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Abstract

We study the hyperbolic system of Euler equations for an isentropic, compress-
ible fluid governed by a general pressure law. The existence and regularity of the
entropy kernethat generates the family of weak entropies is established by solving a
new Euler-Poisson-Darboux equation, whichighly singularwhen the density of
the fluid vanishes. New propertiesadncellation of singularitietn combinations
of the entropy kernel and the associated entropy-flux kernel are found.

We prove thestrong compactnessf any sequence that is uniformly bounded
in L*° and whose corresponding sequence of weak entropy dissipation measures
is locally H~1 compact. Thexistenceand large-time behavioof L™ entropy
solutions of the Cauchy problem are established. This is based on a reduction
theorem for Young measures, whose proofis new even for the polytropic perfect gas.
The existence result also extends to pheystenof fluid dynamics in Lagrangian
coordinates.

1. Introduction

The Euler equations for an isentropic compressible fluid read

81/) + axm = 0»
2 (1.1)
dm + 9, ("’7 + p(p)) ~0,

wherep 2 0 denotes the density, the momentum, angd(p) = 0 the pressure. As

far as the well-posedness of the Cauchy problem for (1.1) is concerned, the previous
research was restricted to the polytropic perfect gas (see (1.6)). This paper stems
from a renewed interest in the applications toward real gases and other complex
fluids governed by various pressure laws [9, 33]. One of the main difficulties for
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the mathematical analysis of (1.1) is the singularity at vacpumO0. The physical
region for (1.1) is{(p, m)| |m| < C p}, for someC > 0, in which the termn2/p

in the flux function is only Lipschitz continuous near the vacuum. ot O,

v = m/p represents the velocity of the fluid. Another difficulty is the development
of shock waves in solutions of the Cauchy problem:

(p, m)|t=0 = (po, mo) 1.2

for (1.1), no matter how smooth the initial daiey, mo) is.
This system is an archetype of nonlinear hyperbolic systems of conservation
laws
du~+ 0, f(u) =0, ueRY, f:RN >RV, (1.3)
For background on conservation laws, we refdcta [20, 21]. Strict hyperbolicity
and genuine nonlinearity away from the vacuum for (1.1) require that

p'(p) >0, 2p'(p)+pp"(p) >0 for p>0. (1.4

At the vacuum, the two characteristic speeds of (1.1) may coincide and the system
be nonstrictly hyperbolic.
An entropy-entropy flux paify, ¢), by definition, provides the additional con-
servation law
am(p,m)+ dxq(p,m) =0,
for any smooth solutiofip, m). A weak entropys an entropy that vanishes at the
vacuum. An entropy solution is determined by the entropy inequality

n(p,m)+dcq(p,m) =0 (1.5

in the sense of distributions, for any weak entropy [6aity) with convexy.
The so-called polytropic perfect gas is described by the equation of state

p+(p) =k p7, y > 1 (1.6)

One may assume = (y — 1)2/(4y), which is a convenient normalization. For
early results on the existence of entropy solutions, we refer to [29] f®iheanN
problem, [34, 14] for a special class of initial data with bounded variation, and [28]
for large total variation with smajt — 1 or vice versa by using th@Limm scheme
[18].

The first global existence for (1.1) with large initial dataiff was established
in DIPERNA [16] for the caser = 1+ 2/N (N 2 5 odd) by the vanishing viscosity
method. The existence problem for general valyeg (1,5/3] was solved in
CHEN [2] and DiNG, CHEN & Luo [13]. The caser = 3 was treated by.ions,
PERTHAME, & TADMOR [23]. LiOoNs, PERTHAME & SOUGANIDIS [24] dealt with the
interval (5/3, 3) and simplified the proof for the whole interval.

The present paper is devoted to the compressible fluids governed by a general
pressure law that has singularities npae= 0. We assume that the pressure law
p = p(p) is smooth away from the vacuum but very singular near the vacuum:
The principal singular part op(p) coincides with (1.6) for some € (1, 3),
but additional singularities not accounted for in (1.6) are allowed. See the precise
statement (2.1) in Section 2.

We will prove the following result announced in [7].
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Main Theorem. Consider the compressible Euler systdnd) under assumptions
(1.4) and (2.1).

(1) Given any measurable and bounded initial dgtg, mo) satisfying
0 < po(x) £ Co, |mo(x)] £ Copo(x) fora.e.x and somep > 0,

there exists an entropy solutiaip, m) of the Cauchy problenil.1), (1.2)
satisfying

0= p(t,x) S C, |m(t,x)| £ Cp(t,x), fora.e.(t,x), .7

whereC > 0 depends only of.
(2) Let (p®, m®) be a sequence of functions, satisfyitgr) uniformly ine, such
that, for any weak entropy pait, ¢),

i (p, m°) + deq(p°, m®)  is compact inH 2.

Then the sequendg®, m®) is compactinLj,., 1 = r < oo.

The asymptotic decay df*° entropy solutions and the convergence of the Lax-
Friedrichs scheme are also established below. For the proof of Main Theorem, we
develop new techniques to handle the difficulties that arise with the general pressure
law. In particular, in contrast with case (1.6), no explicit formula is available for the
entropies of (1.1). Our approach turns out to simplify further the proofs for case
(1.6).

When (1.6) holds, the weak entropies of (1.1) are given by a convolution product
between an arbitrary smooth functign= v, (s) and the fundamental kernel of a
linear wave equatiory,, defined by

10, v, 8) = My [p% — (v = 5)?] for p > 0. (18)

Here[y]+ = max(0, y), andd, A, M, are constants depending er(see (2.2) and
(2.11)). The weak entropies have the form

n(p,v) = /Rx*(p, v, s) V(s)ds. 1.9

We refer toy, as theentropy kernebf the y-law gas. The singularities of, are
easily read on the explicit formula. One of the main difficulties for the general
pressure law is to identify the singularities of different orders of the entropy kernel,
denoted byy, when an explicit formula is not available.

The general strategy for proving the existence of entropy solutions is as follows.
One first constructs approximate solutio6s,, m?), by adding a higher-order reg-
ularization term to (1.1) or by using a finite difference scheme. As the parameter
converges to zero, the functiots®, m®) formally converge to an entropy solution
of (1.1). However, carrying out this approach rigorously is very challenging. In
general, onlyL*° bounds on(p?, m®) are available and a weakly convergent sub-
sequence can be extracted. System (1.1) contains nonlinear composite functions
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that are not continuous in the weak topology, and additional information on the
approximate solutions is needed.

TARTAR [30] first used Young measures to describe oscillating solutions to
nonlinear partial differential equations. A Young measuyg;) is a weakly-star
measurable mapping frofL := Ry x R to the set of all probability measures.
For hyperbolic systems of conservation laws, the so-called Tartar commutation
relations constrain the Young measure:

(Vs m1g2 — 12q1) = (Vi) 11) (Vi) 42) — (Vs 12) (Vs q1)  (1.20)

for a.e.(z, x) and for any two (suitably restricted) entropy p&ins, ¢;), i = 1, 2.
These conditions are derived by the method of compensated compactness, espe-
cially the div-curl lemma (se&@arTar [30] and MuraT [26]). To this end, one
needs certain uniform bounds on the approximate solutions and, in particular, the
H,gcl compactness of the entropy dissipation measures, for which Murat’'s lemma
is useful [27,30].

If any measure satisfying (1.10) reduces to a Dirac mass forza.e), then
the sequence of approximate solutions converges in the strong topology and, for
appropriate approximations, toward an entropy solution. For the Euler equations, to
show that the Young measurg ,) is a Dirac mass in théo, m)-plane, it suffices to
prove that the measure in tige, v)-plane, still denoted by, »), is either a single
point or a subset of the vacuum line

{(0, ) p =0, |v| = supllm®/p®| L}
>0

The main difficulty is that onlyweak entropy pairs can be used, because of the
vacuum problem.

In the proof of [2, 13, 16] (also cf. [3]), the heart of the matter is to construct
special functiong/ in (1.9) in order to exploit the form of the set of constraints
(1.10). These test-functions are suitable approximations of high-order derivatives
of the Dirac measure. Use is made of the fact that (1.10) represeintbalance of
regularity: the operator on the left is more regular than the one on the right due to
cancellationDIPErNA [16] considered the case whexe> 2 is an integer so that
the weak entropies are polynomial functions of the Riemann invariants. The novel
idea of applying the technique of fractional derivatives was introduced in [2, 13] to
deal with real values of.

Anew analysis of (1.10) was proposediigns, PERTHAME & TADMOR [23] for
y € [3, o) and byLions, PERTHAME & SouGaNipis [24] for y € (1, 3). Motivated
by a kinetic formulation of (1.1) and (1.6), they made the crucial observation that
the use of the test-functiong could in fact be bypassed, and (1.10) be directly
expressed with the entropy kerngl. Namely, (1.10) holds for alt; andso by
replacingn; := x«(s;) andg; := o.(s;) for j = 1, 2. Hereo, is the entropy flux
kernel defined as

G(p,0,5) = (v 40 (s — v)) X0, v, 5).

In [24], the commutation relations are differentiatedsjrby using the fractional
derivative operatoﬂs“l, so that singularities arise by differentiation pf. This
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approach relies on the lack of balance in regularity of the two sides of (1.10) and
on the observation that v .y, x«(s) > is smoother than the kerngl(s) itself,
due to the average by the Young measure.

