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Abstract

Extending the work of Yang–Zumbrun for the hydrodynamically stable case
of Froude number F < 2, we categorize completely the existence and convective
stability of hydraulic shock profiles of the Saint Venant equations of inclined thin
film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics
for general Riemann data is given in the hydrodynamic instability regime by either
stable hydraulic shock waves, or a pattern consisting of an invading roll wave front
separated by a finite terminating Lax shock from a constant state at plus infinity.
Notably, profiles, and existence and stability diagrams, are all rigorously obtained
by mathematical analysis and explicit calculation.
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1. Introduction

In [37,39] there was carried out a comprehensive study of existence and non-
linear stability of hydraulic shock profiles for the Saint Venant equations (SV) of
inclined thin film flow, under the assumption of hydrodynamic stability (or stabil-
ity of constant solutions) of their endstates, a necessary condition for stability of
shock profiles in standard Sobolev norms. It was shown under this condition that all
profiles are monotone decreasing and nonlinearly stable. Notably, this conclusion
includes both smooth and discontinuous (“subshock” containing) profiles.

In this paper, motivated by studies [30,31] of the closely related Richard–
Gavrilyuk model (RG) for inclined thin film flow, in which nonmonotone profiles,
and profiles with hydrodynamically unstable endstates, play a prominent role in
asymptotic behavior, we revisit this problem in more detail, seeking nonmonotone
profiles in the hydrodynamically unstable case. These of course cannot be stable in
standard Sobolev norms, but as seen in [30], they can nonetheless be convectively
stable, or stable in an appropriately exponentially-weighted norm, hence relevant
to time-asymptotic behavior. Interestingly, we do find such waves, in a case that
was neglected 1 in [39], and they appear to be convectively stable over a certain,
computable regime.

The above observations have motivated the development of convective counter-
parts [15,16] to general results converting spectral stability into linear and nonlinear
stability results [11,14]. Specializing [15] to the present case, we are able to sup-
plement our complete spectral classification with corresponding nonlinear stability
results.

The inviscid Saint-Venant equations in Eulerian, nondimensionalized form ap-
pear as

∂t h + ∂xq = 0,

∂t q + ∂x

(
q2

h
+ h2

2F2

)
= h − |q|q

h2 , (1.1)

1 It was incorrectly stated there, as a side remark, that for hydrodynamically unstable
endstates, the only hydraulic shock profiles were smooth, “reverse”-direction shocks not
connected to equilibrium dynamics.
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where h is fluid height; q = hu is total flow, with u fluid velocity; and F >

0 is the Froude number, a nondimensional parameter depending on reference
height/velocity and inclination.

These form a 2×2 relaxation system, with associated formal equilibrium equa-
tion

∂t h + ∂xq∗(h) = 0, q∗(h) := h3/2, (1.2)

where q∗ is determined by the equilibrium condition that the second compo-
nent of the right-hand side of (1.1) vanish. The first-order, principal part of (1.1),
meanwhile, coincides with the equations of isentropic γ -law gas dynamics with
γ = 2 [8]. System (1.1) admits constant solutions in the form of equilibria
(h, q) = (h0, q∗(h0)). Stability of constant solutions, known as hydrodynamic sta-
bility, is equivalent for 2 × 2 relaxation systems to the subcharacteristic condition
that the equilibrium characteristic q ′∗(h0) of (1.2) lies between the characteristic
speeds of (1.1), yielding the classical condition of Jeffreys [20],

F < 2. (1.3)

Note the very special property that the condition does not depend on the particular
value of h0. For further discussion, see [21,39] on (1.1) and [2–4,32] on its viscous
counterpart.

In the hydrodynamically stable regime F < 2, one does expect persistent
asymptotically-constant traveling wave solutions

(h, q)(t, x) = (H, Q)(x − ct), lim
z→−∞(H, Q)(z) = (HL , QL),

lim
z→−∞(H, Q)(z) = (HR, QR), (1.4)

analogous to shock waves of (1.2), known as relaxation shocks, or relaxation pro-
files, as verified in [39]. However, the hydrodynamically unstable regime F > 2 is
also of interest, in both the convectively stable regime, since this is compatible with
the description of large-time dynamics arising from compactly supported pertur-
bations of Riemann data, and, in any case, as a scenario for complex behavior and
pattern formation [4,30], with profiles (1.4) serving as potential building blocks for
more complicated patterns. Here, we carry out an exhaustive study of existence and
convective stability of hydraulic (SV) shocks for general F , including both cases
F ≷ 2.

1.1. Results

We now briefly state our main results, to be expanded in the remainder of the
paper.
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1.1.1. Existence (Section 2) Expanding on the results of [39] for F < 2, we cat-
egorize in Proposition 2.1 all possible types of possible hydraulic shocks: namely,
the three monotone types (i), (iv), and (v) noted in [39], together with two new
nonmonotone types (ii) and (iii) arising for F > 2. These are displayed graphi-
cally in the left and right panels of Fig. 2, the left one organized by the parame-
ter HR/HL used in [39] and the right one by a new, more convenient parameter
ν0 := √

Hmax/Hmin in which the figures are more clear. Here HL and HR refer to
the left and right limiting heights of the traveling wave, and Hmax and Hmin to the
maximum and minimum heights. We note that type (ii)–(v) waves connect equilibria
(HL , HR) corresponding to shocks of the scalar equilibrium system (1.2), whereas
type (i) waves are smooth, monotone increasing in height, and connect (HL , HR)

in the direction of a “reverse shock” of (1.2). The former, “forward-equilibrium
shocks” exist precisely for

ν := √
HL/HR > 1, F < ν(ν + 1). (1.5)

1.1.2. Spectral Stability (Sections 3 and 4) In Sect. 3, we investigate stability of
essential spectra in the class of scalar weighted norms, or, equivalently here, stability
of absolute spectra. We show that this fails for type (i) waves, corresponding to
“reverse” equilibrium shocks, but is satisfied for type (ii)–(v) waves under condition

F <
√

2ν(ν + 1) (1.6)

(always satisfied for cases (iii)–(v)) slightly stronger than the existence condition
(1.5). Indeed, as noted in Remark 3.4, essential stability fails for type (i) waves and
for type (ii) waves failing to satisfy (1.6) in any type of weighted norm, yielding a
conclusive result of convective instability for these types. We specifically refer to
Sect. 3.5 for a complete summary of the results, which are also displayed graphically
in the panels of Fig. 3.

In Sect. 4, we study stability of point spectrum for the remaining cases (ii),
(1.6) and (iii)–(v), extending the generalized Sturm-Liouville argument introduced
in [37,39] for the treatment of cases (iv)–(v). Remarkably, we are able to rigorously
verify stability of point spectrum whenever the essential stability condition (1.6) is
satisfied. Taken together, these results completely characterize spectral stability of
hydraulic shocks of all types (see Proposition 4.3).

1.1.3. Linear and Nonlinear Stability (Section 5) In Sect. 5, we investigate for
spectrally stable waves the questions of linear and nonlinear stability, providing a
result of convective asymptotic time-exponential orbital stability, or convergence to
a translate of the original traveling wave. This implies in particular, time-exponential
stability under localized (e.g., Gaussian- or compact-support) perturbations, a result
that is new even for the F < 2 case considered in [39]. We have chosen here to
derive these results by specializing to (1.1) the general theory from [15]. Despite the
fact that analyzing directly (1.1) would come with significant simplifications due
to the special structure of systems of two equations compared to general systems, a
detailed analysis would still be rather technical and long, without conveying much
specific insight about the dynamics at hand. We stress moreover that, though the
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results of [39] do not apply to the present case, their proof does contain all the main
ingredients to yield the nonlinear stability of interest. Again, though a simpler form
of the arguments of [39] would be sufficient here, since time-exponential decay is
simpler to handle than time-algebraic decay, a self-contained exposition of such an
adaptation would still be rather long and technical.

1.1.4. Global Time-Asymptotic Dynamics (Section 6) Finally, in Sect. 6, we
carry out using CLAWPACK [9,25] numerical experiments with (perturbed and
unperturbed) “Riemann” or “dambreak” data consisting of constant equilibrium
states to either side of an initial jump discontinuity, testing the “real life” valid-
ity of our rigorous existence/stability conclusions, in the sense of large-amplitude
perturbations and resulting time-asymptotic behavior, or “generalized Riemann so-
lution”. We see that our analytically derived stability conditions indeed predict not
only small-perturbation stability or instability, but large-scale asymptotic behavior.
Specifically, when stability holds, the asymptotic response to even large-scale local-
ized perturbations is convergence to a hydraulic shock, monotone or nonmonotone
as the case may be.

When stability fails, on the other hand—recall, through instability of essential
spectrum, having to do with convective stability of the constant left endstate of the
shock—we see bifurcation to an “invading front” connecting roll wave patterns
on the left to a constant state on the right: that is, an “essential bifurcation” such
has been studied for smooth waves of reaction-diffusion systems in [34]. Thus,
our (local) stability conditions indeed successfully predict large-scale asymptotic
behavior. Interestingly enough, in all our experiments the expanding speed of the
instability pattern is well-predicted by the heuristics of [13].

1.2. Discussion and Open Problems

The Saint Venant model has proven remarkably amenable to analysis, admitting
complete solutions to both existence and stability questions now in a variety of
settings. The present analysis fits among this list, giving complete and definitive
answers to the questions of existence and convective stability of hydraulic shock
solutions. In particular, the fact that absolute and point spectral stability could be
completely characterized is quite remarkable and apparently special to (SV). It is a
very interesting open problem to what extent the Sturm-Liouville arguments used
here might extend to large-amplitude traveling waves of general 2 × 2 relaxation
systems under a condition of convectively stable essential spectrum, generalizing
the treatment by Liu [24] of small-amplitude waves in the hydrodynamically stable
case.

The analyses of linear and nonlinear stability in [39] also rely in places on
specific computations for (SV). However, different from the situation as regards
spectral stability, the strategies for converting spectral to nonlinear stability are
rather general, and could be expected under appropriate structural conditions to
carry over to the general case of relaxation models. These considerations motivate
a more general and systematic study of such problems, as done by the first two
authors for exponentially spectrally stable Riemann shocks [14], and will be the
object of a future publication [15] from which we already borrow some results.
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Jointly with [21,37,39], the present contribution provides for (SV) an almost
complete classification of traveling waves from the point of view of existence and
spectral stability. Nevertheless we would like to point out that even in (SV), at the
spectral level, a stability classification of waves that have characteristic points but
are not periodic is still missing. Likewise one of the outstanding remaining puzzles
in the nonlinear stability of relaxation waves, either smooth or discontinuous, is
the treatment of waves with characteristic points, generalizing to the system case
the scalar analysis of [12]. At the nonlinear level, the corresponding difficulties are
expected to occur also in the analysis of the dynamics near roll waves, which has
not been touched even for (SV); see for example the discussions of [21]. Indeed,
there are some additional difficulties for (SV) due to an infinite-dimensional center
manifold coming from degeneracy of the model [21]. We find this to be the main
open problem in the theory of general (including periodic) traveling waves.

