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Abstract

The dynamics of discrete mechanical systems with perfect unilateral constraints
is formulated in avery general setting. The well-posedness of the resulting evolution
problem is studied. It is proved that existence and uniqueness of a maximal solution
is ensured provided strong assumptions are made on the regularity of the data: they
are supposed to be analytic. Simple examples show that this regularity assumption
may not be relaxed. Sufficient conditions to ensure that the maximal solution is
defined for all time are supplied. The continuous dependence of the solution on
initial conditions is also studied and the numerical computation of the solution is
discussed.

1. Introduction

The aim of the Dynamics of Discrete Mechanical Systems (sometimes called
Rational Mechanics or, after Lagrange, Analytical Mechanics) is the prediction of
the motion of collections of bodies supposed to be perfectly indeformable. The
theory classically distinguishes two types of interactions between the bodies them-
selves and between the bodies and the rest of the universe: the efforts and the con-
straints. The constraints are kinematical specifications of the motion with which
some efforts are associated. A constraint is said to be perfect or ideal if the associ-
ated efforts do not dissipate energy. A constraint is said to be bilateral, or unilateral,
if the kinematical specification gives rise to equalities, or inequalities respectively.
A typical occurrence of unilateral constraints is the handling of non-penetration
conditions.

When all the constraints are bilateral and perfect, the motion is classically
governed by a second-order ordinary differential equation on a finite dimensional
Riemannian manifold. When the data are smooth enough, the Cauchy-Lipschitz
theorem guarantees that a unique motion is associated with any given initial state
of the system.
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When dealing with the dynamics of discrete mechanical systems with unilateral
constraints, there is no such theorem, although many steps in this direction have
been made during the past twenty years. To my knowledge, the first investigation
of this question using modern mathematical tools (i.e., introducing motions whose
acceleration is a measure with respect to time) is thatcefarzman [18]. She
studied the particular case where the configuration spaké Equipped with its
canonical Euclidean structure and the admissible configuration set is convex. Her
setting was also limited to the elastic impact constitutive equation. Using Yosida-
type regularization and compactness arguments, she was able to prove the existence
of solutions under very weak regularity assumptions. She also discussed uniqueness
but proved it only in a very specific case. Further investigation on uniqueness was
performed byPErcIVALE in [14] and [15]. He is the first to introduce analyticity
hypothesis in this respect. But, his results apply also only to very specific cases. The
formulation of the problem with completely inelastic impacts has been extensively
studied byMoreAuU [12]. An existence result was proved MONTEIRO MARQUES
[10] in the particular case in which the configuration space is EuclitR¢éaand
the unilateral constraints are described by a single smooth function. Very recently,
ScuaTZMAN [19] studied the general one-degree-of-freedom problem with arbi-
trary impact constitutive law. In this case, she proved uniqueness under analyticity
assumption on the data.

None of these results has the generality required by Mechanics. The existence
and uniqueness results are proved under assumptions which are obviously not ful-
filled in most discrete mechanical systems which may generally be encountered,
except the last result of Schatzman, but it is limited to the one-degree-of-freedom
problem.

In this paper, the dynamics of discrete mechanical systems with perfect unilat-
eral constraints is formulated in a very general setting. To reach full generality, the
configuration space is supposed to be an arbitrary Riemannian manifold instead of
an Euclidean space. However, only the most elementary level of differential geome-
try is needed. The resulting general evolution problem is studied. The existence and
uniqueness of a solution associated with given initial condition is proved provided
the data are analytic.

In Section 2, we give a precise mathematical definition of what we call discrete
mechanical system and system of bilateral constraints. We also recall some basic
results connected to these definitions that we shall use subsequently.

In Section 3, a formulation of the equations of the dynamics of discrete me-
chanical systems with perfect unilateral constraints is presented. The content of this
section follows very closely the work Moreau [12]. Itis included since Moreau
restricts himself to completely inelastic impacts. More generality, including the
case of elastic impacts, is obtained here with no supplementary difficulty.

In Section 4, we prove a local existence and unigueness result concerning the
general problem of the dynamics of discrete mechanical systems with perfect uni-
lateral constraints, under the single assumption that the data are analytic. Existence
and uniqueness of a maximal solution follows immediately. A sufficient condition
to ensure that this maximal solution is defined for all time is also presented.
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In Section 5, three examples are discussed. One is due to Moreau and another
one to Schatzman. They are included for the sake of completeness. The aim of these
examples is to show that the regularity assumptions made in the previous section
are, in some sense, minimal.

In Section 6, we illustrate the generality of the theorems of Section 3 in applying
them to simple examples issuing from Mechanics.

In Section 7, the continuous dependence of the solution on initial conditions is
discussed. Dependence on initial conditions is seen to be not continuous in general.
However, a restrictive case where continuity holds is exhibited.

In Section 8, the numerical computation of the solution is discussed. Problems
arise in connection with non-continuous dependence on initial conditions. How-
ever, we recall an algorithm, which was first described by Moreau, and prove its
convergence in some restrictive cases.

The main results in this paper were announceBAnLARD [3].

2. Discrete mechanical systems and perfect bilateral constraints

The aim of this section is to give a precise definition of what we call a dis-
crete mechanical system, to introduce notation and to recall some basic results that
we shall use later on. For a comprehensive presentation, the reader is referred to
ARNOLD [2] and ABRAHAM & MARSDEN [1].

2.1. Discrete mechanical systems

Definition 1. A discrete mechanical systemis:

— A Hausdorff, smooth (of class? with 2 < p < o) connected manifol@® of
dimensiond whose topology has a countable basis.
The manifoldQ is called the configuration space of the discrete mechanical
systemy is its number of degrees of freedom. The tangent buidbeof Q is
called the phase space or the state space. A pa@hp is a configuration of the
system and a point df Q a state of the system. The cotangent bundle is denoted
byT*Q;Tp:TQ — Q andl‘I*Q : T*Q — Q are the natural projections. The
tangent space atwill be denoted byl 0, and, to designate an elemerdf T Q,
we shall often use the redundant notatignv) whereg = Il (v) andv € T, Q.
A curve onQ (i.e., a continuous mapping from a real intervato Q) is also
called a motion of the system. If a motign: / — Q admits a tangent vector
atz, it will be denoted by(¢(¢), ¢(¢)). This notation is an abuse consecrated by
tradition. The dot will also be used in general to denote a derivative with respect
to time. A local chart orQ is also called a local parametrization of the system.
— A Riemannian metric o® denoted by, -),. The mapping

TO — Rt

(q.v) = 3(v,v)g = 5 lv]|2

(1)

is the kinetic energy of the system.
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— A real intervall and a smooth (of clas§” with 1 < p’ < p) mappingf :
TQ x I — T*Q such that

Vigv)eTQ, Vtel Ty(flg,vin) =Tl v)=gq.

The mappingf is called the virtual power of internal, external and inertial efforts
acting on the system or, in short, the efforts mapping. We will denotg, by,

the local duality product o, Q x T, Q andb (andg = b~1 its inverse) the
isomorphism of vector bundles fromQ onto7* Q canonically associated with
the Riemannian metric o@.

The Fundamental Principle of Dynamics asserts that any motion of the system
is of classC? and has to satisfy

q(t)

Viel, b——=f(q),q);1), (2

where% denotes the operator of covariant derivation algg canonically asso-
ciated with the Riemannian metric ¢f.

In what follows, for(U, ) a local chart orQ, (e1(q), e2(q), - - - , eq(q)) and
(e*(@). €%(q). -+ . ¢’(g)) will denote the dual basis df,Q andT;*Q naturally
associated with the considered charty), which we shall abusively continue to
denote by, is an elemenfgt, g2, - - - , g¢) of R?. If ¢ (¢) is a smooth motion o,

(¢1®). ¢%@), -+, ¢4 () will be the components of its tangent vector (also called
velocity) in the local basis:

§(1) = 4" (ei(q@),
where Einstein’s summation convention applies. It will always apply unless explic-

itly stated. No confusion induced by this notation should be expected since

. d .
Vie{l,2,---,d}, q4'(t)= Eq’(t).

In general, we shall use the same notation to denote a function and its representative
in a chart. As usualg;; (¢) will denote the covariant components of the metric in

the considered chart ad (¢) its contravariant components, Wth?k(q) will be

the associated Christoffel symbols:

4 1 d
M@ = 58" @ (ﬁ< )+ g”( ) - g’k< >) 3)
Proposition 2 (Lagrange. Let (U, v) be a local chart and ¢ () a C? motion on
Q. Onehas

D§(1) d o 9 i
- (EFK(CI(I) q@)) — —K(q(t) q(t))) e'(q(1)).

b———
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Proof. Itis straightforward since

Dg d .
ar S\ +Id'd

d ;i 1 i, (08n | 08nk  O8k1\ .k.r) i
:gij<Eq’+§g’ <8_qk+8_ql_w qq e

d.; 1 0gn 08k &K\ .k .1
JogoZgh (280 C8hk _ 08k i
(gudtq +2’(8qk+ ol  9g" q°q e
d .. 0gij.;. 1ogjk . ;.
Joy 20 sjak _ ZZOIK sk i
(gl,dt Foag 'l m 5 e

d 0 1 0 1 . O
dl‘ 8q Zq gjkq 8 7 2‘] gjkq

Coming back to the equation of motion (2), suppose we are given in supplement
an elementy of I, called the initial instant, and an elemégg, vo) of T Q, called
the initial state. Then, we obtain the following Cauchy probtzon Q:

b

c D4 = £ (q(0),4(); 1)
(g(t0), 4(t0)) = (qo, vo) .

The Cauchy-Lipschitz theorem guarantees existence and uniqueness of a maximal
C2 solution(J,,, gm) WhereJ,, is an open subinterval df includingzo, andg,, a

C2 motion defined orv,,. This expresses the fact that any other solutidry) of

C is necessarily a restriction gf;;:

JCJu and guyy =gq.

This result allows us to associate with any discrete mechanical system a dynamical
system, that is, a two-real-parameters collection of mappings fromZ" Q into
T Q such that

Fl‘3,12 o Fthtl = FfSatl and Ft,t = Id

To illustrate these basic definitions and results, we give a simple example that
we shall reuse later on in a slightly different context. Consider a plane system of two
homogeneous rigid bars 1 and 2. The bar 1, of leidgind mass:1 is connected
to a fixed support by means of a perfect ball-and-socket joint equipped with a spiral
spring of stiffnes%s. The bar 2, of lengtl, and mass:2 is connected to the free
extremity of the bar 1 by means of another ball-and-socket joint also equipped with
a spiral spring of stiffnesky. A force acts on the free extremity of the bar 2. This
force remains parallel to the direction of the bar 2 and is of constant magnitude
A > 0 (see Fig. 1). With this system is associated the following discrete mechanical
system:

— The configuration space® equipped with its canonical structure@f® man-
ifold (it is not the 2-torus since we have to count the “number of turns” because
of the spiral springs). This manifold may be represented by a single chart; in
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Fig. 1. Geometry of the double pendulum.

other words, there exists a globa parametrization of the system. In the sequel,
we shall only use the chart (¢, ¢2) defined by the angular measures associated
with each of thejoaints.

— Thekinetic energy is

K = l/ll M2 (c}l)z ds
=3 — S
o I
l2 2 2
+ %/ ”12 (lf (c}l) + 52 (q'z) + 215 cos(ql - q2> c]lq'2> ds
0 2
2 2
% (%mllf c}l) + mzl% (c}l>

2
+ §mal3 (42) + mahalzcos(g* - g2 élé2> :

This kinetic energy defines a Riemannian structure on the configuration space.
The expression of the metric tensor in the considered chart is

g11(q*. q%) = (%ml + m3) 12,
812 (6]1’ 6]2) = %mzlllz cos (6]1 - 6]2) =821 (6]1, 6]2> )
g2 (q.¢%) = %mzlg.
— The efforts mapping has for expression in the considered chart:
f(g.¢:0) = 180 (g = %) = (a +ka) " + kg | @)

+ [kqu - kzqz] (q).
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Proposition 2 allows usto form easily the equation of motion in the considered
chart:

(%ml + mg) l:lz_él + %mzlllz COS(C]1 - qz) &1-2 + %mzlllz sin (ql - qz) (q.2)2 ,
= M1sin (g — %) — (ka +k2) ¢ + kag?
%mzlllz cos (ql — q2) ijl + %mzl%i]'z — %mzlllzsin (ql — q2) (41)2

=k (ql—q2)~

4)

The deterministic conclusion of the Cauchy-Lipshitz theorem on the dynamic
evolution of the system isillusive. Indeed, if we add to the differential system (4)
theinitial condition

¢1(0) = ¢%(0) = ¢*(0) = 4*(0) = 0,

it is easily seen that the maximal solution is the identically vanishing function on
thereal line. But, Poincaré-Lyapunov theory showsthat this solution isunstable for
somevalue of A and thereal motion will differ in thiscase from thistrivial solution.
The correct analysis of the motion should in this case refer to some investigation of
topological nature on the dynamical system generated by the equation of motion. In
any case, one has to abandon the objective of predicting exactly the motion of the
system. One hasto be content with only partial information on thismotion: thisisa
consequence of the over-idealization made during the modelling process. However,
the Cauchy-Lipschitz theoremisat the basis of any further analysiswhich hasto be
performed on the equation of motion. Thisfact will be discussed with more details
in Section 7 in the context of the dynamics of discrete mechanical systems with
perfect unilateral constraints.

2.2. Bilateral constraints

One may introduce on a discrete mechanical system another type of effort,
not taken into account by the efforts mapping f. Indeed, one may specify some
efforts by their kinematical effects: one speaks of constraint. A constraint induces
arestriction on the admissible motions of the system which is expressed by means
of afinite number n of smooth real functions defined on Q:

Vie{l,2,---,n}, ¢i(g)=0. )

The word constraint in the singular will be used indifferently to refer to either
a constraint specifically associated with a single function ¢; or to the constraint
associated with al the functions ¢; . In thisterminology, a set of constraintsisstill a
constraint. In formula(5), the constraint is said to be holonomic (becauseit applies
on the configuration and not on the state), scleronomic (because it does not depend
explicitly ontime) and bilateral (becauseit is expressed only by equalities and not
inequalities). We denote by S the following subset of Q:

S={q€QSVI€{15277n}’ %(q>=0},
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and we add the assumption that the functions ¢; are functionally independent:
for dl g in S, thedy;(q) (i € {1,2,---,n}) are linearly independent in T*Q.
As a consequence, S is a submanifold of Q of dimension d — n. The realization
of kinematical specifications (5) necessarily involves a virtual power of reaction
efforts mapping R taking valuesin T* Q. Itisa priori unknown.

Now, consider an initial instant zg in 7 and an initia state (qo, vo) compatible
with the constraint (i.e., (qo, vo) € TS C T Q). The evolution problem associated
with the discrete mechanical system with bilateral constraint is: find 7' > g, ¢ €
C2([to, T[; Q) and R € C° ([to, T[; T* Q) such that

Vieln T, b240 = fq@), 4@); 1) + R@),
Vtelto, T[, q(t) €S,
(q(t0), 4(t0)) = (qo, vo).

These equationsfail to determine the motion of the system: one hasto supply addi-
tional information on the mapping R by means of a phenomenological assumption
on the way the constraint acts. A constraint will be said to be perfect if the associ-
ated reaction efforts do not produce work in any virtual velocity compatible with
the constraint

VvelveTyM Vie{l,2,---,n}, (dgi(q),v)g =0} ~TS, (R, v);=0.
Asaresult:
n
3 (Ai)iz12..0 €ER" R= Z)»id%'(Q)-
i=1

Therefore, if thebilateral constraint is perfect, the evolution problem may bewritten
as find T > 1o, q € C2(lto, T[; Q) and (A;);_1 ... » € (C°(lto, T[; R))" such
that

Vieln Tl 5220 — @), 4(); 1) + Y0y 4 (0)dwi (1)),

Eo\Vtelt, T[, q@) €S,
(q(10), q(t0)) = (qo, vo),
where % isthe operator of covariant derivation on Q.

Let g beapoint of Q, v avector of 7, 0, and E asubspace of 7, Q. The orthog-
onal projection of v on E for the scalar product of 7, Q induced by the Riemannian
structure of Q will be denoted by Proj, [v; E]. Similarly, Proj [v*; E*] will de-
note the orthogonal projection of the 1-form v* on the subspace £* of 7,7 Q. Then,
consider the evolution problem E5: find T > rpand g € C2 ([to, T[; S) such that

Vielo Tl o240 = Projs, [ @0, q@:0: 77, 8],

(g(t0), 4(t0)) = (qo, vo),

S
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where 7,7 S is considered as a subspace of 7,7 O and DS isthe operator of covariant
derivation on S equipped with the Riemannian structure inherited from that of Q.
We have:

Proposition 3. Problems £y and £s are equivalent: any solution of £p generates
asolution of £g and vice versa. Moreover, if Q and thefunctions ¢; are of class C?
(p = 2),and f of class CP~1, then the unique maximal solution of Ep and Eg isof
classCP’.If Q, f andthe ¢; are analytic functions, then so isthe maximal solution
of EQ and &s.

