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Abstract

Consider the elliptic operator given by
Lef =b-Vf 4+ eAf (0.1)
for some smooth vector field b: R? — R¥ and a small parameter ¢ > 0. Consider
the initial-valued problem
Oue = Leltg,
ug (0, ) = uo(-),

for some bounded continuous function u. Denote by M the set of critical points
of b which are stable stationary points for the ODE x(t) = b(x(¢)). Under the
hypothesis that My is finite and b = —(VU +£), where £ is a divergence-free field
orthogonal to VU, the main result of this article states that there exist a time-scale

0.2)

95(]), 98(1) — 00 as ¢ — 0, and a Markov semigroup {p; : t > 0} defined on M
such that

. 1
lim w000 0) = 3 pilm,m') uo (')
m'e My
for all + > 0 and x in the domain of attraction of m [for the ODE x(¢) = b(x(1))].
The time scale 81 is critical in the sense that, for all time scales 0¢ such that

0 — 00, 0:/6" = 0,

lim uy(0s, X) = uo(m)
e—0

for all x € D(m). Namely, 51) is the first scale at which the solution to the initial-
valued problem starts to change. In a companion paper [20] we extend this result
finding all critical time-scales at which the solution of the initial-valued problem
(0.2) evolves smoothly in time and we show that the solution u, is expressed in
terms of the semigroup of some Markov chain taking values in sets formed by
unions of critical points of b.
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1. Introduction

The main concern of the current article is the behavior of the solution u, of the
equation (0.2) in the regime ¢ — 0. This problem is connected to the metastable
behavior of the diffusion process induced by the generator L given in (0.1), which
has been a serious issue in the probability community. Freidlin and Koralov [11,12]
found a critical depth D > 0 and showed that the the solution u. (¢, x) in the
interval z € [0, eP~/¢]and 1 € [ePTD/E o) differ significantly for all n > 0.
Therefore, a dramatic phase transition occurs at the scale 6, = eP/¢ This result
has been extended by Koralov and Tcheuko [18] to cases which exhibit multiple
metastable time-scales. Ishii and Souganidis [15,16] derived similar results with
purely analytical methods.

In this article and the companion paper [20], we characterize the solution u,
under the assumption that the diffusion process induced by the generator L has a
Gibbs invariant measure. More precisely, fix a smooth potential U : RY — R, and
a smooth vector field £: R? — R. Assume that the vector field £ is divergence free
and is orthogonal to the gradient of U:

(V-0)(x) =0, (VU)(x) Lx) =0, xeR’ (1.1)
For ¢ > 0, denote by L, the elliptic operator given by
Lef = —(VU +£)-Vf +eAf. feCRY, (1.2)

which corresponds to the operator (0.1) when b = —(VU + £). It has been shown
in [28] that the Gibbs measure . (dx) = (1/Z;) exp{U(x)/e}dx is an invariant
measure for the diffusion induced by the generator L, for all ¢ > 0 if and only if
£ satisfies conditions (1.1).

Denote by L, the generator (1.2), unless otherwise specified. Fix a bounded
and continuous function ug: RY — R and consider the initial-valued problem

diug = Leug,

1.3
ug (0, ) =up(-). (1)

The tools developed in [2,3,21-23] permit to describe the solution of the parabolic
equation (1.3), in the domain of attraction of a local minimum m, at the time-scale
in which the solution is transformed from the value of the initial condition uq(-) at
the local attractor m of the field b = —(VU + £) to a convex combination of the
initial condition calculated at several different local attractors m’. A similar result
appeared in [5] for the case of sequences of continuous-time Markov chains on a
fixed finite state space.

The First Critical Time Scale

Let us now explain our main result in more detail. For two positive sequences
(g : € > 0), (B : € > 0), we denote by o < Be, Be > g if az/Be — 0O
as ¢ — 0. The main results of the current article and the companion paper [20]
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assert that there exist critical times scales 951) < - =< eé‘” associated with the

potential function U at which the asymptotic behavior of the solution u, changes
dramatically. We not only characterize these time scales explicitly but also provide
precise asymptotics of u, along these scales. We also derive the asymptotics of the
solution between these time-scales, completely analyzing the behavior of u,.

The current article concerns the first time-scale among such a complex multi-
scale structure. We explicitly find a time-scale 95(1) > 1, and a Markov semigroup
{p; : t > 0} defined on the set of local minima M of U such that, for all local
minimum m € M,

limue (16 0) = 3 pi(m.m) up(m'), (14)
m'eMy

forall t > 0, x € D(m). Here, D(m) represents the domain of attraction of m for
the ODE x(¢) = b(x(t)), where b = —(VU +{).
We also show that, for any sequence 1 < o, < 6, 7,

lim u, (0, X) = uo(m) (1.5)

forallx € D(m). Hence, the solution does not change until the time-scale 05(]), and
it starts to change exactly at 95 Y'in view of (1.4) and (1.5). The main achievement
of the current article is the verification of (1.4) and (1.5). We remark this scale 98(1)
is the scale 6, = ¢P/¢ obtained in [11,12].

To illustrate assertion (1.4), consider a generic potential U, namely a potential
for which all critical points are at different heights. Denote by m | the local minimum
associated to the shallowest valley and by m, the unique local minimum separated
from m by the shallowest saddle point disconnecting m | from the other local
minima. The local minimum m, is unique because all saddle points are at different
heights. Then p;(m, m’) = 0, unless m = m|, m’ = m;. In other words, in the
time-scale 95(1), starting from the basin of attraction of m, the process waits an
exponential time and then jumps to a neighbourhood of m, where it stays forever.

Multi-scale Structure

The characterization of the remaining scales are the contents of the companion
paper [20]. We briefly explain the main result.

Let us start from the second scale which can be inferred from (1.4). The theory
of finite-state continuous-time Markov chains asserts that there exist probability

measures n}l), 1 < j < ny,on Mg withdisjoint supports, and probability measures

oWV m, ), m e Mo, on {1, ...,n;} such that
n
. 1 (1)
Jim py(m,m') = kZa% Ym, k) 7 (') (1.6)
—1

for all m, m’ € My. If m’ is a transient state all terms in the previous sum van-

ish. Indeed, the measures nj(.]) represent the stationary states of the Markov chain
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restricted to the closed irreducible classes, which in turn are the support of the
measures JT](-I). The weight " (m, k) stands for the probability that the Markov
chain starting from m is absorbed at the support of the measure n,ﬁl).

If there is only one stationary state or, equivalently, one closed irreducible class,
namely n; = 1, then for all time-scales g, such that 9;1) < 0¢, we can readily guess
from (1.4) and (1.6) that (note that " (m, 1) = 1 in this case)

. (1) / /
lim = E
eaoue(gs’x) Ty (m") up(m’)
m' e M

for all local minimum m € Mg and x € D(m). Note that the limit does not depend
on m or x. This behavior occurs when (a) all the wells associated to local minima
of U which are not global minima have the same depth, and (b) either there is only
one global minimum or there is more than one and the depth of all wells are the
same. In this case of a unique closed irreducible class, the support of the measure
rrl(l) corresponds to the set of global minima of U. This finishes the description of
multi-scale structure for the case n; = 1.

In contrast, if there are more than one closed irreducible classes, the limit of
Ug (tés(l), x) as ¢ — 0 and then r — oo depends on the local minimum attracting
x. In this case, there exists a second and longer time-scale 93(2) such that 6’8(1) =< 98(2)
and a Markov semigroup {pt(z) : t > 0} defined on the set of closed irreducible
classes {1, ..., n;} obtained at the first time-scale such that

ny ng

1 ) _ (1) (2) (D / /

sh_r)r%)us(t@g ,X) = E "’ (m, k) E ik, £) E 7T, (m) up(m’)
k=1 =1 m'e My

for all + > 0 where m € M is a local minium of U and x € D(m). Mind that we
may restrict the sum over m’ to local minima in the support of the measure né

We can also verify that, for any sequence g, such that 98(1) < 0s < 98(2), we have

nj
. 1
lim ue (0e. %) = Y 0V m. k) Y wm') uo(m')
¢ k=1 m'e Mo

for all m € My and x € D(m). This is exactly the behavior of the solution u, in
the time scale IOg(l) as ¢ — 0 and then t — 00, and the one in the time scale tég(z)
as ¢ — 0 and then t — 0. This completes the description of the asymptotics of u,
until the second scale 98(2).

More generally, there exist ¢ > 1 and time-scales 68(1) << Gs(q) such that

np—1 Np—1
: (p) _ (p—1) (p) (p=1, /
glg%ug(t@sp,x) = > " V) Y p" k) > 7"V ugm)
k=1 =1 m'e M,
(1.7)
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foreach1 < p <q,t > 0,m € My, x € D(m). Furthermore, foreach 1 < p <

q+ 1, and sequence (0, : ¢ > 0) such that 67" < 0, < 67, m € Mo, and
x € D(m),
np—1
li _ (p—1) (p=D 1 . )
lim ue(oe. x) = Y 0"V k) Y T yugm’). (18)
k=1 m'eMy

In this formula, 95(0), Oéqﬂ) are the constant sequences equal to 1, 400, respectively.
Summing up,

e Denote by ng the number of local minima of U sothatng > ny > --- > ng = L.

e p”, 1 > 0, is a Markov semigroup on {1,...,1n, 1}, 1 < p < q. Here, the

semigroup p;, introduced in (1.4), has been represented by p,(l).

e Forafixedl < p <q, n;p ), 1 < j < n,, are probability measures on My
with disjoint supports. They correspond to the extremal invariant probability
measures of the Markov chain with transition probability pl(p ),

o »P(m,-) are probability measures on {1, ...,n,}, where o) (m, j) stands

for the probability that m is absorbed at the support of the probability measure
(p)

T
J

It turns out that all local minima which belong to the support of a measure n](.p )

are at the same height: U (m") = U (m") if m’, m” belong to the support of the same

measure JT](.P ). On the other hand, the support of a measure JT](-p 1 is formed by
the union of the supports of measures n,ﬁp ), k e {1,...,n,}. Moreover, n/(.p s

a convex combination of the corresponding measures n,fp ) The rigorous recursive
construction of this multi-scale structure is a delicate and complicated task and will
be done in the companion paper [20]. Assertions (1.7) and (1.8) will be proven
there as well.

Comments on the Proof

The analysis of the asymptotics of the solution u, (¢, x) of (1.3)is closely related
to that of the metastable behavior of the process

dx.(1) = — (VU + £)(x:(1))dr + +2¢dW;, (1.9)

where ¢ > 0 denotes a small parameter corresponding to the temperature of the
system, and W; a d-dimension Brownian motion. This relation comes from well-
known expression

e (t, x) = ES [ug(x:(1))], >0, x e RY,

where [E¢, denotes the expectation with respect to the diffusion process (1.9) starting
atx e RY.

The proof of the result described above is purely probabilistic and relies on the
theory of metastable Markov processes developed in [2,21-24,37]. The metastable
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behavior of the process (1.9) has been recently studied in several articles: [31] pro-
vided sharp asymptotics on the low-lying spectra which is closely related with the
metastability of the process x.(-), [28] established Eyring-Kramers law precisely
estimating the mean transition time from a local minimum of U to another one, and
finally [29] investigated the metastability among the global minima (i.e., ground
states) of U. The last work can be regarded as the analysis of the metastability at
the final scale Qg(q) described above.

The recursive construction of the multiscale structure presented here appeared
before in different contexts. Michel [32] introduced it to study the low-lying eigen-
values of the semiclassical Witten Laplacian associated to a Morse function. We
refer to [4,13,26] for the same construction in the context of finite state Markov
chains.

The analysis of the multi-scale structure is based on the resolvent approach
to metastability developed in [22]. The crucial point consists in showing that the
solution of a resolvent equation is asymptotically constant in neighborhoods of
local minima. More precisely, denote by £(m) a small neighborhood of a local
minimum m. Fix A > 0, g: Mo — R, and let ¢, be the unique solution of the
resolvent equation

(=L g = Gi= Y gm) e
meMy

where x4, A C Rd, represents the indicator function of the set 4. The function on
the right-hand side vanishes at (Uy,e A4,€ (m))€ and is constant on each well £ (m”).
One of the main results of this article asserts that the solution ¢ is asymptotically
constant in each well £(m):

lim max sup |¢.(x)— f(m)| = O, (1.10)

=0 meMo xe&(m)

where f is the solution of the reduced resolvent equation

h-Lnf =g (1.11)

and £ is the generator of the My-valued, continuous-time Markov chain whose
associated semigroup is the one appearing in (1.4). Property (1.4) of the solution
of the initial-valued problem (1.3) is deduced from this property of the resolvent
equation.

Background

In a sequence of seminal works, Freidlin and Wentzel, [14] and references
therein, investigated the metastable behavior of random perturbations of dynamical
systems, and introduced the notion of hierarchy of cycles. Assuming that each
cycle has only one subsequent cycle, they described the metastable behavior of
the diffusion dx (1) = b(x,(¢)) dr + ~/2edW, at all the time scales other than the
critical ones at which the diffusion may jump from one cycle to another. We refer
to [11,12,15,16,18] for recent developments of this theory.
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With the notation introduced above, the hypothesis that each cycle has only one
subsequent cycle means that foreach 1 < p < q,1 < j <n,_1, there exists only

one k such that p*’ (j, k) > 0.

In this article, assuming that the drift b(-) can be written as b = —(VU + £)
for a vector field £ satisfying conditions (1.1), we extend the results in [14] in
two directions: describing the behavior of the diffusion (or the one of the solution
of the parabolic equation (1.3)) at the critical time-scales Gs(p )
hypothesis that each cycle has only one subsequent cycle.

As mentioned at the beginning of this introduction, we impose the conditions
(1.1) on the vector field £(-) for the Gibbs measure pe(dx) = (1/Z,) e~V ®)/2 dx
to be the stationary state of the diffusion process x.(-). The precise description of
the asymptotic behavior of the solution u, in the time-scale 95(1) presented in (1.4)
relies on explicit computations which require an explicit formula for the stationary
state and smoothness of its density.

In general (that is, without the hypotheses (1.1)), the quasi-potential, which
plays the role of U (-) in the formula for the stationary state, is not smooth and not
known explicitly, making it impossible to apply the approach proposed here. We
refer to [10,25], for a model (a one-dimensional diffusion on the torus) where the
quasi-potential can be computed and the methods presented here applied, despite
the lack of smoothness of the quasi-potential.

Estimates of the transition times expectation have been obtained in [6,23]. In
the presence of many wells, these expectations may not converge for the following
reason. With a very small probability, crossing a saddle point higher than the lowest
one, the diffusion may hit a very deep well and remain there a very long time. This
contribution might be dominant for the expectation, turning it much larger than
predicted.

Uniform estimates, similar to (1.10), for solutions of Dirichlet problems go
back at least to Devinatz and Friedman [9], and Day [8]. The convergence to a
constant is called in the literature the leveling property of the equation. We refer to
Lelievre, Le Peutrec and Nectoux [30] for a recent account and further references.

, and removing the

Organization

The paper is organized as follows. In Sect.2, we state the main results. The
proof of Theorem 2.2 is divided in two parts. In Sect. 4, we prove that the solution
of the resolvent equation is constant on each well, and, in Sect. 9, that the solution
of the resolvent equation restricted to the set of local minima of U is asymptotically
the solution of the reduced resolvent equation (1.11).

The proof of the local constancy relies on a diffusion mixing time estimate
presented in Sect.3. The proof of the second property of the resolvent equation
solution requires an estimate of the time it takes to exit aneighborhood of an unstable
equilibrium point, presented in Sect. 5, estimates on the time needed to reach a local
minimum of U, the subject of Sect.6, and test functions which approximate the
equilibrium potential between wells, introduced in Sect. 7. In Sect. 8, we add the last
piece of the proof, extending the results of Sect. 4 by showing that the solution of the
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resolvent equation is actually asymptotically constant in the domain of attractions
of a local minimum. In Sect. 9 we prove Theorem 2.2, and Theorem 2.1 in Sect. 10.
In the appendices, we present some results needed in the proofs.

2. Model and Main Results

Fix a function U : R? — R in C3(R?) admitting only a finite number of critical
points, all non-degenerate (hence U is a Morse function, cf. [34, Definition 1.7]).
Assume that

. . U(x) X
lim inf = 00, — - VU(x) = oo,
n=00 |x|2n x| |x|—o0 |x| 2.1
lim {|[VU@x)| - 2AU(x)} = .
|x]—o00

In this formula and below, |x| represents the Euclidean norm of x € R?. Suppose,
without loss of generality, that min,..gs U (x) = 0.Consider a vector field : RY —
R in C?(R?), assumed to be divergence free and orthogonal to the graduent of U
as stated in (1.1).

Time-Scale

Denote by M the set of local minima of U. For each pair m’ # m” € My,
denote by © (m’, m") the communication height between m’ and m” as

Om', m"):= inf max U(z(t)), (2.2)
z:[01]—-R4 1€[0, 1]

where the minimum is carried over all continuous paths z(-) such that z(0) = m’
and z(1) = m”. Clearly, ®(m’, m") = ©(m"”, m’). Denote by I" (m) the depth of
the local minimum m € My:

I(m) = 11,17ién Om,m) — U@m). (2.3)

Denote by d(1 the depth of the shallowest well, and by 68(1) the corresponding
time-scale:

dV:= min T(m), 6 = AVl
meM ¢

Gates

Denote by Y (m) the set of gates of m € M. This is the set of points x € R¢
for which there exist m" € My, m’ # m, and a continuous path z: [0, 1] — R4
such that z(0) = m, z(1) = m’,z(1/2) = x and U (z(1)) < U(x) = U(m)+T (m)
forallr € [0, 1], #£ 1/2.

