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Abstract

Let H ∈ C1∩W 2,p be an autonomous, non-constant Hamiltonian on a compact
2-dimensional manifold, generating an incompressible velocity field b = ∇⊥H .
We give sharp upper bounds on the enhanced dissipation rate of b in terms of the
properties of the period T (h) of the closed orbit {H = h}. Specifically, if 0 < ν � 1
is the diffusion coefficient, the enhanced dissipation rate can be at most O(ν1/3) in
general, the bound improves when H has isolated, non-degenerate elliptic points.
Our result provides the better bound O(ν1/2) for the standard cellular flow given by
Hc(x) = sin x1 sin x2, for which we can also prove a new upper bound on its mixing
rate and a lower bound on its enhanced dissipation rate. The proofs are based on
the use of action-angle coordinates and on the existence of a good invariant domain
for the regular Lagrangian flow generated by b.
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1. Advection–Diffusion Equations

Let (M, g) be a compact 2-dimensional manifold, possibly with boundary, and
consider an autonomous, non-constant Hamiltonian H which generates a velocity
field b := ∇⊥H , tangent to the boundary whenever ∂M �= ∅. We are interested in
the long-time dynamics of the scalar function ρν : [0,∞)×M → R subject to the
advection–diffusion equation{

∂tρ
ν + b · ∇ρν = ν�ρν,

ρν(0, ·) = ρ0.
(A-D)

Here, ρ0 : M → R is an assigned mean-free initial datum and ν > 0 is the diffu-
sivity parameter. When ∂M �= ∅, we prescribe homogeneous Neumann conditions
∂nρ

ν = 0, where n is the outer normal to the boundary.
In the non-diffusive case, i.e. when ν = 0, (A-D) reduces to the standard

transport equation {
∂tρ + b · ∇ρ = 0,

ρ(0, ·) = ρ0.
(T)

The goal of this article is to study the mixing and diffusive properties of (A-D) and
(T) in terms of sharp decay rates for ρν and ρ, under general assumptions on the
Hamiltonian H .

1.1. Mixing and Enhanced Dissipation

Enhanced dissipation typically refers to the accelerated decay of solutions to
(A-D) due to the interaction of transport and diffusion. We are interested in putting
on sound mathematical grounds the following statement from [29]:

The homogenization of a passive tracer in a flow with closed mean stream-
lines occurs in two stages: first, a rapid phase dominated by shear-augmented
diffusion over a time ∼ ν−1/3, in which initial values of the tracer are re-
placed by their (generalized) average about a streamline; second, a slow
phase requiring the full diffusion time ∼ ν−1.

The above statement can be interpreted in terms of the behavior of the L2 norm of
the solution ρν to (A-D). In view of the energy balance

d

dt
‖ρν‖2 + 2ν‖∇ρν‖2 = 0, ∀t ≥ 0,
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all mean-free solutions decay exponentially to zero as e−cpνt , where cp > 0 is
related to the Poincaré constant. Hence, the natural diffusive time-scale O(ν−1)

appears trivially, and no role is played by the velocity field b. Now, the above-
mentioned slow phase refers to such diffusive behavior for the average of ρν on the
streamlines of the Hamiltonian H : indeed, if ρν were constant on the streamlines, it
would then follow that b ·∇ρν = 0, implying that the diffusive behavior is the only
possible one. On the contrary, the rest of the solution is conjectured to undergo the
rapid phase, in which decay happens on a much faster time-scale O(ν−1/3). These
considerations are at the heart of the concept of enhanced dissipation, formalized
in the definition below.

Definition 1.1. Let ν0 ∈ (0, 1) and λ : (0, ν0) → (0, 1) be a continuous increasing
function such that

lim
ν→0

ν

λ(ν)
= 0.

The velocity field b is dissipation enhancing at rate λ(ν) if there exists A ≥ 1
only depending on b such that if ν ∈ (0, ν0) then for every ρ0 ∈ L2 with zero
streamlines-average we have the enhanced dissipation estimate

‖ρν(t)‖L2 ≤ Ae−λ(ν)t‖ρ0‖L2 ,

for every t ≥ 0.

While the above concept has been more or less informally studied in the physics
literature since the late nineteenth century, it has received much attention by the
mathematical community only recently, starting with the seminal article [12]. In this
work, enhanced dissipation has been proven to be equivalent to the non-existence of
non-trivial H1-eigenfunctions of the transport operator b·∇: in particular, functions
that are constant on streamlines are eigenfunctions and hence have to be excluded
when studying enhanced dissipation in the two-dimensional, autonomous setting.
From a quantitive point of view, the picture is now quite clear in the context of
shear flows [2,4,6,11,15,16,32] and radial flows [14,15]. For more general veloc-
ity fields, there are only some results linking mixing rates and enhanced dissipation
time-scales [13,20], and others that study the interplay between regularity and dis-
sipation [9]. We also mention the interesting work [31], which deals with enhanced
dissipation for an averaged equation stemming from general hamiltonians. How-
ever, a precise quantitative picture is still missing.

The goal of this article is to analyze enhanced dissipation in the case of velocity
fields originating from general (regular) Hamiltonians. According to Definition
1.1, the case λ(ν) = cpν1/3 is precisely the one described in [29]. One of our main
results is that the exponent 1/3 is the best possible in the autonomous setting.

Theorem 1. Let p ≥ 2 and H ∈ C1 ∩ W 2,p(M) be such that b := ∇⊥H is
dissipation enhancing with rate λ(ν). Then

λ(ν) ≤ C0ν
1/3 , for every ν ∈ (0, 1), (1.1)

for some positive constant C0 = C0(H).
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In the language of [29], we prove that the rapid phase cannot happen before a
time-scale O(ν−1/3). The exponent 1/3 is not always the correct one, at least in
the sense of Definition 1.1. It is achieved, for instance, by the shear flow b =
(x2, 0) on S

1 ×[0, 1], namely the Couette flow [24]. However, it is well-known that
the presence of critical points can slow down the dissipation [6]. This particular
exponent is due to dimensionality, regularity and the autonomous nature of our
problem. Indeed:

• Contact Anosov flows on smooth odd dimensional connected compact Rie-
mannian manifolds have an enhanced dissipation time-scale O(| ln ν|2), see
[13];

• There exist Hölder continuous shear flows on the two-dimensional torus with
an enhanced dissipation time-scale O(ν−γ ), for any γ ∈ (0, 1), see [11,32]

• Non-autonomous velocity fields generated as solutions to the stochastic Navier–
Stokes equations on the two-dimensional torus have an enhanced dissipation
time-scale O(| ln ν|), see [5].

The proof of Theorem 1 is based on the following key observation: any Hamiltonian
H ∈ C1 ∩W 2,p(M) has an invariant domain � where the gradient of the flow map
grows at most linearly in time. It follows that

‖ρν(t) − ρ(t)‖2
L2 � νt3 ∀t ≥ 1 , (1.2)

provided ρ0 is concentrated in �. In view of the inviscid conservation ‖ρ(t)‖L2 =
‖ρ0‖L2 , estimate (1.2) provides the desired upper bound on λ(ν) by choosing t ∼
ν−1/3.

As mentioned earlier, the enhanced dissipation properties of b are closely linked
to its mixing features, as defined below.

Definition 1.2. Let γ : [0,+∞) → [0,+∞) be a continuous and decreasing
function vanishing at infinity. The velocity field b is mixing with rate γ (t) if for
every ρ0 ∈ H1 with zero streamlines-average we have the following estimate

‖ρ(t)‖H−1 ≤ γ (t)‖ρ0‖H1 , (1.3)

for every t ≥ 0.

Due to the conservation of the L2 norm in the transport equation (T), the mixing
estimate (1.3) implies that the H1 norm of ρ has to grow at least as 1/γ (t). This
has been already observed in the case of shear flow with critical points [6], and we
will provide another example when dealing with the standard cellular flow below
(see Sect. 1.3).

1.2. Elliptic Points

In the presence of elliptic points, mixing rates can be slower and in turn affect
the enhanced dissipation time-scale. This is explicit in the case of shear flows
b = (v(x2), 0) on T

2, where the crucial role is played by the order of vanishing
of derivatives of v at critical points [6]. The case of a velocity field generated by
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Fig. 1. A A general hamiltonian on a periodic domain. B The standard cellular flow

a Hamiltonian is in general much more complicated, as level sets of H are not, as
for shear flows, simply horizontal lines (see Fig. 1A).

By compactness, H always admits a minimum point in p ∈ M . To avoid
degeneracies, we assume that p /∈ ∂M is an isolated elliptic point, i.e. ∇2H(p) is
positive definite. To study the system around p ∈ M , we use local coordinates such
that p = (0, 0).

Let r0 > 0 be fixed (possibly small), and let r ∈ (0, r0). Consider the unique
closed orbit 	r = {x ∈ M : H(x) = H(re1)} ⊂ M containing the point re1 =
(r, 0), and denote by T (r) its period, which is a C1 function since r → H(re1) is
C1 and T is a C1 function of H . By using that H(re1) ∼ r2, ‖b‖L∞(	r ) � r , and
(2.4) we immediately get T (0) > 0.

Theorem 2. Let H ∈ C3(M) have an isolated, non-degenerate elliptic point p ∈
M \ ∂M. Assume that T ′(r) ∼ rβ for some β ≥ 0. Assume that b := ∇⊥H is
mixing (resp. dissipation enhancing) with rate γ (t) (resp. λ(ν)). Then

γ (t) ≥ C0

łt〉 2
β+1

and λ(ν) ≤ C0ν
1+β
3+β , for every ν ∈ (0, 1) ,

for some positive constant C0 = C0(H).

These estimates are obtained by studying the dynamics around the elliptic point
of H . This local analysis improves the available bound on the mixing rate for
Hamiltonian flows when β > 1 (see [7]), as well as the bound on the dissipation
enhancing rate as soon as β > 0, compare with Theorem 1.

The cellular flow Hc(x) = sin x1 sin x2 satisfies the assumption of the theorem
with β = 1.

Remark 1.3. The heuristic built on the case of shear flows, which allows to deduce
the dissipation enhancing rate λ(ν) ∼ ν

1
3 from the mixing rate γ (t) ∼ t−1 does

not match with the previous result: this difference can be attributed to the different
geometry of the level sets of H in a shear flow and around an elliptic point.



   84 Page 6 of 37 Arch. Rational Mech. Anal.          (2024) 248:84 

1.3. Cellular Flows

Cellular flows (along with shear and radial flows) are perhaps the most studied
two-dimensional flows, especially from the point of view of fluid dynamics, homog-
enization and as random perturbations of dynamical systems [10,18,21,25,28,29].
Strictly related to the idea of dissipation enhancement, there has been a number
of articles [19,22,23] dealing with suitable rescalings of cellular flows (which cre-
ate small scales, and hence roughness in the velocity field) and proving that the
dissipation time can be made arbitrarily small by taking the rescaling parameter
small.

On the contrary, we here consider the standard cellular flow Hc(x) = sin x1 sin x2
onT2, as depicted in Fig. 1b, and prove a direct estimate on the mixing and enhanced
dissipation rates.