Proof. First, let usidentify 7, S and 7,/S as subspaces of 7, Q and 7.7 Q. We have
Tq*S = b(Tq S). Also Tq*S and @;_; Rdy;(q) are complementary orthogonal
subspaces of 7, Q and (see CHAVEL [7, p. 54])

D D
Dsd _ proj, | 224, 7,5
dr dt
Now, let g beasolution of £p:
Proj* [ »224. LTS | = Projl | f(g.4:1) " udr (@) TS
Jq d - Jq fq’q7 +Zl‘p1q7q .
i=1
But,
n
Projg [f(q,c}; 0+ ridei(q):; Tq*S} = Proj, [f(c],c}; 1); Tq*S],
i=1

and,

| Dog . . [ Dog Dsq
Proj; [ I i T, S] = bProj, [—; qu] =b—or,

which show that ¢ isasolution of .
Reciprocally, let ¢ be a solution of £5. From

Dgg D
p=4 —p =2 Qq +Zald¢>l(q)

Proj [f(q’ g3 1); Tq*S] = flq.¢:0) + Zﬁid%(q),

i=1

we deduce the existence of n functions A; : [ro, T[— R such that

D
ﬂ = f(q.4: z>+2x dei(q).

i=1
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It follows that
-1

)\.i = "‘(d(ﬂi(‘])a.dfﬂj(‘I))q"' (de—%q—f(q,é;t),dcoi(q))q :

where the Gram matrix is invertible because of the assumption on the functions
@;. This shows that the functions 2; are uniquely determined and that they are
continuous. Therefore, ¢ generates a solution of &g.

The second part of Proposition 3 follows from standard results on ordinary
differential equations (see, for example, CoppINGTON & LEVINSON [8]).

The moral of Proposition 3 is that adding a perfect bilateral constraint to a
discrete mechanical system generates another discrete mechanical system with
smaller number of degrees of freedom.

3. Discrete mechanical systemswith perfect unilateral constraints

This section deals with the formulation of the equation of motion of a discrete
mechanical system when some perfect unilateral constraintsareadded. All thebasic
ideas of this section are due to Moreau [12]. It isincluded since Moreau restricts
himself to the special case of completely inelastic impactsand al so because Moreau
does not consider the general case of an arbitrary configuration manifold equipped
with an arbitrary Riemannian structure.

3.1. Kinematical setting

Consider a discrete mechanical system according to Section 2.1 and suppose
that a finite number » of unilateral constraints are taken into account:

Vie{l,2,---,n}, ¢i(g) =0, (6)
wherethe ¢; : O — R are C? functions. The closed subset A of Q defined by
A={geQ Vie{l,2---.,n}, g¢i(q) <0}
is called the admissible configuration set. We define the mapping J by
0—->P{L2--.,n}),
g = J@)={ie{l,2---.,n) ¢ 20},

where P ({1, 2, - - - , n}) denotes the set of al subsets of {1, 2, ---,n}. The set
J(q) iscalled the set of al active constraints in the configuration ¢. Asin the case
of bilateral constraints, a functionally independence assumption is made on the
functions ¢; :

Vg €A, (d9i(q))icsq islinear independentin7,°Q. (7)
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As an easy consequence of the regularity assumptions made on the functions ¢;,
the boundary 9 A and the interior 2 of A in Q are such that

9A c U o7t dop, ®
A=J71(aY) . ©

Consider amotion in A (i.e., a continuous mapping from areal interval I to
A) and assume that aright velocity ¢ (1) € T, Q existsfor all instant 7 of 1. We
necessarily have

Vie{l,2,---.n}, Viel, ¢i(q®)=0= (dpi(qt).4 )¢y <0
or, equivalently,
Vie{lL2 -.n}, Yiel ¢i(q)=0= (Vei(q()).4"(1),, =0,
where Vy; (¢) isthe gradient of ¢; at ¢ defined by
Voi(q) =t (dei(q)) .

Thus, if the system has configuration g, then the right velocity ¢ is necessarily in
the closed convex cone V (¢) of T, Q defined by:

Vig)={veT,0 Viel(@. (dei(q),v)q<0}.

The cone V (¢) iscaled the cone of admissibleright velocities at the configuration
q. In particular,

geA (ieJ(q) =9V)= V(g =T,0.
Similarly, if aleft velocity ¢~ € T, Q exists, then,

g €—=V(g.

3.2. Equation of motion

Asfor bilateral constraints, the realization of the constraints induces some re-
action effort R. The following hypothesis are made:

— H1: theunilateral constraints are of type contact without adhesion:

YveV(g), (R,v),=0,

— H2: theunilateral constraints are perfect:

VoefveuM: Vie(q), (dpi(g).v)g =0}, (R,v)q=0.
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There results from hypothesis #1 and #2 and Farkas' lemma (see, e.g., Rock-
AFELLAR [16], p. 200) the following:

n
3 (Mi)icr2n €R', R=) " Xidpi(g),
i=1
ieJg)=nZ0,
igJg) =r=0.

Thus, the reaction effort R € T*Q must be such that

~ReN*(q) & {indgoi(q) Vie @), %20, Yiglg). k= o} ,
i=1
(10)

where N*(q) is aclosed convex cone of ;0 and the polar cone of V (g) in the

duality (Tq 0.1 Q) . We will also have to consider the polar cone N(g) of V(g)
for the Euclidean structure of 7, Q:

N(q)={2x,w,~(q> Vielq. %20, Yigl(q), A,:o}.
i=1

Now, consider a motion ¢ (¢) starting at go eii a time 7o with velocity vo.
Assumed to be continuous, ¢ (¢) remains in Aona right neighborhood of 7. By

formula (10), the reaction effort R vanishesaslong as¢(¢) isin ,Z and the motion
is governed by the ordinary differential equation:

D )
{bfdr = f(q.4:1).
q
(g(t0), q(t0)) = (g0, v0).

Suppose that the solution of this Cauchy problem meetsd A at someinstant greater
than ro. Denote by T the smallest of theseinstants. The motion admitsaleft velocity
vector v, attime 7. Of course, it may happen that v, ¢ V(¢(T)). Inthiscase, no
differentiable prolongation of the motion can exist in A for ¢ greater than T'. The
requirement of differentiability has to be dropped. An instant such 7 is called an
instant of impact. However, we are still going to require the existence of a right
velocity vector g7 (1) € V(g(t)) a every instant ¢. The right velocity need not be
a continuous function of time and the equation of mation,
Dg™*

b—— = LG + R,
T flg.q" 0+

should be understood in the sense of Schwartz's distribution. Actually, we require
R to be a vector valued measure rather than a general distribution. We denote by
MMA(I; Q) (motions with measure acceleration) the set of all absolutely contin-
uous motions ¢ (¢) from area interval I to Q admitting a right velocity ¢ ™ (¢) at
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every instant ¢ of 7 and such that the function ¢ () has locally bounded variation
over I. Naturally, bounded variationis classically defined only for functionstaking
values in a normed vector space. However, for any absolutely continuous curve
¢q(t) on aRiemannian manifold, parallel translation along ¢ (¢) classically provides
intrinsic identification of the tangent spaces at different points of the curve and so,
the definitions can easily be carried over to this case. The precise mathematical
setting is postponed to the appendix. The reader will notice from the appendix that
with any motiong € MMA(7; Q) isintrinsically associated the covariant Stieljes
measure D¢ of itsright velocity ¢*. The equation of motion takes the form

bDGT = f(q.¢T;t)dt + R,

where dt denotes the Lebesgue measure. We have to give a precise meaning to
condition (10) with R being avector valued measure. By convention, we shall take

R e —N*(q®)

tomean: if 6 € L,lOC (1, q, |R|; T*Q) isthe density of measure R with respect to
its modulus measure | R| defined by Proposition 25 of the appendix, then

0(t) € —N*(g(t)) for |R|-ae.tel. (12)

Thisrequirement is easily seen to be equivalent to the requirement of the existence
of n nonpositive real measures A; such that

R=7)"7_12idgi(q(t)),

(12)
Using this convention, the final form of the equation of motion is:
R=bD¢" — f(q(). 4" (1): ) dt € =N*(q(1) (13)

3.3. The impact constitutive equation

We begin this section with an example. Consider the one-degree-of-freedom
mechanical system whose configuration space is R equipped with its canonical
Euclidean structure. The efforts mapping f vanishes identically and the unilateral
congtraint is represented by the single function ¢1(g) = ¢ so that the admissible
configuration set A isSR™. Atinitial timezg = O, weconsider aninitial state (go, vo)
such that go < 0 and vp > 0. It isreadily seen from the equation of motion (13)
that an impact necessarily occursat timer = —qo/vo. At thistime, the left velocity
is vg. But, the right velocity can take any negative value and whatever it is, it is
compatible with the equation of motion.

The reason for this indetermination lies in the phenomenological nature of the
interaction of the system with the obstacle. Thus, we are led to make the following
general hypothesis:
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— H3: the interaction of the system with the obstacle at time ¢z is completely
determined by the present configuration ¢ (¢) and the present | eft velocity ¢~ (¢).
In other words, we postulate the existence of a mapping 7 : TQ — TQ
describing the interaction of the system with the obstacle during an impact:

Vi, ¢t =F(q), ¢~ ®). (14)

To ensure compatibility with the equation of motion (13), the mapping F should
satisfy:

_ F(g.v7) e V(g),

Vq GA, Yv E_V(q), ]—'(q,v_)—v_ E—N(q) (15)
First, consider the particular case of a motion with no more than one active

constraint at any time (Vz, CardJ(¢(¢)) < 1). The normal cone N(g(¢)) is either

{0} or ahaf-line and hypothesis 73 is equivalent to postul ating the existence of an

impact function ¢ : TQ — R such that

Vi, T =470 = [1+¢(q9(0), 4 ®))]Proigw [¢7 (@) N(g@))]. (16)
Equation (16) admits the equivalent form:

gt (1) = Projg [¢70); V(g@)] = ¢ (¢(0), ¢~ @) Projgq [¢7(1); N(g@))].
17

For the general case where more than one constraint may be active at atime,
we recall the following (Moreau [11]):

Lemma4 (Moreau). Let V and N be two closed convex polar cones of a real
Hilbert space H. Then,

Vx e H, x=Projlx;V]+Projx; N] and (Proj[x; V], Projlx; N]);; = O.

As a consequence, the ‘impact congtitutive equations’ (16) and (17) still make
sense and are till equivalent when more than one constraint may be active at a
time. Therefore, it is natural to retain only the particular forms (16) and (17) of the
general impact constitutive equation (14). Asaresult of thisfurther hypothesis, the
phenomenology of the interation of the system with the obstacle during an impact
is described by the single impact function ¢ : TQ — R. The impact function
is also often called the “restitution coefficient”. Naturally, the impact function ¢
cannot be arbitrary and has to satisfy some consistency conditions. For example,
the normality condition in (15) requires

Yg.q7, ¢(q.47)=-1

But, thisis not enough, we have to impose supplementary conditions on ¢ in order
to ensure that

g~ €=V = 4" eV(g. (18)
With respect to this, we have:
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Proposition 5. Let V and N be two closed convex polar cones of a real Hilbert
space H. Consider v~ € —V such that Proj[v™; N] # 0and ¢ € R. Then,

[Vt =v" — A+ ¢)Proj[v s Nl e V] & [¢ 2 0].

Proof. For the“if” part, suppose ¢ = 0. By Lemma4, one gets
Projlv ; N]=v~ — Projlv™; V] € —V.
But,
v  =Projlv™; V1+ ¢ (—Proj[v™; N]),

and therefore, vt € V, since V isaconvex cone.
For the “only if” part, we have by hypothesis,

Proj[v™; V] — ¢Proj[v™; N] € V.
Evaluating the scalar product with Proj[v—; N] and using Lemma 4, one gets
—¢ || Proifv™; N1|)%, <0,
and therefore the desired conclusion¢ = 0. O

There results from Proposition 5, the requirement that the impact function ¢
should be nonnegative. This consistency assumption ensures that conditions (15)
and (18) will automatically be fulfilled.

At this stage, it should be underlined that hypothesis H3 implies the general
forms (16) or (17) for the impact constitutive equation only in the restrictive case
where only at most one constraint isactive at atime. In case of multipleimpacts, the
choice we made is only motivated by aesthetic considerations and also to fix ideas,
since the concept of restitution coefficient is so firmly anchored in people’s minds.
We shall discuss more completely the relevance of that choice in Section 6.4.

Now, let uslook at another example. Consider the one-degree-of-freedom dis-
cretemechanical system whose configuration spaceisR equipped withitscanonical
structure of Riemannian manifold. The efforts mapping is supposed to be constant:
f(q, ¢; t) = 2. Tothisdiscrete mechanical system, weadd the unilateral constraint
described by the single function ¢1(¢) = ¢. Thus, A = R™. The impact constitu-
tive equation is given by formula (16) where the impact function is supposed to be
the constant 1/2: ¢ = 1/2. This mechanical system is aformal description of the
physical occurence of a single particle subjected to gravity and bouncing on the
floor. Consider the initial instant 7o = 0 and the initial state (go, vo) = (—1, 0). It
isreadily seen that the function g : R™ — R~ defined by

vt e [0, 1], q(t) =12 -1,

Ve[l 2, gty =12 -3t 42,

Vie [3_2,1_14,3_2_1,1], q(t) =12+ (-6 + %)t+(3_2n_1,f) 3-4).
vVt e [3, +ool, qt)=0
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(n € N) belongsto MMA(R™; R™), satisfies the equation of motion (13) and also
theimpact congtitutive equation (16). Note, by the way, that this motion exhibitsan
infinite number of impacts on acompact time subinterval. It could easily be proved
that no motion, defined on [0, £oo[, with finite number of impact on every compact
interval can exist. Now, we are going to analyse what happens when the flow of
timeisreversed. Let usdefine ¢’ by

(10,41 > R~

q
t =gl —1).

Considering the initial state (g, vo) = (0, 0) at 7g = O, it is easily seen that ¢’
satisfies both the equation of motion and the impact constitutive equation as soon
astheimpact functionisreplaced by ¢’ = 2. But, ¢” = 0isalso seen to satisfy the
sameinitial condition, the equation of motion and theimpact constitutive equation.
To eliminate this pathological nonuniqueness, we are led to add the following
hypothesis:

— HA4: the kinetic energy of the system can not increase during an impact:

. 2 . 2
Vi, s1dTOl5, S 3ld Ol - (19)

Taking into account the impact constitutive equation (16), condition (19) can be
rewritten as

Projg [4~: V]? + ¢2Proj, [¢ 73 N]? < Proj, [¢7: V]? + Projg [47: N]%,

whichimplies ¢ < 1 as soon as Proj, [¢~; N] # 0.
Thefinal form of the impact constitutive equation is therefore:

Vi, ¢t =¢ () —[1+¢(q@). ¢~ ®)]Projgm [¢7(1); Ng®))],

where the impact function ¢ is an arbitrary function from 7' Q to [0, 1]. The two
extreme cases ¢ = 0 and ¢ = 1 are called, respectively, the completely inelastic
and the elastic impact function.

3.4. Formulation of the evolution problem

In this subsection, the results of the previous subsections are brought together
in order to formulate the resulting evolution problem which will be studied in the
subsequent sections. We add an assumption on the regularity of the data: they are
supposed to be real-analytic. This assumption will be motivated by the counterex-
amples of Section 5. The precise mathematical setting is:

— @ isananalytic Riemannian manifold of dimensiond.
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- ¢ (i=12,---,n)aen rea analytic functions defined on Q. We define

J@={ie{l,2,--,n} ¢i(q =0},
A={qeQ Vie{l,2,---,n}, ¢i(q) =0},
Vig)={veT,0 Vielq), (dei(g),v), =0},
TAT ={(q.v)eTQ geAandveV(g)},
TA” ={(g,v) eTQ; geAandve-V(g)},

N*(Q)={Zkid¢i(4); Viell@, »%z20, Viglq, i

o},
N(g) = :Zkiwi(q); YielJ(q), *»z20, VigJ(), l= 0}.

The functions ¢; are assumed to be functionally independent in the sense that

VgeA, (dgi(9)iesq islinearlyindependentin7, Q. (20)

— Theimpact function ¢ is an arbitrary function from 7A~ into [0, 1]. No regu-
larity assumption is made on ¢.

— Iisared interval and O an open neighborhood of TA™ in T Q and the efforts
mapping is supposed to be an analytic mapping from O x I into T*Q such that

V(g,v) e 0, Vtel, HZ (f(g.,v; 1) =Tlg(g,v) =q.

— Wearegivenaninitial timerg in I suchthat I contains aright neighborhood of
to and an initial state (g, vo) iNTA™.

According to the previous subsections, the evolution problem associated with
the dynamics of discrete mechanical systemswith perfect unilateral constraintscan
be formulated as:

Problem P:. findT e lU {400}, T > tgandqg € MMA([to, T[; Q) such that:

* (q(t0), ¢*(10)) = (qo, v0), (22)
eVie(nT[ (q().47() eTAT, (22)
e R=0D¢" — f(q,4%;1) dt € —N*(q) for |R|-ae.t € [to, T[, (23)
oVielo, T[, ¢ =¢~ —[1+¢(g,¢7)]Projg [¢7; N(@)], (24)

where equation (23) is to be understood in the sense of convention (11).