Many of the previous arguments do not carry over to the general pressure law.
Our first aim is to construct all of the weak entropy pairs of (1.1). Sections 2, 3
contain an extensive discussion of the entropy and entropy flux kernels, denoted
x(p,v,s)ando (p, v, s) respectively. The existence and uniqueness of the kernels
are established in Theorem 2.1. This allows us to generalize (1.9) and obtain the
family of weak entropy pairs. In Theorems 2.2, 2.3, we determine the singularities
of different orders arising in fractional derivatives of the kernels. Specifically, we
decompose the kernels into a sum of the most singular part, the singular part of
the next order, and the remainder, the former given by an explicit formula which
involves the pressure law(p). The proofs are postponed until Section 3. A con-
nection between the entropy kernel and the entropy flux-splittings will be discussed
in [8] (also see [6, 7]).

In Section 4, we study the compactness of a sequence of approximate solutions
to the Euler equations. In Theorem 4.1, for a sequence with a uniféfnbound
and thengc1 compactness of its weak entropy dissipation measures, we prove that
the sequence is compactiif). for all » € [1, 00). The main pointis to establish the
reduction theorem: a Young measure satisfying the commutation relations (1.10)
for all weak entropy pairs is a Dirac mass (Theorem 4.2). Our proof is based on new
properties oftancellation of singularitiesf the kernelsy ando in the following
combination

E(p, v;s1,52) := x(p,v,51)0(p,v,52) — x(p,v,s52)0(p, v, s1).

Then we observe that the following identity is an elementary consequence of the
symmetric form of (1.10):

(x (sD) (85O E (52, 53)) + (855 x (52)) (83T E (53, 51))
+ (05 x (59) (05T E(s1, 52)) = 0 (1.12)

forall s1, 5o, andss, where for instancgx (s1)) := (v(.x). x (s1)), and the derivatives
are understood in the sense of distributions. We prove that, whesn — s1, the
second and third terms converge in the weak-star sense of measuresstoderm
but with opposite sign. The first term is ma@iagularand contains the products of
functions of bounded variation by bounded measures, which are known to depend
upon regularization (searL Maso, LEFLocH & MuURAT [10]). The first term in
(1.11) converges to a non-trivial limit which is determined explicitly. Finally, the
genuine nonlinearity om(p) is required to conclude that the Young measure
either reduces to a Dirac mass or is supported on the vacuum line.

In Section 5, we prove the convergence of the Lax-Friedrichs scheme for the
general pressure law, extending the approach in [2, 13] fer(1, 2]. The same ap-
proach applies when showing the strong convergence of the approximate solutions
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(pf, m®) constructed by the vanishing viscosity method, i.e.,

0 p° + 0xm® = £ 9y p°,
(m®)?
&

9rm® + 0y < + P(P€)> =€ 0y m®.

The existence, compactness, and asymptotic deca§oéntropy solutions of the
Cauchy problem then follow, relying on the compactness framework in Section 4.
We point out that the approach developed in this paper is very general and
applies to other hyperbolic systems as long as the singularities of the entropy and
entropy flux kernels are determined. S&eN & LEFLocH [8] for the details.
We remark that all of the results in this paper can be extended to-Hystem
of fluid dynamics in Lagrangian coordinates

Tt —0dyv=0,

- (1.12
v+ 9,p(r) =0,

wherer is the specific volume and the velocity of the fluid. The system is hy-
perbolic under the conditiof’(z) < 0 for all T > 0 and is genuinely nonlinear
when p”(t) > 0. Observe that, when the density vanishes, the specific volume is
unbounded and should be understood as a distribution.

There is a one-to-one correspondence between entropies and entropy solutions
of systems (1.1) and (1.12MaGNER [32], also seDarerMos[11]). Denote byy E
andoF the entropy and entropy flux kernels for the Euler equations (1.1). The
p-system (1.12) admits an entropy kernet, and a corresponding entropy flux
kernel,ol, that generate the family of weak entropy pairs. Indeed, settiagl /7,

E
, U, 8
XL(rvva)=M7 O'L(‘[,U’S):(O’E—UXE)(IO’U,S),

Observe thak" blows up wherr — oo.

2. Entropy and Entropy Flux Kernels: Main Results

Throughout this paper, besides the hyperbolicity and genuine nonlinearity (1.4)
of system (1.1) away from the vacuum, itis assumedptiaj is a function of class
C*(0, o) and that there exist € (1, 3) andC > 0 such that, whep is sufficiently
small,

pp) =k p’ A+ P(p), |[PP(p)|SCpt™  0=n<4 (21
The solutions under consideration will remain in a bounded subs{gb of O}

so that the behavior g#(p) for largep is irrelevant. In this paper the notati@h
represents a generic constant which need not be the same at each occurrence.
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Remark. The pressure law(p) has the same principal singularity as thdaw
gas, but (2.1) allows additional singularities in the derivatives whes 0. Indeed
observe that, fon > y + 1, p¥ P™(p) is unbounded whep — 0. Observe also
thatp(0) = p’(0) = 0, but, forn > y, the higher derivative™ (p) is unbounded
near the vacuum.

Denote the sound speed by

c(p) =~/ p'(p).

Condition (1.4) ensures that, away from the vacuum, (1.1) is strictly hyperbolic and
admits two genuinely nonlinear characteristic fields associated with two distinct
wave speedy; + c¢(p). At the vacuum¢(0) = 0, and the wave speeds coincide.
Consider also the function

p
k(p)=/ @dy,
o vy

in which the integral is finite in view of (2.1).
Define the constants € (0, 1) andA > 0 by

y—1
2 k

3—y

0 = =— 7
2(y -1

A (2.2)

For the polytropic gas,
c(p)=6p". k(p)=p".
Observethat2 +1 = 1/0 and 2.6 = 1 — 6. We havey € (1, 3) if and only
if 6 € (0,1) if and only if A > 0. On the other hand; € (1, 5/3] if and only if
0 € (0,1/2]ifand only if A = 1.
Introduce the Riemann invariants
w =v+k(p), z=v—k(p),
which satisfyw > z except at the vacuum whewe = z. In the special case

k"(p) <0 or, equivalently 2'(p)—pp’(p) >0,

which is astrongercondition than (1.4), the Riemann invariantandz are concave
and convex functions of, respectively. This is the case of thdaw gas, but is not
necessarily true for a real gas satisfying solely (1.4) and (2.1).

For smooth solutions away from the vacuum, (1.1) is equivalent to

ofw—+ (w+c)oyw =0, 0z+ (w—c)oyz=0.

The equation

00+ v v+ pk (0?00 =0
is a consequence of (1.1), which is convenient for deriving the following equations
satisfied by an entropy-entropy flux péir, ¢):

Go=vn0,+ oK% 0,  qu=pn,+v.
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Eliminatingq yields the following second-order linear hyperbolic partial differen-
tial equation for entropy:

Npp — K (0)% 0y = 0. (2.3)
In the variablegw, z),

Nz + M(nw —n:) =0, (2.4
w—2z
whereA(w — z) = —k(p) k' (0)~2k" (p) with p = k~1(252). For they-law gas,
A(w — z) = A is a constant, the simplest case.

Equations (2.3) and (2.4) belongs to ttiass of Euler-Poisson-Darboux equa-
tions. The main difficulty comes from thgingular behavior ofA (w — z) near the
vacuum. In view of (2.1), the derivativ&’(w — z) blows up like(w — z)~¥~1/2
whenw — z — 0 in general, and its higher derivatives are more singular, which
is one of the essential differences from thdaw case. The classical theory of
Euler-Poisson-Darboux equations does not apply (cf. [1, 12, 31]). In the present
section, we establish the existence of a fundamental solution to (2.3) and study its
regularity.

By definition, theentropy kernels the solutiony (o, v, s) of the problem

i) Xpp — K (0)% v =0,
(i) x(@©O,v,s)=0, (2.5)
(”I) Xp(O,U,S) =5U:S1

in the sense of distributions, wherglays the role of a parameter afid.; denotes
the Dirac measure at= s. By definition, x (o, v, s) satisfies

/0/ x(p,v,S)(wpp(p,v)—k/(p)zww(p,v))dpdv—gO(O,S)=0 (2.6)

for every test-functiop(p, v) with compact support imi =Ry xR.
Since the support of the initial data is the poipt v) = (0, s), x should be
supported in the domain of dependencé®fs),

K:={pz0,|s—vl<k(p}={w2)| w=s z<s}

Indeed the curve$w = const} and{z = const} are the characteristics of the
hyperbolic equation (2.5i). Invariance under the transformation +(v — s),
x(,v,8) = x(p,|lv—1s],00 = x(p, 0, |s — v]), means that it suffices to study
(2.5) whens = 0.

The entropy flux kernet, by definition, satisfies

" (p)

(i) Opp — k/(p)20uv = Xv»

(i) o(0,v,5)=0, 2.7

("I) Gp(o» Ua S) = U(SU:Ss
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for each value of. In contrast with problem (2.5), condition (2.7iii) above depends
uponv, ands (p, v, s) # o (p, v—s, 0). However, in terms of the functian—v x,
condition (2.7iii) reads

(crp —v Xp)(O, v,s) =0,

ando — v x depends upon — s only, asy does. The/-law gas is much simpler
sinceo, is determined explicitly frony.; see (1.8).
In Section 3, we prove the following theorem.

Theorem 2.1 Existence and uniquengs®roblem(2.5) admits a unique dider
continuous solutiory (p, v, s) = x(p, v — s), supported in the séf and positive
in the interior of K.

