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Abstract

The dynamics of discrete mechanical systems with perfect unilateral constraints
is formulated in a very general setting.The well-posedness of the resulting evolution
problem is studied. It is proved that existence and uniqueness of a maximal solution
is ensured provided strong assumptions are made on the regularity of the data: they
are supposed to be analytic. Simple examples show that this regularity assumption
may not be relaxed. Sufficient conditions to ensure that the maximal solution is
defined for all time are supplied. The continuous dependence of the solution on
initial conditions is also studied and the numerical computation of the solution is
discussed.

1. Introduction

The aim of the Dynamics of Discrete Mechanical Systems (sometimes called
Rational Mechanics or, after Lagrange, Analytical Mechanics) is the prediction of
the motion of collections of bodies supposed to be perfectly indeformable. The
theory classically distinguishes two types of interactions between the bodies them-
selves and between the bodies and the rest of the universe: the efforts and the con-
straints. The constraints are kinematical specifications of the motion with which
some efforts are associated. A constraint is said to be perfect or ideal if the associ-
ated efforts do not dissipate energy. A constraint is said to be bilateral, or unilateral,
if the kinematical specification gives rise to equalities, or inequalities respectively.
A typical occurrence of unilateral constraints is the handling of non-penetration
conditions.

When all the constraints are bilateral and perfect, the motion is classically
governed by a second-order ordinary differential equation on a finite dimensional
Riemannian manifold. When the data are smooth enough, the Cauchy-Lipschitz
theorem guarantees that a unique motion is associated with any given initial state
of the system.
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When dealing with the dynamics of discrete mechanical systems with unilateral
constraints, there is no such theorem, although many steps in this direction have
been made during the past twenty years. To my knowledge, the first investigation
of this question using modern mathematical tools (i.e., introducing motions whose
acceleration is a measure with respect to time) is that ofSchatzman [18]. She
studied the particular case where the configuration space isR

d equipped with its
canonical Euclidean structure and the admissible configuration set is convex. Her
setting was also limited to the elastic impact constitutive equation. Using Yosida-
type regularization and compactness arguments, she was able to prove the existence
of solutions under very weak regularity assumptions. She also discussed uniqueness
but proved it only in a very specific case. Further investigation on uniqueness was
performed byPercivale in [14] and [15]. He is the first to introduce analyticity
hypothesis in this respect. But, his results apply also only to very specific cases. The
formulation of the problem with completely inelastic impacts has been extensively
studied byMoreau [12]. An existence result was proved byMonteiro Marques
[10] in the particular case in which the configuration space is EuclideanR

d and
the unilateral constraints are described by a single smooth function. Very recently,
Schatzman [19] studied the general one-degree-of-freedom problem with arbi-
trary impact constitutive law. In this case, she proved uniqueness under analyticity
assumption on the data.

None of these results has the generality required by Mechanics. The existence
and uniqueness results are proved under assumptions which are obviously not ful-
filled in most discrete mechanical systems which may generally be encountered,
except the last result of Schatzman, but it is limited to the one-degree-of-freedom
problem.

In this paper, the dynamics of discrete mechanical systems with perfect unilat-
eral constraints is formulated in a very general setting. To reach full generality, the
configuration space is supposed to be an arbitrary Riemannian manifold instead of
an Euclidean space. However, only the most elementary level of differential geome-
try is needed. The resulting general evolution problem is studied. The existence and
uniqueness of a solution associated with given initial condition is proved provided
the data are analytic.

In Section 2, we give a precise mathematical definition of what we call discrete
mechanical system and system of bilateral constraints. We also recall some basic
results connected to these definitions that we shall use subsequently.

In Section 3, a formulation of the equations of the dynamics of discrete me-
chanical systems with perfect unilateral constraints is presented. The content of this
section follows very closely the work ofMoreau [12]. It is included since Moreau
restricts himself to completely inelastic impacts. More generality, including the
case of elastic impacts, is obtained here with no supplementary difficulty.

In Section 4, we prove a local existence and uniqueness result concerning the
general problem of the dynamics of discrete mechanical systems with perfect uni-
lateral constraints, under the single assumption that the data are analytic. Existence
and uniqueness of a maximal solution follows immediately. A sufficient condition
to ensure that this maximal solution is defined for all time is also presented.
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In Section 5, three examples are discussed. One is due to Moreau and another
one to Schatzman. They are included for the sake of completeness. The aim of these
examples is to show that the regularity assumptions made in the previous section
are, in some sense, minimal.

In Section 6, we illustrate the generality of the theorems of Section 3 in applying
them to simple examples issuing from Mechanics.

In Section 7, the continuous dependence of the solution on initial conditions is
discussed. Dependence on initial conditions is seen to be not continuous in general.
However, a restrictive case where continuity holds is exhibited.

In Section 8, the numerical computation of the solution is discussed. Problems
arise in connection with non-continuous dependence on initial conditions. How-
ever, we recall an algorithm, which was first described by Moreau, and prove its
convergence in some restrictive cases.

The main results in this paper were announced inBallard [3].

2. Discrete mechanical systems and perfect bilateral constraints

The aim of this section is to give a precise definition of what we call a dis-
crete mechanical system, to introduce notation and to recall some basic results that
we shall use later on. For a comprehensive presentation, the reader is referred to
Arnold [2] andAbraham & Marsden [1].

2.1. Discrete mechanical systems

Definition 1. A discrete mechanical system is:

– A Hausdorff, smooth (of classCp with 2 � p � ∞) connected manifoldQ of
dimensiond whose topology has a countable basis.
The manifoldQ is called the configuration space of the discrete mechanical
system;d is its number of degrees of freedom. The tangent bundleTQ of Q is
called the phase space or the state space. A pointq of Q is a configuration of the
system and a point ofTQ a state of the system. The cotangent bundle is denoted
by T ∗Q; �Q : TQ→ Q and�∗Q : T ∗Q→ Q are the natural projections. The
tangent space atq will be denoted byTqQ, and, to designate an elementv of TQ,
we shall often use the redundant notation(q, v)whereq = �Q(v) andv ∈ TqQ.
A curve onQ (i.e., a continuous mapping from a real intervalI to Q) is also
called a motion of the system. If a motionq : I → Q admits a tangent vector
at t , it will be denoted by(q(t), q̇(t)). This notation is an abuse consecrated by
tradition. The dot will also be used in general to denote a derivative with respect
to time. A local chart onQ is also called a local parametrization of the system.

– A Riemannian metric onQ denoted by(·, ·)q . The mapping

K

{
TQ→ R

+

(q, v) 
→ 1
2(v, v)q = 1

2 ‖v‖2q
(1)

is the kinetic energy of the system.
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– A real intervalI and a smooth (of classCp′ with 1 � p′ � p) mappingf :
TQ× I → T ∗Q such that

∀ (q, v) ∈ TQ, ∀ t ∈ I, �∗Q (f (q, v; t)) = �Q(q, v) = q.

The mappingf is called the virtual power of internal, external and inertial efforts
acting on the system or, in short, the efforts mapping. We will denote by〈·, ·〉q
the local duality product onT ∗q Q × TqQ and� (and� = �−1 its inverse) the
isomorphism of vector bundles fromTQ ontoT ∗Q canonically associated with
the Riemannian metric onQ.

The Fundamental Principle of Dynamics asserts that any motion of the system
is of classC2 and has to satisfy

∀ t ∈ I, �
Dq̇(t)

dt
= f (q(t), q̇(t); t), (2)

whereD
dt

denotes the operator of covariant derivation alongq(t) canonically asso-
ciated with the Riemannian metric ofQ.

In what follows, for(U,ψ) a local chart onQ, (e1(q), e2(q), · · · , ed(q)) and(
e1(q), e2(q), · · · , ed(q)) will denote the dual basis ofTqQ andT ∗q Q naturally

associated with the considered chart;ψ(q), which we shall abusively continue to
denote byq, is an element

(
q1, q2, · · · , qd) of R

d . If q(t) is a smooth motion onQ,(
q̇1(t), q̇2(t), · · · , q̇d (t)) will be the components of its tangent vector (also called

velocity) in the local basis:

q̇(t) = q̇i (t)ei(q(t)),

where Einstein’s summation convention applies. It will always apply unless explic-
itly stated. No confusion induced by this notation should be expected since

∀ i ∈ {1,2, · · · , d} , q̇i (t) = d

dt
qi(t).

In general, we shall use the same notation to denote a function and its representative
in a chart. As usual,gij (q) will denote the covariant components of the metric in
the considered chart andgij (q) its contravariant components, while�i

jk(q) will be
the associated Christoffel symbols:

�i
jk(q) =

1

2
gih(q)

(
∂ghk

∂qj
(q)+ ∂gjh

∂qk
(q)− ∂gjk

∂qh
(q)

)
. (3)

Proposition 2 (Lagrange). Let (U,ψ) be a local chart and q(t) a C2 motion on
Q. One has

�
Dq̇(t)

dt
=
(
d

dt

∂

∂q̇i
K(q(t), q̇(t))− ∂

∂qi
K(q(t), q̇(t))

)
ei(q(t)).
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Proof. It is straightforward since

�
Dq̇

dt
= gij

(
d

dt
q̇j + �

j
kl q̇

kq̇l
)
ei

= gij

(
d

dt
q̇j + 1

2
gjh
(
∂ghl

∂qk
+ ∂ghk

∂ql
− ∂gkl

∂qh

)
q̇kq̇l
)
ei

=
(
gij

d

dt
q̇j + 1

2
δhi

(
∂ghl

∂qk
+ ∂ghk

∂ql
− ∂gkl

∂qh

)
q̇kq̇l
)
ei

=
(
gij

d

dt
q̇j + ∂gij

∂qk
q̇j q̇k − 1

2

∂gjk

∂qi
q̇j q̇k

)
ei

=
(
d

dt

∂

∂q̇i

(
1

2
q̇j gjkq̇

k

)
− ∂

∂qi

(
1

2
q̇j gjkq̇

k

))
ei . ��

Coming back to the equation of motion (2), suppose we are given in supplement
an elementt0 of I , called the initial instant, and an element(q0, v0) of TQ, called
the initial state. Then, we obtain the following Cauchy problemC onQ:

C
{
�
Dq̇
dt
= f (q(t), q̇(t); t)

(q(t0), q̇(t0)) = (q0, v0) .

The Cauchy-Lipschitz theorem guarantees existence and uniqueness of a maximal
C2 solution(Jm, qm) whereJm is an open subinterval ofI including t0, andqm a
C2 motion defined onJm. This expresses the fact that any other solution(J, q) of
C is necessarily a restriction ofqm:

J ⊂ Jm and qm|J = q.

This result allows us to associate with any discrete mechanical system a dynamical
system, that is, a two-real-parameters collectionFs,t of mappings fromTQ into
TQ such that

Ft3,t2 ◦ Ft2,t1 = Ft3,t1 and Ft,t = Id.

To illustrate these basic definitions and results, we give a simple example that
we shall reuse later on in a slightly different context. Consider a plane system of two
homogeneous rigid bars 1 and 2. The bar 1, of lengthl1 and massm1 is connected
to a fixed support by means of a perfect ball-and-socket joint equipped with a spiral
spring of stiffnessk1. The bar 2, of lengthl2 and massm2 is connected to the free
extremity of the bar 1 by means of another ball-and-socket joint also equipped with
a spiral spring of stiffnessk2. A force acts on the free extremity of the bar 2. This
force remains parallel to the direction of the bar 2 and is of constant magnitude
λ > 0 (see Fig. 1). With this system is associated the following discrete mechanical
system:

– The configuration space isR2 equipped with its canonical structure ofC∞ man-
ifold (it is not the 2-torus since we have to count the “number of turns” because
of the spiral springs). This manifold may be represented by a single chart; in
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k1

l1,m1

l2,m2
k2

q1

q2λ

Fig. 1. Geometry of the double pendulum.

other words, there exists a global parametrization of the system. In the sequel,
we shall only use the chart (q1, q2) defined by the angular measures associated
with each of the joints.

– The kinetic energy is

K = 1
2

∫ l1

0

m1

l1
s2
(
q̇1
)2

ds

+ 1
2

∫ l2

0

m2

l2

(
l21

(
q̇1
)2 + s2

(
q̇2
)2 + 2l1s cos

(
q1 − q2

)
q̇1q̇2

)
ds

= 1
2

(
1
3m1l

2
1

(
q̇1
)2 +m2l

2
1

(
q̇1
)2

+ 1
3m2l

2
2

(
q̇2
)2 +m2l1l2 cos

(
q1 − q2

)
q̇1q̇2

)
.

This kinetic energy defines a Riemannian structure on the configuration space.
The expression of the metric tensor in the considered chart is

g11
(
q1, q2

) = ( 1
3m1 +m2

)
l21 ,

g12
(
q1, q2

) = 1
2m2l1l2 cos

(
q1 − q2

)
= g21

(
q1, q2

)
,

g22
(
q1, q2

) = 1
3m2l

2
2 .

– The efforts mapping has for expression in the considered chart:

f (q, q̇; t) =
[
λl1 sin

(
q1 − q2

)
− (k1 + k2) q

1 + k2q
2
]
e1(q)

+
[
k2q

1 − k2q
2
]
e2(q).
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Proposition 2 allows us to form easily the equation of motion in the considered
chart:


( 1
3m1 +m2

)
l21 q̈

1 + 1
2m2l1l2 cos

(
q1 − q2

)
q̈2 + 1

2m2l1l2 sin
(
q1 − q2

) (
q̇2
)2
,

= λl1 sin
(
q1 − q2

)− (k1 + k2) q
1 + k2q

2

1
2m2l1l2 cos

(
q1 − q2

)
q̈1 + 1

3m2l
2
2 q̈

2 − 1
2m2l1l2 sin

(
q1 − q2

) (
q̇1
)2

= k2
(
q1 − q2

)
.

(4)

The deterministic conclusion of the Cauchy-Lipshitz theorem on the dynamic
evolution of the system is illusive. Indeed, if we add to the differential system (4)
the initial condition

q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0,

it is easily seen that the maximal solution is the identically vanishing function on
the real line. But, Poincaré-Lyapunov theory shows that this solution is unstable for
some value of λ and the real motion will differ in this case from this trivial solution.
The correct analysis of the motion should in this case refer to some investigation of
topological nature on the dynamical system generated by the equation of motion. In
any case, one has to abandon the objective of predicting exactly the motion of the
system. One has to be content with only partial information on this motion: this is a
consequence of the over-idealization made during the modelling process. However,
the Cauchy-Lipschitz theorem is at the basis of any further analysis which has to be
performed on the equation of motion. This fact will be discussed with more details
in Section 7 in the context of the dynamics of discrete mechanical systems with
perfect unilateral constraints.

2.2. Bilateral constraints

One may introduce on a discrete mechanical system another type of effort,
not taken into account by the efforts mapping f . Indeed, one may specify some
efforts by their kinematical effects: one speaks of constraint. A constraint induces
a restriction on the admissible motions of the system which is expressed by means
of a finite number n of smooth real functions defined on Q:

∀ i ∈ {1, 2, · · · , n} , ϕi(q) = 0. (5)

The word constraint in the singular will be used indifferently to refer to either
a constraint specifically associated with a single function ϕi or to the constraint
associated with all the functions ϕi . In this terminology, a set of constraints is still a
constraint. In formula (5), the constraint is said to be holonomic (because it applies
on the configuration and not on the state), scleronomic (because it does not depend
explicitly on time) and bilateral (because it is expressed only by equalities and not
inequalities). We denote by S the following subset of Q:

S = {q ∈ Q ; ∀ i ∈ {1, 2, · · · , n} , ϕi(q) = 0} ,
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and we add the assumption that the functions ϕi are functionally independent:
for all q in S, the dϕi(q) (i ∈ {1, 2, · · · , n}) are linearly independent in T ∗Q.
As a consequence, S is a submanifold of Q of dimension d − n. The realization
of kinematical specifications (5) necessarily involves a virtual power of reaction
efforts mapping R taking values in T ∗Q. It is a priori unknown.

Now, consider an initial instant t0 in I and an initial state (q0, v0) compatible
with the constraint (i.e., (q0, v0) ∈ T S ⊂ TQ). The evolution problem associated
with the discrete mechanical system with bilateral constraint is: find T > t0, q ∈
C2 ([t0, T [;Q) and R ∈ C0 ([t0, T [; T ∗Q) such that


∀ t ∈ [t0, T [, �

Dq̇(t)
dt
= f (q(t), q̇(t); t)+ R(t),

∀ t ∈ [t0, T [, q(t) ∈ S,
(q(t0), q̇(t0)) = (q0, v0).

These equations fail to determine the motion of the system: one has to supply addi-
tional information on the mapping R by means of a phenomenological assumption
on the way the constraint acts. A constraint will be said to be perfect if the associ-
ated reaction efforts do not produce work in any virtual velocity compatible with
the constraint

∀ v ∈ {v ∈ TqM ∀ i ∈ {1, 2, · · · , n} , 〈dϕi(q), v〉q = 0
} � T S, 〈R, v〉q = 0.

As a result:

∃ (λi)i=1,2,··· ,n ∈ R
n R =

n∑
i=1

λidϕi(q).

Therefore, if the bilateral constraint is perfect, the evolution problem may be written
as: find T > t0, q ∈ C2 ([t0, T [;Q) and (λi)i=1,2,··· ,n ∈

(
C0 ([t0, T [;R)

)n
such

that

EQ



∀ t ∈ [t0, T [, �

DQq̇(t)

dt
= f (q(t), q̇(t); t)+∑n

i=1 λi(t)dϕi(q(t)),

∀ t ∈ [t0, T [, q(t) ∈ S,
(q(t0), q̇(t0)) = (q0, v0),

where DQ

dt
is the operator of covariant derivation on Q.

Let q be a point of Q, v a vector of TqQ, and E a subspace of TqQ. The orthog-
onal projection of v on E for the scalar product of TqQ induced by the Riemannian
structure of Q will be denoted by Projq [v;E]. Similarly, Proj∗q

[
v∗;E∗] will de-

note the orthogonal projection of the 1-form v∗ on the subspace E∗ of T ∗q Q. Then,
consider the evolution problem ES : find T > t0 and q ∈ C2 ([t0, T [; S) such that

ES


∀ t ∈ [t0, T [, �

DSq̇(t)
dt
= Proj∗q(t)

[
f (q(t), q̇(t); t); T ∗q(t)S

]
,

(q(t0), q̇(t0)) = (q0, v0),
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where T ∗q S is considered as a subspace of T ∗q Q and DS

dt
is the operator of covariant

derivation on S equipped with the Riemannian structure inherited from that of Q.
We have:

Proposition 3. Problems EQ and ES are equivalent: any solution of EQ generates
a solution of ES and vice versa. Moreover, if Q and the functions ϕi are of class Cp

(p � 2), and f of class Cp−1, then the unique maximal solution of EQ and ES is of
class Cp. If Q, f and the ϕi are analytic functions, then so is the maximal solution
of EQ and ES .

Proof. First, let us identify TqS and T ∗q S as subspaces of TqQ and T ∗q Q. We have
T ∗q S = �

(
TqS
)
. Also T ∗q S and

⊕n
i=1 R dϕi(q) are complementary orthogonal

subspaces of T ∗q Q and (see Chavel [7, p. 54])

DSq̇

dt
= Projq

[
DQq̇

dt
; TqS

]
.

Now, let q be a solution of EQ:

Proj∗q
[
�
DQq̇

dt
; T ∗q S

]
= Proj∗q

[
f (q, q̇; t)+

n∑
i=1

λidϕi(q); T ∗q S
]
.

But,

Proj∗q

[
f (q, q̇; t)+

n∑
i=1

λidϕi(q); T ∗q S
]
= Proj∗q

[
f (q, q̇; t); T ∗q S

]
,

and,

Proj∗q
[
�
DQq̇

dt
; T ∗q S

]
= �Projq

[
DQq̇

dt
; TqS

]
= �

DSq̇

dt
,

which show that q is a solution of ES .
Reciprocally, let q be a solution of ES . From

�
DSq̇

dt
= �

DQq̇

dt
+

n∑
i=1

αidϕi(q),

Proj∗q
[
f (q, q̇; t); T ∗q S

]
= f (q, q̇; t)+

n∑
i=1

βidϕi(q),

we deduce the existence of n functions λi : [t0, T [→ R such that

�
DQq̇

dt
= f (q, q̇; t)+

n∑
i=1

λidϕi(q).



208 Patrick Ballard

It follows that


...

λi
...


 =




...

· · · (dϕi(q), dϕj (q))q · · ·
...



−1

...(
�
DQq̇

dt
− f (q, q̇; t), dϕi(q)

)
q

...


 ,

where the Gram matrix is invertible because of the assumption on the functions
ϕi . This shows that the functions λi are uniquely determined and that they are
continuous. Therefore, q generates a solution of EQ.