The existence and uniqueness of solutions for problem P will be studied in
Section 4. Before studying this question, let us state two almost obvious results.

Proposition 6. Any solution (T, g) of problem P satisfies:
— SUppR C {t €10, T[;q(t) € 9A}.
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— For all open subinterval J of [zg, T'[ such that ¢(J) CIZ, q); isanalytic and

Dq(1)
dt

b = f(q®),q();t), Vtel.

Proof. Let J bean open subinterva of [7g, T'[ suchthat ¢ (J) C/ci. By equality (9),
we have

VteldJ, N*@g(t)) ={0}.

As a consequence of relation (23) and convention (11), we get:

VoeCl(J.q:TQ). /J(w(t),qu(t) =0,

whichis Rj; = 0or Supp R C [0, T[\J. Thefirst item of Proposition 6 follows.
We have

bDG; = f(q.4%; 0 dt,
which s,
Dy =to f(g.¢ 50 d1.
Proposition 28 shows that qﬁ, islocally absolutely continuous, and, therefore,

Vield, ¢ =¢ 1) =4,
by Proposition 32. We get

D§ D" .
b—=b—— = ,q;1), fordr-aerel,
T T flg,q:1)

again by Proposition 28. The conclusion follows by use of classical results on
ordinary differential equations. O

Proposition 7 (Energy inequality). Any solution (7', ¢) of problem P satisfies the
following

Vi, t2 € [to, T[, 1 1o,

K (¢(2), 47 (1)) — K (q(00). 47 (0) = 3 ¥ )2, — 3 [dT @]
2

(f (20, ¢T();5), 4T () g ds.

2
q(11)

=

T

1
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Proof. We have the following equality between real measures:

e L
<M,Dq+> =<M,f(q<r>,q+<r>;t)> di
q(0)

2 2 q(1)

.+ C—
+<q NH+4q (t),R> .
2 40

Integrating over |1, r2] and using Propositions 30 and 32, we get
1 - 2 1 - 2
2l @y, — 2 1aT w5,

3 GO +4q 0 . > J
- /]tl,zz]< 2 ,f(q(t),q (I)J) ' (25)

q()
-+ L
L),
]r,12] 2 q

gt +4- @)
2

Consider
D= {t €l 12]; #é*(t)};
D is (at most) countable and therefore L ebesgue-negligible. Theresult is

- .
/D<M,f (q(t),é+(t);t)> dr =0.

2 q()
Similarly,
.+ —"_ L—
/ <L2q(” Fa@,q+ o r)> di
11,221\ D q(t)

7]
= [t . s @@ dt@s),, dr

n

Let us denote by 6 the density of measure R with respect to its modulus
measure | R| provided by Proposition 26. Since

PO +q" 1) _

Vit elty, 2]\ D, 5

gt =4,

we get

MOET N0, :
/ <% dR> = / G (1. 0k (1)), ) dIR]
1t1,02\D q(®) It1,02]\D

= 77 (1),0 d|R|. (26
fmmw(q (1), 6r (D), ) d |R]. (26)

But

Or(t) € —=N*(q(t)) for |R|-ae.t €]t1, 2]\ D,
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and therefore the second integral in (26) is nonnegative whereas the third is non-
positive since V (¢ (¢t) and N*(¢(¢)) are polar cones. As a consequence:

~+ L—
/ <M J R> _o.
Jr1,021\D 2 ()

The following integral,

/<‘?+(’)+q_(’),d1e> :/ <q+(r>+q‘—<r>7Dq.+>
D 2 a0 Jp 2 a(0)

1 ) .
= > 2 (latolk, -l ol,).

teD

is nonpositive by virtue of hypothesis 4.
The proposition results from equation (25) and from the estimation of these
four integrals. O

4. Existence and uniqueness of solutionsfor problem P

This section is devoted to proving existence and uniqueness of a maximal so-
lution for problem P. Sufficient conditions to ensure that this maximal solution
is defined for al time are also given. More precisely, we are going to prove the
following results.

Theorem 8. There is local existence and uniqueness of solution of problem P in
the sense that:

— Thereexistsa solution (7, ¢) of problemP. Actually, thereexists T > 1o and an
analytic function g : [t9, T[— Q which isa solution of problem P.
— If (T1, q1) and (T2, g2) are two solutions of problem P, then

AT, 1o < T < min{Ty, 1>}, q1[10. T = 42|[10.T[ -

Then, astandard argument yields:

Corollary 9. Problem P admits a unique maximal solution (7;,, ¢.,) (to < T,y <
+o00) inthe sensethat if (T, ¢) denotes an arbitrary solution of problem P, then

T=Tn and q=qm.7[-

Moreover, for each ¢ € [#o, T,,[, there exists a right neighborhood [z, # + 5[ of ¢
such that the restriction of g, to [¢, ¢t + n[ isanalytic.

We shall say that the maximal solution of problem P is globa if it is defined on
I N [tg, +o0l.
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Theorem 10. Assume that the configuration space Q is a complete Riemannian
manifold and that the efforts mapping f admits the estimate:

Y(q,v) € TAY, fordt-aetelN]ty,+ool,
If(g.v:n)ll, £ 1) (1+d(g.q0) + llvll,) .

wherel(t) isa (necessarily nonnegative) function of Llloc(R; R). Then, the maximal
solution of problem P isglobal.

Let us say aword about how the proof of these resultsis going to be structured.
First, we construct 7, > g and an analytic function g, : [7, T,[— Q such that
(T4, q4) isasolution of problem P: thisisthe object of Section 4.1. In Section 4.2,
weprovethat if g € MMA ([7o, T[; Q) isany other solution, then g and ¢, coincide
identically on aright neighborhood of 7. Thisisthe most difficult part to prove but
it isalso the crucial one. For the proof of Theorem 10, we first notice that for g
MMA([r0, T[; Q) (T finite) satisfying the equation of motion (23), boundedness
of ¢ impliesfiniteness of Var (¢*; [0, T[): thisis the object of Proposition 18 of
Section 4.3. Note that the impact constitutive equation (24) plays no role in this
property. Then, Theorem 10 is deduced from the energy inequality (Proposition 7)
and the Gronwall-Bellman lemma.

In the proof of these results, we shall use the following notation. If J is any
subset of {1, 2, --- , n}, Gram(J) will be the Gram matrix:

Gram(J) = | -+ (Vei(q0). V;(q0),, -

i,jeJ
If x isan arbitrary element of R/ whose componentsare x; withi € J, then (x;); <
will denote the columm matrix,

(Xi)ies = | Xi )
iel
and 7(x;);c, the associated row matrix,

T(-xi)ie.] — ( X; “-)iEJ .

4.1. Proof of local existence

Local existenceis rather easy to provein the setting of analytic data. The proof
is a little bit lengthy but involves no specific difficulty. We begin with technical
lemmas.

Let X (r) be a C*> vector field along a C* curve ¢(¢) on Q. The covariant
derivative d—DtX(t) of X along ¢ defines a C* vector field adong ¢. So, one may

consider its covariant derivative along ¢ which will be denoted by %X (1). By
induction, we get the definition of D—t',.X () (i € N*). We have:
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Lemma 11. Let X be a C™ vector field on Q and ¢', ¢"' two C> curves on Q.
With m being a nonnegative integer, one assumes that

¢'(0) = ¢" (1), §'(t0) = 4" (10),

and

Iy
Vie{l,2 - ,m}, — ”t
i€fl,2 m} dt,q(o) 24 ().

Then,

. D D I
Proof. Consider alocal chart at ¢'(r0) = ¢'(10). If ¢(¢) iseither ¢' (1) or ¢" (¢):

q(1) =4'Dei(q®),
X(q(®) = X' (g)ei(q®)),

D N ,- o
X)) = [(vx @0).40) 4+ T@O)x (q(t))qkm} (g ().
Then,

DX@w) = [(BVX @), 40, + (VX @), B0,
+ (Vg dm) X @it
+Tilg () (VX (q(r)) q‘(r))q(t)c;ku)

+ T @)X (1) ((Dq(”) - F,"m(qa))q’(r)qm(t))
+ T (g() (2E2) (r)} ei(g(1).

which gives the desired conclusion for the case m = 1. For arbitrary m, an easy
induction based onthe sametypeof computationinalocal chart showsthe existence
of functions ; : (T'Q)'~1 — T Q independent of the considered curve ¢(¢) and
such that

D"X(q(t))

Dq(r) D714 (t))
dt? '

( .4, g

Exactly the same technique applies to prove

Lemmal2. LetX : TQ x I — T Q aC* mapping suchthat: Iy (X (g, v; 1)) =
MMp(q, v) = q,where I denotesareal interval containing fo. Let m bean arbitrary
nonnegative integer and ¢', ¢"' two C* curves on Q such that

¢'t0) = ¢" (1), ¢'(t0) = 4" (t0),
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and
D' D'
Vi e 1,2,"', , —.‘It =—.‘”[ .
i €f m} 7,79 (10) = =747 (o)
Then,
i

D D!
vieL2 .m) X (q'(0).4'(0):10) = —X (4" 0). 4" t0): 10)

Lemma 13. Consider (gg, vg) € TA* and J C J(go) an arbitrary subset of

{i € J(q0); (dgi(g0), v0)go = O}

We denote by ¢, and g. some local solutions of problems:

2w — f(qu, qus 1),

(qu(t0), Gu(t0)) = (g0, v0),

DB = f(qe. Gei 1)+ Yie s go) M (D1 ),
Viel ¢i(g)=0,

VieJ@o)\J () =0,

(gc(0), g (t0)) = (qo, Vo),

Eu

e

furnished respectively by the Cauchy-Lipschitz theorem and Proposition 3. Then,
d? d?
Gram(J (o)) (Ai(10))ies(qo) = | 73%i(@c(t0)) — =i (qu(10)) .
dt dt ieJ(qo)

Morover, if
di
AdmeN*, Vi=0,1,---,m—1, VjeJ(qo), 77 j(t0) =0,
then

m

Gram(J (qo)) (dtm )»i(lo))
i€eJ(qo)

( m—+2 m—+2
= -—5%i(q:(t0) — ——5%i(q (to))> .
dpm+27e dpm+2 7 ieJ(qo)

Proof. First, from
(94 (t0), qu(t0)) = (gc(t0), 4 (t0)) = (qo, Vo),

it follows that

) D D
Vi€ J(qo), —-Veilqulto) = —=Vei(ge (o)),
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on one hand, and
D D
—dulto) = —delto) = = Y Xi(10)Vei(qo),
ieJ(qo0)

on the other hand. Therefore, for all i € J(go),

d? d?
a2Y (qc(0) — 7729 (qu(t0))

D
(d_ Vi (qc(10)), vo) (prz (gc(10)), qc(to)>
t q0

q0

D D
- (E Vi (qu(to)), vo) (V% (qu(t0)), qu (to))

40

Y %i(0) (Vei(q0). Vei(q0)),,

j€J(qo)

40

which is the announced result.
Second, assume that

di
VjEJ(QO)’ Vi:ovls"'sm_lv FA‘ (to)
An easy induction based on Lemmas 11 and 12 gives, forali =1,2,--- , m,

i

D!
—qu(to) = QC (t0),

dti
m—+1 Dm+l dm
1 dul0) = g elio) = Y0 -0 Ve (o),

Jj€J(q0)
and,

i i

D D
VjeJ(o), Vi=12---,m+1 27 Vi (@u(0) = 5V 9;(ge(t0))-

Therefore, Vi € J(qo),

m—+2 m+2
¥ (gc(10)) — AL (qu(t0))

dm
= D 4 (V0i(q), Vej (), ©

J€J(qo0)

Proposition 14. Considering the data of problem P, we denote by P’ thefollowing
evolution problem.
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ProblemP’: findT € I (T > tg),ananalyticcurvegq : [to, T[— Q andn analytic
functions A; : [tg, T[— R such that:

e viclo Tl 21 = g0, 400 + Y kwdatao,
i=1

o yiElel i Se e S0 KWeg) =0

o (q(t0), q(t0)) = (g0, vo)

Then, problem P’ admitsa solution (T, g, A1, - - - , A,,) Uniquein the sense that any
other solutioniseither arestriction or an analytic extension of (7', g, A1, -+ , An).

Proof. First, let us state, once and for all, that the meaning of an analytic function
on anot necessarily open set S isthat there is an analytic extension to an open set
O containing S.

Sep 1. Construction of some functions g and ;.
Define

Jo={ie{l,2,---,n} ¢i(qgo) =0 and(dg;(qo), vo)g = O},

and Ip = Ko = . We denote by ¢ asolution of the Cauchy problem:

cw [PPE = Fa@. 4@,
(4(19.(10) = (g0, 0).

Define
c® = {0} eR® VielJy, <0 andVie Ko, A} =0} = (R7)”,

cO' = () eR"Viely, pf=0 andVieJo, uf <0} =(R")".

Let ( (1)) € CD be the solution of the variational inequality
iedo

v (1), ec®,

ielo

d?
T(, x_ 5@ >T @
(Ai )iEJOGram(Jo) (Al A; ) = < dz%(é] (to)))

(=)
ieJo ieJo

furnished by the Lions-Stampacchia theorem (see [9]). Let (ufl)). L€ c® pe
AS
defined by °

ieJo

() =Gramo (xV)  + 2 o a®(0) (27)
i Jiedo i Jiedo dr2™ ’

iedo
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and I1, J1, K1 by
n=rhuliek i <0 adu®=o,
n=lien »P=0 adu® =0,
Ki=Koulieso V=0 andu® <o}.

Now suppose g™, (kf”)), (Mf”) ) I,., J, and K, are constructed. Then, ¢+
is defined to be alocal solution of the Cauchy problem:

Dq . i) (t—tg)/ 1
D) {b% = F@@, 4@ D+ Xjep Tioa m e (g (1)),

(q(t0), 4(t0)) = (qo, vo).

C(”+l)={(kf)eRJ° Vied, A

1

<0, andVi e K, Aj-‘:O},
co = () e R Viel, uf=0 adViel, uf<0}.

AIso(AE"H)). L€ C "+ jsdefined to bethe sol ution of thevariational inequality
ieJo

v (4)ieg € €Y,

T()L(n+l)) Gram(Jo) (/\;ﬁ _ /\gn+1)>
J ielo ! ielo

T d"t2 (n+1) (n+1)
> —=— i (g (,\* — ! ) ,
= ( AL (o)))iEJ0 R ieto

(Mg"w) e C"*+D' s defined by
ieJo

L 1 dn+2
('U“’@+ >)i€Jo = Gram(Jo) (}L’(H ))iEJo + <dtn+2‘p" (¢ (t0)) ’

ielo

and I, 11, Juy1, Knya by
a=hufied, A" <0 adu =0},
ha=licd 2™ =0 andu =of,
Kni=KUliedy 2" =0 andu™? <o}

Thus, the sequences g™, (kﬁ”))ido, (/LE"))iEJO, I,,, J, and K,, are defined by
induction for n € N* and for all n inN*, I, J,,, K,, isapartition of Jo. Moreover,
one has:

I, C I41,
vneN, J,41CJy,
K, C Ky11.
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Define

o o0 o0
1=U1,,, J:ﬂJn, K:UK,,.
n=0 n=0 n=0

It isreadily seenthat 7, J, K form a partition of Jo. We denote by (g, (A;)ier) @
local solution of the evolution problem

b 290 — (g(1), 4(1); 1) + Yyep Mi(Ddei (1)),
CiViel, ¢i(g®) =0,
(g (t0), 4(t0)) = (qo, vo),

furnished by Proposition 3. The functions ¢ and A; are analytic. For any i in
{1,2,---,n}\ I, thefunctions A; are defined to be the identically vanishing func-
tion:

Vie{l,2,---,n}\I, » =0.

Sep 2. We have:
. . d' i+1)
Vjeldog, VieN, E ](IO)Z)\.j s
) ) dit2 g
V] e Jo, VieN, W(pj(q(to)) — H’j('l+ ),

Indeed, applying Lemma 13 to Cauchy problemsCY and C yields, thanks to equa-
tion (27),

d2
@O« _ @D _ .
(Mj 272%i (Q(to))>jej(J Gram(Jo) (k, Aj (t0)>je/o'
But, by definition of 1,

Iy CICJo\Ki,

and so,
Viel n = j—;w(q(ro)) =0,
Viedh\l 2 =2k0)=0.
Therefore,
(™ =3 (to))jejo Gram(Jo) (#¥ ~ ; (ro))jej0 =0,

and the conclusion followsfor i = O, sincethe Gram matrix is positive definite. For
i > 1, we only have to apply successively lemma 13 to Cauchy problems ¢¢+9
and C.