Mind that there might be more than one local minima m’ for the same gate
x € Y (m): there might exist m| # m», both different from m, x € Y (m), and
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continuous paths z;: [0, 1] — R4, i = 1, 2, such that z;(0) = m, z;(1) = m;,
zi(1/2y=xand U(z;(t)) < U(x) =U(@m) + I'(m) forallt € [0, 1], # 1/2.

Mind also that in the definition of gate, we require m’ to be different from m.
In this way, we exclude from the set of gates points x for which there exists a
continuous path z: [0, 1] — R¥ such that z(0) = m, z(1) = m, z(1/2) = x and
Ui®) <Ux)=U@m)+T(m)forallt € [0, 1], # 1/2.

Recall that b = — (VU + £) and that a heteroclinic orbit ¢ from x to y € R¢
is a solution ¢ : R — R< of the ODE

x() = b(x(1)), 2.4)
such that
t_ljl_nooqb(t) = x, tgrg}o¢(t) =y

We represent this relation by x ~ y. In other words, x ~ y indicates the existence
of a heteroclinic orbit from x to y. We assume also that for all m € M such that
I'(m) =d", and o € Y (m), there exists m’ € Mo, m' # m, such that

o~m and ¢ ~m'. (2.5)

The condition (2.5) is crucial. For instance, if there is a heteroclinic orbit from
a saddle point o € Y (m) to a saddle point ¢’, we are not able to determine which
is the local minimum visited after m when the process starts from a neighbourhood
of m.

The assumption (2.5) holds when the dynamical system x (-) defined in (2.4) is
a Morse-Smale system. In a Morse-Smale system, for two critical points ¢1, ¢ of
U (-), the unstable manifold of ¢ and the stable manifold of ¢, intersect transver-
sally and thus when ¢; ~ ¢, the index (the number of negative eigenvalue of
the Hessian) must strictly decrease along heteroclinic orbits; hence (2.5) follows
naturally.

By Proposition A.1, any gate x € Y := U, caq, Y (m) belongs to the set of
critical points of U, denoted by Cp:

Co:= {x eRY: (VU)(x) =0}.

By [28, Theorem 2.1], the divergence-free field £ vanishes at the critical points of
U: £(x) = 0 for all x € Co. Denote by (V2U)(x) the Hessian of U at x. Since U
is a Morse function, for allo € T,

(V2U)(0) has only one negative eigenvalue, all the others being strictly positive.
(2.6)

Indeed, by definition, o can not be a local minimum. On the other hand, assume that
o is a gate between m and m’. If the number of negative eigenvalues is greater than
1, the set {x : U(x) < U(o)} would be locally connected, and there would be a
continuous path from m to m’ staying strictly below U (o), which is a contradiction.

Denote by V(m) the set of points m’ € My, m’ # m, for which (2.5) holds for
some o € Y (m). Hence, V(m) is the set of local minima m’ € Mgy, m’ # m, for
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which there exist a critical point ¢ € Y (m) and heteroclinic orbits from o to m
and o to m’:

V(m) = {m' e Mo\ {m}:306 € Y(m) suchthat 0 ~m, ¢ ~m'}.

Elements of V(m) are called neighbors of the local minimum m of U. Denote by
S(m, m'), m" # m, the set of critical points which separate m from m’:

Sm,m') = {oeYm):6 ~m, o ~m'} 2.7

Reduced Model

Denote by (D£)(x) the Jacobian of £ at x. By (2.6), (V2U)(o), 0 € Y, has
only one negative eigenvalue. By [28, Lemma 3.3], (V2U)(0) + (D£)(0) has also
one negative eigenvalue, represented by —uy < 0. Form € My, 0 € Y(m), let
the weights v(m), w (o) be given by

pm) = L (o) = Ho . @8

J/det(V2U)(m)’ @ 27y/— det V2U (o)

Letw(m, m'), m # m’' € M, be the weight given by

omm) = > o). (2.9)

oeS(m,m’)

Note that w (m, m’) vanishes if m’ ¢ V(m). Moreover, neither S(-, -) norw(-, -)
is symmetric in its arguments. To include the depth of the local minimum m in the
definition of the weight w (m, m’), set

wi(m,m') = om,m)1{Tm)=d"}. (2.10)

Denote by £; the generator of the My-valued, continuous-time Markov chain
given by

1
Lih(m) = — Z wi(m,m’) [h(m') — h(m)]. (2.11)

v(m) m'eMy

As w(m, m’) vanishes if m’ does not belong to V(m), the sum can be carried over
V(m).

Theorem 2.1. Assume that hypotheses (2.1), (2.5) are in force. Fix a bounded and
continuous function ug: R¢ — R. Denote by uy the solution of the parabolic equa-
tion (1.3). Then, (1.4) and (1.5) hold for all t > 0, where p;(-, -) is the semigroup
associated to the generator £1.
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Resolvent Equation

The proof of Theorem 2.1 is based on properties of the resolvent equation
presented in this subsection. Denote by B(x,r), x € RY, r > 0, the open ball of
radius r centered at x. Let W (m), m € My, r > 0, be the connected component
of the set {x € RY:U(x) <U@m) + r} containing m.

Fix m € M. All constants r; below depend on m and b(-), though this does
not appear in the notation. Equation (B.1) introduces a positive constant rs > 0.
Choose r4 small enough for (3.9) to hold with r3 = rs. By Proposition B.1 and
conditions (1), (2) in Sect.3, B(m, rs) does not contain critical points of U besides
m.

Choose ro > 0 small enough so that for all m € My,

(a) W20 (m)\{m} does not contain critical points of U;
(b) W20 (m) is contained in the domain of attraction of m for the ODE (2.4);
(¢) b(x) - n(x) < 0forall x € IWV¥0(m), where n(-) is the exterior normal of
the boundary of W20 (m).
(d) W3 (m) C B(m, rs).
(€) W0 (m) C Dy, (m)
Since W' (m) = {x € R? : U(x) < U(m) +r}, for r small enough n = VU at the
boundary of W’ (m). In particular, as £ - VU = 0, b(x) - n(x) = —|VU (x)|> < 0
for all x € 9W?0(m) and ro small enough.
Set

Em) :=W"°(m), m e M,. (2.12)

For A > 0, g: My — R, denote by ¢, = d)? ¢ the unique solution of the
resolvent equation

A=0Le)pe = Gi= D glm) Xe- (2.13)
meM

where x4, A C R, represents the indicator function of the set .4. The function on
the right-hand side vanishes at (Uy,e p4,€ (m))€ and is constant on each well £(m”).
The second main result of this article reads as follows:

Theorem 2.2. Forall A, > 0 and g: My — R,

lim max sup [¢.(x) — f(m)| = 0,

>0 meMo ye&(m)
where f is the solution of the reduced resolvent equation
A=LDf =g,

and £1 is the generator introduced in (2.11).
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Comments and Remarks

The proofs of Theorems 2.1 and 2.2 are entirely based on the metastable be-
havior of the stochastic differential equation

dxp(1) = b(xs(t))dr + ~2edW,, (2.14)

where ¢ > 0 denotes a small parameter corresponding to the temperature of the
system, and W, a d-dimension Brownian motion.

The proof of Theorem 2.2 is divided in two parts. We first show in Sect. 4 that
¢ is asymptotically constant on each well £(m). Then, we prove that the average
of the solution ¢, on a well £(m) converges to f.

In Sect. 10, we deduce from Theorem 2.2 and with ideas introduced in [21], the
convergence of the finite-dimensional distributions of the process x.(-). A similar
result has been obtained by Sugiura in [38] with different ideas in the case £ = 0.

3. Mixing Time of Diffusions

The main result of this section, Theorem 3.1, provides an estimate on the mixing
time of a diffusion on R¥. The proof of this result can be skipped in a first reading
as the ideas and techniques used to derive the bound on the mixing time will not
be used in the next sections.

Fix a function Up: RY — R of class C> and a vector field £9: RY — R? of
class C? such that

(VUp)(x) - £o(x) = (V-£o)(x) = 0 forall x € R?. (3.1)

Suppose that Up has a local minimum at x = 0 and that it has no other critical
point in a neighborhood of the origin. Furthermore, we assume, for convenience,
that Uyp(0) = 0.

Consider a vector field by : R? — R4 of class C! such that

(1) by vanishes only at the origin, which is a stable equilibrium point for the
dynamical system

y(0) = bo(y(1)). (3.2)
(2) There exists r3 > 0 such that
bo(x) = —(VUp)(x) — Lo(x), x € B(0,r3).
(3) There exist R > 0 and a finite constant C; such that
lbo(x)| = Cilx| and [[Dbo(x)| < Ci |x| (3.3)
for all |x| > R, where the matrix norm is defined as

IM][ = sup [My].
lyl=1
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(5) Let Hy = (V2Up)(0) and Ly = (D4£y)(0). Assume that

1
— (bo(x), Hopx) > 5 |Hox|*> forallx € R. (3.4)
where (-, -) represents the scalar product in R?.
The main result of this section requires some notation. Let
A(x) := (Dby)(x), A := A(0), sothat A = — (Hy+ Lop). 3.5)

By [28, Lemmata 4.5 and 4.1], all the eigenvalues of the matrix A have negative real
parts. Therefore, by [19, Theorems 2 and 3, p.414], there exists a positive definite
matrix K such that

ATK+KA = —1, (3.6)

where [ is the identity.
Let D, C RY, r > 0, be the set given by

D, = {x e R?: (x, Hyx) < r?}. (3.7)

By (3.6), there exists rj > 0 such that

” (AX) — A)K + K(AX) — A) H < (3.8)

| =

for all x € B(O0, rfl). By (3.7), D»,, C B(0, r[t) for some r4 > 0. Take r4 small
enough so that

Dy, C B(0,13), (3.9)

where r3 has been introduced in condition (2) above.

The main result of this section reads as follows. Denote by dtv (i, v) the total
variation distance between probability measures  and v. Let y, (-) be the diffusion
given by

dy,(t) = bo(y, () dr + 2edW,. (3.10)

The process y,(-) starting at x € R4, is represented by y, (¢; x). Lett, = &~ for
some 0 € (0, 1/3).

Theorem 3.1. Denote by . the stationary state of the diffusion y,(-). Then,

lim sup drv(y,(t;x), ) = 0.

£~YxeDy,

Remark 3.2. The proof of this result is largely based on [1,27]. Theorem 3.1 follows
from [1, Theorem 2.2] when A is negative definite. As mentioned above, all the
eigenvalues of matrix A have negative real parts, but A might not be negative
definite. The purpose of this section is to extend [1, Theorem 2.2] to this situation.
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Proof of Theorem 3.1

The main idea of proof is to approximate the difference y.(tr) — y(¢) by a
Gaussian process. Let

1) = y.(1) = y(0)).

—— (
A/ 2¢e
By (3.10) and (3.2),

—~ 1 —~
dE(t) = —={bo(y.(1)) — bo(y(1)) } dt + dW; =~ (Dbo)(y(1)) £(1)dr + dW,.
V2¢e

Hence, it is natural to conjecture thatg(t) =~ £(t) where & (¢) is the Gaussian process
defined by the SDE

dE(1) = A(y(1)) E@)dt + dW,, £(0) = 0. (3.11)
Let
2e(1) = y(1) + V2e ). (3.12)

By the previous discussion, we expect that y, (f) =~ z.(¢).
Lemma 3.3. There exists r4 > 0 such that

lim sup drv (yg(ts; X), Ze(te; x)) =0. (3.13)

e—>0, EDM
Denote by N'(u, %) the normal distribution with mean g and covariance .

Lemma 3.4. There exists r4 > 0 such that

lim sup dr (ze(te; %), N0, 26H71)) = 0.

¢7YxeD,,

Proof. The proof is presented in [1, Proposition 3.6], and relies on the fact that
Z:(+; x) is a Gaussian process. In particular, z.(7; x) is a normal random variable
whose mean and variance can be expressed explicitly. The assertion is thus re-
duced to a computation of the total variation distance between two normal random
variables.

Denote by A > 0 the smallest eigenvalue of Hy. The proof starts at [1, display
(3.22)], and requires the bound

ly(O)* < |yO)*e ™,

and [1, Lemma B.2]. In the present context, Lemma 3.5 replaces the first estimate,
and [1, Lemma B.2] holds because it only needs all the eigenvalues of (Dbg)(0) to
have a positive real part, a property satisfied by our model as mentioned in Remark
3.2 O
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Proof of Theorem 3.1. Denote by p? (-, -) the transition kernel of the process y, (-)
and by 7, (-) the density of the measure 7, (dx): m.(dx) = 7. (x)dx. By definition,
and since 7, is the stationary state of the process y,(-),

1
dry (v, (te; x), me) = E/Rd |ple(x, y) — me(y)| dy

_1/
_2Rd

The previous expression is bounded by

dy .

/Rd [ pfe(x. ¥) — ple(x', p) | e (x') dx’

1 & £ ! / !/
5 | pie (x, y) — ple(x', y) | me(x') dx dy
]R‘l ]R‘l
= [ v,y x)) )

By (3.22), the right-hand side is less than or equal to

f dry (Y. (te; %), yo(te; x)) me(x)dx’ + Coe

D,

for some finite constant Cy. By Lemma 3.3, and a triangular inequality,

limsup sup / |dry (ye(te; x), yo(te; X))

e—>0 xeDy, 4

—drvy (2e(te: X), Ze(te; X)) | me(x) dx” = 0.

It remains to show that

lim sup sup / dry (ze(fe; X), ze(te; x)) me(x)dx’ = 0. (3.14)
D,

e—0 xeDy, N

Since the integrand is bounded by
dry (2003 0), N0,26H7) + drv (N(0, 26H1), 2ot ¥ )

assertion (3.14) follows from Lemma 3.4. O

Proof of Lemma 3.3

The proof is similar to the one presented in [1, Section 3.3], which is based
on conditions (C) or (H) of that article. These conditions, however, are only used
in the proof of Lemma 3.3 to derive the estimates presented in Lemmata 3.5, 3.7,
3.10, 3.11, and Proposition 3.8.

Fix §. = &¢ for some ¢ > 0. As

Yelle; X) = y.(8e; ¥:.(te —86:%)), 2e(te; X) = Ze(8e: 2e(te — 8¢5 X)),
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we have that

dry (ye(te; x), ze(te; X))
< dry (J’g(fsg; Yelte —8e; %)), 26(8e; Ye(le — 8¢5 x))) (3.15)
+ drv (26 Be: yplte — 863 X)), 2e(8e: 2o (e — 863 X)) ) .

The first term on the right-hand side is bounded in [1, Proposition 3.3] and the
second one in [1, Proposition 3.4]. The proof relies on the estimate presented in
Proposition 3.8 below.

We sketch the proof of these bounds. For the first one, fix x € D,, and denote by
Py and Pz the law of process (y,(s; X))seo, 5.1 and (z:(s; X))se0, 5,]> respectively.
By Pinsker inequality,

dp
dry (3068 %), 265 0))° = — 2B, [log 2. (3.16)
dPy

The SDE describing the process z(-) can be written as
dz:(t) = {Bo(y(1) + Dbo(y(1) [2:(0) = y(®) ]} dr + V2eaW;. (3.17)

Hence, by Girsanov theorem, (3.10), and (3.17),

dPyz 1

B¢
°¢ b, T o /(; (Bo(y. (1)) = bo(y(1)) + Dbo(y(1)) [y, (t) — y(®)1, dW )

1
e /0 | bo(y, (1)) — bo(¥(1)) + Dbo(y(1)) [y, (1) — y(t) ] |2ds ‘

Thus, the left-hand side of (3.16) is bounded by

1 [
[ B [1B003.0) = Bo(y®) + Dbo(y(0) [y:(0) = y0) 1 ] ds.

2¢e 0
(3.18)

By condition (3.3) on Db (which is milder than that of [1]), and the argument pre-
sented in [1, Proposition 3.3], we can conclude that dtv (ys(ch; X)), Z¢(8g; x)) <

8; 2 We emphasize that in order to control the term bo(y,(¢)) — bo(y(¢)), we need
the estimate of the fourth moment stated in Proposition 3.8. In all other places, a
bound of the second moment suffices.

By Lemma 3.7, the probability that the starting point y,(t. — §.; x) does not
belong to D,, vanishes as ¢ — 0. This fact together with the bound obtained in the
previous paragraph yields that

lim sup dry (ye(Be: ye(te — 861 %)), 26(8e: ¥, (s — 853 x))) = 0.

e=>UxeD

This completes the estimate of the first term on the right-hand side of (3.15).
We turn to the second term. By Proposition 3.8 the starting points y, (t; —d.; x)
and z.(t. — §¢; x) are close. Since the process z.(-) is Gaussian, the distance

drv (26 (8e; w), 26 (8:; W)
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is complete determined by w and w’, and one can follow the arguments presented
in [1, Proposition 3.3]. All error term appearing in the proof are uniform on the
starting point x € D,, because all estimates obtained in the next subsections are
uniform. Thus,

lim sup drv (Zs(as;ye(te — 8¢5 X)), 2e(8e; 26 (e _8e§x))) = 0.

g%()xepr4

This completes the proof of Lemma 3.3.

Exponential Stability

In this subsection and in the next we provide the estimates used in the proofs
of Lemmata 3.3 and 3.4. Recall that we denote by A > 0 the smallest eigenvalue
of Hy. The following lemma substitutes [1, display (2.2)].

Lemma 3.5. Forallt > 0,
(@), Hoy(@®) < e (y(0), Ho y(0)). (3.19)
Proof. By (3.2) and (3.4),

T (@), Hoy() = 2 (bo(y(0), Hoy(t)) < — |Hoy(t) >
= =2 (y(®), Ho y(») (3.20)
since X is the smallest eigenvalue of H. O

Remark 3.6. Fix r > 0. By the previous lemma, y(t) € D, for all ¢+ > 0 provided
y(0) € D,.

A similar computation for y,(¢) instead of y(¢) yields the moment estimate
stated in the next lemma. This bound plays the role of [1, condition (H)]. Denote
by Ey the expectation with respect to y,(-) starting at x. Moreover, from now on,
all estimates presented hold only for sufficiently small ¢.

