let € R" be given and definé(x) = x +
A~L(y — f¢(x)) for eachx € RV.We note that (x) = x ifand only if f¢(x) = y,
so to prove the injectivity off¢ it suffices to show that has at most one fixed
point in 3(0, 2r,). The Mean Value Theorem, the inequality< 1/(7||A|), and
the estimate

IVE@I = 1T — ATV £ = HA[x, ~]< Yxlx ® m + 1/f(||X||)1> ”

1
= 1A (——IIXII + 1) = [Al12r2(2+ 1) = 6ra2|| Al
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show thatl|é(x) — £(X)|| < |lx — || forall x, X € B(0, 2rp) with x # X. Hencet
has at most one fixed point on that ball. Thii$,is an injective,C? function with
detV f¢ > 0, and the Inverse Function Theorem tell us thats locally invertible
with a local inverse that is of clag’.

In order to show thatf¢ : RY — R is a C? diffeomorphism, it remains
to show that the range of¢ is equal toR". Becausef¢(x) = Ax + a for all
x € RNM\B(0, rp), the injectivity of £¢ and the invertibility of(x — Ax + a) :
RY — R yield

fe(B(O’ r2)) C A@r2) :={Ax +a : |x| < r2}

and
FERN\B(O, r2)) = RV A(r2).

However, the inclusion in the first relation above must be equality. In fact, sup-
pose, to the contrary, that®(B(0, r2)) # A(rz). Then we may choose €
A\ (B, r2)). If y € 9f¢(B(0, rp)) the continuity and injectivity off*
imply that y € af¢(B(0,r2)) = f¢(0B(0,r2)), and therefore there exists an
X € 0B(0, rp) such thatf¢(x) = Ax + a = y. But this contradicts the fact that
y € A(r2) and thatr — Ax + a is an injective mapping. Thus € ¢ (B(0, r2))
and hencef¢(B(0, rp)) is closed inA(r2), since we can find a small ball cen-
tered iny, open inA(r2) and which does not intersegt(5(0, r2)). On the other
hand, the local invertibility off ¢ implies thatf¢(B(0, r2)) is open inA(r2). How-
ever, A(rp) is connected ang“(B(0, r2)) is a non-empty open and closed sub-
set of A(r2), so f¢(B(0, r2)) = A(r2), which contradicts our assumption. Thus
f4B(O, r2)) = A(ra),

FE®RY) = [4BO,r2) U f*®RN\BO, r2) = Ar2) U (RV\A(r)) = RY,
and f¢ is surjective. O

Example 1PutN := 1, A := (0, 1), and, for each positive integerandi =
0,1,...,n,putx; :=i/nandx, ={x; :i =12,... ,n—1}. LetX € R be
given, and define for eache (0, 1)\,

n—1

Fo) = 32 (% + A= B/ = ) + 320 = x0?) X @), (22)

i=0

where x(, x;,denotes the characteristic function of the inter¢al x;1). To
show that(x,, f,) is a simple deformation, it suffices to show thitis injective
and, foreveryi = 0,1,...,n — 1, that f,, restricted to(x;, x;+1) is a classical
deformation . Note that for > 2|Z|

=/, Iz =]
fr(x) = ZO (1 - + X(x —xi)> Xxixigy) X)) 21— 27 > 0.
1=
Thus, forn large enough, we are in position to apply Theorem 1 and, hence, to
conclude thatf, restricted to(x;, x;4+1) can be extended to@? diffeomorphism
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of R. We now show thatf,, is injective. Sincef, is increasing on each interval
(x;, x;+1) for n large enough, it suffices to check that

Ju(x) = lim fy(x) = |Irp+fn(x) = Xi, (23)

x—)x

foreveryi =1, ... ,n— 1. Note thatf, (x) £ 1—|Z|/n+|X|/n = 1, so that for
x € (xj_1, x;) we have