Sep 3. The functions ¢ and A; define a solution of problem 7.
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By construction of the real numbers Afj ) and ,u}j ) and by step 2, we have:

Viel, 3n;eN, d:nli)q(to)<0 andVn < n;, %,\i(m):o,
and,
n; n
VieK, dn; 22, FI 9i(q(to)) <0 and Vn <n;, ﬁfpi(q(to)) =0,

n

d
Vie Jo\K, VneN, Wgoi(q(to))=0-

Each function 2, () and ¢; (¢ (¢)) being rea-analytic, there results:
Ja >0, Vieltoto+af, Vieldy, A@) =0, andei(g()) <0.
Actually, o > 0isassumed to be sufficiently small to ensure:
Vie{l,2,---,n}\ Jo, Vte€lo, to+al, ¢i(gt) <O,

which is possible simply by continuity.
Now, it iseasily seen that (to +a,q, (A)ien2, ,,,}) definesasolution of prob-
lemP’.

Sep 4. Uniqueness part of the proposition.

By the Cauchy-Lipshitz theorem, ¢ is uniquely determined by the functions 2
(j =1,2,---,n). Being analytic, these functions A; are uniquely determined by
the collection of real numbersd’x;(t0)/dt’, (i € N, j € {1,2, -+, n}). Therefore,
to prove uniqueness, one has only to show that these real numbers are determined
by the data of the evolution problem.

Consider an arbitrary analytic solution (7', g, A1, - - - , A,) of problem P’. A
repeated use of Lemma 13, similar to the one of Step 2 yields:

i

. . d -
VJ e Jo, VieN, WAJ(IO) = )»](}Jr )

Moreover,

. , d!
VJ 6{172? ,l’l}\JO, Vi €N7 E)"](IO)ZO’
and the conclusion follows. 0O

Proof of the local existence part of Theorem 8. Let (7, qq, A%, -+, A7) bean
analytic solution of problem P’. It is readily seen that (7, q,) isaloca solution
of problemP. 0O
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4.2. Proof of local uniqueness

Local uniqueness is the most difficult part of Theorem 8. First, we recall a
standart result:

Lemma 15 (Gronwall-Bellman). Consider two functionsmy € BV ([0, T]; R) and
m> € L1(0, T; R) such that

foraer €]0, T[, ma() = 0.
Let ¢ € BV ([0, T]; R) such that
t
Viel0.T], ¢()<mi()+ / ma(s)$ (s) ds.
0

Then,

4 t
Vie[0,Tl, &) < ma(r) + / mi(syma(s)ehs @47 g,
0

We have the following corollary of the Gronwall-Bellman lemma:

Lemma 16. Let m be a nonnegative integer, and ¢ : [0, T] — R an integrable
function. If ¢ : [0, T] — R isany absolutely continuous function such that ¢ (1) =
o(t"*+1) when 1 tends towards 0 and such that there exists a nonnegative real
constant C such that
d
for dr-a.e.t €10, T, () SA4+m+CHe@) + "2y @),

then,

t
Ve[0Tl ¢() < im el / S(s)e=C ds.
0

Proof. Thisisamost obvious. Dividing each member of the inequality by "*2,
we obtain:

d (¢@) ¢ (1)
fordt-ae. t €10, T|, 7 <W> < CW + P (1).
After integration, the Gronwall-Bellman lemmayyields:

e o0 _ [ e [
€]0, T, P A v(s)ds + A Ce A Y(o)do ds.

Then, an integration by part gives the desired conclusion. O
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Proof of the local uniqueness part of Theorem 8. Consider, on one hand, the
analytic solution (7, ¢4, A}l, .-+, A%y of problem P supplied by Proposition 14,
and on the other hand, an arbitrary solution (7', g) of problem P. We have to prove
that ¢ and ¢, identically coincide on aright neighborhood of 7.

Sep 1. Parametrization of the problem and notations.

Consider alocal chart v : U ¢ Q — R? on Q centered at o such that the
cardJ (qo) first components of y(g) are (¢i(g))ic;(q,)- Recal that such a chart
exists since (dg; (90))ies(q0) is linearly independent in T(;;)Q. We choose o > 0,
sufficiently small to have:

eVt et to+al, g.t) eU, q) €U, (28)

d
e Vie J(qo), Vi€t to+al, E‘Pi(%(t)) = (d¢i(qa(t)); Ga())g,) = O

Such a choice for « is possible because:

— thefunctions g, (t) and ¢; (¢, (t)) arerea analytic,
— thefunctions ¢ (¢) and ¢; (¢ (¢)) are continuous.

We denote by f; the components of f in the natural basis (e') associated with the
chart under consideration. Since ¢, isan analytic loca solution of problem P, we
have

Vie{laz?.”9d}5 VSE[IOJO‘F“]’
{80 (i + T @0dkds) = i a9} =20, (29)

after appropriate renumbering of the functions A’ In what follows, do will stand
for cardJ (go). Theresult of these choiceis that

Vi > dp, Ao=0.

a

We denote by |.| the standard Euclidean norm on R¢. Confusing (abusively) ¢ and
¥(q), we shall write

d

lq1? = Z(Cf)z,

i=1
and
d

|q+|2 _ Z (q+i>2_

i=1
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Sep 2. There exists some positive real constants C1 and Cz such that the following
estimate:

! 2
Vit € [to, o+ al, /(Iq—qalz(s)+|c]+—4a| (s))ds

10
1 t s do ) )

- / £C21=9) / Z,\;(a)q+l(o)dads. (30)
Cl to 1

0 j=1

A

holds.
To prove this assertion, we first write the equation of motion (23) in the chart
under consideration using Proposition 29:

Viel{l 2,---,d}, Vtelt to+al,
. do
gij(q) (dc]*’ + inz(q)c}“‘é*’dt) = filq.q i dt + " 8iju;.
j=1

wherethe 1; are nonpositive real measures. But, by Propositions 29 and 30,

d (% (4% = db) suita) (477 - qz))

g +gtt .
= <T - qé,) 8ii(q) ( — Gl dt + T ()¢ ** ( i qﬁ,) dt) :

Therefore,

d (; (4% - db) g (a7 - 4!;))

= (c}” —éé)ﬁ(q,cﬁ;t)dt—( —%) 8ij(q) (qa + T (gt ’)dr
+Z( 44" —%)M
But,
Vje{l2,---.,do}, 3Jied(qo) VYrtelto to+al,
HOE %wxqa(r» <0

by formulae (28), and,
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which is a nonpositive real measure by Proposition 7. Therefore,

(G- @)
< (0% —ap) fita.a*s0 = (67 = ai) g (@l + Tl @d™ay) ) ar,

in the sense of ordering of real measures. Integrating over ¢, t] (¢ € [0, o + «]),
we get

1

5 (6?+i - 11)1) gij (@) (ffrj - 615)
<

< / (1 =db) g 90— (47 =) @) (il + Tl ) ) ds.
0

The term within the integral sign is an analytic function of the three variables ¢,

g* and s. Therefore, it is also an analytic function of the three variables ¢ — g,
gt — g, ands. Itiswrittenin the form

<é+i - qlll) Fi(q — qa, é+ - q.a; s).
But, each function F; can be decomposed in the following manner:
Fi(g = qa: 4" = 4as$) = Fi(0,0;5) + Gi(q — qa, 4+ = Gus 9),

where the G; are analytic and G, (0, 0; s) = 0. Hence, there exist d positive con-
stants M; such that, for all s € [rg, 10 + «],

|Gi(q()=qa(s), 4+ (s)=qa(s): 5)| < Mi\/|‘](s) — 4P+ g+ () — Ga(s)|*.

Defining M to be the maximum of the constants M;, we have proved that, for al
t € [fo, 10 + ],

3 (a4 —ab) st (477 - dd)

<

[ . .
/ {(‘?_H - qul) (fi(‘laa da; §) — gij(‘]a) <qu + F/{](Qa)éﬁéfz))
fo
. . . .2
+Md |Gt — §a| \/Iq —qal®+ |47 — 4a| }ds.

Moreover, by a compactness argument,

3C1 >0, Vteln tg+al,

2

’

3 (4 —db) g @ (4% —dd) = Cald* —da
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and therefore, for all ¢ € [1g, 10 + «],

lqt () — ga ]
L[ (c}“ - CL',) (fi(qa,éa; s) — 8ij(qa) (qa +T l(qa)qaqa))d

< =
=G
d (! . ) . .2
—/ |q+—qa|\/lq—qa|2+ gt — ga|"ds.
10
Moreover, by use of the Cauchy-Schwartz inequality,

t
Vieloo+al, 1g() —qun) < a/ 147 (5) — da()| ds.
fo

We obtain, for dll ¢ € [rg, 10 + «],
) .2
g — qal® @) + g+ = da]” @®)
Md ! 2
< kel _ 2 .4 A
(C +a>fm (14— aaP )+ d* — dul* ©)) ds

- 1

¢t do
(31

e o) (7 = db) ds,

where formulae (29) have been used. We define

Notice that, actually
Vie{l,2---,do}, igq. =0,

and, so, by the analyticity of functions ¢, and !,
Vie(l,2---,do}, Mgl =

Multiplying both terms of inequality (31) by e~? and integrating, we get

0.

! 2
/ (Ig — 4o +1d* — dal* ) ds
fo
do
< - / Calt=s) Z)J’ (0)¢t (o) do ds,

0 j=1

foral ¢ € [ro, to + ], which is nothing but estimate (30).
Step 3. Estimate (30) implies that the function ¢ +— Zdo AL (g™ (¢) vanishes

identically on a right neighborhood of 7.
Indeed, by estimate (30),

t s do
Yt € [, o+ al, / e / Z A (@)g T (0)dods <0,
o 0 j—1
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which is, after integration by parts,

' d t s do
e Trodwas [ [ 3 doleds @
to i=1 o =1

But, since,
Vle{lazy”.9d0}’ VSE[IOJO‘FW]’ A';(S)éo and ql(s)§0,

the two members of inequality (32) are nonnegative and, therefore, the inequality
is preserved when taking the absolute value of each member. We get:

Vi€ [to, 10+l

¢ do t s do
[ Lrodwas [ [V ldo]fie] s
fo i=1 fo o j—1
tops do ..
g/ / ¢~ C20 Z ql(o')‘ AIH(U)’ dods.
fo Jto i=1

We define
Q' (s) = —e~2Hgi (s 4 19),
L'(s) = —Al (s + to).

With this notation, we obtain:

¢ do

t s do
Vi el0,al, /ZL"(s)Ql'(s)dsgf / Z)L”'(s)‘g"(s)dads, (33)
0321 00 ;=1

where the L’ are nonnegative real-analytic functions and the Q' are nonnegative
continuous functions which al vanish at + = 0 and which are differentiable at the
origin. We are going to prove that inequality (33) implies that

3B €l0,a]l, Vre[0,al, Vie{l 2 ---,do}, L'(t)Q'(r)=0.

The functions L’ being nonnegative real-analytic, there exist nonnegative integers
N1 <N2 < -+ <Ny, apartition I, Ip, .-, I,0f {1,2,---, dp}, and nonnegative
real-analytic functions G' such that

Vke{l,2,---,m}), Viel, Li(s)=s"*G\s),
with either G'(0) > O or G = 0. Inequality (33) may be rewritten as:
t m
Vit e [0, al, / Y>> 0™G ()0 (0)do
0

k=liely

t ps M
< / / Zano""flGi(o)Qi(a)dG ds
0 JO

k=1iely

gy »E

0 k=liely

Gi(a)‘ 0'(6)do ds.
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But, by the analyticity of the functions G¢,
38>0, 3IN>0, Vielg), Yoecl0 8] ‘Gi(o)) < NG (0).

Therefore, for all ¢ € [0, 8],

/Ot 3 Y 0" G )0 (0 da < | ' [ 33 oG 0) 0 (o) do ds

k=1iely k=liely

t ps M
+Nt/f 2> o™ G (0)Q (o) do ds.
0J0

k=liely
Integrating by parts the left member of the inequality, we aobtain, for all ¢ € [0, 8],

t m

t/ > o™ G (0)Q (o) do
0

k=1liely
t s m
é/ / DY u+ Do™ G (0) Q' (0) do ds
0 JO

k=liely

s m

t
+sz / D> o™ G (0)Q (o) dods.  (34)
0 Jo

k=liel;

Since each function G (¢) Q' (o) /o is bounded over [0, B8], there exists a nonneg-
ativerea constant H such that

Vke{l,2---,m}, Vtel0 Al
t s . .
f / Za"k—lc'(a)Q'(a)dads < HwH2,
0 JO

iel
Inequality (34) gives
t
z/ > o"71G (0) Q' (0) do
0 jen

t ps
< (1+n1+Nt)f / Zo"l_lG’(o)Q’(a) do ds + Hyt"22,
0 JO

ielp

for al ¢ € [0, B], where H1 is anon negative real constant. As a conseguence of
Lemma 16, we obtain

t s
/ / Zo"l—lG"(a)Qi(a)da ds = 0(t"21?).
0 Jo

el
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Coming back to inequality (34), we get, for adl r € [0, 8],
t/ > oG (0) Q' (0) do
0 k=tlier

t S 2 . .
< (1 +na+ Nt) / f >3 0™ 1GH(0) Q' (0) do ds + Hat" 2.
0 Jo

k=1liely
Applying once more Lemma 16, we obtain
t ps 2 _ '
/ / ZZU""_lG'(U)Q’ (0)do ds = O(1"¥?).
0 J0 \Thier
Proceeding inductively, we obtain
t psm—1 ) )
/ / ) oG (0)Q () do ds = 0" ).
0J0 y—1iel
But, by inequality (34), for al r € [0, 8],

t /t D> oG (0)Q (o) do
0

k=1iely

t s m
< A+ np +Nt)[ / Zzo"k—lcf(a)gf(o)da ds.
0 Jo

k=liely

Using Lemma 16 for the last time, we get

t s m
Vi e [0, B, / / Zza”k—lcf(a)gi(a)do ds =0,
0 JO

k=liely
which implies

Vie{l,2--,do}, Ytel0,pl, G1)Q'(t)=0,
which is nothing but

Vie{l,2--,do}, Ytelwnto+pl, Ar)g' () =0.
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But, the analyticity of the functions A/ implies
Vie(l,2---,do}, Vteltwto+pBl, A(0)¢™ (o) =0,

and the assertion of Step 3is proved.

Sep 4. Conclusion of the proof of local uniqueness. Bringing together the results
of Steps 2 and 3, we get:

t

Vi€ lo. 10+ B, /(|q—qa|2(s>+!q‘+—qa|2(s))dsgo,

fo

which gives the desired conclusion;

Vieln to+Bl, q@) =q.0). o

4.3. Global solutions: proof of Theorem 10

First, we recall a classical lemma whose proof may be found, for example, in
[5, p. 157].

Lemma 17. Let m bein L1(0, T; R) such that m(r) > O for almost all # in 10, T'[
and a be areal nonnegative constant. Consider ¢ € BV ([0, T']; R) such that

t
Vie[0,T], 3¢%(1t) < 3a®+ / m(s)¢(s)ds,
0

then

t

Vtel0, T], lop@®)| Za +/ m(s)ds.
0

Proposition 18. The Riemannian manifold Q isassumedto becomplete. Let (7', g)
be a solution of problem P such that:

-T e; (and, in particular, T # +00),
- |’c]+(t)Hq(t) is bounded:

IV, Vel TL ¢t ®],, = Vi

Then ¢* has bounded variation over [z, T'[:

Var (cf'; [to, T[) < 00.

Proof. We denote by d the distance function associated with the metric space Q.
Since,



236 PATRICK BALLARD

—V%wﬂwﬂ,néw,dmmﬂ@Défﬂfww

S1
- VYoeln. Tl [T @], .\ < Va,
— Qiscomplete,

we deduce that lim,_, 7- ¢(¢) existsin Q. It is denoted by

q(o)

q(o) =

gr = lim q(1).
t—>T-

Let (U, ) bealoca chart a g7 on Q such that the cardJ (¢7) first components
of ¥(¢) inR? are (¢; (9))ieJ(qr)- Consider acompact neighborhood K of g7 in O
such that

- KcCU,
- VqgeK, J(g CJgr).

We define
to=min{r €0, T[ Vselt,T[, q(s) € K}.
Since [1o, 1] is compact, we have
Var (¢ [t0. 15]) < oo.
Therefore, it remains only to prove:
Var (q'+; 179 T[) < 00.