Theorem 3. Consider the standard cellular flow bc = ∇⊥Hc with Hc(x) =
sin x1 sin x2 on T

2. Then for every ε > 0 the vector field bc is mixing with rate

1

łt〉 � γc(t) �ε

1

łt〉 1
3 −ε

, (1.4)

and dissipation enhancing with rate

λc(ν) � ν1/2. (1.5)

We stress that in the statement above � and �ε denote that the inequalities hold up
to a universal constant and up to a constant depending only on ε respectively.

The lower bound on the mixing rate and the upper bound on the enhanced
dissipation rate are a consequence of Theorem 2. As we shall see, our approach
is based on a careful study of the action-angle coordinates near the elliptic and
hyperbolic points of Hc, without making use of the well-known estimates of the
coefficient of effective diffusivity of Hc from homogenization theory [10,18,25].
We stress that the rates (1.4) and (1.5) are global in nature, and do not distinguish
where the initial datum is supported. In fact (see Section 4.4), the upper bound in
(1.4) comes from data that are supported near the hyperbolic points of Hc, as these
are the hardest to control with our methods. Nonetheless, Proposition 4.6 below
provides an algebraic bound on the W 1,1 norm of the associated Lagrangian flow
and implies that no datum can mix faster than algebraic. An extensive study of such
W 1,1 bounds for Hamiltonian flows in the presence of hyperbolic points will be the
subject of a forthcoming work.

Near elliptic points, the solution is mixed at the faster rate łt〉−1+ε, where ε > 0
can be taken arbitrarily small, while away from both elliptic and hyperbolic points,
the mixing rate improves to łt〉−1. In particular, the lower bound in (1.4) is sharp.

A natural question concerns lower bounds for the enhanced dissipation rate in
(1.5). Our Definition 1.1 requires initial data that have zero-average over stream-
lines. While this property that is preserved by the viscous evolution in the setting
of shear and radial flows, for the complicated geometry of streamlines of cellular
flows it is no longer the case. In particular, [13, Theorem 2.1] does not apply di-
rectly. However, we can prove that the system loses a fraction of its initial energy
at a time-scale shorter than the diffusive one.
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Theorem 4. Consider the standard cellular flow bc = ∇⊥Hc with Hc(x) =
sin x1 sin x2 on T

2 and let ρν the solution of (A-D). Then for every q ∈ ( 24
25 , 1
)

there is ν0 = ν0(q) > 0 such that

‖ρν(ν−q)‖2
L2 ≤ 7

8
‖ρ0‖2

L2 (1.6)

for every ν ∈ (0, ν0) and every ρ0 ∈ L2(T2) with zero-average over streamlines.
Further, if ρ0 is supported away from the hyperbolic points, then we can take any
q ∈ ( 23 , 1

)
.

In the case of shear flows, the estimate (1.6) can be iterated to produce expo-
nential decay at a rate proportional to νq . For cellular flows, this procedure cannot
be implemented since ρν at t = ν−q cannot be guaranteed to have zero-average
over streamlines. In fact, we cannot expect that the whole L2 norm decays at an
enhanced rate, since streamline average can be dynamically created. At this stage,
it is even unclear that one can obtain enhanced dissipation by simply removing the
streamline average from the whole solution.

When the initial data are supported away from hyperbolic points (say, in one of
the cells), then they are mixed at the faster rate łt〉−1+ε, yielding the improvement in
the range of q above (see Remark 4.8). However, due to diffusion, the support of the
solution will immediately reach the hyperbolic point, so that (again) the estimate
cannot be iterated.

2. Gradient Estimates for Transport Equations

In this section, we focus on the transport equation (T) and its associated flow
X : R × M → M defined as the solution to the ODE{

∂t X (t, x) = b(t, X (t, x)),

X (0, x) = x .
(2.1)

Besides some regularity assumptions, which will be specified later, we assume that
H = 0 on ∂M whenever ∂M �= ∅. We will call a set E ⊂ M invariant (under the
flow X ) if X (t, E) = E for every t ≥ 0. The key step in the proof of Theorem 1 is
the existence of a good invariant set for X .

Proposition 2.1. Let H ∈ C1 ∩ W 2,p(M) for some p ≥ 1. There exists an in-
variant open set � ⊂ M such that for any ρ0 ∈ C1(M) with spt(ρ0) ⊂ �, the
corresponding solution ρ of (T) satisfies

‖∇ρ(t)‖L p ≤ C(�, H)(1 + t)‖∇ρ0‖L∞ , (2.2)

for all t ≥ 0.

Despite the possible presence of hyperbolic points in H , the set � is one where only
shearing is possible. As a consequence, the growth of ∇ρ is limited to be linear in
time, excluding for instance exponential growth.
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2.1. Construction of a Good Invariant Domain

To build a suitable invariant set, the idea is to employ a variation of the classical
Morse-Sard lemma [27,30] proven in [8].

Lemma 2.2. Let H ∈ C1 ∩ W 2,p(M) for some p ≥ 1. There exist a constant
c0 > 0 and an interval (h0, h1) ⊂ H(M) such that |b(x)| ≥ c0 for any x in the
invariant set � := H−1((h0, h1)). Moreover, � ∩ ∂M = ∅.
Proof. Define the set of critical values of H by

S := {h ∈ R : ∃ x ∈ M with H(x) = h and b(x) = 0},
and by R := H(M) \ S the set of regular values. Since H ∈ C1(M) and M is
compact, the set S is closed and therefore R is open in the range of H . As shown in
[8], such H enjoys the Sard property, namely S has zero 1-dimensional Lebesgue
measure on R. The latter can be reduced to a statement on a local chart, hence
the fact that M is not a subset of R2 is irrelevant for the sake of applying [8]. In
particular, the sets R and �∗ := H−1(R) are nonempty open subsets of H(M) and
M , respectively. It is straightforward to check that the map cS : R → R defined
by

cS(h) = min
x∈H−1(h)

|b(x)|

is continuous on R. Being H non-constant, there exists c0 > 0 such that cS(h) >

2c0 for some h ∈ R. Hence, we can find and interval (h0, h1) ⊂ R with h ∈
(h0, h1) such that cS > c0 on (h0, h1). We now set � := H−1((h0, h1)). If
∂M ∩ � = ∅, we are done. Otherwise, since H vanishes on the boundary, 0 ∈
(h0, h1). Replacing (h0, h1) with smaller interval (h′

0, h
′
1) not containing 0, we can

redefine � = H−1((h′
0, h

′
1)). The fact that � is invariant follows from its definition,

and hence the proof is over. ��
Remark 2.3. At this stage, the above lemma holds true for more general Lipschitz
Hamiltonians whose gradient is a function of bounded variation, see [8].

2.2. Action-Angle Coordinates for C2 Hamiltonians

Assume that H ∈ C2(M), and let � and c0 > 0 as in Lemma 2.2 so that in
particular ∇H �= 0 in �. Let x0 ∈ M be such that H(x0) = h0 and denote by �0
the connected component of � such that x0 ∈ ∂�0. Given h ∈ (h0, h1), we denote
the period (relative to the flow map X in (2.1)) of the closed orbit {H = h} by
T (h), while x = x(h) : (h0, h1) → M stands for the solution to the ODE{

x ′(h) = ∇H
|∇H |2 (x(h)),

x(h0) = x0.

Using, the flow map X in (2.1), we define the coordinates � : S1×(h0, h1) → �

by

�(θ, h) := X (θT (h), x(h)).
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HereS1 = [0, 1). Notice that H(x(h)) = h for any h ∈ (h0, h1). The key properties
of � are contained in the following proposition.

Lemma 2.4. The map � : S1 × (h0, h1) → �0 and its inverse are C1 functions.
Moreover, �−1(x) = (�(x), H(x)) where � : �0 → S

1 is a C1 function satisfy-
ing

�(X (t, x)) = �(x) + t

T (H(x))
, (2.3)

for any x ∈ �, t ≥ 0.

Proof. We begin by proving that T : (h0, h1) → (0,∞) is C1. It holds

T (h) =
ˆ
{H=h}∩�0

1

|b|dH 1 =
ˆ
{h0≤H≤h}∩�0

∇ ·
( ∇H

|∇H |2
)

dH 2 + T (h0)

=
ˆ h

h0

ˆ
{H=r}∩�0

∇ ·
( ∇H

|∇H |2
)

|∇H |−1dH 1 dr + T (h0),

(2.4)

where we used the divergence theorem and the coarea formula. Using that |∇H | ≥
c0 in �, it is now immediate to see that T ∈ C1((h0, h1)).

The fact that b ∈ C1(M) implies that � isC1-regular. More precisely, pointwise
in (θ, h) ∈ S

1 × (h0, h1) we have

∂h�(θ, h) = T ′(h)∇⊥H(X (θT (h), x(h))) + Dx X (θT (h), x(h))
∇H

|∇H |2 (x(h))

and

∂θ�(θ, h) = T (h)∇⊥H(�(θ, h)), (2.5)

so that standard regularity estimates for flow maps of C1 velocity fields imply

|∂h�(θ, h)| ≤ |T ′(h)||b|(�(θ, h)) + eT (h)‖H‖C2

|b|(x(h))

and

|∂θ�(θ, h)| ≤ T (h)|b|(�(θ, h)).

It is simple to see that � is injective and surjective. To prove that the inverse is C1

we show that D� is invertible at any point. Now, from the identity

H(�(θ, h)) = H(x(h)) = h,

and (2.5) we deduce that {
∂h� · ∇H(�) = 1 ,

∂θ� = T (h)∇⊥H(�),
(2.6)



   84 Page 10 of 37 Arch. Rational Mech. Anal.          (2024) 248:84 

for any θ ∈ S
1 and h ∈ (h0, h1). Since (∇H,∇⊥H) is an orthogonal and non-

degenerate frame, the C1 property of �−1 follows. Specifically, from (2.6) we
find

| det D�(θ, h)| = T (h), (2.7)

and therefore

|D�−1|(�(θ, h)) ≤ |D�|(θ, h)

| det D�(θ, h)| ≤
( |T ′(h)|

T (h)
+ 1

)
|b|(�(θ, h))

+ 1

T (h)

eT (h)‖H‖C2

|b|(x(h))
. (2.8)

In order to prove (2.3), observe that x = �(�(x), H(x)) = X (�(x)T (H(x)),
x(H(x))), and therefore

X (t, x) = X (�(x)T (H(x)) + t, x(H(x))), ∀t ≥ 0.

On the other hand

X (t, x) = �(�(X (t, x)), H(X (t, x)))

= �(�(X (t, x)), H(x)) = X (�(X (t, x))T (H(x)), x(H(x))).

Comparing the two expressions above and recalling that s → X (sT (h), h) is 1-
periodic and injective on [0, 1) we obtain (2.3) and complete the proof. ��
With the above lemma at hand, and in particular the explicit formula (2.3), the proof
of Proposition 2.1 follows immediately.