Finally, we mention as an interesting direction for further investigation, the
rigorous treatment of the phenomenon of essential bifurcation/invading roll wave
fronts that we see in our numerical experiments, the lack of smoothness and
parabolic smoothing making this a nonstandard problem not covered by the meth-
ods of [34] and related references.

2. Existence of Traveling Waves

In this section, we recover the basic existence theory from [39, Prop. 1.1], in
the process unraveling the nonmonotone case omitted there. We focus on travel-
ing waves with piecewise smooth profiles without characteristic point, neither on
profiles nor at infinity. The presence of characteristic points is expected to have
dramatic effects on the existence, spectral stability and nonlinear dynamics; see
the related analyses in [12,21]. We also restrict to waves with nonnegative veloci-
ties so that absolute values may be dropped, but one may be careful to check as a
consistency condition that indeed Q ≥ 0.

To expect some form of uniqueness when dealing with discontinuous solu-
tions we need to impose some form of entropy conditions. Combined with the
non-characteristic assumption, even the weaker forms of the latter imply that the
traveling wave profiles exhibit at most one discontinuity. We again refer to [12,21]
for a detailed discussion. Without loss of generality, by translational invariance, the
discontinuity of wave profiles may be fixed at x = 0. When restricting further to
asymptotically constant profiles, they also yield that limiting endstates are distinct.

Here and elsewhere, let [h]x := h(x+)−h(x−) of a quantity h across a discon-
tinuity located at x , and [h] := [h]0. In smooth regions, traveling-wave solutions
(1.4) satisfy

−cH ′ + Q′ = 0, −cQ′ +
(
Q2

H
+ H2

2F2

)′
= H − |Q|Q

H2 , (2.1)

whereas at discontinuities, we have the Rankine–Hugoniot conditions

−c [H ] + [Q] = 0, −c [Q] +
[
Q2

H
+ H2

2F2

]
= 0. (2.2)
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A simple observation is that the end states (HR, QR) and (HL , QL) of the traveling
wave profiles (1.4) must be equilibria, that is QL ,R = q∗(HL ,R) = H3/2

L ,R (since
we are working in the physical range H > 0). Combined together the first halves
of (2.1) and (2.2) are equivalent to the existence of a constant q0 such that

cH − Q ≡ q0. (2.3)

With such a q0 fixed, the second equation of (2.1) leads to the scalar ODE(
− q2

0

H2 + H

F2

)
H ′ = H3 − (cH − q0)

2

H2 , (2.4)

while the second Rankine–Hugoniot condition in (2.2) reads[
q2

0

H
+ H2

2F2

]
= 0. (2.5)

Equation (2.4) is a scalar first-order ODE, so that it cannot connect smoothly
an endstate to itself (in a non stationary way). We have already discussed that when
instead a discontinuity is indeed present, we must have (HR, QR) 	= (HL , QL) so
that in any case HL 	= HR . Therefore from (2.3) stems that (HL , HR, c, q0) must
satisfy

c = q∗(HL) − q∗(HR)

HL − HR
= HL + √

HLHR + HR√
HL + √

HR
, q0 = HLHR√

HL + √
HR

,

and necessarily c > 0, q0 > 0. Note that then the condition Q ≥ 0 becomes
H ≥ q0/c with

q0

c
= HLHR

HL + √
HLHR + HR

< min({HL , HR}).

Moreover, from the sign of q0 and entropy conditions stem, when a discontinuity
is present,

− q0

HL
+
√

HL

F2 > 0 > − q0

HR
+
√

HR

F2 ,

which is equivalently written as

HL > Hs > HR , Hs := (q0 F)
2
3 .

The scalar ODE (2.4) may be factorized as

H ′ = F2 (H − HL) (H − HR) (H − Hout )

(H − Hs)(H2 + HHs + H2
s )

, (2.6)

where

Hout := HLHR

(
√
HL + √

HR)2
= HLHR

HL + 2
√
HLHR + HR

.
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Note that in any case Hout < q0/c < min({HL , HR}) and recall that solutions to
(2.6) taking values below q0/c have no significance for the original traveling wave
profile problem. Therefore for the discontinuous profiles, one needs Hout < HR <

Hs < HL and a simple one-dimensional phase-portrait analysis shows that the piece
converging to HR must be constant. As a consequence, in terms of H∗ = H(0−),
(2.5) is reduced to

q2
0

H∗
+ H2∗

2F2 = q2
0

HR
+ H2

R

2F2

which possesses a unique positive solution distinct from HR

H∗ :=
√

2
H3
s

HR
+ H2

R

4
− HR

2
.

Note that Hs > HR implies H∗ > HR .
For the sake of comparison with [39], let us introduce the scaling parameter

ν :=
√

HL

HR

and express the above quantities as

c = ν2 + ν + 1

ν + 1

√
HR , q0 = ν2

ν + 1
H

3
2
R , Hs =

(
Fν2

ν + 1

) 2
3

HR ,

and

Hout = ν2

ν2 + 2ν + 1
HR , H∗ = −(ν + 1) + √

8F2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR .

We have the following extension/correction of [39, Prop. 1.1] cases (ii) and (iii)
were mistakenly omitted there:

Proposition 2.1. Let (HL , HR) be a couple of positive heights.
When HL < HR, that is when ν < 1, there exists only one kind of non-

characteristic wave profiles connecting HL to HR,

(i) increasing smooth profiles, that do exist if and only if HL < HR < Hs, that is,
if and only if

ν < 1,
ν + 1

ν2 < F. (2.7)

When HR < HL, that is when ν > 1, there exist four kinds of non-characteristic
waves connecting HL to HR,
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(ii) nonmonotone discontinuous profiles, consisting of a smooth portion increas-
ing from HL to H∗, connected by an entropy-admissible Lax shock to a portion
constant equal to HR, that do exist if and only if HR < Hs < HL < H∗, that
is, if and only if

ν > 1,
(ν + 1)

√
2(ν2 + 1)

2ν
< F < ν(ν + 1); (2.8)

(iii) Riemann profiles, consisting of a portion equal to HL, connected by an
entropy-admissible Lax shock to a portion constant equal to HR, that do exist
if and only if HR < Hs < H∗ = HL, that is, if and only if

ν > 1, F = (ν + 1)
√

2(ν2 + 1)

2ν
; (2.9)

(iv) decreasing discontinuous profiles, consisting of a smooth portion decreasing
from HL to H∗, connected by an entropy-admissible Lax shock to a portion
constant equal to HR, that do exist if and only if HR < Hs < H∗ < HL, that
is, if and only if

ν > 1,
ν + 1

ν2 < F <
(ν + 1)

√
2(ν2 + 1)

2ν
; (2.10)

(v) smooth decreasing profiles, that do exist if and only if Hs < HR < HL, that
is, if and only if

ν > 1, F <
ν + 1

ν2 . (2.11)

Proof. Simple one-dimensional phase-portrait considerations provide the classifi-
cation in terms of respective positions of HL , HR , Hs and H∗, that may be readily
translated as conditions on ν and F . It only remains to point out that, in case (ii),
we have used that, when ν > 1,

ν + 1

ν2 <
(ν + 1)

√
2(ν2 + 1)

2ν

to discard as redundant one of the inequalities. Incidentally we also point out that
when ν > 1

(ν + 1)
√

2(ν2 + 1)

2ν
< ν(ν + 1),

so that case (ii) is indeed non empty. This completes the proof. We refer to Fig. 1
for an illustration of the various hydraulic shock profiles. 
�
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Remark 2.2. With hydrodynamical stability in mind, let us compare different ν-
dependent Froude thresholds to the critical value 2. For any ν < 1,

ν + 1

ν2 = 1

ν
+ 1

ν2 > 2

so that case (i) is always hydrodynamically unstable. When ν > 1,

ν + 1

ν2 = 1

ν
+ 1

ν2 < 2 ,
(ν + 1)

√
2(ν2 + 1)

2ν
> 2 ,

the latter inequality following from the fact that its left-hand side is increasing with ν

and takes the value 2 at ν = 1. Thus cases (ii) and (iii) are always hydrodynamically
unstable, case (v) is always hydrodynamically stable and case (iv) may or may not
be hydrodynamically unstable. Case (v), and case (iv) when F < 2 have been
thoroughly analyzed in [37,39].

Remark 2.3. In the above discussion, we have decided in advance that we were
looking for non-characteristic traveling waves connecting HL to HR . For the con-
venience of the reader, we now provide a more systematic treatment of non constant
waves in terms of

Hmin := min({HL , HR}) , Hmax := max({HL , HR}) , ν0 :=
√

Hmax

Hmin
,

with (Hmin, Hmax ) now merely playing the role of wave parameters (replacing
(c, q0)).

(1) When F > ν0(ν0 + 1), only waves of case (i) exist, with HL = Hmin and
HR = Hmax .

(2) When F = ν0(ν0 + 1), Hs = Hmax and there exist two families of traveling
waves, one family with each member beginning by a smooth infinite portion
arising from HL = Hmin , connected by a Lax shock to an infinite array of
increasing portions passing though Hs , connected by Lax shocks, the family
being parameterized by an arbitrary sequence of lengths taken in (0,+∞)N;
the other family with each member consisting in an infinite2 array of increasing
portions passing though Hs , connected by Lax shocks, the family being parame-
terized by an arbitrary sequence of lengths taken in (0,+∞)Z. The latter family
includes periodic “roll wave” solutions of the type discovered by Dressler [10],
that is, periodic traveling-wave solutions with exactly one discontinuity and one
characteristic point by period. A comprehensive study of their spectral stability
may be found in [21].

(3) When

ν0 + 1

ν2
0

< F < ν0(ν0 + 1)

only waves of cases (ii)–(iii) and (iv) exist, with HR = Hmin and HL = Hmax .

2 In both directions.
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(4) When

F = ν0 + 1

ν2
0

,

there exists no wave.
(5) When

F <
ν0 + 1

ν2
0

,

only waves of case (v) exist, with HR = Hmin and HL = Hmax .

We summarize the existence results in Fig. 2.