Here, ™ and A™" will denote the maximum and the minimum of , respectively,
the greatest and least eigenvalue of the matrix (g;;(¢)) , When g wanders
in K. With this notation, we obtain immediately:

I&ﬂqUDQ*KOI§~Um“VM,

i,j=1,2,-

Vie{l,2,---,d}, VtelTl, (35)

o) < ﬁm

We denote by B, (0, V,,) the closed ball of T, Q with radius V,,, and centered at the
origin. Considering the following compact subset K’ of T Q,

= B4(0. Vi),

qgeK

we define the following nonnegative real constant,

F= max max [ fi(g,v; )],
i€{l.2,.d} (q.v:i)eK'x[t},T] fita

and

G = max max
i,j.ke(l,2,.d} qekK

0gij(q)
gk |’
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Writing inclusion (23) in the local chart (U, ), we obtain:
Vie (1.2 .d), gi(@ (dd™ + T @dtat dr) = fiq.qi 0 dr+ o,

wherethe 1; are d nonpositive real measures on Jz; T'[. Expressing the Christoffel
symbolsin terms of the metric, we have

Vie{l,2,---,d},

glj(q) k 188kl(‘1) k-4l
dg +J +/ +k g — 5+ + dt
glj(q) + —— aq q 2 3’ —q
= fi(g, ") dt + 5, (36)
or, equivalently,
Vie{l,2,---,d},

iy 19gr(q)
d(gij(q)q“) > ga D G+ dr + fi(q, g0 di+h. (37

We deduce:
Vi€{1727.” 9d}5 Vsl9s2€[t67T[7 §1 < 82,

/] ] (=) = 8ij(q(s1)q T (s1) — &ij(q(s2)¢ ™ (s2)
51,82

52 10gu(q)
+/ (ﬁ(q,q 0+ 5= =gt gt ) ar
51

2)\‘mln

2 2
< 2vhmaxy, 4 (F + 4GV, ) (s2 — 51). (38)

Theresultisthat the A; ared bounded measureson |z, 7'[. Thanksto equation (36),
it is readily seen that the measures dg* are also bounded measures on 126, Tl
Therefore, thed functionsg ™ ;1. T[— R havebounded variation over theinterval
175, T|[. By Proposition 29, we have the result that ¢ has also bounded variation
over It5, T[. O

Proof of Theorem 10. We assume that the maximal solution ¢ of problem P is

defined on [fg, T[ with T in i) and try to obtain contradiction. By Proposition 7, this
maximal solution satisfies:

t
Vi€l T, %I!c)*(r)llit)—%nvonﬁog / (f(q($), 41 ()1 ), 47 ())g(s)ds.
to

Thus,
Vtel Tl

t
Hlat @2, < $ vl f | f@(s).aF i, laT 6], ds
fo
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By Lemma 17, we obtain

t
Vielo. TL [¢7 0,4 = llvollg + /!!f(q(S),é+(S);S)Hq(s)ds
fo

which gives, using the hypothesis of the theorem,
Vit € [to, T,

[+ @], = lvollyy + / 1) (14 d (). 90 + [4¥ )] ) ds.
But,

Vielwn. T dq@), qo><f la ™), ds.

therefore, for dl ¢ € [ro, T,
d(q(0), 90 + |4+ ®]

< ol + [ 15)ds + / A+16) (da(s). o) + |47, ) s

By the Gronwall-Bellman lemma (Lemma 15), we get:
Vit e ln, T,
t ¢ ) )
d(q®), q0) + [¢T @], (||U0||q0+ /0 l(s)ds) oHENds,

which shows that the function ¢ — Hc}"’(l)”q(t) is bounded over [fo, T[. By the
completeness of Q, we deduce, on one hand that

gr = lim q(?)
t—T~

existsin Q and, on the other hand, that

Var (¢ [0, T[) < oo,
thanks to Proposition 18. Thus,

(gr.vp) = lim (g(). 4" (1) existsinT Q.

t—>T-

Define
vr = vy — [1+ ¢(qr, v7)] Projg, [v7: N(gr)].

Then, Theorem 8 furnishes T’ € I with T’ > T and aprolongation of g on [T, T'[
suchthatg e MM A ([to, T'[; Q) isasolution of problem P. But, this contradicts
the definitionof 7. 0O
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5. Three counterexamples

The existence and uniqueness of solution for problem P has been proved under
the assumption of functional independence for the constraint and of analyticity for
the data. The three examples which are developed in this section aim at showing
that these assumptions cannot be weakened very much. In Example 1, we show that,
in the case where the functional independence of the constraints does not hold, the
existence of solution may be lost. For the question of the regularity assumptionson
the data, the existence of solution can be proved with much weaker assumptions.
However, the uniqueness of solutions is generally lost in such a case as seen in
Examples 2 and 3. In these examples, the data are supposed to have only regularity
C* and two different solutions can be exhibited.

Examplelisextracted from Moreau [12] and Example2isdueto SCHATZMAN
[18], but an earlier counterexamplein the same spirit isalso to befound in BREssaN
[4].

5.1. Example 1

Consider adiscrete mechanical system whose configuration spaceis Euclidean
RR3. The unilateral constraints are kinematically described by the three following
functions (n = 3):

o1(q) = —q*,

02(9) = ¢* — ¢4%.4°,
03(9) = —q° — ¢°,

where g = (¢, 42, ¢®) € R3. Theinitial instant is supposed to be ro = 0 and the
initial stateis given by go = (0, 0, 0) and v = (0, 2, —1). It follows that

J(go) =1{1,2,3},
Vi(qo) = {v:(vl,vz,v3) eR®; v'=0 and v2+v330}.

Itisreadily seen that v belongsto V (go).
Let now « > O be an arbitrary positive real number. Any motion ¢(¢) in
MMA ([0, «[; R3) compatible with thisinitial data may be written as:

qt@) = o),
q%(t) = 2t + o(1),
3t = =t + o(0).

Therefore,
91(q(1)) + 92(q(1) = 2t* + 0(t?),
which cannot be compatible with

Viel0,al, ¢i1(g@®)+¢2(q(1)) = 0.
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We deduce that no motion in MMA ([0, «[; R®) can be compatible with thisinitial
datawhatever o > Ois.

Note that, in this particular case, dg1(go) = —d¢2(qo) and the unilateral con-
straints are not functionally independent.

5.2. Example 2

Consider a discrete mechanical system whose configuration spaceis R equip-
ped with its canonical structure of Riemannian manifold. Thisisthe configuration
space of aparticlewith unit mass constrained to move along aline. A fixed obstacle
at the origin is taken into consideration. It gives rise to a unilateral constraint
kinematically described by the single function (n = 1)

v1(g) =q.

Therefore, theadmissible configuration setisA = R ™. Itisassumed that theimpact
congtitutive equation isthe elastic one, ¢ (q, q —) = 1, and that the efforts mapping
f doesnot depend onthestatebut only ontime. It will bedenoted by f (). Theinitial
instantistg = Oandtheinitia stateis(gg, vo) = (0, 0). Denotingby RCLBV (I; R)
the space of right continuous functions with locally bounded variation from areal
interval I to R, problem P admits here the equivalent formulation:

FindT > 0and v € RCLBV([O, T[; R) such that:

e v(0)=0,

t
° q(t):/v(s)ds eR™, VrellOT],
0

e R=dv— f(t)dt isanonpositivereal measure such that
SuppR C {t € [0, T[; q(t) = O}
q() #0= v(@) = v~ (1),

vVt €lo, T, {
qg(t) =0=v(t) = —v ().

Weinvestigate uniqueness under theassumptionthat f isof class C*°. Suppose,
in addition, that f is nonnegative:

VieRY, f@)=0.

It is readily seen that the null function v = 0 on R* is a solution of problem P
whatever is the nonnegative C* function f. Now, we are going to construct an
explicit example of such afunction f in such away that the associated problem P
admits another solution, different from the identically vanishing one.

First, let us define afunction p by:

R — R,

0 if x€]—o00,0]U[1, +o0l,

1
X = exx—-1)

——— if x €]0,1[.
folem dx
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We have:
p € C®(R; R),
Suppe = [0, 1],
d}‘l dﬂ
vieN, L o0=L =0 (39)
dxn dxn

1
2/ AL-s)p(s)ds = 1.
0

The last assertion comes from the fact that

1 1
/ sp(s)ds = / AL -s)p(s)ds,
0 0

L 1/t 1
/C; sp(s)ds = E./O p(s)ds = >

Consider also the real convergent series:

[ (n + 5)2 }
n+Dn+2)n+33)n+4) |,y
We define

0]

2
= m+1(n+2)(n+3)(n+4)

o]

_ (i +5)2
%_E:a+na+aa+$a+®'

i=n

Clearly, ap = T andthe sequence (a, ), < decreasesstrictly and convergestowards
0 when n tends toward infinity. Actually,

1
ap, ~— whenn — 400 (40)
n

by a very classical and elementary argument. We denote by (8,),en, (fn)nens
(vn),en thereal sequences defined by

5 ntS e s = "3 ) )
= .e., = — — < a, — ,
" D+ D0+ 4 " s T ) =

1
fn=—',

n:

1

v, =

C(m+ 3
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and by 1 (¢), v(¢) the functions from [0, 7[ to R defined by

O =.,0
0 if € [ant1, ans1+ 8, (41)
fo = %p (%) if te [an+1+8n,an[,
and

v(0) =0,

Un+1 if € [ant1, ans1+ 8],
v@e) = Uy 1+ﬁ/ p(M) ds if te[an+1+8n,an[.

2 an41+3 an—0n11—0,

(42)
First, we claim that the function f belongsto C*° ([0, T'[; R).

Proof. The only thing whichisnot obviousisthat f is C* at 0. Since

Vit elant1, anl, |f(D] = < f? max o),

then, lim,_, o+ f(t) = 0and f iscontinuous at 0. Now, we are going to prove
1d"
VreN, Ilim -— =0 43
"e t—|>r(?+ t dtrf(t) “43)
which will imply by an easy induction that f € C*° ([0, T[; R) and
VreN l f(0) =0
e -

Let usfix an arbitrary r in N. We have

S (n+95)"
n+1 2 (ap — an-i—l) s€[0,1]

d" p(s)
dt”

®)].

Vit e [an+1, an], T

e o<

Therefore, to prove (43), it suffices to verify

lim Sa(n +5)"

=0,
n—00 ap 11 (a, — an—i—l)

but, by estimate (40), we have

fn (I’l + 5)r n3r+l
aps1(an — an—i—l)r n!
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Second, we claim that:
— v e RCLBV([O, T[;R),

243

— dv — f(t)dr isareal nonpositive measure on [0, 7'[ whose support is {0} U

{a,; n € N*},
— wviscontinuouson [0, T[\ {a,; n € N*} and Yn € N* wv(a,) = —v ™ (a,).

Proof. Itisclear that v is continuous on each interval ]a, 11, a,[ and right contin-

uouson [0, T[. Moreover,

ap _ _8
vi(an)zvn_"_l_i_ﬁ/ p(san#) ds
a

2 n+1+0n ap — an4+1 — 8”

= Up41+ LG (an — any1—5,)
_ 1 1 n+5

ST YL R oy Ry
1

= (n+3)!
= —v(ay).

Since v is nondecreasing on each interval [ay,+1, an[,

o]

Var(: [0, 7)) = > (Jv(@nt1) — v~ (@nsD)] + |[v(@ni1) — v (an)])
n=0

)
= Z (_3vn+l — vy)
n=0
)

—si ! +> ! +
Ut 4y n:o(n+3)!< oo

Denoting by 8, the dirac measure located at ¢, we have

8a,
(n+3)!

dv— f(tydt=-2)"
n=1

which isa(bounded) nonpositive measure whose support is {0} U {a,; n € N*}.

Third, we claim that: If ¢ is defined by

t
VtelO, T[, q(t) =/ v(s)ds,
0

then

Vee[0, T[ q() =0,
{te[0, T[ q@) =0}={0}U {an;n € N*}.

O
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Proof. An easy calculation using the last assertion of formulae (39) shows that

Qn
/ v(s)ds =0
an+1

t
/ v(s)ds <0 Vit €lay41, anl. O

n+1

We deduce that, if we make the choice described by relations (41) for the func-
tion 1, thenthefunction v defined by relations (42) isasol ution of the corresponding
problem P whereas the identically vanishing function isalso asolution. Therefore,
the uniqueness of solution does not hold in genera if f and the functions ¢; are
supposed to be of class C*° only.

5.3. Example 3

In Example 2, we considered aparticle at rest at theinitial instant and in contact
with the obstacle. Then, aforce actson the particle, constantly pushingit against the
obstacle (f = 0). For the particular choice of the function f we made, immobility
is a possible motion whereas a bouncing motion is also possible. It is intuitively
clear that the assumed elastic impact congtitutive equation plays a central role in
such aphenomenon. The question arises asto whether such apathology ispossible
with the completely inelastic impact constitutive equation ¢ (¢, ¢~) = 0.

Sticking to the notation of Example 2, the evolution problem takes in this case
the form:

Find T > 0Oand v € RCLBV([O, T[; R) such that

e v(0) =0,
'

° q(t):f v(s)ds €R™ Vtel0Tl,
0

e R =dv— f(t)dt isanonpositivereal measure such that
SuppR C {t € [0, T[; q(t) =0},
q(t) #0= v@) =v" (1),

e Vit€lO T, {
q(t) =0=v(@) =0,

If we still assume in this casethat f is nonnegative, then it is easy to see that

the only possible motion isimmobility.
Indeed, if, 372, g(t2) < O, definery =inf {r € R*; Vs €]r,12] q(s) < O}. Then,
by continuity of ¢g: 11 < £ and g(r1) = 0. By the completely inelastic impact
constitutive equation, we get: v(r1) = 0, and, so: ¢(12) = t’lz ft’l f(s)dsdt =0,
which is absurd.

Neverthel ess, we are going to construct an example similar to Example 2, which
shows that, even in the case of the completely inelastic impact constitutive equa-
tion and f of class C*, we can obtain multiple solutions for the corresponding
problem P. Of course, f should not be of constant sign.
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The function f assumes the form:

f(©0) =0,
t— -1
_flﬁnp< 51"+) if te[n—il,n—il+51,n[,
" (44)
f(t): 0 iftel:+1+81n»n 82n|:,
1
t——+82,n

wheren € N*; (fl»”)neN*’ (fzv”)nEN*’ (81»”)n€N* and (82v”)nEN* are pOSitive real
sequences which are to be determined. We demand:

1/1 1 1/1 1
Sz —--— and &, == |--— .
1’"_2<n n+1) 2’"_2<n n—i—l)

These sequences are to be determined in such a way that the corresponding prob-
lem P admits two distinct solutions v' and v''. We demand that v', v'" and the
corresponding functions ¢', ¢"' are such that :

ql (l) =0 q” (’l‘) T if niseven
o (3) = " (3) = v ,
¢'(z) = 4" () =0 if n is odd,
o (3) = (7)) =0

where (g,),en+ @d (v,),cn+ are positive real sequences which are to be deter-
mined.

Consder the time interval [—L; e R 1) for somen > 2. Under the action of fon
[n_-l—l’ n—+1 + 381.,], the position of a particlewhich isat ¢ = —g,,+1 with velocity
vV=1v,41 atimer = n—}rl should increase from —g,, 1 to 0. Thisiswritten as

1 2
—gn+1 + vn+161,n - §.f1’n8l,n =0,

where 81, has to be the smallest root of this second degree equation

Un+1 — \/U,%_,_]_ — 2f1,nqnt1
fl,n ’
We have also to express that, under the action of f on [n+1, %], aparticle at rest

with positiong = O attimet = m should have position ¢ = —¢, and velocity
v=uy, atimesr =1 Thais

(45)

Up = _fl,n(sl,n + f2,n52,n»

~an = =3 11082, = frad1n (55m — 1n) + $ /2003,
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whichis

Up = _fl,nal,n + f2,n52,n7

1 1 1 1
—qn = jfl,nSJZ_,n - fl,n‘sl,nm + ifl,nfsl,nSZ,n + zvn52,n~

Now, let us try to make the following choice:

1 1 3
VneN* g¢g,= 7 n

n42n’ 2n 2"

Formula (45) yields the result that, for sufficiently great n,

P 1 1 43
L= 23 (n + 1)

which gives the estimate

1
81,,1 ~ -7 whenn — oo.
n

Equations (46) alow usto determine 8, , and f2 ,,:

2n? 302 2
52 _ m81’n —n 81,11 — n—4
" 1+ n331,n ’
S1.n Un
f2,n = fl,n_ + s
52,11 82,11
which provide the estimates
5 2
2.n " ﬁ
3 whenn — oo.
n
Son ~ W

From estimates (49) and (50), we get

1
O0<é81p<——r,
dng, nZ=ng = 2n(n1+ b
0< 82,

< —.
2n(n+1)

Up = =, fl,n:_~

(46)

(47)

(48)

(49)

(50)
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WedefineT = ni In exactly the sameway asfor example 2, it isreadily seen from
estimate (50) that f € C*([0, T[; R). Define

W) =0, ;4" =0, andforn = ng:

' = 1 1
W (1) = fl”/l (T) ds el g ol
ﬁ N
0 ifr e [2 + 61, 21,
t S_fil L
_fl,l’l 1 Io 51 ds t e [VL-‘rl’ I‘l-‘rl + 81,"[9
m W
u'(r) = | —f1nb1n tel; 1+61,,,n Sonl,
! s—l+8 n
_fl,n(sl,n + on/ 1Y (n—2> ds t e [% - 82,n, %[7
%752,11 62*"
and

v'0) =0, "0 =0,

'@ =u' () L.
() = ul'(r) t €lgr 350 2p 2 no),
') =u'() o

v”(t) ZMI(I) if t S [Z, m[ (2p_1§n0)’

Proceeding asin Example 2, wereadily seethat thetwo functionsv' and v'! belong
toRCLBV ([0, T'[;IR) and furnish two distinct solutions of the problem 7 associated
with the C*° function f defined by equations (44).