Proof of Proposition 2.1 when H ∈ C2. We denote by dM (·, ·) the Riemannian
distance on M . Invoking (2.3), for any x, y ∈ �0 and t ≥ 0 it holds

dM (X (t, x), X (t, y))

= dM ((� (�(X (t, x))) , H(X (t, x))) ,� ((�(X (t, y))) , H(X (t, y))))

= dM

((
�

(
�(x) + t

T (H(x))

)
, H(x)

)
,�

((
�(y) + t

T (H(y))

)
, H(y)

))

� |�(x) − �(y)| + t
|T (H(x)) − T (H(y))|
T (H(x))T (H(y))

+ |H(x) − H(y)|
� (1 + t)d(x, y),

where we used that the periodT is bounded below away from zero on (h0, h1) thanks
to (2.4). In particular, if ρ0 ∈ C1 is supported in �, then ρ(t, x) = ρ0(X (−t, x))
and

‖∇ρ(·, t)‖L p � ‖∇ρ0‖L∞(1 + t),

for any p ∈ [1,∞], thereby concluding the proof. ��



Arch. Rational Mech. Anal.          (2024) 248:84 Page 11 of 37    84 

2.3. Less Regular Hamiltonians

When H ∈ C1 ∩W 2,p(M) we cannot appeal to action-angle variables to study
the flow map X on good invariant domains. To be precise, we cannot even appeal
to classical notions of flow since b ∈ C0 ∩ W 1,p(M) is not regular enough.

In this setting, we understand X as the unique regular Lagrangian flow (RLF in
short) associated to b in the sense of [3,17]. The latter is by definition a measurable
map X : R × M → M satisfying the following properties:

(i) X (t, ·) conserves the volume measure of M for any t ≥ 0;
(ii) there exists a negligible set (with respect to the volume measure) N ⊂ M such

that t → X (t, x) is absolutely continuous for any x ∈ M \ N and solves (2.1).

Under our assumptions b ∈ C0 ∩ W 1,p, ∇ · b = 0, there exists a unique RLF
associated to b. Uniqueness is understood in the following weak sense: if X1 and X2
are two RLF, then there exists a negligible set N ⊂ M such that X1(t, x) = X2(t, x)
for any x ∈ M\N and t ≥ 0.

The crucial point in our analysis is to estimate the rate of separation of trajec-
tories, as in the following proposition.

Proposition 2.5. [Linear growth of the H1 norm of the flow]
Let b = ∇⊥H ∈ C0 ∩ W 1,p(M) and c0 > 0, � := H−1((h0, h1)) be as in

Lemma 2.2. Then there are two constants r,C > 0 and a function g ∈ W 1,p
loc (R)

such that for every z̄ ∈ � and z ∈ Br (z̄) and every t > 0 it holds

dM (X (t, z), X (t, z̄)) ≤ C(1 + t)
[
dM (z, z̄) + |g(H(z)) − g(H(z̄))|],

where X is a suitable representative of the unique RLF associated to b. In particular
there is C ′ = C ′(b, c0, p) > 0 such that

‖X (t, ·)‖W 1,p(�) ≤ C ′(1 + t),

for every t > 0.

The proof of Proposition 2.5 follows from the work [26]. For the reader’s
convenience we outline the main steps. By combining [26, Lemma 3.2] and [26,
Remark 3.3], we get the following result.

Lemma 2.6. Let b = ∇⊥H, c0 > 0 and � := H−1((h0, h1)) as in Lemma 2.2.
Then there exist a representative of the regular Lagrangian flow X, a function
g ∈ W 1,p

loc ∩ C0(R) and r > 0 such that for every t > 0 the following holds: there
exist c1, c2 > 0 such that ∀z̄ ∈ � and every z ∈ Br (z̄) there exists s > 0 such that

(1) dM (X (t, z̄), X (s, z)) ≤ c1|H(z̄) − H(z)|,
(2) |t − s| ≤ c2 (|g(H(z̄)) − g(H(z))| + dM (z̄, z)).

Remark 2.7. The constants c1, c2 are explicitly chosen at the end of the proof of
[26, Lemma 3.2] as

c1 = 2(c−1
0 + 1), c2 = Ñ (c−1

0 + 1)2(1 + 2‖b‖L∞) + 2(c−1
0 + 1),

where Ñ =
⌈
t‖b‖L∞

r̄

⌉
and r̄ > 0 is the size of a suitable covering of � depending

only on c0 and H . In particular c1 is independent on t and there is c̃ = c̃(H, c0) > 0
such that c2 ≤ c̃(1 + t).
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Remark 2.8. The function g can be chosen as

g(h) =
ˆ
{H≤h}

|Db|(z)dz,

in particular if b ∈ W 1,p(�), then g ∈ W 1,p
loc (R), see [26].

Remark 2.9. The proof of Lemma 2.6 (see [26]) can be interpreted in terms of the
action-angle variables in the smooth setting: the time s in the statement of Lemma
2.6 can be chosen as the time needed by the trajectory starting at z to run across the
same number of periods as the trajectory starting at z̄ at time t and reach the same
angular variable of the point X (t, z̄).

Proof of Proposition 2.5. The statement immediately follows from Lemma 2.6 and
Remark 2.7 by estimating

dM (X (t, z), X (t, z̄)) ≤ dM (X (t, z), X (s, z)) + dM (X (s, z), X (t, z̄))

≤ ‖b‖L∞|t − s| + dM (X (s, z), X (t, z̄))

and using that H is Lipschitz. ��
Proof of Proposition 2.1 in the general case. We appeal to the following funda-
mental property of RLF [17]:

ρ(t, x) = ρ0(X (−t, x)) , for a.e. x ∈ M .

In particular, the regularity of X proved in Proposition 2.5 immediately implies
Proposition 2.1. ��

3. Mixing, Dissipation, and the Role of Elliptic Points

This section is dedicated to the proofs of the main results of this paper. These
concern the general bound on the dissipation rate of Theorem 1, a sharp treatment
of the possible elliptic points in H (cf. Theorem 2), and a detailed analysis of the
mixing properties of a standard cellular flow as in Theorem 3.

3.1. General Upper Bounds on the Dissipation Rate

First we notice that to prove the upper bound (1.1), it is enough to exhibit an
initial datum ρ0 for which the corresponding solution ρν of (A-D) cannot diffuse
at a time-scale faster than O(ν−1/3). For this purpose, we will choose ρ0 ∈ C1(M)

supported in the good invariant set � of Proposition 2.1. The idea is to turn (2.2)
into a quantitative vanishing viscosity bound, as stated in the result below.

Lemma 3.1. Let ν ∈ [0, 1) and H ∈ C1 ∩ W 2,p(M) for some p ≥ 2. For any
ρ0 ∈ C1(M) with spt(ρ0) ⊂ �, there holds the estimate

‖ρν(t) − ρ(t)‖2
L2 ≤ Cν(1 + t)3‖∇ρ0‖2

L∞ , ∀t ≥ 0,

where ρν , ρ solve (A-D) and (T), respectively, with the same initial datum ρ0 and
C = C(H,�) > 0.
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Proof. We take the difference between (A-D) and (T) to obtain

∂t (ρ
ν − ρ) + b · ∇(ρν − ρ) = ν�ρν. (3.1)

Testing (3.1) with ρν − ρ, integrating on M , and using the antisymmetry of the
transport term, we get

d

dt
‖ρν − ρ‖2

L2 = −2ν

ˆ
M

∇ρν · (∇ρν − ∇ρ)dx ≤
−2ν‖∇ρν‖2

L2 + 2ν‖∇ρν‖L2‖∇ρ‖L2 ≤ ν‖∇ρ‖2
L2 . (3.2)

By Hölder’s inequality and Proposition 2.1 with p ≥ 2, we have

ν‖∇ρ(t)‖2
L2 � ν‖∇ρ(t)‖2

L p � ν(1 + t)2‖∇ρ0‖2
L∞ .

Plugging this into (3.2) and integrating in time, we obtain

‖ρν(t) − ρ(t)‖2
L2 � ν‖∇ρ0‖2

L∞

ˆ t

0
(1 + s)2ds,

and the proof is over. ��
With the above proximity estimate at hand, the proof of Theorem 1 follows from a
suitable lower bound on the energy dissipation rate.

Proof of Theorem 1. We take ρ0 as in the above Lemma 3.1, and we assume that
the corresponding solution ρν to (A-D) experiences enhanced dissipation at rate
λ(ν). According to Definition 1.1, this implies that(

1 − Ae−λ(ν)t
)
‖ρ0‖L2 ≤ ‖ρ0‖L2 − ∥∥ρν(t)

∥∥
L2

= ‖ρ(t)‖L2 − ∥∥ρν(t)
∥∥
L2 �
√

ν(1 + t)3‖∇ρ0‖L∞ , (3.3)

or equivalently(
1 − C(�, H)

‖∇ρ0‖L∞

‖ρ0‖L2

√
ν(1 + t)3

)
≤ Ae−λ(ν)t , ∀t ≥ 0. (3.4)

Fix now ε0 > 0 so that

ε0 := 1

2

[ ‖ρ0‖L2

C(�, H) ‖∇ρ0‖L∞

]2/3

and ν0 ∈ (0, ε3
0). Taking t = ε0ν

−1/3 ≥ 1 in (3.4), we end up with

1

2
≤ Ae−ε0λ(ν)ν−1/3

, ∀ν ∈ (0, ν0),

which readily implies the bound (1.1) and concludes the proof. ��
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3.2. Bounds on Mixing and Enhanced Dissipation Rates Near Elliptic Points

Let H , p = (0, 0), r0, 	r as in Sect. 1.2. The first lemma crucially associates
the behavior of T near r = 0 with the growth of the flow map of b = ∇⊥H .

Lemma 3.2. Let H ∈ C3(M) and (0, 0) as above. Then there exists a constant
C1 = C1(H) > 0 such that

|∇X (t, x)| ≤ 1 + C1r |T ′(r)| t

T (r)
, (3.5)

for every r ∈ (0, r0), t ≥ 1, and x ∈ 	r .

Proof. We preliminary observe that it is enough to estimate the growth of |∇X (t, re1)|,
as the same estimate will hold for any point on 	r . We are interested in the range
t � T (r) ∼ 1.

Let k ∈ N, and δ > 0, we have

|X (kT (r), re1) − X (kT (r), (r + δ)e1)|
≤ |X (kT (r), re1) − X (kT (r + δ), (r + δ)e1)|
+ |X (kT (r + δ), (r + δ)e1) − X (kT (r), (r + δ)e1)|
≤ δ + ‖b‖L∞(	r )k|T (r + δ) − T (r)|.