Problem(2.7) admits a unique Hider continuous solutios (o, v, s) supported
in the set!C with o — v x depending only oo, v — s).

From Theorem 2.1, we deduce

Corollary 2.1. The family of weak entropies for the compressible Euler equations
is described by

n(p,v)=fo(p,v,s)1/f(s)ds,

wherey (v) is an arbitrary function. By constructiom(0, v) = 0, ,(0,v) =
¥ (v). The corresponding entropy flux is

q(p,v)=/RG(p,v,S)1/f(S)dS-

We now determine the singularities arising in the derivativesariido . Without
loss of generality, we assume here- 0 and sefy = x (o, v). The singularities of
the kernels should be localized on the characteristic curves which form the boundary
of K:

K ={(p,v) |vEk(p) =0}.
Measure terms oaK arise when differentiating the kernel with respecwt¢or
equivalentlys).
To state the results, we use the following notation. For anyeal 0, the
fractional derivatived® g of a functiong = g(s) with compact support is

0% =T () g [s],“ %,

where the convolution product is defined in the sense of distribution§ asithe
classical gamma function. Observe that the formula

99 (s ) = 5 99 g + (@ + D) 8%

still holds for fractional derivatives.
All of the following properties are uniform fgs = 0 andv in a bounded set.
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Theorem 2.2 Asymptotic expansion fox). The entropy kernel admits the expan-
sion
x(p,v) = az(p)Gr(p, v) + a(p)Grt1(p, v) + g(p, v), (2.8

where N
Gi(p,v) = [k(p)? = ?],

and the coefficients: (p) anda,(p) are explicitly determined and satisfy
az(p) = My k()™ K'(p) 2 >0  forp >0,

2 (2.9
lar(p)| = C,

k
az(p) +

for some constan¥/,. The remaindeg(p, v) and its derivative?frlg(p, v) are
Holder continuous ifp, v) with

1g(0, V)| = C Giy1tao(p,v) forsomenp € (0, 1). (2.10
In (2.9), M, _is given by
1 2 /1
M, V2x+1J)-1
For they-law gas, we have
a; =My =202 +1M;, a, =0, g=0. (2.1

Similarly, we have

a- zz)’\dz.

Theorem 2.3 Asymptotic expansion fos). The entropy flux kernel admits the
expansion

(0 —vx)(p,v) = —v (bs(P)G1(p, V) + by (P)Grs1(p, V) + h(p,v), (2.12)

where the coefficients: (o) andb, (p) satisfy

be(p) = My p k() 2K (0)? >0 forp >0,

2 (2.13
KO o) < .

bs(p) +
The remaindet:(p, v) and its derivativeaf“lh(p, v) are Holder continuous in
(p,v), and
|h(p, v)| < C Gjy14ap(p,v) for someg € (0, 1). (2.14
For they-law gas, we have
M;,
by = ———, b=
V7 A

The singularities in the derivatives of order+ 1 of the kernels are explicitly
computable.
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Proposition 2.4 Explicit singularitie3. The distributionsd?+1y and 3+1o de-
compose into two Dirac masses plus an integrable function, i.e.,

—-1/2
Ny =K ()Y KEbysip) + e (2.15)
+
1/2
it (o —vx) = —vp k(@)K (D)2 KE Sumsn(o) + " (2.16)
+

whereK * are some constants, ard, ¢! are Holder continuous functions in the
interior of I such that

le' (0, V)] £ Ck(p)* 12 G_g(p, v),

2.1
le" (0, V)] £ Ck(P)* T G_o(p, v) 10
forall « € (0, 1].

Observe that, in (2.15)—(2.17), the coefficiéntp) /2 is unbounded when
o — 0. It will be convenient to use the notatigh(y) = [1 - yz]i so that

Gy (p,v) = k(p)?* fi (k(v )> (2.18)

Proof. Consider first the functiorf; (y). Its Fourier transfornfk(g) is a smooth,
real-valued function of the Fourier variatieand

1
716 = [ ot ) [1= 52, dy = Colél ™2 hsayati)

for all real&, where the classical Bessel functigp, 1/2(y) admits the asymptotic
expansion
D12(y) = C1y Y2 cos(y — L+ D 7/2) + 0(y )
asy — +oo (e.9.GELFAND & SHiLov [17]). We deduce that
fi®) = C21617 7 cos(lE] — 0.+ D w/2) + O(1E17472). (2.19)

On the other hand, A
|f1(&)] = C3 (2.20)

for all ¢£. The constant€’;, 0 < j < 3, may depend oA.
Using (2.19), (2.20), andl > 0, we find thatf; (¢) is integrable i € R. From
the inverse Fourier transform in the sense of distributions, we obtain (see [17])

N = K Sy=1+ K 8y=—1+ Q1 (), (2.21)
wherek f are constants, ang@, is supported ofi—1, 1] satisfying

10, £ Cllog(l — y?)| forall y € (=1, 1). (222
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We also have
y
D f0) =K HGy -1+ KD Ho+ 1) + / Qw2

whereH is the Heaviside function.
From (2.18), we have

81))»+1G)L — k(p)Z)\al))wl*lf)L (L) )
k(p)
Hence we deduce from (2.23) that

_ _ v
33+1(ajG)\ + abG)\+1) =ay k}‘<K; Sv=k + K, 5v=—k> +ay o 0, (E)
v/k
+a k“z(Kj+1 Huv—k +K_ Hv+ k)) +ap kT / | Qundy.

By Theorem 2.2,
3y = 0} ay Gy + anGigr) + 30T g,

whered**+1g is Hélder continuous. Thus the above formula implies (2.15) with
K* = M, K;'E. The proof of (2.16) is similar. Estimate (2.17) fdrfollows from
(2.10) and (2.22). O

In Section 4, we use the results in Proposition 2.4 formulated on the functions

x(p,v—s)ando(p,v,s). Thatis,

0:y (p.v =) =K () Y KES—pini) +e (v —9),
+
_ 1/2
(00, 0,9) = v x(p, v =) = (5 = v) pk(0) LK ()"

X Z K= Ss—v+k(p) + e (p,v—ys).
+

Integrating ins, we get

-1/2
0k x(p.v—s)=K(p)

x ) K*H(s —vFk(p)) + & (p.v —5).
+

0:(0 (0, v.9) = v xX(p, v =) = (s = v) pk(p) 2K (0) "2

><ZKiH(s—v:Fk(p))+'é”(,o,v—s),
+

whereéd(p, v) := f_vk(p) ep,v)dv,I=1,1l.
Finally we record a technical property needed in Section 4, which follows by a
direct calculation based on expressions (2.9) and (2.13).
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Proposition 2.5.The coefficients of the asymptotic expansi@h8) and (2.12)
satisfy

D(p) = az(p) by(p) — 2k(p)?(az(0)bs () — ar(p)b(0) )
M2 k(p)
AR+ D P (p)®

(oK (0 +K(p)) >0 for p>0.

3. Entropy and Entropy Flux Kernels: Proofs

This section contains the proofs of Theorems 2.1-2.3 and Proposition 2.5. We
first state and prove three lemmas. First of all, we study the singular behavior of
the function

az(p) = My KoK (p) 2
near the vacuurp = 0 when the pressure law satisfies (2.1). This result plays an
important role in identifying the singularities of the entropy kerpelhere is an
extra singularity inx; (p) which is not seen in thg-law case for whichy;(p) =

M, p has no singularity. The notatiaf > 0 represents a constant depending only
ony € (1, 3) and a fixed upper-boungl, > O for the density.

Lemma 3.1.The functior; (p) satisfies

()] < Cp.  leh(0)] + lef (0] < C, 1o (0)] < Cp~L, for p € (O, pyl.

(3.1)
This fact can be seen from assumption (2.1) that
P Vp'(T)
k(p) = fo =" A+ Hp)). (32
where
|H™(p)] £ Cp¥™, 0=m<3 (33)
It is then elementary to deduce (3.1) from (3.2) and (3.3).
The second lemma provides us withapriori energy estimate for
) op(p. &) + K (0)2 82 p(p. &) = r(p. &),
(i) wu(e, &) =0, (3.4

(iit) pp(e,§) =0,

wheres > 0 is a constant, the function = r(p, &) € Cl[e, o0) is given, and
& € Ris a parameter.
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Lemma 3.2 Energy estimateg.ILet u(p, &) be aC? solution of(3.4) defined in
(g, o0) for any fixedt € R. Then we have

3
1o (0, )2 + K (p)°E%u(p, > S C Y Li(p,§) foranyp Zs,& #0, (35)
i=1

where
P
I(p, &) ==K (p)2E%r(p,6)% Ip,&) =&2 / K(0)"2r(z, )% dx,

R re(t, §)?
la(p. §) =4 /8 |k'(r)k"(r)|+k’(r)2df'

Furthermore, whemk(p)é| < 1,

(3.6

0
1o (. )2+ K (025220, £) < Cp / r(z, £)2dr. 37)

&

Proof. Multiply (3.4i) by 2 u1,,, integrate ove(e, p), and finally integrate by parts.
This gives

1p(0, €)%+ K (0)2 % u(p, &) = 2<r(p, £) (p, £)

P P
- / re(T, &) pu(r, &) dr + f k/(r)k”(r)&zu(r,s)zdr).