The second part of Proposition 3 follows from standard results on ordinary
differential equations (see, for example, Coddington & Levinson [8]).

The moral of Proposition 3 is that adding a perfect bilateral constraint to a
discrete mechanical system generates another discrete mechanical system with
smaller number of degrees of freedom.

3. Discrete mechanical systems with perfect unilateral constraints

This section deals with the formulation of the equation of motion of a discrete
mechanical system when some perfect unilateral constraints are added.All the basic
ideas of this section are due to Moreau [12]. It is included since Moreau restricts
himself to the special case of completely inelastic impacts and also because Moreau
does not consider the general case of an arbitrary configuration manifold equipped
with an arbitrary Riemannian structure.

3.1. Kinematical setting

Consider a discrete mechanical system according to Section 2.1 and suppose
that a finite number n of unilateral constraints are taken into account:

∀ i ∈ {1, 2, · · · , n} , ϕi(q) � 0, (6)

where the ϕi : Q→ R are C1 functions. The closed subset A of Q defined by

A = {q ∈ Q ∀ i ∈ {1, 2, · · · , n} , ϕi(q) � 0
}

is called the admissible configuration set. We define the mapping J by

J

{
Q→ P ({1, 2, · · · , n}) ,
q 
→ J (q) = {i ∈ {1, 2, · · · , n} ϕi(q) � 0

}
,

where P ({1, 2, · · · , n}) denotes the set of all subsets of {1, 2, · · · , n}. The set
J (q) is called the set of all active constraints in the configuration q. As in the case
of bilateral constraints, a functionally independence assumption is made on the
functions ϕi :

∀ q ∈ A, (dϕi(q))i∈J (q) is linear independent in T ∗q Q. (7)
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As an easy consequence of the regularity assumptions made on the functions ϕi ,

the boundary ∂A and the interior
◦
A of A in Q are such that

∂A ⊂⋃n
i=1 ϕ

−1
i ({0}) , (8)

◦
A= J−1 ({∅}) . (9)

Consider a motion in A (i.e., a continuous mapping from a real interval I to
A) and assume that a right velocity q̇+(t) ∈ Tq(t)Q exists for all instant t of I . We
necessarily have

∀ i ∈ {1, 2, · · · , n} , ∀ t ∈ I, ϕi(q(t)) = 0 �⇒ 〈dϕi(q(t)), q̇+(t)〉q(t) � 0

or, equivalently,

∀ i ∈ {1, 2, · · · , n} , ∀ t ∈ I, ϕi(q(t)) = 0 �⇒ (∇ϕi(q(t)), q̇+(t))q(t) � 0,

where ∇ϕi(q) is the gradient of ϕi at q defined by

∇ϕi(q) = � (dϕi(q)) .

Thus, if the system has configuration q, then the right velocity q̇+ is necessarily in
the closed convex cone V (q) of TqQ defined by:

V (q) = {v ∈ TqQ ∀ i ∈ J (q), 〈dϕi(q), v〉q � 0
}
.

The cone V (q) is called the cone of admissible right velocities at the configuration
q. In particular,

q ∈ ◦A (i.e. J (q) = ∅) �⇒ V (q) = TqQ.

Similarly, if a left velocity q̇− ∈ TqQ exists, then,

q̇− ∈ −V (q).

3.2. Equation of motion

As for bilateral constraints, the realization of the constraints induces some re-
action effort R. The following hypothesis are made:

– H1: the unilateral constraints are of type contact without adhesion:

∀ v ∈ V (q), 〈R, v〉q � 0,

– H2: the unilateral constraints are perfect:

∀ v ∈ {v ∈ TqM ; ∀ i ∈ J (q), 〈dϕi(q), v〉q = 0
}
, 〈R, v〉q = 0.
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There results from hypothesis H1 and H2 and Farkas’ lemma (see, e.g., Rock-
afellar [16], p. 200) the following:

∃ (λi)i=1,2,··· ,n ∈ R
n, R =

n∑
i=1

λidϕi(q),

i ∈ J (q)⇒ λi � 0,

i "∈ J (q)⇒ λi = 0.

Thus, the reaction effort R ∈ T ∗Q must be such that

−R ∈ N∗(q) def=
{

n∑
i=1

λidϕi(q) ∀ i ∈ J (q), λi � 0, ∀ i "∈ J (q), λi = 0

}
,

(10)

where N∗(q) is a closed convex cone of T ∗q Q and the polar cone of V (q) in the

duality
(
TqQ, T ∗q Q

)
. We will also have to consider the polar cone N(q) of V (q)

for the Euclidean structure of TqQ:

N(q) =
{

n∑
i=1

λi∇ϕi(q) ∀ i ∈ J (q), λi � 0, ∀ i "∈ J (q), λi = 0

}
.

Now, consider a motion q(t) starting at q0 ∈
◦
A at time t0 with velocity v0.

Assumed to be continuous, q(t) remains in
◦
A on a right neighborhood of t0. By

formula (10), the reaction effort R vanishes as long as q(t) is in
◦
A and the motion

is governed by the ordinary differential equation:

�
D

q̇
dt = f (q, q̇; t),

(q(t0), q̇(t0)) = (q0, v0).

Suppose that the solution of this Cauchy problem meets ∂A at some instant greater
than t0. Denote by T the smallest of these instants. The motion admits a left velocity
vector v−T at time T . Of course, it may happen that v−T "∈ V (q(T )). In this case, no
differentiable prolongation of the motion can exist in A for t greater than T . The
requirement of differentiability has to be dropped. An instant such T is called an
instant of impact. However, we are still going to require the existence of a right
velocity vector q̇+(t) ∈ V (q(t)) at every instant t . The right velocity need not be
a continuous function of time and the equation of motion,

�
Dq̇+

dt
= f (q, q̇+; t)+ R,

should be understood in the sense of Schwartz’s distribution. Actually, we require
R to be a vector valued measure rather than a general distribution. We denote by
MMA(I ;Q) (motions with measure acceleration) the set of all absolutely contin-
uous motions q(t) from a real interval I to Q admitting a right velocity q̇+(t) at
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every instant t of I and such that the function q̇+(t) has locally bounded variation
over I . Naturally, bounded variation is classically defined only for functions taking
values in a normed vector space. However, for any absolutely continuous curve
q(t) on a Riemannian manifold, parallel translation along q(t) classically provides
intrinsic identification of the tangent spaces at different points of the curve and so,
the definitions can easily be carried over to this case. The precise mathematical
setting is postponed to the appendix. The reader will notice from the appendix that
with any motion q ∈ MMA(I ;Q) is intrinsically associated the covariant Stieljes
measure Dq̇+ of its right velocity q̇+. The equation of motion takes the form

�Dq̇+ = f (q, q̇+; t) dt + R,

where dt denotes the Lebesgue measure. We have to give a precise meaning to
condition (10) with R being a vector valued measure. By convention, we shall take

R ∈ −N∗(q(t))
to mean: if θ ∈ L1

loc (I, q, |R| ; T ∗Q) is the density of measure R with respect to
its modulus measure |R| defined by Proposition 25 of the appendix, then

θ(t) ∈ −N∗(q(t)) for |R| -a.e. t ∈ I. (11)

This requirement is easily seen to be equivalent to the requirement of the existence
of n nonpositive real measures λi such that

R =∑n
i=1 λi dϕi(q(t)),

∀ i ∈ {1, 2, · · · , n} , Supp λi ⊂ {t;ϕi(q(t)) = 0} . (12)

Using this convention, the final form of the equation of motion is:

R = �Dq̇+ − f (q(t), q̇+(t); t) dt ∈ −N∗(q(t)) (13)

3.3. The impact constitutive equation

We begin this section with an example. Consider the one-degree-of-freedom
mechanical system whose configuration space is R equipped with its canonical
Euclidean structure. The efforts mapping f vanishes identically and the unilateral
constraint is represented by the single function ϕ1(q) = q so that the admissible
configuration setA is R

−. At initial time t0 = 0, we consider an initial state (q0, v0)

such that q0 < 0 and v0 > 0. It is readily seen from the equation of motion (13)
that an impact necessarily occurs at time t = −q0/v0. At this time, the left velocity
is v0. But, the right velocity can take any negative value and whatever it is, it is
compatible with the equation of motion.

The reason for this indetermination lies in the phenomenological nature of the
interaction of the system with the obstacle. Thus, we are led to make the following
general hypothesis:
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– H3: the interaction of the system with the obstacle at time t is completely
determined by the present configuration q(t) and the present left velocity q̇−(t).
In other words, we postulate the existence of a mapping F : TQ → TQ

describing the interaction of the system with the obstacle during an impact:

∀ t, q̇+(t) = F (q(t), q̇−(t)) . (14)

To ensure compatibility with the equation of motion (13), the mapping F should
satisfy:

∀ q ∈ A, ∀ v− ∈ −V (q),
F (q, v−) ∈ V (q),

F (q, v−)− v− ∈ −N(q).
(15)

First, consider the particular case of a motion with no more than one active
constraint at any time (∀ t, CardJ (q(t)) � 1). The normal cone N(q(t)) is either
{0} or a half-line and hypothesis H3 is equivalent to postulating the existence of an
impact function φ : TQ→ R such that

∀ t, q̇+(t) = q̇−(t)− [1+ φ
(
q(t), q̇−(t)

)]
Projq(t)

[
q̇−(t);N(q(t))

]
. (16)

Equation (16) admits the equivalent form:

q̇+(t) = Projq(t)
[
q̇−(t);V (q(t))

]− φ
(
q(t), q̇−(t)

)
Projq(t)

[
q̇−(t);N(q(t))

]
.

(17)

For the general case where more than one constraint may be active at a time,
we recall the following (Moreau [11]):

Lemma 4 (Moreau). Let V and N be two closed convex polar cones of a real
Hilbert space H . Then,

∀ x ∈ H, x = Proj[x;V ] + Proj[x;N ] and (Proj[x;V ],Proj[x;N ])H = 0.

As a consequence, the ‘ impact constitutive equations’ (16) and (17) still make
sense and are still equivalent when more than one constraint may be active at a
time. Therefore, it is natural to retain only the particular forms (16) and (17) of the
general impact constitutive equation (14). As a result of this further hypothesis, the
phenomenology of the interation of the system with the obstacle during an impact
is described by the single impact function φ : TQ → R. The impact function
is also often called the “ restitution coefficient” . Naturally, the impact function φ

cannot be arbitrary and has to satisfy some consistency conditions. For example,
the normality condition in (15) requires

∀ q, q̇−, φ
(
q, q̇−

)
� −1.

But, this is not enough, we have to impose supplementary conditions on φ in order
to ensure that

q̇− ∈ −V (q) �⇒ q̇+ ∈ V (q). (18)

With respect to this, we have:
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Proposition 5. Let V and N be two closed convex polar cones of a real Hilbert
space H . Consider v− ∈ −V such that Proj[v−;N ] "= 0 and φ ∈ R. Then,[

v+ = v− − (1+ φ)Proj[v−;N ] ∈ V ]⇐⇒ [φ � 0
]
.

Proof. For the “ if” part, suppose φ � 0. By Lemma 4, one gets

Proj[v−;N ] = v− − Proj[v−;V ] ∈ −V.
But,

v+ = Proj[v−;V ] + φ
(−Proj[v−;N ]) ,

and therefore, v+ ∈ V , since V is a convex cone.
For the “only if” part, we have by hypothesis,

Proj[v−;V ] − φProj[v−;N ] ∈ V.
Evaluating the scalar product with Proj[v−;N ] and using Lemma 4, one gets

−φ ∥∥Proj[v−;N ]∥∥2
H

� 0,

and therefore the desired conclusion φ � 0. ��
There results from Proposition 5, the requirement that the impact function φ

should be nonnegative. This consistency assumption ensures that conditions (15)
and (18) will automatically be fulfilled.

At this stage, it should be underlined that hypothesis H3 implies the general
forms (16) or (17) for the impact constitutive equation only in the restrictive case
where only at most one constraint is active at a time. In case of multiple impacts, the
choice we made is only motivated by aesthetic considerations and also to fix ideas,
since the concept of restitution coefficient is so firmly anchored in people’s minds.
We shall discuss more completely the relevance of that choice in Section 6.4.

Now, let us look at another example. Consider the one-degree-of-freedom dis-
crete mechanical system whose configuration space is R equipped with its canonical
structure of Riemannian manifold. The efforts mapping is supposed to be constant:
f (q, q̇; t) ≡ 2. To this discrete mechanical system, we add the unilateral constraint
described by the single function ϕ1(q) = q. Thus, A = R

−. The impact constitu-
tive equation is given by formula (16) where the impact function is supposed to be
the constant 1/2: φ ≡ 1/2. This mechanical system is a formal description of the
physical occurence of a single particle subjected to gravity and bouncing on the
floor. Consider the initial instant t0 = 0 and the initial state (q0, v0) = (−1, 0). It
is readily seen that the function q : R+ → R

− defined by

∀ t ∈ [0, 1], q(t) = t2 − 1,

∀ t ∈ [1, 2], q(t) = t2 − 3t + 2,

∀ t ∈
[
3− 1

2n−1 , 3− 1
2n

]
, q(t) = t2 + (−6+ 3

2n
)
t +
(

3− 1
2n−1

) (
3− 1

2n
)
,

∀ t ∈ [3,+∞[, q(t) = 0
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(n ∈ N) belongs to MMA(R+;R−), satisfies the equation of motion (13) and also
the impact constitutive equation (16). Note, by the way, that this motion exhibits an
infinite number of impacts on a compact time subinterval. It could easily be proved
that no motion, defined on [0,±∞[, with finite number of impact on every compact
interval can exist. Now, we are going to analyse what happens when the flow of
time is reversed. Let us define q ′ by

q ′
{ [0, 4] → R

−

t 
→ q(4− t).

Considering the initial state (q0, v0) = (0, 0) at t0 = 0, it is easily seen that q ′
satisfies both the equation of motion and the impact constitutive equation as soon
as the impact function is replaced by φ′ ≡ 2. But, q ′′ ≡ 0 is also seen to satisfy the
same initial condition, the equation of motion and the impact constitutive equation.
To eliminate this pathological nonuniqueness, we are led to add the following
hypothesis:

– H4: the kinetic energy of the system can not increase during an impact:

∀ t, 1
2

∥∥q̇+(t)∥∥2
q(t)

� 1
2

∥∥q̇−(t)∥∥2
q(t)

. (19)

Taking into account the impact constitutive equation (16), condition (19) can be
rewritten as

Projq
[
q̇−;V ]2 + φ2Projq

[
q̇−;N]2 � Projq

[
q̇−;V ]2 + Projq

[
q̇−;N]2 ,

which implies φ � 1 as soon as Projq
[
q̇−;N] "= 0.

The final form of the impact constitutive equation is therefore:

∀ t, q̇+(t) = q̇−(t)− [1+ φ
(
q(t), q̇−(t)

)]
Projq(t)

[
q̇−(t);N(q(t))

]
,

where the impact function φ is an arbitrary function from TQ to [0, 1]. The two
extreme cases φ ≡ 0 and φ ≡ 1 are called, respectively, the completely inelastic
and the elastic impact function.

3.4. Formulation of the evolution problem

In this subsection, the results of the previous subsections are brought together
in order to formulate the resulting evolution problem which will be studied in the
subsequent sections. We add an assumption on the regularity of the data: they are
supposed to be real-analytic. This assumption will be motivated by the counterex-
amples of Section 5. The precise mathematical setting is:

– Q is an analytic Riemannian manifold of dimension d.
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– ϕi (i = 1, 2, · · · , n) are n real analytic functions defined on Q. We define

J (q) = {i ∈ {1, 2, · · · , n} ϕi(q) � 0
}
,

A = {q ∈ Q ∀ i ∈ {1, 2, · · · , n}, ϕi(q) � 0
}
,

V (q) = {v ∈ TqQ ∀ i ∈ J (q), 〈dϕi(q), v〉q � 0
}
,

T A+ = {(q, v) ∈ TQ q ∈ A and v ∈ V (q)} ,
T A− = {(q, v) ∈ TQ; q ∈ A and v ∈ −V (q)} ,

N∗(q) =
{

n∑
i=1

λidϕi(q); ∀ i ∈ J (q), λi � 0, ∀ i "∈ J (q), λi = 0

}
,

N(q) =
{

n∑
i=1

λi∇ϕi(q); ∀ i ∈ J (q), λi � 0, ∀ i "∈ J (q), λi = 0

}
.

The functions ϕi are assumed to be functionally independent in the sense that

∀ q ∈ A, (dϕi(q))i∈J (q) is linearly independent in T ∗q Q. (20)

– The impact function φ is an arbitrary function from TA− into [0, 1]. No regu-
larity assumption is made on φ.

– I is a real interval and O an open neighborhood of TA+ in TQ and the efforts
mapping is supposed to be an analytic mapping from O× I into T ∗Q such that

∀ (q, v) ∈ O, ∀ t ∈ I, �∗Q (f (q, v; t)) = �Q(q, v) = q.

– We are given an initial time t0 in I such that I contains a right neighborhood of
t0 and an initial state (q0, v0) in TA+.

According to the previous subsections, the evolution problem associated with
the dynamics of discrete mechanical systems with perfect unilateral constraints can
be formulated as:

Problem P:. find T ∈ I ∪ {+∞} , T > t0 and q ∈ MMA([t0, T [;Q) such that:

• (q(t0), q̇+(t0)) = (q0, v0), (21)

• ∀ t ∈ [t0, T [
(
q(t), q̇+(t)

) ∈ TA+, (22)

• R = �Dq̇+ − f
(
q, q̇+; t) dt ∈ −N∗(q) for |R| -a.e. t ∈ [t0, T [, (23)

• ∀ t ∈]t0, T [, q̇+ = q̇− − [1+ φ(q, q̇−)
]

Projq
[
q̇−;N(q)

]
, (24)

where equation (23) is to be understood in the sense of convention (11).

The existence and uniqueness of solutions for problem P will be studied in
Section 4. Before studying this question, let us state two almost obvious results.

Proposition 6. Any solution (T , q) of problem P satisfies:

– SuppR ⊂ {t ∈ [t0, T [; q(t) ∈ ∂A}.
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– For all open subinterval J of [t0, T [ such that q(J ) ⊂ ◦A, q|J is analytic and

�
Dq̇(t)

dt
= f (q(t), q̇(t); t) , ∀ t ∈ J.

Proof. Let J be an open subinterval of [t0, T [ such that q(J ) ⊂ ◦A. By equality (9),
we have

∀ t ∈ J, N∗(q(t)) = {0}.

As a consequence of relation (23) and convention (11), we get:

∀ϕ ∈ C0
c

(
J, q|J ; TQ

)
,

∫
J

〈ϕ(t), dR〉q(t) = 0,

which is R|J = 0 or SuppR ⊂ [t0, T [\J . The first item of Proposition 6 follows.
We have

�Dq̇+|J = f (q, q̇+; t) dt,

which is,

Dq̇+|J = � ◦ f (q, q̇+; t) dt.

Proposition 28 shows that q̇+|J is locally absolutely continuous, and, therefore,

∀ t ∈ J, q̇+(t) = q̇−(t) = q̇(t),

by Proposition 32. We get

�
Dq̇

dt
= �

Dq̇+

dt
= f (q, q̇; t), for dt -a.e. t ∈ J,

again by Proposition 28. The conclusion follows by use of classical results on
ordinary differential equations. ��
Proposition 7 (Energy inequality). Any solution (T , q) of problem P satisfies the
following

∀ t1, t2 ∈ [t0, T [, t1 � t2,

K
(
q(t2), q̇

+(t2)
)−K

(
q(t1), q̇

+(t1)
) = 1

2

∥∥q̇+(t2)∥∥2
q(t2)
− 1

2

∥∥q̇+(t1)∥∥2
q(t1)

�
∫ t2

t1

〈f (q(s), q̇+(s); s) , q̇+(s)〉q(s) ds.
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Proof. We have the following equality between real measures:(
q̇+(t)+ q̇−(t)

2
,Dq̇+

)
q(t)

=
〈
q̇+(t)+ q̇−(t)

2
, f
(
q(t), q̇+(t); t)〉

q(t)

dt

+
〈
q̇+(t)+ q̇−(t)

2
, R

〉
q(t)

.

Integrating over ]t1, t2] and using Propositions 30 and 32, we get

1
2

∥∥q̇+(t2)∥∥2
q(t2)
− 1

2

∥∥q̇+(t1)∥∥2
q(t1)

=
∫
]t1,t2]

〈
q̇+(t)+ q̇−(t)

2
, f
(
q(t), q̇+(t); t)〉

q(t)

dt

+
∫
]t1,t2]

〈
q̇+ + q̇−

2
, dR

〉
q

.