3. Spectral Framework and Essential Spectrum

We now turn to an examination of the spectral stability of waves listed in
Proposition 2.1. When doing so, we use extensively standard elements of spectral
theory specialized to nonlinear wave stability. We give little detail on those but
rather refer the reader to the already classical [22,26,33,40,41] for detailed com-
prehensive exposition and to the recent [7] for a self-contained worked-out case
that could hopefully be used as a gentle entering gate. For discontinuous waves,
this involves, at least implicitly, Evans-Lopatinskiı̆ determinants, that interpolate
between pure Evans functions used in smooth wave analysis and pure Lopatinskiı̆
determinants used to analyze local-in-time persistence near shocks. On the latter
we refer for instance to [6, Section 4.6]. Evans-Lopatinskiı̆ determinants are com-
monly encountered in the literature about spectral and linear stability of shocks;
see for instance [17,18,21,38].

3.1. Linearization and Spectrum

To introduce the relevant spectral problem in a concise way, let us write (1.1)
in standard abstract form

∂tw + ∂x ( f (w)) = r(w), (3.1)

with

w :=
(
h
q

)
, f (w) :=

(
q

q2

h + h2

2F2

)
, r(w) :=

(
0

h − |q|q
h2

)
.

System (3.1) must be satisfied at least in weak sense, thus, for piecewise smooth
solutions we impose (3.1) to hold in a strong sense on domains corresponding
to smooth parts and along a jump whose location at time t is at ϕ(t) we impose
Rankine–Hugoniot jump conditions

dϕ

dt
[w]ϕ = [ f (w)]ϕ. (3.2)
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Pick a non-characteristic traveling wave of profile W := (H, Q) and speed c.
When W is smooth, writing equations in terms of v, with w(t, x) = W (x − ct) +
v(t, x − ct), and replacing nonlinear terms with a source term, lead to

∂tv + ∂x (A v) = E v + F, on R+ × R (3.3)

where the source term F depends on space and time but the matrix-valued coeffi-
cients A and E depend only on x and are explicitly given by

A(x) :=
( −c 1

− Q(x)2

H(x)2 + H(x)
F2 −c + 2 Q(x)

H(x)

)
, E(x) :=

(
0 0

1 + 2 Q(x)2

H(x)3 −2 Q(x)
H(x)2

)
.

In turn, when W possesses a discontinuity at 0, proceeding in the same way but
in terms of (v, ψ), with w(t, x) = W (x − (ct + ψ(t))) + w̃(t, x − (ct + ψ(t))),
v = w̃ − ψ W ′, yields

{
∂tv + ∂x (A v) = E v + F, on R+ × R

∗,
dψ
dt [ W ] − ψ [r(W )] = [Av] + G, on R+,

(3.4)

where (A, E, F) are as above, G is a time-dependent source term andR∗ := R\{0}.
Remark 3.1. It is customary in smooth wave analysis to directly discard source
terms. This is justified by the fact that when considering initial value problems one
may recover the general source-term case through Duhamel’s formula. However,
for discontinuous waves, the linearized problem is a mixed initial boundary value
problem and the arguments fails. The source terms G that may be recovered by
the Duhamel formula are those that are pointwise in time colinear with [W ]. On
a directly related note, let us observe that whereas (3.3) directly fits in standard
semigroup theory, (3.4) does not but it does belong to the class of problems that
can be analyzed through the more general, infinite-dimensional Laplace transform
theory, as covered in [1], and we shall extrapolate standard spectral terminology to
this case.

Applying the Laplace transform to the above linearized problems yields respec-
tively

λv + (A v)′ = E v + F, on R (3.5)

and {
λv + (A v)′ = E v + F, on R

∗,
ψ [ λW − r(W )] = [Av] + G,

(3.6)

with a different meaning for (v, ψ, F,G), and λ ∈ C a spectral parameter. For the
sake of concision, let us set

Lλ(v) := λv + (A v)′ − E v ,

Lλ((v, ψ)) := (λv + (A v)′ − E v,ψ [ λW − r(W )] − [Av]) ,

in respective cases.
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For some choice of functional spaces (X,Y ), we say that λ does not belong
to the (X,Y )-spectrum of either (3.3) or (3.4) if and only if Lλ is invertible as
a bounded operator from Y to X . In the smooth case, this matches the classical
definition of the spectrum of the generator of the dynamics on X , when Y is chosen
to be the corresponding domain.

Consistently we say that the wave under consideration is spectrally (X,Y )-
stable if the corresponding (X,Y )-spectrum is included in {λ ∈ C; Re(λ) ≤ 0}
and that it is spectrally (X,Y )-unstable otherwise. We say that it is exponentially
spectrally (X,Y )-stable if there exists θ > 0 such that the (X,Y )-spectrum is
included in {λ ∈ C; Re(λ) ≤ −θ} ∪ {0} and 0 has multiplicity 0 if the wave is
smooth and W ′ /∈ Y , 1 otherwise.

When stability/instability is considered with respect to (X,Y ) = (L2(R;C2),

H1(R;C2)) in the smooth case, or (X,Y ) = (L2(R∗;C2) ×C, H1(R∗;C2) ×C)

in the discontinuous case, we drop any mention to the functional pair (X,Y ). This
particular choice of functional spaces takes into account that our profiles are non-
characteristic. From this property also stems that the spectrum is not really affected
by the level of regularity encoded by functional spaces provided that they are chosen
consistently. However it is strongly impacted by the level of localization.

To take this into account, we introduce for (ηL , ηR) ∈ R
2 the weighted spaces

XηL ,ηR (R;C2)

:= {
v ∈ Xloc(R;C2) | (e−ηL ·v)|R− ∈ X (R−;C2) and (e−ηR ·v)|R+ ∈ X (R+;C2)

}
XηL ,ηR (R∗;C2)

:=
{

v ∈ Xloc(R
∗;C2) | (e−ηL ·v)|R∗− ∈ X (R∗−;C2) and (e−ηR ·v)|R∗+ ∈ X (R∗+;C2)

}
,

with X = L2 or X = H1. Consistently, when talking about stability, we re-
place any mention to a pair (X,Y ) with the adverb convectively if it can be
achieved respectively with (X,Y ) = (L2

ηL ,ηR
(R;C2), H1

ηL ,ηR
(R;C2)) or (X,Y ) =

(L2
ηL ,ηR

(R∗;C2) × C, H1
ηL ,ηR

(R∗;C2) × C) for some (ηL , ηR) such that ηL ≥ 0
and ηR ≤ 0. Correspondingly convective instability refers to the failure of convec-
tive stability. When it will be convenient to keep track of the chosen weights we
will replace the general term “convectively” with the more specific term “(ηL , ηR)-
weightedly”.

Remark 3.2. The constraint (ηL ≥ 0 and ηR ≤ 0) imposed in the definition of
convective stability is motivated by the will to pave the way for nonlinear analysis.
At a semi-abstract level, a functional space Z appearing at the spectral level (for
scalar components) is thought as a good space for nonlinear analysis if Z ∩ L∞ is
an algebra. This leads to the above requirements on weights. In the discontinuous
case, another obstruction to a nonlinear analysis may be anticipated. Indeed in a
Duhamel formulation source terms would contain terms that decay spatially like
the square of components of ψ W ′, which may belong to a (ηL , ηR)-weighted space
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only if3 W ′ ≡ 0 or

ηL < 2η∞
L ,

where

η∞
L := F2 (HL − HR) (HL − Hout )

(HL − Hs)(H2
L + HLHs + H2

s )
.

The situation is dramatically different in the smooth case since there one needs to
introduce a phase shift (which would also appear in nonlinear terms) only if W ′
does belong to the kernel of L0, that is, only if ηL < η∞

L and ηR > η∞
R where η∞

L
is as above and

η∞
R := F2 (HR − HL) (HR − Hout )

(HR − Hs)(H2
R + HRHs + H2

s )
,

which do imply ηL < 2η∞
L and ηR > 2η∞

R . In the discontinuous case, a phase shift
is required no matter what; in the foregoing derivation of (3.4) we have partially
hidden it when we have moved from w̃ to v. In our definition, for the sake of
simplicity, we have chosen not to include the extra constraint ηL < 2η∞

L of the
discontinuous case but as we check in Remark 3.7 it turns out that in the present
case extra constraints already enforce ηL < η∞

L .

Remark 3.3. Our current definition of convective stability/instability uses scalar ex-
ponential weights. Though this choice is the most usual one, it is also somewhat
arbitrary. However, as we shall detail in Remark 3.4, in the present case, no sub-
stantial further gain in stabilization may be expected from the use of more complex
weights.

3.2. Essential Spectrum, Consistent Splitting and Absolute Instability

A subset of the (X,Y )-spectrum is constituted of the λ such that Lλ is not
Fredholm of index 0 as a bounded operator from Y to X . By analogy with the
standard case, we call this part the (X,Y )-essential spectrum. The essential spec-
trum is therefore the set of λ such that the codimension of the range of Lλ and
the dimension of its kernel are not equal, a clear obstruction to invertibility, which
occurs when both are zero.

By using that being Fredholm of index 0 is invariant by compact perturbations
and that the problem at hand is non characteristic with coefficients converging
exponentially fast to their limits, one may derive a characterization of the essential
spectrum. We do not provide details on the proof of the latter but we refer the reader
to the Appendix to [19, Chapter 5] for a worked out version in a closely related
context.

3 The first part corresponds to the Riemann shock case.
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To discuss the outcome, we introduce

Ah :=
( −c 1

h
(
−1 + 1

F2

)
−c + 2

√
h

)
, Eh :=

(
0 0
3 − 2√

h

)
,

Gh(λ) := A−1
h (Eh − λ) = 1(

c − √
h
)2 − h

F2

⎛
⎝ −λ (−c + 2

√
h) − 3 2√

h
+ λ

−λ h
(

1 − 1
F2

)
− 3 c c

(
2√
h

+ λ
)
⎞
⎠ ,

and recall that

c − √
h = q0

h
= 1

F

H
3
2
s

h
, when h = HL , HR .

Then λ does not belong to the (ηL , ηR)-weighted essential spectrum if and only if
GHL (λ) has no eigenvalue with real part ηL , GHR (λ) has no eigenvalue with real
part ηR and the sum of the number of eigenvalues of GHL (λ) with real part greater
than ηL and of the number of eigenvalues of GHR (λ) with real part lesser than ηR

equals 2 in the smooth case, 1 in the discontinuous case.
By continuity in λ, (ηL , ηR)-weighted stability requires that each of the above-

mentioned numbers is constant in λ on { λ; Re(λ) > 0 }, a property referred to
as consistent splitting in part of the literature. Now, note that when |λ| → ∞,
eigenvalues of Gh(λ) expand as

λ

c − √
h ∓

√
h
F

+ O(1)

which when specialized to h = HL or HR is equivalently written as

λ

q0
h ∓

√
h
F

+ O(1) = λ h F

H
3
2
s ∓ h

3
2

+ O(1).