&€

Using the inequalityr 8 < sa? + %,32 with suitably chosen weights we find
that

1o(p. )%+ K (p)? % u(p, £)°
< CK(p) 26 %r(p. §)°
C P K (k" K 21-1.-2 2d
+cf K@K @ + K (@26 % re(r, §)%de 3.8
+ 3K (p)?E% u(p. £)°
0
+ / 2K @ K'(0) + K @K' ()| + K (1)?} €2 pu(x, §)% d.

In view of (2.2) and for allo = 0 in a bounded subset, we get
2K (K" () + K@K ()| + K (0?2 £ Ct?* 2+ K (0)? < CK ()2 (39

Indeed the principal term in the expansionkdfr) k”(t), — 6% (1 — 6) 123, is
a singular term with anegativecoefficient and does not contribute to the upper
bound in (3.9).

Estimate (3.9) allows us to apply Gronwall’'s inequality to (3.8) and obtain

P
K(p)?&% up. )% < C(G(p,§>+/ G(r.%)dr)

&
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forall p = &, where
re(t,6)°
dr.
k' (DK (T)| + k' (1)?

Since the double integral involved in this upper-bound is bounded by the single
integral, we arrive at

p
G(p) =k (p) 26 2%r(p,6)> + &2 f

K (0)26%1(p, £)2 < C (I(p. &) + I2(p, &) + I3(p, £)).
Returning to (3.8), we also obtain
1o(p, §)2 < C (I(p, &) + I2(p, &) + I3(p, £)).
We now derive (3.7) whefk(p)&| < 1. Multiplying (3.4i) by 2u,, we obtain
(12 + K (0)°6212) ) = 2r p, + 2K (DK ()2

2
"
?f’ + Cpr? + 2K (p)k" (p)E%u>.

A

There existe1 > 0 such that

k/ 2
21 ()K" (p) < 0 < (/f Y for0<p <o

Therefore, we have
(W2 + K (p)°&2u?), < %(u,% +K(0)%621%) + C(p 1% + Xipp.00) (0112,
sincelk(p)&| = 1, whereX|,, ) is the characteristic function. Then
(0 Y12 + K (0)°62u2) ) < Cr2 + Apr.o0 (D)D),

that is,

P max(p,p1)
1, (p, €)2 + K (p)°E%1(p, £) < Cp ( / r(t, £)2dt + / 1(z, §>2dr).

& 01
(3.10
First of all, forp < p1,

0
1p(ps )2 4 K () 2E2(p, )2 < Cp / re2dr. (31D

&

Second, fop = p1, we haveé| < C(p1) sincelk(p)é| < 1. Note that

o P
w(p, &Y < / e (z, £)2dT + f pe(z, )2 d

& pr1

P o
<C</ r(z, £)2dt + / uf(r,s)zdr),
& P1
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so that, from (3.10),

o

p
potp. 82 < o [ rw et c [ et

€ p1
Gronwall’s inequality implies
2 r 2
mp(p,§)° = C/ r(t, £)4dr.
&
Hence, whem 2 pj,

0
1o (0. 62 + K (0)22u(p, )2 < Cp / rne2dr. (312

&

Estimates (3.11) and (3.12) yield (3.7). This completes the proof of Lemma 3.2.
o

Lemma 3.3 Energy estimates )l Let © = w(p, &) be aC? solution of (3.4)
defined forp € (g, 00). Letr(p, &) be such that

Cpp_.]

r(p, &) £ —F———,  j=0,1 (3.13)
Oore- 1S ko
forg < (p + 1)(2x + 1). Then we have
2—m+p
Co for m =0, 1,2, (3.14)

(o, &) =
o0 OIS T ket

whereg = min(g, > + 1+ (p + DXg) and0 < Ao < min(1, A).

Proof. We first derive the estimates for the cagéo)t| = 1. Using (3.13), we
have

_ _ —2 —2(q+1
L(p. &) < Cp> 22072 pfg| 21 < Cp2 Pt |k(p)g| 2. (315

To estimatel,, we decompose it into two termg, = I 1 + 12,2, with

P
La(p. &) = &2 - K@) 21r(e.§)2de < C p**2 [k(p)§| 2, (3.16)

£t
where we have usegl < (p + 3)(2x + 1). On the other hand,

&1/
_ _ —(34+2p)(22+1
Ia(p. &) = £72 / K (1) 2 (1. 6)2dr < C p¥2 [k(p) |2+,
‘ (3.17)
Finally, we estimatds = I3 1 + I3 2 with

re(z.§)? .
|5|—1/9 |k/(7,')k//(7:)| + k/(‘c)z

< CpPr YV k(p)e|

I31(p.£) = &2 <
(3.18)
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where we have useg < (p + 1)(2A» + 1). Similarly, we have
I2(p, ) < Co* 2P |k(p)g| 2Pt DEHD, (319

Combining (3.15)—(3.19), we conclude that, whe(p)¢| = 1,

1y (p, )2 S Cp2P D |k(p) £

Returning to the energy estimates (3.5) and ugitig)262 = p—2|k(p)€|? and
(3.4), we can also bound

1w(p. )2+ pYk(0)E [ pnop(p. £)2 < C p2P 2 |k (p) | TV
Whenlk(p)é| < 1, we conclude from (3.7) that
1140, )+ p 11t (0, ) + P2 1 (p, E)] < CpPH2.
Then (3.14) follows. The proof of Lemma 3.3 is completed

Lemma 3.4 Energy estimate I)l Let, forany fixed € R, u(p, £) be aC2solution
of the problem

1pp(p, E) + K (0)E2(p, €) = r(p,E), O<p < pu,
wlom, ) =0,  pp(om,§) =0.

Then, for all(p, &), we have

oM
1o (. )2 + K (0252, £)2 < C / r(z, &Y. (3.20
o

Proof. Multiplying both sides of the equation by:2 (o, &), we have

(o (0, E)2 + K (0)°E21(p, €)D)p = (0, &) 11, (p, &) + 2K (0)K" (0) E2u(p, )2,

so that

1,(p, )2+ K (0)°E%u(p, £)?

oM
<c / 1p (7, €)% + K (0282 (r, ©)2 dt + C /
o 0

o r(t,£)%dr.

Gronwall’s inequality implies

om
1o (0. )2 1+ K (0)220(p, )2 < C / r82dr. O
o

237
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Proof of Theorems 2.1 and 2.2Without loss of generality, we view the entropy
kernel as a function of two variableg(p, s — v), and sets = 0 to simplify the
notation. We first establish certain properties of the Fourier transforgiofthe
variablev and determine the singularities pf We prove thafy has the form

R E) =3 . &)+ X" (0, &) + &(p, &),

250, &) = az()k(p)? T fi(k(p)8), (3.21)

20, &) = a(Pk(P)? 2 fipa(k(p)§),
where the above coefficients will be explicitly determined (see also (2.9)—(2.18))
and

"

laz(p) — M| + p?la(p)| + p?lal (p)] + p3lal ()| < C p,

2, ./ 20 ./ 3, .m (3'22)
las ()| + play (p)| + p<lay (p)| + p7lay)’ (p)] = C p,
and
07 2(p, )] < o™ m=0,12 (3.23
P (4 kol o o '

Problem (2.5) becomes

() xop =K' (P)? o0 =0,
(i) x(0,v) =0, (3.24)
(iil) xp(0, v) = 0.

Using the Fourier transform in thevariable, (3.24) is equivalent to
() oo +K(P)?E*5 =0,
(i) x(0,8) =0, (3.25)
(i) x,(0,8) =1,

which is a family of second-order differential equationirthe Fourier variable
& € R playing the role of a parameter. Observe tfat real-valued and (3.25i)
contains a singular coefficient at the “initial timg”"= 0.

Step 1: Equation for the remainder functi@tp, £). Note that, in (3.21),

7(0.6) = ax(o)k(p)?* [ costk(pga) [1- 2T, dz

=: az(p) fr(k(p)E), with a;(p) = az(p)k(p)*+1.

Similarly, we have
220, &) = ar(p) fir1(k(p)E), with  ay(p) = ay(p) k(p)?+3.

Using the identities, () + £}/ (v) = fir1(y) = =22 £/(y), we obtain

25+ K (06235 = ol (p) fu(k(p)§) (3.26)
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provided that
az(p) k' K"
AN () ,(p).
az(p) k(p)  2K'(p)
Clearlya;(p) determined by (2.9) satisfies the equation, and the constant of nor-
malizationM,, given in (2.11) is chosen to ensure that (3.25iii) holds.
Similarly, we get

. . 2043 K ;
sz LK (p)%e25” =<ag— ( - ) <2k’aé—2()~ + 2)7% + k”%)) frt1

200+ 1 k'? .
+ w (2 "ap —2(0 + 2)7% + k"otb) i, (3.27)

where we used the identit§f ;(y) = —”T”fprl(y) + %ﬁ(y).
We obtain the following equation from (3.26) and (3.27) for

20+ 3 k'? R
8pp + k/(P)Zézg' =- (ag - ]:— (Zk’aé - 2(h + 2)7% + k”%)) fat1

200+ 1 K2 .
- ((xé/ + ( + ) <2k/06é — 2()\. + 2)705[) + k//a[))) fk

k

_ " 2r+3 " r =A r
=- (% + m%) frr1 = Ap) frt1,
(3.28
provided that
, K(p)  K'(p) ke,
o) (p) + (—(x +25 Zk,(p)) @(0) =~ % P 329

We choosey; (p) to be the less singular solution to this singular equation, that is,

@(p) = k(o) 2K ()2 / ko) ) (1) a
0

T4+ D)
Note that

" "

loe (p)| + plee’ (p)] + e (0)| + 1" (p)] < C.
Thereforeg satisfies
Bop + K (0)°6%8 = A(p) frsr(k(p)E), (3.30)

where
lA(p)| + plA'(p)] < C. (3.3)

Step 2: Existence of the entropy kernel and estimateg(foré). For everys > 0
and¢ e R, we consider (3.30) with

§°(e,6) =0, g (e =0
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This problem admits a smooth solutigh defined forp = «.
Using Lemma 3.3 witlp = 0 andg = 21 + 1, we have

C,Oz_m
£ <
O e T A R

105 & m=0,1,2, (3.32
whereC > 0 is a constant independentof- 0.

