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Abstract

Consider the elliptic operator given by

Lε f = b · ∇ f + ε � f (0.1)

for some smooth vector field b : R
d → R

d and a small parameter ε > 0. Consider
the initial-valued problem {

∂t uε = Lεuε,

uε(0, ·) = u0(·), (0.2)

for some bounded continuous function u0. Denote by M0 the set of critical points
of b which are stable stationary points for the ODE ẋ(t) = b(x(t)). Under the
hypothesis that M0 is finite and b = −(∇U +�), where � is a divergence-free field
orthogonal to ∇U , the main result of this article states that there exist a time-scale
θ
(1)
ε , θ(1)ε → ∞ as ε → 0, and a Markov semigroup {pt : t ≥ 0} defined on M0

such that

lim
ε→0

uε(t θ
(1)
ε , x) =

∑
m′∈M0

pt (m,m′) u0(m′)

for all t > 0 and x in the domain of attraction of m [for the ODE ẋ(t) = b(x(t))].
The time scale θ(1) is critical in the sense that, for all time scales �ε such that
�ε → ∞, �ε/θ

(1)
ε → 0,

lim
ε→0

uε(�ε, x) = u0(m)

for all x ∈ D(m). Namely, θ(1)ε is the first scale at which the solution to the initial-
valued problem starts to change. In a companion paper [20] we extend this result
finding all critical time-scales at which the solution of the initial-valued problem
(0.2) evolves smoothly in time and we show that the solution uε is expressed in
terms of the semigroup of some Markov chain taking values in sets formed by
unions of critical points of b.
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1. Introduction

The main concern of the current article is the behavior of the solution uε of the
equation (0.2) in the regime ε → 0. This problem is connected to the metastable
behavior of the diffusion process induced by the generator Lε given in (0.1), which
has been a serious issue in the probability community. Freidlin and Koralov [11,12]
found a critical depth D > 0 and showed that the the solution uε(t, x) in the
interval t ∈ [0, e(D−η)/ε] and t ∈ [e(D+η)/ε, ∞) differ significantly for all η > 0.
Therefore, a dramatic phase transition occurs at the scale θε = eD/ε. This result
has been extended by Koralov and Tcheuko [18] to cases which exhibit multiple
metastable time-scales. Ishii and Souganidis [15,16] derived similar results with
purely analytical methods.

In this article and the companion paper [20], we characterize the solution uε
under the assumption that the diffusion process induced by the generator Lε has a
Gibbs invariant measure. More precisely, fix a smooth potential U : R

d → R, and
a smooth vector field � : R

d → R. Assume that the vector field � is divergence free
and is orthogonal to the gradient of U :

(∇ · �)(x) = 0, (∇U )(x) · �(x) = 0, x ∈ R
d . (1.1)

For ε > 0, denote by Lε the elliptic operator given by

Lε f = − (∇U + � ) · ∇ f + ε � f, f ∈ C2(Rd), (1.2)

which corresponds to the operator (0.1) when b = −(∇U + �). It has been shown
in [28] that the Gibbs measure με(dx) = (1/Zε) exp{U (x)/ε} dx is an invariant
measure for the diffusion induced by the generator Lε for all ε > 0 if and only if
� satisfies conditions (1.1).

Denote by Lε the generator (1.2), unless otherwise specified. Fix a bounded
and continuous function u0 : R

d → R and consider the initial-valued problem{
∂t uε = Lεuε,

uε(0, ·) = u0(·). (1.3)

The tools developed in [2,3,21–23] permit to describe the solution of the parabolic
equation (1.3), in the domain of attraction of a local minimum m, at the time-scale
in which the solution is transformed from the value of the initial condition u0(·) at
the local attractor m of the field b = −(∇U + �) to a convex combination of the
initial condition calculated at several different local attractors m′. A similar result
appeared in [5] for the case of sequences of continuous-time Markov chains on a
fixed finite state space.

The First Critical Time Scale

Let us now explain our main result in more detail. For two positive sequences
(αε : ε > 0), (βε : ε > 0), we denote by αε ≺ βε, βε 	 αε if αε/βε → 0
as ε → 0. The main results of the current article and the companion paper [20]
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assert that there exist critical times scales θ
(1)
ε ≺ · · · ≺ θ

(q)
ε associated with the

potential function U at which the asymptotic behavior of the solution uε changes
dramatically. We not only characterize these time scales explicitly but also provide
precise asymptotics of uε along these scales. We also derive the asymptotics of the
solution between these time-scales, completely analyzing the behavior of uε.

The current article concerns the first time-scale among such a complex multi-
scale structure. We explicitly find a time-scale θ

(1)
ε 	 1, and a Markov semigroup

{pt : t ≥ 0} defined on the set of local minima M0 of U such that, for all local
minimum m ∈ M0,

lim
ε→0

uε(t θ
(1)
ε , x) =

∑
m′∈M0

pt (m,m′) u0(m′), (1.4)

for all t > 0, x ∈ D(m). Here, D(m) represents the domain of attraction of m for
the ODE ẋ(t) = b(x(t)), where b = −(∇U + �).

We also show that, for any sequence 1 ≺ �ε ≺ θ
(1)
ε ,

lim
ε→0

uε(�ε, x) = u0(m) (1.5)

for all x ∈ D(m). Hence, the solution does not change until the time-scale θ(1)ε , and
it starts to change exactly at θ(1)ε in view of (1.4) and (1.5). The main achievement
of the current article is the verification of (1.4) and (1.5). We remark this scale θ(1)ε

is the scale θε = eD/ε obtained in [11,12].
To illustrate assertion (1.4), consider a generic potential U , namely a potential

for which all critical points are at different heights. Denote bym1 the local minimum
associated to the shallowest valley and by m2 the unique local minimum separated
from m1 by the shallowest saddle point disconnecting m1 from the other local
minima. The local minimum m2 is unique because all saddle points are at different
heights. Then pt (m,m′) = 0, unless m = m1, m′ = m2. In other words, in the
time-scale θ

(1)
ε , starting from the basin of attraction of m1, the process waits an

exponential time and then jumps to a neighbourhood of m2, where it stays forever.

Multi-scale Structure

The characterization of the remaining scales are the contents of the companion
paper [20]. We briefly explain the main result.

Let us start from the second scale which can be inferred from (1.4). The theory
of finite-state continuous-time Markov chains asserts that there exist probability
measuresπ(1)

j , 1 ≤ j ≤ n1, onM0 with disjoint supports, and probability measures

ω(1)(m, ·), m ∈ M0, on {1, . . . , n1} such that

lim
t→∞ pt (m,m′) =

n1∑
k=1

ω(1)(m, k) π(1)
k (m′) (1.6)

for all m, m′ ∈ M0. If m′ is a transient state all terms in the previous sum van-
ish. Indeed, the measures π(1)

j represent the stationary states of the Markov chain
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restricted to the closed irreducible classes, which in turn are the support of the
measures π

(1)
j . The weight ω(1)(m, k) stands for the probability that the Markov

chain starting from m is absorbed at the support of the measure π
(1)
k .

If there is only one stationary state or, equivalently, one closed irreducible class,
namely n1 = 1, then for all time-scales �ε such that θ(1)ε ≺ �ε, we can readily guess
from (1.4) and (1.6) that (note that ω(1)(m, 1) = 1 in this case)

lim
ε→0

uε(�ε, x) =
∑

m′∈M0

π
(1)
1 (m′) u0(m′)

for all local minimum m ∈ M0 and x ∈ D(m). Note that the limit does not depend
on m or x. This behavior occurs when (a) all the wells associated to local minima
of U which are not global minima have the same depth, and (b) either there is only
one global minimum or there is more than one and the depth of all wells are the
same. In this case of a unique closed irreducible class, the support of the measure
π
(1)
1 corresponds to the set of global minima of U . This finishes the description of

multi-scale structure for the case n1 = 1.
In contrast, if there are more than one closed irreducible classes, the limit of

uε(tθ
(1)
ε , x) as ε → 0 and then t → ∞ depends on the local minimum attracting

x. In this case, there exists a second and longer time-scale θ(2)ε such that θ(1)ε ≺ θ
(2)
ε

and a Markov semigroup {p(2)t : t ≥ 0} defined on the set of closed irreducible
classes {1, . . . , n1} obtained at the first time-scale such that

lim
ε→0

uε(t θ
(2)
ε , x) =

n1∑
k=1

ω(1)(m, k)
n1∑
�=1

p(2)t (k, �)
∑

m′∈M0

π
(1)
� (m′) u0(m′)

for all t > 0 where m ∈ M0 is a local minium of U and x ∈ D(m). Mind that we
may restrict the sum over m′ to local minima in the support of the measure π

(1)
� .

We can also verify that, for any sequence �ε such that θ(1)ε ≺ �ε ≺ θ
(2)
ε , we have

lim
ε→0

uε(�ε, x) =
n1∑
k=1

ω(1)(m, k)
∑

m′∈M0

π
(1)
k (m′) u0(m′)

for all m ∈ M0 and x ∈ D(m). This is exactly the behavior of the solution uε in
the time scale tθ(1)ε as ε → 0 and then t → ∞, and the one in the time scale tθ(2)ε

as ε → 0 and then t → 0. This completes the description of the asymptotics of uε
until the second scale θ

(2)
ε .

More generally, there exist q ≥ 1 and time-scales θ(1)ε ≺ · · · ≺ θ
(q)
ε such that

lim
ε→0

uε(tθ
(p)
ε , x) =

np−1∑
k=1

ω(p−1)(m, k)

np−1∑
�=1

p(p)t (k, �)
∑

m′∈M0

π
(p−1)
� (m′) u0(m′)

(1.7)
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for each 1 ≤ p ≤ q, t > 0, m ∈ M0, x ∈ D(m). Furthermore, for each 1 ≤ p ≤
q + 1, and sequence (�ε : ε > 0) such that θ(p−1)

ε ≺ �ε ≺ θ
(p)
ε , m ∈ M0, and

x ∈ D(m),

lim
ε→0

uε(�ε, x) =
np−1∑
k=1

ω(p−1)(m, k)
∑

m′∈M0

π
(p−1)
k (m′) u0(m′). (1.8)

In this formula, θ(0)ε , θ(q+1)
ε are the constant sequences equal to 1, +∞, respectively.

Summing up,

• Denote by n0 the number of local minima ofU so that n0 > n1 > · · · > nq = 1.

• p(p)t , t ≥ 0, is a Markov semigroup on {1, . . . , np−1}, 1 ≤ p ≤ q. Here, the

semigroup pt , introduced in (1.4), has been represented by p(1)t .
• For a fixed 1 ≤ p ≤ q, π(p)

j , 1 ≤ j ≤ np, are probability measures on M0
with disjoint supports. They correspond to the extremal invariant probability
measures of the Markov chain with transition probability p(p)t .

• ω(p)(m, ·) are probability measures on {1, . . . , np}, where ω(p)(m, j) stands
for the probability that m is absorbed at the support of the probability measure
π
(p)
j .

It turns out that all local minima which belong to the support of a measure π(p)
j

are at the same height:U (m′) = U (m′′) if m′, m′′ belong to the support of the same
measure π

(p)
j . On the other hand, the support of a measure π

(p+1)
j is formed by

the union of the supports of measures π(p)
k , k ∈ {1, . . . , np}. Moreover, π(p+1)

j is

a convex combination of the corresponding measures π(p)
k . The rigorous recursive

construction of this multi-scale structure is a delicate and complicated task and will
be done in the companion paper [20]. Assertions (1.7) and (1.8) will be proven
there as well.

Comments on the Proof

The analysis of the asymptotics of the solution uε(t, x) of (1.3) is closely related
to that of the metastable behavior of the process

dxε(t) = − (∇U + � )(xε(t)) dt + √
2ε dWt , (1.9)

where ε > 0 denotes a small parameter corresponding to the temperature of the
system, and Wt a d-dimension Brownian motion. This relation comes from well-
known expression

uε(t, x) = E
ε
x [u0(xε(t))] , t ≥ 0, x ∈ R

d ,

where E
ε
x denotes the expectation with respect to the diffusion process (1.9) starting

at x ∈ R
d .

The proof of the result described above is purely probabilistic and relies on the
theory of metastable Markov processes developed in [2,21–24,37]. The metastable
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behavior of the process (1.9) has been recently studied in several articles: [31] pro-
vided sharp asymptotics on the low-lying spectra which is closely related with the
metastability of the process xε(·), [28] established Eyring-Kramers law precisely
estimating the mean transition time from a local minimum ofU to another one, and
finally [29] investigated the metastability among the global minima (i.e., ground
states) of U . The last work can be regarded as the analysis of the metastability at
the final scale θ

(q)
ε described above.

The recursive construction of the multiscale structure presented here appeared
before in different contexts. Michel [32] introduced it to study the low-lying eigen-
values of the semiclassical Witten Laplacian associated to a Morse function. We
refer to [4,13,26] for the same construction in the context of finite state Markov
chains.

The analysis of the multi-scale structure is based on the resolvent approach
to metastability developed in [22]. The crucial point consists in showing that the
solution of a resolvent equation is asymptotically constant in neighborhoods of
local minima. More precisely, denote by E(m) a small neighborhood of a local
minimum m. Fix λ > 0, g : M0 → R, and let φε be the unique solution of the
resolvent equation

(λ − θ(1)ε Lε) φε = G :=
∑

m∈M0

g(m) χE(m)
,

where χA, A ⊂ R
d , represents the indicator function of the set A. The function on

the right-hand side vanishes at (∪m∈M0E(m))c and is constant on each well E(m′).
One of the main results of this article asserts that the solution φ is asymptotically
constant in each well E(m):

lim
ε→0

max
m∈M0

sup
x∈E(m)

|φε(x) − f (m) | = 0, (1.10)

where f is the solution of the reduced resolvent equation

(λ − L1) f = g, (1.11)

and L1 is the generator of the M0-valued, continuous-time Markov chain whose
associated semigroup is the one appearing in (1.4). Property (1.4) of the solution
of the initial-valued problem (1.3) is deduced from this property of the resolvent
equation.

Background

In a sequence of seminal works, Freidlin and Wentzel, [14] and references
therein, investigated the metastable behavior of random perturbations of dynamical
systems, and introduced the notion of hierarchy of cycles. Assuming that each
cycle has only one subsequent cycle, they described the metastable behavior of
the diffusion dxε(t) = b(xε(t)) dt + √

2εdWt at all the time scales other than the
critical ones at which the diffusion may jump from one cycle to another. We refer
to [11,12,15,16,18] for recent developments of this theory.
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With the notation introduced above, the hypothesis that each cycle has only one
subsequent cycle means that for each 1 ≤ p ≤ q, 1 ≤ j ≤ np−1, there exists only

one k such that p(p)t ( j, k) > 0.
In this article, assuming that the drift b(·) can be written as b = −(∇U + �)

for a vector field � satisfying conditions (1.1), we extend the results in [14] in
two directions: describing the behavior of the diffusion (or the one of the solution
of the parabolic equation (1.3)) at the critical time-scales θ

(p)
ε , and removing the

hypothesis that each cycle has only one subsequent cycle.
As mentioned at the beginning of this introduction, we impose the conditions

(1.1) on the vector field �(·) for the Gibbs measure με(dx) = (1/Zε) e−U (x)/ε dx
to be the stationary state of the diffusion process xε(·). The precise description of
the asymptotic behavior of the solution uε in the time-scale θ

(1)
ε presented in (1.4)

relies on explicit computations which require an explicit formula for the stationary
state and smoothness of its density.

In general (that is, without the hypotheses (1.1)), the quasi-potential, which
plays the role of U (·) in the formula for the stationary state, is not smooth and not
known explicitly, making it impossible to apply the approach proposed here. We
refer to [10,25], for a model (a one-dimensional diffusion on the torus) where the
quasi-potential can be computed and the methods presented here applied, despite
the lack of smoothness of the quasi-potential.

Estimates of the transition times expectation have been obtained in [6,23]. In
the presence of many wells, these expectations may not converge for the following
reason. With a very small probability, crossing a saddle point higher than the lowest
one, the diffusion may hit a very deep well and remain there a very long time. This
contribution might be dominant for the expectation, turning it much larger than
predicted.

Uniform estimates, similar to (1.10), for solutions of Dirichlet problems go
back at least to Devinatz and Friedman [9], and Day [8]. The convergence to a
constant is called in the literature the leveling property of the equation. We refer to
Lelièvre, Le Peutrec and Nectoux [30] for a recent account and further references.

Organization

The paper is organized as follows. In Sect. 2, we state the main results. The
proof of Theorem 2.2 is divided in two parts. In Sect. 4, we prove that the solution
of the resolvent equation is constant on each well, and, in Sect. 9, that the solution
of the resolvent equation restricted to the set of local minima ofU is asymptotically
the solution of the reduced resolvent equation (1.11).

The proof of the local constancy relies on a diffusion mixing time estimate
presented in Sect. 3. The proof of the second property of the resolvent equation
solution requires an estimate of the time it takes to exit a neighborhood of an unstable
equilibrium point, presented in Sect. 5, estimates on the time needed to reach a local
minimum of U , the subject of Sect. 6, and test functions which approximate the
equilibrium potential between wells, introduced in Sect. 7. In Sect. 8, we add the last
piece of the proof, extending the results of Sect. 4 by showing that the solution of the
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resolvent equation is actually asymptotically constant in the domain of attractions
of a local minimum. In Sect. 9 we prove Theorem 2.2, and Theorem 2.1 in Sect. 10.
In the appendices, we present some results needed in the proofs.

2. Model and Main Results

Fix a functionU : R
d → R inC3(Rd) admitting only a finite number of critical

points, all non-degenerate (hence U is a Morse function, cf. [34, Definition 1.7]).
Assume that

lim
n→∞ inf

|x|�n

U (x)
|x| = ∞, lim|x|→∞

x
|x| · ∇U (x) = ∞,

lim|x|→∞
{ |∇U (x)| − 2�U (x)

} = ∞.

(2.1)

In this formula and below, |x| represents the Euclidean norm of x ∈ R
d . Suppose,

without loss of generality, that minx∈Rd U (x) = 0. Consider a vector field � : R
d →

R in C2(Rd), assumed to be divergence free and orthogonal to the graduent of U
as stated in (1.1).

Time-Scale

Denote by M0 the set of local minima of U . For each pair m′ �= m′′ ∈ M0,
denote by �(m′, m′′) the communication height between m′ and m′′ as

�(m′, m′′) := inf
z:[0 1]→R

d
max
t∈[0, 1]U (z(t)), (2.2)

where the minimum is carried over all continuous paths z(·) such that z(0) = m′
and z(1) = m′′. Clearly, �(m′, m′′) = �(m′′, m′). Denote by �(m) the depth of
the local minimum m ∈ M0:

�(m) := min
m′ �=m

�(m,m′) − U (m). (2.3)

Denote by d(1) the depth of the shallowest well, and by θ
(1)
ε the corresponding

time-scale:

d(1) := min
m∈M0

�(m), θ(1)ε := ed
(1)/ε.

Gates

Denote by ϒ(m) the set of gates of m ∈ M0. This is the set of points x ∈ R
d

for which there exist m′ ∈ M0, m′ �= m, and a continuous path z : [0, 1] → R
d

such that z(0) = m, z(1) = m′, z(1/2) = x andU (z(t)) < U (x) = U (m)+�(m)

for all t ∈ [0, 1], t �= 1/2.
Mind that there might be more than one local minima m′ for the same gate

x ∈ ϒ(m): there might exist m1 �= m2, both different from m, x ∈ ϒ(m), and
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continuous paths zi : [0, 1] → R
d , i = 1, 2, such that zi (0) = m, zi (1) = mi ,

zi (1/2) = x and U (zi (t)) < U (x) = U (m) + �(m) for all t ∈ [0, 1], t �= 1/2.
Mind also that in the definition of gate, we require m′ to be different from m.

In this way, we exclude from the set of gates points x for which there exists a
continuous path z : [0, 1] → R

d such that z(0) = m, z(1) = m, z(1/2) = x and
U (z(t)) < U (x) = U (m) + �(m) for all t ∈ [0, 1], t �= 1/2.

Recall that b = − (∇U + �) and that a heteroclinic orbit φ from x to y ∈ R
d

is a solution φ : R → R
d of the ODE

ẋ(t) = b(x(t)), (2.4)

such that

lim
t→−∞φ(t) = x, lim

t→∞φ(t) = y.

We represent this relation by x � y. In other words, x � y indicates the existence
of a heteroclinic orbit from x to y. We assume also that for all m ∈ M0 such that
�(m) = d(1), and σ ∈ ϒ(m), there exists m′ ∈ M0, m′ �= m, such that

σ � m and σ � m′. (2.5)

The condition (2.5) is crucial. For instance, if there is a heteroclinic orbit from
a saddle point σ ∈ ϒ(m) to a saddle point σ ′, we are not able to determine which
is the local minimum visited after m when the process starts from a neighbourhood
of m.

The assumption (2.5) holds when the dynamical system x(·) defined in (2.4) is
a Morse-Smale system. In a Morse-Smale system, for two critical points c1, c2 of
U (·), the unstable manifold of c1 and the stable manifold of c2 intersect transver-
sally and thus when c1 � c2, the index (the number of negative eigenvalue of
the Hessian) must strictly decrease along heteroclinic orbits; hence (2.5) follows
naturally.

By Proposition A.1, any gate x ∈ ϒ := ∪m∈M0ϒ(m) belongs to the set of
critical points of U , denoted by C0:

C0 := { x ∈ R
d : (∇U )(x) = 0 }.