The leading order part of these spatial eigenvalues is given by the eigenvalues of
−λ A−1

h and thus is directly connected to the characteristic velocities of ∂t + Ah ∂x .
As a consequence, for h = HL or HR , for any η > 0 there exists Cη > 0 such
that when |λ| ≥ Cη and Re(λ) ≥ η, GHL (λ) has two eigenvalues with positive real
parts when h < Hs and eigenvalues with real parts of opposite sign when h > Hs .

As a consequence, a specific way in which failure of convective stability (resp.
absolute convective instability) may occur in the present case is when for h = HL

or HR such that h > Hs , there exists λ with positive real part (resp. nonzero with
nonnegative real part) such that the eigenvalues of Gh(λ) have the same real part.
This scenario matches what is commonly designated in the literature as failure of
extended consistent splitting or absolute instability. To decide whether an absolute
instability may indeed occur, let us first make explicit that the eigenvalues of Gh(λ)

are given as

γ±,h(λ) := 1(
c − √

h
)2 − h

F2

(
λ (c − √

h) −
(

3

2
− c√

h

)
±√

Qh(λ)

)
(3.7)
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where

Qh(λ) := λ2 h

F2 + λ

(
−(c − √

h) + 2
√
h

F2

)
+
(

3

2
− c√

h

)2

,

for some determination of
√
Qh(λ). Note that γ±,h(λ) share the same real part

exactly when Qh(λ) is a nonpositive real number. Since

Re(Qh(λ)) = −Im(λ)2 h

F2 + Qh(Re(λ)) ,

Im(Qh(λ)) = Im(λ)

(
2Re(λ)

h

F2 − (c − √
h) + 2

√
h

F2

)
.

one readily deduces that the latter does occur for some λ with positive real part
(resp. nonzero with nonnegative real part) if and only if

c − √
h >

2
√
h

F2 ,
(

resp. c − √
h ≥ 2

√
h

F2

)
.

Remark 3.4. In the present case, when convective stability (resp. exponential con-
vective stability) fails in the foregoing way, there also exists a λ with positive real
part (resp. nonzero with nonnegative real part) such that γ±,h(λ) are equal. At this
λ, the resolvent operator cannot be continuously extended even as an operator from
the space of test functions to distributions. This shows that, in the present case,
such absolute instabilities cannot be cured in any sensible sense, in particular not
by replacing exponential weights by a more general class of reasonable weights.

In order to elucidate further a possible absolute instability, we compute that
when h = HL or h = HR ,

c − √
h − 2

√
h

F2 = √
h

⎛
⎝ 1

F

H
3
2
s

h
3
2

− 2

F2

⎞
⎠ =

⎧⎨
⎩

√
h
(

ν2

ν+1 − 2
F2

)
h = HR,

√
h
(

1
ν(ν+1)

− 2
F2

)
h = HL .

Recalling that the scenario also requires h > Hs and observing that, when ν > 1,

(ν + 1)
√

2(ν2 + 1)

2ν
<
√

2ν(ν + 1) < ν(ν + 1)

one deduces that absolute instability may only occur in case (ii) of Proposition 2.1
and does occur when

√
2ν(ν + 1) < F < ν(ν + 1).
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3.3. Smooth Fronts

We temporarily restrict the discussion to smooth profiles, that is, to cases (i)
and (v) of Proposition 2.1.

Case (v) has already been studied in [37, Section 3] with conclusion that all
profiles of case (v) are spectrally stable but not exponentially spectrally stable. With
a few more simple computations one may even check that this spectral stability is
of diffusive type in a sense compatible with the application of general results from
[27] and conclude to nonlinear asymptotic stability with algebraic decay rates.

The only question left concerning case (v) is whether convective exponential
spectral stability also holds. In this case the only obstacle to exponential spectral
stability without weight is the presence of two curves of essential spectrum passing
through λ = 0 tangentially to the imaginary axis, one for each spatial infinity.
Recall that since, in case (v), HR > Hs and HL > Hs , there holds for h = HL ,
HR ,

Re(γ−,h(λ)) > 0 > Re(γ+,h(λ)) , when Re(λ) � 1 .

Therefore, to conclude convective exponential spectral stability, one needs only to
check that curves of essential spectrum near λ = 0 are due to changes of sign of
Re(γ+,HL (λ)) and Re(γ−,HR (λ)). Since

γ±,h(0) := 1(
c − √

h
)2 − h

F2

(
−
(

3

2
− c√

h

)
±
∣∣∣∣32 − c√

h

∣∣∣∣
)

one concludes convective exponential spectral stability in case (v) from the fact
that when ν > 1

3

2
− c√

HR
< 0 ,

3

2
− c√

HL
> 0 .

In turn, in case (i), HR < Hs and HL < Hs so that for h = HL , HR ,

Re(γ±,h(λ)) > 0 , when Re(λ) � 1 .

Therefore to prove that convective spectral stability fails it is sufficient to prove that
a spectral instability is caused by what happens near −∞, thus with h = HL . This
follows from the fact that in case (i), F > 2, and hence both endstates generate an
essential spectrum instability.

3.4. Discontinuous Fronts

We now specialize to discontinuous fronts, as in cases (ii), (iii) and (iv) of
Proposition 2.1. Our goal in the present section is to completely elucidate the
effect of essential spectrum on stability/instability of any type so as to reduce the
issues to the examination of unstable eigenvalues, carried out in the next section.

For all the cases under consideration here, HR < Hs < HL thus

Re(γ−,HL (λ)) > 0 > Re(γ+,HL (λ)) , Re(γ±,HR (λ)) > 0 , when Re(λ) � 1 .
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This readily implies that instabilities due to the behavior near +∞ may always
be convectively stabilized whereas the convective stabilization of instabilities due
to the behavior near −∞ require that those occur through a change of sign in
Re(γ+,HL (λ)). Note that at this stage it is not clear whether the latter necessary
condition is also sufficient.

In order to decide this necessary condition, we compute that

γ±,h(λ)
|λ|→∞=

λ + 1√
h

(
1 ∓ F

2

)
c − √

h ∓
√
h
F

+ O(|λ|−1) .

As a consequence,

lim inf|λ|→∞
Re(λ)≥0

Re(γ−,HL (λ)) = 1

HL

1 + F
2

c√
HL

− 1 + 1
F

, lim sup
|λ|→∞
Re(λ)≥0

Re(γ+,HL (λ)) = 1

HL

1 − F
2

c√
HL

− 1 − 1
F

.

In particular, the condition is at least met in the high-frequency regime. Another
necessary condition is that Re(λ) > 0 implies Re(γ+,HL (λ)) < Re(γ−,HL (λ)). We
have already examined the latter condition when discussing absolute instability and
proved that it fails only in case (ii) when√

2ν(ν + 1) < F < ν(ν + 1).

Moreover when F <
√

2ν(ν + 1), Re(λ) ≥ 0 also implies Re(γ+,HL (λ)) <

Re(γ−,HL (λ)).
The full condition we want to elucidate is

inf
Re(λ)≥0

Re(γ−,HL (λ)) > 0 and sup
Re(λ)≥0

Re(γ+,HL (λ)) < inf
Re(λ)≥0

Re(γ−,HL (λ)) .

With explicit expressions (3.7) in mind, we first recall that

Qh(λ) = −Im(λ)2 h

F2 + Qh(Re(λ)) + iIm(λ)

(
2Re(λ)

h

F2 − (c − √
h) + 2

√
h

F2

)

and observe that in present cases, when Re(λ) ≥ 0,

2Re(λ)
HL

F2 − (c −√
HL) + 2

√
HL

F2 ≥ −(c −√
HL) + 2

√
HL

F2 > 0 ,

QHL (Re(λ)) ≥
(

3

2
− c√

h

)2

> 0 .

This motivates the following lemma:

Lemma 3.5. For any positive α, γ ,

inf
y∈R Re(

√
−y2 α + i y β + γ ) = min

({√
γ ; |β|

2
√

α

})
,

sup
y∈R

Re(
√

−y2 α + i y β + γ ) = max

({√
γ ; |β|

2
√

α

})
.
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Proof. From the classical formula (Re(
√
z))2 = (Re(z) + |z|)/2, we deduce

(
Re(

√
−y2 α + i y β + γ )

)2
= 1

2

(
γ − y2 α +

√
(γ − y2 α)2 + y2β2

)
=: �(y2).

Direct computations yield that

�(0) = γ , lim+∞ � = β2

4α

and that either �′ is constantly zero, which happens when β2 = 4αγ , or that it
never vanishes, when β2 	= 4αγ . Hence the result by monotonicity. 
�

When applying the lemma to an estimate of Re(Qh(λ)), we want to determine
what is the minimum obtained from the lemma. This stems from the computation

4
HL

F2 QHL (Re(λ)) −
(

2Re(λ)
HL

F2 − (c −√
HL ) + 2

√
HL

F2

)2

= 4
HL

F2

(
3

2
− c√

HL

)2

−
(

−(c −√
HL ) + 2

√
HL

F2

)2

= F − 2

F

(√
HL

F
+ c −√

HL

)(
2
√
HL

F

(
3

2
− c√

HL

)
− (c −√

HL ) + 2
√
HL

F2

)
.

Note that the latter expression does not depend on λ and that its sign is determined
by the sign of F − 2. All together we deduce that, to determine the convective
stabilitization of the essential spectrum, when F ≥ 2 it is sufficient to discuss what
happens at the limit Im(λ) → ∞ whereas when F < 2 it is sufficient to look at the
case when λ ∈ R.

As for the smooth profiles, the case F < 2 has been thoroughly analyzed in [37]
and the only thing left is to check that one may also obtain exponential convective
stability in this case. This follows from the same computation as for discontinuous
profiles.

From now on we focus on discontinuous profiles when F ≥ 2. In this context it
follows from the previous lemma and the above |λ| → ∞ asymptotics that failure
of convective stability by essential spectrum is equivalent to

γ ∞− := 1

HL

1 + F
2

c√
HL

− 1 + 1
F

<
1

HL

F
2 − 1

− c√
HL

+ 1 + 1
F

=: γ ∞+ .

This coincides with the condition for absolute instability

F >
√

2ν(ν + 1).

Remark 3.6. Let us emphasize that the coincidence of the boundary of absolute
instability with the boundary of convective stability4 defined through scalar expo-
nential weights is not a general fact but a specific property of the present problem.

4 For the moment we have only proved stabilization of the essential spectrum but we do
prove full stability in the end.
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It comes with the strong consequence that there is no need to consider more general
weights. One may obtain a simple (but artificial) counterexample to a more general
claim in this direction by simply considering as a single system two uncoupled
systems requiring incompatible weights.