By the Cauchy-Arzela theorem, it follows from (3.32) thatgas- 0, the func-
tions g% (p, &) converge uniformly to a limiting functiog(p, &) that is a solution
of (3.30) (on every compact subset{of > 0}) with the initial data:

8(0,8) =0, 8,(0,6) =0. (333
Moreover,g satisfies

C,Oz_m

(0, &) = Arkeproen " =012 (3.39)

19,8

In particular,g (-, £) andd, g (-, &) are continuous gt = 0, uniformly in all&. This
shows that the initial conditions (3.33) are satisfied in a classical sense.

This completes the proof for the existence and asymptotic behavigrasf a
function of p = 0, in which& € R plays the role of a parameter. The uniqueness of
g follows easily from the energy estimates derived in Lemma 3.2, by usia@,

g = 0, andr = 0. Then, using the inverse Fourier transform, we conclude that
there exists a solutiop (p, v) of problem (3.24) understood in the sense of (2.6)
and defined globally.

Step 3: Hlder continuity ofy. It suffices to show that there exigts> 0 such that
1009, g (p, v) £ C, (3.35)

which implies thav}+1g € C%*(R2). In turn, sincey = 0 outside the regiofc,
(3.35) gives (2.10). Estimate (3.35) is proved as follows:

1/2
159, g(p, v)| £ C (1+/|§|>1 |S|2”1+5|82§(p,$)|2d$) .

Sinced’2(0, £) = 0, we can extend) ¢ (o, £) to the half-space < 0 by simply
setting

9,8(p.§)=0,  p=o.

Then we obtain

2
|8;§§(p,s>|2=C‘fwg(r,s)e—'“ dr| < c/|r|25|§(r,s>|2dr

1-§ )
gc(/ |gw(r,5)|2dr) <f|at§(r, s)|2dr) ,
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where we have used the Parseval identity and the interpolation inequality

1-§ S
/Irlz‘slf(r)lzdr < </|f(r)|2df> </|rf<r>|2dr> .

On the other hand, fgg| = 1,

/r( HlPdr=c / +/pM a dr
gesar==1/ jg1ve ) (L4 k(D) )20 ot

< Clg |—2()~+)~o+2) ,

|&~1/°

where we have used 2+ Ao + 2) < 5(2A + 1). Similarly, we obtain

3.8 2dr <C " ~ d
/| :8(7,8)|7dt = /0 +/S “yo | (1 + |k(7)E])2A+r0+D) T

< C|g|" 200D

&)1/

when we use @ + Ao + 1) < 3(2A + 1). Therefore, we have

1-6 b
10520, &) < (/ 18(z, &) dr) (/wfg(r,snzdr)

< Clg|"20Hh0t2-D),

Then we obtain

1/2
850, P g(p,v)| £ C <1+ / |§|—2A°—3+35ds> <c,
1§

|21

provided tha < min (2(1+ 10)/3, 1).

Step 4: Uniqueness gf. We proved in Steps 1-3 that the Cauchy problem (3.24)
admits a global solution € CO"S(Ri) in the sense of (2.6). For any two solutions
X1, x2 Of problem (3.24), the functiop = x1 — x2 satisfies

// X (@pp — k/(p)zfﬂvv) dpdv =0 (3.36)

for any functiony € C3° (R ). By approximation, (3.36) also holds for apye

Co (R2) N W27 (R2) for some values op such that 1< p < oc.
For anyyr € Cg° (Rz) consider the problem

- k/ 2 vw — V¥, < s
op (N7 4 P = pu (3.37)
o(pom. ) =0,  @p(om.6) =0

wherepy > 0 such thaty|,~,,, = 0.
Basing our arguments on those used in proving the existengefraim the
energy estimates in Lemmas 3.2 and 3.3, we can also conclude from Lemma 3.4
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that there exists a global solutign € Co™*(R2) N W2P(R2) in p < py for
p € [1, 1+ 2. This is checked as follows.
For any functiony (p, v) with suppyr C (0, o0) x R, we have

o Cp™
0O E
1Y (o, 8)I a+ ED"
for anym > 0. Then, from Lemma 3.4, we have
oM
A2 pig 2282512 712
+k'(p) < C/ dt £ ————.
(24 P)E°1P] ’ [Vl NP
This means c
@0, &) = .
Y K(p)EIL+ E]"
Then, from the equation,
A R A 1+p0—1
1Bop (0, ) = C P (p, E) + C K (0)°E%G(p, £)| £ C s
bor Y @+ gt

Thisimplies that COYRZ)NW2P(R2)for p € [1, 1+ 2). Then (3.36) holds
for such functions. We have

// x(p, V)Y (p,v)dpdv =0,

for anyy e Cg°(R?), which impliesy (o, v) = 0.

Step 5: Compact support and positivity of Problem (2.5) is hyperbolic, so the
principle of propagation with finite speed appligsis identically zero outside the
domain of dependenck, = {(p. v) | [v] < k(p)}, of the support of the initial data,
i.e.the pointp, v) = (0, 0). Therefore, supp C K (this can be also checked from
(3.38) below). We focus on the main issue tlyds strictly positive inkC.

Claim. For any(pp, vo) € K, we have

1 00 p
JV0) = 5 k'
X (po, vo) 2 ok (00) fo (p)d(p)

x [x(p, vo + k(po) — k(p)) + x (o, vo — k(po) — k(p)) } dp, (3.38)

whered(p) := W -0

We deduce from the equatir;m’c/2 F=—p&2 Xpp that

fo " Pk (p)? sin((k(p) — k(p0)) &) % (p. &) dp

- " 0672 Sin((k(p) — (p0) &) (0, €)

= &2 [{sin((k(0) — k(o0 §) + p k' (9§ cos(k(p) — k(po)) )} 7 (0. )]
p /0 K (0) + (0K (0))') cos(k(0) — k(po)) £)5 (9, &) dp

P0
+ fo p% k' (0)% sin((k(p) — k(po)) €)% (p, &) dp,
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where we have used integration by parts and the initial conditiong. dihus we
obtain

0
pok’(po) X (o, &) = fo (k’(/)) + (Pk'(p))/) COS((k(,O) - k(Po))E))?(p, §)dp.

The desired formula follows by the inverse Fourier transform since, for instance,

/ cos((k(p) — k(p0)) €) 7 (. &) €' ¥ d

_ %fﬂp”’&)ei (v+k () —k(P0)E g5 4+ %f}%(p,é)ei (—k(p)+k(PO)E g5

This establishes the claim.
Next we recall that, by (2.8)—(2.10),

U2
> _ __v
x(p,v) 2 ag G (p,v) (1 Cp [1 k(p)2]+)~

Therefore, there exisfs > 0 suchthat, whep € (0, o1, x (0, v) = %MAGA(p, v),
which implies
Xlkniogp<s) > 0.

Finally, we check thag > 0 in the interior ofiC for all p > 0, relying here
on the maximal principle for hyperbolic equations. For contradiction, assume that
(po, vo) € K is the first point wherey vanishes whem increases. Then identity
(3.38) implies that

x (po, vo) > 0,

since the integrand in the right-hand side is positive foalt (0, p). This is a
contradiction.

This completes the proof of Theorems 2.1 and 2.2 for the entropy kernel. The
same arguments apply to the entropy ftuand yield Theorems 2.1 and 2.30

4. Compactness Framework

In this section we consider a family of approximate solutiqp$(z, x),
mé(t, x)) of (1.1) and derive a sufficient condition of its strong compactness.

Theorem 4.1 Compactness framewadrkLet (o, m®) be measurable functions
such that
0= p°(t,x) =C, |m°(t,x)| = Cp°(t,x) ae. (4.1

for someC > 0. Assume that
8im(p®, m*) + dxq(p®, m*) is compact inH, - (R%) (4.2)
for any weak entropy paitn, ¢). Then there exists a functi@p, m) such that

0Z p(t,x) SC, |m(t,x)|SCp(t,x) a.e.
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and, extracting a subsequence if necessary,
(p(t, x),m?(t,x)) = (p(t,x),m(t,x)) in Llroc(]R_zi_) forall r € [1, 00).

Denote byv = v x)(p, v) a Young measure associated with the sequence
(p%, v%). Herev® := m®/p® for p* > 0. By the div-curl lemma[26], condition (4.2)
implies thatv satisfies Tartar's commutation relations. To conclude with the strong
convergence of the sequence and establish Theorem 4.1, we need the following
theorem.

Theorem 4.2 Reduction of the support of. Letv(p, v) be a probability measure
with bounded support ifip = 0, v € R} such that

(v.n1g2 —n2q1) = (v.m)(v. g2) — (v. n2) {v. q1) 4.3

for any two weak entropy pairg1, g1) and(n2, g2) of (1.1). Then the support of
in the (o, v)-plane is either a single point or a subset of the vacuum{'yme: 0}.