By [28, Theorem 2.1], the divergence-free field � vanishes at the critical points of
U : �(x) = 0 for all x ∈ C0. Denote by (∇2U )(x) the Hessian of U at x. Since U
is a Morse function, for all σ ∈ ϒ ,

(∇2U )(σ ) has only one negative eigenvalue, all the others being strictly positive.

(2.6)

Indeed, by definition, σ can not be a local minimum. On the other hand, assume that
σ is a gate between m and m′. If the number of negative eigenvalues is greater than
1, the set {x : U (x) < U (σ )} would be locally connected, and there would be a
continuous path from m to m′ staying strictly belowU (σ ), which is a contradiction.

Denote by V(m) the set of points m′ ∈ M0, m′ �= m, for which (2.5) holds for
some σ ∈ ϒ(m). Hence, V(m) is the set of local minima m′ ∈ M0, m′ �= m, for
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which there exist a critical point σ ∈ ϒ(m) and heteroclinic orbits from σ to m
and σ to m′:

V(m) := {
m′ ∈ M0 \ {m} : ∃ σ ∈ ϒ(m) such that σ � m, σ � m′ }.

Elements of V(m) are called neighbors of the local minimum m of U . Denote by
S(m,m′), m′ �= m, the set of critical points which separate m from m′:

S(m,m′) := {
σ ∈ ϒ(m) : σ � m, σ � m′ }. (2.7)

Reduced Model

Denote by (D�)(x) the Jacobian of � at x. By (2.6), (∇2U )(σ ), σ ∈ ϒ , has
only one negative eigenvalue. By [28, Lemma 3.3], (∇2U )(σ )+ (D�)(σ ) has also
one negative eigenvalue, represented by −μσ < 0. For m ∈ M0, σ ∈ ϒ(m), let
the weights ν(m), ω(σ ) be given by

ν(m) := 1√
det(∇2U )(m)

, ω(σ ) := μσ

2π
√− det ∇2U (σ )

· (2.8)

Let ω(m,m′), m �= m′ ∈ M0, be the weight given by

ω(m,m′) :=
∑

σ∈S(m,m′)
ω(σ ). (2.9)

Note that ω(m,m′) vanishes if m′ /∈ V(m). Moreover, neither S( · , · ) nor ω( ·, · )
is symmetric in its arguments. To include the depth of the local minimum m in the
definition of the weight ω(m,m′), set

ω1(m,m′) := ω(m,m′) 1{�(m) = d(1) }. (2.10)

Denote by L1 the generator of the M0-valued, continuous-time Markov chain
given by

(L1h)(m) = 1

ν(m)

∑
m′∈M0

ω1(m,m′) [ h(m′) − h(m) ]. (2.11)

As ω(m,m′) vanishes if m′ does not belong to V(m), the sum can be carried over
V(m).

Theorem 2.1. Assume that hypotheses (2.1), (2.5) are in force. Fix a bounded and
continuous function u0 : R

d → R. Denote by uε the solution of the parabolic equa-
tion (1.3). Then, (1.4) and (1.5) hold for all t > 0, where pt (·, ·) is the semigroup
associated to the generator L1.



Arch. Rational Mech. Anal.          (2024) 248:78 Page 11 of 70    78 

Resolvent Equation

The proof of Theorem 2.1 is based on properties of the resolvent equation
presented in this subsection. Denote by B(x, r), x ∈ R

d , r > 0, the open ball of
radius r centered at x. Let Wr (m), m ∈ M0, r > 0, be the connected component
of the set {x ∈ R

d : U (x) ≤ U (m) + r} containing m.
Fix m ∈ M0. All constants ri below depend on m and b(·), though this does

not appear in the notation. Equation (B.1) introduces a positive constant r5 > 0.
Choose r4 small enough for (3.9) to hold with r3 = r5. By Proposition B.1 and
conditions (1), (2) in Sect. 3, B(m, r5) does not contain critical points of U besides
m.

Choose r0 > 0 small enough so that for all m ∈ M0,

(a) W2r0(m)\{m} does not contain critical points of U ;
(b) W2r0(m) is contained in the domain of attraction of m for the ODE (2.4);
(c) b(x) · n(x) < 0 for all x ∈ ∂W2r0(m), where n(·) is the exterior normal of

the boundary of W2r0(m).
(d) W3r0(m) ⊂ B(m, r5).
(e) W2r0(m) ⊂ Dr4(m)

Since Wr (m) = {x ∈ R
d : U (x) ≤ U (m)+ r}, for r small enough n = ∇U at the

boundary of Wr (m). In particular, as � · ∇U = 0, b(x) · n(x) = −|∇U (x)|2 < 0
for all x ∈ ∂W2r0(m) and r0 small enough.

Set

E(m) := Wr0(m), m ∈ M0. (2.12)

For λ > 0, g : M0 → R, denote by φε = φ
λ,g
ε the unique solution of the

resolvent equation

(λ − θ(1)ε Lε) φε = G :=
∑

m∈M0

g(m) χE(m)
, (2.13)

where χA, A ⊂ R
d , represents the indicator function of the set A. The function on

the right-hand side vanishes at (∪m∈M0E(m))c and is constant on each well E(m′).
The second main result of this article reads as follows:

Theorem 2.2. For all λ > 0 and g : M0 → R,

lim
ε→0

max
m∈M0

sup
x∈E(m)

|φε(x) − f (m) | = 0,

where f is the solution of the reduced resolvent equation

(λ − L1) f = g,

and L1 is the generator introduced in (2.11).
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Comments and Remarks

The proofs of Theorems 2.1 and 2.2 are entirely based on the metastable be-
havior of the stochastic differential equation

dxε(t) = b(xε(t)) dt + √
2ε dWt , (2.14)

where ε > 0 denotes a small parameter corresponding to the temperature of the
system, and Wt a d-dimension Brownian motion.

The proof of Theorem 2.2 is divided in two parts. We first show in Sect. 4 that
φε is asymptotically constant on each well E(m). Then, we prove that the average
of the solution φε on a well E(m) converges to f .

In Sect. 10, we deduce from Theorem 2.2 and with ideas introduced in [21], the
convergence of the finite-dimensional distributions of the process xε(·). A similar
result has been obtained by Sugiura in [38] with different ideas in the case � = 0.

3. Mixing Time of Diffusions

The main result of this section, Theorem 3.1, provides an estimate on the mixing
time of a diffusion on R

d . The proof of this result can be skipped in a first reading
as the ideas and techniques used to derive the bound on the mixing time will not
be used in the next sections.

Fix a function U0 : R
d → R of class C3 and a vector field �0 : R

d → R
d of

class C2 such that

(∇U0)(x) · �0(x) = (∇ · �0)(x) = 0 for all x ∈ R
d . (3.1)

Suppose that U0 has a local minimum at x = 0 and that it has no other critical
point in a neighborhood of the origin. Furthermore, we assume, for convenience,
that U0(0) = 0.

Consider a vector field b0 : R
d → R

d of class C1 such that

(1) b0 vanishes only at the origin, which is a stable equilibrium point for the
dynamical system

ẏ(t) = b0( y(t)). (3.2)

(2) There exists r3 > 0 such that

b0(x) = − (∇U0)(x) − �0(x), x ∈ B(0, r3).

(3) There exist R > 0 and a finite constant C1 such that

|b0(x)| ≤ C1| x| and ‖Db0(x)‖ ≤ C1 |x| (3.3)

for all |x| > R, where the matrix norm is defined as

‖M‖ = sup
| y|=1

|M y|.
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(5) Let H0 = (∇2U0)(0) and L0 = (D�0)(0). Assume that

− 〈b0(x), H0x〉 ≥ 1

2
|H0x|2 for all x ∈ R. (3.4)

where 〈 ·, · 〉 represents the scalar product in R
d .

The main result of this section requires some notation. Let

A(x) := (Db0)(x), A := A(0), so that A = − (H0 + L0). (3.5)

By [28, Lemmata 4.5 and 4.1], all the eigenvalues of the matrix A have negative real
parts. Therefore, by [19, Theorems 2 and 3, p.414], there exists a positive definite
matrix K such that

A
†
K + KA = − I, (3.6)

where I is the identity.
Let Dr ⊂ R

d , r > 0, be the set given by

Dr := {x ∈ R
d : 〈x, H0 x〉 ≤ r2}. (3.7)

By (3.6), there exists r ′
4 > 0 such that

∥∥∥ (A(x) − A)†
K + K(A(x) − A)

∥∥∥ � 1

2
(3.8)

for all x ∈ B(0, r ′
4). By (3.7), D2r4 ⊂ B(0, r ′

4) for some r4 > 0. Take r4 small
enough so that

D2r4 ⊂ B(0, r3), (3.9)

where r3 has been introduced in condition (2) above.
The main result of this section reads as follows. Denote by dTV(μ, ν) the total

variation distance between probability measures μ and ν. Let yε(·) be the diffusion
given by

d yε(t) = b0( yε(t)) dt + √
2ε dWt . (3.10)

The process yε(·) starting at x ∈ R
d , is represented by yε(t; x). Let tε = ε−θ for

some θ ∈ (0, 1/3).

Theorem 3.1. Denote by πε the stationary state of the diffusion yε(·). Then,
lim
ε→0

sup
x∈Dr4

dTV
(
yε(tε; x), πε

) = 0.

Remark 3.2. The proof of this result is largely based on [1,27]. Theorem 3.1 follows
from [1, Theorem 2.2] when A is negative definite. As mentioned above, all the
eigenvalues of matrix A have negative real parts, but A might not be negative
definite. The purpose of this section is to extend [1, Theorem 2.2] to this situation.
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Proof of Theorem 3.1

The main idea of proof is to approximate the difference yε(t) − y(t) by a
Gaussian process. Let

ξ̂(t) = 1√
2ε

(
yε(t) − y(t)

)
.

By (3.10) and (3.2),

d ξ̂(t) = 1√
2ε

{
b0( yε(t)) − b0( y(t))

}
dt + dWt � (Db0)( y(t)) ξ̂(t)dt + dWt .

Hence, it is natural to conjecture that ξ̂(t) � ξ(t)where ξ(t) is the Gaussian process
defined by the SDE

dξ(t) = A( y(t)) ξ(t) dt + dWt , ξ(0) = 0. (3.11)

Let

zε(t) := y(t) + √
2ε ξ(t). (3.12)

By the previous discussion, we expect that yε(t) � zε(t).

Lemma 3.3. There exists r4 > 0 such that

lim
ε→0

sup
x∈Dr4

dTV
(
yε(tε; x), zε(tε; x)

) = 0. (3.13)

Denote by N (μ, �) the normal distribution with mean μ and covariance �.

Lemma 3.4. There exists r4 > 0 such that

lim
ε→0

sup
x∈Dr4

dTV

(
zε(tε; x), N (0, 2εH−1)

)
= 0.

Proof. The proof is presented in [1, Proposition 3.6], and relies on the fact that
zε(·; x) is a Gaussian process. In particular, zε(t; x) is a normal random variable
whose mean and variance can be expressed explicitly. The assertion is thus re-
duced to a computation of the total variation distance between two normal random
variables.

Denote by λ > 0 the smallest eigenvalue of H0. The proof starts at [1, display
(3.22)], and requires the bound

| y(t)|2 ≤ | y(0)|2 e−λt ,

and [1, Lemma B.2]. In the present context, Lemma 3.5 replaces the first estimate,
and [1, Lemma B.2] holds because it only needs all the eigenvalues of (Db0)(0) to
have a positive real part, a property satisfied by our model as mentioned in Remark
3.2. ��
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Proof of Theorem 3.1. Denote by pεt (·, ·) the transition kernel of the process yε(·)
and by πε(·) the density of the measure πε(dx): πε(dx) = πε(x)dx. By definition,
and since πε is the stationary state of the process yε(·),

dTV
(
yε(tε; x), πε

) = 1

2

∫
Rd

∣∣pεtε (x, y) − πε( y)
∣∣ d y

= 1

2

∫
Rd

∣∣∣ ∫
Rd

[
pεtε (x, y) − pεtε (x

′, y)
]
πε(x′) dx′

∣∣∣ d y .
The previous expression is bounded by

1

2

∫
Rd

∫
Rd

∣∣ pεtε (x, y) − pεtε (x
′, y)

∣∣πε(x′) dx′ d y

=
∫
Rd

dTV( yε(tε; x), yε(tε; x′) ) πε(x′) dx′.

By (3.22), the right-hand side is less than or equal to∫
Dr4

dTV
(
yε(tε; x), yε(tε; x′)

)
πε(x′) dx′ + C0 ε

for some finite constant C0. By Lemma 3.3, and a triangular inequality,

lim sup
ε→0

sup
x∈Dr4

∫
Dr4

∣∣ dTV
(
yε(tε; x), yε(tε; x′)

)
− dTV

(
zε(tε; x), zε(tε; x′)

) ∣∣ πε(x′) dx′ = 0.

It remains to show that

lim sup
ε→0

sup
x∈Dr4

∫
Dr4

dTV
(
zε(tε; x), zε(tε; x′)

)
πε(x′) dx′ = 0. (3.14)

Since the integrand is bounded by

dTV

(
zε(tε; x), N (0, 2εH−1)

)
+ dTV

(
N (0, 2εH−1), zε(tε; x′)

)
,

assertion (3.14) follows from Lemma 3.4. ��

Proof of Lemma 3.3

The proof is similar to the one presented in [1, Section 3.3], which is based
on conditions (C) or (H) of that article. These conditions, however, are only used
in the proof of Lemma 3.3 to derive the estimates presented in Lemmata 3.5, 3.7,
3.10, 3.11, and Proposition 3.8.

Fix δε = εc for some c > 0. As

yε(tε; x) = yε(δε; yε(tε − δε; x)), zε(tε; x) = zε(δε; zε(tε − δε; x)),
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we have that

dTV
(
yε(tε; x), zε(tε; x)

)
≤ dTV

(
yε(δε; yε(tε − δε; x)) , zε(δε; yε(tε − δε; x))

)
+ dTV

(
zε(δε; yε(tε − δε; x)) , zε(δε; zε(tε − δε; x))

)
.

(3.15)

The first term on the right-hand side is bounded in [1, Proposition 3.3] and the
second one in [1, Proposition 3.4]. The proof relies on the estimate presented in
Proposition 3.8 below.

We sketch the proof of these bounds. For the first one, fix x ∈ Dr4 and denote by
PY and PZ the law of process ( yε(s; x))s∈[0, δε] and (zε(s; x))s∈[0, δε], respectively.
By Pinsker inequality,

dTV
(
yε(δε; x), zε(δε; x)

)2 ≤ − 2 EPY

[
log

dPZ

dPY

]
. (3.16)

The SDE describing the process zε(·) can be written as

dzε(t) =
{
b0( y(t)) + Db0( y(t)) [ zε(t) − y(t) ]

}
dt + √

2ε dWt . (3.17)

Hence, by Girsanov theorem, (3.10), and (3.17),

log
dPZ

dPY
= 1√

2ε

∫ δε

0

〈
b0( yε(t)) − b0( y(t)) + Db0( y(t)) [ yε(t) − y(t)] , dWs

〉
− 1

4ε

∫ δε

0

∣∣ b0( yε(t)) − b0( y(t)) + Db0( y(t)) [ yε(t) − y(t) ] ∣∣2 ds .

Thus, the left-hand side of (3.16) is bounded by

1

2ε

∫ δε

0
Ex

[ ∣∣ b0( yε(t)) − b0( y(t)) + Db0( y(t)) [ yε(t) − y(t) ] ∣∣2 ] ds.

(3.18)

By condition (3.3) on Db0 (which is milder than that of [1]), and the argument pre-
sented in [1, Proposition 3.3], we can conclude that dTV

(
yε(δε; x) , zε(δε; x)

) ≤
δ

1/2
ε . We emphasize that in order to control the term b0( yε(t))− b0( y(t)), we need

the estimate of the fourth moment stated in Proposition 3.8. In all other places, a
bound of the second moment suffices.

By Lemma 3.7, the probability that the starting point yε(tε − δε; x) does not
belong to Dr4 vanishes as ε → 0. This fact together with the bound obtained in the
previous paragraph yields that

lim
ε→0

sup
x∈D

dTV
(
yε(δε; yε(tε − δε; x)), zε(δε; yε(tε − δε; x))

) = 0.

This completes the estimate of the first term on the right-hand side of (3.15).
We turn to the second term. By Proposition 3.8 the starting points yε(tε −δε; x)

and zε(tε − δε; x) are close. Since the process zε(·) is Gaussian, the distance

dTV
(
zε(δε;w), zε(δε;w′)

)
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is complete determined by w and w′, and one can follow the arguments presented
in [1, Proposition 3.3]. All error term appearing in the proof are uniform on the
starting point x ∈ Dr4 because all estimates obtained in the next subsections are
uniform. Thus,

lim
ε→0

sup
x∈Dr4

dTV
(
zε(δε; yε(tε − δε; x)), zε(δε; zε(tε − δε; x))

) = 0.

This completes the proof of Lemma 3.3.

Exponential Stability

In this subsection and in the next we provide the estimates used in the proofs
of Lemmata 3.3 and 3.4. Recall that we denote by λ > 0 the smallest eigenvalue
of H0. The following lemma substitutes [1, display (2.2)].

Lemma 3.5. For all t ≥ 0,

〈 y(t), H0 y(t)〉 � e−λt 〈 y(0), H0 y(0)〉 . (3.19)

Proof. By (3.2) and (3.4),

d

dt
〈 y(t), H0 y(t)〉 = 2 〈b0( y(t)), H0 y(t)〉 ≤ − | H0 y(t) |2

≤ − λ 〈 y(t), H0 y(t)〉 (3.20)

since λ is the smallest eigenvalue of H0. ��
Remark 3.6. Fix r > 0. By the previous lemma, y(t) ∈ Dr for all t ≥ 0 provided
y(0) ∈ Dr .

A similar computation for yε(t) instead of y(t) yields the moment estimate
stated in the next lemma. This bound plays the role of [1, condition (H)]. Denote
by Ex the expectation with respect to yε(·) starting at x. Moreover, from now on,
all estimates presented hold only for sufficiently small ε.

Lemma 3.7. Fix r > 0. For all n ≥ 1, there exists a constant C(n) > 0 such that

sup
t≥0

sup
x∈Dr

Ex
〈
yε(t), H0 yε(t)

〉n � e−(nλ/4) t 〈x, H0 x〉 + C(n) ε.

Proof. By Ito’s formula, (3.4), and a similar computation as to (3.20), we get

d
〈
yε(t), H0 yε(t)

〉 ≤ [−λ
〈
yε(t), H0 yε(t)

〉+ 2hε
]

dt + √
2ε
〈
2H0 yε(t), dWt

〉
,

(3.21)

where h = tr(H0). Thus, by Ito’s formula and (3.21),

d
〈
yε(t), H0 yε(t)

〉n ≤ n
〈
yε(t), H0 yε(t)

〉n−1 [−λ
〈
yε(t), H0 yε(t)

〉+ 2hε
]

dt

+ √
2ε
〈
2H0 yε(t), dWt

〉+ n(n − 1)

2

〈
yε(t), H0 yε(t)

〉n−2 × 8ε
∣∣H0 yε(t)

∣∣2 dt .
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For ε sufficiently small, this expression is bounded by

〈
yε(t), H0 yε(t)

〉n−1
[

− nλ

2

〈
yε(t), H0 yε(t)

〉+ 2hnε
]

dt

+ √
2ε
〈
2H0 yε(t), dWt

〉
.

Since

〈
yε(t), H0 yε(t)

〉n−1 ≤ n − 1

n

〈
yε(t), H0 yε(t)

〉n + 1

n
,

for small enough ε > 0,

d
〈
yε(t), H0 yε(t)

〉n ≤
[

− nλ

4

〈
yε(t), H0 yε(t)

〉n + c(n)ε
]

dt

+ √
2ε
〈
2H0 yε(t), dWt

〉
for some finite constant c(n). Hence, by Gronwall’s inequality,

Ex
〈
yε(t), H0 yε(t)

〉n ≤ e−(nλ/4) t 〈x, H0 x〉 + 4c(n)ε

nλ
,

as claimed ��
It follows from the estimates derived in the previous lemma, the argument

presented in [1, page 1192] (cf. the last line of the proof of [1, Proposition 3.7])
and the dominated and monotone convergence theorems that there exists a finite
constant C0 such that

πε((Dr4)
c) � C0 ε (3.22)

for all ε sufficiently small.

Gaussian Approximation

Hereafter, we couple the processes yε(·), ξ(·), and zε(·) by using the same driv-
ing Brownian motion Wt . This coupled probability law and associated expectation
will be denoted by px and Ex .

Proposition 3.8. (Gaussian approximation) There exist constants α1, α2 > 0 such
that

sup
t≤tε

sup
x∈Dr4

Ex

[
| yε(t; x) − zε(t; x) |4

]
� α1 ε

2+α2 .

This proposition corresponds to [1, display (3.12)] which plays a crucial role in
the proof of the main result. Since the proof of [1, display (3.12)] requires conditions
(C) and (H) of [1], and these conditions are not assumed here, we develop an
alternative approach below, based on [27].



Arch. Rational Mech. Anal.          (2024) 248:78 Page 19 of 70    78 

Lemma 3.9. There exists c > 0 such that

〈Kx, A( y(t))x〉 ≤ − c 〈x, Kx〉.
for all t ≥ 0 and x ∈ D2r4 .