3.5. Summary

The preceding analysis motivates the definition of the following regions in
parameters space. We set

Rstab :=
{
ν > 1 and 0 < F < 2 with F 	= ν + 1

ν2

}
,

Rconv :=
{
ν > 1 and 2 ≤ F <

√
2ν(ν + 1)

}
,

together with

Rabs :=
{
ν > 1 and

√
2ν(ν + 1) < F < ν(ν + 1)

}
∪
{

0 < ν < 1 and
ν + 1

ν2 < F

}
.

We refer to Fig. 3 for a visualization of these regions in parameters space. So far,
our results can be summarized as:

• In region Rstab, waves of cases (iv)–(v) have marginally stable essential spec-
trum and convective exponential stabilization of the essential spectrum can
always be achieved.

• In region Rconv, waves of cases (ii)–(iii)–(iv) have unstable essential spectrum
but they have convectively exponentially stable essential spectrum in some
(ηL , ηR)-weighted spaces with ηL ≥ 0 and ηR ≤ 0.

• In region Rabs, waves of cases (i)–(ii) have unstable essential spectrum with
absolute instability in the sense that the essential spectrum can not be stabilized
in any (ηL , ηR)-weighted spaces with, in case (ii), the presence of unstable
branch points for the resolvent operator.

Using the results of [37], in region Rstab, waves of cases (iv)–(v) are marginally
spectrally stable in the sense that the spectrum is included in {λ ∈ C; Re(λ) < 0}∪
{0} with an embedded eigenvalue at λ = 0, of multiplicity one in a general-
ized sense. As a consequence, there remains to study whether when 2 ≤ F <√

2ν(ν + 1) and ν > 1, that is in region Rconv, there is a choice of ηL ∈ (γ ∞+ , γ ∞− )

such that when ηR is sufficiently negative there is no λ with Re(λ) ≥ 0 possessing
an eigenfunction in a (ηL , ηR)-weighted space. This is the object of the next sec-
tion. As a preliminary we observe that by taking ηR sufficiently negative we may
readily discard eigenfunctions that are not zero on R+.

3.6. Maximal Decay Rate: Another View

Before moving on with the rest of the program, we would like to halt and offer
a different perspective on the former computations so as to address the following
question: what is the maximal essential spectral gap that may be opened by tuning
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our weights appropriately ? Since the boundaries of the essential spectrum due to
what happens near +∞ may be pushed arbitrarily to the left of the compex plane,
we may again focus on the contribution from the left. The same computation we
have carried out to determine absolute instability yields as an upper bound for the
essential spectral gap

θopt := F2

2HL

(
−(c −√

HL) + 2
√
HL

F2

)
,

and that it is reached with spatial decay rate

ηopt := 1(
c − √

HL
)2 − HL

F2

(
−θopt (c −√

HL) −
(

3

2
− c√

HL

))
= F2

2 HL
.

Reciprocally one may check with arguments similar to the ones used above (mostly
relying on Lemma 3.5) that choosing ηL = ηopt and ηR sufficiently negative
provides the optimal spectral gap.

The effect of moving ηL is illustrated in Fig. 4. There the curves are obtained
by solving in λ ∈ C the equations

ηL + iξ = γ±,HL (λ)

with parameter ξ ∈ R as

λ = (ηL + iξ)
(
c −√

HL

)
− 1√

HL
±
√

(ηL + iξ)2 HL

F2 − (ηL + iξ) + 1

HL

and we have introduced

ηmin
L := γ ∞+ = 1

HL

F
2 − 1

− c√
HL

+ 1 + 1
F

, ηmax
L := γ ∞− = 1

HL

1 + F
2

c√
HL

− 1 + 1
F

.

Remark 3.7. To prove the last claim in Remark 3.2, we observe that

η∞
L − ηmax

L =
(F − 2)

(
c√
HL

− 1 + 1
F

)

2
(
HL
F2 − (

c − √
HL
)2)

is indeed positive in the cases under consideration. To carry out the above compu-
tation, we have used that

(HL − HR) (HL − Hout ) = 3H2
L − 2c (c HL − q0) = 3H2

L − 2c H
3
2
L .
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4. Sturm–Liouville Analysis

Throughout this section, we consider a discontinuous profile and assume that
F satisfies

2 ≤ F <
√

2ν(ν + 1) with ν > 1.

We also fix some ηL ∈ (ηmin
L , ηmax

L

)
where ηmin

L and ηmax
L are as above.

Here, as announced, we study possible unstable eigenvalues and, to do so, adapt
the arguments from [37].

4.1. The Reduced Eigenvalue Problem

By imposing a vanishing on R+, as we can for our purposes, we reduce the
eigenfuction problem to finding a nonzero (v, ψ) in5 H1

ηL
(R∗−;C2) × C solving{

λv + (A v)′ = E v, on R
∗−,

ψ [ λW − r(W )] = [Av] .

We begin by inspecting the special case when v is zero (but ψ is not). A
direct inspection shows that it only happens when [ λW − r(W )] is zero, which is
equivalent to λ and [r(W )] both being zero (since the first component of [r(W )]
is zero and the first of [W ] is nonzero). The latter occurs exactly when we are in
the Riemann shock case, case (iii) of Proposition 2.1. Actually the vanishing of
[ λW − r(W )] when λ = 0 alters many of the considerations to come. For this
reason we postpone the treatment of the Riemann shock case to the end of the
present section.

Since we are now excluding the Riemann shock case, [ λW − r(W )] is non
zero and one may eliminate ψ to reduce the discussion further to the existence of
a nonzero v = (v1, v2) in H1

ηL
(R∗−;C2) such that on R

∗−{
λ v1 + (−cv1 + v2)

′ = 0,

λ v2 +
((

− Q2

H2 + H
F2

)
v1 +

(
−c + 2 Q

H

)
v2

)′ =
(

1 + 2 Q2

H3

)
v1 − 2 Q

H2 v2,

and

(−cv1 + v2)(0
−) ×

[
λQ −

(
H − Q2

H2

)]
−
((

− Q2

H2 + H

F2

)
v1

+
(

−c + 2
Q

H

)
v2

)
(0−) × [λH ] = 0.

For the sake of writing simplification we introduce one flux coordinate and
replace v with u = (u1, u2) := (v1,−cv1 + v2). With this change, we turn the
problem into finding a nonzero u in H1

ηL
(R∗−;C2) such that on R

∗−⎧⎨
⎩

λ u1 + u′
2 = 0,

(au1)
′ =

(
1 − 2

(
c − Q

H

)
Q
H2 − 2λ

(
c − Q

H

))
u1 −

(
λ + 2 Q

H2 + 2
(
Q
H

)′)
u2,

5 With obvious notational adaptation for weighted spaces.
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and

u2(0
−) ×

[
λQ −

(
H − Q2

H2

)]
−
(
a u1 +

(
−c + 2

Q

H

)
u2

)
(0−) × [λH ] = 0.

In the foregoing we have denoted by a the characteristic determinant

a := H

F2 −
(
c − Q

H

)2

.

Let us now examine the possibility to have a nonzero solution u with zero com-
ponent u2. A direct inspection shows that this may happen only when λ = 0 and
that the corresponding u is necessarily a multiple of (H ′, 0). Note that reciprocally
one checks readily that when λ = 0 necessarily u2 ≡ 0. Thus this situation cor-
responds exactly to the possibility of 0 being in the spectrum due to translational
invariance.

We now focus on the case when u2 is not zero. Then the eigenvalue problem
may be recasted into the problem of finding a nonzero u2 in H2

ηL
(R∗−;C) solving

(a u′
2)′ =

(
1 − 2

(
c − Q

H

)
Q

H2 − 2λ

(
c − Q

H

))
u′

2 +
(

λ + 2
Q

H2 + 2

(
Q

H

)′)
λ u2,

on R
∗− and

u2(0−) ×
[
λQ −

(
H − Q2

H2

)]
−
(

−a u′
2 +

(
−c + 2

Q

H

)
λ u2

)
(0−) × [H ] = 0.

In order to match notation from [37] we introduce

f1 := 2

a

(
c − Q

H

)
, f2 := −1

a

(
1 − 2

(
c − Q

H

)
Q

H2 − a′
)

,

f3 := −1

a
, f4 := −2

a

(
Q

H2 +
(
Q

H

)′)
,

so that the equation on R
∗− becomes

u′′
2 + ( f1λ + f2) u

′
2 + λ ( f3λ + f4) u2 = 0 .

We point out for later use that from the fact that (H ′, 0) solves the interior ODE
problem for (u1, u2) when λ = 0, one deduces that H ′′ = − f2 H ′.

At last, in order to symmetrize the interior equation, we perform a Liouville-type
transformation and replace u2 with w defined by6

w(x) := exp

(
1

2

∫ x

0
( f1λ + f2)

)
u2(x).

6 It should not be confused with the w used in the initial introduction of the spectral
problem.
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This replaces the equation on R
∗− with

w′′ +
(

λ ( f3λ + f4) − 1

4
( f1λ + f2)

2 − 1

2
( f1λ + f2)

′
)

w = 0,

also written as

w′′ +
((

f3 − 1

4
f 2
1

)
λ2 +

(
f4 − 1

2
f1 f2 − 1

2
f ′
1

)
λ − 1

4
f 2
2 − 1

2
f ′
2

)
w = 0,

(4.1)

which is exactly [37, Equation (2.14)], whereas the boundary condition becomes

w′(0−) = (c1λ + c2) w(0−), (4.2)

where

c1 := 1

2
f1(0

−) − [Q]
a(0−)[H ] + 1

a(0−)

(
−c + 2

Q(0−)

H(0−)

)

= 1

a(0−)

(
−c + Q(0−)

H(0−)

)
= − 1

a(0−)

q0

H(0−)

c2 := 1

2
f2(0

−) +
[
H − Q2

H2

]
a(0−)[H ] .

Before going on we need to check thatu2 ∈ H2
ηL

(R∗−;C) impliesw ∈ H2(R∗−;C).
From the analysis of the previous section we know that, when u2 ∈ H2

ηL
(R∗−;C),

its spatial decay rate is precisely Re(γ−,HL (λ)). Therefore this amounts to proving
that

Re(γ−,HL (λ)) > −1

2

(
Re(λ) lim−∞( f1) + lim−∞( f2)

)
.

A direct computation shows that this is equivalent to

Re
(√

QHL (λ)
)

> 0,

thus to the fact that λ does not belong to the absolute spectrum.
Therefore it is indeed sufficient to discard the possibility of a nonzero w in

H2(R∗−;C) solving (4.1)–(4.2).