Noting that ‖b‖L∞(	r ) � r , dividing by δ and sending δ → 0 we find

|∇X (kT (r), re1) · e1| ≤ 1 + C1rk|T ′(r)|,

by choosing k ∼ t/T (r) we deduce

|∇X (t, x) · e1| ≤ 1 + C2r |T ′(r)| t

T (r)
,

for every r ∈ (0, r0), t ≥ 1, and x ∈ 	r . Here we used that

|∇X (t + T (r), x) · e1| ≤ |∇X (t, X (T (r), x)) · e1|eCT (r)

for any t ∈ R and that T (r) ≤ C , provided r ≤ r0.
To estimate |∇X (t, x)| it is enough to observe that re1 is almost normal to 	r

at any x ∈ 	r , provided r ≤ r0 is small enough. On the other hand, the tangential
derivative of X (t, x) along 	r is bounded by ‖b‖L∞(	r ) � r . This concludes the
proof.

��

Next we show that an estimate of type (3.5) along with T ′(r) ∼ rβ implies
sharper bounds on the mixing rate and bounds on the enhanced dissipation time-
scale for the Hamiltonians considered.
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Lemma 3.3. Let H ∈ C3(M) and (0, 0) as above. Assume further that the period
satisfies

T ′(s) ∼ sβ, as s → 0 (3.6)

for some β ≥ 0. Then the corresponding enhanced dissipation rate of b has the
upper upper bound

λ(ν) ≤ C2ν
1+β
3+β , (3.7)

for some constant C2 = C2(H) > 0.

Proof. Fix r ∈ (0, r0) and consider a smooth and mean-free initial datum ρ0,r

supported in an invariant region contained in the annulus Bar (0)\Br (0), where
a > 1 is a constant depending only on H . Accordingly, we normalize the initial
datum so that ‖ρ0,r‖L2 = 1, implying ‖∇ρ0,r‖L2 ∼ 1/r , and denote by ρν , ρ the
corresponding solutions to (A-D) and (T), respectively, with the same initial datum
ρ0,r .

By (3.6) and using that the Lagrangian flow preserves the Lebesgue measure,
we can estimate
ˆ t

0
‖∇ρ(s)‖2

L2 ds ≤ ‖∇ρ0,r‖2
L2

ˆ t

0
sup

Bar (0)\Br (0)

|∇X (s, ·)|2ds � t/r2 + r2β t3,

for every t ≥ 1, with constant depending only on H . An optimization in r then
leads to the integral bound

ν

ˆ t

0
‖∇ρ(s)‖2

L2 ds � ν(1 + t)
3+β
1+β , ∀t ≥ 0.

Now, thanks to (3.2), the above integral controls the difference between ρν and ρ

in L2. Thus, as we did for (3.3), we assume that ρν is enhanced dissipated at rate
λ(ν) and obtain the inequality

1 − C(H)

√
ν(1 + t)

3+β
1+β ≤ Ae−λ(ν)t , ∀t ≥ 0.

Choosing

ε0 := 1

2

[
1

2C(�, H)

]2 1+β
3+β

, 0 < ν0 < ε

3+β
1+β

0 , t = ε0ν
− 1+β

3+β ≥ 1

eventually leads to

1

2
≤ Ae−ε0λ(ν)ν

− 1+β
3+β

, ∀ν ∈ (0, ν0),

which readily implies the bound (3.7) and concludes the proof. ��
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Remark 3.4. In a similar fashion, we can obtain a lower bound on the mixing rate
for such b. Indeed, let ρ0 = ρ0,r exactly as in the proof of Lemma 3.3. If b is mixing
with rate γ (t) as in Definition 1.2, then we have

‖ρ(t)‖H−1 �
‖ρ(t)‖2

L2

‖ρ(t)‖H1
� ‖ρ0‖H1

1

1/r2 + rβ−1t
,

where the constants depends only on H . Hence γ (t) � 1
1/r2+rβ−1t

for every r > 0.

We choose r = t−
1

β+1 and find the lower bound γ (t) � 1

t
2

β+1
.

Proof of Theorem 2. It is enough to apply Lemma 3.3 and the above remark. ��

3.3. On the Behavior of T ′ Near the Elliptic Point

We conclude this section by showing that for every smooth Hamiltonian, T ′ is
bounded near zero (so β ≥ 0 in (3.6)).

Lemma 3.5. Let H ∈ C3(M) and (0, 0) be as above. Then |T ′(s)| � 1 as s → 0.

Proof. We have T (s) = T̄ (H(se1)), where T̄ (h) = ´
{H=h}

1
|b|dH

1. In particular

|T ′(s)| = |T̄ ′(H(se1))
d

ds
H(se1)| ∼ |T̄ ′(H(se1))|s,

therefore it follows from (2.4) that it is sufficient to prove∣∣∣∣
ˆ
{H=s2}

∇ ·
( ∇H

|∇H |2
)

|∇H |−1dH 1
∣∣∣∣ � s−1. (3.8)

Observe that a trivial estimate on the size of the integrand would give a useless
final upper bound of size s−2. We compare H with the quadratic Hamiltonian
H̃(x) = H(0)+ x⊥D2 H(0)x to obtain a cancellation at the first non-trivial order:
observe that the period of the trajectories associated to H̃ is constant, in particular

ˆ
{H̃=s2}

∇ ·
(

∇ H̃

|∇ H̃ |2
)

|∇ H̃ |−1dH 1 = 0.

For shortness we denote by f = ∇·
( ∇H

|∇H |2
)
|∇H |−1 and f̃ = ∇·

( ∇ H̃
|∇ H̃ |2
)
|∇ H̃ |−1.

It is straightforward to check that for every x ∈ {H = s2} ∪ {H̃ = s2} ⊂ {c1s2 ≤
H ≤ c2s2}, for appropriate constants c1, c2 > 0, it holds

| f (x)| � s−3, |∇ f (x)| � s−4, | f̃ (x)| � s−3, |∇ f̃ (x)| � s−4.

Let �̃ be a sufficiently small neighborhood of (0, 0) and g : �̃ → R
2 be the map

g(x) = t x where t = t (x) is the unique value t > 0 such that H̃(t x) = H(x).
Let g : {H = s2} → {H̃ = s2} be the map g(x) = t x where t = t (s, x) is the

unique value t > 0 such that g(x) ∈ {H̃ = s2}. By construction we have

|g − Id| � s3, |g−1 − Id| � s3, |dg − Id| � s, |dg−1 − Id| � s as s → 0.
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In particular it holds

∣∣∣∣
ˆ
{H=s2}

f dH 1
∣∣∣∣ =
∣∣∣∣
ˆ
{H=s2}

f dH 1 −
ˆ
{H̃=s2}

f̃ dH 1
∣∣∣∣

≤
ˆ
{H=s2}

| f − f̃ |dH 1 +
∣∣∣∣
ˆ
{H=s2}

f̃ dH 1 −
ˆ
{H̃=s2}

f̃ dH 1
∣∣∣∣ .

Since on {H = s2} we have the estimates

|H − H̃ | � s3, |∇H − ∇ H̃ | � s2, |∇2H − ∇2 H̃ | � s, |∇H |, |∇ H̃ | ∼ s

then | f − f̃ | � s−2. Moreover H 1({H = s2}) ∼ s, therefore we can estimate

ˆ
{H=s2}

| f − f̃ |dH 1 � s−1.

Now we consider

∣∣∣∣
ˆ
{H=s2}

f̃ dH 1 −
ˆ
{H̃=s2}

f̃ dH 1
∣∣∣∣

=
∣∣∣∣
ˆ
{H=s2}

f̃ dH 1 −
ˆ
{H=s2}

f̃ ◦ g−1dg�H
1|{H̃=s2}

∣∣∣∣
≤
ˆ
{H=s2}

| f̃ − f̃ ◦ g−1|dH 1

+
∣∣∣∣
ˆ
{H=s2}

f̃ ◦ g−1dH 1

−
ˆ
{H=s2}

f̃ ◦ g−1dg�H
1|{H̃=s2}

∣∣∣∣ .
Since |∇ f̃ | � s−4 and |g−1 − Id| � s3, we can estimate

ˆ
{H=s2}

| f̃ − f̃ ◦ g−1|dH 1 � 1.

Moreover, by the estimates on dg we obtain that g�H 1|{H̃=s2} = ψH 1|{H=s2}
with |ψ − 1| � s. Since | f̃ ◦ g−1| � s−3, then we deduce that

∣∣∣∣
ˆ
{H=s2}

f̃ ◦ g−1dH 1 −
ˆ
{H=s2}

f̃ ◦ g−1dg�H
1|{H̃=s2}

∣∣∣∣ � s−1.

Combining the previous estimates we obtain (3.8) and therefore the claim. ��
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4. The Case of a Cellular Flow

We consider the 2π -periodic Hamiltonian Hc(x) = Hc(x1, x2) = sin x1 sin x2
and the associated velocity field

bc(x) = bc(x1, x2) = (− sin x1 cos x2, cos x1 sin x2) .

We restrict our analysis to the domain [0, π ]2 and observe that Hc ≥ 0 on [0, π ],
Hc = 0 at ∂[0, π ]2 and (π/2, π/2) is the only maximum point. For any h ∈ (0, 1)

we denote by T (h) the period of the closed trajectory supported in {Hc = h} ∩
[0, π ]2.

Lemma 4.1. For any h ∈ (0, 1) we have

2h(1 − h) ≤ |bc(x)|2 ≤ 2(1 − h2) , for any x ∈ {Hc = h} ∩ [0, π ]2 .

Proof. Fix x ∈ {Hc = h} ∩ [0, π ]2, and compute

|bc(x)|2 = −2(sin x1 sin x2)
2 + (sin x1)

2 + (sin x2)
2 = −2h2 + (sin x1)

2 + (sin x2)
2.

This yields

−2h2 + (sin x1)
2 + (sin x2)

2 ≤ −2h2 + 2 = 2(1 − h2),

and

−2h2 + (sin x1)
2 + (sin x2)

2 = −2h2 + 2h + (sin x1 − sin x2)
2 ≥ 2h(1 − h),

as we wanted. ��

4.1. Estimates on T (h)

We provide an explicit formula for T (h) and we show that T (h) ∼ 1+ ln(1/h)

up to the second order.

Lemma 4.2. For any h ∈ (0, 1) we have

T (h) = 4
ˆ 1

h

1√
x2 − h2

1√
1 − x2

dx = 4
ˆ 1

0

1√
1 − x2

1√
1 − (1 − h2)x2

dx .

(4.1)

Proof. We parametrize a quarter of the closed curve {Hc = h} ∩ [0, π ]2 with a
curve [arcsin h, π/2] � t → (t, γ (t)), where sin t sin γ (t) = h. It is not hard to
check that

|γ ′(t)|2 + 1 = h2 − 2h2 sin2 t + sin4 t

sin2 t (sin2 t − h2)
. (4.2)

Moreover, from the identity |bc(x1, x2)|2 = sin2 x1 cos2 x2 + cos2 x1 sin2 x2 we
get

|bc(t, γ (t))|2 = h2 − 2h2 sin2 t + sin4 t

sin2 t
. (4.3)
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By combining (4.2) and (4.3) we can compute the period

T (h) = 4
ˆ π/2

arcsin h

√|γ ′(t)|2 + 1

|bc(t, γ (t))| dt = 4
ˆ π/2

arcsin h

1√
sin2 t − h2

dt,

and the first identity in (4.1) follows from the change of variables x = sin t . To

prove the second identity in (4.1) we employ the change of variables y =
√

1−x2

1−h2 .
��
Lemma 4.3. The function T is smooth in (0, 1), and there exists C > 1 such

T (h)

1 + ln(1/h)
+ h|T ′(h)| + h2|T ′′(h)| ≤ C,

−T ′(h) ≥ 1

Ch
, (4.4)

for any h ∈ (0, 1).