Proof. By (3.8) and (3.6),

2〈Kx, A( y(t))x〉 =
〈
x,
[
A( y(t))†

K + KA( y(t))
]
x
〉

≤
〈
x,
[
A

†
K + KA

]
x
〉
+ 1

2
|x|2 = −1

2
|x|2 .

As K is bounded, the previous term is less than or equal to − c 〈x, Kx〉 for some
positive contant c, as claimed. ��
Lemma 3.10. For all n ≥ 1, there exists a finite constant C(n) > 0 such that

sup
t≥0

sup
x∈Dr4

Ex
[〈ξ(t), Kξ(t)〉n] � C(n).

Proof. By Ito’s formula and Lemma 3.9,

d〈ξ(t), Kξ(t)〉 = [
2 〈 Kξ(t), A( y(t))ξ(t) 〉 + k

]
dt + 2 〈Kξ(t), dWt 〉

≤ [−2c〈ξ(t), Kξ(t)〉 + k
]

dt + 2〈Kξ(t), dWt 〉 , (3.23)

where k = tr(K). The remainder of the proof is identical to the proof of Lemma
3.7. ��
Lemma 3.11. For all n ≥ 1, there exists a finite constant C(n) > 0 such that

sup
x∈Dr4

Ex
[

sup
t∈[0, tε]

〈ξ(t), Kξ(t)〉n ] � C(n) tnε .

Proof. By Hölder’s inequality, it is enough to prove the lemma for n even. Assume
that this is the case. Integrating (3.23), as the first term on the right-hand side is
negative,

〈ξ(t), Kξ(t)〉 � 〈x, Kx〉 + 2
∫ t

0
〈Kξ(t), dWt 〉ds + kt.

Therefore,

Ex

[
sup

t∈[0,tε]
〈ξ(t), Kξ(t)〉n

]
� C(n)

(
Ex

[
sup

t∈[0,tε]

∣∣∣∣
∫ t

0
〈Kξ(t), dWt 〉

∣∣∣∣
n ]

+ tnε
)

(3.24)

for some finite constant C(n). By the Burkholder–Davis–Gundy inequality and the
Hölder inequality, the expectation on the right-hand side is bounded by

C(n) Ex

[ ( ∫ tε

0
|Kξ(t)|2dt

)n/2 ] ≤ C(n) t(n/2)−1
ε Ex

[ ∫ tε

0
〈ξ(t), Kξ(t)〉n/2 dt

]
.

By Fubini’s theorem and by Lemma 3.10 [since n is even], this expression is less
than or equal to C(n) tn/2

ε . Inserting this bound is (3.24) completes the proof of the
lemma. ��
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The proof below is developed in [27] based on ideas of [1].

Proof of Proposition 3.8. Fix x ∈ Dr4 , and remember from (3.11) that ξ (t)depends
on x through the dynamical system y(·) which starts from x. Let

rε(t) := yε(t) − zε(t)√
2ε

= yε(t) − y(t)√
2ε

− ξ(t). (3.25)

We need to prove that there exist positive finite constants α1, α2 such that

sup
t≤tε

sup
x∈Dr4

Ex

[
〈rε(t), Krε(t)〉2

]
� α1ε

α2 . (3.26)

Since yε(t) and ξ(t) share the same driving Brownian motion, by (3.10), (3.2),
and (3.11) that

d

dt
〈rε(t), Krε(t)〉 = 2 〈Krε(t), A( y(t)) rε(t)〉 − 2 〈Krε(t), qε(t)〉,

(3.27)

where

qε(t) = 1√
2ε

{
b0( yε(t)) − b0( y(t)) − (Db0)( y(t)) ( yε(t) − y(t))

}
.

Let

Aε = Aε(x) := { yε(t) ∈ D2r4 for all t ∈ [0, tε]
}
.

By Lemma 3.9 and since K is positive-definite and bounded, on the event Aε the
right-hand side of (3.27) is bounded by

− c 〈rε(t), Krε(t)〉 − 2 〈Krε(t), qε(t)〉 ≤ − c1 〈rε(t), Krε(t)〉 + C2 |qε(t)|2
(3.28)

for some finite positive constants c1, C2.
Fix t ∈ [0, tε]. Since b0 ∈ C2(B(0, r3), R

d), by (3.9) on the event Aε,

|qε(t)| � C0√
ε

| yε(t) − y(t)|2 ≤ C0
√
ε
{ |rε(t)|2 + |ξ(t)|2 },

for some finite constant C0, whose value may change from line to line. The second
inequality follows from (3.25). Therefore, by (3.28),

d

dt
〈rε(t), Krε(t)〉 � − c1 〈rε(t), Krε(t)〉

+C3 ε
[
〈rε(t), Krε(t)〉2 + 〈ξ(t), Kξ(t)〉2

]
.

Let Bε = Bε(x) be the event defined by

Bε :=
{ C3 ε

c1

(
C3 ε tε sup

s∈[0, tε]
〈ξ(s), Kξ(s)〉2

)
� 1

2

}
.
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By Perov’s inequality [39, Theorem 3.1], as rε(0) = 0, it follows from the previous
inequality that on the event Bε,

〈rε(t), Krε(t)〉 � 2C3 ε tε e
−c1t sup

s∈[0, tε]
〈ξ(s), Kξ(s)〉2 .

for all t ∈ [0, tε]. Hence, by Lemma 3.11,

sup
t∈[0, tε]

sup
x∈Dr4

Ex

[
〈rε(t), Krε(t)〉2 1Aε∩Bε

]
� C0 ε

2 t6
ε = C0 ε

2−6θ .

Since θ < 1/3, this proves (3.26) on the event Aε ∩ Bε.
We turn to the event (Aε ∩ Bε)

c. By the Cauchy–Schwarz inequality,

Ex

[
〈rε(t), Krε(t)〉2 1(Aε∩Bε)c

]2
� Ex

[
〈rε(t), Krε(t)〉4

] {
Px(Ac

ε) + Px(Bc
ε)
}
.

By (3.25) and the Cauchy–Schwarz inequality,

Ex

[
〈rε(t), Krε(t)〉4

]
� C0

ε4

(
Ex

[
〈 yε(t), K yε(t)〉4 + 〈 y(t), K y(t)〉4 + ε4 〈ξ(t), Kξ(t)〉4

])
.

Hence, by Lemmata 3.5, 3.7 and 3.10,

Ex

[
〈rε(t), Krε(t)〉4

]
≤ C0

ε4

for all t ≥ 0, x ∈ Dr4 .
It remains to show that there exist c0 > 0 and C0 < ∞ such that

sup
x∈Dr4

Px(Ac
ε) ≤ C0 ε

4+c0 and sup
x∈Dr4

Px(Bc
ε) ≤ C0 ε

4+c0 . (3.29)

Consider the event Aε. On the complement of this set,

sup
t≤tε

〈
yε(t), H0 yε(t)

〉 ≥ (2r4)
2.

By (3.21),

〈
yε(t), H0 yε(t)

〉 ≤ 2 h ε t + 2
√

2ε
∫ t

0

〈
H0 yε(s), dWs

〉
.

Thus, as ε tε → 0, for ε small enough, by Markov inequality,

Px(Ac
ε) � Px

[
sup
t≤tε

∫ t

0

〈
H0 yε(s), dWs

〉
>

r2
1√
ε

]

≤ C0 ε
8 Ex

[
sup
t≤tε

∣∣∣ ∫ t

0

〈
H0 yε(s), dWs

〉 ∣∣∣16 ]
.
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By the Burkholder–Davis–Gundy and Hölder inequalities, the right-hand side is
bounded by

C0 ε
8 Ex

[ ( ∫ tε

0

∣∣H0 yε(s)
∣∣2 ds

)8] ≤ C0 ε
8 t7

ε Ex

[ ∫ tε

0

∣∣H0 yε(s)
∣∣16 ds

]
.

Hence, by Lemma 3.7,

sup
x∈Dr4

Px(Ac
ε) ≤ C0 ε

8 t8
ε = C0 ε

8(1−θ).

As θ < 1/3, the first assertion of (3.29) holds.
We turn to the second assertion. By definition, there exists a positive constant

c0 such that

Bc
ε =

{
sup

s∈[0,tε]
〈ξ(s), Kξ(s)〉 ≥ c0

ε
√
tε

}
.

By the Markov inequality and Lemma 3.11

sup
x∈Dr4

Px(Bc
ε) ≤ C0 ε

8 t4
ε sup

x∈Dr4

Ex

[
sup

s∈[0,tε]
〈ξ(s), Kξ(s)〉8

]
≤ C0 ε

8−12θ .

This proves the second assertion in (3.29) since θ < 1/3.

4. Local Ergodicity

Fix λ > 0, g : M0 → R, and recall that we denote by φε = φ
λ,g
ε the unique

solution of the resolvent equation (2.13). The main result of this section states that
the solution φε is asymptotically constant on each well E(m).

Theorem 4.1. Fix λ > 0 and g : M0 → R. For all m ∈ M0,

lim
ε→0

sup
x,y∈E(m)

|φε(x) − φε(y) | = 0.

Recall from (2.14) that we represent by xε(·) the diffusion process induced by
the generator Lε. The proof of Theorem 4.1 is based on mixing properties of xε(·)
obtained in [1,14,27]. Denote by P

ε
z , z ∈ R

d , the law of xε(·) starting from z.
Expectation with respect to P

ε
z , is represented by E

ε
z .

We start with elementary facts. By equation (1.3) in [6], conditions (2.1) guar-
antees that the partition function Zε, defined by

Zε :=
∫
Rd

e−U (x)/ε dx (4.1)

is finite. In particular, the Gibbs measure

με(dx) := Z−1
ε e−U (x)/ε dx := με(x) dx

is well defined. Moreover, by Theorem 2.2 and 2.3 in [28], the diffusion xε(·) is
positive recurrent and με is its unique invariant measure. On the other hand, as
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we assumed that minx∈Rd U (x) = 0, by [29, Proposition 3.2] or a straightforward
computation, if M� representes the set of absolute minima of U ,

Zε = [ 1 + oε(1) ] (2πε)d/2 ν�, where ν� =
∑

m∈M�

1√
det ∇2U (m)

, (4.2)

and, for a local minimum m ∈ M0,

με(E(m)) eU (m)/ε = [ 1 + oε(1) ] ν(m)

ν�
· (4.3)

In this formula, and throughout the article, oε(1) represents a remainder which
vanishes as ε → 0, and ν(m) has been introduced in (2.8).

Denote by τA, A ⊂ R
d , the hitting time of the set A:

τA := inf{ t ≥ 0 : xε(t) ∈ A }. (4.4)

Recall from (2.12) the definition of Wr (m). Conditions (b) and (c) in the definition
of E(m) guarantee that the hypotheses of Theorem 6.2 in Chapter 6 of [14] are
fulfilled. This results leads to

Proposition 4.2. Fix h < H, and denote byA, B a connected component of the set
{x : U (x) < h}, {x : U (x) < H}, respectively. Assume that A ⊂ B. Suppose that
all critical points c of U in A are such that U (c) ≤ h0 for some h0 < h. Then, for
all η > 0,

lim sup
ε→0

sup
x∈A

P
ε
x

[
τ∂B < e(H−h0−η)/ε

]
= 0. (4.5)

In particular, for all m ∈ M0, η > 0,

lim sup
ε→0

sup
x∈E(m)

P
ε
x

[
τ∂W2r0 (m) < e(r0−η)/ε

]
= 0.

The estimate in [14, Theorem 6.6.2] is uniform over initial points z belonging
to neighborhoods of a critical points. We claim that it holds uniformly over initial
points x ∈ A. Indeed, by [14, Theorem 2.1.2], since the set A is bounded, if we
denote by N the union of neighborhoods of all critical points of U in A, there exist
T0 < ∞, such that

lim inf
ε→0

inf
x∈A

P
ε
x [ τ∂N < T0, τ∂N < τ∂B ] = 1. (4.6)

Assertion (4.5) follows from (4.6), the strong Markov property and [14, Theorem
6.6.2]. Moreover, we could replace h0 by the minimal value of U on A, but that
will not be needed below.
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Mixing Times

Fix m ∈ M0. All constants, functions, processes which appear in this subsec-
tion depend on m, but this dependence is omitted in the notation.

Let b0 : R
d → R

d be the field of class C1 defined in Appendix Appendix B.
By (B.3) and condition (d) in the definition of r0, b0(x) = b(x) for x ∈ W3r0(m).
By Proposition B.1, the vector field b0 satisfies the hypotheses of Sect. 3.

Denote by xF
ε (·) the diffusion process (2.14) with the vector field b0 replacing b.

Let P
ε, F
z , z ∈ R

d , be the law of xF
ε (·) starting from z, and pFε (z, · ; t) its transition

kernel:

pFε (z, B; t) = P
ε, F
z

[
xF
ε (t) ∈ B

]
, z ∈ R

d , B ⊆ R
d .

Denote by μF
ε the stationary state of the process xF

ε (·).
Proof of Theorem 4.1. Fix m ∈ M0. Let

f ε(m) :=
∫
Rd

φε(x) μF
ε (dx) . (4.7)

It is enough to prove that for all m ∈ M0,

lim
ε→0

sup
x∈E(m)

|φε(x) − f ε(m) | = 0.

Recall from (2.13) the definition of the function G : R
d → R. By the stochastic

representation of the resolvent equation,

φε(x) = E
ε
x

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds

]
. (4.8)

Fix 0 < a < 1/3, 0 < η < r0/2, and let �ε = ε−a . By definition θ
(1)
ε ,

�ε ≺ e(r0−η)/ε ≺ θ(1)ε . (4.9)

Since �ε ≺ θ
(1)
ε and G is bounded,

φε(x) = E
ε
x

[ ∫ ∞

�ε/θ
(1)
ε

e−λs G(xε(θ(1)ε s)) ds
]

+ Rε(x),

where, here and below, Rε(x) represents an error whose value may change from
line to line and such that

lim sup
ε→0

sup
y∈E(m)

| Rε( y) | = 0.

By the Markov property,

φε(x) = [1 + Rε(x)] E
ε
x

[
Exε(�ε)

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds

] ]
+ Rε(x)

= E
ε
x
[
φε(xε(�ε))

] + Rε(x)
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because G is bounded. As �ε ≺ e(r0−η)/ε, by Proposition 4.2 and since φε is
uniformly bounded by (1/λ) ‖g‖∞,

E
ε
x
[
φε(xε(�ε))

] = E
ε
x

[
φε(xε(�ε)) 1{�ε < τ(W2r0 (m))

c }
]

+ Rε(x)

Recall that b and b0 coincide on W3r0(m). By coupling the diffusions xε(·), xF
ε (·),

and in view of Proposition 4.2, the previous expectation is equal to

E
ε,F
x

[
φε(xF

ε (�ε)) 1{�ε < τ(W2r0 (m))
c }
]

= E
ε,F
x

[
φε(xF

ε (�ε))
]

+ Rε(x) .

Mind that we changed the measure. By condition (e) in the definition of r0, E(m) ⊂
W2r0(m) ⊂ Dr4(m). Hence, by Theorem 3.1 and since φε is uniformly bounded,

E
ε,F
x

[
φε(xFε (�ε))

]
=
∫
Rd

φε( y) pFε (x, d y; �ε) =
∫
Rd

φε( y) μF
ε (d y) + Rε(x).

As the right-hand side is equal to f ε(m) + Rε(x), the theorem is proved. ��
Recall the definition of the sequence �ε introduced in (4.9). The proof of The-

orem 4.1 yields

Lemma 4.3. Fix m ∈ M0, b > 0. Then, for all A ⊂ R
d .

lim sup
ε→0

sup
t∈[2b, 4b]

sup
x∈E(m)

∣∣∣Pε
x
[
xε(tθ(1)ε ) ∈ A ] − P

ε
μF
ε

[
xε(tθ(1)ε − �ε) ∈ A ] ∣∣∣ = 0.

Denote by xR
ε (·) the diffusion xε(·) reflected at the boundary of W2r0(m). Note

that we omitted the dependence of xR
ε (·) on m. Denote by μR

ε the measure με

conditioned to W2r0(m), which is the invariant measure of the diffusion xR
ε (·). Let

finally P
ε,R
z , z ∈ W2r0(m), be the law of xR

ε (·) starting from z.
Recall that we denote by dTV(μ, ν) the total variation distance between two

probability measures ν, μ defined on R
d . Let μE(m)

ε be the measure με conditioned
to E(m). We claim that

lim sup
ε→0

dTV(μ
R
ε , μ

F
ε ) = 0. (4.10)

Indeed, fix A ⊂ R
d , x ∈ E(m), and the sequence �ε introduced in (4.9). By

stationarity and Theorem 3.1,

μF
ε (A) = P

ε,F
μF
ε

[
xF
ε (�ε) ∈ A ] = P

ε,F
x
[
xF
ε (�ε) ∈ A ] + Rε(x),

where adopted the convention established in the proof of Theorem 4.1 for the
remainder Rε(x).

As in the proof of Theorem 4.1, introduce the event {τ∂W2r0 (m) ≤ �ε} and
its complement. On the event {τ∂W2r0 (m) > �ε} we may replace the set A by

A ∩ W2r0(m), and couple the process xF
ε (·), xR

ε (·) up to time �ε. Therefore, the
probability on the right-hand side of the previous displayed equation is equal to

P
ε,R
x
[
xR
ε (�ε) ∈ A ∩ W2r0(m)

] + R(2)
ε = P

ε,R
x
[
xR
ε (�ε) ∈ A ] + R(2)

ε ,
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where |R(2)
ε | ≤ 2 supz∈E(m) P

ε
z[ τ∂W2r0 (m) ≤ �ε ]. Here, we removed the set

W2r0(m) because xR takes value on this set. By Proposition 4.2, R(2)
ε → 0.

Since the previous estimates are uniform over x ∈ E(m), we may average the
probability appearing on the right-hand side of the previous displayed equation
with respect to the measure μ

E(m)
ε to get that

μF
ε (A) = P

ε,R

μ
E(m)
ε

[
xR
ε (�ε) ∈ A ] + oε(1).

Rewrite the previous probability as

P
ε,R

μ
E(m)
ε

[
xR
ε (�ε) ∈ A ] = 1

με(E(m))

∫
E(m)

P
ε,R
y
[
xR
ε (�ε) ∈ A ]με(d y).

The measureμE(m)
ε is also the measureμR

ε conditioned to E(m). Sinceμε(W2r0(m)

\E(m))/με(E(m)) → 0, the previous expression is equal to

P
ε,R
μR
ε

[
xR
ε (�ε) ∈ A ] + R(3)

ε ,

where R(3)
ε → 0. Since μR

ε is the stationary state, the previous probability is equal
to μR

ε (A).
Putting together the previous estimates yields that

lim sup
ε→0

sup
A⊂Rd

∣∣μF
ε (A) − μR

ε (A)
∣∣ = 0.

as claimed in (4.10).
Next result follows from Lemma 4.3 and (4.10), Note that the measure μF

ε has
been replaced by μR

ε .

Corollary 4.4. Fix m ∈ M0, b > 0, A ⊂ R
d . Then,

lim sup
ε→0

sup
t∈[2b, 4b]

sup
x∈E(m)

∣∣∣Pε
x
[
xε(tθ(1)ε ) ∈ A ] − P

ε
μR
ε

[
xε(tθ(1)ε − �ε) ∈ A ] ∣∣∣ = 0.

5. Exiting Neighborhoods of Unstable Critical Points

The main result of this section, Proposition 5.5, asserts that the time necessary
for the diffusion xε(·) to leave neighborhoods of unstable critical points is bounded
by ε−1. It also characterizes the exiting sets.

Recall that C0 denotes the set of critical points of U and set

Y0 := C0 \ M0,

so that Y0 stands for the collection of critical points of U with index larger than 0.
By [28, Theorem 2.1], M0 and Y0 are the set of stable and unstable equilibria

of the dynamical system (2.4), respectively. Let H
c = (∇2U )(c), L

c = (∇ · �)(c),
c ∈ C0, so that H

c + L
c denotes the Jacobian of the drift b at the critical point c.

Next result asserts that critical points in Y0 are hyperbolic.
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Lemma 5.1. Fix c ∈ Y0. Then, the matrix H
c + L

c is invertible and does not have
a pure imaginary eigenvalue.

Proof. Suppose, by contradiction, that ai , a ∈ R, is an eigenvalue of H
c + L

c.
Denote by v the unit eigenvector corresponding to ai so that (Hc + L

c)v = aiv.
Thus, if A

† represents the transpose of the matrix A,

aiv · aiv = v · (Hc + L
c)†(Hc + L

c)v

= v ·
{
(Hc)†

H
c + (Hc)†

L
c + (Lc)†

H
c + (Lc)†

L
c)
}

v .

By [28, Lemma 4.5], the matrix H
c
L
c is skew-symmetric, so that

− a2‖v‖2 = ‖H
cv‖2 + ‖L

cv‖2 ,

which is a contradiction if a �= 0. If a = 0, H
cv = 0 which implies that v = 0

since H
c is invertible. This is also a contradiction to the fact that v is a unit vector.

��

The Hartman–Grobman Theorem

Fix from now on a critical point c ∈ Y0 of index k ≥ 1. In this subsection, we
use Hartman–Grobman theorem [7, Theorem 1.47], [36, Section 2.8], to define a
neighborhood of c.