Fn(x) = xi1 = f fa@dt = x —x;i-a,
Xi-1

and, thereforef;, (x) < x, which implies (23) and the injectivity of,,. Finally, the
sequence of simple deformations— («,, f,) satisfies

liminf «, =,
n——+00
; by 1 1
lim || f, —id|z < lim (l | | | 2> 0,
n— 00 n—00 nn 2
i / P
lim || fy — 1.~ < lim 2-— =0,
n—00 n—oo  n

and
lim || £/ — |t~ = 0.
n—>oo

Thus,n — (k,, fn) determines the second-order stuctured deformagiid,
1, ), where id denotes the identity function ¢h 1).

We now specify a few items required for the statements and proofs of the
Approximation Lemma and the Approximation Theorem for second-order struc-
tured deformations. These follow closely the specifications on pp. 130-131 of [1]
for the case of first-order structured deformations. Let a piecewise-fit regjion
in RN be given, and choose a Cartesian coordinate systeriRfoisatisfying
A c (1/3,2/3)". For each prime number and each subsef of the integers
Z, put

(p, Z) := {r : n is a coordinate plane whose distance from
the origin O ism/p for somem € Z}. (24)

Let a second-order structured deformation of the fogin, H, ®©) be given, and
choose set$H; : j = 1,...,J} asin (Std 2); in particular, the union of the
sets?; is the regionA, the restrictionH |4, has a continuously differentiable
extension to};, and the restrictior® I3, has a continuous extension #y, for
j=1,...,J.Choose a subdivisioB of the piecewise fit regiom into mutually
disjointﬁt reglonsB ,Jj =1,...,J,whose union differs from by a set of volume
zero. (See the construction (3.17), [1], with there replaced by;.) Finally, we
define

J

r®):= | J(0B)nA)

j=1
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and, for eaclr > 0,
'B), :={x e'(B) : dist(x,dA) < ¢}.

Lemma 1 (Approximation Lemma (cf. [1], p. 13))Let a piecewise fit regiol
and a second-order structured deformati@h i, H, ®) from A be given, choose
sets{H; : j =1,...,J}asin(Std 2)and a subdivisiorB as described above.
For eache > 0 and each prime number, there exists a simple deformation, #)
from A and primesp1, p» greater thanp such that

(i) A is covered by the sét(B), together with the planes
7 el(p, {1, ..., p—1) withl € {1, 2};

(i) lh —ill~ <&
(iv) |IV2h — O 1~ < &.
Moreover,(A, k), p1, and p2 can be chosen so that, if

G={xeA: Hx)=1,0(x) =0}°,
thenh NG =@ andh |g=ig.
Proof. We note first that, by (Std 3), there exisis> 0 such that

m < detH(x) < detVi =1 (25)

forall x € A. Lete > 0 and a primep be given, and choosg > 0 such that
&

1-— 1. 26
asupHOL P (26)

LetH; : H; — MV*N and®; : H; — MN*N*N denote the continuously differ-
entiable and continuous extensions to the closur® 06f H and®, respectively,
described above. We note that max .. ; maxxegj ||Hj(x)_1®j x)] = 0ifand

only if ®;(x) = 0 for everyx € #; and for everyj = 1, --- , J, and, without loss

of generality, we may assume may, .. ; maxxeﬂj | H; ()C)_l®j(x)|| > 0 (other-
wise, the proof of the present lemma reduces to that of the Approximation Lemma

for first-order structured deformations). For egck= 1,...,J andx € #;, we
define a quadratic mapping(x, -) : RY — R by
fix,y) = 30,0y — x, y —x] 4+ BH; () (y — x) + x. (27)

PuttingE = ®;(x), A := BH;(x), a := x, andM := 1, in view of (25) we may
apply Theorem 1 to choosg(x) > 0 such that the restriction ¢f (x, -) to the ball
B(x, rj(x)) has an extension to all @&tV as aC? diffeomorphism. Moreover the
continuous dependencegfx) on®; (x) andH; (x) established in Theorem 1, the
uniform continuity of; and®;, and the relations (25) and (26) tell us that:

@

pi= min _ minr;(x) > 0; (28)
j=Yend e,
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(b) we may choose a humbé&for which

& &
4suRcq 1O 4B sup.cq [I1H I

£
_— 2 29
\/2sugeA||®<x>|| p} (9)

and such that, it, y € 7; and|x — y|| < 8, then

0<8<min{

H; H; < — 30
1H;(x) — HinIl = 2J (30)
O; < — 31
19;(x) = ©;(MIl = 2J (31)
foreveryj =1,...,J.
For each such we set
i i=inf inf 1 fiCx y) — xll, (32)

xeﬁj yedB(x,8/2)

and we now show thaté’) > 0. By the compactness Gi we may choose se-
guences: — x, € H, andn — y, € dB(x,, §/2) converging taxg € HJ and
yo € 0B(xo, 8/2), respectively, such thditf; (x,, y,) — x, || converges tm(’) Sup-
poseré” 0. Thenf; (xu, yu) — X, — 0, so thatf; (x,, y,) — xo asn — +oo.
By (27), f; :ﬁj x RY — R¥ is continuous and we conclude that

fi(xo, x0) = x0 = HETOO SiGens yn) = fj(xo, o).

Becausef; (xo, -) is injective onB(xo, rj(x0)) andxo, yo € B(xo, r;(xg)) we have
x0 = yo, Which contradicts the relatioyy € 9B(xg, §/2). Henceré” > 0. We may
now put

rp = Tln réj) > 0.

Choose a prime numbex such that

VN 2N 2N
p1 > max p—i—l—T , (33)
r2 e

and defineC as the set of all closed cub@sn (0, 1) whose pairs of parallel faces
are subsets of consecutive coordinate plands(ipy, {1, ... , p1 — 1}) as defined
in (24). For each closed cultee C, we consider two cases:

(a) Cisincluded inA,
(b) C is neither included in nor disjoint from.
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Case (a). LetC € C be given such thaf c A. Using (30) and (31), it can be
shown (cf. (5.35) of [1]) that if, y € C, then

|HG) = H)I £ 5, (34)
CIORCIOTES (35)

Choosec¢ an arbitrary point in the cub@, and definefe : RY — RV by
fe(x) = 30(co)lx — cc, x — cel+ BH (co)lx — ccl + cc. (36)

By the choice of the numberin (28), the mapping¢ restricted to the balB(cc, p)
is invertible. Since by (33) we hawgN / p1 < min{/2, r}, we may conclude that

ccn(ee.d) s (5(ee.2)). -

To show thaC C f¢ (B (cc. 5)) we note that, otherwise, we may choose C
suchthat # fe(y)forally € B(cc, §).Butce € CNB(cc, ) andec = fe(ee)
so that the line segment througrandcc is contained irC, c¢ € fc (B (cc, $)).
but the end poink is not in f¢ (B (cc, %)) Becausef¢ is a diffeomorphism we

may choos& on the line segment ar@l e 95 (cc, %) such thatfq(y) = x, and
by (32), (33), and the definition @f,

r2> |IX = ccll = fe®) —ccll = r2

a contradiction. From (29) we have that
)
fe (B (CCs 5)) C fec (Blcc, p)) . (38)

HenceC is a subset of the range gf which is equal to the domain g‘fc‘l, and,
by (37), we also have that

fFre cB (cc, %) . (39)

Recall that deH (x) < 1 for everyx € A, so that detBH(c¢)) < 1. Thus,
by (20), we have O< detV fe(x) < 1 for everyx € B(cc, p) and, therefore,
detVfc_l(x) > 1 for everyx € fe(B(cc, p)), SO that volC) < vol(fc_l(C)).
Proceeding as in pp. 133—-134 of [1], it can be shown that there exists a ptime
such that for every primg’ > pc there exists an injective, piecewise rigid mapping
re : C\II(p', Z) — f;1(C°). We define the set

=xerxnC:mell(p,{1,...,p -1}
and the mapping¢ : C°\A¢ — C° by

he(x) = fe(re(x)).