(25)

Consider

D =
{
t ∈]t1, t2] ; q̇+(t)+ q̇−(t)

2
"= q̇+(t)

}
;

D is (at most) countable and therefore Lebesgue-negligible. The result is∫
D

〈
q̇+(t)+ q̇−(t)

2
, f
(
q(t), q̇+(t); t)〉

q(t)

dt = 0.

Similarly,

∫
]t1,t2]\D

〈
q̇+(t)+ q̇−(t)

2
, f
(
q(t), q̇+(t); t)〉

q(t)

dt

=
∫ t2

t1

〈
q̇+(t), f

(
q(t), q̇+(t); t)〉

q(t)
dt

Let us denote by θR the density of measure R with respect to its modulus
measure |R| provided by Proposition 26. Since

∀ t ∈]t1, t2] \D,
q̇+(t)+ q̇−(t)

2
= q̇+(t) = q̇−(t),

we get∫
]t1,t2]\D

〈
q̇+(t)+ q̇−(t)

2
, dR

〉
q(t)

=
∫
]t1,t2]\D

〈
q̇+(t), θR(t)

〉
q(t)

d |R|

=
∫
]t1,t2]\D

〈
q̇−(t), θR(t)

〉
q(t)

d |R| . (26)

But

θR(t) ∈ −N∗(q(t)) for |R| -a.e. t ∈]t1, t2] \D,
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and therefore the second integral in (26) is nonnegative whereas the third is non-
positive since V (q(t) and N∗(q(t)) are polar cones. As a consequence:

∫
]t1,t2]\D

〈
q̇+(t)+ q̇−(t)

2
, dR

〉
q(t)

= 0.

The following integral,

∫
D

〈
q̇+(t)+ q̇−(t)

2
, dR

〉
q(t)

=
∫
D

(
q̇+(t)+ q̇−(t)

2
,Dq̇+

)
q(t)

= 1

2

∑
t∈D

(∥∥q̇+(t)∥∥2
q(t)
− ∥∥q̇−(t)∥∥2

q(t)

)
,

is nonpositive by virtue of hypothesis H4.
The proposition results from equation (25) and from the estimation of these

four integrals. ��

4. Existence and uniqueness of solutions for problem P

This section is devoted to proving existence and uniqueness of a maximal so-
lution for problem P . Sufficient conditions to ensure that this maximal solution
is defined for all time are also given. More precisely, we are going to prove the
following results.

Theorem 8. There is local existence and uniqueness of solution of problem P in
the sense that:

– There exists a solution (T , q) of problem P . Actually, there exists T > t0 and an
analytic function q : [t0, T [→ Q which is a solution of problem P .

– If (T1, q1) and (T2, q2) are two solutions of problem P , then

∃ T , t0 < T � min{T1, T2}, q1|[t0,T [ = q2|[t0,T [ .

Then, a standard argument yields:

Corollary 9. Problem P admits a unique maximal solution (Tm, qm) (t0 < Tm �
+∞) in the sense that if (T , q) denotes an arbitrary solution of problem P , then

T � Tm and q = qm|[t0,T [ .

Moreover, for each t ∈ [t0, Tm[, there exists a right neighborhood [t, t + η[ of t
such that the restriction of qm to [t, t + η[ is analytic.

We shall say that the maximal solution of problem P is global if it is defined on
I ∩ [t0,+∞[.
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Theorem 10. Assume that the configuration space Q is a complete Riemannian
manifold and that the efforts mapping f admits the estimate:

∀ (q, v) ∈ TA+, for dt-a.e. t ∈ I ∩ [t0,+∞[,
‖f (q, v; t)‖q � l(t)

(
1+ d(q, q0)+ ‖v‖q

)
,

where l(t) is a (necessarily nonnegative) function ofL1
loc(R;R). Then, the maximal

solution of problem P is global.

Let us say a word about how the proof of these results is going to be structured.
First, we construct Ta > t0 and an analytic function qa : [t0, Ta[→ Q such that
(Ta, qa) is a solution of problem P: this is the object of Section 4.1. In Section 4.2,
we prove that if q ∈ MMA([t0, T [;Q) is any other solution, then q and qa coincide
identically on a right neighborhood of t0. This is the most difficult part to prove but
it is also the crucial one. For the proof of Theorem 10, we first notice that for q ∈
MMA([t0, T [;Q) (T finite) satisfying the equation of motion (23), boundedness
of q̇+ implies finiteness of Var

(
q̇+; [t0, T [

)
: this is the object of Proposition 18 of

Section 4.3. Note that the impact constitutive equation (24) plays no role in this
property. Then, Theorem 10 is deduced from the energy inequality (Proposition 7)
and the Gronwall-Bellman lemma.

In the proof of these results, we shall use the following notation. If J is any
subset of {1, 2, · · · , n}, Gram(J ) will be the Gram matrix:

Gram(J ) =




...

· · · (∇ϕi(q0),∇ϕj (q0)
)
q0
· · ·

...




i,j∈J

.

If x is an arbitrary element of R
J whose components are xi with i ∈ J , then (xi)i∈J

will denote the columm matrix,

(xi)i∈J =




...

xi
...




i∈J

,

and T(xi)i∈J the associated row matrix,
T(xi)i∈J =

( · · · xi · · · )i∈J .
4.1. Proof of local existence

Local existence is rather easy to prove in the setting of analytic data. The proof
is a little bit lengthy but involves no specific difficulty. We begin with technical
lemmas.

Let X(t) be a C∞ vector field along a C∞ curve q(t) on Q. The covariant
derivative D

dt
X(t) of X along q defines a C∞ vector field along q. So, one may

consider its covariant derivative along q which will be denoted by D2

dt2
X(t). By

induction, we get the definition of Di

dti
X(t) (i ∈ N

∗). We have:
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Lemma 11. Let X be a C∞ vector field on Q and qI, qII two C∞ curves on Q.
With m being a nonnegative integer, one assumes that

qI(t0) = qII(t0), q̇I(t0) = q̇II(t0),

and

∀ i ∈ {1, 2, · · · ,m} , Di

dt i
q̇I(t0) = Di

dti
q̇II(t0).

Then,

∀ i ∈ {1, 2, · · · ,m+ 1} , Di

dt i
X(qI(t0)) = Di

dti
X(qII(t0)).

Proof. Consider a local chart at qI(t0) = qII(t0). If q(t) is either qI(t) or qII(t):

q̇(t) = q̇i (t)ei(q(t)),

X(q(t)) = Xi(q(t))ei(q(t)),

D

dt
X(q(t)) =

[(
∇Xi(q(t)), q̇(t)

)
q(t)
+ �i

jk(q(t))X
j (q(t))q̇k(t)

]
ei(q(t)).

Then,

D2

dt2
X(q(t)) =

[(
D
dt
∇Xi(q(t)), q̇(t)

)
q(t)
+ (∇Xi(q(t)), D

dt
q̇(t)
)
q(t)

+
(
∇�i

jk(q(t)), q̇(t)
)
q(t)

Xj (q(t))q̇k(t)

+ �i
jk(q(t))

(∇Xj(q(t)), q̇(t)
)
q(t)

q̇k(t)

+ �i
jk(q(t))X

j (q(t))

((
Dq̇(t)
dt

)k − �k
lm(q(t))q̇

l(t)q̇m(t)

)

+ �i
jk(q(t))

(
DX(q(t))

dt

)j
q̇k(t)

]
ei(q(t)),

which gives the desired conclusion for the case m = 1. For arbitrary m, an easy
induction based on the same type of computation in a local chart shows the existence
of functions hi : (TQ)i−1 → TQ independent of the considered curve q(t) and
such that

DiX(q(t))

dt i
= hi

(
q(t), q̇(t),

Dq̇(t)

dt
, · · · , D

i−1q̇(t)

dt i−1

)
. ��

Exactly the same technique applies to prove

Lemma 12. Let X : TQ× I → TQ a C∞ mapping such that: �Q (X(q, v; t)) =
�Q(q, v) = q, where I denotes a real interval containing t0. Let m be an arbitrary
nonnegative integer and qI, qII two C∞ curves on Q such that

qI(t0) = qII(t0), q̇I(t0) = q̇II(t0),
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and

∀ i ∈ {1, 2, · · · ,m} , Di

dt i
q̇I(t0) = Di

dti
q̇II(t0).

Then,

∀ i ∈ {1, 2, · · · ,m} , Di

dt i
X
(
qI(t0), q̇

I(t0); t0
)
= Di

dti
X
(
qII(t0), q̇

II(t0); t0
)
.

Lemma 13. Consider (q0, v0) ∈ TA+ and J ⊂ J (q0) an arbitrary subset of{
i ∈ J (q0); 〈dϕi(q0), v0〉q0 = 0

}
.

We denote by qu and qc some local solutions of problems:

Eu
{
�
Dq̇u
dt
= f (qu, q̇u; t),

(qu(t0), q̇u(t0)) = (q0, v0),

Ec



�
Dq̇c
dt
= f (qc, q̇c; t)+∑i∈J (q0)

λi(t)dϕi(qc),

∀ i ∈ J ϕi(q) ≡ 0,

∀ i ∈ J (q0) \ J λi(t) ≡ 0,

(qc(t0), q̇c(t0)) = (q0, v0),

furnished respectively by the Cauchy-Lipschitz theorem and Proposition 3. Then,

Gram(J (q0)) (λi(t0))i∈J (q0) =
(
d2

dt2 ϕi(qc(t0))−
d2

dt2 ϕi(qu(t0))

)
i∈J (q0)

.

Morover, if

∃m ∈ N
∗, ∀ i = 0, 1, · · · ,m− 1, ∀ j ∈ J (q0),

di

dt i
λj (t0) = 0,

then

Gram(J (q0))

(
dm

dtm
λi(t0)

)
i∈J (q0)

=
(
dm+2

dtm+2 ϕi(qc(t0))−
dm+2

dtm+2 ϕi(qu(t0))

)
i∈J (q0)

.

Proof. First, from

(qu(t0), q̇u(t0)) = (qc(t0), q̇c(t0)) = (q0, v0),

it follows that

∀ i ∈ J (q0),
D

dt
∇ϕi(qu(t0)) = D

dt
∇ϕi(qc(t0)),
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on one hand, and

D

dt
q̇u(t0)− D

dt
q̇c(t0) = −

∑
i∈J (q0)

λi(t0)∇ϕi(q0),

on the other hand. Therefore, for all i ∈ J (q0),

d2

dt2 ϕi(qc(t0))−
d2

dt2 ϕi(qu(t0))

=
(
D

dt
∇ϕi(qc(t0)), v0

)
q0

+
(
∇ϕi(qc(t0)), D

dt
q̇c(t0)

)
q0

−
(
D

dt
∇ϕi(qu(t0)), v0

)
q0

−
(
∇ϕi(qu(t0)), D

dt
q̇u(t0)

)
q0

=
∑

j∈J (q0)

λj (t0)
(∇ϕi(q0),∇ϕj (q0)

)
q0
,

which is the announced result.
Second, assume that

∀ j ∈ J (q0), ∀ i = 0, 1, · · · ,m− 1,
di

dt i
λj (t0) = 0.

An easy induction based on Lemmas 11 and 12 gives, for all i = 1, 2, · · · ,m,

Di

dti
q̇u(t0) = Di

dti
q̇c(t0),

Dm+1

dtm+1 q̇u(t0) =
Dm+1

dtm+1 q̇c(t0)−
∑

j∈J (q0)

dm

dtm
λj (t0)∇ϕj (q0),

and,

∀ j ∈ J (q0), ∀ i = 1, 2, · · · ,m+ 1,
Di

dt i
∇ϕj (qu(t0)) = Di

dti
∇ϕj (qc(t0)).

Therefore, ∀ i ∈ J (q0),

dm+2

dtm+2 ϕi(qc(t0))−
dm+2

dtm+2 ϕi(qu(t0))

=
∑

j∈J (q0)

dm

dtm
λj (t0)

(∇ϕi(q0),∇ϕj (q0)
)
q0
. ��

Proposition 14. Considering the data of problem P , we denote by P ′ the following
evolution problem.
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Problem P ′: find T ∈ I (T > t0), an analytic curve q : [t0, T [→ Q and n analytic
functions λi : [t0, T [→ R such that:

• ∀ t ∈ [t0, T [, �
Dq̇(t)

dt
= f (q(t), q̇(t); t)+

n∑
i=1

λi(t)dϕi(q(t)),

• ∀ t ∈ [t0, T [,∀ i = 1, 2, · · · , n, λi(t) � 0, ϕi(q(t)) � 0, λi(t)ϕi(q(t)) = 0

• (q(t0), q̇(t0)) = (q0, v0)

Then, problem P ′ admits a solution (T , q, λ1, · · · , λn) unique in the sense that any
other solution is either a restriction or an analytic extension of (T , q, λ1, · · · , λn).

Proof. First, let us state, once and for all, that the meaning of an analytic function
on a not necessarily open set S is that there is an analytic extension to an open set
O containing S.

Step 1. Construction of some functions q and λi .
Define

J0 =
{
i ∈ {1, 2, · · · , n} ϕi(q0) = 0 and 〈dϕi(q0), v0〉q0 = 0

}
,

and I0 = K0 = ∅. We denote by q(1) a solution of the Cauchy problem:

C(1)

{
�
Dq̇(t)
dt
= f (q(t), q̇(t); t),

(q(t0), q̇(t0)) = (q0, v0).

Define

C(1) = {(λ∗i ) ∈ R
J0 ∀ i ∈ J0, λ∗i � 0 and ∀ i ∈ K0, λ

∗
i = 0

} = (R−)J0 ,

C(1)′ = {(µ∗i ) ∈ R
J0 ∀ i ∈ I0, µ∗i = 0 and ∀ i ∈ J0, µ

∗
i � 0

} = (R−)J0 .

Let
(
λ
(1)
i

)
i∈J0
∈ C(1) be the solution of the variational inequality

∀ (λ∗i )i∈J0
∈ C(1),

T
(
λ
(1)
i

)
i∈J0

Gram(J0)
(
λ∗i − λ

(1)
i

)
i∈J0

� T

(
− d2

dt2 ϕi(q
(1)(t0))

)
i∈J0

(
λ∗i − λ

(1)
i

)
i∈J0

furnished by the Lions-Stampacchia theorem (see [9]). Let
(
µ
(1)
i

)
i∈J0
∈ C(1)′ be

defined by

(
µ
(1)
i

)
i∈J0
= Gram(J0)

(
λ
(1)
i

)
i∈J0
+
(
d2

dt2 ϕi(q
(1)(t0))

)
i∈J0

, (27)
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and I1, J1, K1 by

I1 = I0 ∪
{
i ∈ J0 λ

(1)
i < 0 and µ

(1)
i = 0

}
,

J1 =
{
i ∈ J0 λ

(1)
i = 0 and µ

(1)
i = 0

}
,

K1 = K0 ∪
{
i ∈ J0 λ

(1)
i = 0 and µ

(1)
i < 0

}
.

Now suppose q(n),
(
λ
(n)
i

)
,
(
µ
(n)
i

)
, In, Jn and Kn are constructed. Then, q(n+1)

is defined to be a local solution of the Cauchy problem:

C(n+1)

{
�
Dq̇(t)
dt
= f (q(t), q̇(t); t)+∑j∈J0

∑n
i=1 λ

(i)
j

(t−t0)j−1

(j−1)! dϕj (q(t)),
(q(t0), q̇(t0)) = (q0, v0).

C(n+1) =
{
(λ∗i ) ∈ R

J0 ∀ i ∈ Jn, λ∗i � 0, and ∀ i ∈ Kn, λ∗i = 0
}
,

C(n+1)′ =
{(
µ∗i
) ∈ R

J0 ∀ i ∈ In, µ∗i = 0, and ∀ i ∈ Jn, µ∗i � 0
}
.

Also
(
λ
(n+1)
i

)
i∈J0
∈ C(n+1) is defined to be the solution of the variational inequality

∀ (λ∗i )i∈J0
∈ C(n+1),

T
(
λ
(n+1)
j

)
i∈J0

Gram(J0)
(
λ∗i − λ

(n+1)
i

)
i∈J0

� T

(
− dn+2

dtn+2 ϕi(q
(n+1)(t0))

)
i∈J0

(
λ∗i − λ

(n+1)
i

)
i∈J0

,

(
µ
(n+1)
i

)
i∈J0
∈ C(n+1)′ is defined by

(
µ
(n+1)
i

)
i∈J0
= Gram(J0)

(
λ
(n+1)
i

)
i∈J0
+
(
dn+2

dtn+2 ϕi(q
(n+1)(t0))

)
i∈J0

,

and In+1, Jn+1, Kn+1 by

In+1 = In ∪
{
i ∈ Jn λ

(n+1)
i < 0 and µ

(n+1)
i = 0

}
,

Jn+1 =
{
i ∈ Jn λ

(n+1)
i = 0 and µ

(n+1)
i = 0

}
,

Kn+1 = Kn ∪
{
i ∈ Jn λ

(n+1)
i = 0 and µ

(n+1)
i < 0

}
.

Thus, the sequences q(n),
(
λ
(n)
i

)
i∈J0

,
(
µ
(n)
i

)
i∈J0

, In, Jn and Kn are defined by

induction for n ∈ N
∗ and for all n in N

∗, In, Jn, Kn is a partition of J0. Moreover,
one has:

In ⊂ In+1,

∀ n ∈ N, Jn+1 ⊂ Jn,

Kn ⊂ Kn+1.
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Define

I =
∞⋃
n=0

In, J =
∞⋂
n=0

Jn, K =
∞⋃
n=0

Kn.

It is readily seen that I , J , K form a partition of J0. We denote by (q, (λi)i∈I ) a
local solution of the evolution problem

C



�
Dq̇(t)
dt
= f (q(t), q̇(t); t)+∑i∈I λi(t)dϕi(q(t)),

∀ i ∈ I, ϕi(q(t)) ≡ 0,

(q(t0), q̇(t0)) = (q0, v0),

furnished by Proposition 3. The functions q and λi are analytic. For any i in
{1, 2, · · · , n} \ I , the functions λi are defined to be the identically vanishing func-
tion:

∀ i ∈ {1, 2, · · · , n} \ I, λi ≡ 0.

Step 2. We have:

∀ j ∈ J0, ∀ i ∈ N,
di

dt i
λj (t0) = λ

(i+1)
j ,

∀ j ∈ J0, ∀ i ∈ N,
di+2

dti+2 ϕj (q(t0)) = µ
(i+1)
j .

Indeed, applying Lemma 13 to Cauchy problems C(1) and C yields, thanks to equa-
tion (27),(

µ
(1)
j −

d2

dt2 ϕj (q(t0))

)
j∈J0

= Gram(J0)
(
λ
(1)
j − λj (t0)

)
j∈J0

.

But, by definition of I ,

I1 ⊂ I ⊂ J0 \K1,

and so,

∀ j ∈ I, µ
(1)
j =

d2

dt2 ϕj (q(t0)) = 0,

∀ j ∈ J0 \ I, λ
(1)
j = λj (t0) = 0.

Therefore,

T
(
λ
(1)
j − λj (t0)

)
j∈J0

Gram(J0)
(
λ
(1)
j − λj (t0)

)
j∈J0
= 0,

and the conclusion follows for i = 0, since the Gram matrix is positive definite. For
i � 1, we only have to apply successively lemma 13 to Cauchy problems C(i+1)

and C.

Step 3. The functions q and λi define a solution of problem P ′.
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By construction of the real numbers λ(j)i and µ
(j)
i and by step 2, we have:

∀ i ∈ I, ∃ ni ∈ N,
dni

dtni
λi(t0) < 0 and ∀ n < ni,

dn

dtn
λi(t0) = 0,

and,

∀ i ∈ K, ∃ ni � 2,
dni

dtni
ϕi(q(t0)) < 0 and ∀ n < ni,

dn

dtn
ϕi(q(t0)) = 0,

∀ i ∈ J0 \K, ∀ n ∈ N,
dn

dtn
ϕi(q(t0)) = 0.

Each function λi(t) and ϕi(q(t)) being real-analytic, there results:

∃α > 0, ∀ t ∈ [t0, t0 + α[, ∀ i ∈ J0, λi(t) � 0, and ϕi(q(t)) � 0.

Actually, α > 0 is assumed to be sufficiently small to ensure:

∀ i ∈ {1, 2, · · · , n} \ J0, ∀ t ∈]t0, t0 + α[, ϕi(q(t)) < 0,

which is possible simply by continuity.
Now, it is easily seen that

(
t0 + α, q, (λi)i∈{1,2,··· ,n}

)
defines a solution of prob-

lem P ′.
Step 4. Uniqueness part of the proposition.