Denote by υx(t), x ∈ R
d , t ≥ 0, the solution of the ODE (2.4) starting from x,

and by υL ,x(t) = υc
L ,x(t) the solution of the linear ODE

ẋ(t) = − (Hc + L
c) (x(t) − c) (5.1)

starting from x. The Hartman–Grobman theorem, which can be applied in view of
Lemma 5.1, reads as follows:

Theorem 5.2. Fix c ∈ Y0. There exist open neighborhoods Uc, U L
c of c and a

homeomorphism� : Uc → U L
c such that�(c) = c and�(υx(t)) = υL ,�(x)(t) for

all (x, t) such that υx(t) ∈ Uc. In particular, c is the unique critical point of U in
Uc.

Denote by Ms = Ms(c), Mu = Mu(c) the stable, unstable manifold of c for
the dynamical system (2.4), respectively. Hence, for all x ∈ Ms , limt→∞ υx(t) =
c. In contrast, for all y ∈ Mu there exists a solution x(t), t ≤ 0 of (2.4) such that

x(0) = y, lim
t→−∞ x(t) = c.

Let ML ,s , ML ,u be the stable, unstable manifold of c for the linear ODE (5.1). By
Theorem 5.2, on the set U L

c , ML ,s = �(Ms), ML ,u = �(Mu).
Choose r1 > 0 so that B(c, r1) ⊂ U L

c . Let N̂ = N̂ (c) := �−1(B(c, r1)). For
each y ∈ N̂ \ Ms , let t ( y) = tc( y) be the exit time from N̂ :

t ( y) := inf{t ≥ 0 : υ y(t) �∈ N̂ }. (5.2)
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Clearly, t ( y) = tL(�( y)) if tL(z) represents the exit time from B(c, r1) for the
linear ODE (5.1) starting from z. Denote by e( y) = ec( y) the exit location of the
dynamical systems (2.4) from the set N̂ : e( y) := υ y(t ( y)). Here, again,

�(e( y)) = eL(�( y)), (5.3)

provided that eL(z) stands for the exit location from the set B(c, r1) of the linear
dynamical systems (5.1) starting from z.

Let J a
L = J a

L (c) be the elements of ∂B(c, r1) at distance less than a from
ML ,u ∩ ∂B(c, r1):

J a
L := {x ∈ ∂B(c, r1) : ∃ y ∈ ML ,u ∩ ∂B(c, r1) such that ‖x − y‖ < a

}
.

Next result is an assertion about the linear ODE (5.1); its proof is presented in
Appendix Appendix D.

Lemma 5.3. Fix c ∈ Y0 and a > 0. Then, there exists 0 < r(a) < r1 such that
eL(z) ∈ J a

L for all z ∈ B(c, r(a))\ML ,s .

We turn to the construction of a second neighborhoodN ⊂ N̂ . Since∇U ·� ≡ 0,
(d/dt)U (υx(t)) = − |∇U (υx(t))|2 < 0 for all x /∈ C0, t > 0. Therefore, if x is not
a critical point,U (υx(t)) is strictly decreasing in t , and there exists η0 = η0(r1) > 0
such that

max
x∈Mu∩∂N̂

U (x) < U (c) − 3η0. (5.4)

Take η0 small enough so that there is no critical point c′ ∈ C0 such that

U (c′) ∈ [U (c) − η0, U (c)). (5.5)

Lemma 5.4. For all c ∈ Y0, there exists r2 = r2(c) > 0 such that,

sup
y∈�−1(B(c, r2))\Ms

U (e( y)) ≤ U (c) − 2η0.

Proof. For a > 0, let

J a = { x ∈ ∂N̂ : ∃ y ∈ Mu ∩ ∂N̂ such that ‖x − y‖ < a
}
.

By (5.4) and the fact that |∇U | is bounded on compact sets, there exists a0 > 0
such that

sup
x∈J a0

U (x) ≤ U (c) − 2η0. (5.6)

Since �−1 : U L
c → Uc is continuous, it is uniformly continuous on the compact

set B(c, r1). Therefore, there exists b0 > 0 such that ‖�−1(x) − �−1( y)‖ ≤ a0
for all x, y ∈ B(c, r1) satisfying ‖x − y‖ ≤ b0, Therefore,

�−1(J b0
L ) ⊂ J a0 . (5.7)



Arch. Rational Mech. Anal.          (2024) 248:78 Page 29 of 70    78 

Let r(b0) > 0 be the positive constant whose existence is asserted in Lemma 5.3.
Set r2 = r(b0)∧r1. By Lemma 5.3, eL(�( y)) ∈ J b0

L for�( y) ∈ B(c, r2)\�(Ms).
Therefore, by (5.3) and (5.7), for y ∈ �−1(B(c, r2)) \ Ms ,

e( y) = �−1(eL(�( y))) ∈ J a0 .

This along with (5.6) imply that

sup
y∈�−1(B(c, r2))\Ms

U (e( y)) ≤ U (c) − 2η0,

which completes the proof of the lemma. ��

Exit problem from N̂
Denote by N = N (c) the closure of the set �−1(B(c, r2)), where r2 has been

introduced in Lemma 5.4. As the set N̂ contains an unstable equilibrium c, the exit
problem from N̂ does not follow from the Friedlin-Wentzell theory, but has been
investigated in [17].

Proposition 5.5. Fix c ∈ Y0. Then,

lim sup
ε→0

sup
z∈N

P
ε
z
[
U (xε(τ∂N̂ )) > U (c) − η0

] = 0.

Moreover, for all C > 0,

lim sup
ε→0

sup
z∈N

P
ε
z

[
τ∂N̂ >

C

ε

]
= 0.

Proof. Since the set N̂ contains only one unstable equilibrium, the second assertion
of the proposition follow from [17, Theorem 2.1], which presents an estimate for
a fixed starting point in the interior of N̂ . However, a careful reading of the proof
reveals that all estimates hold uniformly on compact subsets of the interior of N̂ ,
such as N .

We turn to the first assertion of the proposition. Let Q ⊂ ∂N̂ be given by

Q = {e( y) : y ∈ N \ Ms} ∪ (Mu ∩ ∂N̂ ).

By [17, Theorem 2.3], for any open neighborhood U ⊂ ∂N̂ of Q in ∂N̂ ,

lim sup
ε→0

sup
z∈N

P
ε
z
[
xε(τ∂N̂ ) /∈ U ] = 0.

Note that [17, Theorem 2.3] is stated for a fixed starting point in the interior of
N̂ , but as in the first part of the proof, all estimates in the proof of this result hold
unifomly on compact subsets of the interior of N̂ .

By (5.4) and Lemma 5.4,

sup
x∈Q

U (x) ≤ U (c) − 2η0.

To complete the proof, it remains to choose a neighborhood U small enough so that

sup
x∈U

U (x) ≤ U (c) − η0.

��
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6. Hitting Wells

The main result of this section, Theorem 6.1 below, asserts that starting from a
compact set, the diffusion xε(·) hits some well E(m) in a time bounded by ε−1.

Denote by E(A), A ⊂ R
d , the union of the wells in A:

E(A) =
⋃

m∈M0∩A
E(m).

Let

�H = {x ∈ R
d : U (x) ≤ H}, H ∈ R.

Theorem 6.1. Fix H > minx∈Rd U (x). Suppose that there is no critical point
c ∈ C0 such that U (c) = H. Then, for all C > 0,

lim sup
ε→0

sup
z∈�H

P
ε
z

[
τE(�H ) >

C

ε

]
= 0.

Fix h0 < h1, and denote by A, B a connected component of the set {x ∈ R
d :

U (x) < h0}, {x ∈ R
d : U (x) < h1}, respectively. Assume that A ⊂ B, and that

there are no critical points c of U in B \ A. Then, for all C > 0,

lim sup
ε→0

sup
z∈A

P
ε
z

[
τE(B) >

C

ε

]
= 0.

Corollary 6.2. Fix R > 0 large enough for �R to contain all the local minima of
U. For all constant C > 0,

lim sup
ε→0

sup
x∈�R

P
ε
x

[
τE(M0) >

C

ε

]
= 0 .

Next result follows from Proposition 4.2 and Theorem 6.1.

Corollary 6.3. Fix h0 < h1, and denote byA, B a connected component of the set
{x ∈ R

d : U (x) < h0}, {x ∈ R
d : U (x) < h1}, respectively. Assume that A ⊂ B,

and that there are no critical points c of U in B \ A. Then,

lim sup
ε→0

sup
x∈A

P
ε
x
[
τ∂B < τE(B)

] = 0 .

Remark 6.4. We expect the optimal time scale to be O(log ε−1) instead of O(ε−1).

Denote byN (A),A ⊂ R
d , the union, carried over all critical points c inY0∩A,

of the neighborhoods N (c) introduced in the previous section:

N (A) =
⋃

c∈Y0∩A
N (c).
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Lemma 6.5. Under the hypotheses of Theorem 6.1, for all C > 0,

lim sup
ε→0

sup
z∈�H

P
ε
z

[
τN (�H )∪E(�H ) >

C

ε

]
= 0,

lim sup
ε→0

sup
z∈A

P
ε
z

[
τN (B)∪E(B) >

C

ε

]
= 0.

Proof. For each z ∈ �H , υz(t) reaches the set N (�H ) ∪ E(�H ) in finite time.
Therefore, the assertion of the lemma follows from [14, Theorem 2.1.2]. ��

Proof of Theorem 6.1

We prove the first assertion of the theorem. The arguments for the second one
are similar. Recall the definition of η0 = η0(c), c ∈ Y0, introduced at (5.5), and let

H(c) = {x : U (x) ≤ U (c) − η0} .
By definition of η, there is no critical point c′ of U such that U (c′) = U (c) − η0.

The proof is carried out by induction on |Y0 ∩�H |, the number of critical point
c ∈ Y0 which belong to �H . If there are no such critical points in �H the assertion
of the theorem follows from Lemma 6.5.

Consider the general case. Decompose the probability P
ε
z[ τE(�H ) > Cε−1 ]

into

P
ε
z

[
τE(�H ) >

C

ε
, τE(�H ) = τE(�H )∪N (�H )

]
+P

ε
z

[
τE(�H ) >

C

ε
, τE(�H ) > τE(�H )∪N (�H )

]
.

The first probability is bounded above by P
ε
z[ τE(�H )∪N (�H ) > Cε−1 ]. By Lemma

6.5 this expression vanishes as ε → 0. In view of this result, it remains to show
that

lim sup
ε→0

sup
z∈�H

P
ε
z

[
τE(�H ) >

C

ε
, τE(�H ) > τE(�H )∪N (�H ), τE(�H )∪N (�H ) ≤ C

2ε

]
= 0.

By the strong Markov property, the last display is bounded by

lim sup
ε→0

sup
z∈E(�H )∪N (�H )

P
ε
z

[
τE(�H ) >

C

2ε

]
.

Since P
ε
z[ τE(�H ) > C

2ε ] = 0 if z ∈ E(�H ), it suffices show that, for each c ∈
Y0 ∩ �H ,

lim sup
ε→0

sup
z∈N (c)

P
ε
z

[
τE(�H ) >

C

2ε

]
= 0.

By Proposition 5.5, it is enough to prove that

lim sup
ε→0

sup
z∈N (c)

P
ε
z

[
τE(�H ) >

C

2ε
, τ∂N̂ (c) ≤ C

4ε
, xε(τ∂N̂ (c)) ∈ H(c)

]
= 0.
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By the strong Markov property, the left-hand side is bounded from above by

lim sup
ε→0

sup
z∈H(c)

P
ε
z

[
τE(�H ) >

C

4ε

]
= 0.

As c belongs to �H , U (c) ≤ H and H(c) ⊂ �H . Thus, τE(�H ) ≤ τE(H(c)), and it
is enough to prove that

lim sup
ε→0

sup
z∈H(c)

P
ε
z

[
τE(H(c)) >

C

4ε

]
= 0.

This identity follows from the induction hypothesis. Indeed, as the critical point c
belongs to �H and not to H(c), the number of critical points in Y0 ∩�H is strictly
greater than the one in Y0 ∩ H(c). ��

We conclude this section with two results on hitting times of wells. The first
one follows from Theorem 2.2 and [22, Lemma 4.2]. It will be used in Sect. 10 in
the proof of Theorem 2.1. We state it here, before the proof of Theorem 2.2, to have
all hitting time estimates of wells in the same section.

Lemma 6.6. For all m ∈ M0,

lim sup
a→0

lim sup
ε→0

sup
x∈E(m)

P
ε
x
[
τE(M0)\E(m) ≤ a θ(1)ε

] = 0.

The last result asserts that starting from the domain of attraction of a local
minima the well associated to this local minimum is attained before the other ones.
Recall that we denote by υx(t), x ∈ R

d , t ≥ 0, the solution of the ODE (2.4)
starting from x. Denote by D(m), m ∈ M0, the domain of attraction of m:

D(m) = {x ∈ R
d : lim

t→∞υx(t) = m
}
.

Lemma 6.7. Let m ∈ M0 and K be a compact subset of D(m). Then,

lim inf
ε→0

inf
x∈K

P
ε
x
[
τE(M0) = τE(m)

] = 1.

Proof. Let F(m) := D(m)\E(m) so that ∂F(m) = ∂D(m) ∪ ∂E(m). Then,

P
ε
x
[
τE(M0) = τE(m)

] ≥ P
ε
x
[
τ∂F(m) = τ∂E(m)

]
.

Therefore, it suffices to show that

lim inf
ε→0

inf
x∈K

P
ε
x
[
τ∂F(m) = τ∂E(m)

] = 1. (6.1)

Since K is contained in the domain of attraction of m, the solution υx(t) of the
ODE (2.4) starting from x ∈ K exits the domain F(m) at ∂E(m). Thus, by [14,
Chapter 2, Theorem 1.2], (6.1) holds.

The estimate in [14, Chapter 2, Theorem 1.2] is not uniform in x, and just
asserts that

lim inf
ε→0

P
ε
x
[
τ∂F(m) = τ∂E(m)

] = 1

for all x ∈ D(m). However, the bound [14, Chapter 2, Theorem 1.2] holds uniformly
over x ∈ K (The variable a(t) in the proof depends on x but can be bounded
uniformly on any compact set of D(m), see the displayed equation above (1.6)).
This completes the proof of the lemma. ��
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7. Test Functions

In this section, we construct the test functions used in Sect. 9 to estimate the
solution of the resolvent equation. This test function appeared before in [6,23,28].
For this reason we just present its definition and main properties, and refer the
reader to [29] for proofs.

Fix a local minimum m. The test function proposed below and denoted by Qε is
an approximation of the equilibrium potential h : R

d → [0, 1] defined by h(x) =
P
ε
x[τE(m) < τE(M0)\E(m) ]. In particular, inside the wells the test function will be

either very close to 1 or very close to 0. In contrast, in very small neighborhoods
of saddle points it will change from 0 to 1. To capture this behavior, we linearize
the generator at the saddle point and set Qε to be close to the equilibrium potential
for the linearized generator.

Around a Saddle Point

Fix a saddle point σ of U such that m � σ � m′ for distinct local minima
m, m′ of U . Let H

σ = ∇2U (σ ), L
σ = (D�)(σ ). By (2.6), H

σ has a unique
negative eigenvalue. Denote by −λ1, λ2, . . . , λd the eigenvalues of H

σ , where
−λ1 represents the unique negative eigenvalue. Mind that we omit the dependence
on σ which is fixed. Let e1, ek , k ≥ 2, be the unit eigenvector associated with the
eigenvalue −λ1, λk , respectively. Choose e1 pointing towards m: for all sufficiently
small a > 0, σ + ae1 belongs to the domain of attraction of m. For x ∈ R

d and
k = 1, . . . , d, write x̂k = (x − σ ) · ek , so that x = σ +∑d

m=1 x̂mem .
Let

δ = δ(ε) := (ε log
1

ε
)1/2 .

Fix a large constant J > 0 to be chosen later, and denote by A±
ε , Cε the d-

dimensional rectangles defined by

A−
ε :=

{
x ∈ R

d : x̂1 ∈
[

− Jδ√
λ1

− ε2, − Jδ√
λ1

]
, x̂k ∈

[
− 2Jδ√

λk
, 2Jδ√

λk

]
, 2 � k � d

}
Cε :=

{
x ∈ R

d : x̂1 ∈
[

− Jδ√
λ1

, Jδ√
λ1

]
, x̂k ∈

[
− 2Jδ√

λk
, 2Jδ√

λk

]
, 2 � k � d

}
A+
ε :=

{
x ∈ R

d : x̂1 ∈
[

Jδ√
λ1
, Jδ√

λ1
+ ε2

]
, x̂k ∈

[
− 2Jδ√

λk
, 2Jδ√

λk

]
, 2 � k � d

}
.

Fig. 1 illustrates these definitions and the next ones.
Recall from (2.8) that H

σ + L
σ has a unique negative eigenvalue, denoted by

−μ. Denote by A
† the transpose of a matrix A. By [28, display (8.1)], the matrix

H
σ −(Lσ )† also has a unique negative eigenvalue equal to −μ. Denote by v the unit

eigenvector of H
σ − (Lσ )† associated with −μ. By [28, Lemma 8.1], v · e1 �= 0.

We assume that v · e1 > 0, as we can take −v instead of v if this inner product is
negative.

Let pε : Cε → R be given by

pε(x) := 1

Mε

∫ (x−σ )·v

−∞
e− μ

2ε t
2

dt, (7.1)
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Fig. 1. The sets around a saddle point σ appearing in the definition of the test function

where the normalizing constant Mε is given by

Mε =
∫ ∞

−∞
e− μ

2ε t
2

dt =
√

2πε

μ
. (7.2)

We extend continuously the function pε to the d-dimensional rectangle Rε =
A−

ε ∪ Cε ∪ A+
ε as follows. For x̂ = σ +∑d

k=1 x̂kek ∈ A+
ε , let

xr = σ + Jδ√
λ1

e1 +
d∑

k=2

x̂k ek . (7.3)

We define xl similarly for x ∈ A−
ε , replacing on the right-hand side of the previous

formula the first plus sign by a minus sign. Clearly, xr and xl belong to Cε. We
extend the definition of pε to Rε by setting pε : A−

ε ∪ A+
ε → R as

pε(x) = 1 + ε−2
[
x̂1 − Jδ√

λ1
− ε2

]
[ 1 − pε(xr ) ], x ∈ A+

ε ,

pε(x) = ε−2
[
x̂1 + Jδ√

λ1
+ ε2

]
pε(xl), x ∈ A−

ε .

(7.4)

The function pε is an approximating solution of the Dirichlet problemL†
ε f = 0

inRε with boundary conditions f = 1 on the points ofRε where x̂1 = Jδ/
√
λ1+ε2

and f = 0 on the ones such that x̂1 = −Jδ/
√
λ1 − ε2. This is the content of [29,

Proposition 6.2], which states that the integral of θ(1)ε |L†
ε f | on a set slightly smaller

thanRε vanishes as ε → 0. This result also justifies the definition of the test function
pε.

The test function pε(·) constructed above depends on σ and m. To stress this
fact, it is sometimes represented by pσ ,m

ε (·).
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Fig. 2. The saddle points σ 2 in ∂W does not belong to SH (W) because it leads to critical
points in W

Inside a Well

In this subsection we define a test function Qε on R
d with the help of the test

functions pσ ,m
ε introduced in the previous subsection. Recall that we denote by

B(x, r) the open ball of radius r centered at x.
Fix a height H such that U (σ ) = H for some saddle point σ of U . Denote by

W a connected component of the set {x ∈ R
d : U (x) < H}. Assume that there

exists a saddle point σ ′ ∈ ∂W satisfying condition (a) below and that condition (b)
is fulfilled for all saddle points σ ′ ∈ ∂W satisfying (a). Here,

(a) There exists δ0 > 0 such that B(σ ′, δ)∩{x ∈ R
d : U (x) < H} is not contained

in W for all 0 < δ < δ0;
(b) There exists m, m′ ∈ M0 such that

σ ′
� m and σ ′

� m′. (7.5)

Condition (b) prevents the existence of a heteroclinic orbit from σ to a critical
point which is not a local minimum. Clearly, if conditions (a) and (b) hold, m ∈ W
and m′ �∈ W or the contrary.

Let SH (W) = {σ 1, . . . σ p} be the (non-empty) set of saddle points σ ∈ ∂W
satisfying (a) and (b). Note that there might be saddle points σ in ∂W which do not
belong to SH (W) because they lead to critical points in W: σ � x, σ � y for x,
y ∈ W ∩ C0. Figure 2 illustrates this possibility. On the other hand, as σ ∈ ∂W ,
U (σ ) = H for all σ ∈ SH (W).

Write, whenever needed to clarify, W as W1, and denote by W j , 2 ≤ j ≤ m,
the connected components of the set {x ∈ R

d : U (x) < H} which share with W
a common saddle point in SH (W). Hence, for each W j , 2 ≤ j ≤ m, there exist
σ ∈ SH (W) ∩ W j , m ∈ W ∩ M0, m′ ∈ W j ∩ M0 such that σ � m, σ � m′.

Fix η > 0 small enough so that there is no critical point x with height in the
interval (H, H + 2η). Let � be the connected component of the set {x ∈ R

d :
U (x) ≤ H + η} which contains W (and thus all connected components W j ), and
set

Kε := {x ∈ R
d : U (x) ≤ H + J 2δ2} ∩ �.
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Denote by ∂0Rσ
ε , σ ∈ SH (W), the boundary of the set Rσ

ε , introduced in the
previous subsection, given by

∂0Rσ
ε =

{
x ∈ Rσ

ε : x̂k = ± 2Jδ√
λk

for some 2 � k � d
}
.