230 DavID R. OWEN & ROBERTO PARONI

We now check that on its domain the ml@psatisfies the requirements (ii), (iii),
(iv). We first note by (39) thate(x) € B (cc, 3) for everyx € C € B(cc, 3), so
that

re(x) — x| =8 (40)
for everyx e C. By using (36), (40), (29), and (33)—(35) we see that

lhe(x) — i) = 130 (co)lre(x) — ce, re(x) — ccl
+ BH (co)lrc(x) — ccl +cc — x|l

N

2||0<cc)||62+ﬂ||H<cc>||5+—g +- 4z =g

lIA
NI ®

& &
474

Vhc(x) — Hx)|| = [1©(ce)lre(x) —ccl+ BH(cc) — H(x)|l

1©(cc)lls + (L= BIIH (ol + | H(ce) — HX) < &,

IA I

and

IV2he(x) = O = [O(cc) = OW)I| < e.

Case (b). This case can be analyzed by following the argument above and the
argument on pp. 134-135 of [1], and we only outline the reasoning here. Let a cube
C € Cbegivensuchthatn A # gandCN R\ A) # 0. LetB = {By, ..., By}

be the subdivision ofd chosen just above the statement of this lemma, and for
everyj =1,...,J we put

C = B/ NC, (42)
we choosey; € C;, and definefc, : RY — RV by

e, () = 30()Ix — yj, x =yl + BHG)Ix — yj1+ y.

Using the same procedure as described above we can choose ggrisueh that,
forall primeSp;. 2 pc;, there exists an injective piecewise rigid mappipgwhich

mapsC;\T(p}, Z) into fc‘jl (C;) We now define

={xennC :melp{L...,p;— 1D},
he; (x) fe; (re; (X)),

forx € Cj\Ac;.

Using the pairt{kcj, h¢;) we can construct a simple deformation frgfhn A
that satisfies (ii)—(iv), and the construction of the simple deformation) satisfy-
ing ()—(iv) in the statement of the lemma can be done, using the simple deformations
constructed above and following the reasoning on p. 136 of [1]; verification of the
“Moreover...” assertion at the end of this lemma follows the argument on pp. 136
and 137. O
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The factorization of the type (16),
(k,8,G, %)= (9,i, H,0)o(k.g), (42)

where

H@y) = (G(Ve) Hig™t(») (43)
and

OW)la, bl = (e oNI(Ve) g oa, (Vo) e ()bl
—(G(Ve) Mg () V2e(g ()M, b] (44)

for everyy e g(A\x) anda, b € RV, together with Proposition 1, permits us to
deduce from the Approximation Lemma the existence of a determining sequence
for each second-order structured deformation. The details of the argument follow
those on pp. 138-139 of [1] and provide the desired proof of our main result:

Theorem 2 (Approximation Theorem for Second-Order Structured Deforma}ions
For each piecewise fit regiol and second-order structured deformation g,

G, X) from A, there exists a sequenge— (x;,, fn,) of simple deformations from
A that determinesk, g, G, X).

It is convenient to use the term “disarrangement” [4] to denote non-classical
geometrical changes due to slip and separation on internal surfaces and occurring
possibly at more than one length scale. Becadgg and V2 f,, do not measure
such geometrical changes, it is natural in view of the Approximation Theorem to
callG =lim,,_, V f, the first-order) deformation without disarrangemeraad
Y = lim,u— 00 V2 f, the second-orderdeformation without disarrangemerftsr
the second-order structured deformati@ng, G, ). Because,, is a collection
of points wheref,, can fail to be smooth, we cal},, the disarrangement sitéor
the simple deformatiorx,,, f,,) and, in view of the Approximation Theorem, we
callk = liminf,,_, - «,, the (permanentdisarrangement sitior the second-order
structured deformatiorx, g, G, X). Measures of deformation due to disarrange-
ment for second-order structured deformations will be identified in the next section.