In the proof of Theorem 4.2, we will use the following lemma.

Lemma 4.1.Suppose that the Young measure has a non-trivial support away from
the vacuum line, i.esuppy N {w > z} # 0. Let

{(w, Dlzmn=z=w = wmax} (4.9

be the smallest triangle containing the supportvah the (w, z)-plane. Then its
verteX(wmax, zmin) belongs tasuppy.

Theorem 4.2 is based on tbancellation propertiesummarized in Lemmas 4.2
and 4.3. Near to the diagonfl, = s3}, the function

E(p,v;s2,53) := x(p,v—s2)0(p,v,53) — x(p,v—s3)0(p,v,52) (4.5)

turns out to be much more regular tharando themselves. For each= 2, 3,
consider a mollifying sequenag’ (s;) = e Lg;(sj/e), where the mollifiery;
satisfies '

(pj(Sj) z 0, /Rgﬁj(sj')dé‘j =1, Supprpj(Sj) c (-1,1). (4.6)
Set
X 6D = (x x¢f) D), 07 (s1) = (0 % 9f)(52).

Consider the differential operatdr := 3;"* and setP; := d;**.

Lemma 4.2 Cancellation of singularitieg.IFor j = 2, 3, the functiong(; Pjo? —
o1 ijf are Holder continuous in(p, v, s1), uniformly ine. Also there exists a
continuous functiolX; = X (p, v, s1), independent of the mollifying sequenge
such that, wheg — 0,

X1 Pjof — o1 ijj‘? — X1 uniformly in (p, v, s1). 4.7)
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Lemma 4.3 Cancellation of singularities I The functionsP, x5 Pzo5 — P3x35
P05 are uniformly bounded measures and,whe#s 0,

2
Pax5 P3o§ — Pax§ Paos — Y(92.93) Z(p) ) _(K*) 8gymuinpy (48
T

weakly-star in measures i3 and uniformly in(p, v), where

0o ps2
Y (¢2, 93) = / / (p2(s2) @3(s3) — @3(s2) P2(s3)) dsadssa,

and
Z(p) == (. + 1) M; ? k(p)? D(p),

whereD(p) was introduced in Proposition 2.5.

In other words, we have

o0
/ (P2x5 P305 — Paxs P205) v (s1) ds1

—00

— Y02, 03 Z(p) Y _(KF) W (51— v F k(p))
+

uniformly in (p, v) for every test-functiony = v (s1).

Remarks. (1) The limit X in (4.7) is continuous, so is twice as regulanas! x
anda;“fla. The singularities of the kernels cancel becawsd x vanish on the
singularities o’ *1y anda’*+1o respectively, so that the corresponding products
are bounded functions i) rather than measures. Furthermdfehas a symmetric
form which provides further cancellation. The function

x 0o — o0}ty

can be regarded as aldéer continuous function dfo, v, s).

(2) Theterm treated in (4.8) is a product of measures. Expandamgos and
relying on the symmetry property @, we obtain only the functions of bounded
variation multiplied by measures. Such products depend upon regularization, as
was pointed out bypar Maso, LEFLocH & MURAT [10]; see Lemma 4.4 below.

Now we prove Theorem 4.2 and Lemmas 4.1-4.3.

Proof of Theorem 4.2.A general formula of the entropy pairs was derived in
Section 2. Plugging the entropy-entropy flux pairs with the formulae in Corollary 2.1
into relations (4.3) and dropping the test-functipnwe obtain

(x(s1) 0 (s2) — x(52) 0 (51)) = (x (s1)) (0 (52)) — (% (52)) {0 (51)) (4.9)

for all s1, s2 € R". For simplicity, we sefy;) = (x (s:)) = (v, x (s0))-
Givensy, s2, s3 € R, consider (4.9) for the pairs

(s2,53), (s3,51), (s1,52).
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Multiply each identity by
(xGv)  (xG2),  (x(s3)

respectively, and add them up. Bymmetrythe sum of the right-hand side vanishes
identically:

(xa)((x2) {o3) = {xa) (o2)) + {x2)(xa) (1) = (xa}{o3])
+{xs)({xa){o2) = {xa){o1) = 0.

whereas the sum of the left-hand side is
(x1)(x203 — x302) + (x2)(x301 — x103) + (x3) (X102 — x201) = 0. (4.10)

Using the differential operataP, P3 := 9;;9;:", we deduce from (4.10) that

(x1)(P2x2 P3o3 — P3x3 P202) + (P2x2) (o1 P3x3 — x1 P303)

(4.11)
+ (P3x3)(x1 P202 — 01 P2x2) =0

in the sense of distributions i, s2, s3. For instance, the distributioa Py > is
defined by

(Px) ) = - < /R 3 x () V' (s) ds>

for any test-functiony. Recall from Section 2 that* x is bounded ins and con-
tinuous in(p, v).

Our goal is to letsp andss tend tosy in (4.11). For eacly = 2, 3, consider
a mollifying sequencey; (s;) = e~1g;(s;/e) satisfying (4.6). From (4.11), we
obtain

(Xl)(PZ)(é2 P303 — P3x3 P205>
= (P2X§>(X1 P3o3 — o1 P3X§> — <P3X§><X1 Poo5 — o1 szﬁ), (4.12)

in which each term is a continuous functionsef We now prove that, as — 0,
the right-hand side of (4.12) tends to zero, while the left-hand side converges to a
non-zero limit, when the functiong® are suitably chosen.

First, consider the right-hand side of (4.12). Sitg; is a bounded measure
ins;, we have

Pixi = Pixj*¢; = Pix1 (4.13)
weakly in measures in and uniformly in(p, v). In particular, by Fubini’s theorem,
we have
(Pixj) = (P1xa)

weakly in measures isy . Hence, using the convergence property (4.7) in Lemma
4.2, we arrive at

(P2x5)(x1P30§ — o1P3x5) — (P3x3) (x1P205 — 01 P2x5)
— <X1><P1)(1> — <X1><P1Xl> =0 (4.14)
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weakly in measures isy. This shows that the right-hand side of (4.12) converges
to zero.
By Lemma 4.3, the left-hand side of (4.12) satisfies

(1) Poxb Psos — Pax§Paos) — (xa){Y (92 93) Z(0) Y (K*) 851 vtno))
+

= (x1)Y (92, 93) Y (K5)HZ(0)Ssrvino))-

+
(4.15
We conclude that, for every test-functign = v (s1),

Va0 Y (K5 [[ bawke0)26) w0 £ k() dvip.v) = 0. 416
+

Choose the mollifying functions in such a way that

Y (g2, 03) #0.

Such functions exist: for instance, choage > 0 with unit total mass, and set
@3(s3) = p2(s3 — 5) for a fixeds # 0. Observe that the trivial choige = ¢3 does
not work and the regularization i@2, s3) should therefore basymmetric.
Choose the compactly supported test-functioto be identically equal to 1 on
the support ob. Then
((x £ k(o)) Z(p)) = 0

for every test-functiony, or equivalently,
{{(x ) Z() = {{x@) Z() =0,

where we regardt = v(w, z) andp = k~1(252).

Assume that suppis not included in the vacuum line. Observe that the inte-
rior of the support of the nonnegative functi¢i, z) — x(p, v — s) has a non-
empty intersection with an open neighborhood of the p@iftax, zmin). Moreover,
Z(p) > 0 for p > 0 by Proposition 2.5. Therefore, by Lemma 4.1,

(x(s)) >0, for all s in the open intervalzmin, Wmax)-
It follows that
suppy = {w = z} U { (wmax zmin)}-

Then, set
V=" + wa(wmax,lmin)’

wherew represents the mass of the measued the extremal point and suppc
{w = z}. Returning to (4.9), we obtain, for all, s2,

(@ — 0®) {x (5100 (52) — x(s2)0 (s1)} = 0,

where the functions are evaluated at the pQinfax, zmin)- Therefore, eitheb = 0
(suppv C {w = z})orw = 1(supp = {(wmax zmin)}). This completes the proof
of Theorem 4.2. O
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Proof of Lemma 4.1.For contradiction, assume that the poifttnax, zmin) does
not belong to the support, i.e.,

suppv N [wmax— o, wmax] X [Zmin,Zmin + Ol] =0 (4.19
for somex > 0. Consider the commutation relation (4.9) in the form

(XG0 (s2) = x (2 0(s1)) _ {o(s2))  {o(s0) .20

(x (sD) {x (52)) ~(xG62)  (xGp)

Set
S— 1= Zmin, S+ = Zmax-

By (4.19), for O< s — s2 < @ and O< s1 — s— < «, the supports af; — x (s1)
ands2 — o (s2) are disjoint. The same is true f@i(s2) ando (s1). Therefore, the
left-hand side of (4.20) vanishes identically.

Sinceb; = pk’ as/ k, by (2.8) and (2.12), the entropy flux has the form

o(p,v,s) = (v —(v— s)ck_l))((,o, v—s)+ fz(,o, v—39),
wherer satisfies (see (2.10) and (2.14))
lh(p,v—5)| < Clk(p)* = (v = )% x(p, v —5).