Proof. From the second identity in (4.1) it is immediate to verify thatT ∈ C∞((0, 1)).
Let us estimate T (h). We first consider the case h ∈ (1/2, 1):

T (h) ≤ 10
ˆ 1

h

1√
x − h

√
1 − x

dx

= 10
ˆ h+1

2

h

1√
x − h

√
1 − x

dx + 10
ˆ 1

h+1
2

1√
x − h

√
1 − x

dx

≤ 10
√

2√
1 − h

ˆ h+1
2

h

1√
x − h

dx + 10
√

2√
1 − h

ˆ 1

h+1
2

1√
1 − x

dx

= 40.

Let us now assume that h ∈ (0, 1/2), we have

T (h) ≤ 4
ˆ 1

h

1√
x2 − h2

dx = 4
ˆ 1/h

1

1√
z2 − 1

dz

= 4
ˆ 2

1

1√
z2 − 1

dz + 4
ˆ 1/h

2

1√
z2 − 1

dz

≤ 10 + 10 ln(1/h) ,

where we used the change of variables z = x/h.
To study T ′(h), we differentiate the second identity in (4.1) and obtain

−T ′(h) = 4
ˆ 1

0

1

(1 − x2)1/2

hx2

(1 − (1 − h2)x2)3/2 dx .

We can split the integral into

−hT ′(h) = 4
ˆ 1−h2

0

1

(1 − x2)1/2

h2x2

(1 − (1 − h2)x2)3/2 dx
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+ 4
ˆ 1

1−h2

1

(1 − x2)1/2

h2x2

(1 − (1 − h2)x2)3/2 dx

=: I + I I ,

and estimate

I ≤ 4h2(1 − h2)

(1 − (1 − h2)2)1/2

ˆ 1−h2

0

x

(1 − (1 − h2)x2)3/2 dx

≤ 4h
ˆ 1−h2

0

d

dx
(1 − (1 − h2)x2)−1/2dx

≤ 4.

From

4h2(1 − h2)

(1 − (1 − h2)3)3/2

ˆ 1

1−h2

x

(1 − x2)1/2 dx ≤ I I ≤ 4

h

ˆ 1

1−h2

x

(1 − x2)1/2 dx

we deduce that

1 − h ≤ I I ≤ 8.

Since I ≥ 0, T ′ is continuous in h = 1 and −T ′(1) = π we also deduce (4.4).
To conclude the proof we have to show the upper bound on h2|T ′′(h)|. Let us

introduce the auxilary function

G(s) := 4
ˆ 1

0

1√
1 − x2

1√
1 − sx2

dx s ∈ (0, 1).

Observe that T (h) = G(1 − h2), hence

h2T ′′(h) = −2h2G ′(1 − h2) + 4h4G ′′(1 − h2) = hT ′(h) + 4h4G ′′(1 − h2) .

We already know that h|T ′(h)| ≤ 12. To estimate the second term we use the
identity

h4|G ′′(1 − h2)| = 3
ˆ 1

0

1

(1 − x2)1/2

h4x4

(1 − (1 − h2)x2)
5
2

dx

= 3
ˆ 1−h2

0

1

(1 − x2)1/2

h4x4

(1 − (1 − h2)x2)
5
2

dx

+ 3
ˆ 1

1−h2

1

(1 − x2)1/2

h4x4

(1 − (1 − h2)x2)
5
2

dx

=: I + I I

and estimate I and I I exactly as we did for −hT ′(h). ��
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Remark 4.4. The expression for T (h) in (4.1) is in fact a complete elliptic integral
of the first kind. Its asymptotics are well-known [1, Ch. 17]: as h → 0+ we have

T (h) ∼ 4 ln(4/h) + O(h), T ′(h) ∼ −4

h
+ O(1) T ′′(h) ∼ 4

h2 + O(1/h),

while as h → 1− it holds

T (h) ∼ 2π + O(h − 1), T ′(h) ∼ −π + O(h − 1) T ′′(h) ∼ 5π

4
+ O(h − 1).

However, all we need are the global bounds contained in Lemma 4.3.

4.2. Reparametrization of the Hamiltionian and Regularity of the Change of
Variables

We consider the coordinates

�̃ : S1 ×
(

0,
π

2

)
→ (0, π)2 \

{(π
2

,
π

2

)}
, �̃(θ, I ) := X

(
θ T̃ (I ),

(π
2

, I
))
(4.5)

where T̃ (I ) is the period of the closed orbit in {Hc = sin I } passing through
the point (π/2, I ). These coordinates are related to the action-angle coordinates
introduced in Sect. 2.2 by

�̃(θ, I ) = �(θ, sin I ), T̃ (I ) = T (sin I ). (4.6)

Lemma 4.5. The map �̃ : S1 × (0, π
2

) → (0, π)2\ {(π/2, π/2)} and its inverse
are C1. Moreover the following estimates hold:

|∂θ �̃(θ, I )| � | ln I |
(π

2
− I
)

, |∂I �̃(θ, I )| � I−1.

Proof. The C1-regularity of �̃ and its inverse follows from (4.6) and the same
properties proved for � in Lemma 2.4. The first inequality follows from Lemma
4.3:

|∂θ �̃(θ, I )| ≤ |T̃ (I )||bc|(�̃(θ, I )) � | ln I |
(π

2
− I
)

.

Let us prove the second inequality: for every α ∈ S
1 and I ∈ (0, π

2

)
, let P(α, I ) ∈

�̃(S1, I ) and g(α, I ) > 0 be such that

P(α, I ) =
(π

2
,
π

2

)
+ g(α, I )ei(3π/2−α). (4.7)

Take now α : S1 × (0, π/2) → S
1 such that

ei(3π/2−α(θ,I )) = �̃(θ, I ) − (π/2, π/2)∣∣∣�̃(θ, I ) − (π/2, π/2)

∣∣∣ .
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In particular we have

�̃(θ, I ) =
(π

2
,
π

2

)
+ g(α(θ, I ), I )ei(3π/2−α(θ,I )),

therefore

|∂I �̃(θ, I )| ≤ |∂αg(α(θ, I ), I )||∂Iα(θ, I )|
+|∂I g(α(θ, I ), I )| + |g(α(θ, I ), I )||∂Iα(θ, I )|. (4.8)

We observe that g(α, I ) ∼ (π/2 − I ). Moreover it holds

|∂I g(α, I )| � 1, as I → π

2

−
,

|∂I g(α, I )| � 1

|bc ◦ P| � 1√
I
, as I → 0+.

Differentiating (4.7) and observing that g(α, I ), |∂αP| ∼ (π/2 − I ) we obtain
|∂αg| �

(
π
2 − I
)
. Therefore it follows by (4.8) that

|∂I �̃(θ, I )| �
(π

2
− I
)
|∂Iα(θ, I )| + 1√

I
. (4.9)

In remains to estimate ∂Iα: we consider the angular velocity with respect to the
center (π/2, π/2):

ω : S1 ×
(

0,
π

2

)
→ R, ω(α, I ) = bc(P(α, I )) ei(2π−α)

g(α, I )
.

By construction it holds
ˆ α(θ,I )

0

1

ω(α, I )
dα = θ T̃ (I ).

Differentiating the expression above with respect to I we get

∂Iα(θ, I ) = ω(α(θ, I ), I )

[
θ T̃ ′(I ) +

ˆ α(θ,I )

0

∂Iω(α, I )

ω(α, I )2 dα

]
. (4.10)

Since g(α, I ) ∼ (π2 − I
)

and bc(P(α, I )) ei(2π−α) ≥ √
2/2, then ω(α, I ) ∼

|bc◦P|
g(α,I ) � 1. By Lemma 4.3 we have T̃ ′(I ) � I−1

(
π
2 − I
)
. In order to estimate

the integral, we distinguish two regimes: I → 0+ and I → π
2

−, and rely on the
estimate

|∂Iω| ≤ |∂I (bc ◦ P)|
g

+ |bc ◦ P||∂I g|
g2 .

For I → π
2

− we have g(α, I ) ∼ (π2 − I
)

and
(

π
2 − I
)−1 |bc ◦ P|+ |∂I (bc ◦ P)|+

|∂I g| � 1, therefore

|∂Iω| �
(π

2
− I
)−1

as I → π

2

−
.
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In particular we get

|∂Iα(θ, I )| �
(π

2
− I
)−1

as I → π

2

−
.

We now estimate the integral term in (4.10) as I → 0+: by the symmetries of the
cellular flow we have that for every θ ∈ S

1 it holds

∣∣∣∣∣
ˆ α(θ,I )

0

∂Iω(α, I )

ω(α, I )2 dα

∣∣∣∣∣ ≤
ˆ 2π

0

∣∣∣∣∂Iω(α, I )

ω(α, I )2

∣∣∣∣ dα = 8
ˆ π

4

0

∣∣∣∣∂Iω(α, I )

ω(α, I )2

∣∣∣∣ dα

If α, I ∈ (0, π/4), then, denoting by P1 the first component of the vector P , we
have

|bc ◦ P| ∼ P1(α, I ), |∂I (bc ◦ P)| ∼ |(Dxbc) ◦ P|
|bc ◦ P|

� 1

|bc ◦ P| , |∂I g| � 1

|bc ◦ P| , g ∼ 1,

therefore |∂Iω(α, I )| � 1
P1(α,I ) and |ω(α, I )| ∼ P1(α, I ). We observe that for

every I ∈ (0, π/4) the map α �→ P1(α, I ) is bi-Lipschitz from (0, π/4) to its
image with constants independent of I .

Eventually we can estimate

∣∣∣∣∣
ˆ α(θ,I )

0

∂Iω(α, I )

ω(α, I )2 dα

∣∣∣∣∣ �
∣∣∣∣∣
ˆ π

2

P1( π
4 ,I)

1

x3
1

dx1

∣∣∣∣∣ � I−1 as I → 0+,

where in the last inequality we used that P1
(

π
4 , I
) ∼ √

I , since sin2
(
P1
(

π
4 , I
)) =

sin I . Combining the estimates in the two regimes we get

|∂Iα(θ, I )| �
(π

2
− I
)−1

I−1,

therefore we conclude by (4.9) that

|∂I �̃(θ, I )| � I−1,

finishing the proof. ��

It is convenient to state also the estimates relative to the action-angle coordinates
in Sect. 2.2: recalling (4.6), it immediately follows from Lemma 4.5 that

|∂θ�| � ln

(
1 + 1

h

)√
1 − h, |∂h�| � 1

h
√

1 − h
. (4.11)
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4.3. Polynomial Bound for the Gradient of the Flow

In this section, we prove an algebraic upper bound for the W 1,1 norm of the
Lagrangian flow X (t, x). Despite the existence of a hyperbolic point, which causes
exponential stretching/compression of particle trajectories, the result below asserts
that, on average, the gradient growth is at most quadratic.