Lemma 3.7. Fixr > 0. For all n > 1, there exists a constant C(n) > 0 such that

sup sup Ex (y, (1), Ho y, ()" < e "' (x, Hyx) + C(n)e.

t>0 xeD,

Proof. By Ito’s formula, (3.4), and a similar computation as to (3.20), we get

d(ye(t), Hyyo (1)) < [=4{ye(), Ho ye(0) + 2be] dr + v/2¢ (2Hp y, (1), dW;),
(3.21)

where ) = tr(Hp). Thus, by Ito’s formula and (3.21),

d{ye (1), Hoy, )" < n(ye @), Hoye®)" ™ [ =2 (ye(0), Ho y, (1)) + 2be | dr

—1 .
Ve (2Ho ye 1), dwi)+ P 1 0, By (02 x 8¢ [Ho (1) dr .
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For ¢ sufficiently small, this expression is bounded by

. A
(y. (1), Ho y, ()" [ _ ”7 (. (), Ho y,(6) + 2hn8]dl
+ v2e (2Ho y, (1), dW;).

Since

n— —1 a1
[y, (), Hoy, (o))" " < ”T<yg<r>, Ho y, ) + .

for small enough & > 0,

ni

dly.. Hoy 0 = | =%

+ V28 (2Ho y, (1), dW;)

(v (0). Ho y, ()] +ctme | de

for some finite constant c¢(n). Hence, by Gronwall’s inequality,

4c(n)e
ni

Ex (y.(), Hoy.(1)" < e "9 (x, Hox) +
as claimed O

It follows from the estimates derived in the previous lemma, the argument
presented in [1, page 1192] (cf. the last line of the proof of [1, Proposition 3.7])
and the dominated and monotone convergence theorems that there exists a finite
constant Cg such that

(D)) = Coe (3.22)

for all ¢ sufficiently small.

Gaussian Approximation

Hereafter, we couple the processes y,(-), £(-), and z.(-) by using the same driv-
ing Brownian motion W;. This coupled probability law and associated expectation
will be denoted by p, and Ey.

Proposition 3.8. (Gaussian approximation) There exist constants o1, or > 0 such
that

sup sup B [, (50 — 20 1] < o e,
tflstDr4

This proposition corresponds to [1, display (3.12)] which plays a crucial role in
the proof of the main result. Since the proof of [1, display (3.12)] requires conditions
(C) and (H) of [1], and these conditions are not assumed here, we develop an
alternative approach below, based on [27].
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Lemma 3.9. There exists ¢ > 0 such that

(Kx, A(y(@))x) = —c(x, Kx).
forallt > 0and x € Dy,,.
Proof. By (3.8) and (3.6),

2(Kx, AGO)x) = (x, [A00O) K+ KAG©)| %)
1 1
< <x, [ATK+ KA]x) 5 = =l
As K is bounded, the previous term is less than or equal to — ¢ (x, Kx) for some

positive contant c, as claimed. O

Lemma 3.10. For all n > 1, there exists a finite constant C(n) > 0 such that

sup sup Ey [(§(r), KE®)"] < Cn).

120 xeDy,
Proof. By Ito’s formula and Lemma 3.9,
d{E(r), KE®) = [2(KE®), Ay@)E@®)) +t]dr +2 (KE(r), dW;)

< [—2c(&@®), KE@)) + €] dr + 2(KE(D), dW) , (3.23)
where ¥ = tr(K). The remainder of the proof is identical to the proof of Lemma
3.7. O

Lemma 3.11. For all n > 1, there exists a finite constant C(n) > 0 such that

sup Ex[ sup (£(n), KEM)' ] = Cm)ty.

x€Dy, tel0, te]

Proof. By Holder’s inequality, it is enough to prove the lemma for n even. Assume
that this is the case. Integrating (3.23), as the first term on the right-hand side is
negative,

t

(E(1), KE®1)) = (x, Kx) +2/ (KE&(t), dW,)ds + 1.
0
Therefore,

Jee)

(3.24)

t
B[ s (. wewy | < con (B sop | [ g, aw

t€l0,z:] t€[0,z¢]

for some finite constant C (n). By the Burkholder—Davis—Gundy inequality and the
Holder inequality, the expectation on the right-hand side is bounded by

co B[ ([ mewra)”] < cond ™ B [ g0 ms0r 2 ar)

By Fubini’s theorem and by Lemma 3.10 [since n is even], this expression is less
than or equal to C(n) t; /2, Inserting this bound is (3.24) completes the proof of the
lemma. o
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The proof below is developed in [27] based on ideas of [1].

Proof of Proposition 3.8. Fixx € D,,,andremember from (3.11) that & () depends
on x through the dynamical system y(-) which starts from x. Let

ys(t)_zs(t) ye(t)_y(t)
e(t) 1= = - . 3.25
re(t) TS NeTS £() (3.25)

We need to prove that there exist positive finite constants o, oy such that

sup sup Ex [(rg(t), Krg(m?] < 6. (3.26)

=l .)CE'DV4
Since y,(#) and &(¢) share the same driving Brownian motion, by (3.10), (3.2),
and (3.11) that

d
3 @, Kre() = 2(Kre(n), A(y®) re(n)) — 2(Kre (1), q.(1),

(3.27)

where

q.(1) = «/%79 {Bo(y. (1)) — bo(y(1)) — (Dbo)(y(1) (¥, (1) — y(1)) }.

Let
Ay = Ay (x) :={ y.(1) € Dy, forallz € [0, 1] }.

By Lemma 3.9 and since K is positive-definite and bounded, on the event A, the
right-hand side of (3.27) is bounded by

—c(re(0), Kre(t)) — 2(Kra(t), q,()) < —ci1 (re(t), Kre(0)) + C2lq.(0)]?
(3.28)

for some finite positive constants cy, C3.

Fix 1 € [0, 1,]. Since by € C*(B(0, r3), R?), by (3.9) on the event A,
Co
Je

for some finite constant Cg, whose value may change from line to line. The second
inequality follows from (3.25). Therefore, by (3.28),

Ig. ()] £ —=1y:.(0) — yOF < Covellr(* + 160},

d
3 @, Kre(0) = —ci (re(0), Kre (1))

+Ce [(re 0, Kro)? + (€0), KE0)*].

Let B, = B.(x) be the event defined by

Bo= |2 (crene swp ), Ke6)? ) <

C1 s€l0, te]

I

N =
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By Perov’s inequality [39, Theorem 3.1], as . (0) = 0, it follows from the previous
inequality that on the event B,

(re(0), Kre() < 2Csetee " sup (£(s), K&(s))?

s€[0, 7]

for all r € [0, #.]. Hence, by Lemma 3.11,

sup sup Ex [(re(0), Kro)) Lang, | < Coeif = Coe®™™
tel0, 1] xeDyy

Since 6 < 1/3, this proves (3.26) on the event A, N B,.
We turn to the event (A, N 5;)¢. By the Cauchy—Schwarz inequality,

2 2 c c
Ex [(re0), Kre 0 1 a8, | S Bx [(re), Kro@)*] { Po(AD + Px(BD) .
By (3.25) and the Cauchy—Schwarz inequality,

s (e, Krom)*]

C
< 3 (Bx [0e0 Ky + 00, Ky)* + ¢ 60, Ke))*])
&

Hence, by Lemmata 3.5, 3.7 and 3.10,

Co

E. [(rg(t), Krg(t))4] < 0

forallt > 0,x € D,,.
It remains to show that there exist cg > 0 and Co < oo such that

sup Py(AS) < Coe*™ 0 and  sup Pr(BS) < Coe*™ 0. (3.29)
p e p e

xeDr4 xeD,4
Consider the event A,. On the complement of this set,

sup (y, (1), Hoy. (1)) > (2r4)*.

t<te

By (3.21),

t
(y. (1), Hoy, (1)) < 2her + 2@/ (Hoy,(s), dW,).
0

Thus, as € £, — 0, for ¢ small enough, by Markov inequality,

t
Po(AS) < Px[ sup/ (Ho y,(5), dW;) >
0

1<te

2
_1]
JE
< C088Ex[sup ]

1<t

t
[ oy, awy |
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By the Burkholder-Davis—Gundy and Holder inequalities, the right-hand side is
bounded by

te 8 te
2 6
C()ESEXI:<[ |Hoys(s)| ds) ] < CosgtzEx[/ |]HI(_-)y8(s)|1 ds].
0 0
Hence, by Lemma 3.7,

sup Py(A7) < Co 8 tf = Cpe®l-9,
x€Dy,
As 6 < 1/3, the first assertion of (3.29) holds.

We turn to the second assertion. By definition, there exists a positive constant
co such that

¢ _ <o
g = | s 0. Kew) = )

By the Markov inequality and Lemma 3.11

sup Pr(BS) < Coe®t] sup Ex| sup (£(s), KE(s)>8] < Coet 12,

xeDy, xeDy, s€[0,2,]

This proves the second assertion in (3.29) since 6 < 1/3.

4. Local Ergodicity

Fix A > 0, g: My — R, and recall that we denote by ¢, = d)sk’g the unique
solution of the resolvent equation (2.13). The main result of this section states that
the solution ¢, is asymptotically constant on each well £(m).

Theorem 4.1. Fix A > 0 and g: Mo — R. Forallm € My,

lim  sup  [he(x) —e(y)| = 0.
£=0 x,ye€(m)
Recall from (2.14) that we represent by x,(-) the diffusion process induced by
the generator L. The proof of Theorem 4.1 is based on mixing properties of x.(-)
obtained in [1,14,27]. Denote by P}, z € R4, the law of x,(-) starting from z.
Expectation with respect to IP?, is represented by IE:.
We start with elementary facts. By equation (1.3) in [6], conditions (2.1) guar-
antees that the partition function Z,, defined by

Ze = f e U™/e gy 4.1)
Rd

is finite. In particular, the Gibbs measure
pe(dx) = 27 e U™/ dx 1= . (x) dx

is well defined. Moreover, by Theorem 2.2 and 2.3 in [28], the diffusion x.(-) is
positive recurrent and p, is its unique invariant measure. On the other hand, as
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we assumed that min, .gs U (x) = 0, by [29, Proposition 3.2] or a straightforward
computation, if M, representes the set of absolute minima of U,

Ze = [1+0.(1)]2re)/?v,, where v, = Z — . 42
e, det V2U (m)
and, for a local minimum m € My,
U(m)/e v(m)
pe(E(m)) e = [1+4+0:(1)] : 4.3)

*

In this formula, and throughout the article, o (1) represents a remainder which
vanishes as ¢ — 0, and v(m) has been introduced in (2.8).
Denote by 7.4, A C RY, the hitting time of the set A:

T4 := inf{r >0:x.(¢t) € A}. 4.4)

Recall from (2.12) the definition of W (m). Conditions (b) and (c) in the definition
of £(m) guarantee that the hypotheses of Theorem 6.2 in Chapter 6 of [14] are
fulfilled. This results leads to

Proposition 4.2. Fix h < H, and denote by A, BB a connected component of the set
{x :U(x) < h}, {x : U(x) < H}, respectively. Assume that A C B. Suppose that
all critical points ¢ of U in A are such that U(c) < hg for some hg < h. Then, for
alln > 0,

lim sup sup P% [‘L’ag < e(H*h"*")/s] = 0. 4.5)

e—>0 xeA

In particular, for allm € Moy, n > 0,

limsup sup P% [tawzro(m) < e(r(rn)/e] = 0.

e—>0 xe&@m)

The estimate in [14, Theorem 6.6.2] is uniform over initial points z belonging
to neighborhoods of a critical points. We claim that it holds uniformly over initial
points x € A. Indeed, by [14, Theorem 2.1.2], since the set A is bounded, if we
denote by V the union of neighborhoods of all critical points of U in A, there exist
To < o0, such that

liminf inf P [ton < To, Tonr < TyB] = 1. (4.6)
e—0 xeA

Assertion (4.5) follows from (4.6), the strong Markov property and [14, Theorem
6.6.2]. Moreover, we could replace ho by the minimal value of U on A, but that
will not be needed below.
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Mixing Times

Fix m € M. All constants, functions, processes which appear in this subsec-
tion depend on m, but this dependence is omitted in the notation.

Let by: RY — R? be the field of class C! defined in Appendix Appendix B.
By (B.3) and condition (d) in the definition of rg, bo(x) = b(x) for x € W30 (m).
By Proposition B.1, the vector field by satisfies the hypotheses of Sect. 3.

Denote by x f (+) the diffusion process (2.14) with the vector field by replacing b.

Let Py F, z € RY, be the law of x5(~) starting from z, and pf (z, - t) its transition
kernel:

pEz, B;t) = P& F [xf(t) € B], zeRY BcCRY
Denote by uf the stationary state of the process x f ).

Proof of Theorem 4.1. Fix m € M. Let

fem = [ oot @, 47
It is enough to prove that for all m € My,

lim sup |ge(x) — f.(m)| = O,

=0 xe&m)

Recall from (2.13) the definition of the function G : RY — R. By the stochastic
representation of the resolvent equation,

de(x) = Ei[ /Ooo e—*SG(x8(9§1>s))ds]. (4.8)

Fix0<a<1/3,0 <n <ry/2,and let o, = e~¢. By definition 95(1),

0e < eoM/E gD, (4.9)

Since g, < 9,5(1) and G is bounded,
o0
0 (x) = B[ / e e G0V ds | + Re(x),
Q¢ /Ve

where, here and below, R, (x) represents an error whose value may change from
line to line and such that

limsup sup |R.(y)| = 0.
e—=0 ye&(m)

By the Markov property,

P (x)

[ +R5(x)]]Ei[IEx€(g€)[ /Ooo e_’\SG(xE(GE(I)s))ds]] + Re(x)

ES [ ¢e(xe(0) ] + Re(x)
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because G is bounded. As o, < e"0~/¢ by Proposition 4.2 and since ¢, is
uniformly bounded by (1/1) ||g1c0>

B [ge (e (0:))] = Ex [9(xe(@e) Hew < Ty} + Re®)

Recall that b and by coincide on W30 (m). By coupling the diffusions x, (), xf(-),
and in view of Proposition 4.2, the previous expectation is equal to

EEF [¢g(x£(Qs)) 1{o: < t(WZ’O(m))C}] = E” [¢g(X£(Qs))] + Re()

Mind that we changed the measure. By condition (e) in the definition of rg, £(m) C
W2 (m) C D,,(m). Hence, by Theorem 3.1 and since ¢, is uniformly bounded,

By (ool 0] = / $e(y) pl (x. dyioe) = / $e(y) 1g (dy) + Re(x).
R4 R4
As the right-hand side is equal to f,(m) + R.(x), the theorem is proved. O

Recall the definition of the sequence o, introduced in (4.9). The proof of The-
orem 4.1 yields

Lemma 4.3. Fixm € Mo, b > 0. Then, for all A C R,

limsup sup  sup ‘Pfc[xg(z‘@él)) e Al - ]P’;F[xg(t@g(l) —0:) € A] ‘ =0.
e—0 t€[2b,4b] xe&(m) €
Denote by ng () the diffusion x. () reflected at the boundary of W20 (m). Note
that we omitted the dependence of x}}(-) on m. Denote by ,u? the measure .
conditioned to W20 (m), which is the invariant measure of the diffusion x?(-). Let
finally PR, z € W20 (m), be the law of xR (") starting from z.
Recall that we denote by drv (i, v) the total variation distance between two

probability measures v, 1 defined on RY. Let uf(m) be the measure . conditioned
to £(m). We claim that

lim sup dry (uX, uf) = 0. (4.10)

e—0

Indeed, fix A c R?, x € £(m), and the sequence o, introduced in (4.9). By
stationarity and Theorem 3.1,

nh A = Pf;;[xf(gs) e A] = Pef[xf(0s) € A] + R(x),

where adopted the convention established in the proof of Theorem 4.1 for the
remainder R;(x).

As in the proof of Theorem 4.1, introduce the event {7325, < 0} and
its complement. On the event {t;y2q(,, > 0} We may replace the set A by
AN W0 (m), and couple the process xf ), x?(-) up to time .. Therefore, the
probability on the right-hand side of the previous displayed equation is equal to

PER[xR(00) e ANW o(m) | + RP = PER[xR(0) € A] + RP,
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where |R§2)| < 28UPseeim) P;[rngro(m) < o0¢]. Here, we removed the set
W20 (m) because xR takes value on this set. By Proposition 4.2, Réz) — 0.

Since the previous estimates are uniform over x € £(m), we may average the
probability appearing on the right-hand side of the previous displayed equation

with respect to the measure /ng(m) to get that
ni (A) = Prg, [xF00) € A] + oc (D).

Rewrite the previous probability as

1

e, R R = —
Puﬁ(’”)[xs (0) € A] = we(Em)) Jem)

PSR [x K (o) € Alue(dy).

The measure p,f(m) is also the measure M§ conditioned to £(m). Since 1 OV (m)
\E(m)) /e (E(m)) — 0, the previous expression is equal to

P[00 € A] + RY,

where R€(3) — 0. Since M§ is the stationary state, the previous probability is equal
to pg (A).
Putting together the previous estimates yields that

lim sup sup | ,uf(A) — MER(A) | = 0.
=0 AcR?
as claimed in (4.10).
Next result follows from Lemma 4.3 and (4.10), Note that the measure /Lf has
been replaced by uR.

Corollary 4.4. Fixm € Mg, b > 0, A C R%. Then,

limsup sup  sup ‘]P’i[xg(teél)) eA] - ]P’SR[xg(tes(l) —0¢:) € A] ‘ =0.
e—0 te[2b, 4b] xe€ (m) K

5. Exiting Neighborhoods of Unstable Critical Points

The main result of this section, Proposition 5.5, asserts that the time necessary
for the diffusion x, (-) to leave neighborhoods of unstable critical points is bounded
by e~ !. It also characterizes the exiting sets.