6. lllustrative examples and comments

6.1. Punctual particle subjected to gravity and bouncing on the floor.
Accumulation of impacts

Let us come back to the example of Section 3.3. The configuration space is
R equipped with its canonical structure of Riemannian manifold, the unilateral
congtraint is described by the single function ¢1(g) = ¢ (which gives A = R™).
The efforts mapping is supposed to be constant, (g, ¢;t) = 2, and the impact
function (restitution coefficient) is the constant 1/2: ¢ = 1/2. Considering the
initial instant 70 = 0 and the initia state (go, vo) = (—1, 0), we have seen in
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Section 3.3 that the function ¢ : R* — R~ defined by
V¢ e[0,1], q(t) =12 —1,
Viell 2], qgt) =1>—3t+2,
Vte[s—z,,—l_l,S—zin], q(l‘)=12+(—6+2%)t+<3—2”—1_1)(3—2—1"),
vVt e [3, +ool, qt)=0

(Vn € N) belongstoMMA (R*; R™) andisreadily seento bethe maximal solution,
according to Corollary 9, of the corresponding problem P. The solution ¢ (¢) is
represented in Fig. 2. It is seen that infinitely many impacts accumulate in any left
neighborhood of instant ¢ = 3.

q()

v 3 t

Fig. 2. Motion of apunctual particle subjected to gravity and bouncing on the floor.

However, as predicted by corollary 9, for each instant t € R™, there exists a
right neighborhood [z, ¢ + n[ of ¢, such that the restriction of ¢ to [z, 7 + n[ is
analytic. A straightforward and general consequence of thisis the following.

Proposition 19. Let g be the maximal solution of problem P furnished by corol-
lary 9. Although infinitely many impacts can accumulate at the left of a given
instant, this phenomenon can never occur at theright of any instant. Morover, in the
particular case where the impact constitutive equation is the elastic one (¢ = 1),
the instants of impact are isolated and therefore in finite number in any compact
interval of time.

Proof. Sincefor eachinstantz € [#g, T'[, thereexistsaright neighborhood [z, ¢ + n[
of ¢, such that the restriction of ¢ to [z, r + n[ is analytic, we get the first part of
the proposition. For the second part, let T be an arbitrary instant in ]z, 7'[ and
consider the problem P associated with the initial condition (¢(z), —¢ (1)), the
elastic constitutive impact equation and the effort mapping g(g, v; t) defined by

glg,v;it) = f(g,—v;T—1)
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whichisanalytic. By Theorem 8, there existsan analytic functiong,, : [0, T,[— QO
whichisasolution of thisproblem 7. Another solution of problem P coincideswith
g, on aright neighborhood of = 0. Actualy, as seen in the proof of local unique-
ness (Section 4.2), alittle bit more is proved: any function ¢’ € MMA([O, T'[; Q)
satisfying the initial condition (21), the unilateral constraint (22), the equation of
motion (23) and the energy inequality (Proposition 7) has to coincide with g, ona
right neighborhood of + = 0. But, it is readily seen that the function

q'()=q(x —1), te[0,1—1

fulfill these reguirements. Thus, ¢’ cannot have right accumulation of impacts at
t = t and, therefore, g cannot have left accumulation of impacts at + = = and the
instants of impact are isolated. Of course, if ¢ isthe maximal solution defined on
[t0, T[, impacts can still accumulate at the left of T', as seen on simple examples.
]

Thefact that infinitely many impacts can accumul ate at theleft of agiven instant
but not at the right is a specific feature of the analytical setting that is lost in the
C™° setting as seen in Counter-examples 2 and 3. Actually, these counter-examples
show that pathol ogies of nonuniquenessin the C*° setting areintimately connected
to the possibility of right accumulations of impacts. The fact that the analytical
setting prevents such right accumulations is the true reason why we could prove
uniquenessin this case.

6.2. The double pendulum

In this section, we come back to the double pendulum described in Section 2.1
but we add to the system arigid obstacle on the vertical coordinate axis as repre-
sented in Fig. 3. This obstacle may be represented by two analytic functions whose
expressions in the global chart of Q described in Section 2.1 are

p1(¢t, ¢%) = —lising* £ 0,
(pz(ql, q2) = —l1sinq1 -1 Sinq2 <0.

It is readily seen that, except in the particular case where I; = I, these con-
straints are functionally independent:

Yqge A, (dgi(q))icsq Islinearindependentin Tq*Q.

These unilateral constraints are assumed to be perfect and we consider an impact
function ¢ supposed to be constant on TA™:

Vg, v )eTA™, ¢(g,v)=¢¢cl01].

The constant ¢ is often called the restitution coefficient (of normal velocities). We
recall that the particular cases ¢ = 0 and ¢ = 1 describe the completely inelastic
and the elastic impact constitutive equations.

An initial state (go, vo) € TAT isgiven at time tg = 0. This initial state is
represented in the considered chart by four real numbers (¢, ¢3; vd, v3).According
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Fig. 3. Double pendulum with obstacle.

to Section 3, the motion of the system is governed by the evolution problem: Find
T €]0, +o0] and g € MMA([O, T[; Q) such that:

e (4(0),4%(0) = (g0 v0),
e Viel0,T[, (q(),4" (1) eTA™,
e R=DDg" — f(q(t), 4" (t);t) dt,e —N*(¢q(t)) for |R|-aet €0, Tl,

e Vr€l0,T[, ¢T(1)=¢ 1) — A+ ¢)Projgu [¢7@): Ng))],

where the Riemannian structure on Q and the mapping f are those described in
Section 2.1. Corollary 9 ensures existence and uniqueness of a maximal solution.
Now, we are going to check that assuptions of Theorem 10 are satisfied so that the
maximal solution is defined all over R™.

First, Q isacomplete Riemannian manifold since the quotient topology on the
torus T2 derives from a Riemannian structure and 72 is compact and therefore
complete. Second, we have the estimate

Yig,v) eTQ, vy 2al(vy, v2)l, (51)
where
Smama23 + 33
= T 5 m 2"
3mals + ("3 +m2) 7
Indeed,

’

) 2
[0l 2 2™(g) |, v?)
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where AMN(4) isthe least eigenvalue of the matrix (gij (@),
) = (émzlz + (; + mz) 2

4 (—glmlmzljzlzz 221212 -7 22112122 COS(ql — qz))
X | i | —
(3‘ 1212 ( 3 “12) ll)

i j=12" But

Using
Vyel0,1], 1—-Vi—x2> %
we get
AMNGg) > 14(9’"1’"21112 + 3mI15 — gm3IR3 cos(gt — g?) > o2,

gmalg + (3 +m2) 1§

which achieves the proof of estimate (51). Now, let ¢, q|| be two poi nts of Q
represented by their components in the considered chart (qI 4 2y and (qII q”) 0
being complete, there is a geodesic g : [s1, s2] — Q of minimal length between
them. We have

52 52
d(, qn) = / 1) gy ds 2 f o l3(s)] ds

51 s1

2\2
z \/ q“ ‘1 _‘1||)~

Moreover, recaling

filgh ¢2) = My sn(gt — ¢?) — (k1 + k2)g* + k2g?,
F2(q, ¢ = kagt — K42,

we have
If @7 < km,n( ;1C, P
Therefore,
1
If@lly = 107, f2)]
< O—ll 1+ ks + k2) g + ke g + 262 |42
< X[+ ks + ko) |i0d, 4| + 40k + 42 |~ ad. 4>~ aB)|]
= O—ll[)\ll+4(k1+kz) ’(qo,qo)” %d(q q0), Vg€ Q.

By virtue of Theorem 10, the motion of the system is defined for all € R™.
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6.3. Boltzmann's gas

Consider a collection of N rigid homogeneous balls of mass m and radius R
in arigid rectangular box. The balls cannot interpenetrate. The balls are free of
internal or external forces except for the reaction efforts induced by the unilateral
constraints. Theimpact constitutive equation i s supposed to be the el astic one. Such
asystemwasintroduced by Boltzmannto model theinteractionsbetween molecules
inagasin order to perform a statistical analysis to connect the microscopical and
macroscopical point of view.

Let us describe the discrete mechanical system associated with this situation.
The configuration space is R3V. Indeed, any configuration is described by the
coordinates of the center of the ballsin the three-dimensional ambient space equip-
ped with an origin. Strictly speaking, the configuration space should be R3V x
(S03)"N toincorporate the possible rotations of the balls. But, in this case, it would
bereadily seenthat therotation vel ocity of any ball inany motion of thesystem keeps
itsvalue at the initial instant. Therefore, rotations play no role in the motion of the
system and we may consider only the restricted configuration space R3V equipped
with its canonical Riemannian structure. The forces mapping vanishes identically
f(q,¢";t) =0.Thereare N(N + 11)/2 functions ¢;, since N(N — 1)/2 of them
are necessary to express the non-interpenetration constraints,

. N2 4 N2 . N2
Vijed2 Ny it (f—xd) (v =)+ () 2 R
and 6N of them are necessary to express that the balls remains inside the box:

—a+R<x'<a—R,
Vi,je{l,2 - N}, —b+RZy <b—R,
—c+R<Z7Z<c—R,

where 2a, 2b and 2¢ are the lengths of the sides of the box. The functions ¢; are
defined by arbitrary numbering. They are easily seento beanalytic and functionally
independent. Adding the elastic impact constitutive equation ¢ (¢, ¢~) = 1,and an
initial condition at time 1o = 0, the corresponding evolution problem turns out to
belong to the class of problem P formulated at the beginning of Section 4. Then,
Corollary 9 and Theorem 10 state that, to any initial condition compatible with
the constraints, there corresponds a unique maximal motion and it is defined all
over R™. By Proposition 19, we may also state that there are at most finitely many
impacts on any bounded time interval. As a conclusion, the results developed in
this paper allow us to associate a dynamical system with Boltzmann’s gas.
Related to thisquestion, let usmention Boltzmann’sfamousergodic hypothesis.
Roughly speaking, Boltzmann postulated that in any motion of the system, time
averages can be replaced by space averages. The modern mathematical transcript
is: for dmost every initial condition in an energy level set of the phase space, the
associated phase curve spends an amount of time in every measurable piece of the
level set proportional to the measure of that piece. Whether Boltzmann's gas is
ergodic, or not, is still an open question. However, a positive answer was given in
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1970 by Sinar [20] for atwo balls gas in a plane rectangular box. Let us underline
that this question makes sense only when we are able to associate a dynamical
system with Boltzmann’s gas.

6.4. Newton's balls and the impact constitutive equation

In Section 3.3, we used two phenomenol ogi cal assumptions # 3 and 4 to show
that the general constitutive impact equation

gt =7F(q.47) (52)
should satisfy:

F(g.,v7) € Vig),
VgeA, Vv e-V(g), Flg.v7)—v €=N(q), (53)
|7 (@ o), = 7], -

In the particular case of a motion with no more than one active constraint at any
time(V¢, CardJ(¢(¢)) < 1), it hasbeen seenin Section 3.3 that the general impact
constitutive equation (52) necessarily takes the form

gt =Projg[¢7: V@)] — ¢ (g.47) Proig [¢7: N@)] . (54)

with ¢ an arbitrary function taking valuesintheinterval [0, 1]. Actually, (54) makes
sense even in the case of multiple impacts and it is a simple example of an impact
constitutive equation satisfying requirements (53). For the sake of simplicity, we
have adopted this particular form of the impact constitutive equation even in the
case where multiple impacts occur. However, the reader should keep in mind the
arbitrariness of this choice and we shall show that it could be irrelevant in some
cases. A simple occurrence of multiple impact is Newton’s balls experiment.

a b c

Fig. 4. Newton's balls experiment.

The principle of Newton's balls experiment is well known. It is sketched in
Fig. 4a. Asaresult of this multiple impact experiment, we have the familiar picture
drawn in Fig. 4b. But, testing the simple impact constitutive equation (54) (with
¢ = 1) to predict the outcome of the experiment, we get the situation drawn in
Fig. 4c.
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The question arises as to whether the results of Section 4 remain true if we
abandon the simple impact constitutive equation (54) and adopt the general impact
constitutive equation (52) defined by an arbitrary function F fulfilling require-
ments (53). Actually, a careful examination of the proofs of Section 4 shows that
theimpact constitutive equation isonly used through the energy inequality (Propo-
sition 7). Moreover, it isreadily seen that Proposition 7 still holds when the simple
impact constitutive equation (24) is replaced by a general one (equation (52)) pro-
vided requirements (53) hold true. As aresult, all the results of Section 4, and in
particular, Theorem 8, Corollary 9 and Theorem 10 remain true if we adopt an
arbitrary impact constitutive equation instead of equation (24) in the definition of
problem P.

A general impact constitutive equation will be said to be elastic if the last
requirement in (53) is replaced by:

Vge A, Vv e-V(g), |F(q. v_)Hq = ”v_Hq'

Itisreadily seen that Proposition 19 still holdswith an arbitrary impact constitutive
equation. In particular, for asolution of problem 7 with an arbitrary elastic impact
congtitutive equation, the impacts are isolated.

7. Continuous dependence on initial conditions

The theory developed in the previous sections allows us to replace the anal-
ysis of the motion of a collection of rigid bodies subjected to perfect constraints
either bilateral or unilateral by the analysis of the motion of a point in a piece
of a d-dimensional manifold bounded by analytic hypersurfaces which intersect
transversally. With appropriate regularity assumptions on the data, the motion is
completely determined by the initial condition.

The picture seems to be fairly good and the generalization of the dynamics
of discrete systems with bilateral constraints to the case of unilateral constraints
seems to be achieved. However, there remains a big difference between unilateral
and bilateral dynamics of discrete systemsthat we want to underlinein this section.

A pleasant feature of adynamical system generated by the flow of an ordinary
differential equation is that it is smooth. More precisely, if F; 4, is the mapping
which associates the state of the system at time ¢ with an arbitrary initial condition
at timerg, thenthemapping F; ;, isalocal diffeomorphism. In particular, the state of
the system at agiven instant + dependsin adifferentiable way of the state at time 1.
Of course, this smooth dependence may be stiff. In such acase, asmall uncertainty
on the initial state will produce a big one on the actual state and the motion of
the system may turn out to be quantitatively unpredictable from both the physical
and the numerical point of view for large time. In certain circumstances, the theory
of smooth dynamical systems allow usto get some qualitative information on the
motion for large time.

Aswe shall see, the picture is strongly different in the case of the dynamics of
discrete systemswith perfect unilateral constraint. The theorems of Section 4 allow
usto defineamapping F; ,, similar to the flow generated by an ordinary differential
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Fig. 5. The generated dynamical system is not continuous in general.

equation. But, the mapping F; ;, is not smooth any more, it is not even continuous
in general. In other words, the generated dynamical system does not belong to the
large class of topological dynamical systems.

Let us check this assertion on a simple example. Consider as a configuration
space R? supplied with its canonical structure of Riemannian manifold. A config-
uration is denoted by a pair (x, y). No forces act on the system: f = 0. Consider
aunilateral constraint associated with the two functions

p1(x,y) =y <0,
po(x,y) =x+y =0,

and the elastic impact constitutive equation ¢ = 1. Attime g = 0, we consider the
following set of initial conditions:

{(-14¢6-1,11); ec]—11[}.

A straightforward cal culation gives the state of the system for all instantin R™. In
particular, for ¢ greater than 1, one gets:

Fio(-1+¢-111) =(-1+e+1¢t1-11-1) ifee]l—10[,
Fio(-1+¢-511)=01-t,1-¢—1t,-1,-1) ifeel01].

It isreadily seen on thisexamplethat, if ¢ is greater than 1, the mapping F; o is not
continuous at initial condition (—1, —1, 1, 1) (see Fig. 5). Coming back to the two
examples of Section 6, such a situation occurs if, during the motion of the double
pendulum, the two bars hit the obstacl e at the sametime. Inthe case of Boltzmann’s
gas, the pathol ogy occurswhen three ballshit at the sametime. Let usunderlinethat
if we consider aninitial condition such asthe oneinthe above example, the solution
of the associated problem P has no physical meaning. In such a case, one has to
abandon any hope of predicting the motion of the system: thisis a consequence of
the over-idealization made in the indeformability assumption.

However, inthe particular case of the one-degree-of-freedom problem, whereno
multipleimpactsare possible, ScaaTzmAN [19] proved that continuous dependence
on initial conditions holds. In the genera case, her result admits the following
generalization which is proved along the same lines:
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Theorem 20. Consider the problem P described in Section 3.4. Assume further-
morethat theimpact function ¢ isconstant. Consider theinitial condition (go, vo) €
T AT atinitial instant 9, and denote by (T, ¢) the corresponding maximal solution
of problem P. Make the following hypothesis:

Vielto, Tl (dei(q(t))icsqq) iSorthogonal in Tq*(,)Q,

(with the convention that the empty set is orthogonal). Consider a sequence
(gon, von) Of elementsof T A+ converging towards (gg, vo). For all n, we denote by
(T, g,) themaximal solution of the problem P associated with theinitial condition
(gon» vo,) at instant zg. Then,

@ liminfT,, 2 T,

n——+00

(2) ¢, convergestowards ¢ uniformly on every compact subset of [7o, T'[:

Vtelt,T[, lim sup d(g.(t),q()) =0,

n—=>+00 te[49,7]
(3) (gn(t), g;f (1)) convergestowards (¢(7), ¢ (1)) inT Q for almostall ¢ in [z, T[.