By the Cauchy-Lipshitz theorem, q is uniquely determined by the functions λj
(j = 1, 2, · · · , n). Being analytic, these functions λj are uniquely determined by
the collection of real numbers diλj (t0)/dti , (i ∈ N, j ∈ {1, 2, · · · , n}). Therefore,
to prove uniqueness, one has only to show that these real numbers are determined
by the data of the evolution problem.

Consider an arbitrary analytic solution (T , q, λ1, · · · , λn) of problem P ′. A
repeated use of Lemma 13, similar to the one of Step 2 yields:

∀ j ∈ J0, ∀ i ∈ N,
di

dt i
λj (t0) = λ

(i+1)
j .

Moreover,

∀ j ∈ {1, 2, · · · , n} \ J0, ∀ i ∈ N,
di

dt i
λj (t0) = 0,

and the conclusion follows. ��
Proof of the local existence part of Theorem 8. Let (Ta, qa, λ1

a, · · · , λna) be an
analytic solution of problem P ′. It is readily seen that (Ta, qa) is a local solution
of problem P . ��
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4.2. Proof of local uniqueness

Local uniqueness is the most difficult part of Theorem 8. First, we recall a
standart result:

Lemma 15 (Gronwall-Bellman). Consider two functionsm1 ∈ BV ([0, T ];R) and
m2 ∈ L1(0, T ;R) such that

for a.e. t ∈]0, T [, m2(t) � 0.

Let φ ∈ BV ([0, T ];R) such that

∀ t ∈ [0, T ], φ(t) � m1(t)+
∫ t

0
m2(s)φ(s) ds.

Then,

∀ t ∈ [0, T ], φ(t) � m1(t)+
∫ t

0
m1(s)m2(s)e

∫ t
s m2(σ ) dσ ds.

We have the following corollary of the Gronwall-Bellman lemma:

Lemma 16. Let m be a nonnegative integer, and ψ : [0, T ] → R an integrable
function. If φ : [0, T ] → R is any absolutely continuous function such that φ(t) =
o(tm+1) when t tends towards 0 and such that there exists a nonnegative real
constant C such that

for dt-a.e. t ∈]0, T [, t
d

dt
φ(t) � (1+m+ Ct) φ(t)+ tm+2ψ(t),

then,

∀ t ∈ [0, T ], φ(t) � tm+1eCt
∫ t

0
ψ(s)e−Cs ds.

Proof. This is almost obvious. Dividing each member of the inequality by tm+2,
we obtain:

for dt-a.e. t ∈]0, T [, d

dt

(
φ(t)

tm+1

)
� C

φ(t)

tm+1 + ψ(t).

After integration, the Gronwall-Bellman lemma yields:

∀ t ∈]0, T ], φ(t)

tm+1 �
∫ t

0
ψ(s) ds +

∫ t

0
CeC(t−s)

∫ s

0
ψ(σ) dσ ds.

Then, an integration by part gives the desired conclusion. ��
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Proof of the local uniqueness part of Theorem 8. Consider, on one hand, the
analytic solution (Ta, qa, λ

1
a, · · · , λna) of problem P supplied by Proposition 14,

and on the other hand, an arbitrary solution (T , q) of problem P . We have to prove
that q and qa identically coincide on a right neighborhood of t0.

Step 1. Parametrization of the problem and notations.
Consider a local chart ψ : U ⊂ Q → R

d on Q centered at q0 such that the
cardJ (q0) first components of ψ(q) are (ϕi(q))i∈J (q0)

. Recall that such a chart
exists since (dϕi(q0))i∈J (q0)

is linearly independent in T ∗q0
Q. We choose α > 0,

sufficiently small to have:

• ∀ t ∈ [t0, t0 + α], qa(t) ∈ U, q(t) ∈ U, (28)

• ∀ i ∈ J (q0), ∀ t ∈ [t0, t0 + α], d

dt
ϕi(qa(t)) = 〈dϕi(qa(t)), q̇a(t)〉qa(t) � 0

• ∀ i ∈ {1, 2, · · · , n} \ J (q0), ∀ t ∈ [t0, t0 + α], ϕi(qa(t)) < 0, ϕi(q(t)) < 0.

Such a choice for α is possible because:

– the functions qa(t) and ϕi(qa(t)) are real analytic,
– the functions q(t) and ϕi(q(t)) are continuous.

We denote by fi the components of f in the natural basis (ei) associated with the
chart under consideration. Since qa is an analytic local solution of problem P , we
have

∀ i ∈ {1, 2, · · · , d} , ∀ s ∈ [t0, t0 + α],{
gij (qa)

(
q̈
j
a + �

j
kl(qa)q̇

k
a q̇

l
a

)
− fi(qa, q̇a; s)

}
= λia(s), (29)

after appropriate renumbering of the functions λia . In what follows, d0 will stand
for cardJ (q0). The result of these choice is that

∀ i > d0, λia ≡ 0.

We denote by |.| the standard Euclidean norm on R
d . Confusing (abusively) q and

ψ(q), we shall write

|q|2 =
d∑

i=1

(
qi
)2

,

and

∣∣q̇+∣∣2 = d∑
i=1

(
q̇+i
)2

.
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Step 2. There exists some positive real constants C1 and C2 such that the following
estimate:

∀ t ∈ [t0, t0 + α],
∫ t

t0

(
|q − qa|2 (s)+

∣∣q̇+ − q̇a
∣∣2 (s)) ds

� − 1

C1

∫ t

t0

eC2(t−s)
∫ s

t0

d0∑
i=1

λia(σ )q̇
+i (σ ) dσ ds. (30)

holds.
To prove this assertion, we first write the equation of motion (23) in the chart

under consideration using Proposition 29:

∀ i ∈ {1, 2, · · · , d}, ∀ t ∈ [t0, t0 + α],

gij (q)
(
dq̇+j + �

j
kl(q)q̇

+kq̇+ldt
)
= fi(q, q̇

+; t) dt +
d0∑
j=1

δijµj ,

where the µj are nonpositive real measures. But, by Propositions 29 and 30,

d

(
1

2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

))

=
(
q̇−i + q̇+i

2
− q̇ia

)
gij (q)

(
dq̇+j − q̈

j
a dt + �

j
kl(q)q̇

+k (q̇+l − q̇ la

)
dt
)
.

Therefore,

d

(
1

2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

))

=
(
q̇+i − q̇I

a

)
fi(q, q̇

+; t)dt −
(
q̇+i − q̇I

a

)
gij (q)

(
q̈
j
a + �

j
kl(q)q̇

+kq̇la
)
dt

+
d0∑
j=1

(
q̇−j + q̇+j

2
− q̇

j
a

)
µj .

But,

∀ j ∈ {1, 2, · · · , d0} , ∃ i ∈ J (q0), ∀ t ∈ [t0, t0 + α],
q̇
j
a (t) = d

dt
ϕi(qa(t)) � 0,

by formulae (28), and,

d0∑
j=1

q̇−j + q̇+j

2
µj =

〈
q̇− + q̇+

2
, R

〉
q

,



230 Patrick Ballard

which is a nonpositive real measure by Proposition 7. Therefore,

d

(
1

2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

))

�
((

q̇+i − q̇I
a

)
fi(q, q̇

+; t)−
(
q̇+i − q̇I

a

)
gij (q)

(
q̈
j
a + �

j
kl(q)q̇

+kq̇la
))

dt,

in the sense of ordering of real measures. Integrating over ]t0, t] (t ∈ [t0, t0 + α]),
we get

1
2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

)
�
∫ t

t0

((
q̇+i−q̇I

a

)
fi(q, q̇

+; s)−
(
q̇+i−q̇I

a

)
gij (q)

(
q̈
j
a + �

j
kl(q)q̇

+kq̇la
))

ds.

The term within the integral sign is an analytic function of the three variables q,
q̇+ and s. Therefore, it is also an analytic function of the three variables q − qa ,
q̇+ − q̇a and s. It is written in the form(

q̇+i − q̇I
a

)
Fi(q − qa, q̇

+ − q̇a; s).

But, each function Fi can be decomposed in the following manner:

Fi(q − qa, q̇
+ − q̇a; s) = Fi(0, 0; s)+Gi(q − qa, q̇

+ − q̇a; s),
where the Gi are analytic and Gi(0, 0; s) ≡ 0. Hence, there exist d positive con-
stants Mi such that, for all s ∈ [t0, t0 + α],
∣∣Gi(q(s)−qa(s), q̇+(s)−q̇a(s); s)

∣∣ � Mi

√
|q(s)− qa(s)|2 +

∣∣q̇+(s)− q̇a(s)
∣∣2.

Defining M to be the maximum of the constants Mi , we have proved that, for all
t ∈ [t0, t0 + α],

1
2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

)
�
∫ t

t0

{(
q̇+i − q̇I

a

) (
fi(qa, q̇a; s)− gij (qa)

(
q̈
j
a + �

j
kl(qa)q̇

k
a q̇

l
a

))

+Md
∣∣q̇+ − q̇a

∣∣√|q − qa|2 +
∣∣q̇+ − q̇a

∣∣2} ds.
Moreover, by a compactness argument,

∃C1 > 0, ∀ t ∈ [t0, t0 + α],

1
2

(
q̇+i − q̇I

a

)
gij (q)

(
q̇+j − q̇

j
a

)
� C1

∣∣q̇+ − q̇a
∣∣2 ,



Discrete Mechanical Systems with Unilateral Constraints 231

and therefore, for all t ∈ [t0, t0 + α],∣∣q̇+(t)− q̇a(t)
∣∣2

� 1

C1

∫ t

t0

(
q̇+i − q̇I

a

) (
fi(qa, q̇a; s)− gij (qa)

(
q̈
j
a + �

j
kl(qa)q̇

k
a q̇

l
a

))
ds

+ Md

C1

∫ t

t0

∣∣q̇+ − q̇a
∣∣√|q − qa|2 +

∣∣q̇+ − q̇a
∣∣2ds.

Moreover, by use of the Cauchy-Schwartz inequality,

∀ t ∈ [t0, t0 + α], |q(t)− qa(t)|2 � α

∫ t

t0

∣∣q̇+(s)− q̇a(s)
∣∣2 ds.

We obtain, for all t ∈ [t0, t0 + α],
|q − qa|2 (t)+

∣∣q̇+ − q̇a
∣∣2 (t)

�
(
Md

C1
+ α

)∫ t

t0

(
|q − qa|2 (s)+

∣∣q̇+ − q̇a
∣∣2 (s)) ds

− 1

C1

∫ t

t0

d0∑
i=1

λia(s)
(
q̇+i − q̇I

a

)
ds, (31)

where formulae (29) have been used. We define

C2 = Md

C1
+ α.

Notice that, actually

∀ i ∈ {1, 2, · · · , d0} , λiaq
i
a ≡ 0,

and, so, by the analyticity of functions qia and λia ,

∀ i ∈ {1, 2, · · · , d0} , λiaq̇
i
a ≡ 0.

Multiplying both terms of inequality (31) by e−C2t and integrating, we get∫ t

t0

(
|q − qa|2 (s)+

∣∣q̇+ − q̇a
∣∣2 (s)) ds

� − 1

C1

∫ t

t0

eC2(t−s)
∫ s

t0

d0∑
i=1

λia(σ )q̇
+i (σ ) dσ ds,

for all t ∈ [t0, t0 + α], which is nothing but estimate (30).

Step 3. Estimate (30) implies that the function t 
→ ∑d0
i=1 λ

i
a(t)q̇

+i (t) vanishes
identically on a right neighborhood of t0.

Indeed, by estimate (30),

∀ t ∈ [t0, t0 + α],
∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

λia(σ )q̇
+i (σ ) dσ ds � 0,
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which is, after integration by parts,∫ t

t0

e−C2s
d∑

i=1

λia(s)q
I(s) ds �

∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

qi(σ )λ̇ia(σ ) dσ ds. (32)

But, since,

∀ i ∈ {1, 2, · · · , d0} , ∀ s ∈ [t0, t0 + α], λia(s) � 0 and qi(s) � 0,

the two members of inequality (32) are nonnegative and, therefore, the inequality
is preserved when taking the absolute value of each member. We get:

∀ t ∈ [t0, t0 + α],∫ t

t0

e−C2s

d0∑
i=1

λia(s)q
I(s) ds �

∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

∣∣∣qi(σ )∣∣∣ ∣∣∣λ̇ia(σ )∣∣∣ dσ ds,

�
∫ t

t0

∫ s

t0

e−C2σ

d0∑
i=1

∣∣∣qi(σ )∣∣∣ ∣∣∣λ̇ia(σ )∣∣∣ dσ ds.

We define

Qi(s) = −e−C2(s+t0)qi(s + t0),

Li(s) = −λia(s + t0).

With this notation, we obtain:

∀ t ∈ [0, α],
∫ t

0

d0∑
i=1

Li(s)Qi(s) ds �
∫ t

0

∫ s

0

d0∑
i=1

∣∣∣L̇i(s)

∣∣∣Qi(s) dσ ds, (33)

where the Li are nonnegative real-analytic functions and the Qi are nonnegative
continuous functions which all vanish at t = 0 and which are differentiable at the
origin. We are going to prove that inequality (33) implies that

∃β ∈]0, α], ∀ t ∈ [0, α], ∀ i ∈ {1, 2, · · · , d0} , Li(t)Qi(t) = 0.

The functions Li being nonnegative real-analytic, there exist nonnegative integers
n1 < n2 < · · · < nm, a partition I1, I2, · · · , Im of {1, 2, · · · , d0}, and nonnegative
real-analytic functions Gi such that

∀ k ∈ {1, 2, · · · ,m}, ∀ i ∈ Ik, Li(s) = snkGi(s),

with either Gi(0) > 0 or Gi ≡ 0. Inequality (33) may be rewritten as:

∀ t ∈ [0, α],
∫ t

0

m∑
k=1

∑
i∈Ik

σ nkGi(σ )Qi(σ ) dσ

�
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

nkσ
nk−1Gi(σ )Qi(σ ) dσ ds

+
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σ nk

∣∣∣Ġi(σ )

∣∣∣Qi(σ) dσ ds.
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But, by the analyticity of the functions Gi ,

∃β > 0, ∃N > 0, ∀ i ∈ J (q0), ∀ σ ∈ [0, β],
∣∣∣Ġi(σ )

∣∣∣ � NGi(σ ).

Therefore, for all t ∈ [0, β],
∫ t

0

m∑
k=1

∑
i∈Ik

σ nkGi(σ )Qi(σ ) dσ �
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

nkσ
nk−1Gi(σ )Qi(σ ) dσ ds

+Nt

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds.

Integrating by parts the left member of the inequality, we obtain, for all t ∈ [0, β],

t

∫ t

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ

�
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

(nk + 1)σnk−1Gi(σ )Qi(σ ) dσ ds

+Nt

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds. (34)

Since each function Gi(σ )Qi(σ )/σ is bounded over [0, β], there exists a nonneg-
ative real constant H such that

∀ k ∈ {1, 2, · · · ,m}, ∀ t ∈ [0, β],∫ t

0

∫ s

0

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds � Htnk+2.

Inequality (34) gives

t

∫ t

0

∑
i∈I1

σn1−1Gi(σ )Qi(σ ) dσ

� (1+ n1 +Nt)

∫ t

0

∫ s

0

∑
i∈I1

σn1−1Gi(σ )Qi(σ ) dσ ds +H1t
n2+2,

for all t ∈ [0, β], where H1 is a non negative real constant. As a consequence of
Lemma 16, we obtain

∫ t

0

∫ s

0

∑
i∈I1

σn1−1Gi(σ )Qi(σ ) dσ ds = O(tn2+2).
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Coming back to inequality (34), we get, for all t ∈ [0, β],

t

∫ t

0

2∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ

� (1+ n2 +Nt)

∫ t

0

∫ s

0

2∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds +H2t
n3+2.

Applying once more Lemma 16, we obtain

∫ t

0

∫ s

0

2∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds = O(tn3+2).

Proceeding inductively, we obtain

∫ t

0

∫ s

0

m−1∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds = O(tnm+2).

But, by inequality (34), for all t ∈ [0, β],

t

∫ t

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ

� (1+ nm +Nt)

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds.

Using Lemma 16 for the last time, we get

∀ t ∈ [0, β],
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σ nk−1Gi(σ )Qi(σ ) dσ ds = 0,

which implies

∀ i ∈ {1, 2, · · · , d0} , ∀ t ∈ [0, β], Gi(t)Qi(t) = 0,

which is nothing but

∀ i ∈ {1, 2, · · · , d0} , ∀ t ∈ [t0, t0 + β], λia(t)q
i(t) = 0.
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But, the analyticity of the functions λia implies

∀ i ∈ {1, 2, · · · , d0} , ∀ t ∈ [t0, t0 + β], λia(σ )q̇
+i (σ ) = 0,

and the assertion of Step 3 is proved.

Step 4. Conclusion of the proof of local uniqueness. Bringing together the results
of Steps 2 and 3, we get:

∀ t ∈ [t0, t0 + β],
∫ t

t0

(
|q − qa|2 (s)+

∣∣q̇+ − q̇a
∣∣2 (s)) ds � 0,

which gives the desired conclusion:

∀ t ∈ [t0, t0 + β], q(t) = qa(t). ��

4.3. Global solutions: proof of Theorem 10

First, we recall a classical lemma whose proof may be found, for example, in
[5, p. 157].

Lemma 17. Let m be in L1(0, T ;R) such that m(t) � 0 for almost all t in ]0, T [
and a be a real nonnegative constant. Consider φ ∈ BV([0, T ];R) such that

∀ t ∈ [0, T ], 1
2φ

2(t) � 1
2a

2 +
∫ t

0
m(s)φ(s) ds,

then

∀ t ∈ [0, T ], |φ(t)| � a +
∫ t

0
m(s) ds.

Proposition 18. The Riemannian manifoldQ is assumed to be complete. Let (T , q)
be a solution of problem P such that:

– T ∈◦I (and, in particular, T "= +∞),
–
∥∥q̇+(t)∥∥

q(t)
is bounded:

∃Vm, ∀ t ∈ [t0, T [,
∥∥q̇+(t)∥∥

q(t)
� Vm.

Then q̇+ has bounded variation over [t0, T [:
Var
(
q̇+; [t0, T [

)
<∞.

Proof. We denote by d the distance function associated with the metric space Q.
Since,
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– ∀ s1, s2 ∈ [t0, T [, s1 � s2, d (q(s1), q(s2)) �
∫ s2

s1

∥∥q̇+(σ )∥∥
q(σ )

dσ,

– ∀ σ ∈ [t0, T [,
∥∥q̇+(σ )∥∥

q(σ )
� Vm,

– Q is complete,

we deduce that limt→T − q(t) exists in Q. It is denoted by

qT = lim
t→T −

q(t).

Let (U,ψ) be a local chart at qT on Q such that the cardJ (qT ) first components
of ψ(q) in R

d are (ϕi(q))i∈J (qT ). Consider a compact neighborhood K of qT in Q

such that

– K ⊂ U,

– ∀ q ∈ K, J (q) ⊂ J (qT ).

We define

t ′0 = min {t ∈ [t0, T [ ∀ s ∈ [t, T [, q(s) ∈ K} .
Since [t0, t ′0] is compact, we have

Var
(
q̇+; [t0, t ′0]

)
<∞.

Therefore, it remains only to prove:

Var
(
q̇+; ]t ′0, T [

)
<∞.