By the proof of [28, Lemma 8.3],

U (x) � U (σ ) + 3

2
J 2 δ2 [ 1 + oε(1) ] (7.6)

for all x ∈ ∂0Rε. In particular, ∂0Rε is contained in the complement ofKε provided
that ε is sufficiently small.

Let Eσ
ε := Rσ

ε ∩ Kε, σ ∈ SH (W). Denote by Wε
1 the connected com-

ponent of Kε\(⋃σ∈SH (W) Eσ
ε ) which intersects W1, and let Wε

2 = Kε\(Wε
1 ∪⋃

σ∈SH (W) Eσ
ε ). With this notation,

� =
⋃

σ∈SH (W)

Eσ
ε ∪ Wε

1 ∪ Wε
2 ∪ (� \ Kε

)
. (7.7)

For each σ ∈ SH (W), denote by mσ the local minimum m in W such that
σ � m. Recall the notation introduced at the end of the previous subsection, and
let qσ = pσ ,mσ . Consider the test function Qε : Kε → R given by

Qε(x) = 1, x ∈ Wε
1 ; Qε( y) = 0, y ∈ Wε

2 ;
Qε(x) = qσ

ε (x), x ∈ Eσ
ε , σ ∈ SH (W). (7.8)

By (7.4), the function Qε is continuous on Kε. Moreover, if Gε represents the
open set formed by the union of the interiors of the set Eσ

ε , σ ∈ SH (W), and the
interior of the sets Wε

i , i = 1, 2,

‖∇Qε‖L∞(Gε) = O(ε−1/2) and ‖�Qε‖L∞(Gε) = O(ε−3/2) .

We can extend Qε to� keeping these bounds out of a (d−1) dimensional manifold:

‖Qε‖L∞(�0) ≤ 1, ‖∇Qε‖L∞(�0) = O(ε−1/2), and ‖�Qε‖L∞(�0) = O(ε−3/2)

(7.9)

where �0 = � \M, and M is (d − 1) dimensional manifold at which the gradient
of Qε is discontinuous. We further impose the condition that Qε vanishes away
from �:

Qε ≡ 0 on {x ∈ R
d : U (x) > H + η

2
}, (7.10)

respecting the previous bounds. The function Qε is the test function associated to
the well W and height H .
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Main Estimate

Next lemma is a crucial step in the proof of Theorem 2.2. To stress below the
dependence of the set Cε, A±

ε on a saddle point σ , we add a superscript σ in the
notation. Denote by ∂±Cσ

ε the boundary of the set Cσ
ε given by

∂±Cσ
ε = { x ∈ Cσ

ε : x̂1 = ± Jδ√
λ1

}
, and let

Bσ
ε := Cσ

ε ∩ Kε, ∂±Bσ
ε := ∂±Cσ

ε ∩ Kε.

Recall from (4.2) the definition of ν�, and from (7.3) the definition of xr , xl . In
the statement of Lemma 7.1, the vectors v and e1 depend on σ , but this dependence
is omitted from the notation. For c > 0, let

�c,ε := {x ∈ R
d : U (x) ≤ H − c J 2δ2}.

Lemma 7.1. There exists c0 > 0, such that for all 0 < c < c0, g : M0 → R,

eH/ε

∫
�

Qε (−Lε φε) dμε =
∑

σ∈SH (W)

J (σ ) + oε(1), (7.11)

where J (σ ) = J+(σ ) − J−(σ ), and

J+(σ ) = −[ 1 + oε(1) ] ε
√
μσ (v · e1)

(2πε)(d+1)/2 ν�

∫
∂+Bσ

ε ∩�c,ε

e− 1
2ε x· (Hσ +μσ v⊗v) x φε(x)S(dx)

− [ 1 + oε(1) ] 1

(2π)(d+1)/2 ν�
√
μσ ε(d+3)/2

∫
Aσ ,+

ε ∩�c,ε

φε(x)
L

σ xr · e1

xr · v

e− 1
2ε xr · (Hσ +μσ v⊗v) xr dx.

In this formula, S(dx) represents the surface measure on the (d − 1)-dimensional
manifold ∂+Bσ

ε ∩ �c,ε, and J−(σ ) is obtained from J+(σ ) by removing the minus
sign and replacing ∂+Bσ

ε , Aσ ,+
a,ε by ∂−Bσ

ε , Aσ ,−
a,ε , respectively.

The proof of this result is omitted as it is the content of [29, Section 7].

8. Domain of Attraction

Fix σ ∈ SH (W). Denote by nσ the local minimum m of U which does not be-
long to W and such that σ � m. The main result of this section asserts that we may
replace φε(x) in the formula for J+(σ ), J−(σ ) by φε(mσ ), φε(nσ ), respectively.

Proposition 8.1. There exists c0 > 0, such that for all 0 < c < c0,

lim
ε→0

sup
x∈∂+Bσ

ε ∩�c,ε

|φε(x) − φε(mσ )| = 0, lim
ε→0

sup
x∈∂−Bσ

ε ∩�c,ε

|φε(x) − φε(nσ )| = 0

for all σ ∈ SH (W). A similar result holds if we replace ∂+Bσ
ε , ∂−Bσ

ε by Aσ ,+
ε ,

Aσ ,−
ε , respectively.
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The proof of Proposition 8.1 is based on the following general result. Recall
that we denote by D(m), m ∈ M0, the domain of attraction of m.

Proposition 8.2. Fix m ∈ M0, anda sequence (Kε)ε>0 of subsets of D(m).
Assume that

⋃
ε>0 Kε is a bounded set, and

lim inf
ε→0

inf
x∈Kε

P
ε
x
[
τE(M0) = τE(m)

] = 1 (8.1)

Then,

lim sup
ε→0

sup
x∈Kε

∣∣φε(x) − φε(m)
∣∣ = 0.

Proof. Recall the definition of the function G : R
d → R introduced in (2.13). By

the stochastic representation of the solution of the resolvent equation,

φε(x) = E
ε
x

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds

]
. (8.2)

As G is bounded, the absolute value of the time integral is bounded by λ−1 ‖g‖∞.
Therefore, as

⋃
ε>0 Kε is a bounded set and U (x) → ∞ as |x| → ∞, taking R

sufficiently large in Corollary 6.2,

φε(x) = E
ε
x

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds 1

{
τE(M0) ≤ C0

ε

} ]
+ Rε(x), (8.3)

where, here and below, Rε(x) is an error term such that

lim
ε→0

sup
x∈⋃ε>0 Kε

| Rε(x) | = 0.

Consider the time integral in the interval [0, τE(M0)/θ
(1)
ε ]. As G is bounded and

ε θ
(1)
ε → ∞, the expectation of this piece is bounded by Rε(x). By the strong

Markov property, the second piece is equal to

E
ε
x

[
E
ε
xε(τE(M0))

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds

]
e−λτE(M0)/θ

(1)
ε 1
{
τE(M0) ≤ C0

ε

} ]
.

By the same reasons invoked above, this expression is equal to

E
ε
x

[
E
ε
xε(τE(M0))

[ ∫ ∞

0
e−λs G(xε(θ(1)ε s)) ds

]
1
{
τE(M0) ≤ C0

ε

} ]
+ Rε(x).

In conclusion,

φε(x) = E
ε
x

[
φε(xε(τE(M0))) 1

{
τE(M0) ≤ C0

ε

} ]
+ Rε(x).

Applying Corollary 6.2 once more, as φε is uniformly bounded, the right-hand side
is equal to

E
ε
x

[
φε(xε(τE(M0)))

]
+ Rε(x) = E

ε
x

[
φε(xε(τE(m)))

]
+ Rε(x),

where we used hypothesis (8.1) and the uniform boundedness of φε in the last step.
To complete the proof, it remains to recall the assertion of Theorem 4.1. ��
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Fig. 3. The sets Gext and Pext introduced in the proof of Proposition 8.1

Recall that σ ∈ SH (W) is fixed and that σ � mσ , σ � nσ . Denote by B[x, r ]
the closed ball of radius r centered at x, and by W ′ the connected component of
the set {x ∈ R

d : U (x) < U (σ )} whose closure contains σ and nσ . Next lemma is
a consequence of Theorem 5.2.

Lemma 8.3. There exist δ > 0 such that (B[σ , δ] ∩ W)\{σ } is contained in the
domain of attraction D(mσ ) of mσ , and (B[σ , δ] ∩ W ′)\{σ } is contained in the
domain of attraction D(nσ ) of nσ .

Proof of Proposition 8.1. We prove the first assertion, as the second is similar. By
Lemma 8.3, there exists ε1 > 0 such that ∂+Bσ

ε ∩ �c,ε ⊂ D(mσ ) for all ε < ε1.
Therefore, by Proposition 8.2, it suffices to show that

lim inf
ε→0

inf
x∈∂+Bσ

ε ∩�c,ε

P
ε
x[ τE(mσ ) = τE(M0) ] = 1. (8.4)

Recall that W represents the well that contains mσ . Let Gε = ∂+Bσ
ε ∩ W . By

Lemma 8.3, there exists ε0 > 0 such that Gε ⊂ D(mσ ) for all ε ≤ ε0. We claim
that

inf
x∈∂+Bσ

ε ∩�c,ε

P
ε
x[τ∂Cσ

ε0
= τGε0

] = 1 − oε(1) (8.5)

where ∂Cσ
ε represents the boundary of Cσ

ε .

To prove (8.5), let P := ∂Cσ
ε0

\Gε0 , Gext = W\Cσ
ε0

, Pext = Rd\[Gext ∪ Cσ
ε0

].
Figure 3 illustrates these sets. By definition,

{ τ∂Cσ
ε0

= τGε0
} = { τGε0

< τP } = { τGext < τPext }

for all x ∈ ∂+Bσ
ε ∩�c,ε, ε < ε0. Therefore, by definition of the set Pext,

{
τE(mσ ) <

τPext

}
⊂ {τ∂Cσ

ε0
= τGε0

}.
Fix ε < ε0. Recall that we denote by B(x, r) the open ball of radius r centered

at x. By [28, Lemma 9.2], there exists a finite constantC0, whose value may change
from line to line, such that

capε(B( y, ε), E(mσ )) � C0 ε
d Z−1

ε e−U ( y)/ε
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for all y ∈ ∂+Bσ
ε ∩�c,ε. In this formula, capε(A,B) stands for the capacity between

the sets A, B for the diffusion xε(·) and is defined in Appendix Appendix C. On
the other hand, by the proof of [28, Lemma 9.3], there exists a finite constant C0
such that

capε(B( y, ε), Pext) ≤ C0 Z−1
ε e−U (σ )/ε

for all y ∈ ∂+Bσ
ε ∩�c,ε. By [23, Proposition 7.2], there exists a finite constant C0

such that

P
ε
x[ τPext < τE(mσ ) ] ≤ C0

capε(B(x, ε) , Pext)

capε(B(x, ε) , E(mσ ))

for all x ∈ R
d . Combining the previous estimates yields that for all x ∈ ∂+Bσ

ε ∩�c,ε

P
ε
x[ τPext < τE(mσ ) ] ≤ C0 ε

−d e(U (x)−U (σ ))/ε ≤ C0 ε
−d e−cJ 2δ2/ε = C0 ε

cJ 2−d .

This expression vanishes as ε → 0 for large enough J . To complete the proof of
assertion (8.5), it remains to recall that {τE(mσ ) < τPext } ⊂ {τ∂Cσ

ε0
= τGε0

}.
We turn to the proof of (8.4). For x ∈ ∂+Bσ

ε ∩ �c,ε, by the strong Markov
property and (8.5),

P
ε
x[τE(mσ ) = τE(M0)] ≥ P

ε
x[τE(mσ ) = τE(M0), τ∂Cσ

ε0
= τGε0

]
≥ inf

y∈Gε0

P
ε
y[τE(mσ ) = τE(M0)] P

ε
x[τ∂Cσ

ε0
= τGε0

]

= (1 − oε(1)) inf
y∈Gε0

P
ε
y[τE(mo) = τE(M0)] .

The last infimum is 1 − oε(1) by Lemma 6.7 because Gε0 ⊂ D(m0). ��
Proposition 8.1 provides a simple formula for the quantities J±(σ ) introduced

in Lemma 7.1.

Lemma 8.4. For all g : M0 → R,

eH/ε

∫
�

Qε (−Lε φε) dμε = 1

2πν�

∑
σ∈SH (W)

[φε(mσ ) − φε(nσ )]

μσ

√− det Hσ
+ oε(1). (8.6)

Proof. By Proposition 8.1, in the formula for J+(σ ) presented in Lemma 7.1, we
may replace φε(x) by φε(mσ ) at a cost oε(1), and we are left with a Gaussian type
integral. A straightforward computation, presented in the proof of [29, Lemma 7.5],
together with [29, Lemma 7.3] yields that

ε
√
μσ (v · e1)

(2πε)(d+1)/2 ν�

∫
∂+Bσ

ε ∩�c,ε

e− 1
2ε x· (Hσ +μσ v⊗v) S(dx)

= 1

2π ν�

λσ
1√− det Hσ

+ oε(1).
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Similarly, by the proof of [29, Lemma 7.7],

1

(2π)(d+1)/2 ν�
√
μσ ε(d+3)/2

∫
Aσ ,+

ε ∩�c,ε

L
σ x · e1

x · v
e− 1

2ε x· (Hσ +μσ v⊗v) x dx

= 1

2πν�

λσ
1√− det Hσ

(Lσ (Hσ )−1v) · e1

v · e1
+ oε(1).

By the proof of [29, Proposition 5.7],

v · e1 + (Lσ (Hσ )−1v) · e1 = μσ

λσ
1

v · e1.

Combining the previous estimates yields that

J+(σ ) = − 1

2π ν�

μσ
1√− det Hσ

φε(mσ ) + oε(1).

The same argument leads to the same formula for J−(σ )with a plus sign andφε(nσ )

instead of φε(mσ ). This completes the proof of the lemma. ��

9. Proof of Theorem 2.2

Recall from (2.11), (4.7) the definitions of the generator L1, and the function
f ε : M0 → R, respectively. The main result of this section is

Theorem 9.1. For all λ > 0, g : M0 → R,

(λ − L1) f ε = g + oε(1).

Proof of Theorem 2.2. The assertion follows from two observations. The sequence
f ε is uniformly bounded and the equation (λ − L1) f = g has a unique solution.
��

The remainder of this section is devoted to the proof of Theorem 9.1. Fix
m ∈ M0. Let W be the connected component of the set {x ∈ R

d : U (x) <

U (m) + �(m)} which contains m. By definition, W does not contain any other
local minimum of U (in particular, the present situation is different from the one
represented in Fig. 2, where W contains more than one local minimum). Recall
from (7.5) the definition of the set SH (W).

Lemma 9.2. There exists a saddle point σ ∈ ∂W satisfying condition (a) in (7.5).
Condition (b) is fulfilled for all saddle points σ ′ ∈ ∂W satisfying (a). Moreover,
SH (W) = ϒ(m), where H = U (m) + �(m).

Proof. By Proposition A.1, there exist a local minimum m′ of U different from
m and a continuous path z : [0, 1] → R

d such that U (m) + �(m) = �(m,m′),
z(0) = m, z(1) = m′, and

max
t∈[0, 1]U (z(t)) = U (z(1/2)) = �(m, m′), U (z(s))
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< U (z(1/2)), s ∈ [0, 1] \ {1/2}, (9.1)

and σ := z(1/2) is a saddle point of U . In particular, σ ∈ ∂W . Condition (a) is
satisfied because m′ �= m and W contains only the local minimum m.

We turn to condition (b). Let σ be a saddle point in ∂W satisfying (a). By
definition of W and with the help of the solution of the ODE (2.4), it is possible
to construct a continuous path z : [0, 1] → R

d such that z(0) = m′ ∈ M0,
z(1/2) = σ , z(1) = m′′ ∈ M0, and

U (z(s)) < U (σ ), s �= 1/2,

for somem′,m′′ ∈ M0. As σ satisfies (a), we may assume without loss of generality
that m′ ∈ W , m′′ ∈ Wc

. Since W contains a unique local minimum, m′ = m.
Therefore, sinceU (σ ) = U (m)+�(m), by definition ofϒ(m), σ ∈ ϒ(m). Hence,
by condition (2.5), there exists m′′′ ∈ M0, m′′′ �∈ W , such that σ � m, σ � m′′′,
which is condition (b).

Assume that σ ∈ SH (W). By definition, it satisfies (a). Thus, by the previous
paragraph, σ ∈ ϒ(m). Conversely, suppose that σ ∈ ϒ(m). By definition, there
exists a local minimum m′ �= m and a continuous path z : [0, 1] → R

d such that
z(0) = m, z(1) = m′ for which (9.1) holds. By Proposition A.1, σ := z(1/2) is a
saddle point of U . Since W has a unique local minimum, m′ �∈ W . Thus, condition
(a) holds for σ . By (2.5), condition (b) also holds, so that σ ∈ SH (W). ��
Proof of Theorem 9.1. Fix m ∈ M0. Let W be the connected component of the
set {x ∈ R

d : U (x) < U (m) + �(m)} which contains m. By Lemma 9.2, there
exists a saddle point σ ∈ ∂W satisfying condition (a) in (7.5), and condition (b)
is fulfilled for all saddle points σ ′ ∈ ∂W satisfying (a). We may therefore apply
Lemma 7.1.

Let Qε be the test function constructed in Sect. 7 associated to the well W , and
recall that H = U (m) + �(m). Multiply both sides of (2.13) by the test function
Qε and integrate over R

d to deduce that∫
�

Qε (λ − θ(1)ε Lε) φε dμε = g(m)

∫
E(m)

Qε dμε, (9.2)

where � is given by (7.7).
By definition of Qε, the right-hand side is equal to g(m) με(E(m)). Similarly,

as φε is uniformly bounded and

με

( ⋃
σ∈SH (W)

Eσ
ε ∪ (� \ Kε)

)
= oε(1) με(E(m)),

as Qε vanishes on W2 and is equal to 1 on W1, by definition of fε,

λ

∫
�

Qε φε dμε = λ fε(m) με(E(m)) + oε(1) με(E(m)) . (9.3)

It remains to consider the term in (9.2) involving the generator Lε. We examine
two cases separately.
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Case 1: Assume that �(m) > d(1). As �(m) > d(1) and e−U (m)/ε/με(E(m))

≤ C0 for some finite constant independent of ε, θ
(1)
ε = ed

(1)/ε ≺ e�(m)/ε

≤ C0 e[�(m)+U (m)]/ε με(E(m)). Hence, by Lemma 8.4, as the right-hand side of
(8.6) is bounded and H = �(m) +U (m),

θ(1)ε

∫
�

Qε (−Lε) φε dμε = oε(1) με(E(m)).

Combining the previous estimates yields that

fε(m) = 1

λ
g(m) + oε(1).

By (2.10) and the definition of L1, as �(m) > d(1), (L1 f ε)(m) = 0, which
completes the proof of the theorem in Case 1.
Case 2: Assume that �(m) = d(1). Multiply both sides of (8.6) by e−U (m)/ε. Since
θ
(1)
ε = ed

(1)/ε = e�(m)/ε = e[H−U (m)]/ε, by Lemma 8.4,

θ(1)ε

∫
�

Qε (−Lε) φε dμε

=
{ 1

2πν�

∑
σ∈SH (W)

[φε(m) − φε(nσ )] μσ

√− det Hσ
+ oε(1)

}
e−U (m)/ε

because mσ = m for all σ ∈ SH (W), as m is the only local minima of U in W .
Since e−U (m)/ε/με(E(m)) ≤ C0 for some finite constant independent of ε,

we may replace in the previous formula, oε(1) e−U (m)/ε by oε(1) με(E(m)). On
the other hand, by (4.3), e−U (m)/ε/ν� = [1 + oε(1)]με(E(m))/ν(m). We may
therefore rewrite the right-hand side of the previous equation as

{ 1

2πν(m)

∑
σ∈SH (W)

[φε(m) − φε(nσ )] μσ

√− det Hσ
+ oε(1)

}
με(E(m)).

By Lemma 9.2, SH (W) = ϒ(m). Thus, by (2.7) and by definition of nσ ,
introduced at the beginning of Sect. 8, {nσ : σ ∈ SH (W)} = {nσ : σ ∈ ϒ(m)} =
V(m). Hence, by Theorem 4.1, the previous expression can rewritten as

{ 1

2πν(m)

∑
m′∈V(m)

[ f ε(m) − f ε(m
′)]

∑
σ∈S(m,m′)

μσ

√− det Hσ
+ oε(1)

}
με(E(m)).

By (2.8), (2.9), (2.10) and (2.11), the previous expression is equal to

{
(−L1 f ε)(m) + oε(1)

}
με(E(m)).

To complete the proof of the theorem, it remains to combine the estimates obtained
at the beginning of the proof with this last one. ��
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Trace Processes

Let yε(t) be the process xε(t) speeded-up by θ
(1)
ε : yε(t) = xε(tθ

(1)
ε ). Denote

by Q
ε
x the probability measure on C(R+,R

d) induced by the process yε(t) starting
from x. We use the same symbol Q

ε
x to represent the expectation with respect to

the measure Q
ε
x .

Denote by Tε(t) the time spent by yε(·) on E(M0) up to time t > 0:

Tε(t) :=
∫ t

0
χE(M0)

( yε(s)) ds.