Proposition 4.6. Denote by X the flow associated to bc, then there is an absolute
constant C > 0 such thatˆ

T2
|Dx X (t, x)|dx ≤ C(1 + t2). (4.12)

We expect the sharp estimate to be linear rather than quadratic, up to possible
logarithmic corrections. Moreover, we believe that this property is true for more
general Hamiltonians with non-degenerate hyperbolic points, although (4.12) can
be saturated in degenerate cases. We will investigate these properties further in a
subsequent work.

An immediate consequence of Proposition 4.6 and the interpolation inequality

‖ f ‖2
L4/3 � ‖∇ f ‖L1‖ f ‖Ḣ−1 ,

is that no datum can mix faster than 1/t2, even if its support contains the hyperbolic
points.

Proof of Proposition 4.6. We reduce to the domain (0, π)2. Recalling the definition
of action-angle coordinates in Sect. 2.2 we have

X (t, x) = �(�(X (t, x)), Hc(X (t, x))).

Since Hc(X (t, x)) = Hc(x), we deduce by Lemma 2.4 that

X (t, x) = �

(
�(x) + t

T (Hc(x))
, Hc(x)

)
.

Differentiating with respect to x and recalling bc = ∇⊥Hc we obtain

|Dx X (t, x)| ≤ |∂θ�|
(
|D�| + t

T 2(Hc(x))
|T ′(Hc(x))||b(x)|

)
+ |∂h�||b(x)|

(4.13)

In order to estimate |D�|, we repeat the computations in (2.8), taking into account
the sharper estimates (4.11) for |D�|, and using T (h) ∼ 1 + ln(1/h): we have

|D�| ≤ |D�−1| ≤ |D�|
| det D�| � 1

h
√

1 − h(1 + ln(1/h))
.

Plugging this estimate in (4.13), we obtain

|DX (t, x)| � (1 + ln(1/h))
√

1 − h
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(
1

h
√

1 − h(1 + ln(1/h))
+ t

h(1 + ln(1/h))2 |b(x)|
)

+ 1

h
√

1 − h
|b(x)|

= 1

h
+

√
1 − h

h(1 + ln(1/h))
|b(x)|t + 1

h
√

1 − h
|b(x)|,

where h = Hc(x). We also have the trivial bound |Dx X (t, x)| ≤ eLt , with L =
|Dbc|L∞ . Given h̄ ∈ (0, 1) and using the co-area formula we get
ˆ

(0,π)2
|Dx X (t, x)|dx =

ˆ
{Hc≤h̄}

|Dx X (t, x)|dx +
ˆ 1

h̄

ˆ
{Hc=h}

|Dx X (t, x)|
|b(x)| dH 1(x)dh

� eLt |{Hc ≤ h̄}| +
ˆ 1

h̄

1

h

ˆ
{Hc=h}

1

|b(x)|dH 1(x)dh

+
ˆ 1

h̄

( √
1 − h

h(1 + ln(1/h))
t + 1

h
√

1 − h

)
H 1({Hc = h})dh. (4.14)

It is straightforward to check that∣∣{Hc ≤ h̄}∣∣ � h̄ ln(1/h̄), H 1({Hc = h}) ∼ √
1 − h.

Moreover by Lemma 4.3 we have
ˆ
{Hc=h}

1

|b(x)|dH
1(x) = T (h) � 1 + ln(1/h).

Plugging these estimates in (4.14), we get
ˆ

(0,π)2
|Dx X (t, x)|dx � eLt h̄(1 + ln(1/h̄)) +

ˆ 1

h̄

(
1 + ln(1/h)

h
+ t

h ln(1/h)

)
dh

� eLt h̄(1 + ln(1/h̄)) + ln(h̄)2 + t ln(ln(1/h̄)).

Choosing h̄ = e−Lt we get the desired estimate. ��

4.4. Global Mixing Estimate

Let ρ0 ∈ C1(T2) be mean zero along the level sets of Hc, and consider ρ :
R×T

2 → R the solution to (T) with ρ(0, ·) = ρ0. To prove global mixing estimates,
it is enough to study the flow in each invariant domain (0, π)2, (0, π) × (−π, 0),
(−π, 0)2, (−π, 0) × (0, π). More precisely, we split

‖ρ(t)‖H−1(T2) = sup
‖ϕ‖H1(T2)

≤1

ˆ
T2

ρ(t)ϕdx

≤ sup
‖ϕ‖H1(T2)

≤1

ˆ
(0,π)2

ρ(t)ϕdx + sup
‖ϕ‖H1(T2)

≤1

ˆ
(0,π)×(−π,0)

ρ(t)ϕdx

+ sup
‖ϕ‖H1(T2)

≤1

ˆ
(−π,0)×(0,π)

ρ(t)ϕdx + sup
‖ϕ‖H1(T2)

≤1

ˆ
(−π,0)2

ρ(t)ϕdx

(4.15)

and estimate each term separately using the special coordinates introduced in the
previous section. We illustrate in details how to estimate the mixing rate in (0, π)2,
the analysis of the other domains being completely analogous.
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We apply the stationary phase argument for the dynamics in the coordinates
(θ, I ) and the change of variables �̃ given in (4.5). The function f (t, θ, I ) :=
ρ(t, �̃(θ, I )) solves the equation

∂t f + 1

T̃ (I )
∂θ f = 0 , for (t, θ, I ) ∈ R × S

1 ×
[
0,

π

2

]
.

By (2.7) and (4.6) we have

J�̃(θ, I ) = J�(θ, I ) cos I = T̃ (I ) cos I.

We set g(I ) := T̃ (I ) cos I , and work in the weighted Sobolev space H1
g , defined

by the norm

‖ f ‖2
H1
g

:=
ˆ
S1×(0, π

2 )

(
| f (θ, s)|2 + |∂s f (θ, s)|2

)
g(s)dsdθ.

Fix δ, δ′ ∈ (0, 1), by (A.4) we have

sup
‖φ‖

H1
g
≤1

ˆ π
2 −δ′

δ

ˆ
S1

f (t, θ, s)φ(θ, s)g(s)dθds ≤ ‖ f (0, ·)‖H1
g
r(t)

with r(t) given by (A.3), i.e.

r(t) = 1

t

∥∥∥g− 1
2

∥∥∥2
L2(δ, π

2 −δ′)

⎛
⎝ T̃ 2g

|T̃ ′| (δ) + T̃ 2g

|T̃ ′| (
π

2
− δ′) +

∥∥∥∥∥
(
T̃ 2g

T̃ ′

)′∥∥∥∥∥
L1(δ, π

2 −δ′)

⎞
⎠

+ 1

t

∥∥∥g− 1
2

∥∥∥
L2(δ, π

2 −δ′)

∥∥∥∥∥ T̃
2g

1
2

T̃ ′

∥∥∥∥∥
L2(δ, π

2 −δ′)
. (4.16)

By Lemma 4.3 we have

T̃ (I ) ∼ 1 + | ln I |, |T̃ ′(I )| ∼ I−1
(π

2
− I
)

, |T̃ ′′(I )| ∼ I−2 ,

hence each term in (4.16) can be estimated pointwise as∣∣∣∣∣
(
T̃ 2g

T̃ ′

)′∣∣∣∣∣ =
∣∣∣∣∣
(
T̃ 3 cos I

T̃ ′

)′∣∣∣∣∣ � T̃ 2 + (1 + | ln I |)3 I 2

π
2 − I

+ |T̃ ′′|T̃ 3 I 2

π
2 − I

� (1 + | ln I |)3

π
2 − I

,

∣∣∣∣∣ T̃
2g

T̃ ′

∣∣∣∣∣ � (1 + | ln I |)3 I,

∣∣∣∣∣ T̃
2g1/2

T̃ ′

∣∣∣∣∣ � (1 + | ln I |)5/2 I(
π
2 − I
)1/2 .

Plugging these estimates in (A.3), we get

r(t) �
∣∣ln δ′∣∣2 1

t
. (4.17)
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Let � ⊂ (0, π)2 be an open set such that spt(ρ(t)) ∩ (0, π)2 ⊂ � for every t ∈ R.
Denoting by L2 the Lebesgue measure on (0, π)2, we estimate

sup
‖ϕ‖H1 ≤1

ˆ
(0,π)2

ρ(t)ϕdx

= sup
‖ϕ‖H1 ≤1

(ˆ
�̃(S1×(0,δ))

ρ(t)ϕdx +
ˆ

�̃(S1×(δ, π
2 −δ′))

ρ(t)ϕdx +
ˆ

�̃(S1×( π
2 −δ′, π

2 ))

ρ(t)ϕdx

)

� C(ε)‖ρ0‖L∞
[
L2
((

�̃(S1 × (0, δ)) ∪ �̃
(
S

1 ×
(π

2
− δ′, π

2

)))
∩ �
)]1−ε

+ sup
‖ϕ‖H1 ≤1

ˆ
�̃(S1×(δ, π

2 −δ′))
ρ(t)ϕdx,

where we used the a priori estimate ‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ and the two-dimensional
Sobolev embedding ‖ϕ‖L p ≤ C(p)‖ϕ‖H1 ≤ C(p) for any p < ∞. Performing
the computations in Section A.1, we deduce from (4.17) and Lemma 4.5 that

sup
‖ϕ‖H1 ≤1

ˆ
�̃(S1×(δ, π

2 −δ′))
ρ(t)ϕdx � ‖ρ0‖H1

t
(1 + Lip�̃)2

∣∣ln δ′∣∣2 � ‖ρ0‖H1

t
δ−2
∣∣ln δ′∣∣2 .

Let κ < 1/5 be a small parameter. We claim that for every ε > 0 we have the
following:

(1) If spt(ρ0) ∩ (0, π)2 ⊂ S
1 × (κ, π − κ), then

sup
‖ϕ‖H1≤1

ˆ
(0,π)2

ρ(t)ϕdx ≤ C(ε, κ, ‖ρ0‖H1 , ‖ρ0‖L∞)
1

t1−ε
. (4.18)

(2) If spt(ρ0) ∩ (0, π)2 ⊂ S
1 × (0, π)2 \ Bκ((π/2, π/2)), then

sup
‖ϕ‖H1≤1

ˆ
(0,π)2

ρ(t)ϕdx ≤ C(ε, κ, ‖ρ0‖H1 , ‖ρ0‖L∞)
1

t
1
3 −ε

. (4.19)

To prove (1), we set � := S
1 × (κ ′, π − κ ′) for some 0 < κ ′ < κ in such a way

that it contains spt(ρ(t)) ∩ (0, π)2 for any t ∈ R. Hence, there exists δ(κ) < 1/5,
depending only on κ , such that �̃

(
S

1 × (0, δ(κ))
) ∩ � = ∅. The analysis above

with δ = δ(κ) gives

sup
‖ϕ‖H1≤1

ˆ
(0,π)2

ρ(t)ϕdx � C(ε)‖ρ0‖L∞(δ′)2−2ε + C(κ)‖ρ0‖H1 | ln δ′|2 1

t
,

where we used that

L2
(
�̃
(
S

1 ×
(π

2
− δ′, π

2

)))
� (δ′)2 .