Recall that C( denotes the set of critical points of U and set

Yo := Co \ Mo,

so that ) stands for the collection of critical points of U with index larger than 0.

By [28, Theorem 2.1], My and ) are the set of stable and unstable equilibria
of the dynamical system (2.4), respectively. Let H¢ = (V2U)(c), L¢ = (V - £)(c),
¢ € Cp, so that H® 4 IL¢ denotes the Jacobian of the drift b at the critical point c.
Next result asserts that critical points in ) are hyperbolic.
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Lemma 5.1. Fix ¢ € ). Then, the matrix H¢ + IL€ is invertible and does not have
a pure imaginary eigenvalue.

Proof. Suppose, by contradiction, that ai, a € R, is an eigenvalue of H¢ + L¢.
Denote by v the unit eigenvector corresponding to ai so that (H¢ + L¢)v = aiv.
Thus, if AT represents the transpose of the matrix A,

aiv-aiv=v- (H + LT (H® + L)
—0. {(HC)THC + (HYTLE + (LETHE + (LC)T]LC)} v
By [28, Lemma 4.5], the matrix HCIL¢ is skew-symmetric, so that
—a?|v]® = [Hv|” + |Lv|)?

which is a contradiction if a # 0. If @ = 0, H°v = 0 which implies that v = 0
since HF is invertible. This is also a contradiction to the fact that v is a unit vector.
O

The Hartman—Grobman Theorem

Fix from now on a critical point ¢ € ) of index k > 1. In this subsection, we
use Hartman—Grobman theorem [7, Theorem 1.47], [36, Section 2.8], to define a
neighborhood of c.

Denote by v, (1), x € R4, ¢ > 0, the solution of the ODE (2.4) starting from x,
and by v, (1) = Uz’x (1) the solution of the linear ODE

x(t) = — (HS 4+ L) (x(1) — ¢) 5.1

starting from x. The Hartman—Grobman theorem, which can be applied in view of
Lemma 5.1, reads as follows:

Theorem 5.2. Fix ¢ € ). There exist open neighborhoods U, Z/ch of ¢ and a
homeomorphism B: U, — Z/{CL such that B(c) = ¢ and E(vx (1)) = vp 2x) () for
all (x, t) such that vy (t) € U,. In particular, c is the unique critical point of U in

Ue.

Denote by M = M, (¢), M, = M, (c) the stable, unstable manifold of ¢ for
the dynamical system (2.4), respectively. Hence, for all x € Mg, lim;_, oo Uy (t) =
¢. In contrast, for all y € M, there exists a solution x(¢), t < 0 of (2.4) such that

x(0) =y, tiil}loox(t) =c.

Let My, s, M , be the stable, unstable manifold of ¢ for the linear ODE (5.1). By
Theorem 5.2, on the set U, My s = B(M;), ML, = B(M,).

Choose 1 > 0 so that B(c, r1) C UL Let N = N(¢) := E-!(B(c, r1)). For
each y € N\ My, let (y) = tc(y) be the exit time from N:

t(y) = inf{t > 0: vy(1) ¢ N}. (5.2)
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Clearly, t(y) = t1.(E(y)) if #7(z) represents the exit time from B(c, ry) for the
linear ODE (5.1) starting from z. Denge by e(y) = e.(y) the exit location of the
dynamical systems (2.4) from the set N: e(y) := vy (2(y)). Here, again,

E(e(y)) = eL(E()), (5.3)

provided that ey (z) stands for the exit location from the set B(c, ry) of the linear
dynamical systems (5.1) starting from z.

Let J' = J}'(c) be the elements of dB(c, r1) at distance less than a from
My, NaBe, r):

Ji = {x €dB(c, r)):3y € M, N0B(e, r) such that ||x — y|| < a}.

Next result is an assertion about the linear ODE (5.1); its proof is presented in
Appendix Appendix D.

Lemma 5.3. Fix ¢ € Yy and a > 0. Then, there exists 0 < r(a) < ry such that
er(z) € Jj forall z € B(c, r(a))\ML .

We turn to the construction of a second neighborhood N/ C N.Since VU £ = 0,
(d/dt)U (ue(2)) = — |VU (vy (1‘))|2 < Oforallx ¢ Cp,t > 0. Therefore, if x is not
acritical point, U (uy (¢)) is strictly decreasing in ¢, and there exists no = no(r;) > 0
such that

max _U(x) < U(c) — 3no. 5.4
xeM,NON

Take no small enough so that there is no critical point ¢’ € Cy such that
U(c) € [U(e) = no, U(e)). (5.5)
Lemma 5.4. For all ¢ € ), there exists ro = ry(c) > 0 such that,

sup Ule(y)) = U(e) = 2no.
YEETI(B(e, r2)\M;

Proof. Fora > 0, let
J¢ = {xeBJV:HyeMuﬂaﬁsuchthatHx—yH <al.

By (5.4) and the fact that |[VU| is bounded on compact sets, there exists ag > 0
such that

sup U(x) < Uf(e) —2np. (5.6)

xeJ%

Since 871 UE — U, is continuous, it is uniformly continuous on the compact
set B(c, r1). Therefore, there exists bg > 0 such that ||E_1(x) — E_l(y)|| < ayp
forall x, y € B(c, rp) satisfying ||x — y|| < bo, Therefore,

1T c . (5.7)
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Letr(by) > 0be the positive constant whose existence is asserted in Lemma 5.3.
Setry = r(bo)Ar;.ByLemma5.3,e. (E(y)) € ijO for E(y) € B(c, rp)\E(M,).
Therefore, by (5.3) and (5.7), for y € E~'(B(c, r2)) \ My,

e(y) = E7 ' (eL(E(y))) € TV
This along with (5.6) imply that
sup Ule(y)) = U(e) — 2no,
yeEI(B(e, )\ M,

which completes the proof of the lemma. O

Exit problem from N

Denote by N' = N (¢) the closure of the set E-1(B(c, r)), where r, has been
introduced in Lemma 5.4. As the set /V contains an unstable equilibrium ¢, the exit
problem from /V does not follow from the Friedlin-Wentzell theory, but has been
investigated in [17].

Proposition 5.5. Fix ¢ € ). Then,
lim sup sup P[ U (x(ty ) > U(e) —no | = 0.
e=0 zeN
Moreover, for all C > 0,

: [, o€ ] _
llgl_félp zS;l,/I\)f P, [ Ty > - 0.
Proof. Since the set N contains only one unstable equilibrium, the second assertion
of the proposition follow from [17, Theorem 2.1], which presents an estimate for
a fixed starting point in the interior of N. However, a careful reading of the proof
reveals that all estimates hold uniformly on compact subsets of the interior of N,
such as \V.
We turn to the first assertion of the proposition. Let Q C IN be given by

Q={e(y):y e N\ Ms}U (M, NiN).
By [17, Theorem 2.3], for any open neighborhood U C N of Qin 8./(\/,
lim sup sup P;[ x.(t, ) ¢ U | = 0.
e—>0 zeN
Note that [17, Theorem 2.3] is stated for a fixed starting point in the interior of
N, but as in the first part of the proof, all estimates in the proof of this result hold
unifomly on compact subsets of the interior of N.
By (5.4) and Lemma 5.4,

sup U(x) < U(c) — 2np.
xeQ

To complete the proof, it remains to choose a neighborhood ¢/ small enough so that

sup U(x) < U(c) — no-
xeld



78 Page30of 70 Arch. Rational Mech. Anal. (2024) 248:78

6. Hitting Wells

The main result of this section, Theorem 6.1 below, asserts that starting from a
compact set, the diffusion x(-) hits some well £(m) in a time bounded by el
Denote by £(A), A C R?, the union of the wells in A:

A= |J Em.
meMonA

Let
Ag={xeR:Ux)<H}, HeR.

Theorem 6.1. Fix H > min,ge U(x). Suppose that there is no critical point
¢ € Co such that U(c) = H. Then, for all C > 0,

C
lim sup sup Pil:‘(g(AH) > —] =0.
&

e—>0 zeAp

Fix ho < hy, and denote by A, B a connected component of the set {x € R? :
U(x) < ho}, {x € RY : U(x) < hy}, respectively. Assume that A C B, and that
there are no critical points ¢ of U in B\ A. Then, for all C > 0,

C
lim sup sup P2 [tg([g) > — ] =0.
€

e—>0 zeA

Corollary 6.2. Fix R > 0 large enough for AR to contain all the local minima of
U. For all constant C > (),

o
lim sup sup Pi[tg(Mo) > ;] =0.

e—>0 xeApR

Next result follows from Proposition 4.2 and Theorem 6.1.

Corollary 6.3. Fix ho < hi, and denote by A, 5 a connected component of the set
{x e R?: U(x) < ho}, {x e RY : U(x) < hy}, respectively. Assume that A C B,
and that there are no critical points ¢ of U in B\ A. Then,

lim sup supIED [‘L’aB < ‘Eg(B)] =0.

e—>0 xeA
Remark 6.4. We expect the optimal time scale to be O (log e~ 1) instead of O (™).

Denote by V'(A), A C R4, the union, carried over all critical points ¢in YyN.A,
of the neighborhoods A (¢) introduced in the previous section:

NAo= | Ne.
ce)pNA
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Lemma 6.5. Under the hypotheses of Theorem 6.1, for all C > 0,

. C
lim sup sup ]Pil:tN(AH)Ug(AH) > ;] =0,

e—>0 zeAp

C
lim sup sup IP’;[tN(B)Ug(B) > ;] = 0.

e—>0 ze

Proof. For each z € Ay, v, (t) reaches the set N (Ay) U E(Ag) in finite time.
Therefore, the assertion of the lemma follows from [14, Theorem 2.1.2]. O

Proof of Theorem 6.1

We prove the first assertion of the theorem. The arguments for the second one
are similar. Recall the definition of no = no(c), ¢ € )y, introduced at (5.5), and let

H(e) ={x:U(x) <U(c) —no}.

By definition of 7, there is no critical point ¢’ of U such that U (¢") = U(c) — no.
The proof is carried out by induction on | Yy N A |, the number of critical point
¢ € )y which belong to A g . If there are no such critical points in A g the assertion
of the theorem follows from Lemma 6.5.
Consider the general case. Decompose the probability P[ tg(a,) > Ce™ ']
nto

c
Pi[TzS(AH) >~ Te(hn) = TS(AH)UN(Am]
. c
+Pz|:tg(AH) > 0 TEMR) > TEAmUN (M) ]

The first probability is bounded above by P%[ g(a ,yun(ay) > C ¢~!']. By Lemma
6.5 this expression vanishes as ¢ — 0. In view of this result, it remains to show
that

. c Cc

limsup sup Pi[fsmm > 0 W) T TEAmUN (M) TEAmUN (Ap) = 7] =0.
e—0 zeAp € €

By the strong Markov property, the last display is bounded by

C
lim sup sup PE[TS(AH) > —]
e—>0 zeE(AR)UN (Ap) 2e

Since P te(ay) > %] = 0if z € £E(Ap), it suffices show that, for each ¢ €
MoNAg,

C
limsup sup PE[Tg(A ) > —] =0.
e—>0 zeN(c) : f 2¢e
By Proposition 5.5, it is enough to prove that
C C

limsup sup IP’s[rgA > —, T < — ., Xe(Th0 )EH(C)]:O_
e—=0 zeN(e) ‘ (Ar) 2¢e IN(e) 4e eVFaN (o)
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By the strong Markov property, the left-hand side is bounded from above by

C

limsup sup Pi[TE(AH) > —] =0.
e—=0 zeH(c) 4e

As ¢ belongs to Ay, U(c) < H and H(c) C Ag. Thus, Te(a,) < Te(H(e)), and it

is enough to prove that

limsup sup P [ TE(H(e)) > < ] =0
e—=0 zeH(c) 4e
This identity follows from the induction hypothesis. Indeed, as the critical point ¢
belongs to A i and not to H(c), the number of critical points in Yy N A g is strictly
greater than the one in )y N H(c). O
We conclude this section with two results on hitting times of wells. The first
one follows from Theorem 2.2 and [22, Lemma 4.2]. It will be used in Sect. 10 in
the proof of Theorem 2.1. We state it here, before the proof of Theorem 2.2, to have
all hitting time estimates of wells in the same section.

Lemma 6.6. For all m € M,
lim sup limsup sup Pi[‘[g(MO)\g(m) <a 98(1) ] =0.
a—0 e—>0 xe&(m)

The last result asserts that starting from the domain of attraction of a local
minima the well associated to this local minimum is attained before the other ones.
Recall that we denote by vy (1), x € R4, ¢ > 0, the solution of the ODE (2.4)
starting from x. Denote by D(m), m € My, the domain of attraction of m:

D(m) = {x e RY : lim vy (1) = m}.
—00
Lemma 6.7. Let m € Mg and K be a compact subset of D(m). Then,
lim inf 1nf P; [temo) = Tem] = 1.

e—0

Proof. Let F(m) := D(m)\é'(m) so that 0. F (m) = 0D (m) U 9E(m). Then,
P [teimy) = Temm ] = Px [Tarmm = Tacom ] -
Therefore, it suffices to show that

lim inf mf P% [Taj.‘(m) = ‘L’ag(m)] =1. 6.1

e—0

Since K is contained in the domain of attraction of m, the solution vy (¢) of the
ODE (2.4) starting from x € /C exits the domain F(m) at € (m). Thus, by [14,
Chapter 2, Theorem 1.2], (6.1) holds.

The estimate in [14, Chapter 2, Theorem 1.2] is not uniform in x, and just
asserts that

lim inf P% [17m) = Togam ] = 1
e—0

forallx € D(m).However, the bound [14, Chapter 2, Theorem 1.2] holds uniformly
over x € K (The variable a(z) in the proof depends on x but can be bounded
uniformly on any compact set of D(m), see the displayed equation above (1.6)).
This completes the proof of the lemma. O



Arch. Rational Mech. Anal. (2024) 248:78 Page 33 of 70 78

7. Test Functions

In this section, we construct the test functions used in Sect.9 to estimate the
solution of the resolvent equation. This test function appeared before in [6,23,28].
For this reason we just present its definition and main properties, and refer the
reader to [29] for proofs.

Fix alocal minimum m. The test function proposed below and denoted by Q. is
an approximation of the equilibrium potential 4 : R4 — [0, 1] defined by h(x) =
PLlteon) < Te(Mo)\Em - In particular, inside the wells the test function will be
either very close to 1 or very close to 0. In contrast, in very small neighborhoods
of saddle points it will change from 0 to 1. To capture this behavior, we linearize
the generator at the saddle point and set Q. to be close to the equilibrium potential
for the linearized generator.

Around a Saddle Point

Fix a saddle point o of U such that m .\~ ¢ ~ m’ for distinct local minima
m, m’ of U. Let H® = V2U(o), L° = (D{)(o). By (2.6), H® has a unique
negative eigenvalue. Denote by —Aj, A2, ..., Ay the eigenvalues of H, where
—\1 represents the unique negative eigenvalue. Mind that we omit the dependence
on ¢ which is fixed. Let e, ex, k > 2, be the unit eigenvector associated with the
eigenvalue —A1, A, respectively. Choose e pointing towards m: for all sufficiently
small a > 0, o + ae; belongs to the domain of attraction of m. For x € R4 and
k=1, ..., d,writtXy = (x —0) - e, sothatx =0 + Zi:l Xmem-

Let

1
8 =68(e) := (elog g)‘/2 )

Fix a large constant J > 0 to be chosen later, and denote by .Agi, C. the d-
dimensional rectangles defined by

- d. o8 2 g8 o o _ 208 208 <<]
A [xeR.xle[ L2, m],xke[ , ],2:k:d

om fremiine [~ grlae [ g ases

Aj::{xeRd.xle[ 2/8 2”] <k§d}.

il R e S -
Fig. 1 illustrates these definitions and the next ones.

Recall from (2.8) that H® + IL? has a unique negative eigenvalue, denoted by
—u. Denote by AT the transpose of a matrix A. By [28, display (8.1)], the matrix
H° — (I.°)T also has a unique negative eigenvalue equal to — . Denote by v the unit
eigenvector of H® — (L9)" associated with — . By [28, Lemma 8.1], v - e1 # 0.
We assume that v - e; > 0, as we can take —v instead of v if this inner product is
negative.

Let p.: Cc — R be given by

1 (x—0o)v )
pe(x) := A f e~ =" dr, (7.1)
& —0Q
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8RS

8RS

U)= H U(z)= H + J25

Fig. 1. The sets around a saddle point o appearing in the definition of the test function

where the normalizing constant M, is given by
® _up 2me
M, = e"xldr = | —. (7.2)
—00

We extend continuously the function p, to the d-dimensional rectangle R, =
A UC. U A7 as follows. For ¥ = 0 + Y¢_ Tre € A7, let

d

X v e T (7.3)
X = 0 — €] Xk €k . .
' VAl k=2

We define x; similarly for x € A_, replacing on the right-hand side of the previous
formula the first plus sign by a minus sign. Clearly, ¥, and ¥; belong to C,. We
extend the definition of p, to R by setting p,: A7 U AT — R as

= af I8 o — (% +
pex) = 1+ e P [ - o= = 1 p@) e AL,

Y A Js _ B
pe(x) = ¢ 2[x1 +T+82]p5(x1), xe A .
1

N

(7.4)

The function p, is an approximating solution of the Dirichlet problem Lz f=0
in R, with boundary conditions f = 1 on the points of R, where x| = J§/ i +&2
and f = 0 on the ones such that £; = —J8/+/A; — &2. This is the content of [29,
Proposition 6.2], which states that the integral of 93(1) |LI f|onaset slightly smaller
than R, vanishes as ¢ — 0. Thisresultalso justifies the definition of the test function
Pe-

The test function p,(-) constructed above depends on ¢ and m. To stress this
fact, it is sometimes represented by pZ-"™(-).
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g2

o1

Wo
W

Fig. 2. The saddle points 7 in 3WV does not belong to Sg (W) because it leads to critical
points in W

Inside a Well

In this subsection we define a test function Q, on R? with the help of the test
functions p2-™ introduced in the previous subsection. Recall that we denote by
B(x, r) the open ball of radius r centered at x.