Here, λmax and λmin will denote the maximum and the minimum of, respectively,
the greatest and least eigenvalue of the matrix

(
gij (q)

)
i,j=1,2,··· ,d when q wanders

in K . With this notation, we obtain immediately:

∀ i ∈ {1, 2, · · · , d} , ∀ t ∈ [t ′0, T [,

∣∣gij (q(t))q̇+j (t)∣∣ � √λmaxVm,∣∣∣q̇+i (t)∣∣∣ � Vm√
λmin

.
(35)

We denote by Bq(0, Vm) the closed ball of TqQ with radius Vm and centered at the
origin. Considering the following compact subset K ′ of TQ,

K ′ =
⋃
q∈K

Bq(0, Vm),

we define the following nonnegative real constant,

F = max
i∈{1,2,··· ,d} max

(q,v;t)∈K ′×[t ′0,T ]
|fi(q, v; t)| ,

and

G = max
i,j,k∈{1,2,··· ,d} max

q∈K

∣∣∣∣∂gij (q)∂qk

∣∣∣∣ .
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Writing inclusion (23) in the local chart (U,ψ), we obtain:

∀ i∈ {1, 2, · · · , d} , gij (q)
(
dq̇+j + �

j
kl(q)q̇

+kq̇+l dt
)
=fi(q, q̇+; t) dt + λi,

where the λi are d nonpositive real measures on ]t ′0; T [. Expressing the Christoffel
symbols in terms of the metric, we have

∀ i ∈ {1, 2, · · · , d} ,
gij (q)dq̇

+j + ∂gij (q)

∂qk
q̇+j q̇+k dt − 1

2

∂gkl(q)

∂qi
q̇+kq̇+l dt

= fi(q, q̇
+; t) dt + λi, (36)

or, equivalently,

∀ i ∈ {1, 2, · · · , d} ,
d
(
gij (q)q̇

+j) = 1

2

∂gkl(q)

∂qi
q̇+kq̇+l dt + fi(q, q̇

+; t) dt + λi. (37)

We deduce:

∀ i ∈ {1, 2, · · · , d} , ∀ s1, s2 ∈ [t ′0, T [, s1 < s2,∫
]s1,s2]

(−λi) = gij (q(s1))q̇
+j (s1)− gij (q(s2))q̇

+j (s2)

+
∫ s2

s1

(
fi(q, q̇

+; t)+ 1

2

∂gkl(q)

∂qi
q̇+kq̇+l

)
dt

� 2
√
λmaxVm +

(
F + d2GV 2

m

2λmin

)
(s2 − s1). (38)

The result is that the λi are d bounded measures on ]t ′0, T [. Thanks to equation (36),
it is readily seen that the measures dq̇+i are also bounded measures on ]t ′0, T [.
Therefore, thed functions q̇+i :]t ′0, T [→ R have bounded variation over the interval
]t ′0, T [. By Proposition 29, we have the result that q̇+ has also bounded variation
over ]t ′0, T [. ��
Proof of Theorem 10. We assume that the maximal solution q of problem P is

defined on [t0, T [with T in
◦
I and try to obtain contradiction. By Proposition 7, this

maximal solution satisfies:

∀ t ∈ [t0, T [, 1
2

∥∥q̇+(t)∥∥2
q(t)
− 1

2 ‖v0‖2q0
�
∫ t

t0

〈f (q(s), q̇+(s); s), q̇+(s)〉q(s)ds.

Thus,

∀ t ∈ [t0, T [,
1
2

∥∥q̇+(t)∥∥2
q(t)

� 1
2 ‖v0‖2q0

+
∫ t

t0

∥∥f (q(s), q̇+(s); s)∥∥
q(s)

∥∥q̇+(s)∥∥
q(s)

ds.
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By Lemma 17, we obtain

∀ t ∈ [t0, T [,
∥∥q̇+(t)∥∥

q(t)
� ‖v0‖q0 +

∫ t

t0

∥∥f (q(s), q̇+(s); s)∥∥
q(s)

ds,

which gives, using the hypothesis of the theorem,

∀ t ∈ [t0, T [,∥∥q̇+(t)∥∥
q(t)

� ‖v0‖q0 +
∫ t

t0

l(s)
(

1+ d(q(s), q0)+
∥∥q̇+(s)∥∥

q(s)

)
ds.

But,

∀ t ∈ [t0, T [, d(q(t), q0) �
∫ t

t0

∥∥q̇+(s)∥∥
q(s)

ds,

therefore, for all t ∈ [t0, T [,
d(q(t), q0)+

∥∥q̇+(t)∥∥
q(t)

� ‖v0‖q0 +
∫ t

0
l(s) ds +

∫ t

t0

(1+ l(s))
(
d(q(s), q0)+

∥∥q̇+(s)∥∥
q(s)

)
ds.

By the Gronwall-Bellman lemma (Lemma 15), we get:

∀ t ∈ [t0, T [,
d(q(t), q0)+

∥∥q̇+(t)∥∥
q(t)

�
(
‖v0‖q0 +

∫ t

0
l(s) ds

)
e

∫ t
t0
(1+l(s)) ds

,

which shows that the function t 
→ ∥∥q̇+(t)∥∥
q(t)

is bounded over [t0, T [. By the
completeness of Q, we deduce, on one hand that

qT = lim
t→T −

q(t)

exists in Q and, on the other hand, that

Var
(
q̇+; [t0, T [

)
<∞,

thanks to Proposition 18. Thus,

(qT , v
−
T ) = lim

t→T −
(q(t), q̇+(t)) exists in TQ.

Define

vT = v−T −
[
1+ φ(qT , v

−
T )
]

ProjqT
[
v−T ;N(qT )

]
.

Then, Theorem 8 furnishes T ′ ∈ I with T ′ > T and a prolongation of q on [T , T ′[
such that q ∈ MMA

([t0, T ′[;Q) is a solution of problem P . But, this contradicts
the definition of T . ��



Discrete Mechanical Systems with Unilateral Constraints 239

5. Three counterexamples

The existence and uniqueness of solution for problem P has been proved under
the assumption of functional independence for the constraint and of analyticity for
the data. The three examples which are developed in this section aim at showing
that these assumptions cannot be weakened very much. In Example 1, we show that,
in the case where the functional independence of the constraints does not hold, the
existence of solution may be lost. For the question of the regularity assumptions on
the data, the existence of solution can be proved with much weaker assumptions.
However, the uniqueness of solutions is generally lost in such a case as seen in
Examples 2 and 3. In these examples, the data are supposed to have only regularity
C∞ and two different solutions can be exhibited.

Example 1 is extracted fromMoreau [12] and Example 2 is due toSchatzman
[18], but an earlier counterexample in the same spirit is also to be found in Bressan
[4].

5.1. Example 1

Consider a discrete mechanical system whose configuration space is Euclidean
R

3. The unilateral constraints are kinematically described by the three following
functions (n = 3):

ϕ1(q) = −q1,

ϕ2(q) = q1 − q2.q3,

ϕ3(q) = −q2 − q3,

where q = (q1, q2, q3) ∈ R
3. The initial instant is supposed to be t0 = 0 and the

initial state is given by q0 = (0, 0, 0) and v0 = (0, 2,−1). It follows that

J (q0) = {1, 2, 3} ,
V (q0) =

{
v = (v1, v2, v3) ∈ R

3 ; v1 = 0 and v2 + v3 � 0
}
.

It is readily seen that v0 belongs to V (q0).
Let now α > 0 be an arbitrary positive real number. Any motion q(t) in

MMA([0, α[;R3) compatible with this initial data may be written as:

q1(t) = o(t),

q2(t) = 2t + o(t),

q3(t) = −t + o(t).

Therefore,

ϕ1(q(t))+ ϕ2(q(t)) = 2t2 + o(t2),

which cannot be compatible with

∀ t ∈ [0, α[, ϕ1(q(t))+ ϕ2(q(t)) � 0.
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We deduce that no motion in MMA([0, α[;R3) can be compatible with this initial
data whatever α > 0 is.

Note that, in this particular case, dϕ1(q0) = −dϕ2(q0) and the unilateral con-
straints are not functionally independent.

5.2. Example 2

Consider a discrete mechanical system whose configuration space is R equip-
ped with its canonical structure of Riemannian manifold. This is the configuration
space of a particle with unit mass constrained to move along a line. A fixed obstacle
at the origin is taken into consideration. It gives rise to a unilateral constraint
kinematically described by the single function (n = 1)

ϕ1(q) = q.

Therefore, the admissible configuration set isA = R
−. It is assumed that the impact

constitutive equation is the elastic one, φ
(
q, q̇−

) ≡ 1, and that the efforts mapping
f does not depend on the state but only on time. It will be denoted byf (t). The initial
instant is t0 = 0 and the initial state is (q0, v0) = (0, 0). Denoting by RCLBV(I ;R)
the space of right continuous functions with locally bounded variation from a real
interval I to R, problem P admits here the equivalent formulation:
Find T > 0 and v ∈ RCLBV([0, T [;R) such that:

• v(0) = 0,

• q(t) =
∫ t

0
v(s) ds ∈ R

−, ∀ t ∈ [0, T [,
• R = dv − f (t) dt is a nonpositive real measure such that

SuppR ⊂ {t ∈ [0, T [ ; q(t) = 0}

∀ t ∈]0, T [,
{
q(t) "= 0⇒ v(t) = v−(t),

q(t) = 0 ⇒ v(t) = −v−(t).
We investigate uniqueness under the assumption that f is of classC∞. Suppose,

in addition, that f is nonnegative:

∀ t ∈ R
+, f (t) � 0.

It is readily seen that the null function v ≡ 0 on R
+ is a solution of problem P

whatever is the nonnegative C∞ function f . Now, we are going to construct an
explicit example of such a function f in such a way that the associated problem P
admits another solution, different from the identically vanishing one.

First, let us define a function ρ by:

ρ




R→ R,

x 
→

∣∣∣∣∣∣∣∣∣

0 if x ∈] −∞, 0] ∪ [1,+∞[,
e

1
x(x−1)∫ 1

0 e
1

x(x−1) dx
if x ∈]0, 1[.
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We have:

ρ ∈ C∞(R;R+),
Suppρ = [0, 1],

∀ n ∈ N,
dn

dxn
ρ(0) = dn

dxn
ρ(1) = 0,

2
∫ 1

0
(1− s)ρ(s) ds = 1.

(39)

The last assertion comes from the fact that∫ 1

0
sρ(s) ds =

∫ 1

0
(1− s)ρ(s) ds,

so,

∫ 1

0
sρ(s) ds = 1

2

∫ 1

0
ρ(s) ds = 1

2
.

Consider also the real convergent series:

[
(n+ 5)2

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

]
n∈N

.

We define

T =
∞∑
n=0

(n+ 5)2

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
> 0,

an =
∞∑
i=n

(i + 5)2

(i + 1)(i + 2)(i + 3)(i + 4)
.

Clearly, a0 = T and the sequence (an)n∈N decreases strictly and converges towards
0 when n tends toward infinity. Actually,

an ∼ 1

n
when n→+∞ (40)

by a very classical and elementary argument. We denote by (δn)n∈N, (fn)n∈N,
(vn)n∈N the real sequences defined by

δn = n+ 5

(n+ 1)(n+ 2)(n+ 4)
(i.e., δn = n+ 3

n+ 5
(an − an+1) < an − an+1 ),

fn = 1

n! ,

vn = − 1

(n+ 3)! ,
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and by f (t), v(t) the functions from [0, T [ to R defined by

f (0) = , 0,

f (t) =
∣∣∣∣∣∣
0 if t ∈ [an+1, an+1 + δn

[
,

fn

2
ρ

(
t−an+1−δn
an−an+1−δn

)
if t ∈ [an+1 + δn, an

[
,

(41)

and

v(0) = 0,

v(t) =
∣∣∣∣∣∣
vn+1 if t ∈ [an+1, an+1 + δn

[
,

vn+1 + fn

2

∫ t

an+1+δn
ρ

(
s−an+1−δn
an−an+1−δn

)
ds if t ∈ [an+1 + δn, an

[
.

(42)

First, we claim that the function f belongs to C∞ ([0, T [;R).
Proof. The only thing which is not obvious is that f is C∞ at 0. Since

∀ t ∈ [an+1, an], |f (t)| � fn

2
max
s∈[0,1] |ρ(s)| ,

then, limt→0+ f (t) = 0 and f is continuous at 0. Now, we are going to prove

∀ r ∈ N, lim
t→0+

1

t

dr

dtr
f (t) = 0 (43)

which will imply by an easy induction that f ∈ C∞ ([0, T [;R) and

∀ r ∈ N,
dr

dtr
f (0) = 0.

Let us fix an arbitrary r in N. We have

∀ t ∈ [an+1, an
]
,

∣∣∣∣1t dr

dtr
f (t)

∣∣∣∣ � fn

2an+1

(n+ 5)r

2r (an − an+1)
r max
s∈[0,1]

∣∣∣∣drρ(s)dtr
(t)

∣∣∣∣ .
Therefore, to prove (43), it suffices to verify

lim
n→∞

fn(n+ 5)r

an+1 (an − an+1)
r = 0,

but, by estimate (40), we have

fn(n+ 5)r

an+1 (an − an+1)
r ∼

n3r+1

n! . ��
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Second, we claim that:

– v ∈ RCLBV([0, T [;R),
– dv − f (t) dt is a real nonpositive measure on [0, T [ whose support is {0} ∪
{an; n ∈ N

∗},
– v is continuous on [0, T [\ {an; n ∈ N

∗} and ∀ n ∈ N
∗ v(an) = −v−(an).

Proof. It is clear that v is continuous on each interval ]an+1, an[ and right contin-
uous on [0, T [. Moreover,

v−(an) = vn+1 + fn

2

∫ an

an+1+δn
ρ

(
s − an+1 − δn

an − an+1 − δn

)
ds

= vn+1 + fn

2
(an − an+1 − δn)

= − 1

(n+ 4)! +
1

n!
n+ 5

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

= 1

(n+ 3)!
= −v(an).

Since v is nondecreasing on each interval [an+1, an[,

Var(v; [0, T [) =
∞∑
n=0

(∣∣v(an+1)− v−(an+1)
∣∣+ ∣∣v(an+1)− v−(an)

∣∣)

=
∞∑
n=0

(−3vn+1 − vn)

= 3
∞∑
n=0

1

(n+ 4)! +
∞∑
n=0

1

(n+ 3)! < +∞.

Denoting by δt the dirac measure located at t , we have

dv − f (t) dt = −2
∞∑
n=1

δan

(n+ 3)! ,

which is a (bounded) nonpositive measure whose support is {0}∪{an; n ∈ N
∗}. ��

Third, we claim that: If q is defined by

∀ t ∈ [0, T [, q(t) =
∫ t

0
v(s) ds,

then

∀ t ∈ [0, T [ q(t) � 0,

{t ∈ [0, T [ q(t) = 0} = {0} ∪ {an; n ∈ N
∗} .



244 Patrick Ballard

Proof. An easy calculation using the last assertion of formulae (39) shows that∫ an

an+1

v(s) ds = 0

∫ t

an+1

v(s) ds < 0 ∀ t ∈]an+1, an[. ��

We deduce that, if we make the choice described by relations (41) for the func-
tionf , then the function v defined by relations (42) is a solution of the corresponding
problem P whereas the identically vanishing function is also a solution. Therefore,
the uniqueness of solution does not hold in general if f and the functions ϕi are
supposed to be of class C∞ only.

5.3. Example 3

In Example 2, we considered a particle at rest at the initial instant and in contact
with the obstacle. Then, a force acts on the particle, constantly pushing it against the
obstacle (f � 0). For the particular choice of the function f we made, immobility
is a possible motion whereas a bouncing motion is also possible. It is intuitively
clear that the assumed elastic impact constitutive equation plays a central role in
such a phenomenon. The question arises as to whether such a pathology is possible
with the completely inelastic impact constitutive equation φ(q, q̇−) ≡ 0.

Sticking to the notation of Example 2, the evolution problem takes in this case
the form:
Find T > 0 and v ∈ RCLBV([0, T [; R) such that

• v(0) = 0,

• q(t) =
∫ t

0
v(s) ds ∈ R

− ∀ t ∈ [0, T [,
• R = dv − f (t) dt is a nonpositive real measure such that

SuppR ⊂ {t ∈ [0, T [ ; q(t) = 0} ,

• ∀ t ∈]0, T [,
{
q(t) "= 0⇒ v(t) = v−(t),

q(t) = 0 ⇒ v(t) = 0,

If we still assume in this case that f is nonnegative, then it is easy to see that
the only possible motion is immobility.
Indeed, if, ∃ t2, q(t2) < 0, define t1 = inf

{
t ∈ R

+; ∀ s ∈]t, t2] q(s) < 0
}
. Then,

by continuity of q: t1 < t2 and q(t1) = 0. By the completely inelastic impact
constitutive equation, we get: v(t1) = 0, and, so: q(t2) =

∫ t2
t1

∫ t
t1
f (s) ds dt � 0,

which is absurd.
Nevertheless, we are going to construct an example similar to Example 2, which

shows that, even in the case of the completely inelastic impact constitutive equa-
tion and f of class C∞, we can obtain multiple solutions for the corresponding
problem P . Of course, f should not be of constant sign.
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The function f assumes the form:

f (0) = 0,

f (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−f1,nρ

(
t − 1

n+1

δ1,n

)
if t ∈

[
1

n+1 ,
1

n+1 + δ1,n

[
,

0 if t ∈
[

1
n+1 + δ1,n,

1
n
− δ2,n

[
,

f2,nρ

(
t − 1

n
+ δ2,n

δ2,n

)
if t ∈ [ 1

n
− δ2,n,

1
n

[
,

(44)

where n ∈ N
∗;
(
f1,n
)
n∈N∗ ,

(
f2,n
)
n∈N∗ ,

(
δ1,n
)
n∈N∗ and

(
δ2,n
)
n∈N∗ are positive real

sequences which are to be determined. We demand:

δ1,n � 1

2

(
1

n
− 1

n+ 1

)
and δ2,n � 1

2

(
1

n
− 1

n+ 1

)
.

These sequences are to be determined in such a way that the corresponding prob-
lem P admits two distinct solutions vI and vII. We demand that vI, vII and the
corresponding functions qI, qII are such that :

qI
( 1
n

) = 0

vI
( 1
n

) = 0

qII
( 1
n

) = −qn
vII
( 1
n

) = vn
if n is even,

qI
( 1
n

) = −qn
vI
( 1
n

) = vn

qII
( 1
n

) = 0

vII
( 1
n

) = 0
if n is odd,

where (qn)n∈N∗ and (vn)n∈N∗ are positive real sequences which are to be deter-
mined.

Consider the time interval [ 1
n+1 ,

1
n
] for some n � 2. Under the action of f on

[ 1
n+1 ,

1
n+1 + δ1,n], the position of a particle which is at q = −qn+1 with velocity

v = vn+1 at time t = 1
n+1 should increase from −qn+1 to 0. This is written as

−qn+1 + vn+1δ1,n − 1
2f1,nδ

2
1,n = 0,

where δ1,n has to be the smallest root of this second degree equation

δ1,n =
vn+1 −

√
v2
n+1 − 2f1,nqn+1

f1,n
. (45)

We have also to express that, under the action of f on [ 1
n+1 ,

1
n
], a particle at rest

with position q = 0 at time t = 1
n+1 should have position q = −qn and velocity

v = vn at time t = 1
n

. That is:

vn = −f1,nδ1,n + f2,nδ2,n,

−qn = − 1
2f1,nδ

2
1,n − f1,nδ1,n

(
1

n(n+1) − δ1,n

)
+ 1

2f2,nδ
2
2,n,
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which is

vn = −f1,nδ1,n + f2,nδ2,n,

−qn = 1
2f1,nδ

2
1,n − f1,nδ1,n

1
n(n+1) + 1

2f1,nδ1,nδ2,n + 1
2vnδ2,n.

(46)

Now, let us try to make the following choice:

∀ n ∈ N
∗, qn = 1

n42n
, vn = 1

2n
, f1,n = n3

2n
. (47)

Formula (45) yields the result that, for sufficiently great n,

δ1,n = 1

2n3


1−

√
1− 4n3

(n+ 1)4


 , (48)

which gives the estimate

δ1,n ∼ 1

n4 when n→∞. (49)

Equations (46) allow us to determine δ2,n and f2,n:

δ2,n =
2n2

n+1δ1,n − n3δ2
1,n − 2

n4

1+ n3δ1,n
,

f2,n = f1,n
δ1,n

δ2,n
+ vn

δ2,n
,

which provide the estimates

δ2,n ∼ 2

n3

f2,n ∼ n3

2n+1

when n→∞. (50)

From estimates (49) and (50), we get

∃ n0, n � n0 ⇒
0 < δ1,n <

1

2n(n+ 1)
,

0 < δ2,n <
1

2n(n+ 1)
.
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We define T = 1
n0

. In exactly the same way as for example 2, it is readily seen from
estimate (50) that f ∈ C∞([0, T [;R). Define

uI(0) = 0, ; uII(0) = 0, and for n � n0:

uI(t) =

∣∣∣∣∣∣∣
vn+1 − f1,n

∫ t

1
n+1

ρ

(
s− 1

n+1

δ1,n

)
ds if t ∈ [ 1

n+1 ,
1

n+1 + δ1,n[,
0 if t ∈ [ 1

n+1 + δ1,n,
1
n
[,

uII(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

−f1,n

∫ t

1
n+1

ρ

(
s− 1

n+1

δ1,n

)
ds t ∈ [ 1

n+1 ,
1

n+1 + δ1,n[,
−f1,nδ1,n t ∈ [ 1

n+1 + δ1,n,
1
n
− δ2,n[,

−f1,nδ1,n + f2,n

∫ t

1
n
−δ2,n

ρ

(
s− 1

n
+δ2,n

δ2,n

)
ds t ∈ [ 1

n
− δ2,n,

1
n
[,

and

vI(0) = 0, vII(0) = 0,

vI(t) = uI(t)

vII(t) = uII(t)
if t ∈ [ 1

2p+1 ,
1

2p [ (2p � n0),

vI(t) = uII(t)

vII(t) = uI(t)
if t ∈ [ 1

2p ,
1

2p−1 [ (2p − 1 � n0),

Proceeding as in Example 2, we readily see that the two functions vI and vII belong
to RCLBV([0, T [;R) and furnish two distinct solutions of the problem P associated
with the C∞ function f defined by equations (44).