Let Sε(·) be the generalized inverse of the non-decreasing process Tε(·):
Sε(t) := sup{s ≥ 0 : Tε(s) ≤ t }, t ≥ 0.

Define the trace process of yε(·) on E(M0) by

yT
ε (t) := yε( Sε(t) ), t ≥ 0, (9.4)

which is an E(M0)-valued Markov process. Let � : E(M0) → M0 be the projec-
tion given by � =∑m∈M0

m χE(m). The next result is a consequence of Theorem
2.2 and [22, Theorem 2.3].

Theorem 9.3. Fixm ∈ M0, and a sequence xε ∈ E(m). Starting from xε, the pro-
cess �( yT

ε (t)) converges in the Skorohod topology to the M0-valued continuous-
time Markov chain induced by the generator L1 starting from m. Moreover, for all
T > 0,

lim
ε→0

sup
x∈E(M0)

Q
ε
x

[ ∫ T

0
χ
Rd \E(M0)

( yε(t)) dt
]

= 0. (9.5)

The next assertion is a consequence of (9.5). We refer to [21, display (3.2)] for
a proof.

Lemma 9.4. For all t ≥ 0 and δ > 0,

lim sup
ε→0

sup
x∈E(M0)

Q
ε
x[ Sε(t) > t + δ ] = 0.

10. Proof of Theorem 2.1: Finite-Dimensional Distributions

The main result of this section, Theorem 10.1, states that in the time-scale θ
(1)
ε

the finite-dimensional distributions of the diffusion xε(t) converge to those of the
M0-valued Markov chain whose generator is given by L1 introduced in (2.11).

Denote by D(R+,M0) the space of right-continuous functions y : R+ → M0
with left limits endowed with the Skorohod topology. Let Qm, m ∈ M0, be the
measure on D(R+,M0) induced by the continuous-timeM0-valued Markov chain
associated to the generator L1 starting from m. Expectation with respect to Qm is
also represented by Qm.
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Theorem 10.1. Fix m ∈ M0, and x ∈ D(m). Then,

lim
ε→0

E
ε
x

[ n∏
j=1

Fj (xε(θ(1)ε t j ))
]

= Qm
[ n∏

j=1

Fj ( y(t j ))
]

for all n ≥ 1, 0 < t1 < · · · < tn and bounded continuous functions Fj : R
d → R,

1 ≤ j ≤ n.

The proof of Theorem 10.1 is based on the next result.

Proposition 10.2. Fix r0 > 0 small enough to fulfill the conditions above equation
(2.12), and recall from this equation the definition of the wells E(m′), m′ ∈ M0.
Fix m ∈ M0. Then,

lim
ε→0

P
ε
xε

[ n⋂
j=1

{ xε(θ(1)ε t j,ε)) ∈ E(m j ) }
]

= Qm
[ n⋂

j=1

{ y(t j )) = m j }
]

for all n ≥ 1, 0 < t1 < · · · < tn, m1, . . . ,mn ∈ M0, and sequences xε ∈ E(m),
t j,ε → t j .

It follows from this result that

lim
ε→0

P
ε
xε

[ n⋂
j=1

{ xε(θ(1)ε t j,ε)) ∈ E(M0) }
]

= 1 (10.1)

for all m ∈ M0, n ≥ 1, 0 < t1 < · · · < tn, m1, . . . ,mn ∈ M0, and sequences
xε ∈ E(m), t j,ε → t j .

Proof of Theorem 10.1

We prove the result for n = 1 as the arguments in the general case are identical.
Fix t > 0, η > 0 and a bounded continuous function F : R

d → R. By continuity,
there exists δ0 > 0 such that

max
m∈M0

sup
x∈W2δ0 (m)

| F(x) − F(m) | ≤ η. (10.2)

Fix r0 < δ0 small enough to fulfill the conditions of Proposition 10.2. Consider the
wells E(m) defined by (2.12).

Recall from (4.4) that we represent by τA the hitting time of the set A, and
let τ = τE(m). By Lemma 6.7, Corollary 6.2, and the strong Markov property, as
x ∈ D(m) and F is bounded,

E
ε
x
[
F(xε(θ(1)ε t))

] = E
ε
x

[
E
ε
xε(τ )

[
F(xε(θ(1)ε t − τ))

]
χτ≤ε−1

]
+ R(1)

ε ,

where |R(1)
ε | → 0. The expectation on the right-hand side has to be understood as

the expectation of E
ε
xε(τ )

[
F(xε(θ

(1)
ε t − s))

]
for s = τ . By definition of r0, the
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wells E(m′), m′ ∈ M0, and (10.2), the right-hand side of the previous equation is
equal to

∑
m′∈M0

F(m′) E
ε
x

[
P
ε
xε(τ )

[
xε(θ

(1)
ε t − τ) ∈ E(m′)

]
χτ≤ε−1

]
+ R(1)

ε + R(2)
ε + Rη,

where |Rη| ≤ η and

|R(2)
ε | ≤ ‖F‖∞ sup

y∈E(m)

sup
t−(εθ

(1)
ε )−1≤s≤t

P
ε
y
[
xε(θ(1)ε s) �∈ E(M0)

]
.

By (10.1), R(2)
ε → 0. By Proposition 10.2, Lemma 6.7 and Corollary 6.2, as ε → 0,

the sum converges to∑
m′∈M0

F(m′) Qm
[
y(t) = m′ ] = Qm

[
F( y(t))

]
,

which completes the proof of the theorem. ��

Proof of Proposition 10.2

The proof relies on a lemma, which appeared before in [21, Lemma 3.1] for
discrete-valued Markov processes.

Lemma 10.3. Fix t > 0 and m, m′ ∈ M0. Then, for all x ∈ E(m), b ∈ (0, t/3)
and sequence tε → t ,

Q
ε
x
[
yT
ε (t − 3b) ∈ E(m′)

] ≤ Q
ε
x
[
yε(tε) ∈ E(m′)

] + Rε(x, t, b),

where,

lim
b→0

lim sup
ε→0

sup
x∈E(m)

Rε(x, t, b) = 0.

Proof. Fix t > 0, m, m′ ∈ M0, x ∈ E(m), a sequence tε → t , and 2 < α < 3. By
(9.4) and the trivial fact that Sε(t) ≥ t , for b ∈ (0, t/3)

Q
ε
x[ yT

ε (t − 3b) ∈ E(m′) ] = Q
ε
x[ yε(Sε(t − 3b)) ∈ E(m′) ]

≤ Q
ε
x[ Aε(t, b) ] + Q

ε
x[ Bε(t, b) ],

where

Aε(t, b) = { Sε(t − 3b) > t − αb },
Bε(t, b) = { yε(s) ∈ E(m′) for some s ∈ [t − 3b, t − αb] } .

By Lemma 9.4, as α < 3,

lim sup
ε→0

sup
x∈E(M0)

Q
ε
x[ Aε(t, b) ] = 0 .



Arch. Rational Mech. Anal.          (2024) 248:78 Page 47 of 70    78 

On the other hand,

Q
ε
x[Bε(t, b)] ≤ Q

ε
x[ yε(tε) ∈ E(m′) ] + Q

ε
x[ Bε(t, b), yε(tε) /∈ E(m′) ].

It remains to prove that

lim sup
b→0

lim sup
ε→0

sup
x∈E(m)

Q
ε
x[ Bε(t, b), yε(tε) /∈ E(m′) ] = 0.

By Lemma 6.6, the definition of Bε(t, b), and the strong Markov property,

lim sup
b→0

lim sup
ε→0

sup
x∈E(m)

Q
ε
x[ Bε(t, b), yε(tε) ∈ E(M0) \ E(m′) ] = 0.

On the other hand, as α > 2, for ε sufficiently small, tε − s ∈ [2b, 4b] for all
s ∈ [t − 3b, t − αb]. Hence, by the strong Markov property and Proposition 10.4,

lim sup
b→0

lim sup
ε→0

sup
x∈E(m)

Q
ε
x[ Bε(t, b), yε(tε) /∈ E(M0) ] = 0.

The assertion of the lemma follows from the previous estimates. ��
Proof of Proposition 10.2. The proof is similar to the one of [21, Proposition 2.1].
We consider the case n = 1, the general one being similar.

Fix t > 0, m, m′ ∈ M0, and sequences xε ∈ E(m), tε → t . By Theorem 9.3,

Qm[ y(t) = m′] = lim
δ→0

Qm[ y(t − 3δ) = m′] = lim
δ→0

lim
ε→0

Q
ε
xε [ yT

ε (t − 3δ) ∈ E(m′) ].

Thus, by Lemma 10.3,

Qm[ y(t) = m′] ≤ lim inf
ε→0

Q
ε
xε [ yε(tε) ∈ E(m′) ] ≤ lim sup

ε→0
Q
ε
xε [ yε(tε) ∈ E(m′) ].

Since

1 =
∑

m′∈M0

Qm[ y(t) = m′] and
∑

m′∈M0

Q
ε
xε [ yε(tε) ∈ E(m′) ] ≤ 1,

the inequalities in the penultimate formula must be identities for each m ∈ M0,
which completes the proof of the proposition. ��

Avoiding Wells

We complete the proof Proposition 10.2 by showing that the probability that the
process is not in a well when it starts from a well is very small. This is the content
of Proposition 10.4 below, the main result of this subsection.

Proposition 10.4. For all m ∈ M0,

lim sup
b→0

lim sup
ε→0

sup
x∈E(m)

sup
t∈[2b, 4b]

Q
ε
x[ yε(t) /∈ E(M0) ] = 0.
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The proof of this proposition requires some preliminary estimates. Fix η ∈
(0, r0/2) so that there is no critical point c ∈ C0 such thatU (c) ∈ (U (m′), U (m′)+
η) for some m′ ∈ M0. Fix m ∈ M0, and let

R = R(m) = (Rd \ E(M0)) ∩ {x ∈ R
d : U (x) < U (m) + η/2

}
.

Denote by W the connected component of the set {x ∈ R
d : U (x) < U (m) +

d(1)} which contains m. We claim that

W ∩ R = ∅. (10.3)

Indeed, if y ∈ R, U ( y) < U (m) + η/2. By definition of d(1) and E(m), all
points z ∈ W such that U (z) ≤ U (m) + η/2 are contained in E(m). Hence,
W ∩ R = E(m) ∩ R. By definition of R, E(m) ∩ R = ∅, which completes the
proof of the claim.

Lemma 10.5. Fix m ∈ M0. Then,

lim sup
a→0

lim sup
ε→0

sup
x∈E(m)

Q
ε
x
[
τR ≤ a

] = 0.

Proof. By Lemma 6.6, it suffices to show that

Q
ε
x
[
τR ≤ a

] ≤ 2 max
m′∈M

sup
z∈E(m′)

Q
ε
z
[
τE(M0)\E(m′) < 2a

] + Rε(x),

where supx∈E(m) |Rε(x)| → 0.
To prove the previous bound, first observe that

Q
ε
x[ τR ≤ a ] = Q

ε
x[ τR ≤ a, σE(M0)

≤ ιε ] + Q
ε
x[ τR ≤ a, σE(M0)

> ιε ],
(10.4)

where σA , A ⊂ R
d , is the first time after τR that the process visits A:

σA := inf{t > τR : xε(t) ∈ A },
ιε = a+ε−1/θ

(1)
ε . By the strong Markov property, the second term on the right-hand

is bounded by

sup
z∈R

P
ε
z
[
τE(M0) ≥ ε−1 ] .

To keep notation simple, we replaced the measure Q
ε
z by P

ε
z . By Corollary 6.2, this

expression is bounded by a remainder Rε(x) such that supx∈E(m) |Rε(x)| → 0.
We turn to the first term on the right-hand side of (10.4). It can be written as

Q
ε
x[ τR ≤ a, σE(m)

≤ ιε ] + Q
ε
x[ τR ≤ a, σE(M0)\E(m)

≤ ιε ] (10.5)

By the strong Markov property, the first term is bounded by

sup
z∈R

P
ε
z
[
τE(m) < 2aθ(1)ε

] = max
A

sup
z∈A

P
ε
z
[
τE(m) < 2aθ(1)ε

]
,
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where the maximum is carried over all connected components of R. The number of
connected component is finite because U (x) → ∞ as |x | → ∞. Fix a connected
component A of R, and let B be the connected component of {x ∈ R

d : U (x) <
U (m) + η} containing A. Since there are no critical points c ∈ C0 such that
U (c) ∈ (U (m),U (m) + η), by Corollary 6.3,

lim
ε→0

sup
z∈A

P
ε
z
[
τ∂B < τE(B)

] = 0.

On the other hand, by (10.3), E(m) ⊂ R
d\B, so that τ∂B < τE(m). Hence,

sup
z∈A

P
ε
z
[
τE(m)

< 2aθ(1)ε

] ≤ sup
z∈A

P
ε
z
[
τE(m) < 2aθ(1)ε , τE(B)

< τE(m)

] + oε(1).

By the strong Markov property, this expression is bounded by

sup
z∈E(B)

P
ε
z
[
τE(m) < 2aθ(1)ε

] + oε(1).

Since B and E(m) are disjoint this expression is less than or equal to

max
m′∈M

sup
z∈E(m′)

P
ε
z
[
τE(M0)\E(m′) < 2aθ(1)ε

] + oε(1).

We turn to the second term of (10.5). Since ε−1 ≺ θ
(1)
ε , it is bounded by

P
ε
x
[
τE(M0)\E(m)

< 2aθε
]
,

which completes the proof of the lemma. ��
Proof of Proposition 10.4. Recall the definition of the set R introduced just before
Lemma 10.5. Denote by W the connected component of the set {x ∈ R

d : U (x) <
U (m) + d(1) } which contains m. By (10.3), R ∩ W = ∅. Clearly,

Q
ε
x
[
yε(t) ∈ R

d \ E(M0)
] ≤ Q

ε
x
[
yε(t) ∈ R

d \ {E(M0) ∪ R} ] + Q
ε
x
[
τR ≤ t

]
.

Recall that η < r0/2, choose a time-scale �ε satisfying (4.9), and let κε = �ε/θ
(1)
ε .

By Corollary 4.4, the first term on the right-hand side is bounded by

Q
ε
μR
ε

[
yε(t − κε) ∈ R

d \ {E(M0) ∪ R}] + oε(1),

where the error is uniform over t ∈ [2b, 4b], x ∈ E(m). As με is the stationary
state and μR

ε the measure με conditioned to W2r0(m), the previous expression is
equal to

με(R
d \ {E(M0) ∪ R})
με(W2r0(m))

+ oε(1) = oε(1) ,

where the error terms are uniform on x ∈ E(m) and t ∈ [2b, 4b].
It remains to show that

lim sup
b→0

lim sup
ε→0

sup
x∈E(m)

sup
t∈[2b, 4b]

Q
ε
x [τR ≤ t] = 0.

This is a direct consequence of Lemma 10.5 since Q
ε
x[τR ≤ t] ≤ Q

ε
x[τR ≤ 4b]

for all t ≤ 4b. ��
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Proof of Theorem 2.1

The assertion of Theorem 2.1 in the time scale θ
(1)
ε is a particular case of

Theorem 10.1. We turn to the second claim.
Fix a time-scale �ε such that 1 ≺ �ε ≺ θ

(1)
ε , m ∈ M0, x ∈ D(m), η > 0,

and a bounded continuous function F . Define the wells E(m′), m′ ∈ M0, as in the
proof of Proposition 10.2, to fulfill (10.2). First, assume that there exists ε0 such
that �ε ≥ ε−2 for all ε < ε0.

By [14, Theorem 2.1.2], there exists T > 0 such that

P
ε
x [xε(T ) �∈ E(m) ] = oε(1).

Hence, by the Markov property,

E
ε
x [ F(xε(�ε)) ] = E

ε
x

[
E
ε
xε(T )

[
F(xε(�ε − T ))

]
1{xε(T ) ∈ E(m) }

]
+ oε(1).

As xε(T ) belongs to E(m) and �ε ≺ θ
(1)
ε , by Lemma 6.6, inside the second expecta-

tion on the right-hand side we may insert the indicator of the setA1 = {xε(�ε−T ) �∈
E(M0)\E(m)} at a cost oε(1). By Proposition 4.2, we may also insert the indicator
of the set A2 = {U (xε(�ε − T − ε−1) ≤ U (m) + d(1) + 2r0} at the same cost.
Hence, the left-hand side of the previous displayed equation is equal to

E
ε
x

[
E
ε
xε(T )

[
F(xε(�ε − T )) 1{A1 ∩ A2}

]
1{xε(T ) ∈ E(m) }

]
+ oε(1).

By the Markov property the previous expectation is equal to

E
ε
x

[
E
ε
xε(T )

[
1{A2}Eε

xε(�ε−T−(1/ε))

[
F(xε(1/ε)) 1{A′

1}
] ]

1{xε(T ) ∈ E(m) }
]
,

where A′
1 = {xε(ε−1) �∈ E(M0)\E(m)}. Since U (xε(�ε − T − ε−1)) ≤ U (m) +

d(1) + 2r0, by Theorem 6.1 and Proposition 4.2, in the third expectation, we may
insert the indicator of the set A3 = {xε(1/ε) ∈ E(M0)} at a cost oε(1). If by
bad luck, there are critical points c such that U (c) = U (m) + d(1) + 2r0, we
add to this constant a positive value to make sure that this does not happen. As
A4 = A′

1 ∩ A3 = {xε(ε−1) ∈ E(m)}, by (10.2), the previous expression is equal
to

F(m)E
ε
x

[
E
ε
xε(T )

[
1{A2}Pε

xε(�ε−T−(1/ε))

[ A4
] ]

1{xε(T ) ∈ E(m) }
]

+ R(ε, η),

where |R(ε, η)| ≤ η+oε(1). We may now go backward in the argument to conclude
that the previous expression is equal to F(m)+ R(ε, η), which completes the proof
of the theorem in the case where �ε ≥ ε−2 for all ε small.

Assume that this is not the case. We may suppose that �ε ≤ ε−2 for all ε small
enough. If there is a subsequence which does not satisfy this condition, it is treated
as in the first part of the proof.

By [14, Theorem 2.1.2], there exists T > 0 such that

P
ε
x [xε(T ) �∈ Wr0/2(m) ] = oε(1).
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Hence, by the Markov property,

E
ε
x [ F(xε(�ε)) ] = E

ε
x

[
E
ε
xε(T )

[
F(xε(�ε − T ))

]
1{xε(T ) ∈ Wr0/2(m) }

]
+ oε(1).

As xε(T ) ∈ Wr0/2(m), by Proposition 4.2, in the second expectation, we may
insert the indicator of the set A = {xε(�ε − T ) ∈ E(m)} at a cost oε(1). At this
point, we may repeat the arguments presented at the end of the first part of the proof
to conclude. ��

Author contributions C. L. has been partially supported by FAPERJ CNE E-
26/201.117/2021, and by CNPq Bolsa de Produtividade em Pesquisa PQ 305779/2022-
2. J. L. was supported by the KIAS Individual Grant (MG093101) at Korea In-
stitute for Advanced Study, and by the NRF grant funded by the Korea gov-
ernment (No. 2022R1A6A3A13065174, 2022R1F1A106366811). I. S. was sup-
ported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2022R1F1A106366811, 2022R1A5A600084012,
2023R1A2C100517311) and Samsung Science and Technology Foundation (Project
Number SSTF-BA1901-03). In addition, I. S. and J. L. are also supported by Seoul
National University Research Grant in 2022.

Data Availibility Statement Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.

Declarations
Conflict of interest The authors have no Conflict of interest to declare that are
relevant to the content of this article.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive
rights to this article under a publishing agreement with the author(s) or other right-
sholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

Appendix A. The Potential U

We present in this section elementary properties of the potential U and the dynam-
ical system (2.4). The main result establishes the existence of a path which perfects
the infimum in (2.2).

Proposition A.1. Fix a local minimumm ∈ M0. Then, there exist a local minimum
m′ ∈ M0, m′ �= m and a continuous path z : [0, 1] → R

d such that z(0) = m,
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z(1) = m′, and

max
t∈[0, 1]U (z(t)) = U (z(1/2)) = U (m) + �(m) = �(m, m′),

U (z(s)) < U (z(1/2)), s ∈ [0, 1] \ {1/2}.
Moreover, if z(·) is such a path, then z(1/2) is a saddle point of U.

Proof of Proposition A.1

The proof is based on three lemmata. Fix m ∈ M0, and let W be the connected
component of {x ∈ R

d : U (x) < U (m) + �(m)} containing m. By definition of
�(m),

M0 ∩ W = {m}. (A.1)

Lemma A.2. Fix m ∈ M0 There is a connected component W ′ of {x ∈ R
d :

U (x) < U (m) + �(m)} such that W ∩ W ′ = ∅ and W ∩ W ′ �= ∅.

The proof of this result is given in a subsection below. Recall that we denote by
B(x, r) the open ball of radius r centered at x. Let

A(x, r) = (B(x, r) \ {x}) ∩ { y ∈ R
d : U ( y) < U (x)} .

Lemma A.3. Fix H ∈ R, and letW1 andW2 be two disjoint connected components
of {x ∈ R

d : U (x) < H}. If W1 ∩ W2 �= ∅, then W1 ∩ W2 = ∂W1 ∩ ∂W2 and
any element σ of W1 ∩ W2 is a saddle point such that U (σ ) = H. Moreover, for
all r > 0 small enough, A(σ , r) has two connected components: A(σ , r) ∩ W1
and A(σ , r) ∩ W2

The proof of this lemma is presented in a later subsection below.