Fix a height H such that U (6) = H for some saddle point o of U. Denote by
W a connected component of the set {x € R? : U(x) < H}. Assume that there
exists a saddle point ¢’ € 9V satisfying condition (a) below and that condition (b)

is fulfilled for all saddle points o’ € WV satisfying (a). Here,

(a) Thereexists 8y > Osuchthat B(o’, §)N{x € R? : U(x) < H}isnot contained
inWforall0 < § < §p;
(b) There exists m, m’ € M such that

o'~m and o' ~m'. (7.5)

Condition (b) prevents the existence of a heteroclinic orbit from ¢ to a critical
point which is not a local minimum. Clearly, if conditions (a) and (b) hold, m € W
and m’ € W or the contrary.

Let Sy(W) = {01,...0,} be the (non-empty) set of saddle points 0 € 3V
satisfying (a) and (b). Note that there might be saddle points o in )V which do not
belong to Sy (W) because they lead to critical points in W: ¢ ~ x, 0 ~ y for x,
y € W N (Cy. Figure?2 illustrates this possibility. On the other hand, as ¢ € W,
U(o) = H forall 0 € Sg(W).

Write, whenever needed to clarify, VW as W, and denote by W;,2 < j < m,
the connected components of the set {x € RY : U(x) < H} which share with W
a common saddle point in Sy (W). Hence, for each W;, 2 < j < m, there exist
ocSgW) ﬂWj,m eWNMo,m' e W; N Mgsuchthate ~m, o ~m'.

Fix n > 0 small enough so that there is no critical point x with height in the
interval (H, H + 2n). Let Q be the connected component of the set {x € RY -
U(x) < H + n} which contains WV (and thus all connected components W;), and
set

K= {xeRd: U(x)§H+J282}ﬂQ.
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Denote by dgR?, o € Sy (WV), the boundary of the set R?, introduced in the
previous subsection, given by

2J6
amg:{xeng:)ek:i— forsome2§k§d}.

Ak
By the proof of [28, Lemma 8.3],
3 202
U(x)gU(a)+§J [T+ o0(1)] (7.6)

forallx € dpR.. In particular, dy’R is contained in the complement of /C, provided
that ¢ is sufficiently small.

Let & = RI N K¢, 0 € Sy(W). Denote by Wy the connected com-
ponent of /Co\ (U, e Syow) €¢) which intersects Wi, and let Wi = K\Wy U
Uses, v €7)- With this notation,

Q= |J &uwiuwsu(e\k). (7.7)
O'ESH(W)

For each 0 € Sy (W), denote by m, the local minimum m in YV such that
o ~ m. Recall the notation introduced at the end of the previous subsection, and
let g° = p?-™7. Consider the test function Q. : K — R given by

Q:x) =1, xeW; Q:(y) =0, yeWs;
Q:(x) = ¢l (x), x€&, 0 €SgV). (7.8)

By (7.4), the function Q. is continuous on /C.. Moreover, if G, represents the
open set formed by the union of the interiors of the set £7, ¢ € Sy (W), and the
interior of the sets W?,i =1, 2,

IVQellLeg, = O™ "?) and [AQellL=(G,) = O™

We can extend Q, to 2 keeping these bounds out of a (d — 1) dimensional manifold:

10ellzoe(y) < 1. IVQellzoay = 0™, and [AQ| gy = 06™/?)
(7.9)

where Qo = Q\ 91, and M is (d — 1) dimensional manifold at which the gradient
of Q. is discontinuous. We further impose the condition that Q. vanishes away
from Q:

0.=0 on {x eRY: U(x) >H+g}, (7.10)

respecting the previous bounds. The function Q; is the test function associated to
the well W and height H.
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Main Estimate

Next lemma is a crucial step in the proof of Theorem 2.2. To stress below the
dependence of the set Cg, .Agi on a saddle point o, we add a superscript ¢ in the
notation. Denote by d+C? the boundary of the set CJ given by

Jé

04C7 =1lxell: 31 =+—
= ‘ Vi1
B = Cg N e, 35;8‘87 = 8:|:Cg N KCe.

&

}, andlet

Recall from (4.2) the definition of v,, and from (7.3) the definition of X, X;. In
the statement of Lemma 7.1, the vectors v and e; depend on o, but this dependence
is omitted from the notation. For ¢ > 0, let

Ace = {x eRY: Ukx)<H —c1282}.
Lemma 7.1. There exists co > 0, such that for all 0 < ¢ < cg, g: Mo — R,
e / Q: (~Ledo)dpe = Y J(0) + oc(D), (7.11)
& ceSpW)
where J(0) = J1(0) — J_(0), and

e/ u® (v-eyp)

Ji(e) = —=[140.(1)] —————7>—
_;’_(O') [ 05( )] (27T8)(d+1)/2 Vi 3+BgmAc,€

e x HIART VOV X o (1) §(dy)

1 L%, -
(2]'[)( )/ Vs //LU P 3)/ Ag’+ﬁAc,g Xy
1 —

e~ X (H +1% vQv) X, dx.

In this formula, S(dx) represents the surface measure on the (d — 1)-dimensional
manifold 94 B N Ac ¢, and J_(0) is obtained from J (o) by removing the minus
sign and replacing 347, .Agj by 0_BY, A7+ , respectively.

The proof of this result is omitted as it is the content of [29, Section 7].

8. Domain of Attraction

Fix 0 € Sy (W). Denote by n, the local minimum m of U which does not be-
long to WV and such that 0 ~ m. The main result of this section asserts that we may
replace ¢, (x) in the formula for J4 (0), J_(0) by ¢ (mg), ¢ (ns), respectively.

Proposition 8.1. There exists co > 0, such that for all 0 < ¢ < cy,
lim sup |ps (x) — pe(mg)| =0, lim sup |pe(x) — @e(ng)| =0
e>0 xeo, BINA . e=>0 yea_BINA..

for all ¢ € Sy(ON). A similar result holds if we replace 9B, d_BZ by AZ-T,
A%~ respectively.
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The proof of Proposition 8.1 is based on the following general result. Recall
that we denote by D(m), m € My, the domain of attraction of m.

Proposition 8.2. Fix m € My, anda sequence (Ky)e~o of subsets of D(m).
Assume that U8>0 K¢ is a bounded set, and

lim inf 1nf P; [temo) = tem] =1 (8.1)

e—>0 xek

Then,

lim sup sup | pe(x) — pe(m) | = 0.

e—>0 xelC,

Proof. Recall the definition of the function G : R¢ — R introduced in (2.13). By
the stochastic representation of the solution of the resolvent equation,

e (x) = IE:;[ /Ooo e G(x8(9§1>s))ds]. (8.2)

As G is bounded, the absolute value of the time integral is bounded by A ™! || g||o.
Therefore, as | J,. (K¢ is a bounded set and U (x) — oo as |x| — oo, taking R
sufficiently large in Corollary 6.2,

be(x) = ]Ei[f() e Gxo(0Vs)) ds 1{15(/\40) < %” + R.(x).(83)

where, here and below, R.(x) is an error term such that

lim sup |R:(x)| =
8_)Oers>0 ’CF

Consider the time integral in the interval [0, Te(aq) /6P]. As G is bounded and

) 95(1) — 00, the expectation of this piece is bounded by R.(x). By the strong
Markov property, the second piece is equal to

© _ (1) Co
E5 | B o] /0 e Glre(0Vs)) ds e e 1 rg g,y < ?}]

By the same reasons invoked above, this expression is equal to

00 Co
- 1
E;[E;M(MO))[/O e G 05) ds | ey = ?” + Re(x).
In conclusion,
. Co
9:(x) = Ey| e (e (reuo)) Y rewt = 0} | + Reto).

Applying Corollary 6.2 once more, as ¢; is uniformly bounded, the right-hand side
is equal to

B [ e e (reovo) | + Reo) = Ef[ e ream)) | + Re@).

where we used hypothesis (8.1) and the uniform boundedness of ¢, in the last step.
To complete the proof, it remains to recall the assertion of Theorem 4.1. O
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lom T
ce \\
geu e o “
\\\ //"'
y Y
P(blue part only) ——
gext ) . Pext

Fig. 3. The sets Gext and Pex introduced in the proof of Proposition 8.1

Recall that 0 € Sy (W) is fixed and that 0 ~ m4, 0 ™ n,. Denote by Blx, r]
the closed ball of radius r centered at x, and by W’ the connected component of
the set {x € R :U(x) < U (o)} whose closure contains o and ny. Next lemma is
a consequence of Theorem 5.2.

Lemma 8.3. There exist 8 > 0 such that (B[o, 8] N\ W)\{o'} is contained in the
domain of attraction D(mg) of mg, and (Bla, §] N W)\{e'} is contained in the
domain of attraction D(ns) of ns.

Proof of Proposition 8.1. We prove the first assertion, as the second is similar. By
Lemma 8.3, there exists &1 > 0 such that 0,87 N A, C D(my) for all ¢ < ¢;.
Therefore, by Proposition 8.2, it suffices to show that

lim inf inf Pért = -1 8.4
e—>0 x€dyBINAc, x[ E(mg) E(Mo)] (8.4)

Recall that WV represents the well that contains m,. Let G. = 3,582 N W. By
Lemma 8.3, there exists &g > 0 such that G C D(m,) for all ¢ < g9. We claim
that

. o _ 1
x€3+lBI}gfﬁA(;,g IP)x[‘cacgo - ngo] =1-0:(l) ®8.5)

where C? represents the boundary of C7.

To prove (8.5), let P := 9CZ \Gey» Gext = W\CY, Pext = RI\[Gext UCZ 1.

0
Figure 3 illustrates these sets. By definition,

{tacg, =16, } = {16, <P} = {TGore < TPuxc}
forallx € 0B NAc¢, & < go. Therefore, by definition of the set Py, {Tg(ma) <

TPy } - {'L’acgo = TG, }.

Fix ¢ < gg. Recall that we denote by B(x, r) the open ball of radius r centered
atx. By [28, Lemma 9.2], there exists a finite constant Cy, whose value may change
from line to line, such that

cap,(B(y, ¢), E(mg)) = Coe? 27 e Ve
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forall y € 3,87 N A, .. Inthis formula, cap, (A, B3) stands for the capacity between
the sets A, B for the diffusion x.(-) and is defined in Appendix Appendix C. On
the other hand, by the proof of [28, Lemma 9.3], there exists a finite constant C
such that

cap, (B(y, &), Pext) < Co Z; ' eV @/¢

forall y € 04 B7 N A.¢. By [23, Proposition 7.2], there exists a finite constant Cy
such that

Capg(B(xs 8) ) PCXI)
cap, (B(x, ¢), E(mg))

Pi[‘cpex[ < Tg(ma)] = CO

forallx € R?. Combining the previous estimates yields that forall x € 0+ BINA¢ ¢

252 2
]P)i[rpex[ < Tg(ma)] S CO 8_d e(U(x)—U(o))/s S CO S_d e—CJ 1) /8 — CO 86‘] —d.

This expression vanishes as ¢ — 0 for large enough J. To complete the proof of
assertion (8.5), it remains to recall that {tg,,) < Tp,,} C {racgo = ‘ngo}.

We turn to the proof of (8.4). For x € 94B% N A, ,, by the strong Markov
property and (8.5),

Py ltemg) = temol = Peltem,) = temo) Tacg, = 76,1

A%

. & _ & —
o Pylreans) =t Falmcy, = 76,

(I —o0:(1)) inf Piltem,) = teMp)] -
yegso

The last infimum is 1 — o, (1) by Lemma 6.7 because G, C D(my). ]
Proposition 8.1 provides a simple formula for the quantities J (¢) introduced
in Lemma 7.1.

Lemma 8.4. Forall g: My — R,

eH/a /Q O (—Lepe)du, = Z [¢e(ng) — ¢e(ng)]

27 v,
T O‘ESH(W)

[

uw

+/ — det H®

Proof. By Proposition 8.1, in the formula for J, (o) presented in Lemma 7.1, we
may replace ¢, (x) by ¢.(mg) at a cost 0.(1), and we are left with a Gaussian type
integral. A straightforward computation, presented in the proof of [29, Lemma 7.5],
together with [29, Lemma 7.3] yields that

+ 0(1). (8.6)

EA/MO‘ (v~81) e—ix'(H”+u”v®v) S(dx)
Qre) D2y, [y pona..,
g

= 1).
277 v, /— det HO +0s(1)
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Similarly, by the proof of [29, Lemma 7.7],

! / L7X - e o~ 2% (HO 1% vV T g\
Qm)@d+D/2 v, Ju® e@TH/2 Jpotpp,, X
1 29 1L.° (H° 711) e
= L WA w e,

27tve o/— detHO v-ej
By the proof of [29, Proposition 5.7],
Ma
voep + (L°(H) o). e = = v-e.
M
Combining the previous estimates yields that
1 uy
27 ve o/—det HO

The same argument leads to the same formula for J_ (o) with a plus sign and ¢, (n4)
instead of ¢, (my ). This completes the proof of the lemma. |

Jy(o) = e (mg) + 0:(1).

9. Proof of Theorem 2.2

Recall from (2.11), (4.7) the definitions of the generator £, and the function
fo: Mo — R, respectively. The main result of this section is

Theorem 9.1. Forall A > 0, g: My — R,
A =L f. = g + o).

Proof of Theorem 2.2. The assertion follows from two observations. The sequence
[ is uniformly bounded and the equation (A — £1) f = g has aunique solution.
O

The remainder of this section is devoted to the proof of Theorem 9.1. Fix
m € Myj. Let W be the connected component of the set {x € RY : Ux) <
U(m) + I'(m)} which contains m. By definition, V¥V does not contain any other
local minimum of U (in particular, the present situation is different from the one
represented in Fig.2, where WV contains more than one local minimum). Recall
from (7.5) the definition of the set Sz (W).

Lemma 9.2. There exists a saddle point 6 € 0VV satisfying condition (a) in (7.5).
Condition (b) is fulfilled for all saddle points 6’ € 3V satisfying (a). Moreover,
SgW) = Y (m), where H = U (m) + I'"(m).

Proof. By Proposition A.1, there exist a local minimum m’ of U different from
m and a continuous path z: [0, 1] — R4 such that U(m) + T'(m) = O(m, m’),
z(0) =m, z(1) =m’, and

tg[lg)g]U(z(t)) = U(z(1/2)) = O@m, m'), U(z(s))
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< U(z(1/2)), s €0, 1]\ {1/2}, 9.1

and ¢ := z(1/2) is a saddle point of U. In particular, ¢ € 9)V. Condition (a) is
satisfied because m’ # m and W contains only the local minimum m.

We turn to condition (b). Let o be a saddle point in 0}V satisfying (a). By
definition of WV and with the help of the solution of the ODE (2.4), it is possible
to construct a continuous path z: [0, 1] — R4 such that z(0) = m’ € My,
z(1/2) = o,z(1) =m"” € My, and

Uz(s)) < U(o), s # 1/2,

forsomem’,m"” € M. As o satisfies (a), we may assume without loss of generality
that m’ € W, m" € W°. Since W contains a unique local minimum, m’ = m.
Therefore, since U (6) = U (m)+1I"(m), by definition of Y'(m), 0 € Y (m). Hence,
by condition (2.5), there exists m"” € Mo, m"” ¢ W, such thate ~ m, o ~ m",
which is condition (b).

Assume that 0 € Sy (V). By definition, it satisfies (a). Thus, by the previous
paragraph, ¢ € Y (m). Conversely, suppose that o € Y (m). By definition, there
exists a local minimum m’ % m and a continuous path z: [0, 1] — R¥ such that
z(0) = m, z(1) = m’ for which (9.1) holds. By Proposition A.1, o := z(1/2) is a
saddle point of U. Since W has a unique local minimum, m’ ¢ Y. Thus, condition
(a) holds for . By (2.5), condition (b) also holds, so that 0 € Sy (V). |

Proof of Theorem 9.1. Fix m € My. Let VW be the connected component of the
set {x € RY:Ux) < Um) + I'(m)} which contains m. By Lemma 9.2, there
exists a saddle point ¢ € 9V satisfying condition (a) in (7.5), and condition (b)
is fulfilled for all saddle points ¢’ € )V satisfying (a). We may therefore apply
Lemma 7.1.

Let Q. be the test function constructed in Sect. 7 associated to the well W, and
recall that H = U (m) + I"(m). Multiply both sides of (2.13) by the test function
Q. and integrate over R? to deduce that

/ 0: A — 6V L) pedus = g(m) / Q. dite, 9.2)
Q E(m)

where Q is given by (7.7).
By definition of Q,, the right-hand side is equal to g(m) u.(E(m)). Similarly,
as ¢, is uniformly bounded and

we( U &0 @\K)) = 0.1 pe(Em),
UESH(W)

as Q. vanishes on W, and is equal to 1 on Wi, by definition of £,

/\/Q Qs pedipe = Me(m) pe(E(m)) + 0:(1) pe(E(m)) . 9.3)

It remains to consider the term in (9.2) involving the generator £.. We examine
two cases separately.
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Case 1: Assume that T(m) > dV. As T'(m) > dV and e V/% )y, (E(m))
< Cy for some finite constant independent of ¢, 6" = Ve o GTm)/e
< Coell'm+Uml/e, (€(m)). Hence, by Lemma 8.4, as the right-hand side of

(8.6) is bounded and H = I"'(m) + U (m),

03(1) ./Q Q¢ (=L¢) pedpte = 0.(1) g (E(m)).

Combining the previous estimates yields that
1
fo(m) = —g(m) + o0e(1).