Thus
o — (v:l:c))( = (:Fk+(v—s))ck_l)( + h. (4.21)

Therefore, we have

(U(S)) ((v + c)x(s)) ((:Fk + (v — s))c k_l)( (s)) (fl(s))

x) (x) (x() (x ()

Define the trace measure;. by

(j x(s2)
(x(s2)

for every continuous functiop = j(w, z). The measure._ is defined similarly
as the trace on the linfz = zmin}. Sincesy — s_ andsz — s in (4.20), we use
the decomposition (4.21) to obtain

(s, (v=0))=(u=, (v+c))=0. (4.22

Indeed there is no contribution to (4.22) from the remaining terms in (4.21) since,
on one hand,

- (M—&-, J (Wmax, )) = /j(wmax» ) dpuy(2), assz —> s+,

_ -1
((k+(v Sz))Ck X(S2)> <C max |w-—s2]—0

<X (52)> ~ (w,z)esupp
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asso2 — s (and similarly withs_) and, on the other hand,

(i (s))
(x ()

<C max [k(p)?—(w-s572%], £C max|w—s||z—s| — 0
= (p,v)esuppv[ )= ( e < suppv| : |

whens tends to eithes_ or s .
Set

A(w,z) :=v=xc.
By the genuine nonlinearity, we have
A—(Wmax, 2) = A—(Wmax, Zmin) < A (Wmax, Zmin) < Ay (W, Zmin)

for all w, z betweenzmin andwmax. This contradicts (4.22).0

Proof of Lemma 4.2.We rely on the asymptotic expansions obtained in Theo-
rems 2.2 and 2.3 and on the explicit formulas in Proposition 2.4. Since only the
first terms in expansions (2.8) and (2.12) are used here, we set

g =aGry1+g, hi=—@—15)bGri1+h,
which are Hdlder continuous irfp, v, s) and satisfy
. ~ A+l
18(0. v — )|+ h(p, v — )| £ C[k(p)? — (v — )]

Also observe that; = pk’ az/k.
By expanding the product, we get the decomposition

x1Pjo; —o1 Py}
=x1Pi(of —vx;) — (o1 —vx1) Pxj
= (anG)L,l + §1) (/Ok k/l/z Z K* ((Sj - U)(Ss‘,:vik) * ‘P; + ejl'l * Wf)
T

~ -1/2
— (2= ) bsGra + ) (K72 3 KESg sk x 0 + €+ )
+
= El,é‘ + E”,é‘ + EIII,s
whereG, ; := Gy(p,v —s;), and

1/2
EY =agpk k™2 Go1 Y K* ((s) — s18y=uk) * 95,
+

1/2 ~
BV = kK 3 K (6 — ymst) 4]
+

-1/2 ~
kY D KFh1 g —vak *
+
Elle — (asGy1 + gl)e,” * @i — ((s1 =) b:Gy 1+ le)ejl' * @5
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The termE"-¢ is the most singular; it contains the products oldtr continuous
functions by measures. Relying on the favorable factor s;, we have
IE"(p, v — s1)|
A
< Cpk(p)? — (v —51)%]} D KFls1— v F k(p)|gf (s1 — v F k(p))
+

SCpH2Y s —vF k() 51— v Ek(p)) £ € 2R -0
+

uniformly in (p, v, s1) in a compact set. Here we used the fact that, sinces
continuous,

|s* 71 9 ()] < & supls” g;(s)| < C .
s

The termE"¢ contains the products of Dirac masses byldéf continuous
functions with exponent 1. We have

A+1
(B (0, v=s)] = Cp*ED2[k(p)?— s’} T KF¢] (1 =0 F k(o)
=+
< Cp N2y Tsi—v £ k(o) s (s1—v £ k(p)
=+

< € p3E02 0 0, uniformly for (p, v, s1).

Dealing withE'""-¢ is easier. For example, we treat the product
EWe .= azGy1 e]” * (pf.

In the regionk(p)2 — (v —s1)?| < B (with B > 0 to be determined), we use (2.17)
and so

|E-III,€| <cC Gr1G_41=CGy_p1 < C,B)\*oz,

which we can make as small as we want by tak$ngmall, providedx € (0, 1] N
(0, A).

In the complement regiofk(p)? — (v — s1)%| = B > 0, each of the two
functionsG, (s1) ande' (s1) is Hélder continuous ir(p, v, s1). The convergence
of the convolution product is uniform in this domain and the limiG, (o, v —
s1) e (p, v — s1) is continuous. This shows thdi""¢ converges uniformly in
(p, v, s1). This completes the proof of Lemma 4.20

Proof of Lemma 4.3.This proof again relies on the asymptotic expansions in
Theorems 2.2 and 2.3 and on the explicit formulas obtained in Proposition 2.4.
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Observe that, in the sense of distributions,
P2x2P303 — P3x3 P202

= Pay2 P3(03 — v x3) — P3x3 P2(02 — v x2)

= (asP2Go.2 + @ P2Gry1.2 + Paga) ((s3 = ) (b5 PaGi3 + by P3Git13)
+ Pahz+ O+ 1) b9 Gr 3 + O+ D 5,04 Gria3)

+ (as P3Gy 3 + a, P3G;41.3 + P3ga) ((82 —v) (bg P2Gy 2+ by P2Git1.2)

+ Pohy+ (h 4+ D byl Gro+ (O + 1) bbaS*ZGHl,z)

S R

where we have used the chain rule for fractional derivatives. We define

E! =(s3 — 52) aﬁbt PZGA,Z PBGA,Bv
E" :=a, PZG,\,Z((ss — V)b P3Grr13+ (A + 1) bﬁasksGN)

+ abbu<Psz+1,2(S3 —v) P3Gy 3 — P3Gyy1,3(s2 —v) PzGA,2>,

andE"' the remainder.
Consider the decomposition

Paox5 Pso§ — P3x5 Poos = (E' + E" + EM) w g§ 9§ = E"* + E"¢ 4 EI

and determine the limit of the first two terms. Dealing wiH' ¢ is easy since it
involves only the products of dlder continuous functions (such/ag by measures
(such asz; P>G, 2), or more regular products. Classical theorems on weak con-
vergence of convolution products apply. By using symmetry, one can easily check
that

E"e 0 as e — 0,

weakly in measures isy and uniformly in(p, v).
In view of Proposition 2.4 and its proof which provides the asymptotic expan-
sion of the functions5,, the term

E" = E'x (pg * (pg = ((S3 —52) agby P2Gy 2 P3G)h3) * gog *(p%

can be decomposed into the products of measures, the products of meadiftes by

functions, and the products af functions. We need to consider the first two cases.
Consider the product of two measures. A typical produkt(s) /2 85—y k()

by k'(p) Y2 85—y—k(p)- Using the Riemann invariants = v + k(p) andz =
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v — k(p), we estimate
k’(p)_l‘ /(w — 2)95(s1 — w) p3(s1 — )Y (s1) dS1‘

<C(w- o f @5(s1 — w) 5(s1 — 2) | Y (s1) | ds1

J (= 2\ w—

<Ce (—) / @2(s1) <ﬂ3<31 + —) | (w + es1)| ds1
& -1 &

<ce® — 0.

We treat the product of a measure = w(s2) by anL? functionlz = I(s3) as
follows:

[ ][ 5= 52105061 = sarssis1 = saptts2) dsadiets) s d
=& / [ / (53 — s2)@2(s1 — 52)@3(s1 — s3)l(e53) ds3d u(es2) ¥ (es1) dsa
SCe VP Y le, / du(sa)l  — 0,

uniformly in (p, v), wherep = q/(p — 1).
The other terms are handled similarly. This proves

E'¢ 0, ase — 0,

weakly in measures iy and uniformly in(p, v).

The term E'"-¢ contains the products of functions of bounded variation by
bounded measures. Such products converge to the limits that depend on the regular-
ization, i.e., onpy, p3. We can replace, andss by s1 in E''-¢ since the remaining
terms converge to zero, as can be checked by the arguments used earlier. So we
now study

E"e =ia, PyGy o <p§<(S1—U) by P3Gy13+ (A + 1) buBSXSG,\,s) * 3

— a3 P3Gy 3% @5((s1=0) by P2Grsr2 + O+ D B30}, Go2) % 5
+ arbz (P2Gi1.2(1-0) PaGra— PaGrr1.a(s1—v) PG 2) * @5 % 5,
that is,
E"* = (A + 1) asbs(P2G.20, Gy 3 — P3G1.39,G1.2) * 05 % 0§
+ (51— v) (ashy — avby) (P2G1.,2P3G)11.3 — P3G 3P2G)112) * 95 * ¢3.
Since
NGria(p. v —9)
= [k — =97, 0} Gi(p. v =) =20+ D(s = v) 3} Grlp, v — 5),
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the weak limit ofE"" ¢ is the same as the limit of
*+1) (ag by — 2k2(aﬁbb — abbﬁ)) (P2G1,23§”3Gx,3 — P3G)L,335)”2G)h2) *(ps *(pg.

We denote byH;_,, the Heaviside function with a jump at the point Using
the asymptotic expansions in Section 2, we arrive at

Z(p) < Z Kiésg:vik Z KiHsg:vik
+ +

- Z Ki853:v:|:k Z KiHsz:v:l:k) * 905 * €0§-
+ +

To conclude, we observe
Lemma 4.4.For all mp, m3 € R, one has
(H52=mz * (pg) (8s3=ms * ‘Pg) — Q(m2, m3) ds1=my
in measures, where

0, if mo < ms,
Q(ma, m3) = | [pw2(s) [° o @3(t) dt ds, if m2 =ms,
1= [p2(s)ds [p@3(1)dt, if my > ma.
The proof is omitted. In view of the lemm&,"-¢ converges in the weak sense
in s1 to the limit stated in (4.8). The proof of Lemma 4.3 is completed.