The sought conclusion follows by optimizing δ′.
To prove (2) we argue analogously. The right domain to consider is

� := (0, π)2 ⊂ (0, π)2 \ B2κ((π/2, π/2)),

and we use the volume estimate

L2
(
�̃(S1 × (0, δ))

)
� δ(1 + | ln δ|) .



   84 Page 28 of 37 Arch. Rational Mech. Anal.          (2024) 248:84 

Proof of Theorem 3. Let ρ0 ∈ C1(T2) be mean zero along the level sets of Hc, and
consider ρ : R × T

2 → R the solution to (T) with ρ(0, ·) = ρ0. The lower bound
on the mixing rate in (1.4) and the upper bound on the enhanced dissipation rate
in (1.5) are a consequence of Theorem 2. We then prove the upper bound on the
mixing rate in (1.4).

Let χ be a smooth function, constant along the levels of Hc such that χ = 1 in
B 1

100
((π/2, π/2)) and χ = 0 in the complement of B 1

10
((π/2, π/2)). It turns out

that χρ(t) and (1 − χ)ρ(t) both solve (T). Hence, we can apply (4.18) and (4.19)
to get

sup
‖ϕ‖H1 ≤1

ˆ
(0,π)2

ρ(t)ϕdx ≤ sup
‖ϕ‖H1 ≤1

ˆ
(0,π)2

χρ(t)ϕdx + sup
‖ϕ‖H1 ≤1

ˆ
(0,π)2

(1 − χ)ρ(t)ϕdx

≤ C(ε, κ, ‖χρ0‖H1 , ‖χρ0‖L∞ )
1

t1−ε

+ C(ε, κ, ‖(1 − χ)ρ0‖H1 , ‖(1 − χ)ρ0‖L∞ )
1

t
1
3 −ε

≤ C(ε, κ, ‖ρ0‖H1 , ‖ρ0‖L∞ )
1

t
1
3 −ε

.

To estimate ‖ρ(t)‖H−1(T2) we use the decomposition (4.15), and sum all the con-
tributions. This concludes the proof. ��

4.5. Towards Enhanced Dissipation

Given the upper bound on the mixing rate (1.4), we can obtain a partial enhanced
dissipation result for the standard cellular flow (Theorem 4), by adapting the strategy
of [13, Theorem 2.1]. Define the average on the streamlines of a function g ∈
L2(T2) as

P0g(x) =
 

�(x)
g dH 1,

where �(x) is the connected component of {Hc = Hc(x)} containing x , and P⊥ =
1−P0. Clearly, P0 and P⊥ are orthogonal projections in L2. Moreover, P0b ·∇ = 0
and P⊥ commutes with b · ∇. However, they are not in general well-behaved with
the Laplace operator, so that [13, Theorem 2.1] cannot be applied directly. The
mixing estimate (1.4) can be phrased as

‖P⊥ρ(t)‖H−1 ≤ a

łt〉p ‖ρ0‖H1 , ∀t ≥ 0, ∀ρ0 ∈ H1, P0ρ0 = 0,

for some constant a ≥ 1 and p = 1/3−. We will restrict ourselves to initial data
supported in one of the cells. We need the following preliminary result.

Lemma 4.7. Let ε ∈ (0, 1), and consider ηε = ηε(h) : [0, 1] → [0, 1] a smooth,
increasing cut-off such that ηε ≡ 1 on {Hc ≥ ε} and ηε ≡ 0 on {Hc ≤ ε/2}. Then
there exists a constant C = C(H) > 0 such that

‖P0g(ηε)‖2
H1 + ‖P⊥(gηε)‖2

H1 ≤ Cε−1‖(gηε)‖2
H1 ≤ Cε−3‖g‖2

H1 , (4.20)

for any g ∈ H1.
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Proof. It is enough to prove the estimate for P0(gηε). By the coarea formula it is
easy to check that

d

dh

ˆ
{Hc=h}

g dH 1 =
ˆ
{Hc=h}

∇ ·
( ∇Hc

|∇Hc|g
)

|∇Hc| dH 1 ,

for every smooth function g supported away from the critical points of Hc. Fix
h ∈ R. It immediately follows that

|∇P0g(x)| � |∇Hc(x)|
(
P0

( |g|
|∇Hc|
)

(x) + P0

(
1

|∇Hc|
)

(x)P0(|g|)(x)
)

+ P0(|∇g|)(x)
� C(h)P0(|g| + |∇g|)(x)

for every x ∈ {Hc = h}, where

C(h) := supHc=h |∇H |
infHc=h |∇H | .

Notice that C(h) � ε−1/2 for every x ∈ {Hc ≥ ε}. In particular, it holds

‖∇P0(gηε)‖L2 � ε−1/2(‖gηε‖L2 + ‖∇(gηε)‖L2) � ε−1/2‖∇(gηε)‖L2 .

The second inequality in (4.20) follows by standard properties of cut-off functions,
and hence the proof is over. ��

In order to prove Theorem 4, we need to estimate the difference between solu-
tions of (A-D) and (T) with the same initial datum. We consider τ0 > 0 and ρ, ρν

be the solutions of

∂tρ + bc · ∇ρ = 0, ∂tρ
ν + bc · ∇ρν = ν�ρν

with ρ(τ0) = ρν(τ0) = ρτ0 ∈ H1.
We have the following energy inequalities:

d

dt
‖ρν‖2

L2 + 2ν‖∇ρν‖2
L2 = 0

and

d

dt
‖∇ρν‖2

L2 + 2ν‖�ρν‖2
L2 ≤ 2‖∇ρν‖2

L2 . (4.21)

Integrating (4.21) in time we obtain a bound on the integral of the H2 norm as

2ν

ˆ τ0+t

τ0

‖�ρν(s)‖2
L2 ds ≤ 2

ˆ τ0+t

τ0

‖∇ρν(s)‖2
L2 ds + ‖∇ρν(τ0)‖2

L2 . (4.22)

Since

d

dt
‖ρν − ρ‖2

L2 = 2ν〈�ρν, ρν − ρ〉L2 ≤ 2ν‖�ρν‖L2‖ρν − ρ‖L2 ,
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we deduce d
dt ‖ρν − ρ‖L2 ≤ ν‖�ρν‖L2 : integrating in time and recalling ρ(τ0) =

ρν(τ0) and (4.22) we get

‖(ρν − ρ)(τ0 + t)‖2
L2 ≤
(

ν

ˆ τ0+t

τ0

‖�ρν(s)‖L2 ds

)2

≤ νt
ˆ τ0+t

τ0

ν‖�ρν(s)‖2
L2 ds

≤ νt

(ˆ τ0+t

τ0

‖∇ρν(s)‖2
L2 ds + ‖∇ρν(τ0)‖2

L2

2

)
. (4.23)

We are now in position to prove Theorem 4.

Proof of Theorem 4. For q ∈ ( 24
25 , 1
)
, we have to show that for all ν < ν0 to be

determined, we have the inequality

2ν

ˆ ν−q

0
‖ρν(t)‖2

H1dt ≥ δ‖ρ0‖2
L2 , with δ = 1

8
.

Without loss of generality, we can assume by linearity that ‖ρ0‖L2 = 1. Towards a
contradiction, we assume that

2ν

ˆ ν−q

0
‖ρν(t)‖2

H1dt < δ. (4.24)

Following the proof in [13, Theorem 2.1], there exists a τ1 ∈ [0, ν−q − ν−q/2] so
that

ν

ˆ τ1+ν−q/2

τ1

‖ρν(s)‖2
H1 ds < δνq/2. (4.25)

We can also find τ0 ∈ [τ1, τ1 + ν−q/2/2] such that

ν‖ρν(τ0)‖2
H1 < 2δνq . (4.26)

Moreover,

ν

ˆ τ0+ν−q/2/2

τ0

‖ρν(s)‖2
H1 ds < δνq/2, (4.27)

by (4.25). Now we take ρτ0 = ρν(τ0) as the initial datum for the inviscid problem
(T) with initial time τ0 and denote the solution by ρ(t + τ0) with t ≥ 0. Using that
‖ρν(τ0)‖L2 ≤ 1, estimate (4.23), the properties of τ0 in (4.26), (4.27), we find

‖ρν(τ0 + t) − ρ(τ0 + t)‖2
L2 ≤ νt

(ˆ τ0+t

τ0

‖∇ρν(s)‖2
L2 ds + ‖∇ρν(τ0)‖2

L2

2

)

≤ δ

2

(
1 + νq/2

)
, (4.28)
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for all t ∈ [0, 1
2ν−q/2].

We now estimate P0ρ
ν : since P0ρ0 = 0 and

d

dt
‖P0ρ

ν‖2
L2 = 2ν〈P0ρ

ν, P0�ρν〉 ≤ 2ν
∣∣〈ρν,�ρν〉∣∣ ≤ 2ν‖ρν‖2

H1 ,

after an integration in time we deduce by (4.24) that

‖P0ρ
ν(t)‖2

L2 ≤ δ ∀t ∈ [0, ν−q] .
Consider a cutoff ηε as in Lemma 4.7 and set φ2

ε = 1 − η2
ε , where ε > 0 will be

chosen later. Notice that, by construction, P0, P⊥ commute with the multiplication
by ηε, φε . For R > 0, denote by P≤R the projection onto the span of the Fourier
modes {ein·x } with |n|2 ≤ R. Since P⊥ and the multiplication by ηε commute with
the transport operator, the inviscid mixing estimate (4.29), implies that

‖P≤R P⊥ηερ(τ0 + t)‖2
L2 ≤ a2R

łt〉2p ‖P⊥ηερ
ν(τ0)‖2

H1 , ∀t ≥ 0. (4.29)

In particular, by (4.26) and Lemma 4.7, we deduce that for every t ∈
[

ν−q/2

4 , ν−q/2

2

]
,

it holds

‖P≤R P⊥ηερ(τ0 + t)‖2
L2 ≤ 2C

a2R

ε3łt〉2p δνq−1 ≤ 2 · 42pCa2Rε−3δνq(p+1)−1.