By (2.10) and the definition of £, as T'(m) > d, (£, f,)(m) = 0, which
completes the proof of the theorem in Case 1.
Case 2: Assume that I'(m) = dV. Multiply both sides of (8.6) by e~V ™)/¢_Since
o) = ¢dV/e = (Lm)/s — (IH-Um)]/e by Lemma 8.4,

oD / Qe (—Le) e dpue
Q

o
2 g _I_Og(l)}e—U(m)/a

/—det H

D [¢e(m) — pe(ng)]

2 v, ceSyW)

because m, = m for all @ € Sy (W), as m is the only local minima of U in W.

Since eV ™/¢ /1 (£(m)) < Cy for some finite constant independent of &,
we may replace in the previous formula, o, (1) e~V "™/¢ by 0. (1) e (E(m)). On
the other hand, by (4.3), e U™/¢/y, = [1 4 0,(1)] e (E(m))/v(m). We may
therefore rewrite the right-hand side of the previous equation as

o

\/ﬁ + 0: ()] e (Em)).

1
{271v(m) oegw) (¢ (m) — ¢e(nq)]

By Lemma 9.2, Sy(W) = Y (m). Thus, by (2.7) and by definition of n,,
introduced at the beginning of Sect.8, {ny : 60 € SyW)} ={ns : 6 € Y(m)} =
V(m). Hence, by Theorem 4.1, the previous expression can rewritten as

| / o
[va(m) Z [feGm) = fem)] Z \/ﬁ + 05(1)} e (E(m)).

m’'eV(m) oeS(m,m’)
By (2.8), (2.9), (2.10) and (2.11), the previous expression is equal to
{(=&1f)m) + 0:(1) } e (E(m)).

To complete the proof of the theorem, it remains to combine the estimates obtained
at the beginning of the proof with this last one. O
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Trace Processes

Let y,(¢) be the process x.(t) speeded-up by 95(1)3 y.(t) = xg(t98(1)). Denote
by Q% the probability measure on C (R, R¢) induced by the process y, (t) starting
from x. We use the same symbol Q% to represent the expectation with respect to
the measure Q%.

Denote by T (¢) the time spent by y,(-) on £(Mp) up to time ¢ > 0:

t
T.(t) = /0 Xeng (De(9)) ds.

Let S¢ () be the generalized inverse of the non-decreasing process T¢ (-):
Se(t) = sup{s > 0:T.(s) <t}, t=>0.
Define the trace process of y,(-) on £(My) by
Vi) = ye(Se(), 120, 94)

which is an £(M)-valued Markov process. Let ® : £(Mg) — M be the projec-
tion givenby ® =3, 1\, o M X&(m)- The next result is a consequence of Theorem
2.2 and [22, Theorem 2.3].

Theorem 9.3. Fixm € My, and a sequence x. € £(m). Starting from x ¢, the pro-
cess D( y;r (1)) converges in the Skorohod topology to the Mg-valued continuous-
time Markov chain induced by the generator £ starting from m. Moreover, for all
T >0,

T
ti s G [ @] =09

The next assertion is a consequence of (9.5). We refer to [21, display (3.2)] for
a proof.

Lemma 9.4. Forallt > 0and § > 0,

limsup sup QL[S:(r) >r+8]1=0.
e—=>0 xe&(My)

10. Proof of Theorem 2.1: Finite-Dimensional Distributions

The main result of this section, Theorem 10.1, states that in the time-scale 98(1)
the finite-dimensional distributions of the diffusion x(#) converge to those of the
M-valued Markov chain whose generator is given by £; introduced in (2.11).

Denote by D(R4, M) the space of right-continuous functions y : Ry — M
with left limits endowed with the Skorohod topology. Let Q,,, m € My, be the
measure on D(R ., M) induced by the continuous-time Mj-valued Markov chain
associated to the generator £; starting from m. Expectation with respect to Q,, is
also represented by Q,,.
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Theorem 10.1. Fix m € M, and x € D(m). Then,
n n
. 1
lim E5[ [T rceece i) | = Qul [1r) ;) |
J= J=

foralln >1,0 <ty <--- <ty and bounded continuous functions F; RY - R,
l<j=<n

The proof of Theorem 10.1 is based on the next result.

Proposition 10.2. Fix rog > 0 small enough to fulfill the conditions above equation
(2.12), and recall from this equation the definition of the wells E(m’), m' € M.
Fixm € M. Then,

lim Py [ ((x: 010 € Emp} | = Qul Nyt =m; ) ]

j=1 j=1

foralln>1,0<t <--- <ty my,...,my € Mo, and sequences x, € E(m),
tie = 1j.

It follows from this result that
n
lim P2 [ M(x:0015.0)) € S(Mo)}] - (10.1)
e—0 7F i1 :

forallm e Mo, n>1,0 <1t < --- < ty,my,...,my € My, and sequences
x. € E(m), lie = 1j.

Proof of Theorem 10.1

We prove the result for n = 1 as the arguments in the general case are identical.
Fix 1 > 0, n > 0 and a bounded continuous function F: R? — R. By continuity,
there exists o > 0 such that

max sup | F(x)—F@m)| < n. (10.2)
mEMO erz‘SO(m)

Fix r9 < §p small enough to fulfill the conditions of Proposition 10.2. Consider the
wells £(m) defined by (2.12).

Recall from (4.4) that we represent by 74 the hitting time of the set A, and
let T = 7g(y). By Lemma 6.7, Corollary 6.2, and the strong Markov property, as
X € D(m) and F is bounded,

B[ Fere 0V ] = B B [ Fre @t = o) stecemr | + R,

where |R§1) | = 0. The expectation on the right-hand side has to be understood as
the expectation of Ejg(r)[ F(xg(Gél)t - s))] for s = t. By definition of rg, the
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wells E(m'), m" € My, and (10.2), the right-hand side of the previous equation is
equal to

> P B[P [ %0V — 1) € €m) [ ppmr | + R + R + Ry,
m'eMy

where |R;| < n and

IRP| < ||Flloo sup sup P5[x.(0"s) ¢ E(Mo) ]
ye&m) 1 (eoM)-1 <5<t

By (10.1), Réz) — 0. By Proposition 10.2, Lemma 6.7 and Corollary 6.2,as ¢ — 0,
the sum converges to

Y F@m) Qulyty=m'] = Qu[ F(y()].
m'e M

which completes the proof of the theorem. O

Proof of Proposition 10.2

The proof relies on a lemma, which appeared before in [21, Lemma 3.1] for
discrete-valued Markov processes.

Lemma 10.3. Fix t > 0 and m, m' € M. Then, for all x € £(m), b € (0, t/3)
and sequence t; — t,

Qi[yf (t—=3b) e Em')] < Q5[ y.(te) € Em") ] + Re(x, 1, b),
where,

lim limsup sup Rg(x, t, b) =0.
b=0 50 xeEam)

Proof. Fixt > 0,m,m' € My, x € £(m), asequence f, — t,and 2 < a < 3. By
(9.4) and the trivial fact that S.(¢) > ¢, for b € (0, t/3)

Qilyl(t —3b) e Em')] = Q5L y,(Se(t —3b)) € E(m')]
< Q[Ac(r, b)] + Q[ Be(r, b) ],

where

Act, b) = {Se(t —3b) > 1 —ab),
B:(t, b) = {y.(s) € E(m’) forsomes € [t —3b, t —ab]}.

By Lemma 9.4, as o < 3,

limsup sup QL[A:(, b)]1=0.
e—=>0 xe&(My)
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On the other hand,

QLB:(r, )] < Qy[y.(te) € Em') 1+ QLI Be(t, b), y.(tc) ¢ E(m')].
It remains to prove that

limsup limsup sup QX[ Be(r, b), y,(tc) ¢ Em')] = 0.
b—0 e—=0 xef(m)

By Lemma 6.6, the definition of B, (¢, b), and the strong Markov property,

limsup limsup sup Q%[ B:(t, b), y, (1) € EMp) \ E(m’)] = 0.
b—0 e—>0 xe&@m)

On the other hand, as @ > 2, for ¢ sufficiently small, . — s € [2b, 4b] for all
s € [t —3b,t — ab]. Hence, by the strong Markov property and Proposition 10.4,

limsup limsup sup Q%[ B:(t, b), y,(t) ¢ EMo)] = 0.
b—0 e—>0 xe&(m)

The assertion of the lemma follows from the previous estimates. O

Proof of Proposition 10.2. The proof is similar to the one of [21, Proposition 2.1].
We consider the case n = 1, the general one being similar.
Fix r > 0, m, m' € M, and sequences x, € £(m), t, — t. By Theorem 9.3,

Omly®) =m'] = 1lim Quly(t —38) =m'] = lim lim Q% [yl (t —38) € Em)].
§—0 §—0e—0 ¢
Thus, by Lemma 10.3,

Qmly(t) =m'] < li;n_)igf Q% [ye(te) € EGm')] < lim Sging[yg(ts) e&m)].

E—>

Since

= ) Quly®)=m] and > Q5 [y, (t)€Em)] < 1,
m' e My m'e My

the inequalities in the penultimate formula must be identities for each m € M,

which completes the proof of the proposition. O

Avoiding Wells

We complete the proof Proposition 10.2 by showing that the probability that the
process is not in a well when it starts from a well is very small. This is the content
of Proposition 10.4 below, the main result of this subsection.

Proposition 10.4. For all m € M,

lim sup limsup sup sup Qily. (1) ¢ EMp)] = 0.
b—0 e—0 xe&(m) te[2b,4b]
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The proof of this proposition requires some preliminary estimates. Fix €
(0, r9/2) so that there is no critical point ¢ € Co suchthatU(c) € (U(m'), U(m’)+
n) for some m’ € M. Fix m € My, and let

R = R@m) = RI\EM)N|x e R : Ux) <U@m) +1n/2} .

Denote by W the connected component of the set {x € R? : U(x) < U(m) +
d™M} which contains m. We claim that

WNR = o. (10.3)

Indeed, if y € R, U(y) < U(m) + n/2. By definition of 1) and £(m), all
points z € W such that U(z) < U(m) + n/2 are contained in £(m). Hence,
WNR = E@m) NR. By definition of R, £(m) N'R = &, which completes the
proof of the claim.

Lemma 10.5. Fix m € M. Then,

limsup limsup sup Q;[IR < a] =0.
a—0 e—>0 xe&(m)

Proof. By Lemma 6.6, it suffices to show that

Qiftr <a] < 2 max sup Q[ temonem) <2a] + Re(x),
m'eM ze(m')

where supy cg () |Re (x)| — 0.
To prove the previous bound, first observe that

Qilte <al = Qultg <a, 0y, <te]l + Qul e < a, Opy,, > te],

(10.4)
where o 4, A C R, is the first time after 5z that the process visits A:
o, = inf{t >t 1 x:(1) € A},

e =a+e"!/ 98(1) . By the strong Markov property, the second term on the right-hand
is bounded by

—1
sup P temg =67 ]
zZ€R

To keep notation simple, we replaced the measure Qf by . By Corollary 6.2, this
expression is bounded by a remainder R, (x) such that sup, . £(m) [Re(x)| — O.
We turn to the first term on the right-hand side of (10.4). It can be written as

Qilte <a, 0gy <te] + Qi <@, Tpypem < te]  (10.5)
By the strong Markov property, the first term is bounded by

sup Pi[ te(m) < 2a9§1)] = max sup P%[ tg(m) < 2a0 ) ],
zeR A zeA
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where the maximum is carried over all connected components of R. The number of
connected component is finite because U (x) — oo as |x| — oo. Fix a connected
component A of R, and let 3 be the connected component of {x € R? : U(x) <
U(m) + n} containing A. Since there are no critical points ¢ € Cy such that
U(c) € (U(m), U(m) + n), by Corollary 6.3,

lim supPt| 1y < t = 0.
5_)0165’1 z[ a8 s(B)]

On the other hand, by (10.3), £(m) C RY\B, so that 7y5 < Tem)- Hence,

sup PE[ 7oy < 2000 ] < sup PE[ te(my < 200", 105 < Te@my | + 0(1).
zeA zeA

By the strong Markov property, this expression is bounded by

sup P¢[ tem < 2‘195(1)] + 0g(1).
ze&E(B)

Since B and £(m) are disjoint this expression is less than or equal to

max - sup P zemonemy < 240" ] + oc(1).
m'eM zegm)

We turn to the second term of (10.5). Since e~ ! < 98(1), it is bounded by

&
Pl Temonem < 200 P

which completes the proof of the lemma. O
Proof of Proposition 10.4. Recall the definition of the set R introduced just before

Lemma 10.5. Denote by WV the connected component of the set {x € R : U(x) <
U(m) + dV } which contains m. By (10.3), RN W = @. Clearly,

Qi[yem eRINEM) ] < Q4[ye(0) e RIN\(EMYURY] + Q%[r <1].

Recall that n < ro/2, choose a time-scale o, satisfying (4.9), and let x; = o, /05(1).
By Corollary 4.4, the first term on the right-hand side is bounded by

Q[ e —xe) € RI\{EWMo) UR}] + 0 (1),

where the error is uniform over ¢ € [2b, 4b], x € £(m). As . is the stationary
state and ,u? the measure . conditioned to W20 (m), the previous expression is
equal to

pe(RY\ {E(Mo) UR})
e V210 (m))

where the error terms are uniform on x € £(m) and ¢t € [2b, 4b].
It remains to show that

+ 0:(1) = o0.(1),

lim sup limsup sup sup Qf[tr <t]=0.
b—0 e—0 xe&(m) te[2b,4D]

This is a direct consequence of Lemma 10.5 since Q%[tr < t] < Q%[tr < 4b]
for all ¢ < 4b. O
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Proof of Theorem 2.1

The assertion of Theorem 2.1 in the time scale 98(1) is a particular case of
Theorem 10.1. We turn to the second claim.

Fix a time-scale g, such that 1 < o, < 98(1), m e Moy, x € D@m), n > 0,
and a bounded continuous function F. Define the wells £(m’), m’ € M, as in the
proof of Proposition 10.2, to fulfill (10.2). First, assume that there exists g such
that o, > e forall ¢ < &.

By [14, Theorem 2.1.2], there exists T > 0 such that

PLlxe(T) ¢ E(m)] = os(1).

Hence, by the Markov property,

B[ Fexe(ee) ] = B[S ) [ Fxses — TH | 1Uxe(T) € Emm)} | + 02 (D).

Asx.(T) belongsto £(m) and o, < 05(1), by Lemma 6.6, inside the second expecta-
tion on the right-hand side we may insert the indicator of the set A] = {x. (0. —T) ¢
E(Mp)\E(m)} at a cost o, (1). By Proposition 4.2, we may also insert the indicator
of the set Ay = {U(x.(0s — T — &~V < U(m) + dV + 2ry} at the same cost.
Hence, the left-hand side of the previous displayed equation is equal to

B [BS, o) [ Fxe(0e = T0) L1 N Az} JUxe(T) € Em)} | + 0.(1).

By the Markov property the previous expectation is equal to
B[ S oy [ HARVES, g, 1o [ FOxe(1/e) AR ] |1 (T) € E0m) ) ],

where A} = {x.(e71) ¢ EMo)\E@m)}. Since U (x; (0. — T — &™) < U(m) +
d"V + 2rp, by Theorem 6.1 and Proposition 4.2, in the third expectation, we may
insert the indicator of the set Az = {x.(1/e) € E(My)} at a cost o.(1). If by
bad luck, there are critical points ¢ such that U(¢) = U(m) + dD + 27y, we
add to this constant a positive value to make sure that this does not happen. As
Ay =ANA; = {x:(e7") € £@m)}, by (10.2), the previous expression is equal
to

Fom) B[ B oy [UA2IPS (o _r— 1/ [ As] [Uxe(T) € Eam) | + Ree,

where |R(¢g, n)| < n+o.(1). We may now go backward in the argument to conclude
that the previous expression is equal to F (m) + R(e, n), which completes the proof
of the theorem in the case where o, > &2 for all & small.

Assume that this is not the case. We may suppose that o, < &2 for all & small
enough. If there is a subsequence which does not satisfy this condition, it is treated
as in the first part of the proof.

By [14, Theorem 2.1.2], there exists 7 > 0 such that

P [xo(T) ¢ W% (m)] = o.(1).
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Hence, by the Markov property,
B[ F(xeeo)] = E5[ES (o[ FGreloe = TH ] 1xe(T) € W m) ) | + oc(1).

As x.(T) € W/2(m), by Proposition 4.2, in the second expectation, we may
insert the indicator of the set A = {x.(0. — T) € £(m)} at a cost 0.(1). At this
point, we may repeat the arguments presented at the end of the first part of the proof
to conclude. O
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Appendix A. The Potential U

We present in this section elementary properties of the potential U and the dynam-
ical system (2.4). The main result establishes the existence of a path which perfects
the infimum in (2.2).

Proposition A.1. Fix a local minimumm € M. Then, there exist a local minimum
m' € Mo, m' # m and a continuous path z: [0, 1] — R? such that z(0) = m,
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z(1) =m’, and
tg[lgﬁ]U(Z(t)) = U(z(1/2)) = U(m) + ['(m) = O(m, m'),
Uz(s)) < U(z(1/2)), s [0, 11\{1/2}.
Moreover, if z(-) is such a path, then z(1/2) is a saddle point of U.

Proof of Proposition A.1

The proof is based on three lemmata. Fix m € M, and let VW be the connected
component of {x € R? : U(x) < U(m) + '(m)} containing m. By definition of
[ (m),

MonW = {m}. (A.1)

Lemma A.2. Fix m € My There is a connected component W of {x € R? :
Ux) < U@m) + T'(m)} such that WNW' = S and WNW' # @.

The proof of this result is given in a subsection below. Recall that we denote by
B(x, r) the open ball of radius » centered at x. Let

Ax, r) =B, N\ {xDN{yeR : U(y) <Ux)}.