5. Existence, Compactness, and Asymptotic Decay

In this section we establish the existence, compactness, and asymptotic decay
of entropy solutions of the Cauchy problem (1.1), (1.2), relying on assumptions
(1.4) and (2.1).

Theorem 5.1 Existencé. Assume that the initial datéog, mo) satisfy
0 = po(x) = Co, |mo(x)| = Co po(x) a.e. (5.1

Then there exists an entropy solutign, m) of the Cauchy probleril.1), (1.2),
globally defined in time, satisfies

0=pt,x)=C, |m@t,x)|=Cpt,x) ae(x),
whereC depends only ofg and the pressure functiop(-).

The proof is postponed until the end of the section. A direct application of
Theorem 4.1 then yields the following compactness theorem.

Theorem 5.2 Compactnegs The solution operatotp, m)(t, -) = S;(po, mo)(-)
determined by Theorem 5.1 is compacLify. (R? ).
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Proof. Consider any (oscillatory) sequence of initial dgs§, mg), ¢ > 0, satis-
fying
0= p5(x) £ Co,  Imf(x)| £ Co pf(x) (5.2)
with Co > 0 independent of > 0. Then there exist§ > 0 independent of
¢ > 0 such that the corresponding sequefice m?), determined by Theorem 5.1,
satisfies
0= p°(t,x) =C, |m*(t, x)| = Cp°(t, x).

Since(p®, m®) are entropy solutions satisfyirdgn (¢, m®) + 9yq(p*, m®) < 0in
the sense of distributions, for ad convex weak entropy pait, ¢), we deduce
from Murat’s lemma (see [4] for details) that

9m(p®, m®) + 8cq(p°,m®)  iscompactin Hyg (R2),

for any weak entropy pai¢n, g). Combining this with Theorem 4.1 shows that
(p®, m®) is compact inLi .(R2), which implies our conclusion. o

Finally, based on the analytical framewaork for the asymptotic decay of periodic
solutions established i@HEN & Frip [4], we obtain

Theorem 5.3 Asymptotic decay Let (p,m) € L“(Ri) be a periodic entropy
solution of the Cauchy proble.1), (1.2) with period[«, 8]. Then(p, m) asymp-
totically decays:

B
esslim/ (Ip(t, x) = pI" + Im(t,x) —m|")dx =0 forall 1< r < oo,
11— o0 o

where(p, m) := 715 JF (po(x). mo(x)) dx.

Remark. The results in Theorems 5.2 and 5.3 are somewhat surprising since the
flux function of (1.1) is only Lipschitz continuous. Notice that a counterexample
found byGREENBERG & RascLE [19] demonstrates that there exist certain systems
with only €1 (but notC?) flux functions admitting time-periodic and space-periodic
solutions. This example indicates that the compactness and asymptotic decay of
entropy solutions are sensitive with respect to the smoothness of the flux functions.

Proof. Theorem 5.2 implies that the self-similar scaling sequence
ul (t,x) = (pT (t,x), mT (t,x)) = (o(Tt, Tx), m(Tt, Tx))

is compact inL (R2) asT — oo. From [4], it follows that
) B
eStS“gno/ (s« (u(t, x)) — ns(u) — V() (u(t, x) —u)) dx =0,
or, equivalently,

B rl
estslim/f(l—t)(u(t,x)—ﬁ)TVZn*(lZ—i-r(u(t,x)—ﬁ))(u(t,x)—ﬁ)dtdx=0.

— 00 o 0
(5.3
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Herei = (p, m), etc., andy, is the standard entropy, the mechanical energy of
(1.1), with corresponding entropy flux:

m? P p(r) m3 P p'(r)
npom =540 [ PP qiom = 2w [T a4
2p o T 2p o T

We observe the following facts.

1. For1< y < 2, the entropyy, is uniformly convex, that i§%, > cg, for some
co > 0, and (5.3) is equivalent to

B
esslim/ lu(t, x) — i|°dx = 0. (5.5)
—0o0 o
2. Fory > 2, (5.3) means that

esslim ﬂ<} (t )<m(t’x) n—_1>2
Hoo/a 2P\ TG

1 1= _ =
+/ (1_T)p(_p+r(p(t,x) )
0 p+t(p, x)—p)

dr(p(t, x) — /5)2> dx =0,

which implies

B =\ 2
eslsjgnof (p(t,x) (m(t’x) —%) +|p(t,x)—,6ly> dx=0. (5.6)

p(t, x)
Note that
L, |(m m m_[? m m\?> , m\%
lm—m|* = <____);0+T(,0_10) <2<__T> Y +2<T> (p—p)
p P o PP o
_\2
gc{(f—"—f) p+(p—ﬁ>2},
PP
(5.7)

and

B B 1/2
_2 _
f lo — pl%dx = C(/ |/0—,0|de> (5.8

by Hélder’s inequality. We conclude from (5.6)—(5.8) and the uniform bound on
the solution(p, m) that, for any 1< r < oo,

B
es?ﬂ&“o/ (m(t, x) — " + |p(t, x) — pI") dx = O, (5.9

Combining (5.5) with (5.9) leads to the completion of the proafi
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To establish the existence result stated in Theorem 5.1, we now apply the com-
pactness framework established in Theorem 4.1 and prove the convergence of the
Lax-Friedrichs scheme for the Cauchy problem (1.1), (1.2) satisfying (5.1) for some
Co > 0.

As every difference scheme, the Lax-Friedrichs scheme satisfies the property of
propagation with finite speed, which is an advantage over the vanishing viscosity
method: our convergence result applies without assumption on the decay of the
initial data at infinity. We now introduce the family of Lax-Friedrichs approximate
solutions(p” (¢, x), m" (¢, x)). Also, we set” = m”" /p" whenp" > 0 andv” =0
otherwise. The Lax-Friedrichs scheme is based on a regular partition of the half-
planet =2 0 defined byt, =nt,x; = jhforn e N, j € Z. Herer andh are the
lengths of time step and space step respectively. It is assumed that thie/taiso
constant and satisfies the Courant-Friedrichs-Lewy stability condition:

 suplv™ (1, x) £ c(p 1, )| < 1.
b @ ,x)

For eachn € N, we set
Jp, = {jj integer with evem + j}.

In the first strip{(z,x) |0 < t < f1, xj_1 < x < xj41, jodd}, we define
(p"(t, x), m" (¢, x)) by solving a sequence of Riemann problems for (1.1) cor-
responding to the Riemann data:

(pjofl’ m,Qfl)’ X < Xj,
0 0 .
(’Oj+1’ mj_;,_l)v X > x]y

(", m")(x,0) = {

with

1 Xj+2
i =5 [ o mowdx,
j
It can be checked that the Riemann problem is uniquely solvable for the general
pressure law (1.4) and (2.1).
If (o, m") is known forz < 1,, we set

n n 1 K h h
(pf’mj)zﬁf (", m"(t, —0,x)dx.
Xj-1

In the region{(z,x) |t, < t < ty41, X; < x < Xj42, j € J,}, we define
(0" (t, x), m" (¢, x)) by solving the Riemann problems with the data

(pj' s m7), X < Xjy1,

(pj’-l+2, m7+2), X > Xjy1.

(", m"y(ty, x) = {

This completes the construction of the Lax-Friedrichs approximate solutions
(" (1, x), m" (1, x)).
The main result of this section is the following.
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Theorem 5.4.Let(pg, mo) be the Cauchy data satisfyii§.1). Extracting a subse-
quence if necessary, the Lax-Friedrichs approximate solutipfism”) converge
strongly to a limit(p, m) € LOO(Ri) which is an entropy solution of the Cauchy
problem(1.1), (1.2)

The following two lemmas are used toward the proof of Theorem 5.4.
Lemma 5.1.For all wg > zo, the regions
R(wo, z0) = {(0.m) |w < wo, z 2 z0. w —z 2 0}

are invariant for both the Riemann solutions and the Lax-Friedrichs approximate
solutions.

Proof. The fact thatR (wg, zo) is an invariant region for the Riemann solutions can
be checked directly from the explicit formulas known for the Riemann problem.
Since the set® (wg, zo) are convex in th&p, m)-plane, it follows from Jensen’s
inequality that, for any function satisfyifgo (x), m(x)) |a < x < b} C R(wo, z0)

for some(wg, zg), we have

1 b
(p,m) = m/ (p(x), m(x)) dx € R(wo, z0)-

Therefore R (wo, zo) is also an invariant region for the Lax-Friedrichs scheme.

In particular, Lemma 5.1 shows that the dengityremains nonnegative so that
it is indeed possible to construct the approximate solutions globally, as described
earlier.

Consider the entropy pain., ¢.) defined from the kinetic and internal energies
by (5.4).

Lemma 5.2.For any weak entropy paif, ¢g) and any invariant regiorR (wo, zo),
there exists a constai@t > 0 such that, for any solutiofo (¢, x), m(¢, x)) of the
Riemann problem with initial data iR (wo, zo),

|X'(0) [n(p, M1 (@) = [q(p, m)I(D)| £ C |x' () [n<(p, m1(t) — [g+(p, m)1(1)],

where x'(t) is the speed of any shock locatedadt) in the Riemann solution
(0, m)and(g(p, m)](t) := g(p, m)(x()+, )—g(p, m)(x(t)—, t) forany function
g(p, m).

The proof of Theorem 5.4 then follows similar lines to those in [2,5,13] for
the y-law case. It is not difficult to include the interval € (2, 3) for which the
standard entropy (5.9) is degenerate near the vacuum.
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