6. Illustrative examples and comments

6.1. Punctual particle subjected to gravity and bouncing on the floor.
Accumulation of impacts

Let us come back to the example of Section 3.3. The configuration space is
R equipped with its canonical structure of Riemannian manifold, the unilateral
constraint is described by the single function ϕ1(q) = q (which gives A = R

−).
The efforts mapping is supposed to be constant, f (q, q̇; t) ≡ 2, and the impact
function (restitution coefficient) is the constant 1/2: φ ≡ 1/2. Considering the
initial instant t0 = 0 and the initial state (q0, v0) = (−1, 0), we have seen in
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Section 3.3 that the function q : R+ → R
− defined by

∀ t ∈ [0, 1], q(t) = t2 − 1,

∀ t ∈ [1, 2], q(t) = t2 − 3t + 2,

∀ t ∈
[
3− 1

2n−1 , 3− 1
2n

]
, q(t) = t2 + (−6+ 3

2n
)
t +
(

3− 1
2n−1

) (
3− 1

2n
)
,

∀ t ∈ [3,+∞[, q(t) = 0

(∀ n ∈ N) belongs to MMA(R+;R−) and is readily seen to be the maximal solution,
according to Corollary 9, of the corresponding problem P . The solution q(t) is
represented in Fig. 2. It is seen that infinitely many impacts accumulate in any left
neighborhood of instant t = 3.

... ...

q(t)

f

3 t

Fig. 2. Motion of a punctual particle subjected to gravity and bouncing on the floor.

However, as predicted by corollary 9, for each instant t ∈ R
+, there exists a

right neighborhood [t, t + η[ of t , such that the restriction of q to [t, t + η[ is
analytic. A straightforward and general consequence of this is the following.

Proposition 19. Let q be the maximal solution of problem P furnished by corol-
lary 9. Although infinitely many impacts can accumulate at the left of a given
instant, this phenomenon can never occur at the right of any instant. Morover, in the
particular case where the impact constitutive equation is the elastic one (φ ≡ 1),
the instants of impact are isolated and therefore in finite number in any compact
interval of time.

Proof. Since for each instant t ∈ [t0, T [, there exists a right neighborhood [t, t+η[
of t , such that the restriction of q to [t, t + η[ is analytic, we get the first part of
the proposition. For the second part, let τ be an arbitrary instant in ]t0, T [ and
consider the problem P associated with the initial condition (q(τ ),−q̇−(τ )), the
elastic constitutive impact equation and the effort mapping g(q, v; t) defined by

g(q, v; t) = f (q,−v; τ − t)
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which is analytic. By Theorem 8, there exists an analytic function qa : [0, Ta[→ Q

which is a solution of this problem P .Another solution of problem P coincides with
qa on a right neighborhood of t = 0. Actually, as seen in the proof of local unique-
ness (Section 4.2), a little bit more is proved: any function q ′ ∈ MMA([0, T [;Q)

satisfying the initial condition (21), the unilateral constraint (22), the equation of
motion (23) and the energy inequality (Proposition 7) has to coincide with qa on a
right neighborhood of t = 0. But, it is readily seen that the function

q ′(t) = q(τ − t), t ∈ [0, τ − t0[
fulfill these requirements. Thus, q ′ cannot have right accumulation of impacts at
t = τ and, therefore, q cannot have left accumulation of impacts at t = τ and the
instants of impact are isolated. Of course, if q is the maximal solution defined on
[t0, T [, impacts can still accumulate at the left of T , as seen on simple examples.
��

The fact that infinitely many impacts can accumulate at the left of a given instant
but not at the right is a specific feature of the analytical setting that is lost in the
C∞ setting as seen in Counter-examples 2 and 3. Actually, these counter-examples
show that pathologies of nonuniqueness in the C∞ setting are intimately connected
to the possibility of right accumulations of impacts. The fact that the analytical
setting prevents such right accumulations is the true reason why we could prove
uniqueness in this case.

6.2. The double pendulum

In this section, we come back to the double pendulum described in Section 2.1
but we add to the system a rigid obstacle on the vertical coordinate axis as repre-
sented in Fig. 3. This obstacle may be represented by two analytic functions whose
expressions in the global chart of Q described in Section 2.1 are

ϕ1(q
1, q2) = −l1 sin q1 � 0,

ϕ2(q
1, q2) = −l1 sin q1 − l2 sin q2 � 0.

It is readily seen that, except in the particular case where l1 = l2, these con-
straints are functionally independent:

∀ q ∈ A, (dϕi(q))i∈J (q) is linear independent in T ∗q Q.

These unilateral constraints are assumed to be perfect and we consider an impact
function φ supposed to be constant on TA−:

∀ (q, v−) ∈ TA−, φ(q, v−) ≡ φ ∈ [0, 1].
The constant φ is often called the restitution coefficient (of normal velocities). We
recall that the particular cases φ = 0 and φ = 1 describe the completely inelastic
and the elastic impact constitutive equations.

An initial state (q0, v0) ∈ TA+ is given at time t0 = 0. This initial state is
represented in the considered chart by four real numbers (q1

0 , q
2
0 ; v1

0, v
2
0).According



250 Patrick Ballard

k1

l1,m1

l2,m2
k2

q1

q2λ

Fig. 3. Double pendulum with obstacle.

to Section 3, the motion of the system is governed by the evolution problem: Find
T ∈]0,+∞] and q ∈ MMA([0, T [;Q) such that:

• (
q(0), q̇+(0)

) = (q0, v0),

• ∀ t ∈ [0, T [, (
q(t), q̇+(t)

) ∈ TA+,
• R = �Dq̇+ − f

(
q(t), q̇+(t); t) dt,∈ −N∗(q(t)) for |R| -a.e. t ∈ [0, T [,

• ∀ t ∈]0, T [, q̇+(t) = q̇−(t)− (1+ φ)Projq(t)
[
q̇−(t);N(q(t))

]
,

where the Riemannian structure on Q and the mapping f are those described in
Section 2.1. Corollary 9 ensures existence and uniqueness of a maximal solution.
Now, we are going to check that assuptions of Theorem 10 are satisfied so that the
maximal solution is defined all over R

+.
First, Q is a complete Riemannian manifold since the quotient topology on the

torus T 2 derives from a Riemannian structure and T 2 is compact and therefore
complete. Second, we have the estimate

∀ (q, v) ∈ TQ, ‖v‖q � α |(v1, v2)| , (51)

where

α =
√√√√ 1

9m1m2l
2
1 l

2
2 + 1

12m
2
2l

2
1 l

2
2

1
3m2l

2
2 +
(
m1
3 +m2

)
l21

.

Indeed,

‖v‖2q � λmin(q)

∣∣∣(v1, v2)

∣∣∣2 ,
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where λmin(q) is the least eigenvalue of the matrix
(
gij (q)

)
i,j=1,2. But

λmin(q) = 1

2

(
1

3
m2l

2
2 +
(m1

3
+m2

)
l21

)

×

1−

√√√√1− 4
( 1

9m1m2l
2
1 l

2
2 + 1

3m
2
2l

2
1 l

2
2 − 1

4m
2
2l

2
1 l

2
2 cos(q1 − q2)

)
( 1

3m2l
2
2 +
(
m1
3 +m2

)
l21

)2

 .

Using

∀ x ∈ [0, 1], 1−√1− x � x

2
,

we get

λmin(q) � 1

4

4
( 1

9m1m2l
2
1 l

2
2 + 1

3m
2
2l

2
1 l

2
2 − 1

4m
2
2l

2
1 l

2
2 cos(q1 − q2)

)
1
3m2l

2
2 +
(
m1
3 +m2

)
l21

� α2,

which achieves the proof of estimate (51). Now, let qI, qII be two points of Q
represented by their components in the considered chart (q1

I , q
2
I ) and (q1

II, q
2
II). Q

being complete, there is a geodesic g : [s1, s2] → Q of minimal length between
them. We have

d(qI, qII) =
∫ s2

s1

‖ġ(s)‖g(s) ds �
∫ s2

s1

α |ġ(s)| ds

� α

√(
q1

I − q1
II

)2 + (q2
I − q2

II

)2
.

Moreover, recalling

f1(q
1, q¨2) = λl1 sin(q1 − q2)− (k1 + k2)q

1 + k2q
2,

f2(q
1, q2) = k2q

1 − k2q2,

we have

‖f (q)‖2q � 1

λmin(q)
|(f1, f2)|2 .

Therefore,

‖f (q)‖q � 1

α
|(f1, f2)|

� 1

α

[
λl1 + (k1 + k2)

∣∣∣q1
∣∣∣+ k2

∣∣∣q1
∣∣∣+ 2k2

∣∣∣q2
∣∣∣]

� 1

α

[
λl1 + 4(k1 + k2)

∣∣∣(q1
0 , q

2
0 )

∣∣∣+ 4(k1 + k2)

∣∣∣(q1 − q1
0 , q

2 − q2
0 )

∣∣∣]
� 1

α

[
λl1 + 4(k1 + k2)

∣∣∣(q1
0 , q

2
0 )

∣∣∣]+ 4(k1 + k2)

α2 d(q, q0), ∀ q ∈ Q.

By virtue of Theorem 10, the motion of the system is defined for all t ∈ R
+.
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6.3. Boltzmann’s gas

Consider a collection of N rigid homogeneous balls of mass m and radius R
in a rigid rectangular box. The balls cannot interpenetrate. The balls are free of
internal or external forces except for the reaction efforts induced by the unilateral
constraints. The impact constitutive equation is supposed to be the elastic one. Such
a system was introduced by Boltzmann to model the interactions between molecules
in a gas in order to perform a statistical analysis to connect the microscopical and
macroscopical point of view.

Let us describe the discrete mechanical system associated with this situation.
The configuration space is R

3N . Indeed, any configuration is described by the
coordinates of the center of the balls in the three-dimensional ambient space equip-
ped with an origin. Strictly speaking, the configuration space should be R

3N ×
(SO3)N to incorporate the possible rotations of the balls. But, in this case, it would
be readily seen that the rotation velocity of any ball in any motion of the system keeps
its value at the initial instant. Therefore, rotations play no role in the motion of the
system and we may consider only the restricted configuration space R

3N equipped
with its canonical Riemannian structure. The forces mapping vanishes identically
f (q, q̇+; t) ≡ 0. There are N(N + 11)/2 functions ϕi , since N(N − 1)/2 of them
are necessary to express the non-interpenetration constraints,

∀ i, j ∈ {1, 2, · · ·N}, i "= j,
(
xi − xj

)2 +
(
yi − yj

)2 +
(
zi − zj

)2
� R2,

and 6N of them are necessary to express that the balls remains inside the box:

∀ i, j ∈ {1, 2, · · ·N},
−a + R � xi � a − R,

−b + R � yi � b − R,

−c + R � zi � c − R,

where 2a, 2b and 2c are the lengths of the sides of the box. The functions ϕi are
defined by arbitrary numbering. They are easily seen to be analytic and functionally
independent. Adding the elastic impact constitutive equation φ(q, q̇−) ≡ 1, and an
initial condition at time t0 = 0, the corresponding evolution problem turns out to
belong to the class of problem P formulated at the beginning of Section 4. Then,
Corollary 9 and Theorem 10 state that, to any initial condition compatible with
the constraints, there corresponds a unique maximal motion and it is defined all
over R

+. By Proposition 19, we may also state that there are at most finitely many
impacts on any bounded time interval. As a conclusion, the results developed in
this paper allow us to associate a dynamical system with Boltzmann’s gas.

Related to this question, let us mention Boltzmann’s famous ergodic hypothesis.
Roughly speaking, Boltzmann postulated that in any motion of the system, time
averages can be replaced by space averages. The modern mathematical transcript
is: for almost every initial condition in an energy level set of the phase space, the
associated phase curve spends an amount of time in every measurable piece of the
level set proportional to the measure of that piece. Whether Boltzmann’s gas is
ergodic, or not, is still an open question. However, a positive answer was given in
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1970 by Sinai [20] for a two balls gas in a plane rectangular box. Let us underline
that this question makes sense only when we are able to associate a dynamical
system with Boltzmann’s gas.

6.4. Newton’s balls and the impact constitutive equation

In Section 3.3, we used two phenomenological assumptions H3 and H4 to show
that the general constitutive impact equation

q̇+ = F (q, q̇−) (52)

should satisfy:

∀ q ∈ A, ∀ v− ∈ −V (q),

F (q, v−) ∈ V (q),

F (q, v−)− v− ∈ −N(q),∥∥F (q, v−)∥∥
q

�
∥∥v−∥∥

q
.

(53)

In the particular case of a motion with no more than one active constraint at any
time (∀ t, CardJ (q(t)) � 1), it has been seen in Section 3.3 that the general impact
constitutive equation (52) necessarily takes the form

q̇+ = Projq
[
q̇−;V (q)

]− φ
(
q, q̇−

)
Projq

[
q̇−;N(q)

]
, (54)

with φ an arbitrary function taking values in the interval [0, 1].Actually, (54) makes
sense even in the case of multiple impacts and it is a simple example of an impact
constitutive equation satisfying requirements (53). For the sake of simplicity, we
have adopted this particular form of the impact constitutive equation even in the
case where multiple impacts occur. However, the reader should keep in mind the
arbitrariness of this choice and we shall show that it could be irrelevant in some
cases. A simple occurrence of multiple impact is Newton’s balls experiment.

a cb

Fig. 4. Newton’s balls experiment.

The principle of Newton’s balls experiment is well known. It is sketched in
Fig. 4a. As a result of this multiple impact experiment, we have the familiar picture
drawn in Fig. 4b. But, testing the simple impact constitutive equation (54) (with
φ ≡ 1) to predict the outcome of the experiment, we get the situation drawn in
Fig. 4c.
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The question arises as to whether the results of Section 4 remain true if we
abandon the simple impact constitutive equation (54) and adopt the general impact
constitutive equation (52) defined by an arbitrary function F fulfilling require-
ments (53). Actually, a careful examination of the proofs of Section 4 shows that
the impact constitutive equation is only used through the energy inequality (Propo-
sition 7). Moreover, it is readily seen that Proposition 7 still holds when the simple
impact constitutive equation (24) is replaced by a general one (equation (52)) pro-
vided requirements (53) hold true. As a result, all the results of Section 4, and in
particular, Theorem 8, Corollary 9 and Theorem 10 remain true if we adopt an
arbitrary impact constitutive equation instead of equation (24) in the definition of
problem P .

A general impact constitutive equation will be said to be elastic if the last
requirement in (53) is replaced by:

∀ q ∈ A, ∀ v− ∈ −V (q),
∥∥F (q, v−)∥∥

q
= ∥∥v−∥∥

q
.

It is readily seen that Proposition 19 still holds with an arbitrary impact constitutive
equation. In particular, for a solution of problem P with an arbitrary elastic impact
constitutive equation, the impacts are isolated.

7. Continuous dependence on initial conditions

The theory developed in the previous sections allows us to replace the anal-
ysis of the motion of a collection of rigid bodies subjected to perfect constraints
either bilateral or unilateral by the analysis of the motion of a point in a piece
of a d-dimensional manifold bounded by analytic hypersurfaces which intersect
transversally. With appropriate regularity assumptions on the data, the motion is
completely determined by the initial condition.

The picture seems to be fairly good and the generalization of the dynamics
of discrete systems with bilateral constraints to the case of unilateral constraints
seems to be achieved. However, there remains a big difference between unilateral
and bilateral dynamics of discrete systems that we want to underline in this section.

A pleasant feature of a dynamical system generated by the flow of an ordinary
differential equation is that it is smooth. More precisely, if Ft,t0 is the mapping
which associates the state of the system at time t with an arbitrary initial condition
at time t0, then the mappingFt,t0 is a local diffeomorphism. In particular, the state of
the system at a given instant t depends in a differentiable way of the state at time t0.
Of course, this smooth dependence may be stiff. In such a case, a small uncertainty
on the initial state will produce a big one on the actual state and the motion of
the system may turn out to be quantitatively unpredictable from both the physical
and the numerical point of view for large time. In certain circumstances, the theory
of smooth dynamical systems allow us to get some qualitative information on the
motion for large time.

As we shall see, the picture is strongly different in the case of the dynamics of
discrete systems with perfect unilateral constraint. The theorems of Section 4 allow
us to define a mapping Ft,t0 similar to the flow generated by an ordinary differential
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x

y

Fig. 5. The generated dynamical system is not continuous in general.

equation. But, the mapping Ft,t0 is not smooth any more, it is not even continuous
in general. In other words, the generated dynamical system does not belong to the
large class of topological dynamical systems.

Let us check this assertion on a simple example. Consider as a configuration
space R

2 supplied with its canonical structure of Riemannian manifold. A config-
uration is denoted by a pair (x, y). No forces act on the system: f ≡ 0. Consider
a unilateral constraint associated with the two functions

ϕ1(x, y) = y � 0,

ϕ2(x, y) = x + y � 0,

and the elastic impact constitutive equation φ ≡ 1. At time t0 = 0, we consider the
following set of initial conditions:

{(−1+ ε,−1; 1, 1); ε ∈] − 1, 1[} .
A straightforward calculation gives the state of the system for all instant in R

+. In
particular, for t greater than 1, one gets:

Ft,0(−1+ ε,−1; 1, 1) = (−1+ ε + t, 1− t, 1,−1) if ε ∈] − 1, 0[,
Ft,0(−1+ ε,−1; 1, 1) = (1− t, 1− ε − t,−1,−1) if ε ∈ [0, 1[.

It is readily seen on this example that, if t is greater than 1, the mapping Ft,0 is not
continuous at initial condition (−1,−1, 1, 1) (see Fig. 5). Coming back to the two
examples of Section 6, such a situation occurs if, during the motion of the double
pendulum, the two bars hit the obstacle at the same time. In the case of Boltzmann’s
gas, the pathology occurs when three balls hit at the same time. Let us underline that
if we consider an initial condition such as the one in the above example, the solution
of the associated problem P has no physical meaning. In such a case, one has to
abandon any hope of predicting the motion of the system: this is a consequence of
the over-idealization made in the indeformability assumption.

However, in the particular case of the one-degree-of-freedom problem, where no
multiple impacts are possible,Schatzman [19] proved that continuous dependence
on initial conditions holds. In the general case, her result admits the following
generalization which is proved along the same lines:
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Theorem 20. Consider the problem P described in Section 3.4. Assume further-
more that the impact functionφ is constant. Consider the initial condition (q0, v0) ∈
TA+ at initial instant t0, and denote by (T , q) the corresponding maximal solution
of problem P . Make the following hypothesis:

∀ t ∈ [t0, T [, (dϕi(q(t)))i∈J (q(t)) is orthogonal in T ∗q(t)Q,

(with the convention that the empty set is orthogonal). Consider a sequence
(q0n, v0n) of elements of TA+ converging towards (q0, v0). For all n, we denote by
(Tn, qn) the maximal solution of the problem P associated with the initial condition
(q0n, v0n) at instant t0. Then,

(1) lim inf
n→+∞ Tn � T ,

(2) qn converges towards q uniformly on every compact subset of [t0, T [:
∀ τ ∈ [t0, T [, lim

n→+∞ sup
t∈[t0,τ ]

d(qn(t), q(t)) = 0,

(3) (qn(t), q̇+n (t)) converges towards (q(t), q̇+(t)) in TQ for almost all t in [t0, T [.

Proof. The proof of Theorem 20 is divided into five steps. Before describing these
steps, let us introduce a some new notation.

We fix, once for all, an arbitrary τ in [t0, T [ and a compact neighborhood K ′
of the compact subset q([t0, τ ]) of Q. We define:

V = 1+ sup
t∈[t0,τ ]

∥∥q̇+(t)∥∥
q(t)

,

and,

K = {(q, v) ∈ TQ; q ∈ K ′ and ‖v‖q � 4V
}
.

The subset K of TQ is compact in TQ. We define also:

F = 1+ max
(q,v;t)∈K×[t0,τ ]

‖f (q, v; t)‖q ,

and

d0 = min
(q ′,t)∈∂K×[t0,τ ]

d(q ′, q(t)),

and

δ = min

(
V

F
,
d0

6V

)
.

Notice that we have δ > 0.