Lemma A.3. FixH € R, and lc;t Wi ﬂd W, be two dszointﬂmnected components
of {x e R? : Ux) < H}. Wi NWs # &, then Wi N Wh = W, N OW;, and
any element o of W1 N W is a saddle point such that U(o) = H. Moreover, for

all r > 0 small enough, A(o, r) has two connected components: Ao, r) N W
and A(o, r) N W,

The proof of this lemma is presented in a later subsection below.

Lemma A4. Letm’, m" € Mgandletz : [0, 1] — R? be a continuous path such
that

20 =m', z(1)=m", Uz(1/2))=0@m', m")
U(z(t)) < Uz(1/2) fort € [0, 11\ {1/2} . (A.2)

Then, z(1/2) is a saddle point.

Proof. Recall that we denote by vy () the solution of the ODE (2.4) starting from
x.Fors >0, let ys: [0, 1] — R be the continuous path defined by

Vs () = vz (s) .
As U decreases along the solutions of the ODE,
Us (1) = Ulvyoy(s)) = Ulz(@)) .
We claim that

UWs(1/2)) = U(z(1/2)) = U(yo(1/2)) foralls > 0. (A.3)
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Suppose, by contradiction, that there exists so > O such that U (¥, (1/2)) <
U(z(1/2)). By (A.2), forall t # 1/2,

Uy (1)) = U(z(1)) < U(z(1/2)).
Thus, since by hypothesis, U (5, (1/2)) < U(z(1/2)),

max, U (g (1) < U(z(1/2)) = O@m', m") . (A4)
As m', m" are critical points, v,(s) = n forn = m/, m", s > 0, so that
Y5 (0) = vz0)(50) = Umr(s0) = m’, Yy (1) = m”. Therefore, the continuous
path ¥, : [0, 1] — R satisfies vy, (0) = m’, ¥y, (1) = m” and (A.4). This con-
tradicts to the definition of ® (m’, m’"), and completes the proof of claim (A.3).

It follows from (A.3) and from the fact U strictly decreases along trajectories which
do not start from critical points that z(1/2) is a critical point of U.

It remains to show that z(1/2) is a saddle point. Clearly, z(1/2) is not a local
minimum. Suppose, by contradiction, that z(1/2) is not a saddle point. Then, by
Lemma A.8 below, the set A(z(1/2), r) is connected for sufficiently small » > 0.
Since z is continuous, there is ng = no(r) > 0 such that z(¢) € B(z(1/2), r)
for all t € [1/2 — ngo, 1/2 4+ no]. Therefore, z(t) € A(z(1/2), r) for all t €
[1/2 — no, 1/2 + nol \ {1/2}. Since A(z(1/2), r) is connected and open, it is
path connected. Therefore, there is a continuous path z; : [1/2 —ng, 1/2+no]l —
A(z(1/2), r)suchthatz;(1/24n9) = z(1/24n0). Defineapathz; : [0, 1] — R?
as

_ 2@ 1 €[0,1/2=no) U /24 no, 1]

() = 2i(t) te[1/2 =m0, 1/2+10].

Thus, z5 is a continuous trajectory from m’ to m” such that U (z(¢)) < U(z(1/2))
for all ¢ € [0, 1]. This contradicts the definition of ® (m’, m”), and completes the
proof of the lemma. o

Proof of Proposition A.1. Fix m € M. Let W be given by Lemma A.2, and

denote by ¢ an element of W N W, By Lemma A.3, o is a saddle point, o €
Y (m), and, for sufficiently small » > 0, A(o, ) has two connected components
A(o, r) N W and A(o, r) N )W'. By Hartman-Grobman theorem, there are two
continuous path ¢1, ¢2: (—o0, 0] — R such that

. lim ¢;(t) =0 ¢i1(s) € Ao, r)NW ¢a(s) € Ao, r)N w’

——00

for all s < 0. Since W, W' are connected, we may extend continuously these
trajectories to s > 0 in such a way that ¢1(s) € W, ¢a(s) € W' forall s > 0. As
o € Y(m), by (2.5),

lim ¢1(s) =m, lim ¢o(s) =m/,
§—> 00 §—> 00

where m’ is a local minimum of U one in W'.
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Concatenating the paths ¢, ¢ and reparametrizing it, we obtain a continuous
path z : [0,1] — R4 from m to m’ such that z(1/2) = o. By Lemma A.3,
U(o) = U(m) + I'(m). Therefore, by construction, z(-) fulfills all conditions
required in Proposition A.1.

It remains to check the final assertion of the proposition, which follows from Lemma
A4 O

Proof of Lemma A.3

Throughout this subsection, we will use the fact that an open connected subset of
R¢ is path-connected.

Lemma A.5. Homeomorphisms preserve the number of open connected compo-
nents.

Proof. Let U and U, be open sets, and let ¢ : Uy — Uy be a homeomorphism.
Denote by U 1, ... ,Uj,nj the connected components of I/;, j = 1, 2. Since ¢ is
continuous, ¢ (U k) is connected. As ¢ is surjective, Uy = Uj<k<n, @ (U k), so that
ny < np.Since ¢! is continuous, the same argument yields the reverse inequality.
]

Lemma A.6. Let p be non-critical point of U. Then, for sufficiently small r > 0,
the manifold {x € RY : U(x) = U(p)} divides B(p, r) into two connected
components which are B(p, r) N{x € R? : U(x) < U(p)} and B(p, r) N {x €
RY: Ux) > U(p)}. In particular, A(p, r) is connected. Furthermore, there is a
continuous path z : [0, 11 — B(p, r) such that

2(0)=p z (0, 1)) C B(p, N N{x e R : U(x) < U(p)} .

Proof. Fix p = (p1, ..., pa) € R? be a non-critical point. Then, VU (p) # 0 so
that there is 1 < j < d such that

oUu
B—(P) #0.
Xj
Assume, without loss of generality, that j = d. For x € RY, let

X=0(x1 ..., Xg-1) -

By the implicit function theorem, there exist 7 > 0 and a C'-function g : R¢~! —
R such that

g(P) =pa, UX, gX)=U(p)forallx € Bs_1(p, r)

where B;_1(p, r) is a (d — 1)-dimensional ball with radius r > 0 centered at p.
Decompose the set B(p, r) into three parts:

Pi=B(p, r)N{&F, y) eR:y>g@)
Pr=B(p, )N{X, y) e R 1 y < g(@))
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P3=B(p. )N{F. y) eR?: y=3g®)}.
By definition of g, P3 = B(p, r)N{x e R? : U(x) = U(p)} and
Ux) £U(p)forallx e PLUP; . (A.5)

Suppose that there is x, y € P such that U(x) < U(p) < U(y). As Pj is path-
connected, there is a path in P; connecting x to y. Since U is continuous, this path
must pass through a point z € P; such that U(z) = U(p), and this contradicts
(A.5). Therefore, U(x) > U(p) forallx € Py or U(x) < U(p) forall x € Py.
Letv = VU (p). For sufficiently small > 0, U (p+nv) > U(p)and U (p—nv) <
U(p). Thus, thereis x, y € B(p, r) such that U(x) < U(p) < U(y). Therefore,
one of the sets Py, P> is B(p, r) N{x € R : U(x) < U(p)} and the other one is
B(p, r)N{x eRY: U(x) > U(p)).

Finally, since P3 is the graph of a C ! function, there are pathsz; : [0, 1] = B(p, r)
such that

zi(0) =p z (0, 1) CP; .
This completes the proof of the lemma. O

Critical points. The next two lemmata provide the number of connected compo-
nentes of the set A(c, r), ¢ € Cp, in terms of the index of the critical points c.

Lemma A.7. Let 6 be a saddle point of U. Then, for sufficiently smallr > 0, the set
Ao, r) = (B(o, n\fe}) N{x e R?: U(x) < U(a)} has exactly two connected
Components.

Proof. By [33, Lemma 2.2], since U is nondegenerate at o, the image of U near o
is locally diffeomorphic to the quadratic function F : R¢ — R given by

d
F(x) = —x12+le-2.
i=2

Therefore, for sufficiently small r > 0, A(o, r) is diffeomorphic to the set

[B(O, )\ {0}1N F~'((—00,0)) = [B(@, )\ {0}1N {x € RY : —x}

d
+ Z x,-2 < 0}.
i=2
Since the set on the right-hand side has two connected components, by Lemma A.5,
A(o, r) has also two connected components. O

Lemma A.8. Let ¢ be a critical point of U with index greater or equal to 2. Then,
for sufficiently small r > 0, A(c, r) is path-connected.
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Proof. By [33, Lemma 2.2], since U is nondegenerate at ¢, the image of U near ¢
is locally diffeomorphic to to the quadratic function F : R¢ — R given by

k d
F(x) =—Zx[2+ Zx,z
i=1

i=k+1

where k > 2 is the index of ¢. Therefore, for sufficiently small r > 0, A(c, r) is
diffeomorphic to

k d
[BO. O\ {xeR =Y a2+ 3 a2 <0},
i=1

i=k+1

Since this set is connected, by Lemma A.5, A(c, r) is also connected, and therefore
path-connected. O

Level sets. In this subsection, we examine the connected components of the level
sets of U.

Lemma A.9. Fix H € R. Let H be a connected component of {x € R : U(x) <
H). Let G C {x € R? : U(x) < H} be a connected set satisfying G N\'H # @.
Then, G C H. The same assertion holds if we replace all strict inequalities by
inequalities.

Proof. Let xo € ‘H. Then, H is the largest connected set F satisfying
xoe}"c{xeRd:U(x)<H}.

As G N'H # @, there exists xo € G N H. As G belongs to the previous class,
GCH.

The same proof yields the second assertion of the lemma. O

Lemma A.10. Fix H € R. Let H be a connected component of the set {x € R? :
U(x) < H} or one of the set {x € R? : U(x) < H}. Then, U(x¢) = H for all
Xxo € OH. Moreover,

(1) If H is an open set, then x is not a local minimum
(2) If H is a closed set, then x is not a local maximum

Proof. Fixxy € 0H. Since U is continuous, U (xg) < H. Assume by contradiction
that U (xg) < H. Let G be the connected component of the set {x € R?: U(x) <
H} containing x¢. Since U is smooth, there exists 7 > 0 such that

max U(y) < H
YEB(x0,7)
As xop € 0'H, there exists z € B(xg, r) N H. Hence, by the previous displayed
equation, B(xq, r) C H, so that xo € H, in contradiction to the fact that xo € 9H.
This completes the proof of the first assertion.
Suppose that  is a connected component of the set {x € R : U(x) < H}, and fix
xo € 0’H.By the firstassertion of the lemma, U (x() = H.Suppose by contradiction
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that x is a local minimum. Then, there exists » > 0 such that U (y) > U (x¢) for
all y € B(xq, r). Therefore, B(xg, r) N {x € RY: Ux) < H} = @, so that
B(xg, r) N'H = &. This contradicts the fact that xo € o'H.

Suppose that H is a connected component of the set {x € R? : U(x) < H}, and fix
X0 € d’H.Bythefirstassertion of the lemma, U (xo) = H.Suppose by contradiction
that x¢ is a local maximum. Then, there exists » > 0 such that U(y) < U (x) for
all y € B(xg, r)\{xo}. Therefore, B(xq, r)\{xo} C {x € RY:Ux) < H}.
Since xg € oH, B(xg, r) N 'H® # @, where H? is the interior of H. Fix x| €
B(xg, r) N "H? and let G be the connected component of {x € R? : U(x) < H}
containing x1. As x| € H’ C 'H, by definition of H, G C H. On the other hand,
by Lemma A.9, B(xq, r) \ {xo} C G, so that B(xg, r) \ {xo} C H. Asxg € H,
B(x¢, r) C 'H. This contradicts the fact that xo € 9’H, and completes the proof of
the lemma. o

For the next lemma, we extend the definition of ® (m, m’) to subsets of M. For
two disjoint non-empty subsets M’ and M” of My, define
oM, M" = min Omm', m"). (A.6)
m’e./\/l’, m//eM//
Lemma A.11. Let H C R? be a connected component of level set {x € RY :
U(x) < co} for some ¢y € R. Let M, M’ be disjoint non-empty subsets of M.

(D) IfFM, M' C H, then @M, M) < cy.
) If M C Hand M’ C RI\H, then ®(M, M) > co.

Proof. Let M, M’ be disjoint non-empty subsets of My contained in H. Since
‘H is open connected set, it is a path connected set. Thus, there exists a connected
path z : [0, 1] — H such that z(0) € M and z(1) € M’. Since z(r) € H for all
t € [0, 1], we have max;¢[o, 1] U (z(t)) < co and thus by (A.6), © (M, M') < cp.
This proves the first assertion.

To prove the second assertion note that any path connecting M and M’ must pass
through d’H on which the value of U is cp. O

Proof of Lemma A.3. Leto € Wi NW,. We claim thate € W, NdWs. Indeed, by
definition o € Wl It remains to show that & ¢ WV;. Assume, by contradiction, that
o € W;. Then, there exists r > 0 such that B(a,r) C W,. Since W) N W, = &,
B(a,r) N W, = @, which contradicts the fact that & € Wh. Thus, ¢ € dW).
The same argument shows that o € 9),, proving the claim. By Lemma A.10,
U(o) = H, and o is not a local minimum.

By definition, there exists » > 0 such that B(a, r)NW] # @ and B(o, r)NW, #
@.Since ¢ € AW NIW,, 0 € W1 UWhs, so that (B(a, r)\{c}) N W) # & and
(B(o, r)\{e}) N W, # @. Hence, by definition of W, and W», A(o, r) is not
empty.

We claim that A(o, r) is not connected. Suppose, by contradiction, that A(a, r)
is connected. Let x; € B(o, r) N Wy, x2 € B(o, r) N W,. Since U(x;) <
U(o), x1, xo € A(a, r). Since A(o, r) is open, there exists a continuous path
z:[0,1] —> R4 connecting x1 to x» in A(o, r). In particular, supy.,-; U(z(?)) <
U(o) = H. Since x1 € W and W) is a connected componentiof the set {x :
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U(x) < H}, all points in this path, including x>, belong to Wj. As x, € W, and
Wi N W, = &, this is a contradiction, which proves the claim.

Since o is not a local minimum, and .A(e, r) is not empty and not connected, by
Lemmata A.6, A.8, ¢ is a saddle point. By Lemma A.7, A(o, r) has exactly two
components. Let A, Aj, be the connected component which intersects with W,
W, respectively. Since A; is a connected set contained in {x € RY : Ux) <
U(o)}, by Lemma A9, A1 € W) and A, C W». Hence, A; # A and A] =
Ao, r) "Wy, Ay = A(o, r) N W, O

Proof of Lemma A.2
The proof relies on several lemmata.

Lemma A.12. Let IC,, be a decreasing sequence of compact connected sets and let
K :=(y2; Ku. Then, K is connected.

Proof. Suppose, by contradiction, that K is not connected. In consequence, there
are two disjoint open sets ¢/ and V such that CNU # &, KNV # &, and K C UUV.
Since L, NV AZandU NV =3, K, \U # 2.

We claim that IC, N 0U # @. Suppose by contradiction that /C,, N U = . In
this case, R? = [K, N aU]* = KU (0U)€, so that IC, = K, N (3U)C. Hence,
Ka\U = Ky DU = K 0 QU NUS = K N[OU) VUL = K, NU C U
Therefore, as U is an open set, for all x € K, \ U, there exists r(x) > 0 such that
B(x, r(x)) C U°. Since K,y is compact, KC,, \ U is compact so that there are finitely
many X, ..., Xx € KC, \ U such that

k
Ko \UC B, r(x)).
j=1

Therefore, IC,, C UU Uljzl B(x;, r(x;)). However, since B(x ;, r(x;)) C U for
all j,UnN Ul;zl B(xj, r(x;)) = &, in contradiction with the connectedness of /C,,.
This proves the claim.

As (K, N dU) is a decreasing sequence of compact sets, K N U = (7=, (K, N
oU) # @ by Cantor’s intersection theorem. Let xo € K N dU. Since U is open,
xo ¢ U sothatxg € V. Since V is open, there exists o > 0 such that B(xg, r9) C V
so that B(xg, ro) U = &, which contradicts the fact that xo € dU. This completes
the proof of the lemma. O

Lemma A.13. Let IC,, be a decreasing sequence of compact sets. Suppose that
K= ﬂff: 1 Kn is contained in an open set U. Then, there exists N € N such that
Ky CU.

Proof. Suppose, by contradiction, that each /C,, is not contained in U/. Then, for
each n € N, there exists x,, € K,\U C K1\U. As K;\U is compact, there is a



Arch. Rational Mech. Anal. (2024) 248:78 Page 59 of 70 78

subsequence (x,),>1 which converges to a point xo € X; \ U. Since x’j e K,\U
forall j > m, xo € K, \U. Therefore,

xoe [ K\ U =K\U=2

n=1

which is a contradiction. O

Lemma A.14. Let H be a connected component of the set {x € R : U(x) < H},
and letU be an open set containing H. Then, thereis N € N such that the connected
component of

1
{xeRd:U(x)§H+—}
N
containing 'H is contained in U

Proof. Let R, be the connected component of
d 1
[rer:vw =H+-]
n

containing H and let R := ﬂfle Ry.Since H C R, foralln > 1, H C R. On
the other hand, as (R,),>1 is a decreasing sequence of compact connected sets, by
Lemma A.12, R is connected. Since RN'H # &, R C {x e R? : U(x) < H}and
H is a connected component of {x € R? : U(x) < H}, by Lemma A9, R C H.
By the previous two estimates, H = k.

As R C U by Lemma A.13, there exists N € N such that Ry C U. O

Lemma A.15. Fix H € R. Let H be a connected component of {x € R?: U(x) <
H}. Then, 'H is path connected.