4.2. Non Real Growth Rates

We stress that whereas the interior part, (4.1), is symmetric on functions com-
pactly supported in R

∗−, completing it with boundary condition (4.2) does not yield
a symmetric operator. An argument, specialized to the case at hand, is thus needed
to show that necessarily λ ∈ R if such a w exists. We provide such a concrete
argument now.
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To begin with, we observe that, combined with (4.2), multiplying (4.1) with w

and integrating yield

(c1λ + c2)
∣∣w(0−)

∣∣2 −
∫
R

∗−

∣∣w′∣∣2

+
∫
R

∗−
|w|2

((
f3 − 1

4
f 2
1

)
λ2 +

(
f4 − 1

2
f1 f2 − 1

2
f ′
1

)
λ − 1

4
f 2
2 − 1

2
f ′
2

)
= 0.

(4.3)

When Im(λ) 	= 0, the imaginary part of (4.3) gives

c1
∣∣w(0−)

∣∣2 +
∫
R

∗−
|w|2

((
f3 − 1

4
f 2
1

)
2Re(λ) +

(
f4 − 1

2
f1 f2 − 1

2
f ′
1

))
= 0.

Since c1 < 0 and f3 < 0, the last equality implies

Re(λ) < − infR∗−
(− f4 + 1

2 f1 f2 + 1
2 f ′

1

)
infR∗−

(| f3| + 1
4 f 2

1

) .

As a consequence, we need to study the sign of f4 − 1
2 f1 f2 − 1

2 f ′
1. To determine

this sign we observe that

a2 H4
(
f4 − 1

2
f1 f2 − 1

2
f ′
1

)
= − 2c

F2 H
4 + 2q2

0

F2 H3 + c2q0H
2 − 2cq2

0 H + q3
0

= −2Q

F2 Z (H) .

with

Z (h) := h3 − 1

2
F2cq0h + 1

2
F2q2

0 .

Let us denote Hc the positive root of Z ′, that is,

Hc := F
√
c q0√
6

= F HR ν
√

ν2 + ν + 1√
6(ν + 1)

.

On [Hc,+∞), Z is increasing.
We directly borrow from [37, Section 4.1] that when F > (ν + 1)/ν2, one has

H∗ > Hc and, when moreover H∗ ≤ HL , Z (H∗) > 0. This directly implies that
in cases (iii) and (iv) of Proposition 2.1, indeed infR∗−

(− f4 + 1
2 f1 f2 + 1

2 f ′
1

)
> 0.

To complete the analysis of non real eigenvalues, we only need to show that
in case (ii), HL > Hc and Z (HL) > 0. It is straightforward to check that when
F ≤ √

2ν(ν + 1) indeed HL > Hc, whereas Z (HL) > 0 is exactly equivalent to
F <

√
2ν(ν + 1).

This achieves the proof that a spectral gap is present for non real eigenvalues.
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4.3. Real Growth Rates

We now turn our attention to the case of real eigenvalues. Throughout the present
subsection, we assume that λ ∈ R+ and our goal is again to rule out the possibility
of a nonzero w in H2(R∗−;C) solving (4.1)–(4.2).

Our starting point is again Equation (4.3), that we write now as

B(w,w) = −λAλ(w,w)

where Aλ and B are the symmetric sesquilinear7 forms on H1(R∗−;C) defined
through their quadratic forms

Aλ(v, v) := −c1
∣∣v(0−)

∣∣2 +
∫
R

∗−
|v|2

((
− f3 + 1

4
f 2
1

)
λ +

(
− f4 + 1

2
f1 f2 + 1

2
f ′
1

))
,

B(v, v) := −c2
∣∣v(0−)

∣∣2 +
∫
R

∗−
|v′|2 +

∫
R

∗−
|v|2

(
1

4
f 2
2 + 1

2
f ′
2

)
.

Note that since λ ∈ R+, the analysis of the former subsection yields that Aλ

is positive definite when F <
√

2ν(ν + 1). In order to conclude it is therefore
sufficient to prove that B is also positive definite, that is,

0 < inf
v∈H1

v 	≡0

B(v, v)

‖v‖2
H1

, or equivalently 0 < inf
v∈H1

v 	≡0

B(v, v)

‖v‖2
L2

.

The equivalence between the two conditions follows from the following Gårding-
type inequality: there exist positive c and C such that, for any v ∈ H1, B(v, v) ≥
c‖v‖2

H1 − C‖v‖2
L2 . A refined version of the latter is proved below.

As in [37], we prove the latter by a continuity/homotopy argument. To set it,
we introduce, for x0 ∈ R−, Bx0 the symmetric sesquilinear form on H1(R∗−;C)

defined through its quadratic form

Bx0(v, v) := −c[x0]
2

∣∣v(0−)
∣∣2 +

∫
R

∗−
|v′|2 +

∫
R

∗−
|v|2

(
1

4
f 2
2 + 1

2
f ′
2

)
(· + x0) .

The explicit definition of c[x0]
2 is given below but let us already anticipate that our

choice ensures that c[x0]
2 depends smoothly on x0 and converges as x0 → −∞ to a

negative value. Note moreover that

lim−∞ f2 = − lim−∞
H ′′

H ′ < 0.

This implies that when x0 is sufficiently close to −∞, Bx0 is positive definite. To
motivate the expression for c[x0]

2 , we first observe that

c2 = 1

2
f2(0

−) + (H(0−) − HL)(H(0−) − Hout )

a(0−) H(0−)2 .

7 Consistently with our convention for scalar products, they are linear in their second
factors.
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then, consistently we set

c[x0]
2 := 1

2
f2(x0) + (H(x0) − HL)(H(x0) − Hout )

a(x0) H(x0)2 .

Note that as announced

lim
x0→−∞ c[x0]

2 = 1

2
lim−∞ f2 < 0.

The continuity argument is applied to the continuous function

R− → R , x0 �→ inf
v∈H1

v 	≡0

Bx0(v, v)

‖v‖2
L2

.

The fact that the foregoing function is indeed defined follows again from the Gårding
inequality mentioned above. To complete our study of cases (ii) and (iv), it is
sufficient to prove that this function cannot vanish. This follows in a straightforward
way from the series of two lemmas stated and proved below.

To prepare the lemmas, we first quantify the possible failure of coercivity. For
any

0 < κ <
1

4
(lim−∞ f2)

2

there exist positive ηκ , cκ and Cκ such that for any x0 ∈ R− and v ∈ H1,

Bx0(v, v) + Cκ ‖v‖2
L2((−ηκ ,0))

≥ cκ ‖v‖2
H1(R∗−)

+ κ ‖v‖2
L2((−∞,−ηκ ))

.

Indeed ηκ may be chosen by imposing

inf
(−∞,−ηκ )

(
1

4
f 2
2 + 1

2
f ′
2

)
>

1

2

(
κ + 1

4
(lim−∞ f2)

2
)

and the existence of cκ and Cκ is a consequence of rough bounds on coefficients
and the following Sobolev inequality,

|v(0−)|2 ≤ ‖v‖2
L∞((−η,0)) � ‖v‖L2((−η,0)) ‖v‖H1((−η,0)), (4.4)

that holds for any η > 0 (with an implicit constant depending on η).
As a second and last preliminary to lemmas, we find it convenient to explicitly

introduce the self-adjoint operator on L2(R∗−;C), Lx0 , of domain denoted Dx0 ,
associated with Bx0 . Explicitly

Dx0 :=
{

v ∈ H1(R∗−;C) |Bx0(v, ·) is continuous on L2(R∗−;C)
}

=
{

v ∈ H2(R∗−;C) | v′(0−) = c[x0]
2 v(0−)

}

and for v ∈ Dx0 ,

Lx0v = −v′′ + v

(
1

4
f 2
2 + 1

2
f ′
2

)
(· + x0).
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Lemma 4.1. If

0 = inf
v∈H1

v 	≡0

Bx0(v, v)

‖v‖2
L2

then there exists v ∈ Dx0 , v 	≡ 0, such that Lx0v = 0.

Proof. Let us consider (vk)k∈N a minimizing sequence, normalized by ‖vk‖L2 = 1.
From the Gårding estimate, we know that (vk)k∈N is bounded in H1 and thus, up to
extracting a subsequence, we may assume that (vk)k∈N converges weakly in H1 to
some v∞ ∈ H1. As a direct consequence of the Hahn-Banach theorem, we deduce
that∫

R
∗−

|v′∞|2 +
∫
R

∗−
|v∞|2

(
1

4
f 2
2 + 1

2
f ′
2

)
+

(· + x0)

≤ lim inf
k→∞

(∫
R

∗−
|v′

k |2 +
∫
R

∗−
|vk |2

(
1

4
f 2
2 + 1

2
f ′
2

)
+

(· + x0)

)
.

Now pick η > 0 such that f 2
2 + 2 f ′

2 is positive outside (−η, 0) and note that since
H1((−η, 0)) is compactly embedded in L2((−η, 0)) we may assume that (vk)k
converges strongly to v∞ in L2((−η, 0)). Combined with (4.4), this is sufficient to
take the limit k → ∞ in the remaining part of Bx0(vk, vk). As a result

Bx0(v∞, v∞) ≤ lim
k→∞Bx0(vk, vk) = 0.

We now prove that v∞ is nonzero. This is the place where we use the refined
version of the Gårding estimate. Indeed it implies that there exist positive η′ and K
such that when k is sufficiently large so as to force that Bx0(vk, vk) is sufficiently
small

‖vk‖2
L2((−η′,0))

≥ K ‖vk‖2
L2((−∞,−η′)).

Since ‖vk‖L2 = 1, we deduce that

0 < lim inf
k→∞ ‖vk‖L2((−η′,0)).

Then, since we may assume that (vk)k converges strongly to v∞ in L2((−η′, 0)),
we conclude that v∞ is nonzero.

Let us set v := v∞/‖v∞‖L2 . The vector v is nonzero and satisfies Bx0(v, v) ≤
0, thus Bx0(v, v) = 0. Since v minimizes the quadratic form associated with Bx0

among vectors of H1 with unit L2 norm, there exists μ ∈ C such that Bx0(v, ·) =
μ 〈v, ·〉L2 . In particular v ∈ Dx0 and Lx0v = μv. Since v is nonzero, evaluating
the relation at v shows that μ = 0 and concludes the proof of the lemma. 
�

The foregoing lemma is very close to many standard results but, unfortunately,
we have not found a directly applicable version in the literature. Hence the above
proof.
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Lemma 4.2. If v ∈ Dx0 is such that Lx0v = 0 then v ≡ 0.