Lemma A.4. Letm′, m′′ ∈ M0 and let z : [0, 1] → R
d be a continuous path such

that

z(0) = m′, z(1) = m′′, U (z(1/2)) = �(m′, m′′)
U (z(t)) < U (z(1/2) for t ∈ [0, 1] \ {1/2} . (A.2)

Then, z(1/2) is a saddle point.

Proof. Recall that we denote by υx(t) the solution of the ODE (2.4) starting from
x. For s ≥ 0, let ψs : [0, 1] → R

d be the continuous path defined by

ψs(t) = υz(t)(s) .

As U decreases along the solutions of the ODE,

U (ψs(t)) = U (υz(t)(s)) ≤ U (z(t)) .

We claim that

U (ψs(1/2)) = U (z(1/2)) = U (ψ0(1/2)) for all s > 0. (A.3)
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Suppose, by contradiction, that there exists s0 > 0 such that U (ψs0(1/2)) <

U (z(1/2)). By (A.2), for all t �= 1/2,

U (ψs0(t)) ≤ U (z(t)) < U (z(1/2)).

Thus, since by hypothesis, U (ψs0(1/2)) < U (z(1/2)),

max
t∈[0,1]U (ψs0(t)) < U (z(1/2)) = �(m′, m′′) . (A.4)

As m′, m′′ are critical points, υn(s) = n for n = m′, m′′, s > 0, so that
ψs0(0) = υz(0)(s0) = υm′(s0) = m′, ψs0(1) = m′′. Therefore, the continuous
path ψs0 : [0, 1] → R

d satisfies ψs0(0) = m′, ψs0(1) = m′′ and (A.4). This con-
tradicts to the definition of �(m′, m′′), and completes the proof of claim (A.3).
It follows from (A.3) and from the factU strictly decreases along trajectories which
do not start from critical points that z(1/2) is a critical point of U .
It remains to show that z(1/2) is a saddle point. Clearly, z(1/2) is not a local
minimum. Suppose, by contradiction, that z(1/2) is not a saddle point. Then, by
Lemma A.8 below, the set A(z(1/2), r) is connected for sufficiently small r > 0.
Since z is continuous, there is η0 = η0(r) > 0 such that z(t) ∈ B(z(1/2), r)
for all t ∈ [1/2 − η0, 1/2 + η0]. Therefore, z(t) ∈ A(z(1/2), r) for all t ∈
[1/2 − η0, 1/2 + η0] \ {1/2}. Since A(z(1/2), r) is connected and open, it is
path connected. Therefore, there is a continuous path z1 : [1/2 − η0, 1/2 + η0] →
A(z(1/2), r) such that z1(1/2±η0) = z(1/2±η0). Define a path z2 : [0, 1] → R

d

as

z2(t) =
{
z(t) t ∈ [0, 1/2 − η0) ∪ (1/2 + η0, 1]
z1(t) t ∈ [1/2 − η0, 1/2 + η0] .

Thus, z2 is a continuous trajectory from m′ to m′′ such that U (z(t)) < U (z(1/2))
for all t ∈ [0, 1]. This contradicts the definition of �(m′, m′′), and completes the
proof of the lemma. ��
Proof of Proposition A.1. Fix m ∈ M0. Let W ′ be given by Lemma A.2, and
denote by σ an element of W ∩ W ′

. By Lemma A.3, σ is a saddle point, σ ∈
ϒ(m), and, for sufficiently small r > 0, A(σ , r) has two connected components
A(σ , r) ∩ W and A(σ , r) ∩ W ′. By Hartman–Grobman theorem, there are two
continuous path φ1, φ2 : (−∞, 0] → R

d such that

lim
t→−∞φ j (t) = σ φ1(s) ∈ A(σ , r) ∩ W φ2(s) ∈ A(σ , r) ∩ W ′

for all s ≤ 0. Since W , W ′ are connected, we may extend continuously these
trajectories to s > 0 in such a way that φ1(s) ∈ W , φ2(s) ∈ W ′ for all s ≥ 0. As
σ ∈ ϒ(m), by (2.5),

lim
s→∞φ1(s) = m, lim

s→∞φ2(s) = m′,

where m′ is a local minimum of U one in W ′.
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Concatenating the paths φ1, φ2 and reparametrizing it, we obtain a continuous
path z : [0, 1] → R

d from m to m′ such that z(1/2) = σ . By Lemma A.3,
U (σ ) = U (m) + �(m). Therefore, by construction, z(·) fulfills all conditions
required in Proposition A.1.
It remains to check the final assertion of the proposition, which follows from Lemma
A.4. ��

Proof of Lemma A.3

Throughout this subsection, we will use the fact that an open connected subset of
R
d is path-connected.

Lemma A.5. Homeomorphisms preserve the number of open connected compo-
nents.

Proof. Let U1 and U2 be open sets, and let ϕ : U1 → U2 be a homeomorphism.
Denote by U j,1, . . . ,U j,n j the connected components of U j , j = 1, 2. Since ϕ is
continuous, ϕ(U1,k) is connected. As ϕ is surjective, U2 = ∪1≤k≤n1ϕ(U1,k), so that
n2 ≤ n1. Since ϕ−1 is continuous, the same argument yields the reverse inequality.
��
Lemma A.6. Let p be non-critical point of U. Then, for sufficiently small r > 0,
the manifold {x ∈ R

d : U (x) = U ( p)} divides B( p, r) into two connected
components which are B( p, r) ∩ {x ∈ R

d : U (x) < U ( p)} and B( p, r) ∩ {x ∈
R
d : U (x) > U ( p)}. In particular, A( p, r) is connected. Furthermore, there is a

continuous path z : [0, 1] → B( p, r) such that

z(0) = p z ((0, 1]) ⊂ B( p, r) ∩ {x ∈ R
d : U (x) < U ( p)} .

Proof. Fix p = (p1, . . . , pd) ∈ R
d be a non-critical point. Then, ∇U ( p) �= 0 so

that there is 1 ≤ j ≤ d such that

∂U

∂x j
( p) �= 0 .

Assume, without loss of generality, that j = d. For x ∈ R
d , let

x̃ = (x1, . . . , xd−1) .

By the implicit function theorem, there exist r > 0 and a C1-function g : R
d−1 →

R such that

g( p̃) = pd , U (̃x, g(̃x)) = U ( p) for all x̃ ∈ Bd−1( p̃, r)

where Bd−1( p̃, r) is a (d − 1)-dimensional ball with radius r > 0 centered at p̃.
Decompose the set B( p, r) into three parts:

P1 = B( p, r) ∩ {(̃x, y) ∈ R
d : y > g(̃x)}

P2 = B( p, r) ∩ {(̃x, y) ∈ R
d : y < g(̃x)}
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P3 = B( p, r) ∩ {(̃x, y) ∈ R
d : y = g(̃x)} .

By definition of g, P3 = B( p, r) ∩ {x ∈ R
d : U (x) = U ( p)} and

U (x) �= U ( p) for all x ∈ P1 ∪ P2 . (A.5)

Suppose that there is x, y ∈ P1 such that U (x) < U ( p) < U ( y). As P1 is path-
connected, there is a path in P1 connecting x to y. Since U is continuous, this path
must pass through a point z ∈ P1 such that U (z) = U ( p), and this contradicts
(A.5). Therefore, U (x) > U ( p) for all x ∈ P1 or U (x) < U ( p) for all x ∈ P1.
Let v = ∇U ( p). For sufficiently smallη > 0,U ( p+ηv) > U ( p) andU ( p−ηv) <

U ( p). Thus, there is x, y ∈ B( p, r) such that U (x) < U ( p) < U ( y). Therefore,
one of the sets P1, P2 is B( p, r) ∩ {x ∈ R

d : U (x) < U ( p)} and the other one is
B( p, r) ∩ {x ∈ R

d : U (x) > U ( p)}.
Finally, sinceP3 is the graph of aC1 function, there are paths zi : [0, 1] → B( p, r)
such that

zi (0) = p zi ((0, 1]) ⊂ Pi .

This completes the proof of the lemma. ��
Critical points. The next two lemmata provide the number of connected compo-
nentes of the set A(c, r), c ∈ C0, in terms of the index of the critical points c.

Lemma A.7. Let σ be a saddle point ofU. Then, for sufficiently small r > 0, the set
A(σ , r) = (B(σ , r)\{σ }) ∩ {x ∈ R

d : U (x) < U (σ )} has exactly two connected
components.

Proof. By [33, Lemma 2.2], since U is nondegenerate at σ , the image of U near σ

is locally diffeomorphic to the quadratic function F : R
d → R given by

F(x) = − x2
1 +

d∑
i=2

x2
i .

Therefore, for sufficiently small r > 0, A(σ , r) is diffeomorphic to the set

[ B(0, r) \ {0} ] ∩ F−1((−∞, 0)) = [ B(0, r) \ {0} ] ∩ {x ∈ R
d : −x2

1

+
d∑

i=2

x2
i < 0} .

Since the set on the right-hand side has two connected components, by Lemma A.5,
A(σ , r) has also two connected components. ��
Lemma A.8. Let c be a critical point of U with index greater or equal to 2. Then,
for sufficiently small r > 0, A(c, r) is path-connected.
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Proof. By [33, Lemma 2.2], since U is nondegenerate at c, the image of U near c
is locally diffeomorphic to to the quadratic function F : R

d → R given by

F(x) = −
k∑

i=1

x2
i +

d∑
i=k+1

x2
i

where k ≥ 2 is the index of c. Therefore, for sufficiently small r > 0, A(c, r) is
diffeomorphic to

[ B(0, r) \ {0} ] ∩
{
x ∈ R

d : −
k∑

i=1

x2
i +

d∑
i=k+1

x2
i < 0

}
.

Since this set is connected, by Lemma A.5,A(c, r) is also connected, and therefore
path-connected. ��
Level sets. In this subsection, we examine the connected components of the level
sets of U .

Lemma A.9. Fix H ∈ R. Let H be a connected component of {x ∈ R
d : U (x) <

H}. Let G ⊂ {x ∈ R
d : U (x) < H} be a connected set satisfying G ∩ H �= ∅.

Then, G ⊂ H. The same assertion holds if we replace all strict inequalities by
inequalities.

Proof. Let x0 ∈ H. Then, H is the largest connected set F satisfying

x0 ∈ F ⊂ {x ∈ R
d : U (x) < H} .

As G ∩ H �= ∅, there exists x0 ∈ G ∩ H. As G belongs to the previous class,
G ⊂ H.
The same proof yields the second assertion of the lemma. ��
Lemma A.10. Fix H ∈ R. Let H be a connected component of the set {x ∈ R

d :
U (x) < H} or one of the set {x ∈ R

d : U (x) ≤ H}. Then, U (x0) = H for all
x0 ∈ ∂H. Moreover,

(1) IfH is an open set, then x0 is not a local minimum
(2) IfH is a closed set, then x0 is not a local maximum

Proof. Fix x0 ∈ ∂H. SinceU is continuous,U (x0) ≤ H . Assume by contradiction
that U (x0) < H . Let G be the connected component of the set {x ∈ R

d : U (x) <
H} containing x0. Since U is smooth, there exists r > 0 such that

max
y∈B(x0, r)

U ( y) < H

As x0 ∈ ∂H, there exists z ∈ B(x0, r) ∩ H. Hence, by the previous displayed
equation, B(x0, r) ⊂ H, so that x0 ∈ H, in contradiction to the fact that x0 ∈ ∂H.
This completes the proof of the first assertion.
Suppose that H is a connected component of the set {x ∈ R

d : U (x) < H}, and fix
x0 ∈ ∂H. By the first assertion of the lemma,U (x0) = H . Suppose by contradiction
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that x0 is a local minimum. Then, there exists r > 0 such that U ( y) ≥ U (x0) for
all y ∈ B(x0, r). Therefore, B(x0, r) ∩ {x ∈ R

d : U (x) < H} = ∅, so that
B(x0, r) ∩ H = ∅. This contradicts the fact that x0 ∈ ∂H.
Suppose that H is a connected component of the set {x ∈ R

d : U (x) ≤ H}, and fix
x0 ∈ ∂H. By the first assertion of the lemma,U (x0) = H . Suppose by contradiction
that x0 is a local maximum. Then, there exists r > 0 such that U ( y) < U (x0) for
all y ∈ B(x0, r)\{x0}. Therefore, B(x0, r)\{x0} ⊂ {x ∈ R

d : U (x) < H}.
Since x0 ∈ ∂H, B(x0, r) ∩ Ho �= ∅, where Ho is the interior of H. Fix x1 ∈
B(x0, r) ∩ Ho and let G be the connected component of {x ∈ R

d : U (x) < H}
containing x1. As x1 ∈ Ho ⊂ H, by definition of H, G ⊂ H. On the other hand,
by Lemma A.9, B(x0, r) \ {x0} ⊂ G, so that B(x0, r) \ {x0} ⊂ H. As x0 ∈ H,
B(x0, r) ⊂ H. This contradicts the fact that x0 ∈ ∂H, and completes the proof of
the lemma. ��
For the next lemma, we extend the definition of �(m,m′) to subsets of M0. For
two disjoint non-empty subsets M′ and M′′ of M0, define

�(M′, M′′) = min
m′∈M′,m′′∈M′′ �(m′, m′′). (A.6)

Lemma A.11. Let H ⊂ R
d be a connected component of level set {x ∈ R

d :
U (x) < c0} for some c0 ∈ R. Let M, M′ be disjoint non-empty subsets of M0.

(1) IfM, M′ ⊂ H, then �(M, M′) < c0.
(2) IfM ⊂ H and M′ ⊂ R

d\H, then �(M, M′) ≥ c0.

Proof. Let M, M′ be disjoint non-empty subsets of M0 contained in H. Since
H is open connected set, it is a path connected set. Thus, there exists a connected
path z : [0, 1] → H such that z(0) ∈ M and z(1) ∈ M′. Since z(t) ∈ H for all
t ∈ [0, 1], we have maxt∈[0, 1] U (z(t)) < c0 and thus by (A.6), �(M, M′) < c0.
This proves the first assertion.
To prove the second assertion note that any path connecting M and M′ must pass
through ∂H on which the value of U is c0. ��
Proof of Lemma A.3. Let σ ∈ W1∩W2. We claim that σ ∈ ∂W1∩∂W2. Indeed, by
definition σ ∈ W1. It remains to show that σ �∈ W1. Assume, by contradiction, that
σ ∈ W1. Then, there exists r > 0 such that B(σ , r) ⊂ W1. Since W1 ∩ W2 = ∅,
B(σ , r) ∩ W2 = ∅, which contradicts the fact that σ ∈ W2. Thus, σ ∈ ∂W1.
The same argument shows that σ ∈ ∂W2, proving the claim. By Lemma A.10,
U (σ ) = H , and σ is not a local minimum.
By definition, there exists r > 0 such that B(σ , r)∩W1 �= ∅ and B(σ , r)∩W2 �=
∅. Since σ ∈ ∂W1 ∩ ∂W2, σ �∈ W1 ∪ W2, so that (B(σ , r)\{σ }) ∩ W1 �= ∅ and
(B(σ , r)\{σ }) ∩ W2 �= ∅. Hence, by definition of W1 and W2, A(σ , r) is not
empty.
We claim that A(σ , r) is not connected. Suppose, by contradiction, that A(σ , r)
is connected. Let x1 ∈ B(σ , r) ∩ W1, x2 ∈ B(σ , r) ∩ W2. Since U (x j ) <

U (σ ), x1, x2 ∈ A(σ , r). Since A(σ , r) is open, there exists a continuous path
z : [0, 1] → R

d connecting x1 to x2 in A(σ , r). In particular, sup0≤t≤1 U (z(t)) <
U (σ ) = H . Since x1 ∈ W1 and W1 is a connected component of the set {x :
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U (x) < H}, all points in this path, including x2, belong to W1. As x2 ∈ W2 and
W1 ∩ W2 = ∅, this is a contradiction, which proves the claim.
Since σ is not a local minimum, and A(σ , r) is not empty and not connected, by
Lemmata A.6, A.8, σ is a saddle point. By Lemma A.7, A(σ , r) has exactly two
components. Let A1, A2, be the connected component which intersects with W1,
W2, respectively. Since A j is a connected set contained in {x ∈ R

d : U (x) <

U (σ )}, by Lemma A.9, A1 ⊂ W1 and A2 ⊂ W2. Hence, A1 �= A2 and A1 =
A(σ , r) ∩ W1, A2 = A(σ , r) ∩ W2. ��

Proof of Lemma A.2

The proof relies on several lemmata.

Lemma A.12. LetKn be a decreasing sequence of compact connected sets and let
K :=⋂∞

n=1 Kn. Then, K is connected.

Proof. Suppose, by contradiction, that K is not connected. In consequence, there
are two disjoint open setsU andV such thatK∩U �= ∅,K∩V �= ∅, andK ⊂ U∪V .
Since Kn ∩ V �= ∅ and U ∩ V = ∅, Kn \ U �= ∅.
We claim that Kn ∩ ∂U �= ∅. Suppose by contradiction that Kn ∩ ∂U = ∅. In
this case, R

d = [Kn ∩ ∂U]c = Kc
n ∪ (∂U)c, so that Kn = Kn ∩ (∂U)c. Hence,

Kn\U = Kn ∩ Uc = Kn ∩ (∂U)c ∩ Uc = Kn ∩ [(∂U) ∪ U]c = Kn ∩ Uc ⊂ Uc
.

Therefore, as Uc
is an open set, for all x ∈ Kn \ U , there exists r(x) > 0 such that

B(x, r(x)) ⊂ Uc
. Since Kn is compact, Kn \U is compact so that there are finitely

many x1, . . . , xk ∈ Kn \ U such that

Kn \ U ⊂
k⋃
j=1

B(x j , r(x j )) .

Therefore, Kn ⊂ U ∪⋃k
j=1 B(x j , r(x j )). However, since B(x j , r(x j )) ⊂ Uc

for

all j , U ∩⋃k
j=1 B(x j , r(x j )) = ∅, in contradiction with the connectedness of Kn .

This proves the claim.
As (Kn ∩ ∂U) is a decreasing sequence of compact sets, K ∩ ∂U = ⋂∞

n=1(Kn ∩
∂U) �= ∅ by Cantor’s intersection theorem. Let x0 ∈ K ∩ ∂U . Since U is open,
x0 /∈ U so that x0 ∈ V . SinceV is open, there exists r0 > 0 such that B(x0, r0) ⊂ V
so that B(x0, r0)∩U = ∅, which contradicts the fact that x0 ∈ ∂U . This completes
the proof of the lemma. ��

Lemma A.13. Let Kn be a decreasing sequence of compact sets. Suppose that
K := ⋂∞

n=1 Kn is contained in an open set U . Then, there exists N ∈ N such that
KN ⊂ U .

Proof. Suppose, by contradiction, that each Kn is not contained in U . Then, for
each n ∈ N, there exists xn ∈ Kn\U ⊂ K1\U . As K1\U is compact, there is a
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subsequence (x′
n)n≥1 which converges to a point x0 ∈ K1 \ U . Since x′

j ∈ Km\U
for all j ≥ m, x0 ∈ Km\U . Therefore,

x0 ∈
∞⋂
n=1

(Kn \ U) = K \ U = ∅

which is a contradiction. ��
Lemma A.14. Let H be a connected component of the set {x ∈ R

d : U (x) ≤ H},
and letU be an open set containingH. Then, there is N ∈ N such that the connected
component of {

x ∈ R
d : U (x) ≤ H + 1

N

}
containing H is contained in U
Proof. Let Rn be the connected component of{

x ∈ R
d : U (x) ≤ H + 1

n

}
containing H and let R := ⋂∞

n=1 Rn . Since H ⊂ Rn for all n ≥ 1, H ⊂ R. On
the other hand, as (Rn)n≥1 is a decreasing sequence of compact connected sets, by
Lemma A.12, R is connected. Since R∩H �= ∅, R ⊂ {x ∈ R

d : U (x) ≤ H} and
H is a connected component of {x ∈ R

d : U (x) ≤ H}, by Lemma A.9, R ⊂ H.
By the previous two estimates, H = R.
As R ⊂ U by Lemma A.13, there exists N ∈ N such that RN ⊂ U . ��
Lemma A.15. Fix H ∈ R. LetH be a connected component of {x ∈ R

d : U (x) <
H}. Then, H is path connected.

Proof. AsH is open and connected, it is path connected. It remains to show that the
boundary ∂H is path connected to H. Fix x0 ∈ ∂H. By Lemma A.10, U (x0) = H .
Assume that x0 is not a critical point of U . By Lemma A.6, there exists r > 0 such
that the manifold {x ∈ R

d : U (x) = U (x0)} divides B(x0, r) into two parts:

B(x0, r) ∩ {x ∈ R
d : U (x) < U (x0)} ,

B(x0, r) ∩ {x ∈ R
d : U (x) > U (x0)} .

Since x0 ∈ ∂H, B(x0, r) ∩ H �= ∅ so that B(x0, r) ∩ {x ∈ R
d : U (x) <

U (x0)} �= ∅. By Lemma A.9, B(x0, r) ∩ {x ∈ R
d : U (x) < U (x0)} ⊂ H.