Proof. As’H is open and connected, it is path connected. It remains to show that the
boundary d’H is path connected to H. Fix xg € 9H. By Lemma A.10, U(xg) = H.
Assume that x¢ is not a critical point of U. By Lemma A.6, there exists » > 0 such
that the manifold {x € R? : U(x) = U(x¢)} divides B(x, r) into two parts:

B(xo, ) N{x e R : U(x) < U(xp)},
B(xo, ) N{x e R : U(x) > U(xp)} .

Since xo € dH, B(xp, r) N'H # & so that B(xg, r) N {x € R? : U(x) <
U(xo)} # @. By Lemma A9, B(xo, r) N{x € R? : U(x) < U(xg)} C H.
By Lemma A.6, there is a path z: [0, 1] — B(xq, ) such that z(0) = x¢ and
z2((0,1]) C B(xo, r)N{x € R? : U(x) < U(xo)} C H. Hence, xq is path-
connected to .

Suppose that x is a critical point. By Lemma A.10, x is not a local minimum. By
the Hartman—Grobman Theorem, thereis 7 > 0 and a continuous path z: [0, T'] —
R4 in the unstable manifold of x¢ such that z(0) = x¢ and z ((0, T]) C H. This
completes the proof of the lemma. O
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Lemma A.16. Let H be a connected component of {x € R? : U(x) < H}, and H°
the interior of H. Denote by W, i > 1, the connected components of H°. Then,
the number of connected components is finite. Moreover,

(1) Let W; be a connected component of {x € R? : U(x) < H} which intersects
with W;. Then, W] = W;
(2) H is path connected. In particular, for each i, thereis j such thatW,ﬂWj # J.

Proof. Consider the open set V. Since critical points of U are not isolated points,
it is not possible to have U(x) = H for all x € W,. Hence, W, well defined and
Wi ﬂWi #* . Letxg € W ﬁWi.

Claim 1: Let x1 € W such that U(x) = H. Then, x is a local maximum.

Fix x1 € W) such that U(x1) = H. Since W) is open, there exists r; > 0 such
that B(x1, r1) C W;i. Let r; be small enough so that there is no critical point in
B(x1, ri)\{x1}. Let y € B(x1, r1) such that U(y) = H. Since U (x) < H for all
x € B(xy, r1), y is a critical point (since VU (y) = 0). Hence, U (x) < H for all
x € B(xq, r1) \ {x1}. Therefore, x| is a local maximum, as claimed.

Let

VT/1 := {x € W) : xis not a local maximum} C W .

Since there are finitely many local maximum in Wi, Wl is open and connected.
By Claim 1, U(x) < H forall x € Wl.

By constrllgtion, Xq € VTA.

Claim 2: Wy C Wy C W.

Since W is a connected component of {x € R? : U(x) < H} intersecting with
Wl and since U (x) < H forallx € Wl,by Lemma A.9, W] C W{.Letxz € W{
Since xg € W{, there is a continuous path z: [0, 1] — W{ in W{ from x¢ to x»
such that U(z(f)) < H forall 0 < ¢ < 1. Since H is a connected component of
{x e R? : U(x) < H} containing x, this path is contained in : z(r) € H for all
0<tr=<1.AsU(z(t)) < H,by Lemma A.10, z(¢) € H° forall0 <t < 1. As W
is a connected component of H’ and xg € Wi, x2 € W, as claimed.

By definition, the set W] contains a local minimum. By Claim 2. so does Wj.
Since the connected components are disjoints, each one contains at least one local
minimum of U and there are a finite number of critical points, the set {° has a
finite number of connected components. This is the first assertion of the lemma.

By Claim 2, Wl C Wi C W). Since local maxima y € W, are accumulation
points, VTA = W so that W{ = W;. This proves the second assertion of the
lemma. o
Denote by n the number of connected components of H?, so that H = H° =
Ui, Wi = U W;. By Lemma A.15, W, = W, is path-connected.

Claim 3: foralli # j € {1, ..., n}, there exists i =i, ..., iy = j such that
Wi, "Wipy #9, 0<m <k. (A7)
Suppose this property does not hold. Then, there existsi # j € {1, ..., n}whichare

not connected in the sense (A.7). Let A be the set of indices in {1, ..., n} which are
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connected to i in the sense (A.7). The sets Ugc s Wi, Ukg AWy are compact, disjoint
and non-empty. Thus, there exist disjoint opens sets I, V such that Uye s Wi C U,
Uk¢AWk C V. This contradicts the fact that H = [J;_, W; is connected, and
proves Claim 3.

Since each set W; is path-connected, by property (A.7), the set H is also path-
connected. O

Lemma A.17. The connected component of the set {x € R% : U(x) < @(m’, m")}
containing m’ also contains m”.

Proof. LetH be the connected component of the set {x € R? : U(x) < O (m’, m")}
containing m’. Suppose, by contradiction, that m” ¢ H. Since H and {m"} are com-
pact sets, there is an open set U such that H C U and m” ¢ U. By Lemma A.14,
there is n € N such that the connected component of

d / " 1
xeRY:U@x) <O, m") + -}
n
containing H is contained in /. This connected component does not contain m”.
Thus, by Lemma A.11, ©(m’, m") > ©(m', m") + % which is a contradiction. O
Lemma A.18. Let m, m’' € Mg be two different local minima. Then,
U@m), Um') < ®@m, m') .

Proof. We only prove for m because (-, -) is symmetric. Since m is a local
minimum, there exists > 0 such that m is a unique local minimum of a connected
component of {x € R? : U(x) < U(m)+2n) containing m. Therefore, by Lemma
A.11, for all continuous path z connecting local minimum m and any other local
minimum, we have

max U(z(t)) > U@m) +n
t€[0,1]

which implies
O@m, m') > U(m)+1n > U(m) .
O

Proof of Lemma A.2. Fix m € M. Let H be the connected component of the
set {x e R? : U(x) < U(m) + I'(m)} containing m. By definition, there exists
m’ € M such that

O@m, m)= min O@m, m")=U®Gn)+ T (m).

m’ e Mo\{m}

By Lemma A.17, m’ € H.
As in Lemma A.16, denote by H° the interior of . Let W;, 1 < i < n, the open
connected components of H°. Assume that m € W.
We assert that m is the unique local minimum in W;. Indeed, as in Lemma A.16,
let W{ be a connected component of {x € RY . Ux) < U(m) + I'(m)} which
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intersects with WW. By (A.1), W] contains one and only one local minimum of U.
On the other hand, by Claim 2 in Lemma A.16, W{ C W and all elements of
Wi\W; are local maxima. This proves the assertion.

By Lemma A.18, U(m') < ©®(m, m’). Asm’ € H, by Lemma A.10, m’ € H° so
that n > 2.

By Lemma A.16-(2), there is 1 < k < n such that Wy N W, # @. Let W, W’
be connected components of {x € RY:Ux) < O@n, m' )} intersecting with W,
Wi, respectively. By Lemma A.16, W = Wy and W' = W so that WNW' # @.
)

Appendix B. Extension of the Vector Field b

Fix m € M. In this subsection, we define a new vector field by : R? — R? which
coincides with b in a neighborhood of m and satisfies the hypotheses of Sect. 3.
Assume that m = 0, and let

H = (V2U)(0), L = (D€)(0).
By Taylor expansion, for x >~ 0,
—b(x) - Hy = [(H+L)x + O(x )] - Hy = [He + 0(x) ,

where the second equality comes from the fact that HIL is skew-symmetric. Thus,
there exists r5 > 0 such that

1
= —b(x) -Hx > 2 |]H1x|2 for all x € B(0, 2rs). (B.1)
If needed, modify the definition of r5 > 0 for
1
Kyy| < 5 |Hy| forallx € B(0,2rs), y € RY. (B.2)

where K, = (V2U + D¢)(x) — (H+L).
For x & B(0, rs), let

r(x) = ﬁx € 9B(0, rs)
X

and let by : R — R< be given by

b(x), x € B(0,rs)
bo(x) = . (B.3)
b(r(x)) + (Db)(r(x))(x —r(x)), x € B(0,rs)".

The main result of this section reads as follows.

Proposition B.1. The vector field by fullfils all conditions of Sect. 3. Condition (2)
holds for r3 = rs.

The proof relies on two lemmata.
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Lemma B.2. The vector field by belongs to C LR4, RY). Moreover; there exists a
finite constant Cy such that

[bo(x)| < Cil|x| and | Dbo(x)| < Ci|x]| (B.4)
forall x € B(0, rs5)°.

Proof. By a straightforward computation, for |x| > rs,

(3 b0)(x) = By { [Dh(r(x)] (x —r(x))} 4+ 3 {b(r(x))}. (B.5)
Since
ey Xk X
el xPT
the matrix dy, [Db(r(x))] is uniformly bounded on B(0, r5)°.
Since x — r(x) as x approaches dB(0, rs), the boundedness of 9y, [Db(r(x))]
yields that dy, bo(x) — 0, b(x) as x approaches to dB(0, rs). This proves that
by € C'(R?, RY). The first assertion of (B.4) follows from the definition of by.
The second one from (B.5) and the boundedness of d; [Db(r(x))] on B(0, rs)¢. 0

Lemma B.3. For all x € R,

O, (x) =15

1
—bo(x) - Hx > - [Hx|?
Proof. By (B.1) the condition is satisfied for x € B(0, 2r5). Fix x & B(0, rs) so
that
— bo(x)-Hx = —b(r(x))-Hx — (Db)(r(x))(x —r(x))-Hx (B.6)

Since x = (|x|/rs) r(x) and since r(x) € B(0, 2rs5), by (B.1), the first term on the
right-hand side can be estimated by

——b(r(x)) Hr(x) = IHF( )7 = ﬁlH x|,
For the second term, write
—(Db)(r(x)) = H+L+K, and x—r(x)= (1—|;—5|)x.
Since HIL is skew-symmetry, the second term of (B.6) is equal to
(1- m) (H+L+Ky)x - Hx
- (l_ﬂ) (1Ex? + Kox - Hix) = ;(l_ﬂ) [Hx|? .

The last inequality comes from (B.2). Adding the previous estimates completes the
proof of the lemma. O

Proof of Proposition B.1. To check the first condition, suppose that bo(x) = 0 for
some x € RY. Lemma B.3 implies that x = 0. Thus 0 is the only equilibrium of
the dynamical system (3.2). Since the behavior of this ODE near 0 is identical to
that of x(-), the origin is a stable equilibrium. Condition (2) in Sect.3 for r3 = r;5
follows from the definition of bg. The third and fourth conditions have been derived
in Lemmata B.2 and B.3, respectively. O
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Appendix C. Potential Theory

In sake of completeness we introduce in this section the capacity between sets. Fix
two disjoint non-empty bounded domains A and B of R¢ with C% ®-boundaries
for some « € (0, 1). Assume that the perimeters of A, B are finite and that the
distance between the sets is positive. Let Q@ = (A U B)® so that 3Q2 = d.AU 3.
The equilibrium potentials hil g between A and B with respect to the processes
x¢ () is given by

W p(x) = Pilta <8l x €RY
and the capacity by

cap, (A, B) = e/ |VhEy gl* dpe.
o :

We refer to [22] for equivalent formulations and properties of the capacity.

Appendix D. Analysis of a Linear ODE

In this section, we prove Lemma 5.3. To simplify notation, we fix ¢ € ), assumed
to be equal to 0, ¢ = 0, and write A = —(H° 4 L¢). By Lemma 5.1, the matrix A
is invertible and does not have a pure imaginary eigenvalue. All the results given
in this section holds for such a matrix A.

Real Jordan Canonical Form

Suppose that a matrix K can be written as a block matrix of the form

K; O O

0O 0 K,
where K1, ..., K, are matrices of possibly different sizes and O denotes the zero
matrix of suitable size. We represent such a matrix as K = diag(Ky, ..., K,).

We start by a review of a real Jordan canonical form of A. By [35, Theorem 2.5],
there exists an invertible matrix U such that

A=1UJU™! (D.1)
where J is of the form
J =diagE], ..., E, . Fy, ..., F . Ef, ....E} . Ff, ..., F))
AT 10 B L, 0
Ex=|o0 1| Fi=|lo 1|

+ +
0 0 0 0 B
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and
10 n of pE
n=loy]. m=| k).

In this formula, )»,j and oz,;Ir are positive while A, and & are negative real numbers.
The eigenvalues of A are )»ki and ozki + iﬂki. Thus, by Lemma 5.1, Af and ozkjt
cannot be 0. (Note that the real numbers ,Bki are also different from O because the
eigenvalues oz,:(IE +i ﬂki are complex numbers, but this will not be used below).

By (D.1)

et = UeMU!
where
e = diag(etEr, R eﬂE;l, etFr, R et]FN_Z, e”ET, R etE;rl, e’FT, R e”FSJrZ).
(D.2)
Suppose that E,f is a j x j matrix. An elementary computation yields that
1;7...(],._1)! il
01 ¢ .- 2 T
E: s -2t (-D!
e =t | L. : . (D.3)
000 --- 1 t
000--- 0 1
Similarly, if F¥ is a 2 x 2j matrix,
S1SLS.. 2S4S
R Ve L
/= /=
N R e R e
M= : , (D.4)
00 O -+ S S
00 0O -+ 0O S

where O denotes the 2 x 2 zero matrix and

[ cosBE) sin@B)
= | —sin(B) cosBE) |
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Stable and Unstable Manifolds

Recall from (5.1) that we represent by vz, , (¢) the solution of the linear ODE (5.1).
With the notation of this section, it can be written as

d
auL,x(t) = Avp,(t), vpx(t) = ePx =UeMU x| (D.5)

Recall that My, s, M|, , represent the stable, unstable manifold of ¢ = 0 for the
linear ODE (5.1). By (D.5),

Mpu: ={ye RY tii{nooe’JU*Iy =0} Mp,:

={yeR’: lim U 'y=0}.

t——+00
Denote by m € N the size of the matrix diag(e”ET, e, oM , etFT, e, etF;Z),
and by {uy, ..., ug} the column vectors of U, (u; = Ue;, where {eq, ..., es}

stands for the canonical basis of R?). By (D.2), (D.3), and (D.4),
ML,M =<ulv RS} um> and ML,S: (um-'rla L} ud)v (D6)

where (S) denotes the vector space spanned by S. The following lemma is a direct
consequence of the discussion above.

Lemma D.1. There exists Co > 0 such that forall y € My s andt > 0,
loL,y®1 < Collyll-
Proof. Write y = min{|A{ [, ..., A, ], leeg |, ..., leg, [} > 0. Then, by (D.2),

(D.3), (D.4), (D.5), and (D.6), it is clear that there exists a polynomial P(z) de-
pending only on d such that

vz, y I < e POyl
The conclusion of lemma follows immediately. O

By (D.6), RY = M, & M . Hence, for each y € RY, there exists a unique
decomposition

y=v"(y)+v'(y) D.7)

such that v*(y) € My, and v*(y) € My ;. Next lemma provides the basic
property of this decomposition.

Lemma D.2. There is co < oo such that
v Il < collyll forall y € R.

The proof is based on the following elementary result.
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Lemma D.3. Let V and W be subspaces of R such that V \W = {0}. Then, there
exists ¢ = ¢(V, W) > 0 such that

[(v, w)

sup =
vev\{0}, wewn (o) lollwll

1-¢

where sup is taken over all non-zero vectors.
Proof. Let us define F : (V\{0}) x (W\{0}) - R as
[{v, w)

lollllwl

Fv, w) =

Since F(cv, c’'w) = F(v, w) for all ¢, ¢’ # 0, we have

sup Fv, w) = sup F(v, w).
veV\ {0}, weW\{0} veV,weW: v)|l=|lw|=1
Since the set So = {(v, w) : v € V, w € W : |v| = ||w| = 1} is compact and

F (-, -)iscontinuous, the function F achieve the maximum at certain (v*, w*) € Sp.
Then

sup F(v, w) = F(v*, w").
veV\ (0}, weW\ {0}

Note that F(v*, w*) < 1 by the Cauchy—Schwarz inequality (the equality cannot
hold because of the assumption V N W = {0}). This completes the proof. O

Proof of Lemma D.2. Since My , N My s = {0}, by Lemma D.3, there exists a
constant ¢ > 1 such that, forall y € R4,

(0" (), V') < V(e —D/elv" DMl I
< S DI+ SO
where we applied Young’s inequality in the last step. Therefore,
—2c(v"(y), v' ) < el W+ (¢ = DIV I
Reorganizing, we obtain
I WI? < e (" WIZ + 20" (), v W) + I WID) =clyl®.
This completes the proof. O

Proof of Lemma 5.3. Recall the constant Cy and c¢p from Lemmata D.1 and D.2,
respectively, and define r > 0 as

a
r= .
3Coco

(D.8)

Suppose that y € B(0, r). As in (D.7), decompose y € S? into

y=v"(y) + v’ (y)
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so that

UL,y(t) = UL,v“(y)(t) + UL,vS(y)(t)~

Note that vy yu(y)(t) € My, and v ps(y)(t) € My forall t > 0 since My,
and M  are invariant under the dynamical system (5.1). Recall the definition
(5.2) of t7.(+) and write

w'(y) = v tL(y) € Mpy and w'(y) := v sy (tL(y)) € Mp,

so that

er(y) =w"(y) + w'(y) (D.9)

By (5.2), |leL.(y)|| = r1. Moreover, by Lemmata D.1, D.2, and by the definition
(D.8) of r,

. . a
w1 = Collv* W = Cocollyll < Cocor = 3 (D.10)

Therefore, by the triangle inequality,

M u rl u N
P — +
lee0) = i @ | = oo - i | + o
— 1 I u + N .
=i | POl 1o
Since ||er (y)|| = r1, this expression is equal to
[w* Dl =ri | + WOl = [1w Wl = lleeWI| + [w W

By (D.9) and (D.10), this expression is bounded by 2 [|w*(y)|| < (2/3) a. This
completes the proof of the lemma since

— L wi(y) e My NABO, ).
lw*(y)ll
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