It follows that

‖P>R P⊥ηερ(τ0 + t)‖2
L2

= ‖P⊥ηερ(τ0 + t)‖2
L2 − ‖P≤R P⊥ηερ(τ0 + t)‖2

L2

= ‖ηερ
ν(τ0)‖2

L2 − ‖P0ηερ
ν(τ0)‖2

L2 − ‖P≤R P⊥ηερ(τ0 + t)‖2
L2

≥ ‖ηερ
ν(τ0)‖2

L2 − δ − 2 · 42pCa2Rε−3δνq(p+1)−1

By (4.28), and recalling ‖ρν(τ0)‖L2 ≤ 1, we obtain the following estimate for ρν :

‖P>R P⊥ηερ
ν(τ0 + t)‖2

L2 ≥ ‖P>R P⊥ηερ(τ0 + t)‖2
L2 − 2‖ρν(τ0 + t) − ρ(τ0 + t)‖L2

≥ ‖ηερ
ν(τ0)‖2

L2 − δ −
√

2δ
(
1 + νq/2

)− 2 · 42pCa2R (4.30)

We now estimate from below ‖ηερ
ν(τ0)‖2

L2 : given p̄ ∈ (2,∞), by Hölder’s in-

equality, the embedding of H1 in L p̄, and since supp(φε) ⊂ {Hc ≤ ε}, there is
Cp̄ > 0 such that

‖φερ
ν(τ0)‖2

L2 ≤ |{Hc ≤ ε}|1− 2
p̄ ‖ρν(τ0)‖2

L p̄ ≤ Cp̄|ε log ε|1− 2
p̄ ‖ρν(τ0)‖2

H1 ,

Therefore, assuming p̄ > 3,

‖ηερ
ν(τ0)‖2

L2 ≥ ‖ρν(τ0)‖2
L2 − ‖φερ

ν(τ0)‖2
L2

≥ 1 − δ − Cp̄|ε log ε|1− 2
p̄ ‖ρν(τ0)‖2

H1

≥ 1 − δ − 2Cp̄|ε log ε|1− 2
p̄ δνq−1

≥ 1 − δ − C̃ p̄ε
1− 3

p̄ δνq−1
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for some C̃ p̄ > 0. We choose ε = ν
(1−q)
(

1− 3
p̄

)

C̃
1− 3

p̄
p̄

to ensure ‖ηερ
ν(τ0)‖2

L2 ≥ 1 − 2δ.

Therefore, by (4.30),

‖P>R P⊥ηερ
ν(τ0 + t)‖2

L2 ≥ 1 − 3δ −
√

2δ
(
1 + νq/2

)
−2 · 42pCa2Rε−3δνq(p+1)−1,

so that

‖P⊥ηερ
ν(τ0 + t)‖2

H1 ≥ R

(
1 − 3δ −

√
2δ
(
1 + νq/2

))

−R2
(

2 · 42pCa2ε−3δνq(p+1)−1
)

. (4.31)

The choice δ = 1
8 ensures that

(
1 − 3δ −

√
2δ
(
1 + νq/2

))
> 1

16 for sufficiently

small ν, therefore choosing the optimal R =
(

1 − 3δ −
√

2δ
(
1 + νq/2

))
/

42p+1Ca2ε−3δνq(p+1)−1, recalling the choice of ε, and using again Lemma 4.7,
we get

‖ρν(τ0 + t)‖2
H1 ≥ ε3

C
‖P⊥ηερ

ν(τ0 + t)‖2
H1 ≥ ν

7−q(7+p)−6(1−q) 3
p̄

42p+4C̃
6
(

1− 3
p̄

)
p̄ C2a2

. (4.32)

Integrating this estimate for t ∈
[

ν−q/2

4 , ν−q/2

2

]
and recalling (4.27), we get

1

8
= δ > ν1− q

2

ˆ τ0+ν−q/2/2

τ0

‖ρν(s)‖2
H1 ds >

ν
8−q(8+p)−6(1−q) 3

p̄

2 · 42p+4C̃
6
(

1− 3
p̄

)
p̄ C2a2

, (4.33)

which gives a contradiction for ν sufficiently small provided 8 − q(8 + p) −
6(1 − q) 3

p̄ < 0. Since we have shown the mixing estimate for the cellular flow for

p ∈ (0, 1
3 ) and p̄ ≥ 3 is arbitrarily large, we deduce that the statement holds for

every q > 8
8+ 1

3
= 24

25 . ��

Remark 4.8. [Data supported away from the critical point] If in Theorem 4 we
consider initial data supported away from the critical point, we can improve the
enhanced dissipation time-scale significantly. In the same spirit as above, we now
fix ε > 0 so that the support of the datum is contained in the set {Hc ≥ ε}. The
main observation is that such data are mixed by (T) at the faster rate 1/t p with
p ∈ (0, 1).

In this way, the analogue of (4.31) still holds (with ε small enough independent
of ν) and thus (4.32) now reads

‖ρν(τ0 + t)‖2
H1 ≥ 1

C
ν1−q(p+1),
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for some constant C ≥ 1. Arguing as in (4.33), the constraint simplifies to 2 −
q(p + 2) < 0, in analogy with [13, Theorem 2.1]. In turn, this gives q > 2/3 for
the standard cellular flow.
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Appendix A. Analytic mixing and stationary phase in action-angle variables

Let � = S
1 × (0, π/2) and g ∈ C1(0, π/2). We define the weighted Sobolev

space H1
g through the norm

‖ f ‖2
H1
g

=
ˆ

�

(
| f (θ, s)|2 + |∂s f (θ, s)|2

)
g(s)dsdθ.

Via a stationary phase argument, the next theorem gives an explicit bound on the
solution of a transport equation that is helpful in estimating the decay of correlation.

Theorem 5. Fix δ, δ′ ∈ (0, 1/4). Let g, T ∈ C1(0, π/2) be positive functions, and
let f : R × � → R solve

∂t f + 1

T (s)
∂θ f = 0 , for (t, θ, I ) ∈ R × �. (A.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   84 Page 34 of 37 Arch. Rational Mech. Anal.          (2024) 248:84 

Assume further that
´
S1 f (0, θ, s)dθ = 0 for any s ∈ (0, 1). Then, for any ϕ ∈

C1(�) it holdsˆ
S1×(δ,1−δ′)

f (t, θ, s)ϕ(θ, s)g(s) ds dθ ≤ ‖ f (0, ·)‖H1
g
‖ϕ‖H1

g
r(t) (A.2)

where

r(t) = 1

t

∥∥∥g− 1
2

∥∥∥2
L2(δ,π/2−δ′)

(
T 2g

|T ′| (δ) + T 2g

|T ′| (π/2 − δ′)

+
∥∥∥∥∥
(
T 2g

T ′

)′∥∥∥∥∥
L1(δ,π/2−δ′)

+
∥∥∥∥∥T

2g
1
2

T ′

∥∥∥∥∥
L2(δ,π/2−δ′)

⎞
⎠

+ 1

t

∥∥∥g− 1
2

∥∥∥
L2(δ,π/2−δ′)

∥∥∥∥∥T
2g

1
2

T ′

∥∥∥∥∥
L2(δ,π/2−δ′)

. (A.3)

Proof. Expanding in Fourier series in the variable θ we obtain

f (t, θ, s) =
∑
k∈4Z

fk(t, s)e
ikθ , fk(t, s) = fk(0, s)e− ikt

T (s) .

Notice that f0(0, s) = 0 for every s ∈ (0, 1). We compute
ˆ π/2−δ′

δ

ˆ
S1

f (t, θ, s)ϕ(θ, s)g(s)dθds =
∑
k

ˆ π/2−δ′

δ

fk(t, s)ϕk(s)g(s)ds

Integrating by parts, for every k ∈ 4Z we have
ˆ π/2−δ′

δ

fk(t, s)ϕk(s)g(s)ds

=
ˆ π/2−δ′

δ

fk(0, s)
1

ikt

T 2(s)

T ′(s)
d

ds

(
e− ikt

T (s)

)
ϕk(s)g(s)ds

= fk(0, s)
1

ikt

T 2(s)

T ′(s)
e− ikt

T (s) ϕk(s)g(s)

∣∣∣∣
π/2−δ′

s=δ

− 1

ikt

ˆ π/2−δ′

δ

∂s fk(0, s)
T 2(s)

T ′(s)
e− ikt

T (s) ϕk(s)g(s)ds

− 1

ikt

ˆ π/2−δ′

δ

fk(0, s)

(
T 2g

T ′

)′
(s)e− ikt

T (s) ϕk(s)ds

− 1

ikt

ˆ π/2−δ′

δ

fk(0, s)
T 2(s)

T ′(s)
e− ikt

T (s) ϕ′
k(s)g(s)ds .

We can estimate ‖ fk(0, ·)‖L∞ ≤ ‖ fk(0, ·)‖L1 + ‖∂s fk(0, ·)‖L1 ≤ ‖ fk(0, ·)‖H1
g∥∥∥g− 1

2

∥∥∥
L2

and ‖ϕk‖L∞ ≤ ‖ϕk‖H1
g

∥∥∥g− 1
2

∥∥∥
L2

to get∣∣∣∣∣
ˆ 1π/2−δ′

δ

fk(t, s)ϕk(s)g(s)ds

∣∣∣∣∣ ≤ r(t)

|k| ‖ fk(0, ·)‖H1
g
‖ϕk‖H1

g
,
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with

r(t) = 1

t

∥∥∥g− 1
2

∥∥∥2
L2

(
T 2g

|T ′| (δ) + T 2g

|T ′| (1 − δ′) +
∥∥∥∥∥
(
T 2g

T ′

)′∥∥∥∥∥
L1

)

+1

t

∥∥∥g− 1
2

∥∥∥
L2

∥∥∥∥∥T
2g

1
2

T ′

∥∥∥∥∥
L2

.

Summing over k we get∣∣∣∣
ˆ
S1×(δ,π/2−δ′)

f (t, θ, s)ϕ(θ, s)g(s) ds dθ

∣∣∣∣ ≤ ‖ f (0, ·)‖H1
g
‖ϕ‖H1

g
r(t) . (A.4)

This concludes the proof. ��

A.1 Change of Variables

The introduction of action-angle variables simplify the structure of a general
transport equation to an equation of the form (A.1). The estimate (A.2) then provides
a correlation estimate which can be understood in a negative Sobolev space with
respect to the action-angle coordinates. Therefore, an estimate on the change of
coordinates may be needed to understand mixing in the usual H−1 sense.

Lemma A.1. Let ρ = ρ(t, x) and f (t, θ, s) = ρ(t,�(θ, s)), for some change of
coordinate �. Assume that the Jacobian J�(θ, s) = g(s) for some smooth positive
function g. If

sup
‖φ‖

H1
g
≤1

ˆ
f (t, θ, s)φ(θ, s)g(s)ds ≤ ‖ f (0, ·)‖H1

g
r(t)

for some r(t), then

‖ρ(t)‖H−1 � ‖ρ(0)‖H1 (1 + Lip(�))2 r(t).

Proof. The proof is a direct computation

‖ρ(t)‖H−1 = sup
‖ψ‖H1≤1

ˆ
ρ(t, x)ψ(x)dx

= sup
‖ψ‖H1≤1

ˆ
f (t, θ, s)ψ(�(θ, s))g(s)dθds

≤ sup
‖φ‖

H1
g
≤1+Lip(�)

ˆ
f (t, θ, s)φ(θ, s)g(s)dθds

≤(1 + Lip(�))‖ f (0, ·)‖H1
g
r(t)

≤(1 + Lip(�))2‖ρ(0, ·)‖H1r(t),

as needed. ��
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