By Lemma A.6, there is a path z : [0, 1] → B(x0, r) such that z(0) = x0 and
z ((0, 1]) ⊂ B(x0, r) ∩ {x ∈ R

d : U (x) < U (x0)} ⊂ H. Hence, x0 is path-
connected to H.
Suppose that x0 is a critical point. By Lemma A.10, x0 is not a local minimum. By
the Hartman–Grobman Theorem, there is T > 0 and a continuous path z : [0, T ] →
R
d in the unstable manifold of x0 such that z(0) = x0 and z ((0, T ]) ⊂ H. This

completes the proof of the lemma. ��
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Lemma A.16. LetH be a connected component of {x ∈ R
d : U (x) ≤ H}, andHo

the interior of H. Denote by Wi , i ≥ 1, the connected components of Ho. Then,
the number of connected components is finite. Moreover,

(1) Let W ′
j be a connected component of {x ∈ R

d : U (x) < H} which intersects

withW j . Then, W j = W ′
j .

(2) H is path connected. In particular, for each i , there is j such thatWi∩W j �= ∅.

Proof. Consider the open set W1. Since critical points of U are not isolated points,
it is not possible to have U (x) = H for all x ∈ W1. Hence, W ′

1 well defined and
W1 ∩ W ′

1 �= ∅. Let x0 ∈ W1 ∩ W ′
1.

Claim 1: Let x1 ∈ W1 such that U (x1) = H . Then, x1 is a local maximum.

Fix x1 ∈ W1 such that U (x1) = H . Since W1 is open, there exists r1 > 0 such
that B(x1, r1) ⊂ W1. Let r1 be small enough so that there is no critical point in
B(x1, r1)\{x1}. Let y ∈ B(x1, r1) such that U ( y) = H . Since U (x) ≤ H for all
x ∈ B(x1, r1), y is a critical point (since ∇U ( y) = 0). Hence, U (x) < H for all
x ∈ B(x1, r1) \ {x1}. Therefore, x1 is a local maximum, as claimed.
Let

Ŵ1 := {x ∈ W1 : x is not a local maximum} ⊂ W1 .

Since there are finitely many local maximum in W1, Ŵ1 is open and connected.
By Claim 1, U (x) < H for all x ∈ Ŵ1.
By construction, x0 ∈ Ŵ1.
Claim 2: Ŵ1 ⊂ W ′

1 ⊂ W1.
Since W ′

1 is a connected component of {x ∈ R
d : U (x) < H} intersecting with

Ŵ1 and sinceU (x) < H for all x ∈ Ŵ1, by Lemma A.9, Ŵ1 ⊂ W ′
1. Let x2 ∈ W ′

1.
Since x0 ∈ W ′

1, there is a continuous path z : [0, 1] → W ′
1 in W ′

1 from x0 to x2
such that U (z(t)) < H for all 0 ≤ t ≤ 1. Since H is a connected component of
{x ∈ R

d : U (x) ≤ H} containing x0, this path is contained in H: z(t) ∈ H for all
0 ≤ t ≤ 1. As U (z(t)) < H , by Lemma A.10, z(t) ∈ Ho for all 0 ≤ t ≤ 1. As W1
is a connected component of Ho and x0 ∈ W1, x2 ∈ W1, as claimed.
By definition, the set W ′

1 contains a local minimum. By Claim 2. so does W1.
Since the connected components are disjoints, each one contains at least one local
minimum of U and there are a finite number of critical points, the set Ho has a
finite number of connected components. This is the first assertion of the lemma.

By Claim 2, Ŵ1 ⊂ W ′
1 ⊂ W1. Since local maxima y ∈ W1 are accumulation

points, Ŵ1 = W1 so that W ′
1 = W1. This proves the second assertion of the

lemma.
Denote by n the number of connected components of Ho, so that H = Ho =⋃n

i=1 Wi =⋃n
i=1 Wi . By Lemma A.15, Wi = W ′

1 is path-connected.
Claim 3: for all i �= j ∈ {1, . . . , n}, there exists i = i0, . . . , ik = j such that

Wim ∩ Wim+1 �= ∅, 0 ≤ m < k. (A.7)

Suppose this property does not hold. Then, there exists i �= j ∈ {1, . . . , n}which are
not connected in the sense (A.7). Let A be the set of indices in {1, . . . , n} which are
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connected to i in the sense (A.7). The sets ∪k∈AWk , ∪k �∈AWk are compact, disjoint
and non-empty. Thus, there exist disjoint opens sets U , V such that ∪k∈AWk ⊂ U ,
∪k �∈AWk ⊂ V . This contradicts the fact that H = ⋃n

i=1 Wi is connected, and
proves Claim 3.
Since each set Wi is path-connected, by property (A.7), the set H is also path-
connected. ��
Lemma A.17. The connected component of the set {x ∈ R

d : U (x) ≤ �(m′, m′′)}
containing m′ also contains m′′.

Proof. LetHbe the connected component of the set {x ∈ R
d : U (x) ≤ �(m′, m′′)}

containing m′. Suppose, by contradiction, that m′′ /∈ H. SinceH and {m′′} are com-
pact sets, there is an open set U such that H ⊂ U and m′′ /∈ U . By Lemma A.14,
there is n ∈ N such that the connected component of

{x ∈ R
d : U (x) ≤ �(m′, m′′) + 1

n
}

containing H is contained in U . This connected component does not contain m′′.
Thus, by Lemma A.11, �(m′, m′′) ≥ �(m′, m′′)+ 1

n , which is a contradiction. ��
Lemma A.18. Let m, m′ ∈ M0 be two different local minima. Then,

U (m), U (m′) < �(m, m′) .

Proof. We only prove for m because �(·, ·) is symmetric. Since m is a local
minimum, there exists η > 0 such that m is a unique local minimum of a connected
component of {x ∈ R

d : U (x) < U (m)+2η} containing m. Therefore, by Lemma
A.11, for all continuous path z connecting local minimum m and any other local
minimum, we have

max
t∈[0,1]U (z(t)) > U (m) + η

which implies

�(m, m′) ≥ U (m) + η > U (m) .

��
Proof of Lemma A.2. Fix m ∈ M0. Let H be the connected component of the
set {x ∈ R

d : U (x) ≤ U (m) + �(m)} containing m. By definition, there exists
m′ ∈ M0 such that

�(m, m′) = min
m′′∈M0\{m}

�(m, m′′) = U (m) + �(m).

By Lemma A.17, m′ ∈ H.
As in Lemma A.16, denote by Ho the interior of H. Let W j , 1 ≤ i ≤ n, the open
connected components of Ho. Assume that m ∈ W1.
We assert that m is the unique local minimum in W1. Indeed, as in Lemma A.16,
let W ′

1 be a connected component of {x ∈ R
d : U (x) < U (m) + �(m)} which
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intersects with W1. By (A.1), W ′
1 contains one and only one local minimum of U .

On the other hand, by Claim 2 in Lemma A.16, W ′
1 ⊂ W1 and all elements of

W1\W ′
1 are local maxima. This proves the assertion.

By Lemma A.18, U (m′) < �(m, m′). As m′ ∈ H, by Lemma A.10, m′ ∈ Ho so
that n ≥ 2.
By Lemma A.16-(2), there is 1 < k ≤ n such that W1 ∩ Wk �= ∅. Let W , W ′
be connected components of {x ∈ R

d : U (x) < �(m, m′)} intersecting with W1,
Wk , respectively. By Lemma A.16, W = W1 and W ′ = Wk so that W ∩W ′ �= ∅.
��

Appendix B. Extension of the Vector Field b

Fix m ∈ M0. In this subsection, we define a new vector field b0 : R
d → R

d which
coincides with b in a neighborhood of m and satisfies the hypotheses of Sect. 3.
Assume that m = 0, and let

H = (∇2U )(0), L = (D�)(0).

By Taylor expansion, for x � 0,

− b(x) · Hx =
[
(H + L)x + O(|x|2)

]
· Hx = |Hx|2 + O(|x|3) ,

where the second equality comes from the fact that HL is skew-symmetric. Thus,
there exists r5 > 0 such that

= − b(x) · Hx ≥ 1

2
|Hx|2 for all x ∈ B(0, 2r5). (B.1)

If needed, modify the definition of r5 > 0 for

|Kx y| ≤ 1

2
|H y| for all x ∈ B(0, 2r5), y ∈ R

d . (B.2)

where Kx = (∇2U + D�)(x) − (H + L).
For x �∈ B(0, r5), let

r(x) = r5

|x| x ∈ ∂B(0, r5)

and let b0 : R
d → R

d be given by

b0(x) =
{
b(x), x ∈ B(0, r5)

b(r(x)) + (Db)(r(x))(x − r(x)), x ∈ B(0, r5)
c.

(B.3)

The main result of this section reads as follows.

Proposition B.1. The vector field b0 fullfils all conditions of Sect. 3. Condition (2)
holds for r3 = r5.

The proof relies on two lemmata.
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Lemma B.2. The vector field b0 belongs to C1(Rd , R
d). Moreover, there exists a

finite constant C1 such that

|b0(x)| ≤ C1|x| and ‖Db0(x)‖ ≤ C1|x| (B.4)

for all x ∈ B(0, r5)
c.

Proof. By a straightforward computation, for |x| > r5,

(∂xk b0)(x) = ∂xk
{

[Db(r(x))] (x − r(x))
} + ∂xk { b(r(x)) }. (B.5)

Since

∂xk r(x) = r5
ek
|x | − xk

|x|3 x,

the matrix ∂xk [Db(r(x))] is uniformly bounded on B(0, r5)
c.

Since x → r(x) as x approaches ∂B(0, r5), the boundedness of ∂xk [Db(r(x))]
yields that ∂xk b0(x) → ∂xk b(x) as x approaches to ∂B(0, r5). This proves that
b0 ∈ C1(Rd , R

d). The first assertion of (B.4) follows from the definition of b0.
The second one from (B.5) and the boundedness of ∂k [Db(r(x))] on B(0, r5)

c. ��
Lemma B.3. For all x ∈ R

d ,

− b0(x) · Hx ≥ 1

2
|Hx|2

Proof. By (B.1) the condition is satisfied for x ∈ B(0, 2r5). Fix x �∈ B(0, r5) so
that

− b0(x) · Hx = − b(r(x)) · Hx − (Db)(r(x))(x − r(x)) · Hx (B.6)

Since x = (|x|/r5) r(x) and since r(x) ∈ B(0, 2r5), by (B.1), the first term on the
right-hand side can be estimated by

− |x|
r5

b(r(x)) · Hr(x) ≥ |x|
2r5

| Hr(x) |2 = r5

2|x| |Hx|2.
For the second term, write

− (Db)(r(x)) = H + L + Kx and x − r(x) = ( 1 − r5

|x|
)
x.

Since HL is skew-symmetry, the second term of (B.6) is equal to(
1 − r5

|x|
)
(H + L + Kx) x · Hx

= (
1 − r5

|x|
) (|Hx|2 + Kx x · Hx

)
≥ 1

2

(
1 − r5

|x|
) |Hx|2 .

The last inequality comes from (B.2). Adding the previous estimates completes the
proof of the lemma. ��
Proof of Proposition B.1. To check the first condition, suppose that b0(x) = 0 for
some x ∈ R

d . Lemma B.3 implies that x = 0. Thus 0 is the only equilibrium of
the dynamical system (3.2). Since the behavior of this ODE near 0 is identical to
that of x(·), the origin is a stable equilibrium. Condition (2) in Sect. 3 for r3 = r5
follows from the definition of b0. The third and fourth conditions have been derived
in Lemmata B.2 and B.3, respectively. ��
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Appendix C. Potential Theory

In sake of completeness we introduce in this section the capacity between sets. Fix
two disjoint non-empty bounded domains A and B of R

d with C2, α-boundaries
for some α ∈ (0, 1). Assume that the perimeters of A, B are finite and that the
distance between the sets is positive. Let � = (A ∪ B)c so that ∂� = ∂A ∪ ∂B.
The equilibrium potentials hεA,B between A and B with respect to the processes
xε(·) is given by

hεA,B (x) = P
ε
x [ τA < τB ], x ∈ R

d ,

and the capacity by

capε(A, B) = ε

∫
�

|∇hεA,B|2 dμε.

We refer to [22] for equivalent formulations and properties of the capacity.

Appendix D. Analysis of a Linear ODE

In this section, we prove Lemma 5.3. To simplify notation, we fix c ∈ Y0, assumed
to be equal to 0, c = 0, and write A = −(Hc + L

c). By Lemma 5.1, the matrix A

is invertible and does not have a pure imaginary eigenvalue. All the results given
in this section holds for such a matrix A.

Real Jordan Canonical Form

Suppose that a matrix K can be written as a block matrix of the form

K =
⎡
⎢⎣

K1 O O

O
. . . O

O O Kn

⎤
⎥⎦ ,

where K1, . . . , Kn are matrices of possibly different sizes and O denotes the zero
matrix of suitable size. We represent such a matrix as K = diag(K1, . . . , Kn).
We start by a review of a real Jordan canonical form of A. By [35, Theorem 2.5],
there exists an invertible matrix U such that

A = UJU
−1 (D.1)

where J is of the form

J = diag(E−
1 , . . . , E

−
u1
, F

−
1 , . . . , F

−
u2
, E

+
1 , . . . , E

+
s1
, F

+
1 , . . . , F

+
s2
)

E
±
k =

⎡
⎢⎣
λ±
k 1 0

0
. . . 1

0 0 λ±
k

⎤
⎥⎦ , F

±
k =

⎡
⎢⎣

B
±
k I2 0

0
. . . I2

0 0 B
±
k

⎤
⎥⎦ ,
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and

I2 =
[

1 0
0 1

]
, B

±
k =

[
α±
k β±

k−β±
k α±

k

]
.

In this formula, λ+
k and α+

k are positive while λ−
k and α−

k are negative real numbers.
The eigenvalues of A are λ±

k and α±
k + iβ±

k . Thus, by Lemma 5.1, λ±
k and α±

k
cannot be 0. (Note that the real numbers β±

k are also different from 0 because the
eigenvalues α±

k + iβ±
k are complex numbers, but this will not be used below).

By (D.1)

etA = UetJU−1

where

etJ = diag(etE
−
1 , . . . , etE

−
u1 , etF

−
1 , . . . , etF

−
u2 , etE

+
1 , . . . , etE

+
s1 , etF

+
1 , . . . , etF

+
s2 ) .

(D.2)

Suppose that E
±
k is a j × j matrix. An elementary computation yields that

etE
±
k = etλ

±
k

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t t2
2 · · · t j−1

( j−1)!
t j
j !

0 1 t · · · t j−2

( j−2)!
t j−1

( j−1)!
...
...

...
. . .

...
...

0 0 0 · · · 1 t
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (D.3)

Similarly, if F
±
k is a 2 j × 2 j matrix,

etF
±
k = etα

±
k

⎡
⎢⎢⎢⎢⎢⎢⎣

S tS t2
2 S · · · t j−1

( j−1)!S
t j
j !S

O S tS · · · t j−2

( j−2)!S
t j−1

( j−1)!S
...

...
...

. . .
...

...

O O O · · · S tS
O O O · · · O S

⎤
⎥⎥⎥⎥⎥⎥⎦
, (D.4)

where O denotes the 2 × 2 zero matrix and

S =
[

cos(tβ±
k ) sin(tβ±

k )

− sin(tβ±
k ) cos(tβ±

k )

]
.
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Stable and Unstable Manifolds

Recall from (5.1) that we represent by υL ,x(t) the solution of the linear ODE (5.1).
With the notation of this section, it can be written as

d

dt
υL ,x(t) = AυL ,x(t), υL ,x(t) = etAx = UetJU−1x . (D.5)

Recall that ML ,s , ML ,u represent the stable, unstable manifold of c = 0 for the
linear ODE (5.1). By (D.5),

ML ,u : = {y ∈ R
d : lim

t→−∞ etJU−1 y = 0
} ML ,s :

= { y ∈ R
d : lim

t→+∞ etJU−1 y = 0
}
.

Denote by m ∈ N the size of the matrix diag(etE
−
1 , . . . , etE

−
u1 , etF

−
1 , . . . , etF

−
u2 ),

and by {u1, . . . , ud} the column vectors of U, (ui = Uei , where {e1, . . . , ed}
stands for the canonical basis of R

d ). By (D.2), (D.3), and (D.4),

ML ,u = 〈u1, . . . , um〉 and ML ,s = 〈um+1, . . . , ud〉 , (D.6)

where 〈S〉 denotes the vector space spanned by S. The following lemma is a direct
consequence of the discussion above.

Lemma D.1. There exists C0 > 0 such that for all y ∈ ML ,s and t ≥ 0,

‖υL , y(t)‖ ≤ C0‖ y‖.
Proof. Write γ = min{|λ−

1 |, . . . , |λ−
u1

|, |α−
1 |, . . . , |α−

u2
|} > 0. Then, by (D.2),

(D.3), (D.4), (D.5), and (D.6), it is clear that there exists a polynomial P(t) de-
pending only on d such that

‖υL , y(t)‖ ≤ e−γ t P(t)‖ y‖.
The conclusion of lemma follows immediately. ��
By (D.6), R

d = ML ,u ⊕ ML ,s . Hence, for each y ∈ R
d , there exists a unique

decomposition

y = vu( y) + vs( y) (D.7)

such that vu( y) ∈ ML ,u and vs( y) ∈ ML ,s . Next lemma provides the basic
property of this decomposition.

Lemma D.2. There is c0 < ∞ such that

‖vs( y)‖ ≤ c0‖ y‖ for all y ∈ R
d .

The proof is based on the following elementary result.



Arch. Rational Mech. Anal.          (2024) 248:78 Page 67 of 70    78 

Lemma D.3. Let V and W be subspaces of Rd such that V ∩W = {0}. Then, there
exists ζ = ζ(V, W ) > 0 such that

sup
v∈V \{0},w∈W\{0}

|〈v, w〉|
‖v‖‖w‖ = 1 − ζ

where sup is taken over all non-zero vectors.

Proof. Let us define F : (V \{0}) × (W\{0}) → R as

F(v, w) = |〈v, w〉|
‖v‖‖w‖ .

Since F(cv, c′w) = F(v, w) for all c, c′ �= 0, we have

sup
v∈V \{0},w∈W\{0}

F(v, w) = sup
v∈V,w∈W : ‖v‖=‖w‖=1

F(v, w).

Since the set S0 = {(v, w) : v ∈ V, w ∈ W : ‖v‖ = ‖w‖ = 1} is compact and
F(·, ·) is continuous, the function F achieve the maximum at certain (v∗, w∗) ∈ S0.
Then

sup
v∈V \{0},w∈W\{0}

F(v, w) = F(v∗, w∗).

Note that F(v∗, w∗) < 1 by the Cauchy–Schwarz inequality (the equality cannot
hold because of the assumption V ∩ W = {0}). This completes the proof. ��
Proof of Lemma D.2. Since ML ,u ∩ ML ,s = {0}, by Lemma D.3, there exists a
constant c > 1 such that, for all y ∈ R

d ,

|〈vu( y), vs( y)〉| ≤ √
(c − 1)/c‖vu( y)‖‖vs( y)‖

≤ 1

2
‖vu( y)‖2 + c − 1

2c
‖vs( y)‖2,

where we applied Young’s inequality in the last step. Therefore,

−2c〈vu( y), vs( y)〉 ≤ c‖vu( y)‖2 + (c − 1)‖vs( y)‖2.

Reorganizing, we obtain

‖vs( y)‖2 ≤ c (‖vu( y)‖2 + 2〈vu( y), vs( y)〉 + ‖vs( y)‖2) = c ‖ y‖2 .

This completes the proof. ��
Proof of Lemma 5.3. Recall the constant C0 and c0 from Lemmata D.1 and D.2,
respectively, and define r > 0 as

r = a

3C0c0
· (D.8)

Suppose that y ∈ B(0, r). As in (D.7), decompose y ∈ S
d into

y = vu( y) + vs( y)
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so that

υL , y(t) = υL ,vu( y)(t) + υL ,vs ( y)(t).

Note that υL ,vu( y)(t) ∈ ML ,u and υL ,vs ( y)(t) ∈ ML ,s for all t ≥ 0 since ML ,u

and ML ,s are invariant under the dynamical system (5.1). Recall the definition
(5.2) of tL(·) and write

wu( y) := υL ,vu( y)(tL( y)) ∈ ML ,u and ws( y) := υL ,vs ( y)(tL( y)) ∈ ML ,s,

so that

eL( y) = wu( y) + ws( y) (D.9)

By (5.2), ‖eL( y)‖ = r1. Moreover, by Lemmata D.1, D.2, and by the definition
(D.8) of r ,

‖ws( y)‖ ≤ C0‖vs( y)‖ ≤ C0c0‖ y‖ ≤ C0c0r = a

3
· (D.10)

Therefore, by the triangle inequality,∥∥∥ eL( y) − r1

‖wu( y)‖wu( y)
∥∥∥ ≤

∥∥∥wu( y) − r1

‖wu( y)‖wu( y)
∥∥∥ + ‖ws( y)‖

=
∣∣∣ 1 − r1

‖wu( y)‖
∣∣∣ ∥∥wu( y)

∥∥ + ‖ws( y)‖ .

Since ‖eL( y)‖ = r1, this expression is equal to∣∣ ‖wu( y)‖ − r1
∣∣ + ‖ws( y)‖ = ∣∣ ‖wu( y)‖ − ‖eL( y)‖

∣∣ + ‖ws( y)‖.
By (D.9) and (D.10), this expression is bounded by 2 ‖ws( y)‖ < (2/3) a. This
completes the proof of the lemma since

r1

‖wu( y)‖ wu( y) ∈ ML ,u ∩ ∂B(0, r1) .
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