Step 1. Consider t1 ∈ [t0, τ [. We denote q(t1) by q1 and q̇+(t1) by v1. Consider an
element (q ′1, v′1) of TA+ such that

d(q1, q
′
1) � d0

4
and

∥∥v′1∥∥q ′1 � 2V.
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Then, the maximal solution q ′ of the problem P associated with the initial condition
(q ′1, v′1) at initial instant t1 is defined on an interval containing [t1,min(τ, t1 + δ)]
and is such that

∀ t ∈ [t1,min(τ, t1 + δ)],
(
q ′(t), q̇ ′+(t)

)
∈ K.

Let us denote by [t1, T ′1[ the maximal definition interval of q ′. Define

t ′1 = sup
{
t ∈ [t1, T ′1[; ∀ s ∈ [t1, t],

(
q ′(s), q̇ ′+(s)

)
∈ K
}
.

We have to prove

t ′1 � min (τ, t1 + δ) .

Assume the contrary is true:

t ′1 < min (τ, t1 + δ) .

By Proposition 7 and Lemma 17, we have:

∀ t ∈ [t1, t ′1[,
∥∥∥q̇ ′+(t)∥∥∥

q ′(t)
�
∥∥v′1∥∥q ′1 +

∫ t

t1

F ds

� 2V + F(t ′1 − t1)

� 3V.

We deduce

t ′1 < T ′1,

by Proposition 18, and∥∥∥q̇ ′+(t ′1)∥∥∥
q ′(t ′1)

�
∥∥∥q̇ ′−(t ′1)∥∥∥

q ′(t ′1)
= lim

t→t ′1
−

∥∥∥q̇ ′+(t)∥∥∥
q ′(t)

� 3V,

by Proposition 32. Moreover,

d
(
q ′(t ′1), q1

)
� d
(
q ′(t ′1), q ′1

)+ d
(
q ′1, q1

)
� 3V (t ′1 − t1)+ d0

4

� 3

4
d0.

By the continuity of the function t 
→ d(q ′(t), q1) and the right-continuity of the

function t 
→
∥∥∥q̇ ′+(t)∥∥∥

q ′(t)
, we have

∃α > 0, ∀ t ∈ [t ′1, t ′1 + α],
(
q ′(t), q̇ ′+(t)

)
∈ K.

But, this contradicts the definition of t ′1 and achieves the proof of Step 1.

Step 2 For n large enough, qn is defined on (an interval containing) the interval
[t0,min(τ, t0 + δ)]. Moreover, there exists a subsequence of (qn), also denoted by
(qn), such that:
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– qn converges uniformly on [t0,min(τ, t0+δ)] towards a function qlim belonging
to MMA([t0,min(τ, t0 + δ)];Q),

– (qn(t), q̇
+
n (t)) converges towards (qlim(t), q̇

+
lim(t)) in TQ for almost all t in

[t0,min(τ, t0 + δ)].
For all q in K ′ ∩ A, there exists a compact neighborhood K ′q of q which is

included in the domain Uq of a local chart (Uq, ψq) at q such that:

– ∀ q ′ ∈ Uq, J (q ′) ⊂ J (q),

– ∀ q ′ ∈ Uq, the cardJ (q) first components of ψq(q
′) are the ϕi(q ′) (i ∈ J (q)).

Being compact,K ′∩A can be covered by a finite number, sayL, of
◦
K ′ql . We denote

by λmax and λmin the maximum and the minimum of, respectively, the greatest and
least eigenvalue of the matrix

(
gij (q)

)
i,j=1,2,··· ,d when q wanders in K ′ql and l in

{1, 2, · · · , L}. We define

G = max
i,j,k∈{1,2,··· ,d}
l∈{1,2,··· ,L}

max
q∈K ′ql

∣∣∣∣∂gij (q)∂qk

∣∣∣∣ .

We pick an integer N0, large enough to ensure:

∀ n � N0,
d(q0, q0n) � d0

4
,

‖v0n‖q0n � 2V.

By Step 1,

∀ n � N0,
Tn � min (τ, t0 + δ) ,

∀ t ∈ [t0,min (τ, t0 + δ)] ,
(
qn(t), q̇

+
n (t)
) ∈ K.

By a compactness argument, we have

∃α > 0, ∀ l ∈ {1, 2, · · · , L} , ∀ q ∈ ∂Kql , ∃ l′, B(q, α) ⊂ K ′ql′ .

As a consequence, for n larger thanN0, the interval [t0,min(τ, t0+δ)] is the disjoint
union of a finite number, say Nn, of intervals Ini such that

∀ i ∈ {1, 2, · · · , Nn} , ∃ l ∈ {1, 2, · · · , L} , qn(Ini) ⊂ K ′ql .

Moreover, the intervals Ini can be constructed in such a way that:

∀ n � N0, Nn � 1+ 4V δ

α
.

Furthermore, recalling

∀ n, �Dq̇+n = f
(
qn, q̇

+
n ; t
)
dt +

n∑
i=1

λnidϕi(qn(t)), (55)
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where the λni are nonpositive real measures on [t0,min(τ, t0+ δ)], and performing
the same job as in the proof of Proposition 18 (estimate (38)), we obtain

∀ n � N0, ∀ i ∈ {1, 2, · · ·N} , ∀ j ∈ {1, 2, · · ·Nn} ,∫
Inj

(−λni) � 2
√
λmax(4V )+

(
F + d2G(4V )2

2λmin

)
δ.

There results:

∀ n � N0, ∀ i ∈ {1, 2, · · ·N} , (56)∫
[t0,min(τ,t0+δ)]

(−λni) �
[

1+ 4V δ

α

] [
2
√
λmax(4V )+

(
F + d2G(4V )2

2λmin

)
δ

]
.

The measures λni are uniformly bounded with respect to n. Using the equation
of motion (55), we find that the real numbers Var

(
q̇+n ; [t0,min(τ, t0 + δ)]) are

uniformly bounded with respect to n, for n larger than N0. The assertion of Step 2
is now a direct consequence of Proposition 34.

Step 3 The function qlim constructed in Step 2 satisfies the equation of motion:

Rlim = �Dq̇+lim − f
(
qlim, q̇

+
lim; t

)
dt ∈ −N∗(qlim).

Moreover, the real measure 〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim is a nonpositive measure on
the interval [t0,min(τ, t0 + δ)[.

We denote by Mb([a, b],R) the Banach space of all bounded real measures
on an interval [a, b]. By estimate (56), we can find N bounded real measures λilim
such that

lim
n→+∞ λin = λilim in Mb([t0,min(τ, t0 + δ)],R) weak*,

where another subsequence has been extracted, if necessary. Writing the equation
of motion (55) in local charts, we have

lim
n→+∞ dq̇+in = dq̇+ilim in Mb weak*.

Furthermore,

lim
n→+∞ f

(
qn, q̇

+
n ; t
)
dt = f

(
qlim, q̇

+
lim; t

)
dt in Mb weak*,

by Lebesgue’s Dominated Convergence Theorem. Therefore, we obtain easily:

�Dq̇+lim = f
(
qlim, q̇

+
lim; t

)
dt +

n∑
i=1

λilimdϕi(qlim),

the weak* topology being Hausdorff. Now, by formulae (12) we have to prove

Suppλilim ⊂ {t ∈ [t0,min(τ, t0 + δ)];ϕi(qlim(t)) = 0} . (57)

Consider ]a, b[⊂ [t0,min(τ, t0 + δ)] such that

∀ s ∈]a, b[, ϕi(qlim(s)) < 0.
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The interval ]a, b[ is the union of the compact intervals Kj = [a + 1/j, b − 1/j ]
(j ∈ N

∗). Fix j ∈ N
∗. For n large enough,

∀ s ∈ Kj , ϕi(qn(s)) < 0,

so λin|Kj
= 0. We deduce:

∀ g ∈ C0
c (Kj ;R), intKj

g dλilim = 0.

Therefore, λilim|]a,b[ = 0 and this achieves the proof of inclusion (57) and therefore
of the first assertion of Step 3.

For the second assertion of Step 3, we are going to prove actually:

∀ t1, t2 ∈ [t0,min(τ, t0 + δ)[, t1 < t2,

∫
]t1,t2]
〈Rlim,

(
q̇+lim + q̇−lim

)〉qlim � 0.

(58)

Fix such t1, t2 and arbitrary ε > 0. We have∫
]t1,t2]
〈Rlim,

(
q̇+lim + q̇−lim

)〉qlim =
∥∥q̇+lim(t2)∥∥2

qlim(t2)
− ∥∥q̇+lim(t1)∥∥2

qlim(t1)

− 2
∫ t2

t1

〈f (qlim(t), q̇
+
lim(t); t

)
, q̇+lim(t)〉 dt.

By the right-continuity of the function t 
→ ∥∥q̇+lim(t2)∥∥qlim(t)
and the results of

Step 2, we can find t ′1, t ′2 ∈ [t0,min(τ, t0+ δ)[ (t ′1 < t ′2) and an integer N0 such that

ti � t ′i � ti + ε

8VF
, and

∀ n � N0,

∣∣∣∥∥q̇+lim(ti)∥∥2
qlim(ti )

− ∥∥q̇+n (t ′i )∥∥2
qn(t

′
i )

∣∣∣ � ε

8
(i = 1, 2).

Moreover, by Lebesgue’s Dominated Convergence Theorem, N0 may be assumed
large enough to ensure:

∀ n � N0,∣∣∣∣∣
∫ t ′2

t ′1

{〈f (qlim(t), q̇
+
lim(t); t

)
, q̇+lim(t)〉 − 〈f

(
qn(t), q̇

+
n (t); t

)
, q̇+n (t)〉

}
dt

∣∣∣∣∣ � ε

8
.

It is easily deduced that

∀ n � N0,

∣∣∣∣∣
∫
]t1,t2]
〈Rlim,

(
q̇+lim + q̇−lim

)〉qlim −
∫
]t ′1,t ′2]
〈Rn,

(
q̇+n + q̇−n

)〉qn
∣∣∣∣∣ � ε.

Since ε is arbitrary and
∫
]t ′1,t ′2]〈Rn,

(
q̇+n + q̇−n

)〉qn is nonpositive (Proposition 7),
the conclusion (assertion (58)) follows.
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Step 4. Consider an arbitrary instant tg ∈]t0,min(τ, t0 + δ)[ such that(
dϕi(qlim(tg))

)
i∈J (qlim(tg))

is orthogonal in T ∗qlim(tg)
Q.

Then, qlim satisfies the impact constitutive equation at instant tg:

q̇+lim(tg) = q̇−lim(tg)− (1+ φ)Projqlim(tg)

[
q̇−lim(tg);N(qlim(tg))

]
.

Consider a local chart (U,ψ) centered at qlim(tg) such that:

– the cardJ (qlim(tg)) first components of ψ(q) are αiϕi(q) (i ∈ J (qlim(tg))),
where the αi are some fixed positive real constants,

– ∀ q ∈ U, J (q) ⊂ J (qlim(tg)),
– the matrix

(
gij (lim(tg))

)
is the identity matrix(

gij (lim(tg))
) = δij .

We have to prove

q̇+ilim(tg) = −φq̇−ilim(tg), 1 � i � CardJ (qlim(tg)),

q̇+ilim(tg) = q̇−ilim(tg), CardJ (qlim(tg))+ 1 � i � d.
(59)

First, we are going to prove:

∀ ε > 0, ∃N0, η > 0, ∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,∣∣q̇+in (t2)
∣∣ � ∣∣q̇+in (t1)

∣∣+ ε,

(60)

and

∀ ε > 0, ∃N0, η > 0, ∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,{∀ t ∈ [t1, t2], qin(t) < 0
} �⇒ {∣∣q̇+in (t2)− q̇+in (t1)

∣∣ � ε
}
.

(61)

Fix ε > 0 arbitrary, and pick a positive real number η small enough and an integer
N0 large enough to ensure:

∀ t ∈ [tg − η, tg + η], ∀ n � N0, qlim(t) ∈ U and qn(t) ∈ U.
Let V ′ be a positive real constant, large enough to majorize all the quantities∣∣∣q+in (t)

∣∣∣ and Var
(
q+in ; [tg − η, tg + η]

)
,

when i, t and n wander respectively in the sets {1, 2, · · · , d}, [tg − η, tg + η] and{
n ∈ N ; n � N0

}
. We may assume that η is small enough and N0 large enough to

ensure:

∀ t ∈ [tg − η, tg + η], ∀ n � N0,
∣∣gij (qn(t))− δij

∣∣ � min

(
ε

4dV ′
,

ε2

8dV ′2

)
.
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Multiplying the equation of motion (36) by (q̇+in + q̇+in )/2 and integrating over
]t1, t2], we obtain easily:

∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,

1

2

∣∣∣q̇+in (t2)

∣∣∣2 � 1

2

∣∣∣q̇+in (t1)

∣∣∣2 + 1

2

(ε
2

)2 +
∫ t2

t1

(
F + 3

2
d2GV 2

) ∣∣∣q̇+in (s)

∣∣∣ ds,
which gives,

∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,∣∣∣q̇+in (t2)

∣∣∣ � ∣∣∣q̇+in (t1)

∣∣∣+ ε

2
+ 2η

(
F + 3

2
d2GV 2

)
,

by Lemma 17 and the desired conclusion (60) for sufficiently small η. For the
second assertion (61), suppose we have in addition

∀ t ∈ [t1, t2], qin(t) < 0.

The result is that λin vanishes on [t1, t2] and integration of the equation of mo-
tion (37) gives ∣∣∣q̇+in (t2)− q̇+in (t1)

∣∣∣ � ε

2
+ 2η

(
F + 3

2
d2GV 2

)
,

and therefore the desired conclusion (61) for sufficiently small η.
Now, let us come back to the proof of assertions (59). Fix i ∈ {1, 2, · · · , d}.

Only the following four cases are possible:

Case 1: CardJ (qlim(tg))+ 1 � i � d;
Case 2: 1 � i � CardJ (qlim(tg)) and q̇−ilim(tg) = 0;
Case 3: 1 � i � CardJ (qlim(tg)), q̇−ilim(tg) > 0 and φ = 0;
Case 4: 1 � i � CardJ (qlim(tg)), q̇−ilim(tg) > 0 and φ > 0.

We examine them successively.

Case 1. CardJ (qlim(tg))+ 1 � i � d .
Fix ε > 0 arbitrary. By assertion (61), we can pick a positive real number η

small enough and an integer N0 large enough to ensure that

∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,

∣∣∣q̇+in (t2)− q̇+in (t1)

∣∣∣ � ε,

since

∀ t ∈ [tg − η, tg + η], ∀ n � N0, qin(t) < 0,

by the choice of the chart we made. Actually, η can be assumed small enough to
ensure:

∀ t ∈ [tg − η, tg[,
∣∣∣q̇+ilim(t)− q̇−ilim(tg)

∣∣∣ � ε,

∀ t ∈]tg, tg + η],
∣∣∣q̇+ilim(t)− q̇+ilim(tg)

∣∣∣ � ε,
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by Proposition 32. By Step 2, we can find t1 ∈ [tg − η, tg[ and t2 ∈]tg, tg + η] such
that

lim
n→+∞ q̇+in (tk) = q̇+ilim(tk) (k = 1, 2)

and, therefore, N0 can be assumed large enough to ensure:

∀ n � N0,

∣∣∣q̇+in (tk)− q̇+ilim(tk)

∣∣∣ � ε (k = 1, 2).

Then, we have∣∣∣q̇+ilim(tg)− q̇−ilim(tg)

∣∣∣ � ∣∣∣q̇+ilim(tg)− q̇−ilim(t2)

∣∣∣+ ∣∣∣q̇+ilim(t2)− q̇−in (t2)

∣∣∣
+ ∣∣q̇+in (t2)− q̇−in (t1)

∣∣+ ∣∣∣q̇+in (t1)− q̇−ilim(t1)

∣∣∣
+
∣∣∣q̇+ilim(t1)− q̇−ilim(tg)

∣∣∣
� 5ε.

Since ε is arbitrary, we get the desired conclusion:

q̇+ilim(tg) = q̇−ilim(tg).

Case 2. 1 � i � CardJ (qlim(tg)) and q̇−ilim(tg) = 0.
Fix ε > 0 arbitrary. By assertion (60), we can pick a positive real number η

small enough and an integer N0 large enough to ensure:

∀ n � N0, ∀ t1, t2 ∈ [tg − η, tg + η], t1 < t2,

∣∣∣q̇+in (t2)

∣∣∣ � ∣∣∣q̇+in (t1)

∣∣∣+ ε.

Exactly as in case 1, η is assumed sufficiently small to ensure that

∀ t ∈ [tg − η, tg[,
∣∣∣q̇+ilim(t)

∣∣∣ � ε,

∀ t ∈]tg, tg + η],
∣∣∣q̇+ilim(t)− q̇+ilim(tg)

∣∣∣ � ε,

and N0 large enough to have

∀ n � N0,

∣∣∣q̇+in (tk)− q̇+ilim(tk)

∣∣∣ � ε (k = 1, 2),

for some t1 ∈ [tg − η, tg[ and some t2 ∈]tg, tg + η]. We get∣∣∣q̇+ilim(tg)

∣∣∣ � ∣∣∣q̇+ilim(tg)− q̇−ilim(t2)

∣∣∣+ ∣∣∣q̇+ilim(t2)− q̇+in (t2)

∣∣∣+ ∣∣q̇+in (t2)
∣∣

�
∣∣q̇+in (t1)

∣∣+ 3ε

� 5ε,

which gives the desired conclusion

q̇+ilim(tg) = 0,

since ε is arbitrary.



264 Patrick Ballard

Case 3. 1 � i � CardJ (qlim(tg)), q̇
−i
lim(tg) > 0 and φ = 0.

Fix ε arbitrary in ]0, q̇−ilim(tg)/16]. We pick η and N0 such that both asser-
tions (60) and (61) hold. Actually, η is assumed small enough to ensure that

∀ t ∈ [tg − η, tg[,
∣∣∣∣∣q

i
lim(t)

t − tg
− q̇−ilim(tg)

∣∣∣∣∣ � ε,

∀ t ∈ [tg − η, tg[,
∣∣∣q̇+ilim(t)− q̇−ilim(tg)

∣∣∣ � ε,

∀ t ∈]tg, tg + η],
∣∣∣q̇+ilim(t)− q̇+ilim(tg)

∣∣∣ � ε,

and, by Step 2, N0 is assumed large enough to get

∀ n � N0, ∀ t ∈ [tg − η, tg + η],
∣∣∣qin(t)− qilim(t)

∣∣∣ � ηε,

∀ n � N0,

∣∣∣q̇+in (t1)− q̇+ilim(t1)

∣∣∣ � ε,

∀ n � N0,

∣∣∣q̇+in (t2)− q̇+ilim(t2)

∣∣∣ � ε,

for some fixed t1 ∈ [tg − η/2, tg − η/4] and t2 ∈ [tg + 3η/4, tg + η]. From these
inequalities, it is easily deduced that

−17

16

η

2
q̇−ilim(tg) � qilim(t1) � −15

16

η

4
q̇−ilim(tg),

and therefore,

∀ n � N0, −10

16
ηq̇−ilim(tg) � qin(t1) � − 2

16
ηq̇−ilim(tg). (62)

Furthermore,
q̇+in (t1) � q̇+ilim(t1)− 2ε � 14

16
q̇−ilim(tg). (63)

Then, by estimates (62) and (63) and assertion (61), it is readily seen that

∀ n � N0, ∃ tn ∈]t1, t1 + η[, qin(tn) = 0.

But, since φ = 0, we have

∀ n � N0, q̇+in (tn) = 0,

and, therefore,

∀ n � N0,

∣∣∣q̇+in (t2)

∣∣∣ � ε,

by assertion (60). We deduce: ∣∣∣q̇+ilim(tg)

∣∣∣ � 3ε,

and the desired conclusion q̇+ilim(tg) = 0, since arbitrarily small ε can be chosen.
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Case 4. 1 � i � CardJ (qlim(tg)), q̇
−i
lim(tg) > 0 and φ > 0.

Fix ε arbitrary in ]0, φq̇−ilim(tg)/16]. We pick η, N0, t1 and t2 exactly in the same
way as for case 3. As in step 3, we have

∀ n � N0, ∃ tn ∈]t1, t1 + η[, qin(tn) = 0,

but, here, it is readily seen that tn is the unique instant in [t1, tg + η] such that
qin(tn) = 0. Now, we obtain∣∣∣q̇+ilim(tg)+ φq̇−ilim(tg)

∣∣∣ � ∣∣∣q̇+ilim(tg)− q̇+in (t2)

∣∣∣+ ∣∣q̇+in (t2)− q̇+in (tn)
∣∣+

φ
∣∣q̇−in (tn)− q̇+in (t1)

∣∣+ φ

∣∣∣q̇+in (t1)− q̇−ilim(tg)

∣∣∣
� 6ε,

by use of assertion (60). Since ε can be arbitrarily small, we have the desired
conclusion:

q̇+ilim(tg) = −φq̇−ilim(tg).