Proof. The proof of Theorem 20 isdivided into five steps. Before describing these
steps, let us introduce a some new notation.

We fix, once for al, an arbitrary 7 in [fo, T[ and a compact neighborhood K’
of the compact subset ¢ ([7g, t]) of Q. We define:

V=1+ sup [0

telio 7] a@)’

and,
K={@g.veTlQ:qeK ad |v|,<4V}.

Thesubset K of T Q iscompact in T Q. We define a so:

Pl it @ v 0la
and
= (q/,t)eryli(nx[to),]d(q/f q(n),
and

. V dp
S=mn|(—,—).
F 6V
Notice that we have § > 0.

Step 1. Consider 11 € [to, T[. We denote g (11) by g1 and ¢+ (1) by v1. Consider an
element (¢, v}) of TA™ such that

d
d(le‘]i)gzo and  vi,, =2v.
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Then, the maximal solution ¢’ of the problem P associated with theinitial condition
(g1, vy) atinitial instant 71 is defined on an interval containing 71, min(z, t1 4 §)]
and is such that

Vit € [t, min(, i+ 8)], (¢@y¢ﬂn)eK.

Let us denote by [r1, T;[ the maximal definition interval of ¢’. Define

4=ampe[m7ﬂ;Vsenbm (d@L@WQ)GKL
We have to prove
11 Z min(z, 1 +9).
Assume the contrary istrue:
11 <min(z, 11 +9).

By Proposition 7 and Lemma 17, we have:

t
- )
Vit e [t 1, "t gz),+/Fm
! q()W)Hlﬂ i
S2V 4+ F(p —11)
< 3v.
We deduce
1 <Ty,
by Proposition 18, and
laFaw| =lima| = im |ito] <y,
q'(1y) q'(t)

q'(ty) t—>t]"
by Proposition 32. Moreover,
d(q'(t)). q1) < d(q'(t)). q1) +d (91, q1)

d
w@—m+f

A

A

§do.

4

By the continuity of the function r — d(q'(¢), g1) and the right-continuity of the
function ¢ ‘q"+(t) Hq/(l), we have

3o > 0, WeULﬁ+M,(¢@jﬁm)eK

But, this contradicts the definition of #; and achieves the proof of Step 1.

Sep 2 For n large enough, ¢, is defined on (an interval containing) the interval
[t0, min(z, 1o + &)]. Moreover, there exists a subsequence of (g,), also denoted by
(gn), such that:
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— g, convergesuniformly on [zg, min(z, zp+ §&)] towardsa function ¢jim belonging
to MMA(([tg, min(z, tg + 8)1; O),

— (gn(1), ¢, (1)) converges towards (q”m(t),ql}“m(t)) in TQ for almost all ¢ in
[to, min(z, to + 8)].

For @l ¢ in K’ N A, there exists a compact neighborhood K’ of g which is
included in the domain U, of alocal chart (Uy, ¥,) a g such that:

- Vq' eU,, J(q)CJ(),
- Vq' e U,;, thecardJ(q) firstcomponentsof y,(q’) aretheg;(¢") (i € J(g)).

Being compact, K’ N A can be covered by afinite number, say L, of K ' 41 We denote
by 2™ and A™M" the maximum and the minimum of, respectively, the greatest and
least elgenval ue of the matrix (g;; (q)) 4 Wheng wandersin K’ and 7 in
{1,2,---, L}. Wedefine

i,j=1,2,-

0gij( )
G = max max g,, q
/
i,j,kel1,2,. . dy 1€K'q
1e{1,2,-- L}

We pick an integer Ng, large enough to ensure:
do
<
Vi > No. d(qo, gon) = 7
lvonllge, = 2V.
By Step 1,
T, Zmin(t, 10 +36),
Vn = No, ,
Vie[n,mn(o+8)], (g.(1),4, (1) €
By a compactness argument, we have

Ja>0 Vief{l,2---,L}, VqgedK,, 3, B(q,a)CK/q],.

Asaconsequence, for n larger than No, theinterval [z, min(z, 7o+ §)] isthedigoint
union of afinite number, say N, of intervals I,,; such that

Vie{lvzv"'vN}’l}’ 316{1725”'51‘}7 Qn(lni)CK/ql'
Moreover, theintervals I,,; can be constructed in such away that:

4V8
Yn=Ng, N,<1+

Furthermore, recalling

n
Vn, bDGY = f(qn. gy i t)dt+ Y hnidgign(t)), (55)
i=1
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wherethe 1,,; are nonpositive real measureson [z, min(z, o+ §)], and performing
the same job as in the proof of Proposition 18 (estimate (38)), we obtain

Vn>=Nog, Vie{l,2---N}, Vje{l2 N},
f (—ni) < 2VAMX(4V) + <F + chk(ﬂ)z) .
Ij
Thereresults:
¥n>Nog, Vie{l2 - N}, (56)
/ (—hni) < [1+ ﬂ} [NATMV) + (F + M) 5} .
[to,min(z,0+4)] 2mn

The measures 1,,; are uniformly bounded with respect to n. Using the equation
of motion (55), we find that the real numbers Var (g,"; [t0, min(z, 1o + 8)]) are
uniformly bounded with respect to , for n larger than Ng. The assertion of Step 2
is now adirect consequence of Proposition 34.

Sep 3 The function gjim constructed in Step 2 satisfies the equation of motion:
Riim = b Déiiy = f (qtim. diim; 1) dt € —N*(qiim).-

Moreover, the real measure (Riim, (i, + Giim))qim 1S @ NONpOSitive measure on
the interval [zg, min(z, rg + 9)[.

We denote by My ([a, b], R) the Banach space of all bounded real measures
on aninterval [a, b]. By estimate (56), we can find N bounded real measures A;jim
such that

lim X = Aitim in Mp ([0, min(z, 1o + §)], R) weak*,

n——+00

where another subsequence has been extracted, if necessary. Writing the equation
of motion (55) in local charts, we have

lim dg} =dgil. in M, wesk*.

n——+00

Furthermore,

lim  f (qn. 4y s 1) dt = f (qiim. i 1) dt - in My, weak*,

n— 400

by Lebesgue’'s Dominated Convergence Theorem. Therefore, we obtain easily:
bDGiiy = f (qiim. 4jim: 1) dt + kamd% (qlim),
i=1
the weak* topology being Hausdorff. Now, by formulae (12) we have to prove
Suppiilim C {t € [to, Min(z, 1o + 8)]; ¢i (qiim (1)) = O}. (57)
Consider a, b[C [fg, min(z, fg + §)] such that

Vs €la,bl, ¢i(qim(s)) <O0.
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The interva la, b[ is the union of the compact intervals K; = [a + 1/j, b — 1/j1]
(j € N*). Fix j € N*. For n large enough,
VS € K]a ‘pl(Qn(S)) < 05

SO Ajp |k, = 0. We deduce:

Vg e CAK;iR), intk;gdhitim=0.

Therefore, Ajiimjja,5 = 0andthisachievestheproof of inclusion (57) and therefore
of the first assertion of Step 3.
For the second assertion of Step 3, we are going to prove actualy:

Vi1, 12 € [to,min(z, o+ &), 11 < 12, / (Rim. (difm + Giim))qim = O.
111,12]
(58)

Fix such 11, t, and arbitrary ¢ > 0. We have

/ {Riim, (qllm + qllm) qlim — ”qllm( 12) Hq“m(tz) ”qhm( 1) Hqum(fl)
Ir1,12]
2
- 2/ (f (@im (), Giim ()3 1), Giim (D)) dt
n

By the right-continuity of the function ¢ — | g, (t2) ||q"m(t) and the results of

Step 2, wecanfind g, 15 € [ro, min(t, 1o+ 8)[ (1; < 15) and aninteger No such that

St S+ , and

e
8VF
Vn 2 Ny, ’”q“m( )”

o () (i=102).

qlim () qn(t )

I
8
Moreover, by L ebesgue’'s Dominated Convergence Theorem, No may be assumed
large enough to ensure:

VYn > No,
/,/ : {(f (@im@®), Gim@): 1), G @) = (f (a2 (), 45 ()3 1), 4,7 (1))} di| < g
i
Itiseasily deduced that
Yn 2 Ny, <e

[ R i+ i = [ (R G+ )
1r1,22] 11.15]

Since ¢ is arbitrary and ftl L (@F +d7 )
the conclusion (assertion (58)) follows.

is nonpositive (Proposition 7),

n
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Step 4. Consider an arbitrary instant ¢, €]ro, min(z, fo + §)[ such that
(doi (q“m(tg)))iej(qnm(tg)) isorthogonal in T(;l‘im(tg)Q.
Then, g)im satisfies the impact constitutive equation at instant 7, :
Q|Tm(tg) = q.|i7m(tg) -1+ ¢)Projq|im(tg) [C}nim(tg); N(QIim(tg))] .
Consider alocal chart (U, ) centered at gjim(t,) such that:

— the cardJ (qiim(tg)) first components of ¥ (q) are a;pi(q) (i € J(qim(te))),
where the «; are some fixed positive real constants,

- VqeU, J(g) CJ(qim(t),
— thematrix (gij (im(tg))) istheidentity matrix

(i im(te))) = 8.
We have to prove
G (1) = —dii(t), 1< i < Cad) (qim(ty)),

i - . (59)
Giim(te) = djim(te), CardJ (qiim(te) +1 =i < d.

First, we are going to prove:
Ve>0, INg,n>0, Vn=Ng, Vi,tr€ [tg —m, 1, +1], 11 <12,

4,7 )| < |4, ()| + &,
(60)

and
Ve>0, 3INo,n>0, Vn2Ng, Vi,p€ltyg—nts+nl, n<t2,

(Vielm.nl, i) <0} = {|¢ () — ¢, (11)| S &}
(61)

Fix ¢ > O arbitrary, and pick a positive real number n small enough and an integer
No large enough to ensure:

Vielty,—ntg+nl, YnZ=No, qimt)eU and g,()eU.

Let vV’ be apositive real constant, large enough to majorize al the quantities

q,f"(o\ and Var (q,f"; [ty — 1, 1 +n]),

when i, ¢ and n wander respectively inthesets {1, 2, --- , d}, [t, — n,tg +n] and
{n eN; n = No}. Wemay assumethat  is small enough and No large enough to
ensure:

. & &2
Vielly —nigtnl. Yz Noo ij(gn®) =8y S min{ 27m. o )
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Multiplying the equation of motion (36) by (¢, + ¢,/')/2 and integrating over
11, t2], we obtain easily:

Vn2No, Vn,t2elty—ntg+nl, 1<tz

(zl)‘ ( )2+/t2 <F+gd2GV2) i+is)| ds,
11

it <3

which gives,

Vn2No, Vt,tpelty—ntg+nl, 1<tz

Q)|

2

by Lemma 17 and the desired conclusion (60) for sufficiently small . For the
second assertion (61), suppose we have in addition

‘ e 3
qr (fl)‘ +5+2n (F + —d2GV2> ,

Vieln, ], ¢ @) <O.
The result is that 2;,, vanishes on [r1, 2] and integration of the egquation of mo-
tion (37) gives
- i 3 -
g, (12) — (fl)‘ —+ 2y F+ 2d GV?

and therefore the desired conclusion (61) for sufficiently small #.
Now, let us come back to the proof of assertions (59). Fixi € {1,2,---,d}.
Only the following four cases are possible:

Casel: CardJ(qiim(tg)) +1<i = d;

Case2: 1< i < CardJ(qim(tg)) and gjih(t) =0

Case3: 1<i < CardJ(qim(te)), din(te) >0 and ¢ =0;
Case4: 1< i < CardJ(qiim(ty), dji(te) >0 and ¢ > 0.

We examine them successively.

Casel. CardJ(qim(t) +1=i <d.
Fix ¢ > 0 arbitrary. By assertion (61), we can pick a positive real number
small enough and an integer Ny large enough to ensure that

Vn>No, Vu,t2€lty—nto+nl, 1<tz |§ () —4 ()| Le,
since
Vielt,—nts+nl, Yn=No, ¢i(r)<0,

by the choice of the chart we made. Actually, n can be assumed small enough to
ensure;

Vi€ [ty — 1.l ’q“m(t) 6I||m(’g)‘

Vi €ltg, tg + 1l ’L]“m(t) f]nm(tg)‘ Se
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by Proposition 32. By Step 2, wecanfind 1y € [t, — 1, o[ and 12 €]tg, 1o + 1] Such
that

im g @) = gm0 (k=1,2)

and, therefore, N can be assumed large enough to ensure:

Yn = No,

G0 — dimm)| e k=12
Then, we have

i (1) = dinn(t0)| < |ditn(te) = din(e)| + [ditn2) = 47 02)|

[ 2) = 47 (0] + |57 (1) = G|
o+ Jditn o) = dino)|
< bBe.
Since ¢ is arbitrary, we get the desired conclusion:
Giim(te) = diim(te).
Case2. 1< i < CardJ(qiim(ty)) and g,k (t,) = O.

Fix ¢ > 0 arbitrary. By assertion (60), we can pick a positive real number
small enough and an integer Ny large enough to ensure:

Vn2=No, Vr,t2€lty—n,te+nl, 1<t

Qi) <

Exactly asin case 1, n is assumed sufficiently small to ensure that

g )| +e.

Vi€ ltg —n, g, ‘c}ﬁ.{}(t)‘ S,
Vil to bl |din — dim)| <.
and No large enough to have

Yn 2 Ny,

G W) — gm0 e k=12,
for somer; € [t — 1, to[ and somet; €ltg, tg + n]. We get
ittt < |difm(te) — dim(t2)| + |dirmte) — 4 (2)| + g 2|
< g, ()] + 3e
< 5,
which gives the desired conclusion
Giim(tg) =0,

since ¢ is arbitrary.
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Case3. 1<i < Card](qnm(tg)) gin (1) > 0and ¢ = 0.
Fix ¢ arbitrary in ]0, ¢;;,(t,)/16]. We pick n and No such that both asser-
tions (60) and (61) hold. Actually, n isassumed small enough to ensure that

Vi€ [ty — . tgl, z”T(t) dim(t)| <
Vielty = n.tl |dim® = dimto)| <.
Vi Eltg, 1y + 1l il (®) = di(1)] < ¢

and, by Step 2, Ny is assumed large enough to get

Vn 2 No, Vtelty—mn,ts+nl,

a4 (0) = dfm(0)| = e,

Vn =2 No,

G 1) — g < e,

Vn 2 No,

0 (1) — i1 S e,

for somefixed 1 € [t, — n/2,t, — n/4l and 12 € [tz + 3n/4, t; + nl. From these
inequalities, it is easily deduced that

e Rimte) S dhm(@) £ — 12 Tt
and therefore,
¥n = No, an| (1) < qp(11) < — 2 —NGym(te). (62)
= 16 im\"8 n 16 lim\*g
Furthermore, 14
G () Z Giim) — 26 = 16q|.m(tg) (63)

Then, by estimates (62) and (63) and assertion (61), it is readily seen that
Vn>No, 3ty €l ti+nl, ¢.(t) =0

But, since ¢ = 0, we have

Vn > No, ¢ (t,) =0,
and, therefore,

iz No, a2 <
by assertion (60). We deduce:

[dim(to)| < 3e,

and the desired conclusion q,lm(tg) = 0, since arbitrarily small ¢ can be chosen.
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Cased. 1< i < CardJ(qim(ty)), Gjim(te) > 0and ¢ > 0.

Fix ¢ arbitrary in 10, ¢q;y,(t;)/16]. We pick n, No, 11 and 1o exactly inthe same
way asfor case 3. Asin step 3, we have

Vn>No, 3ty €l ti+nl, g.(t) =0,

but, here, it is readily seen that 7, is the unique instant in [z1, 7, + n] such that
gy, (t,) = 0. Now, we obtain

(1) + Bdin(to)| < |ditm(t) = 47 (1| + |1 (2) — 457 )| +

¢ |G, (t) — ¢ (t)| + ¢
< 6,

G (1) = dimn(ty)|

by use of assertion (60). Since ¢ can be arbitrarily small, we have the desired
conclusion:

G (1) = —djim(te).
This achieves the Proof of Step 4.

Sep 5. Conclusion of the proof of Theorem 20.
First, we are going to prove:

Vi€ [tg,min(z, 10+ 8)], qim(®) = q(1). (64)
Define:
t1 =supfr € [to, min(r, 10+ 8)1 Vs elto, 1], qim(s) =q(s)}.

Notice that the set in the above definition is non empty, since it contains fg. By
continuity, we have

Now, assume:
t1 < min(z, g + 98).

By the assumption made on ¢ in the theorem and by Step 4, the function gjim, is
readily seen to satisfy the impact constitutive equation at instant #1. Therefore,

(qim (D). 4jim (D) = (¢(tD). 4 (1)) .