4. Decompositions and identification relations

We recall from relation (5) that the Approximation Theorem for first-order struc-
tured deformations and a Gauss-Green formula imply the “identification relation”:

M(x) := Vg(x) — G(x) (45)

1
= lim lm ———— [/n](¥) ® vr(s,) () d Ay,
Mo D0 VOIB (v, 1) ey /1) © MU ) A
whereI'(f,;,) denotes the jump-set fof,,, [ fi»1(y) denotes the jump iry,, at
y € T'(fu), vr(s,)(y), denotes the normal at the pointe I'(f,), and.A, de-
notesN-dimensional area measure. The term “identification relation” is appropri-
ate for the formula (45), because it identifies the differemte) = Vg(x) —
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Gx) = (VIim, oo fin — iMoo V fin)|x @s @ measure of deformation due to
a large number of small jumps ifj,. This identification relation justifies calling
Vg(x)—G(x) the {first-order) deformation due témicro) disarrangementfs]. For

a second-order structured deformatieng, G, ) we have, by the Approximation
TheoremVG = ViMoo V fin andE = liM o 00 V2 fin = iMoo VIV f);
the results in [2] when applied 16 f,,, instead of tof;,, then yield a new identifi-
cation relation:

VG(x) — 2(x) (46)

1

=lim lm —— [V finl(¥) ® vr(vy,)(y) dA,.
r—>0m—-+00 VOl (B(x, 7)) Jp(x,nnrv f,) " (Vfm) ’

Here, for eacm e Lin(RY) andv € R", we define the tensor produdt® v €
Lin(RY, Lin(RM)) by (A @ vyw = Aw @ v for all w € R". The identification
relation (46) permits us to calf G(x) — (x) a (second-ordey deformation due

to disarrangementdf we differentiate both sides of the identification relation (45)
and add the resulting equation to the identification relation (46), we obtain the
identification relation

V2g(x) — Z(x) = VG(x) — (x) + VM (x)

1
= lim lim ———— [V fnl(y) ® vr(vy,) () dA
r—0m—>+00 VOl(B(x, 7)) Jpueyorv ) (Vifm) ’
. . 1
+V, lim lim ———— [fn](y) ® vr(s,) (D) dA,y.

r—0m—+00 V0|(B(X, r)) B(x,r)NT(fin)
(47)
In this relation, we may calV2g(x) — (x) a (second-order) deformation due to
disarrangments, and this difference is revealed as theVWaritx) — X (x) arising

only from jumps inV f,, plus the terniv M (x) arising only from jumps inf,,,. We
may now write

Vgx) =G(x)+ M(x),
V2g(x) = VG(x) — Z(x) + VM (x) + = (x),

and use relation (8) to obtain tiefined quadratic approximation:

g(x) —g(y) = GX)(y —x) + M(x)(y — x)
+3(VG(x) = Z))ly —x.y — x] + 3VM@)[y — x, y — x]
+3T@)ly —x.y —x]+o(ly — x[%). (48)

In this approximation, the termG(x)(y — x) and%E(x)[y — x,y — x] represent
translations without disarrangementsom limits of first gradient¥ f,, and second
gradientsv2 f,,, respectively. The term¥ (x) (y —x), %(VG(X)—E(x))[y—x, y—
x], and%VM(x)[y — x,y — x] representranslations due to disarrangements
M(x)(y — x) and %VM(X)[y — x,y — x] arise due to jumps iry,,, whereas
$(VG(x) — D(x))[y — x, y — x] arises due to jumps i¥ f,.
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5. Additional examples