This achieves the Proof of Step 4.

Step 5. Conclusion of the proof of Theorem 20.
First, we are going to prove:

∀ t ∈ [t0,min(τ, t0 + δ)], qlim(t) = q(t). (64)

Define:

t1 = sup {t ∈ [t0,min(τ, t0 + δ)] ∀ s ∈ [t0, t], qlim(s) = q(s)} .
Notice that the set in the above definition is non empty, since it contains t0. By
continuity, we have

∀ t ∈ [t0, t1], qlim(t) = q(t).

Now, assume:

t1 < min(τ, t0 + δ).

By the assumption made on q in the theorem and by Step 4, the function qlim is
readily seen to satisfy the impact constitutive equation at instant t1. Therefore,(

qlim(t1), q̇
+
lim(t1)

) = (q(t1), q̇+(t1)) .
Furthermore, we have seen in Step 3 that qlim satisfies the equation of motion and
that 〈Rlim,

(
q̇+lim + q̇−lim

)〉qlim is a nonpositive real measure. But, the proof of local
uniqueness (Theorem 8) uses nothing more than that. We deduce that there exists
a right-neighborhood of t1 on which the functions qlim and q coincide identically.
But, this contradicts the definition of t1 and achieves the proof of assertion (64). As
a result, the function qlim is uniquely determined and the conclusions of Step 2 are
valid not only for a subsequence but for the whole sequence (qn).
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Now, if t0 + δ < τ , we pick t ′0 ∈ [t0 + δ/2, t0 + δ[ such that

lim
n→+∞

(
qn(t

′
0), q̇

+
n (t
′
0)
) = (q(t ′0), q̇+(t ′0)) .

Performing the same job for instant t ′0 instead of t0, we extend the conclusion to
interval [t0,min(τ, t0 + 3δ/2)]. Processing so inductively a large enough number
of times, we obtain the desired conclusion. ��

Remark. A straightforward modification of the proof of Step 4 shows that the
conclusions of theorem 20 hold if we only assume that φ is continuous and constant
on each fiber:

∀ q, ∀ v1, v2 ∈ TqQ, φ(q, v1) = φ(q, v2).

The conclusions of Theorem 20 also hold if φ is only assumed continuous and if,
moreover, we have

∀ t ∈ [t0, T [, CardJ (q(t)) � 1.

8. Indications on the numerical computation of the solutions

Consider the problem P described in Section 3.4. Assume furthermore, for the
sake of simplicity, that the impact function φ is constant. The maximal solution
associated with the initial condition (q0, v0) at time t0 = 0, is denoted by (Tm, q).
We consider a local chart (U,ψ) at q0 and a positive real number T such that

∀ t ∈ [0, T ], q(t) ∈ U.

By assumption (20), we may assume:

∀ q ∈ U, (dϕi(q))i∈J (q) is linear independent in T ∗q Q,

taking a smaller U if necessary. We consider a sequence of approximants, defining
for every n � 1:

• hn = 2−nT ,
• tn,k = khn = k2−nT (k = 0, 1, 2, · · · , 2n),

• (qn,0, vn,0) = (q0, v0),

• qn,k = qn,k−1 + hnvn,k−1 (k = 1, 2, · · · , 2n),
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• v′αn,k = vαn,k−1

+
[
gαβ(qn,k)fβ

(
qn,k, vn,k−1; tn,k

)− �α
βγ (qn,k)v

β
n,k−1v

γ

n,k−1

]
hn

(k = 1, 2, · · · , 2n, α = 1, 2, · · · , d),
• vn,k = v′n,k − (1+ φ)Projqn,k

[
v′n,k, N(qn,k)

]
(k = 1, 2, · · · , 2n),

• vn(t) =
∣∣∣∣ vn,k, if t ∈ [tn,k, tn,k+1[ with k = 0, 1, · · · 2n − 1,
vn,2n , if t = T = tn,2n ,

• qn(t) = q0 +
∫ t

0
vn(s) ds.

Actually, it may happen that the function qn cannot be defined on [0, T ] if there
exists an integer kn such that qn,kn+1 "∈ U . In such a case, the function qn is defined
only on [0, tn,kn ].

This type of algorithm was introduced by Moreau and used without further
justifications. It should be stressed that one cannot hope that the sequence of ap-
proximants (qn) converges in general towards the solution q, since continuous
dependence on initial condition does not hold in general. Actually, it is easy to
build an explicit example, in the spirit of the example of Section 7, where the se-
quence (qn) does not converge pointwisely towards any function at all. However,
in the special case where all the multiple impacts are orthogonal, things behave
nicely and we have:

Theorem 21. Suppose that the solution q is such that all multiple impacts are
orthogonal:

∀ t ∈ [0, T ], (dϕi(q(t)))i∈J (q(t)) is orthogonal in T ∗q(t)Q,

(with the convention that the empty set is orthogonal). Then, there exists an integer
N0 such that the function qn is well defined on [0, T ] for n � N0. Moreover, the
sequence (qn) converges uniformly on [0, T ] towards q (or more precisely towards
ψ(q)).

Theorem 21 can be proved along the same steps as those of the proof of Theo-
rem 20. The necessary adaptation of the details is left to the reader.

Appendix: the class of motion MMA(I ;Q)

In this section, we are going to define the concept of vector field with bounded
variation along a locally absolutely continuous curve on a Riemannian manifold.
The definition and basic properties of absolutely continuous functions and functions
with bounded variation from a real interval to a finite-dimensional normed vector
space are supposed to be known. The reader is refered to Rudin [17] and Moreau
[13]. These concepts are intimately connected with measure theory. Two expositions
of measure theory compete: the set-theoretic approach (see for exampleRudin [17])
and the duality approach (see for example Bourbaki [6]). These approaches are
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connected by Riesz’s representation theorem. In this paper, we stick to the duality
approach. If I is a real interval andE a real finite-dimensional normed vector space,
C0
c (I ;E) will denote the space of continuous functions from I to E with compact

support. A measure on I with values in E (or E∗) will be any linear form µ on
C0
c (I ;E∗) (or, respectively,C0

c (I ;E)) satisfying the following continuity property:

∀ a, b ∈ I, a < b ∃Ma,b � 0, ∀ϕ with Suppϕ ⊂ [a, b],
|µ(ϕ)| � Ma,b maxt∈I ‖ϕ(t)‖ .

When the constant Ma,b can be found independent of a and b, the measure µ is
said bounded. For everything concerning measure theory, the reader is referred to
Bourbaki [6] where he will note the definition of the support Suppµ of a measure
µ (Bourbaki [6], p. 64).

The following list of definitions and propositions aims at carrying these concepts
over Riemannian manifolds. The cornerstone is, of course, the identification of
tangent spaces at different points of a curve by means of parallel translation.

This appendix is also an occasion to state precisely the classical theorems which
are used in this paper.

Definition 22. Let I be a real interval and q : I → Q a curve on Q. The curve q

is said to be locally absolutely continuous if, for all t in I , there exists a compact
neighborhood J of t in I and a chart (U,ψ) such that:

– q(J ) ⊂ U ,
– ψ ◦ q : J → R

d is absolutely continuous.

Since Q can be covered by a countable collection of chart domains, Lebesgue’s
theorem yields the result that q(t) admits a tangent vector q̇(t) ∈ Tq(t)Q for dt-
almost all t in I where dt denotes the Lebesgue measure on the real line (and also
its restriction on I ). The Riemannian structure on Q and the Cauchy-Lipschitz-
Caratheodory theorem allow us to define classically a parallel translation operator
along q, τt,s : Tq(s)Q→ Tq(t)Q (see, for example, Chavel [7],p. 7). τt,s is defined
for all (s, t) ∈ I 2.

Definition 23. Let q be a locally absolutely continuous curve from I toQ. A vector
field X on q(t) (or a 1-form field X∗ on q(t)) is a mapping from I to TQ (resp.
T ∗Q) with the property

∀ t ∈ I, �Q (X(t)) = q(t) (resp. �∗Q
(
X∗(t)

) = q(t)).

A vector field X on q(t) (or a 1-form field X∗ on q(t)) will be said to be locally ab-
solutely continuous (resp. absolutely continuous, or locally with bounded variation,
or with bounded variation) if there exists t0 in I such that the mapping

θt0

{
I → Tq(t0)Q

s 
→ τt0,s(X(s))

(
resp. θ∗t0

{
I → T ∗q(t0)Q

s 
→ � ◦ τt0,s(� ◦X∗(s))

)
,
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is locally absolutely continuous (resp. absolutely continuous, or locally with
bounded variation, or with bounded variation). If X has bounded variation on I , its
variation over I is by definition:

Var(X(s); I ) = Var(τt0,s(X(s)); I ). (65)

From the identity:

∀ s1, s2, t1, t2 ∈ I,∥∥τt1,s1(X(s1))− τt1,s2(X(s2))
∥∥
q(t1)
= ∥∥τt2,s1(X(s1))− τt2,s2(X(s2))

∥∥
q(t2)

,

it is easily deduced that the above definition is independent on a particular choice
of t0 and so is the real number Var(X(s); I ).

The covariant derivative of a locally absolutely continuous vector field X along
q can be defined for dt-almost every t in I by:

DX(t)

dt
= d

ds

(
τt,s(X(s))

)∣∣
s=t for dt-a.e. t ∈ I.

Definition 24. Let (I, q) be a continuous curve on Q. We denote by C0
c (I, q; TQ)

(or C0
c (I, q; T ∗Q)) the space of continuous functions ϕ from I to TQ (resp. T ∗Q)

with compact support and such that:

∀ t ∈ I, �Q (ϕ(t)) = q(t) (resp. �∗Q (ϕ(t)) = q(t)).

We define a measure on the curve (I, q) taking values in TQ (or T ∗Q) as any linear
form µ on C0

c (I, q; T ∗Q) (or C0
c (I, q; TQ)) enjoying the following continuity

property:

∀ a, b ∈ I, a < b ∃Ma,b � 0, ∀ϕ with Suppϕ ⊂ [a, b],
|µ(ϕ)| � Ma,b max

t∈I ‖ϕ(t)‖q(t) .

The real number µ(ϕ) will also be defined by
∫
I
〈ϕ(t), dµ〉q(t).

Proposition 25. Let (I, q) be a continuous curve onQ andµ a measure on q taking
values in T ∗Q. For any nonnegative function f of C0

c (I ;R), we define

|µ| (f ) = sup
g∈C0

c (I,q;TQ)

‖g(t)‖q(t)�f (t)

∣∣∣∣
∫
I

g(t) dµ

∣∣∣∣ ,

where the supremum is finite thanks to the continuity properties included in the
definition of measures. For arbitrary f in C0

c (I ;R), we define

|µ| (f ) = |µ| (〈f 〉+)− |µ| (〈f 〉−) ,
where 〈x〉± = max{±x, 0} are the classical positive and negative parts.

Then, the functional |µ| is a real measure called the modulus measure of µ.



270 Patrick Ballard

The proof is omitted since it is completely identical to the proof of the similar
statement for complex measures (see Bourbaki [6, p. 54]).

The support Suppµ of a measure µ on q(t) taking values in T ∗Q is, by defini-
tion, the support Supp |µ| of its modulus measure.

We define L1
loc(I, q, |µ| ; T ∗Q) by the space of functions θ defined for |µ|-

almost all t in I , taking values in T ∗Q and such that:

– �∗Q(θ(t)) = q(t) for |µ|-almost every t ∈ I ,

– ∀ϕ ∈ C0
c (I, q; TQ), t 
→ 〈ϕ(t), θ(t)〉q(t) ∈ L1(I, |µ| ;R).

Proposition 26. Let µ be a measure on q(t) taking values in T ∗Q. Then, there
exists a unique (class of) function lµ ∈ L1

loc(I, q, d |µ| ; T ∗Q) such that:

– �∗Q(lµ(t)) = q(t) for d |µ|-almost every t ∈ I ,

– ∀ϕ ∈ C0
c (I, q; TQ),

∫
I
〈ϕ(t), dµ〉q(t) =

∫
I
〈ϕ(t), lµ(t)〉q(t)d |µ|.

This fact will be denoted by: dµ = lµd |µ|. We shall say that lµ is the density of
measure µ with respect to measure |µ|.
Proof. For measure taking values in a finite-dimensional vector space, the above
statement is a classical direct consequence of the Lebesgue-Radon-Nikodym the-
orem (see Rudin [17]). It is readily carried over manifolds by means of a locally
finite partition of unity modelled on chart domains.

Definition 27. Let X be a vector field with locally bounded variation on an abso-
lutely continuous curve (I, q) and t0 an arbitrary element of I . We denote by dt0X

the Stieljes measure (see Moreau [13]) associated with the mapping with locally
bounded variation:

θt0

{
I → Tq(t0)Q,

s 
→ τt0,s(X(s)).

For Y ∈ C0
c (I, q; TQ) and Y ∗ ∈ C0

c (I, q; T ∗Q), the linear forms

Y 
→
∫
I

(
τt0,s(Y (s)), dt0X

)
q(t0)

and Y ∗ 
→
∫
I

(
τt0,s(� ◦ Y ∗(s)), dt0X

)
q(t0)

turn out to be independent of a particular choice of t0 and define measures on q

taking, respectively, values in T ∗Q and TQ. They are denoted by �DX and DX

and called the covariant and contravariant representative of the covariant Stieljes
measure associated with X.

Proposition 28. If X is a locally absolutely continuous vector field on a locally
absolutely continuous curve from I to Q, then

DX = DX

dt
dt and �DX = �

DX

dt
dt. (66)

Reciprocally, if X is locally with bounded variation and such that its covariant
Stieljes measure DX admits a density with respect to the Lebesgue measure, then
X is locally absolutely continuous and relations (66) hold.
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Proof. This is an immediate consequence of Definition 27 and of the similar state-
ment for functions taking values in a finite-dimensional normed vector space.

Proposition 28 ensures the consistency of our notation. Let us now turn to
practical calculations in charts.

Proposition 29. Let (U,ψ) be a chart on Q, (I, q) an absolutely continuous curve
on Q such that q(I ) ⊂ U and X a vector field on (I, q). The components (Xi)

(i = 1, 2, · · · d) ofX in the natural chart ofTQ associated withψ are real functions
defined on I . The vector field X is locally absolutely continuous (resp. absolutely
continuous, or locally with bounded variation, or with bounded variation) if and
only if every function Xi is locally absolutely continuous (resp. absolutely contin-
uous, or locally with bounded variation, or with bounded variation). Moreover, in
such a case, we have:

DX =
(
dXi + �i

jk(q(t))X
j (t)q̇k(t) dt

)
ei(q(t)),

�DX = gij (q(t))
(
dXj + �

j
kl(q(t))X

k(t)q̇l(t) dt
)
ei(q(t)).

Proof. This is an immediate consequence of Definition 27.

Proposition 30. Let X be a vector field with locally bounded variation of an abso-
lutely continuous curve (I, q). Then, for any t0 in I , the two limits limt→t−0

X(t)

and limt→t+0
X(t) exist in TQ and are such that

�Q

(
lim
t→t−0

X(t)

)
= �Q

(
lim
t→t+0

X(t)

)
= q(t0).

These limits are denoted by X−(t0) and X+(t0) and can be different only on an at
most countable subset of I . The mapping{

I → R
+

t 
→ 1
2 ‖X(t)‖2q(t)

has locally bounded variation and

d

(
1

2
‖X(t)‖2q(t)

)
=
(
X−(t)+X+(t)

2
,DX

)
q(t)

.

Proof. It is a direct consequence of the similar statement for functions taking values
in Euclidean R

d (see Moreau [13]) and of Definition 27.

Definition 31. We denote by MMA(I ;Q) (motions with measure acceleration) the
set of all locally absolutely continuous motions q(t) from I to Q such that the right
velocity q̇+(t) exists for all t in I and defines a vector field with locally bounded
variation on q(t).
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Proposition 32. Let q be in MMA(I ;Q). Then, q̇+ : I → TQ is right continuous:

∀ t ∈ I, (
q̇+(t)

)+ = q̇+(t).

Moreover, q(t) admits a left velocity vector at each instant of I and

∀ t ∈ I, q̇−(t) = (q̇+(t))− .
Proof. Use the Mean Value Inequality in a local chart.

Proposition 33. Let q ∈ MMA(I ;Q) with q(I ) ⊂ U domain of a chart. Then,

�Dq̇+ =
(
d
∂K(q(t), q̇+(t))

∂q̇+i
− ∂K(q(t), q̇+(t))

∂qI dt

)
ei(q(t)).

Proof. Reproduce the proof of Proposition 2 with the help of Proposition 29.

Proposition 34. Let (qn)n∈N be a sequence of elements of MMA([0, T ];Q) such
that:

– there exists a compact subset K of TQ such that

∀ n ∈ N, ∀ t ∈ [0, T ], (qn(t), q̇
+
n (t)) ∈ K,

– ∃M > 0, ∀ n ∈ N, Var
(
q̇+n ; [0, T ]

)
� M.

Then, there exists a subsequence of (qn)n∈N, also denoted by (qn)n∈N, such that:

– (qn)n∈N converges uniformly on [0, T ] for the Riemannian metric towards a
function qlim belonging to MMA([0, T ];Q),

– The sequence
(
qn(t), q̇

+
n (t)
)

converges towards
(
qlim(t), q̇

+
lim(t)

)
in TQ for al-

most all t in ]0, T [.

Proof. This is a generalization of Helly’s theorem to the case of a Riemannian
manifold. The set K ′ = �Q(K) being compact, there exists ε > 0 such that (cf.
Chavel [7, p. 23]):

– for all q in K ′, B(q, ε) (= {q ′ ∈ K ′; d(q, q ′) < ε
}
) is the domain of a chart ψq ,

– for all q in K ′, the distance defined by
∣∣ψq(q1)− ψq(q2)

∣∣ and the Riemannian
distance d are equivalent on B(q, ε).

First, we extract a subsequence of (qn), also denoted by (qn), such that:

lim
n→+∞(qn(0), q̇

+
n (0)) = (q0, v0) in TQ,

and there exists N0 ∈ N large enough to have

∀ n � N0, d (q0, qn(0)) <
ε

2
.
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Now, by:

∀ t ∈ [0, T [, ∀ n ∈ N,
∥∥q̇+n (t)∥∥qn(t) �

∥∥q̇+n (0)∥∥qn(0) +Var
(
q̇+n ; [0, T ]

)
,

(67)

there exists α0 (0 < α0 � T ) small enough to have:

∀ t0 ∈ [0, T ], ∀ t ∈ [t0,min(T , t0 + α0)], ∀ n ∈ N, d(qn(t), qn(t0)) <
ε

2
.

Then, it is easily checked that the functions ψq0 (qn(t))|[0,α0] (n � N0) satisfy the
hypothesis of Helly’s theorem and therefore the conclusion of the proposition holds
on [0, α0].

Now, choose t1 ∈ [α0/2, α0] such that:

lim
n→+∞

(
qn(t1), q̇

+
n (t1)

) = (qlim(t1), q̇
+
lim(t1)

)
in TQ,

and N1 large enough to have:

∀ n � N1, d (qlim(t1), qn(t1)) <
ε

2
.

Performing the same job as above on the chart of domain B(qlim(t1), ε), we find
that the conclusion of the proposition holds on [0,min(T , 3α0/2)]. Processing so
inductively a large enough number of times, we obtain the desired conclusion. ��
Remark. If the Riemannian manifold Q is assumed to be complete, the first hy-
pothesis in Proposition 34 can be weakened and replaced by:
there exists a compact subset K0 of TQ such that

∀ n ∈ N, (qn(0), q̇
+
n (0)) ∈ K0.

Indeed, this hypothesis allows us to extract a subsequence of (qn) such that

lim
n→+∞(qn(0), q̇

+
n (0)) = (q0, v0) in TQ.

By estimate (67), we get:

∃D > 0, ∀ t ∈ [0, T ], ∀ n ∈ N,
∥∥q̇+n (t)∥∥qn(t) � D, and d (q0, qn(t)) � D.

The Riemannian manifold Q being complete, by the Hopf-Rinow theorem (cf.
Chavel [7, p. 26]), the functions (qn, q̇+n (t)) take values in a compact subset K of
TQ.
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6. N. Bourbaki, Intégration, Hermann, Paris, chaps 1, 2, 3, 4 (2nd ed., 1965), chap. 5
(1956), chap. 6 (1959).

7. I. Chavel, Riemannian Geometry: a Modern Introduction (Cambridge University Press
1993).

8. E.A. Coddington & N. Levinson, Theory of Ordinary Differential Equations
(McGraw-Hill Book Company 1955).

9. J. L. Lions & G. Stampacchia, Variational inequalities. Communications on Pure and
Applied Mathematics, 20, (1967) pp. 493–519.

10. M.D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Prob-
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