Furthermore, we have seen in Step 3 that g satisfies the equation of motion and
that (Riim, (4 + diim))qim 1S @ NONpOSitive real measure. But, the proof of local
uniqueness (Theorem 8) uses nothing more than that. We deduce that there exists
aright-neighborhood of #1 on which the functions ¢jim and ¢ coincide identically.
But, this contradi cts the definition of 71, and achievesthe proof of assertion (64). As
aresult, the function gjim is uniquely determined and the conclusions of Step 2 are
valid not only for a subsequence but for the whole sequence (g,,).
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Now, if 1o + 8 < 7, wepick t; € [fo + 8/2, 10 + 8 such that

lim (. (10), 4, (t9)) = (q(t0), 4™ (1)) -

n

Performing the same job for instant 7 instead of 7o, we extend the conclusion to
interval [zg, min(t, tp + 38/2)]. Processing so inductively a large enough number
of times, we obtain the desired conclusion. O

Remark. A straightforward modification of the proof of Step 4 shows that the

conclusions of theorem 20 hold if we only assumethat ¢ is continuous and constant
on each fiber:

VQ1 VU]_, U2€ Tqu ¢(Q1Ul) =¢(C]7U2)

The conclusions of Theorem 20 aso hold if ¢ isonly assumed continuous and if,
moreover, we have

Vi€, T[, Cadi(g@)) <1

8. Indications on the numerical computation of the solutions

Consider the problem P described in Section 3.4. Assume furthermore, for the
sake of simplicity, that the impact function ¢ is constant. The maximal solution
associated with the initial condition (g, vo) at timety = 0, isdenoted by (7;,,, ¢).
We consider alocal chart (U, 1) at go and a positive real number 7 such that

Vtel[0, T], q@) eU.
By assumption (20), we may assume:
YqeU, (dgi(q))icsq islinearindependentin TtI*Q,

taking asmaller U if necessary. We consider a sequence of approximants, defining
foreveryn 2 1

e h,=2""T,

o tax=kh,=k2"T (k=0,1,2---,62"),
(gn.0, vn,0) = (4o, Vo),

Ink = qnik—1+hpvpp—1 (k=12---,2),
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oo
Uk = Unik—1

+ I:gaﬂ(‘h,k)fﬂ (‘In,lw Un,k—1; tn,k) - ng (‘]n,k)vf,k_lv,);yk_l] hy
*k=12---,2", a=12,---,d),
o Uk =Vnk— A+ Projg,, [Vak Ngnp)] *k=12---,2"),

Unk, 1Tt €Itnk, thiyr[Withk=0,1,-.-2" —1,
Un,2”, Ift = T = tn,2”7

vy (1) =

t
qn (1) =610+/0 v (s) ds.

Actually, it may happen that the function ¢,, cannot be defined on [0, T'] if there
existsan integer k,, suchthat ¢, «,+1 ¢ U.Insuchacase, thefunction g, isdefined
only on [0, #,, x, 1.

This type of algorithm was introduced by Moreau and used without further
justifications. It should be stressed that one cannot hope that the sequence of ap-
proximants (g,) cornverges in general towards the solution ¢, since continuous
dependence on initial condition does not hold in general. Actualy, it is easy to
build an explicit example, in the spirit of the example of Section 7, where the se-
guence (g,) does not converge pointwisely towards any function at all. However,
in the special case where all the multiple impacts are orthogonal, things behave
nicely and we have:

Theorem 21. Suppose that the solution ¢ is such that all multiple impacts are
orthogonal:

Vi el0,T], (d¢i(q(t))icsqq) iSOrthogonal in Tq*(t)Q,

(with the convention that the empty set is orthogonal). Then, there exists an integer
No such that the function ¢,, is well defined on [0, T'] for n = Np. Moreover, the
seguence (g, ) converges uniformly on [0, T'] towards g (or more precisely towards

¥ (q))-

Theorem 21 can be proved aong the same steps as those of the proof of Theo-
rem 20. The necessary adaptation of the detailsis |eft to the reader.

Appendix: the class of motion MMA(I; Q)

In this section, we are going to define the concept of vector field with bounded
variation along a locally absolutely continuous curve on a Riemannian manifold.
Thedefinition and basi c properties of absol utely continuousfunctionsand functions
with bounded variation from areal interval to a finite-dimensional normed vector
space are supposed to be known. The reader isrefered to Rupin [17] and MOREAU
[13]. These conceptsareintimately connected with measuretheory. Two expositions
of measuretheory compete: the set-theoreti c approach (seefor exampleRubin [17])
and the duality approach (see for example Boursakt [6]). These approaches are
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connected by Riesz's representation theorem. In this paper, we stick to the duality
approach. If I isareal interval and E areal finite-dimensional normed vector space,
CS(I ; E) will denote the space of continuous functionsfrom I to E with compact
support. A measure on I with valuesin E (or E*) will be any linear form . on
CO(I; E*) (or, respectively, CO(I; E)) satisfying thefollowing continuity property:

VYa,b €I, a<b 3IM,, =20, VewithSuppe C [a, b],
(@) = My p maXeer @) .

When the constant M, ;, can be found independent of a and b, the measure n is
said bounded. For everything concerning measure theory, the reader is referred to
Boursaki [6] where hewill note the definition of the support Supp v of ameasure
wu (BOURBAKI [6], p. 64).

Thefollowinglist of definitionsand propositionsaimsat carrying these concepts
over Riemannian manifolds. The cornerstone is, of course, the identification of
tangent spaces at different points of a curve by means of paralel translation.

Thisappendix isalso an occasion to state precisely the classical theoremswhich
are used in this paper.

Definition 22. Let I beared interval andg : I — Q acurveon Q. Thecurve g
is said to be locally absolutely continuous if, for all ¢ in I, there exists a compact
neighborhood J of 7 in I and achart (U, v) such that:

-q())CU,
— Y ogq:J — RYisabsolutely continuous.

Since Q can be covered by acountable collection of chart domains, Lebesgue’s
theorem yields the result that ¢(r) admits a tangent vector g(¢) € T, Q for dt-
amost all ¢ in I where dt denotes the L ebesgue measure on the real line (and also
its restriction on 7). The Riemannian structure on Q and the Cauchy-Lipschitz-
Caratheodory theorem allow usto define classically a parallel trandation operator
aongq, s : Ty) Q — Ty O (see, for example, CHAVEL [7],p. 7). 1; 5 iSdefined
forall (s, 1) € I2.

Definition 23. Let g bealocally absolutely continuous curvefrom 7 to Q. A vector
field X on ¢(¢) (or a1-form field X* on ¢(¢)) isamapping from 7 to T Q (resp.
T* Q) with the property

Viel, T (X(1)=q@) (resp. I} (X*(1) = q@).
A vector field X on g (¢) (or al-formfield X* on ¢ (z)) will be said to belocally ab-

solutely continuous (resp. absol utely continuous, or locally with bounded variation,
or with bounded variation) if there exists 7o in I such that the mapping

0 I = Ty QO resp. 6 I — Tq*(to)Q
“1s > 1y (X(5)) 0 s s b o (o XH(s)) )
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is locally absolutely continuous (resp. absolutely continuous, or localy with
bounded variation, or with bounded variation). If X hasbounded variationon 1, its
variation over I is by definition:

Var(X (s); ) = Var(tio,s (X ()); 1. (65)
From the identity:
V1,82, 11,12 € 1,
751 (X (51) = T2 (X 652 | 1,y = [ Tr2050 (X 5D) = Trpsa (X (52D ) »

it is easily deduced that the above definition is independent on a particular choice
of 1o and so isthe real number Var(X (s); I).
The covariant derivative of alocally absolutely continuous vector field X along
g can be defined for dr-almost every ¢ in I by:
DX (1) _ d

= (t1.5(X(s))|,_, fordr-aerel.

Definition 24. Let (1, ¢) be a continuous curve on Q. We denote by CE(I, q;TQO)
(or C?(I, q; T*Q)) the space of continuous functions ¢ from 71 to T Q (resp. T*Q)
with compact support and such that:

Viel, Tg(p@®)=q) (resp. I (p(1) = q(1)).

Wedefineameasure onthecurve (1, ¢) taking valuesin T Q (or T* Q) asany linear
form p on CO(1, ¢; T*Q) (or C2(1, q; T Q)) enjoying the following continuity
property:

Ya,bel, a<b 3IM,, =20, VewithSuppe C [a,b],
@ = Map max le®llga -

The real number (@) will also be defined by [, (¢ (1), dit)q ).

Proposition 25. Let (1, g) beacontinuouscurveon Q and i a measureon g taking
valuesin T* Q. For any nonnegative function f of C?(I ; R), we define

/ () du
1

where the supremum is finite thanks to the continuity properties included in the
definition of measures. For arbitrary f in C?(I; R), we define

Il () = Il ((HT) = 1l (A7),

where (x)* = max{+x, 0} are the classical positive and negative parts.
Then, the functional || is areal measure called the modulus measure of .

Il (f) = sup
2eC2L,q:TQ)
Ig®)llyyS£(0)

)




270 PATRICK BALLARD

The proof is omitted since it is completely identical to the proof of the similar
statement for complex measures (see BourBAKI [6, p. 54]).

The support Supp  of ameasure u on ¢ (¢) taking valuesin T*Q is, by defini-
tion, the support Supp |w| of its modulus measure.

We define L (1, g, |u|; T*Q) by the space of functions ¢ defined for |u|-

loc

amost all ¢ in 7, taking valuesin T* Q and such that:

- l'I*Q(Q(t)) = q(t) for |u|-dmost every ¢ € I,
- VYoeCll,q;TQ), tr (p),0®))qu) € L1, |ul; R).

Proposition 26. Let ;1 be a measure on ¢ (¢) taking values in T*Q. Then, there
exists a unique (class of) function /,, € Llloc(l, q,d |u); T*Q) such that:

- HZ(lu(t)) =gq(t) ford|u|-amost everyt € I,
—VoeCll,q;TQ), [{e®),diw)qn = [1{p®), L())qwd .

This fact will be denoted by: du = I,,d |1|. We shall say that [, is the density of
measure p with respect to measure |u|.

Proof. For measure taking values in a finite-dimensional vector space, the above
statement is a classical direct consequence of the Lebesgue-Radon-Nikodym the-
orem (see RubiN [17]). It isreadily carried over manifolds by means of alocally
finite partition of unity modelled on chart domains.

Definition 27. Let X be a vector field with locally bounded variation on an abso-
lutely continuous curve (1, ¢) and rg an arbitrary element of 7. We denote by d;, X
the Stieljes measure (see MoreAu [13]) associated with the mapping with locally
bounded variation:

I — TQ(tO)Q’
o
S > T 5 (X (5)).

ForY € CO(1,q; TQ)and Y* € CO(1, q; T* Q), the linear forms

Y /1 (Tio.s (Y (1), dipX) oy @Y™ > /1 (Tio.s (20 Y™ (), dipX) ;o)
turn out to be independent of a particular choice of ¢y and define measures on ¢
taking, respectively, valuesin T*Q and T Q. They are denoted by bDX and DX
and called the covariant and contravariant representative of the covariant Stieljes
measure associated with X.

Proposition 28. If X is a locally absolutely continuous vector field on a locally
absolutely continuous curve from I to Q, then

DX DX
DX =—dt and bDX =b—dt. (66)
dt dt
Reciprocally, if X is locally with bounded variation and such that its covariant

Stieljes measure DX admits a density with respect to the Lebesgue measure, then
X islocally absolutely continuous and relations (66) hold.
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Proof. Thisisanimmediate consequence of Definition 27 and of the similar state-
ment for functions taking valuesin afinite-dimensional normed vector space.

Proposition 28 ensures the consistency of our notation. Let us now turn to
practical calculationsin charts.

Proposition 29. Let (U, ¥) beacharton Q, (1, g) an absolutely continuous curve
on Q such that ¢(1) C U and X a vector field on (1, ¢). The components (X*)
(i=1,2,---d)of X inthenatural chart of T Q associated with ¢ arereal functions
defined on 1. The vector field X islocally absolutely continuous (resp. absolutely
continuous, or locally with bounded variation, or with bounded variation) if and
only if every function X' islocally absolutely continuous (resp. absolutely contin-
uous, or locally with bounded variation, or with bounded variation). Moreover, in
such a case, we have:

DX = (dX' + Tl (gD X7 (DG (1) dr ) ei(g (1),
PDX = gij(q() (dX7 + T, (@)X 03! (1) dr) € (g()).

Proof. Thisisan immediate consequence of Definition 27.

Proposition 30. Let X be a vector field with locally bounded variation of an abso-
lutely continuous curve (1, ¢). Then, for any rg in I, the two limits IimHta X ()
and Iimt_>,0+ X(t) existin T Q and are such that

Mo (Iim X(t)) =1Ilp ( lim X(t)) = q(t0).
1=ty 1>t

These limits are denoted by X~ (7o) and X (#p) and can be different only on an at
most countable subset of 7. The mapping

{I—)R"‘

t = 3 IXOI5,

has locally bounded variation and

1 X~ Xt
d (E ||X(t)||§(t)> = (M DX) :
q()

Proof. Itisadirect consequenceof thesimilar statement for functionstaking values
in Euclidean R? (see Moreau [13]) and of Definition 27.

Definition 31. Wedenoteby MMA (I; Q) (motionswith measure acceleration) the
set of al locally absolutely continuous motions g (¢) from 7 to Q such that theright
velocity ¢ (¢) exists for all ¢ in I and defines a vector field with locally bounded
variation on ¢ (¢).



272 PATRICK BALLARD

Proposition 32. Letg beinMMA(I; Q). Then,¢* : I — T Q isright continuous:
Viel, (") =4
Moreover, g (¢) admits a left velocity vector at each instant of 7 and

viel, ¢ ®O=(q"®) .

Proof. Usethe Mean Value Inequality in alocal chart.
Proposition 33. Let ¢ € MMA(I; Q) with g(I) ¢ U domain of a chart. Then,

.4 o+
Dt o (daK(q(t?,q (1) 9K @®), ") d,) ¢ (q().
g+ dq'

Proof. Reproduce the proof of Proposition 2 with the help of Proposition 29.

Proposition 34. Let (¢,),cn be a sequence of elements of MMA ([0, T']; Q) such
that:

— there exists a compact subset K of T Q such that

VneN, Vtel0,T], (q.(t),¢, 1) €K,

-3M >0, VneN, Var(qF:[0,T]) <M.
Then, there exists a subsequence of (¢,), N, also denoted by (g, ), <, Such that:

— (gn)yen cOnverges uniformly on [0, T'] for the Riemannian metric towards a
function g|jm belonging to MMA([O, T'1; Q),

— The sequence (g (1), ¢, (t)) converges towards (giim(t), ¢ (1)) in T Q for al-
most all £ in 0, T[.

Proof. This is a generalization of Helly’'s theorem to the case of a Riemannian
manifold. The set K’ = I (K) being compact, there exists ¢ > 0 such that (cf.
CHAVEL [7, p. 23)):

— foralgink’, B(g.¢) (= {¢' € K';d(q,q') < ¢})isthedomain of achart v,
— forall ¢ in K’, the distance defined by |, (q1) — ¥4 (¢g2)| and the Riemannian
distance d are equivalent on B(q, €).

First, we extract a subsequence of (g,,), also denoted by (g,), such that:
lim (¢.(0), ¢, (0)) = (qo, v0) INTQ,
n——+00
and there exists No € N large enough to have

&
Vn = No, d(qo,4a(0) < >
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Now, by:

Vie[0,T[, VneN, ||q'n+(t)||qn(t) < ||q;(0)||qn(o) +Var (¢, [0, T1),
(67)

thereexistsag (0 < ag < T) small enough to have:
Vo € [0, T], Vtelto,min(T, 10+ a0)l, VneN, dgn(t),qn(t)) < g

Then, it is easily checked that the functions v, (¢, () 0.4 ( = No) satisfy the
hypothesis of Helly’ stheorem and therefore the conclusion of the proposition holds
on [0, ag].

Now, chooser; € [ag/2, ap] such that:

im (gn(t), 4, () = (qiim(t1), (1) INTQ,
and N, large enough to have:
&
VYn 2 N1, d(qim(t1). ga(t1) < >

Performing the same job as above on the chart of domain B(gjim(t1), €), we find
that the conclusion of the proposition holds on [0, min(7', 3«g/2)]. Processing so
inductively alarge enough number of times, we obtain the desired conclusion. O

Remark. If the Riemannian manifold Q is assumed to be complete, the first hy-
pothesis in Proposition 34 can be weakened and replaced by:
there exists a compact subset Kq of T Q such that

VneN, (40,4, (0) € Ko.
Indeed, this hypothesis allows us to extract a subsequence of (g;) such that
im (42(0), 4, (0) = (g0, v0) InTQ.
By estimate (67), we get:
3D>0, Vte[0.Tl, VneN |4 0|, , =D add(go,q.(1)) = D.

The Riemannian manifold Q being complete, by the Hopf-Rinow theorem (cf.
CHAVEL [7, p. 26]), the functions (., ¢, (1)) take valuesin acompact subset K of

TO.
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