Proof. Note that the set of v ∈ H2(R−) such that

−v′′ + v

(
1

4
f 2
2 + 1

2
f ′
2

)
(· + x0) = 0

is one-dimensional. Moreover from the fact that (H ′, Q′) solves the interior spectral
ODE system in original formulation, we deduce that (H−HL)′′ = − f2 (H−HL)′,
and thus that

v[x0] :R− → R, x �→ e
− 1

2
∫ x0
x+x0

f2 (H(x + x0) − HL ) =
√

H ′(x0)

H ′(x + x0)
(H(x + x0) − HL )

spans the above set.
To conclude we just need to check that v[x0] /∈ Dx0 . This is indeed the case

since

(v[x0])′

v[x0] (0) = −1

2

H ′′(x0)

H ′(x0)
+ H ′(x0)

H(x0) − HL

= 1

2
f2(x0) + (H(x0) − HR)(H(x0) − Hout )

a(x0) H(x0)2

	= 1

2
f2(x0) + (H(x0) − HL)(H(x0) − Hout )

a(x0) H(x0)2 = c[x0]
2 .


�

4.4. The Riemann Shock Case

We conclude our stability analysis by discussing how to adapt the above ar-
guments to the Riemann shock case. The overall strategy is identical but details
should be changed at various places.

We only indicate these modifications. To begin with, since [r(W )] = 0, it is
convenient to replace ψ with ψ̃ := λψ . This does not change the nature of the
spectral problem when λ 	= 0 and simply decreases by 1 the algebraic multiplicity
of the eigenvalue λ = 0. Our task is thus to determine when there exists a nonzero
(v, ψ̃) ∈ H1

ηL
(R∗−;C2) × C solving

{
λv + (A v)′ = E v, on R

∗−,

ψ̃ [ W ] = [Av] .

Since [W ] is non zero, one may eliminate ψ̃ and reduce the discussion to the
existence of a nonzero u = (u1, u2) := (v1,−cv1 + v2) in H1

ηL
(R∗−;C2) such that

on R
∗−⎧⎨

⎩
λ u1 + u′

2 = 0,

(au1)
′ =

(
1 − 2

(
c − Q

H

)
Q
H2 − 2λ

(
c − Q

H

))
u1 −

(
λ + 2 Q

H2 + 2
(
Q
H

)′)
u2,
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and

u2(0
−) × [Q] −

(
a u1 +

(
−c + 2

Q

H

)
u2

)
(0−) × [H ] = 0.

There is no nonzero solution with either u2 vanishing identically or λ = 0, so that
the problem is equivalent to finding a nonzero u2 ∈ H2

ηL
(R∗−;C) solving on R

∗−

u′′
2 + ( f1λ + f2) u

′
2 + λ ( f3λ + f4) u2 = 0 .

and

u2(0
−) × [λQ] −

(
−a u′

2 +
(

−c + 2
Q

H

)
λ u2

)
(0−) × [H ] = 0

where

f1 := 2

a

(
c − Q

H

)
, f2 := − 1

a

(
1 − 2

(
c − Q

H

)
Q

H2

)
, f3 := − 1

a
, f4 := − 2

a

Q

H2 ,

with H and Q constant equal to HL and H3/2
L respectively.

From here no change is needed in the reduction from u2 to w, nor in Subsec-
tion 4.2. The core of Subsection 4.3 is simply replaced with a direct check that B is
positive definite. This follows from the fact that f2 is a negatively-valued constant
function and c2 is also negative since it is equal to one half of this value. The sign
observation stems from HL > Hs and F > 2 which imply

1 − 2

(
c − QL

HL

)
QL

H2
L

= 1 − 2
q0

H
3
2
L

> 1 − 2

F
> 0 .

Summarizing the results of the present section with the ones of Sect. 3, we
obtain the following proposition:

Proposition 4.3. (Convective exponential spectral stability in Rconv) Discontinu-
ous waves of region Rconv are convectively exponentially spectrally stable. More
precisely, when ν > 1 and 2 ≤ F <

√
2ν(1 + ν), there is a choice of ηL ∈

(γ ∞+ , γ ∞− ) and ηR < 0 sufficiently negative such that the spectrum is included in
{λ ∈ C; Re(λ) < −θ < 0} ∪ {0} in the (ηL , ηR)-weighted space for some θ > 0.
Furthermore, λ = 0 has multiplicity one.

The above result is sharp since for ν > 1 and F >
√

2ν(ν + 1), that is in region
Rabs, the corresponding waves are absolutely unstable as shown in Sect. 3.
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5. Linear and Nonlinear Convective Stability

At this point, we have shown that convective spectral stability holds (with scalar
weight) for F <

√
2ν(ν + 1), and fails (for any weight) for F >

√
2ν(ν + 1), We

now complete our discussion of convective stability by invoking a Lyapunov-type
argument showing that convective spectral stability implies linear and nonlinear
convective orbital stability, at time-exponential rate.

Convective spectral stability in the semilinear parabolic case, with a smooth
background traveling wave, yields fairly immediately time-exponential asymptotic
orbital stability, by well known arguments of Sattinger [35] and Henry [19] similar
to those for the finite-dimensional ODE case. The present setting involving discon-
tinuous background waves and quasilinear hyperbolic equations requires a much
more technical analysis, at the frontier of the current knowledge on nonlinear wave
stability theory.

The expository choice we make is to borrow results from the forthcoming [15]
that carries out a systematic development in a more general setting, in the spirit of
[14], where Propositions 5.1 and 5.2 below are proved. We stress however that, to
a large extent, a relatively simple adaptation of the techniques used in [39] for the
neutrally stable case.8 would already be sufficient for the present case. Nevertheless
a self-contained exposition of this adequate version would essentially double the
size of the present contribution. Even for the smooth case, none of the results in the
literature seems directly applicable to yield the time-exponential stability proved
below, but, likewise, a relatively simple variation on the neutrally-stable treatments
[26,27] would yield the required result.

5.1. Linear Estimates

We begin with estimates for the linearized problem (3.3),

∂tv + ∂x (A v) = E v + F, on R+ × R, (5.1)

with initial data v0(x) and interior source term F(t, x).

Proposition 5.1. Let W = (H, Q) be a traveling-wave solution of type (v) and
consider (ηL , ηR) spatial weight growths ensuring9 a spectral gap. Then there
exist positive θ and C such that for any 1 ≤ p ≤ ∞, if

(v0, F) ∈
{
L p

ηL ,ηR (R) × C 0(R+; L p
ηL ,ηR (R)) 1 ≤ p < ∞

BUC0
ηL ,ηR

(R) × C 0(R+; BUC0
ηL ,ηR

(R)) p = ∞
then for v the unique mild solution to (5.1) (in C 0(R+; L p

ηL ,ηR (R)) if 1 ≤ p < ∞,
C 0(R+; BUC0

ηL ,ηR
(R)) if p = ∞) with initial data v0, there exists a phase shift

ϕ ∈ C 1(R+) vanishing initially such that for any t ≥ 0

‖v(t, ·) + ϕ(t)W ′‖L p
ηL ,ηR

+ |ϕ′(t)| ≤ Ce−θ t‖v0‖L p
ηL ,ηR

8 See also the related discussion of [39, p. 201].
9 For instance, ηL positive and ηR negative both sufficiently small in absolute value.
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+C
∫ t

0
e−θ(t−s)‖F(s, ·)‖L p

ηL ,ηR
ds. (5.2)

In the foregoing statement BUC0(�) denotes the space of functions that are
bounded on �, and uniformly continuous on each connected component of �.

We recall that Duhamel formula enables one to reduce the previous statement
to the sourceless case. Moreover we point out that in the case p = 2 the statement
follows from the Gearhart–Prüss theorem and high-frequency bounds on resolvents.

Consider again the linearized problem (3.4):{
∂tv + ∂x (A v) = E v + F, on R+ × R

∗,
dψ
dt [ W ] − ψ [r(W )] = [Av] + G, on R+,

(5.3)

with initial data (v0(x), ψ0), interior source term F(t, x), and boundary source-
term G(t). Recall from the original derivation of (3.4) that here there is no freedom
in the phase shift that may be removed from v so as to obtain time decay. We need
to prove that v − (−ψ)W ′ is decaying. In contrast, in the smooth case, the phase
shift ϕ is far from unique.

Proposition 5.2. Let W = (H, Q) be a traveling-wave solution of type (ii)-(iv)
satisfying the sharp convective spectral stability condition10

F <
√

2ν(ν + 1) , ν :=
√

HL

HR
,

and consider (ηL , ηR) spatial weight growths ensuring,11 a spectral gap. Then
there exist positive θ and C such that for any 1 ≤ p ≤ ∞, if

(v0, ψ0, F,G) ∈
{
L p

ηL ,ηR (R) × R × C 0(R+; L p
ηL ,ηR (R)) × C 0(R+) 1 ≤ p < ∞

BUC0
ηL ,ηR

(R∗) × R × C 0(R+; BUC0
ηL ,ηR

(R∗)) × C 0(R+) p = ∞

then (v, ψ), the unique mild solution to (5.3) with initial data (v0, ψ0), satisfies for
any t ≥ 0

‖v(t, ·) + ψ(t)W ′‖L p
ηL ,ηR

+ |ψ ′(t)| + ‖ (v(t, ·) + ψ(t)W ′) (0−)‖
+‖ (v(t, ·) + ψ(t)W ′) (0+)‖

≤ Ce−θ t‖v0‖L p
ηL ,ηR

+ C
∫ t

0
e−θ(t−s)‖F(s, ·)‖L p

ηL ,ηR
ds

+C
∫ t

0
e−θ(t−s)‖G(s)‖ ds. (5.4)

Note that the level of regularity of the previous statement is insufficient, alone,
to define traces at 0±. The existence of those is a consequence of the fact that (v, ψ)

solves (5.3) and that the shock is non characteristic.

10 Automatically satisfied in cases (iii) and (iv).
11 For instance, when F > 2, ηL ∈ (ηmin

L ηmax
L ) and ηR sufficiently negative; when F < 2,

ηL positive and ηR negative both sufficiently small in absolute value.
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5.2. Nonlinear Stability

Using Propositions 5.1 and 5.2 in order to prove nonlinear stability results
induces a severe loss of derivatives due to the quasilinear character of the original
system. A by-now classical way to cure this loss is to combine the latter with
nonlinear high-frequency damping estimates, that show that as long as the Lipschitz
norm of the solution remains under control, the time decay of any Sobolev norm is
slaved to the time decay of the L2 norm. Designing such nonlinear high-frequency
damping estimates is a significant part of the nonlinear stability analysis. When
proceeding in this way, it is actually sufficient to prove linear stability with derivative
losses, as accessible through what the fourth author has dubbed the “poor man’s
Prüss construction” [42]. On nonlinear high-frequency damping estimates, we refer
to [29, Appendix A] for an introduction the classical Kawashima version for the
stability of constant states [23,36] and to [14,27,32,39] for versions more directly
related to the present analysis.