Example 2 (Bending through simple sheakgt N = 2andletd = (0, 1) x (0, 1).
For each positive integer, puty; :=i/nfori =0,1,...,n,andx, := {(0, 1) x
{yi}:i=212...,n—1}. Leth € C%((0,1);R),and fori = 0,1,... ,n —1
define

_ h(iy1) — h(yi)
I’I’l, =
Yi+1 — Vi
as well as

n—1

ha(y) =Y (mi(y = ) + h(3) X (313120 (3)-
i=0

Finally, we put f,(x, y) := (x + h, (), y) andg(x, y) := (x + h(y), y). Itis
easily seen that the simple deformatiep, f,) determines the second-order struc-
tured deformation(@, g, Vg, 0). Moreover,M vanishes, and the translations due
to disarrangements in (48) arise solely from the t&tG— ¥ = V2g, whose only
non-zero component [2g(x, y)122 = h”(y). In view of (46), the translations due
to disarrangements associated with g, Vg, 0) arise through the jumps i¥ f;,,
specifically, the jumps if,.

Example 3 (Bending of a deck of cardsgt N = 2 and letd = (-1, 1) x (2, 3).
For each positive integer, puty; := 2+ - fori = 0,1,...,n, andk, :=
(=1L, D x{y}:i=1,2,...,n—1}. We define

p(y) :==/1+4y? (49)
futry) i= —LD o Jonyl/ny? - x2) (50)
p([nyl/n)

for every(x, y) € (-1, 1) x (2, 3). Here,[-] denotes the greatest integer function,
and relation (50) tells us that lings= yg are mapped by, into circular arcs with
center atthe origin and radipgyo), while linesx = xg are mapped into a collection

of line segments, each of which, when extended, passes through the origin. Figure 1
shows the effect of the mappin§ on rectangles of the for-1, 1) x (y;, yi+1):

each is mapped into an annular region with inner ragitss) and outer radius
p(yi+1)- (This deformation is reminiscent of the geometrical changes in a deck
of cards when it is bent prior to shuffling.) BecauseOy — [ny]/n < 1/n, it
follows that p([ny]/n) converges t(y) asn tends to infinity, uniformly iny.
Consequently, the sequence— f, converges uniformly ori—1, 1) x (2, 3) to

the functiong defined by

glx, y) = (x,{/1+ y2 —x?), (51)

and

and the gradients
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g
—

; — X
-1 1

Fig. 1. Microview of the deformation of Example 3.

_r» o xy
p(lnyl/n) p(lnyl/n)p(y)
Vi, y) =
p(y)x

_ Y 2 _ 42
ooy Pyt Y P UImyl/n)® =

converge uniformly to

1 24 T
1+)?
G(x,y) = 52
= e .
V122 1+y2
We easily find that
1 0o ]
Ve(x,y) = . ) (53)
_\/1+y27x2 ity |

and, therefore, on (—1, 1) x (2, 3), we have

2 o 4 det G(x, y) = det Vg(x, y)
B X, y) = x,y).
35 A y g(x,y

Consequently, theinequalitiesin (Std 3) of Definition 3 are satisfied by G and Vg.
Finally, the second gradients V2 f,, are easily shown to converge uniformly to the
tensor field X having components X; ;. at (x, y) given by

y
E = 0, E = 7,
111 112 142
S = —2 S = ——
1+ y2 xy
Youu =375, Y012 = — ,
(1+y2—x2)32 1+y2—x2(1+y?)
V14 y%—x2

> a4 s
21 = — s 222 =
VI+y2—x2(1+y?) (1+y?)?
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anditisstraightforward to verify that VG # X, VM # 0,and V2g # X. Thus, the
second-order structured deformation deformation (4, g, G, X) representsamacro-
scopic bending of thetwo-dimensional region (—1, 1) x (2, 3), with accompanying
disarrangements occurring due to jumps bothin f,, andin 'V f,.
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