Theorem 5.3. Let W = (H, Q) be a traveling-wave solution of type (v) and con-
sider (ηL , ηR) spatial weight growths ensuring12 a spectral gap, with ηL positive
and ηR negative. Then there exist positive δ, θ and C such that if

δw0 := ‖w0 − W‖H2
ηL ,ηR

(R) ≤ δ

then forw the uniquemild solution to (1.1) (inC 0(R+; H2
ηL ,ηR

(R)))with initial data

w0, there exists a phase shift ϕ ∈ C 1(R+) vanishing initially and an asymptotic
shift ϕ∞ ∈ R such that for any t ≥ 0

‖w(t, ·) − W (· − (ct + ϕ(t)))‖H2
ηL ,ηR

(R) + |ϕ′(t)| + |ϕ(t) − ϕ∞| ≤ Ce−θ tδw0 ,

(5.5)

and |ϕ∞| ≤ C δw0 .

Theorem 5.4. Let W = (H, Q) be a traveling-wave solution of type (ii)-(iv) sat-
isfying the sharp convective spectral stability condition13

F <
√

2ν(ν + 1) , ν :=
√

HL

HR
,

and consider (ηL , ηR) spatial weight growths ensuring,14 a spectral gap, with ηL

positive and ηR negative. Then there exist positive δ, θ and C such that if

δw0 := ‖w0 − W‖H2
ηL ,ηR

(R∗) ≤ δ

12 For instance, ηL positive and ηR negative both sufficiently small in absolute value.
13 Automatically satisfied in cases (iii) and (iv).
14 For instance, when F > 2, ηL ∈ (ηmin

L ηmax
L ) and ηR sufficiently negative; when F < 2,

ηL positive and ηR negative both sufficiently small in absolute value.
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with w0 − W supported away from zero, then there exists a global solution to
(1.1), w, with initial data w0 having at each time t ≥ 0 a single shock, located at
ct + ψ(t), with ψ ∈ C 1(R+) vanishing initially and an asymptotic shift ψ∞ ∈ R

such that for any t ≥ 0

‖w(t, · + (ct + ψ(t))) − W‖H2
ηL ,ηR

(R∗) + |ψ ′(t)| + |ψ(t) − ψ∞| ≤ Ce−θ tδw0 ,

(5.6)

and |ψ∞| ≤ C δw0 .

Note that none of the constants depend on how far the support of w0−W is from
0. The assumption is simply made to assure that the initial data is compatible with
the short-time persistence of a single-shock piecewise-H2 solution. We could have
instead assumed directly the optimal but cumbersome compatibility conditions, as
in [14,15]. On the related local-in-time propagation of regularity we refer to [6,28].

6. Numerical Time-Evolution Experiments

We augment our analytic treatment by examples of numerical time evolution
experiments using CLAWPACK [9,25]. More precisely, in a first set of numerical
experiments, we test the convective nonlinear (in)stability of nonmonotone discon-
tinuous waves of type (ii) depending if whether we are in region Rconv or Rabs
((F, HR/HL) = (2.28, 0.7) versus (F, HR/HL) = (2.30, 0.7) as an example),
and also demonstrate the convective nonlinear stability of Riemann profiles (iii)
((F, HR/HL) = (

√
85/10 + √

238/14, 0.7) as an example). Finally, in a second
set of numerical experiments, we highlight the convective nonlinear instability of
increasing smooth waves of type (i) ((F, HR/HL) = (3, 1.3) as an example).

6.1. Nonmonotone Discontinuous Waves and Riemann Shock

Throughout this section we set HL = 1 and HR = 0.7. We first note that
profiles are of nonmonotone discontinuous type (ii) if

2.02390 . . . =
√

85

10
+

√
238

14
< F <

√
70

7
+ 10

7
= 2.62380 . . .

and they are convectively exponentially stable given that

F <

√
2

0.7
+ 2√

0.7
= 2.29076 . . . .

When F =
√

85
10 +

√
238
14 profiles are of Riemann shock type (iii) and convectively

exponentially stable. In all cases, speed of the waves is given by

c = HL + √
HLHR + HR√

HL + √
HR

= 1.3811 . . . .
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For our numerical experiments, we use a perturbed dambreak initial data given
by ⎧⎨

⎩
h0(x) = 1x≤0 + 0.7 × 10<x + 1(x+5)2<0.5e

− 1
0.5−(x+5)2 ,

q0(x) = 1x≤0 + 0.73/2 × 10<x ,
x ∈ R. (6.1)

See Fig. 5 left panel for a plot of (6.1).
Convectively stable regime For F = 2.28 ∈ Rconv, we present in Fig. 7

several snapshots at time 100, 500, and 2000 of the fluid height h in the comoving
frame c showing convergence to a nonmonotone hydraulic shock in the large-time
asymptotic limit. We also refer to Fig. 6 first panel for a (comoving) space-time
plot of the fluid height h. The latter space-time plot clearly shows the speeds of
shocks are faster than the comoving frame speed and shocks gradually merge into a
single subshock of the nonmonotone hydraulic profile at t ≈ 1000. This numerical
experiment illustrates that our analytically derived convective stability condition
predicts the asymptotic response to large-scale localized perturbations: convergence
to a nonmonotone hydraulic shock in our case.

Convectively unstable regime. On the other hand, for F = 2.30 ∈ Rabs in the
convectively unstable regime, we make a simulation with the former initial data,
showing an “invading front” connecting roll wave patterns on the left to a constant
state on the right. See Fig. 8 for plots at time 100, 500, and 2000 of fluid heights in
the comoving frame c and Fig. 6 second panel for a (comoving) space-time plot. The
latter space-time plot clearly shows that although the speeds of shocks are faster
than that of the comoving frame, the location where new shocks emerge (marked
by a dash line in Fig. 6 second panel) moves at a slower speed than the comoving
frame speed, resulting in more and more shocks between the location where new
shocks emerge and the last shock connecting to HR .

Note that the slower speed of the invading front can be heuristically predicted
by tracking how the absolute spectrum associated with HL depends on the speed
of the moving frame in which it is computed. To be more concrete, we revisit
computations from Sect. 3.2 by allowing the speed of the moving frame s to vary
(instead of being fixed to c, the wave speed of the traveling wave of interest) and
correspondingly mark with s different quantities introduced there. We are interested
in the absolute spectrum of HL at speed s, that is in the λ such that the real parts of
the spatial eigenvalues of GHL ,s(λ) coincide, Re(γ−,HL ,s(λ)) = Re(γ+,HL ,s(λ)).
Following [13], we may define a so-called absolute spreading speed sabs as the
infimum of wave speeds s for which the absolute spectrum remains unstable in the
moving frame s. Computations from Sect. 3.2 yield

sabs = √
HL

(
1 + 2

F2

)
.

In our case, with F = 2.30, HL = 1 and HR = 0.7, we have sabs − c =
−0.00305 . . .. The dashed line in the second panel of Fig. 6 has precisely a slope
given by sabs−cwhich matches the onset of the invading roll waves quite accurately.

Riemann Case. Finally, for F = √
85/10 + √

238/14 in domain (iii) of Rie-
mann profiles which lies within the convectively stable regime Rconv, we simulate
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(1.1) with the initial data (6.1), showing convergence to the unperturbed Riemann
shock in the large-time asymptotic limit. See Fig. 9 for plots at time 10, 50, and 100
of fluid heights in the comoving frame c and Fig. 6 third panel for a (comoving)
space-time plot. Both plots show emergence of a single shock caused by the initial
perturbation which quickly merges into the Riemann shock.

6.2. Increasing Smooth Waves

Finally, we make HR > HL to test if the corresponding increasing smooth
“reverse shock” can be the large-time asymptotic limit. We fix HL = 1 and HR =
1.3 such that profiles are of increasing smooth type (i) if

F >

√
13

10
+ 13

10
= 2.44017 . . . .

For F = 3 ∈ Rabs in domain (i) of increasing smooth profiles, we simulate with
dambreak initial data given by

⎧⎨
⎩
h0(x) = 1x≤0 + 1.3 × 10<x + 1(x+5)2<0.5e

− 1
0.5−(x+5)2 ,

q0(x) = 1x≤0 + 1.33/2 × 10<x ,
x ∈ R. (6.2)

See Fig. 5 right panel for a plot of (6.2). We report an “invading back” connecting roll
wave patterns on the left to a constant state on the right. See Fig. 10 for plots at time 5,

25, and 100 of fluid heights in the comoving frame c = HL+√
HL HR+HR√

HL+√
HR

∼ 1.6074
and Fig. 6 last panel for a space-time plot. This illustrates once again that our (local)
stability conditions indeed successfully predict large-scale asymptotic behavior.

We also tested the predictive feature of the absolute spreading speed introduced
in the convectively unstable case beyond its expected range of validity by computing
sabs in the present case and found sabs − c = −0.3852 . . .. Quite surprisingly and
remarkably, this predicted speed compares well with the speed of the primary
invading front (see the dashed line in the forth panel of Fig. 6) for short time.

RollWave Selection. So far we are lacking even a heuristic argument to predict
which roll wave is selected in the invading front pattern. Let us recall that, even
when the translational invariance is quotiented, roll waves form a two-parameter
family.

By integrating over a large space-time box the conservation law of (SV), one
may derive formally a constraint equation

q0,shock = q0,roll + (croll − cshock)〈Hroll〉,
where 〈A〉 denotes the average of the quantity A over one period of the roll wave
pattern. Yet this is one equation short to fully identify the roll pattern, leaving a
degree of freedom still to be determined.

Looking toward the future, we would like to add two more comments on this
question. First, we point out that we have estimated numerically the wave period and
wave speed of the observed roll pattern (as approximately 1 and 1.4 respectively)



Arch. Rational Mech. Anal.          (2024) 248:82 Page 45 of 49    82 

F
ig
.9
.

N
um

er
ic

al
si

m
ul

at
io

n
of

(1
.1

)
w

ith
F

=
√ 85 10

+
√ 23

8
14

an
d

in
iti

al
da

ta
(6

.1
)



   82 Page 46 of 49 Arch. Rational Mech. Anal.          (2024) 248:82 

F
ig
.1
0.

N
um

er
ic

al
si

m
ul

at
io

n
of

(1
.1

)
w

ith
F

=
3

an
d

in
iti

al
da

ta
(6

.2
)



Arch. Rational Mech. Anal.          (2024) 248:82 Page 47 of 49    82 

and checked that the wave does lie in the stability region of the roll-wave stability
diagram [21, Fig. 3(c)].

Second, we mention that the oscillatory instability pattern between HL and the
roll-wave seems to be expanding linearly in time, preventing a direct connection
from the roll-wave to HL . One can not exclude that the identification of the missing
roll parameter requires a deep understanding of this pattern in a way reminiscent of
the resolution of the Gurevich–Pitaevskii problem through the analysis of dispersive
shocks [5].

A complete, rigorous treatment of this bifurcation would be very interesting to
carry out.

Data availability Data will be made available on reasonable request.
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